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Abstract
We investigate approximation algorithms for the classical minimum makespan scheduling problem, focusing on

instances where the rank of the matrix describing the processing times of the jobs is bounded. A bounded rank matrix
arises naturally when the processing time of a job on machine depends upon a bounded set of resources. A bounded
rank matrix also shows up when jobs have varying degrees of parallelizability, and the machines have multiple cores.

We are interested in studying the tractability of the problem as a function of the (positive) rank of the processing-
time matrix. At one extreme is the case of unit rank, also known as related machines, which admits a PTAS [7], and
at the other extreme is the full rank case (unrelated machines), which is NP-hard to approximate within a factor better
than 3/2 [8].

Our main technical contribution is in showing that the approximability of the problem is not smooth with the rank
of the matrix. From the inapproximability side, we show that the problem becomes APX-hard, even for rank four
matrices. For rank seven matrices, we prove that it is hard to approximate to a factor 3/2, matching the inapproxima-
bility result for general unrelated machines. From the algorithmic side, we obtain a quasi-polynomial approximation
scheme (i.e., a (1 + ε) approximation in time npoly(1/ε,logn)) for the rank two case. This implies that the problem is
not APX-hard in this case, unless NP has quasi-polynomial algorithms. Our algorithm is a subtle dynamic program
which runs in polynomial time in some interesting special cases. The classification of the three dimensional problem
remains open.

1 Introduction
The makespan minimization problem is a classic and well-studied problem. In this problem, we are given a collection
of n jobs andmmachines, and the processing time incurred by scheduling job j on machine i is given by pi,j ≥ 0. The
goal is to find an assignment of jobs to machines, that minimizes the total processing time assigned to any machine
(i.e., the makespan). This is also the time to complete processing all jobs. Makespan minimization is one of the
problems originally shown to be NP-Hard by Garey and Johnson [5]. The problem is NP-Hard even on two identical
machines (through a reduction from the subset-sum problem). Since then most work focused on obtaining efficient
approximation algorithms, and our work also concerns with precisely this line of study.
A well understood special case for this problem is the one of identical machines where the processing time of job j is
pj on each of themmachines. As mentioned earlier, the hardness reduction in [5] shows that an FPTAS is not possible
(unless P=NP). In a seminal result Hochbaum and Shmoys [6] show an (1 + ε)-approximation algorithm which runs
in polynomial time for constant ε. The algorithm was later extended to the case of related machines [7] where each
machine may have a different speed, and the processing time of job j on machine i is pi,j = pi · s−1

i . On the other
hand, in the problem of unrelated machines pi,j are arbitrary non negative numbers. Lenstra, Shmoys and Tardos [8]
showed that this problem is NP-hard to approximate within a factor better than ( 3

2 − ε) for every constant ε > 0.
They also show a 2-approximation algorithm, and this bound was subsequently improved to (2− 1

m ) by Shchepin and
Vakhania [10]. Closing the gap between the upper and lower bound is a long-standing open problem.
There have been several works trying to study the approximability of various special cases of this problem. This work
looks at a new way of parametrizing the complexity of the problem, which we believe arises naturally and is practically
relevant. We focus on the rank of the matrix representing the processing times. In this view, the input to the problem
is captured by the matrix P = {pi,j}1≤i≤m,1≤j≤n. If P is a non-negative unit rank matrix, then every row is a scaling
of the other, which means that we can express the processing time pij as pj/si for some scaling factor si. But this is
just the instance of related machines, and admits a PTAS [7]. At the other extreme, the case of full rank matrices P
corresponds to the problem of scheduling on unrelated machines, for which we know a (2− 1

m )-approximation and a
factor ( 3

2 − ε) hardness result.
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The question we are interested in studying is the case of P having low non-negative rank1, say 2. Does the problem
admit a PTAS for constant rank matrices? Does the complexity of the problem grow exponentially with the rank of
the matrix, to become APX-hard for super-constant ranks?

1.1 Motivation
A low rank matrix arises naturally in several cases:

Bounded Resources. In this setting each job requires a small number of resources (say CPU operations, memory
accesses, network utilization, etc.), and each machine has a different configuration with respect to these parameters.
In this case job j may be characterized by a D-dimensional size vector uj = (uj1, ..., ujD), expressing its demand
across the D resources. Similarly, each machine is characterized by a D-dimensional speed vector vi = (vi1, ..., viD)
measuring the scarcity (or supply) of the resources on the machine. The processing time is the inner product of these
two vectors, pi,j =

∑
d≤D udjvdi. Clearly this leads to a matrix P with non-negative rank bounded by D. We remark

that both our positive and negative results extend to the case when the sum is replaced by a max.

Multicore Scheduling. The positive rank two case can also model the following scenario: machine i has ci cores
and each job j has a sequential part of length σj and a parallelizable part πj . So the running time pi,j = σj + πj/ci.
It is easy to see that this problem can be cast as a rank two problem, where the machines have the vector (1, 1/ci)
and the jobs have a vector (σj , πj). More generally, the setting where the jobs can be partitioned into D types of
parallelizibality can be captured by rank D instance.

Geometrically Restricted Scheduling. An important special case of the minimum makespan scheduling is the re-
stricted assignment problem, where the running time of job j on any machine i is ∈ {pj ,∞}. A positive rankD matrix
can model the following geometric special case of the restricted assignment problem: each job j is associated with a
point qj in RD−1 and each machine is associated with a point ri also in RD−1. A job j has processing time pj on
machine i if qj ≺ ri (here ≺ denotes coordinate-wise dominance of qj by ri), and has processing time∞ otherwise.
From a technical standpoint, understanding the geometrically restricted assignment problem turns out to be a crucial
stepping stone for the general LRS problem.

1.2 Problem Definition
We call the problem of makespan minimization with positive rank D the LRS(D) problem. In this problem, we are
given a n×D matrix J . Column j is the D-dimensional size vector uj � 0 of job j. Similarly we are given a D×m
matrix M where each row i is the D-dimensional speed vector vi � 0 of the i’th machine. The running/processing
time pij of job j on machine i is then uj · vi =

∑
1≤d≤D uj,dvi,d, so that P = JM . The objective is to find

an assignment of jobs to machines to minimize the makespan, i.e., the maximum time by which all jobs have been
scheduled. We remark that if we are given P it is possible to recover J and M in polynomial time, as long as D is
constant [1, 9].

1.3 Related Work
Some special cases of the unrelated machine problem were shown to have an approximation ratio better than 2.
Ebenlendr et.al. [3] showed a 1.75 approximation for the case where each job can be processed on at most two
machines. Svensson [11] showed a ≈ 1.94 approximation for the makespan in the restricted assignment case where
pij ∈ {pj ,∞}. Intriguingly Svensson’s algorithms does not output a schedule that achieves this makespan. Epstein
and Tassa [4] study a related problem, and their results imply a PTAS for the LRS(D) problem under the assumption
that all the entries in J and M are bounded above and below by constants. A related but different problem called
vector scheduling was considered by Chekuri and Khanna [2].

1.4 Our Results
On the algorithmic side, we show the following results: We obtain a PTAS for any fixed D, assuming the inputs
are well-conditioned, i.e, the numbers involved are bounded by some factor ∆ for either the machines or the jobs.
This improves over the results of Eppstein and Tassa [4] who need all the numbers in both J and M to be bounded
by constants (and we get a better dependence on ∆), although they solve a more general problem. For the special

1We thank Anna Karlin for suggesting this problem
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case of D = 2 however, we show a dynamic programming based approximation algorithm which computes a 1 + ε
approximation in quasi-polynomial time for all instances (without the well-conditioned assumption). This implies that
the positive rank 2 case is not APX-hard unless NP has quasi-polynomial time algorithms. Moreover, our algorithm
for the 2-dimensional case runs in polynomial time for some interesting cases such as the sequential/parallelizable
case.
Counterbalancing the above results, we show that in general, LRS(D) is in fact APX-hard for D ≥ 42, thus showing
that the approximability is not smooth with the rank of the matrix. For D ≥ 7 we recover the ( 3

2 − ε) hardness (which
is the best bound known for unrelated machines), and for 4 ≤ D ≤ 6 we get a smaller constant. We do not resolve the
classification of the three dimensional case, and it remains an intriguing open problem.

2 Hardness Results
2.1 Factor 3/2 Hardness for Rank 7 scheduling
In this section, we show that the low rank scheduling problem is hard to approximate to a factor of 3/2− ε, when the
rank of the matrix is 7. This rules out a smooth trade-off between the approximability and the dimensionality of the
problem. As mentioned before, this matches the best known hardness factor for the general makespan minimization
problem.

Theorem 1. For every ε > 0, it is NP-hard to approximate LRS(7) to within a factor of 3/2− ε.

Proof. The proof is by reduction from the 3-dimensional matching problem. In this problem we are given a ground
set of vertices U ] V ]W , and a set of hyperedges E ⊆ U × V ×W . Furthermore, suppose |U | = |V | = |W | = n,
and |E| = m. A subset F ⊆ E is said to form a perfect matching if each vertex of U ] V ]W appears in exactly one
hyperedge in F . The problem of deciding whether E contains a perfect matching F is known to be NP-complete [5].
We assume the nodes in U are numbered 1, 2, . . . , n and slightly abuse notation by letting u ∈ [n] indicate both a
vertex in U and its index. Similarly v and w denote both vertices in V and W and their indices. Also, let tu (tv and
tw respectively) be the number of hyper-edges which pass through u (v and w respectively), i.e., tu = |{e ∈ E : e =
(u, ∗, ∗)}|. We are now ready to define our hard scheduling instance. We set N := n/ε.

Machines. For every edge e = (u, v, w) ∈ E, we have a corresponding machine m(e), which has the following speed
vector vm(e) s.t.

vm(e) ≡ (N−u, Nu, N−v, Nv, N−w, Nw, 1) .

Real Jobs. For each vertex v ∈ V , we have a job j(v), which has the following size vector uj(v) s.t

uj(v) ≡ (0, 0, εNv, εN−v, 0, 0, 1) .

Likewise, for each w ∈W , we have a job j(w), which has size vector uj(w) s.t

uj(w) ≡ (0, 0, 0, 0, εNw, εN−w, 1) .

Dummy Jobs. Additionally, for each vertex u ∈ U , there are tu− 1 dummy jobs of type u which all have size vectors
(εNu, εN−u, 0, 0, 0, 0, 2).

Processing Times. The processing time of a job (real or dummy) on a machine is the inner product of the correspond-
ing vectors vm(·) and uj(·). It is easy to see that the resulting matrix of running times has rank 7.
Notice that real jobs correspond to vertices of V and W , and dummy jobs correspond to those of U . Furthermore,
there are 2n real jobs and

∑
u(tu − 1) = m− n dummy jobs in total.

Observation 1. In the above instance, the processing time of real job j(v) (or j(w)) on machine m(e) is 1 + 2ε if e
passes through v (or w respectively). If e does not pass through v, then the processing time on m(e) is at least Ω(N).
Similarly, the processing time of dummy jobs of type u are 2 + 2ε on machines m(e) where e passes through u. It is at
least Ω(N) on other machines.

2Not surprisingly, the instances we use will not be well-conditioned.

3



Completeness. We now show that if there is a perfect matching, then there is a feasible solution to the scheduling
problem with makespan at most 2+4ε. Indeed, suppose there is a perfect matching F ⊆ E, and suppose the hyperedge
e = (u, v, w) ∈ F . In this case, jobs j(v) and j(w) go to machine m(e), and the tu − 1 dummy jobs of type u, all
go to the tu − 1 machines corresponding to the unmatched edges (involving u). Clearly each machine e ∈ F gets
two jobs assigned to it, and each machine e /∈ F gets one dummy job assigned to it. From the above observation, the
makespan on any machine is at most 2 + 4ε.

Soundness. We argue that given a schedule with makespan at most 3 + 5ε, it is possible to find in polynomial time a
perfect matching. Since in this case the optimal schedule has a makespan of at most 2+4ε, we obtain an approximation
hardness of 3/2− ε.
First suppose that we are given a schedule of makespan at most 2 + 4ε. Now, each machine either has a dummy job,
or has at most two real jobs (all other job assignments will exceed the bound of 2 + 4ε). For any vertex u ∈ U , the
dummy jobs of type u have all been scheduled on machines m(e) s.t e passes through u (by Observation 1). Since
there are tu − 1 such jobs and each occupies a unique machine, this leaves only one machine m(eu) for some edge eu
which has no dummy jobs scheduled on it. Indeed, the machines corresponding to the set of edges F = {eu : u ∈ U}
are the n machines on which the real jobs are scheduled. Furthermore, since there are 2n real jobs and |F | = n, each
machine m(eu) has a load of exactly 2 real jobs. Now because job j(v) can only be scheduled on a machine e that
passes through v, we have that each vertex v ∈ V (and similarly for w ∈ W ) passes through a unique edge in F .
Therefore, the edges of F form a perfect matching. The argument is complete by the observation that the next lowest
makespan value possible in our instance is 3 + 6ε, so we can recover a perfect matching out of any schedule with cost
at most 3 + 5ε, giving us the desired 3/2− ε hardness of approximation.

2.2 APX-hardness for 4-Dimensions
Building on the above ideas, we now show that the problem LRS(4) is APX-hard, i.e., hard to approximate to within
some constant factor (smaller than 3/2).
At a high level, the idea is to use only one dimension for each partition of the 3D matching. Recall that in the previous
reduction, we used 2 coordinates to specify that a job v could only run on a machine e = (∗, v, ∗). We did this by using
one coordinate to ensure that v can only run on machines (∗,≤ v, ∗), and another coordinate which ensures v can run
only on machines (∗,≥ v, ∗) leaving the edges (machines) passing through v as the only ones in the intersection.
In the coming reduction, we will save one coordinate for each partition U, V , and W by only enforcing one (the ≤
constraint) of these constraints. But in such a situation, a job v meant to be scheduled on a machine (∗, v, ∗) can be
scheduled on machines with lower coordinate value v′ ≤ v. We resolve this issue by creating sufficiently many jobs
of earlier coordinate values, that such a situation does not arise. This comes at the cost of lowering the approximation
constant. We now present the formal construction.
Recall that tu = number of hyper-edges which pass through u ∈ U , and likewise, tv and tw are the number of hyper-
edges which pass through v ∈ V and w ∈W respectively.

Machines. For every edge e = (u, v, w) ∈ E, we have a machine m(e) with speed vector

vm(e) = (Nu, Nv, Nw, 1) .

Real Jobs. For each vertex u ∈ U , we have a job j(u) with size vector

uj(u) = (εN−u, 0, 0, 1) .

Similarly, for each vertex v ∈ V , we have a job j(v) with size vector uj(v) = (0, εN−v, 0, 1) and for each vertex
w ∈W , we have a job j(w) with size vector uj(w) = (0, 0, εN−w, 1).

Dummy Jobs. Like before, there are tu − 1 dummy jobs of type u which all have size vector (εN−u, 0, 0, 0.8). In
addition, there are tv − 1 dummy jobs of type v which have size vector (0, εN−v, 0, 0.9) and there are tw − 1 dummy
jobs of type w which have size vector (0, 0, εN−w, 1.3). Notice that now there are m− n dummy jobs corresponding
to vertices in U , V and W each, resulting in a total of 3(m− n) dummy jobs.

Completeness. We now show that if there is a perfect matching, then there is a feasible solution to the scheduling
problem with makespan at most 3+3ε. Indeed, suppose there is a perfect matching F ⊆ E, and suppose the hyperedge
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e = (u, v, w) ∈ F . In this case, jobs j(u), j(v) and j(w) go to machine m(e), and the dummy jobs of type u, all go to
the tu − 1 machines corresponding to the unmatched edges (involving u). Likewise, the dummy jobs of type v go to
the tv − 1 unmatched edges for v, and likewise for w ∈W . Clearly each machine e ∈ F gets three jobs assigned to it,
and each machine e /∈ F gets three dummy job assigned to it. Furthermore, the makespan on any machine is at most
3 + 3ε. To see this observe that the makespan of the matched edges is 3(1 + ε) and the makespan of an unmatched
edge is 1.3 + 0.9 + 0.8 + 3ε.

Soundness. Now, suppose we have a solution with makespan of at most 3.09 + 3ε.

Lemma 1. If the makespan is at most 3.09 + 3ε, then each machine has a load of 3 jobs, furthermore, a machine e
either has three real jobs of types u, v, and w respectively, or has three dummy jobs of types u, v and w respectively.

Proof. The total number of machines is m and the total number of jobs is 3m. Observe that a machine with four jobs
must have a makespan of at least 3.2+4ε, so it must be the case that each machine has exactly three jobs assigned to it.
For the second part of the lemma we focus on the last dimension in the size vector of each job. The total contribution
of the last dimension across all jobs is 3m so on average the makespan of each machine individually has to have an
additive constant of 3 which could be be obtained either as 1+1+1 or 0.8+0.9+1.3. Deviating from this assignment
implies that at least one machine has a makespan with an additive constant strictly larger than 3. The smallest possible
configuration larger than 3 is 0.8 + 1 + 1.3 = 3.1 which would result in a makespan of at least 3ε + 3.1. The claim
follows.

Lemma 2. Suppose we have a schedule with makespan at most 3.09 + 3ε. For all 1 ≤ i ≤ n, the tui
− 1 dummy jobs

(and the real job) corresponding to vertex ui are all assigned to edges of the form (ui, ∗, ∗). Furthermore, no two jobs
corresponding to the same vertex are scheduled on the same machine.

Proof. The proof is by induction on i. For the base case, consider jobs of type u1. Firstly, notice that both real
jobs and dummy jobs of type u1 cannot be scheduled on machines corresponding to edges of the form (u>1, ∗, ∗)
(such assignments have makespan Ω(N)). Furthermore, by Lemma 1, no two of these jobs can be scheduled on
the same machine. This establishes the base case. Suppose that the statement is true up to (i − 1). Now consider
jobs corresponding to ui. Again, notice that these jobs cannot be scheduled on machines corresponding to edges of
the form (u>i, ∗, ∗) (by our definition of the size vectors, such assignments have makespan Ω(N)). Furthermore,
by the inductive hypothesis, all

∑i−1
p=1 tp edges of the form (u<i, ∗, ∗) are occupied by jobs associated with vertices

u1, u2, . . . , ui−1. Lemma 1, then implies that jobs of type ui can’t be scheduled on machines (u<i, ∗, ∗). Therefore,
these jobs have to be assigned to the tui

distinct machines/edges of the form (ui, ∗, ∗). This completes the proof.
To recover the matching, we look at the n edges on which the real jobs have been assigned. We have shown that it is
NP-hard to distinguish between a makespan of 3 + ε and 3.09 + ε implying a 1.03-inapproximability. We remark that
we have made no attempt at optimizing the exact constant in this case.

3 Algorithmic Results
We give two main algorithmic results. The first is for the well-conditioned case (in which we assume that either the
job-lengths or the machine speeds have a “bounded aspect ratio”). In this case, we show that for any fixed dimension
d, there exists a PTAS for the LRS(d) problem. Other than being of independent interest, the well conditioned case
also serves as an ingredient in our second result concerning the rank-two (or two-dimensional) problem. In this case
we give a QPTAS without any restriction on the aspect ratio. (Note that for d ≥ 4, we do not expect such an algorithm
in view of our APX-hardness results).

3.1 PTAS in case of Bounded Aspect Ratio
We now consider the special case of LRS(D) where either the jobs or the machines have bounded aspect ratio, which
we define below.

Definition 1 (Aspect ratio). A set M of machines in an instance of LRS(D) is said to have an aspect ratio of ∆, if
for every 1 ≤ d ≤ D, there exists an Ld s.t. all the machines have a speed in the interval [Ld,∆ · Ld] in the dth
dimension. That is, if vi is the speed vector for some machine i, then Ld ≤ vi,d ≤ ∆ · Ld. An analogous definition
holds for the case of jobs having bounded aspect ratio.
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We are now ready to formally state our theorem.

Theorem 2. Consider an instance of LRS(D), with the additional constraint that the set of machines have an aspect
ratio of at most ∆. Then there exists an algorithm which gives a (1 + ε)-approximation to the minimum makespan,
with running time n( 1

ε log(∆D/ε))O(D)

. A similar result holds if the jobs are well-conditioned.

Note that Theorem 2 essentially justifies having to use a large aspect ratio in our NP-hardness reductions: the approx-
imation scheme is quasipolynomial for any polynomial aspect ratio. We start by making the following assumptions
which are without loss of generality, and help simplify the presentation.

1. Machines are well-conditioned. Jobs being well-conditioned can be handled symmetrically.
2. Unit Makespan. To get this, we can appropriately scale either the job sizes or the machine speeds, without

changing the optimal schedule (ensuring that it has a makespan of 1).
3. Machines speeds in [1,∆]. By re-scaling the job lengths along each dimension, we can assume that in each

coordinate, the machine speeds lie in the interval [1,∆]. Indeed, if along some coordinate i the machine speeds
are originally between [Li,∆ ·Li]. Then, we scale up the job sizes (along this coordinate) by a factor of Li and
scale down the machine speeds also by the same factor of Li, to get the desired property. Note that the optimal
makespan has not changed, and still remains at 1.

Observation 2. For any job j, all coordinates in uj are bounded by ∆. That is, ‖uj‖∞ ≤ ∆.

This is easy to see, and follows directly from Assumption 3 that the machines have coordinates bounded by ∆ and that
the optimal makespan is 1. Before we begin with our algorithm description, we recall the theorem of Lenstra, Shmoys
and Tardos [8] which will serve as a crucial sub-routine.

Lemma 3 (Lenstra, Shmoys, Tardos). Suppose we are given a collection of m machines and n jobs, and a matrix
{pij}1≤i≤m,1≤j≤n of processing times. Suppose there exists a scheduling s.t. the schedule on machine i ends at time
Ti, for some (given) numbers Ti. Then we can find in polynomial time, a schedule s.t. for all i, the schedule on machine
i ends at time Ti + maxj pij .

Algorithm Idea. Lemma 3 can provide a good approximation when all the pij are small compared to Ti. The high-
level idea is to guess the optimal assignment of the “large jobs” so that the remaining jobs are small for every machine
(i.e., with processing times at most ε), then we can use the above Lemma to compute a schedule with makespan
1 +O(ε). But how do we guess the assignment of large jobs, especially since there can be many of them in a diverse
collection?
To this end, our main observation is that if a job is appropriately tiny (chosen to be ε3/∆D2 with hindsight) in some
coordinates (but not all), we can essentially make those coordinates 0. Indeed, if a job has at least one large coordinate
(say larger than ε2/D), then there can’t be too many of such jobs assigned to any machine (at most D/ε2), and the
total contribution from tiny coordinates of all such jobs is at most ε. Using this, we can discretize the jobs that have a
large coordinate into O(log ∆D/ε)D many job types, and guess their optimal assignment. Then it is easy to see that
we are left only with jobs which are small in all the coordinates, for which we use Lemma 3. We now proceed with
the complete details.

Pre-processing the jobs. In the following, a job coordinate is called small if it is < ε2/D. It is called tiny if it is
< ε3/∆D2. Recall that all machine coordinates are bounded in [1,∆].
A job is called all-small if all its coordinates are small. All other jobs are called large.

Step 1. Zeroing tiny coordinates. If a job is large, then we set all its tiny coordinates to 0. Call the resulting instance
I ′ and the original instance I.

Lemma 4. The optimal makespan of I ′ is at most 1, assuming the optimal makespan of I is 1. Likewise, if we have a
schedule of makespan 1 in I ′, then the same schedule has makespan at most 1 + ε in I.

Proof. The first part of the lemma is trivial, since we only make some job coordinates smaller. For the second part,
consider the same schedule as the one with makespan 1 for I ′. The main idea is that if a machine i processes jobs
which are large, there can be at most ∆D/ε2 such jobs on machine i (since it has makespan 1), and thus the sum total
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of all the tiny coordinates of all such jobs can contribute a total of at most (∆D/ε2) × D × (ε3/∆D2) < ε to the
makespan on that machine. Here, we have used the fact that the machine coordinates are well-conditioned with aspect
ratio of ∆.

Step 2. Discretizing job coordinates. Henceforth, we focus on instance I ′. Now, we can divide the large jobs
into constantly many bins, by rounding up the non-zero coordinates to the nearest power of (1 + ε)−1. This gives
k ≈ (1/ε) log(∆2D2/ε3) classes for each non-zero coordinate, and thus the large jobs can be put into R := (k+ 1)D

bins, depending on the class of each coordinate (the ‘+1’ is for zero coordinate).

Step 3. Discretizing machine coordinates. let us bucket the machines also based on speeds in each coordinate. Here
there will be S := ((1/ε) log ∆)D classes, because of the well-conditioned assumption. Let the machines of each
class s be denoted by Ms.
It is easy to see that the rounding causes the makespan to increase by at most a multiplicative factor of (1 +O(ε)). Let
I ′′ denote the final instance after all these pre-processing steps. The following lemma is immediate, from Lemma 4
and the fact that we only rounded-up to the next higher power-of-(1 + ε).

Lemma 5. The optimal makespan of I ′′ is at most 1 + ε, assuming the optimal makespan of I is 1. Likewise, if we
have a schedule of makespan 1 in I ′, then the same schedule has makespan at most 1 + ε in I.

We now look to solving the instance I ′′. In the following, let R = (k + 1)D denote the number of job types for large
jobs, S = ((1/ε) log ∆)D denote the number of machine types, and let the number of jobs in each of these classes be
n1, n2, . . . , nR.

1. Pre-process and divide the large jobs and machines into classes as above.
2. “Guess” the assignment of large jobs into the machine classes. That is, for all 1 ≤ r ≤ R, guess the right split

(i.e., the way OPT splits these jobs) for each nr into S parts.
3. For each 1 ≤ s ≤ S, schedule the guessed job setLs in the machinesMs by running the PTAS due to Hochbaum

and Shmoys [7] for scheduling on identical machines.
4. Grant an additional extra time of ε in each machine (we can afford an ε addition to makespan), and schedule the

all-small jobs on the machines, using Lemma 3.

Theorem 3. If there exists a scheduling of the jobs for I ′′ with makespan 1, the algorithm finds one of makespan at
most 1 +O(ε).

Proof. Suppose OPT denotes the optimal schedule for the instance I ′′. For each machine class 1 ≤ s ≤ S, let Ls, and
ASs denote the set of large jobs and all-small jobs that OPT runs in machine class s. Now assume we have guessed the
correct set of jobs of each type nr (for 1 ≤ r ≤ R) which are scheduled on the different machine classes 1 ≤ s ≤ S.
That is, we have guessed the sets Ls, 1 ≤ s ≤ S in Step 2 above.
Now, notice that within each machine class, we have a set of identical machines. So consider a fixed machine class s:
Since we made the right guess for Ls, the algorithm of Hochbaum and Shmoys (which we use in Step 3 above) will
find a schedule of these large jobs Ls with makespan at most 1 + ε. Next, we claim that it is feasible to schedule all
the all-small jobs ASs that OPT schedules in this machine class, by using an additional space of ε on each machine.
Indeed, suppose the all-small jobs ASs don’t fit into these machines, even when each machine is granted an additional
makespan of ε. Then, the total volume of jobs in Ls ∪ ASs exceeds the total capacity available in all the machines of
Ms, which contradicts the fact that we correctly guessed Ls.
Therefore, after placing all the jobs Ls on the machines in Step 4, we are guaranteed a feasible solution for fitting in
the small jobs into these machines, when provided with an additional ε time. We now directly appeal to Lemma 3 to
complete our proof.
Note that the run time of the algorithm is dominated by the number of ways of dividing the R nj’s into S parts, which
is O(nRS). Plugging in the values of R and S, we get the claimed running time. Note that this is polynomial in the
case whenever D and ∆ are constants. This finishes the proof of Theorem 2.

4 The General LRS(2) Problem
Next we present our main algorithmic result, which is a QPTAS for the general 2-dimensional case, with no restrictions
on the aspect ratio.
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Theorem 4. There exists an algorithm for LRS(2) which gives a (1 + ε) approximation to the minimum makespan,
with running time npoly(1/ε,log n).

Notation. Recall that we have n jobs to be scheduled on m machines. In this section, we denote the job vectors
by (pj , qj) and the machine vectors by (si, ti), and associate them with the corresponding points on the plane. The
processing time pij is now taken to be pj/si + qj/ti (notice that this is the inner product if we invert the entries of
the speed vector). This transformation makes it easier to interpret the problem geometrically. The goal as before is to
find an assignment which minimizes the makespan. We begin by making a couple of assumptions about the problem
instance (all of which are without loss of generality). We call such instances canonical instances.

Canonical Instances.

1. The optimal makespan is 1. This can be ensured by guessing the optimal makespan, and then scaling the machine
coordinates by this value3

2. All the non-zero si, ti, pj , qj are powers of (1 + ε). It is easy to see that rounding the non-zero coordinates to
the nearest power-of-(1 + ε) will change the makespan by only a factor of (1 +O(ε)).

3. Most importantly, we assume that for any job j and machine i, max{pj/si, qj/ti} > ε/2n. Indeed, this is
w.l.o.g. because even if we schedule all such jobs j on the machine i, the makespan will only increase by
2n · (ε/2n) < ε, and so we can ignore all such jobs j.

4. Similarly, for any two machine i and i′, it is not the case that both si
si′
≤ ε/mn and ti

ti′
≤ ε/mn. Any such i can

be removed and all its jobs in OPT can be moved to i′ while increasing the makespan by at most an additive ε.

Outline of the algorithm. The algorithm proceeds by breaking up an instance into sub-instances, that are solved recur-
sively. At each step the current set of machinesM , is split into three setsM1,M2,M3, each of size at most |M |/2, thus
assuring that the depth of the recursion is at most logarithmic. Moreover, we try a quasipolynomial number of ways to
partition the set J of jobs to three subsets Jk

1 , J
k
2 , J

k
3 and recursively solve the instances (M1, J

k
1 ), (M2, J

k
2 ), (M3, J

k
3 )

for all k ≤ npoly(log n). The leaves in this partition serve as the base case of the induction. The number of these is
bounded by (npoly(log n))O(log n) which is quasipolynomial. The base cases will be of two kinds: either of bounded
aspect ratio, or having a unique Pareto optimal machine. For these cases, we use algorithms from Sections 3.1 and 4.2
respectively.

P = (m1,m2, . . . ,ml)

P = (m1, . . . ,ml/2)
P = (ml/2+1, . . . ,ml)

(bounded aspect-ratio)

(a) Recursive Partitioning Tree

a

x

y

No machines here

machine

a+ 1

M1

M2

M3

`x

`yp

(b) One Level of Recursive Partitioning

A natural way to divide the instance is by using the geometry of the problem. For example, we can draw a vertical
line and split the instance into machines to the left of the line, and those to the right. But how do we split the jobs?
Clearly, by the unit-makespan assumption, jobs to the right of the line can’t be scheduled on machines to the left (as
their processing times would exceed 1). However, jobs to the left can potentially be scheduled on machines to the
right, and it is not easy to succinctly characterize how these jobs split.

3Technically, we use binary search to ensure that the makespan is in [1 − ε, 1], rather than exactly 1. This does not affect the approximation
ratio.
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While such an approach does not work, we show that we can split the instance, by drawing a vertical line and a
horizontal line, and getting three sub-instances. We now present the details.

4.1 Recursive Partitioning: Defining the Sub-instances
We begin by re-defining the input to the instance in a form more suitable for our algorithm. To this end, let an instance
I of the scheduling problem be defined by the set of machinesM and a set of jobs J : for convenience, we characterize
the jobs by a set of job types T , and a vector y ∈ ZT where yt denotes the number of jobs of type t in the instance;
here the type of a job is defined by its size (pj , qj).
Given that we have associated machines with points in <2, we have a natural partial order � on machines where
(s, t) � (s′, t′) if s ≥ s′ and t ≥ t′. Let P = {m1, . . . ,ml} denote the set of maximal elements in this partial order:
these machines form the pareto curve and have the property that for each i ∈M , there is a p ∈ P such that p � i. Let
the machines in P be sorted in increasing order of their first coordinate and let a = ml/2 be the median machine in
this ordering.
Let L := logmn/ε. Intuitively, since our goal is to run in time roughly nL, L would bound the size of instances
we can compute directly. Recall that the size vectors are rounded to powers of 1 + ε. We call all numbers that were
rounded to the same power of 1 + ε a cell. It would be convenient to do arithmetic using cells, effectively working on
a logarithmic scale. Thus when we say machine i is L cells to the left of machine i′. we mean that ratio of the rounded
si′ to the rounded si is (1 + ε)L.

Recursively Partitioning Machines.
If the set M of machines has aspect ratio at most (1 + ε)L (we call this the well-conditioned case), then we stop the
recursion, and can solve this instance using the algorithm in Section 3.1. If the set M has a single machine which
dominates all the rest, we stop the recursion and solve the instance using the algorithm in Section 4.2. Otherwise, we
split the set of machines M into three groups, as shown in Figure 1(b) (where a = ml/2 as above). Formally, let us
denote by `x the vertical line x = sa, and `y the horizontal line y = ta+1, and let p be the point of intersection. We
define the three sets of machines in each sub-instance.

1. Class M1 Consists of machines above `y , and those below `y but at least L cells to the left of `x.
2. Class M2 consists of machines right of `x, and those to the left of `x but at least L cells below `y .
3. Class M3 consists of all machines which are in the L × L cells forming a rectangle to the left and below p (in

other words, the L× L rectangle corresponds to a rectangle formed by L powers-of-(1 + ε) to the left of p and
L powers-of-(1 + ε) below p).

We recall, by the canonical assumption (point 4) that the white bottom left region in the figure has no machines.
The crucial point to note here is that, by the definition of the Pareto curve, we have that the Pareto curve for M1 is
{m1, . . . ,ml/2}, and the Pareto curve of M2 is {ml/2+1, . . . ,ml}. This will help us bound the depth of our recursion
by O(log n).

Lemma 6. The depth of the above recursive decomposition process is O(log n). Moreover, the sub-instances corre-
sponding to the leaves are either well-conditioned, or have a unique Pareto machine.

Proof. Each step of the recursion the machines in M3 have an aspect ratio of at most L and therefore form a base
case for the recursion. Furthermore, the number of machines in the Pareto curve in each of the instances M1,M2 is
reduced by a factor of two. Once the number of machines in the Pareto curve drops to 1 the recursion stops. The
Lemma follows.

Recursively Partitioning Jobs. Given the partition of machines into M1,M2,M3 we need to ’guess’ how to partition
the set of jobs into corresponding J1, J2, J3. Recall that a := ml/2. Since we cannot assign any job (p, q) with p > sa
on any machine to the left of `x, we place all such jobs in J2. Likewise, we place all jobs (p, q) with q > ta+1 in J1.
Thus we only need to consider jobs which are below and to the left of p. We divide these jobs into three classes:

1. Jobs that are at most 2L cells to the left or below the point p = (sa, ta+1). Call this region B′ (dotted in figure).
2. Jobs on the L vertical lines left or equal to line `x, and below the box B′.
3. Jobs on the L horizontal lines below or equal to line `y , to the left of the box B′.

9



These jobs need to be split between M1,M2 and M3 and we will guess this split. To ensure that we can bound the
number of instances in the recursion, we will encode this split using a small number of integers. First note that there
are only 4L2 job types in the box B′ so that a sub-instance corresponding to Mi only needs to know how many of each
type in this box it needs to schedule. There may however be an unbounded number of job types on the vertical and
horizontal lines. The main observation here is that jobs of type 2 above are Y -small for all the machines in M1 and
M3. Thus if M1 (or M3) has to handle k jobs of type 2 on a line `, we can assume without loss of generality that they
are the ones with the largest Y -coordinate. To see this observe that swapping jobs only decreases the load of machines
outside M1, and increases the load on an M1 machine by at most ε. Similarly, jobs of type 3 above are X-small for all
the machines in M2 and M3, and we only need to remember the number on each line. Thus, for each of M1,M2,M3,
the sub instances that we need to solve are fully characterized by 4L2 + 2L integers, the number of jobs of type 1
(each ‘cell’), and the number of jobs of type 2 and 3.
Thus, checking that (M,J) is feasible is straightforward: for every possible 3-way partitioning of the jobs in the box
B′, and every way of partitioning the jobs of type 2 and 3 above we get three instances corresponding to M1, M2

and M3. If for any of the partitioning, the three resulting instances are feasible, we can construct a makespan (1 + ε)
schedule for (M,J) and return feasible. If for every possible partitioning of the jobs, at least one of the three instances
is infeasible, we declare infeasibility. Note that the number of partitioning is only nO(L2) so that given the solutions
to sub instances, the solution to (M,J) can be computed in time nO(L2).
Since the depth of the recursion is only O(log n), the set of jobs in any sub instance in the whole recursion tree is
specified by O(L2 log n) integers in [n]. The set of machines is easily seen to be describable by a length O(log n)
ternary string. Thus we conclude that

Lemma 7. The total number of sub-instances in the entire program is bounded by
∑O(log n)

j=1 3jnO(L2 log n).

We now show how to handle each of the two types of base cases. First, recall that the Algorithm in Section 3.1 handles
precisely the well-conditioned instances. Therefore, we would be done if we could handle the instances where there
is a unique Pareto machine.

4.2 Unique Pareto optimal machine
Main idea: Suppose the Pareto curve of the machines consists of precisely one machine, say i. This means that every
other machine i′ satisfies i � i′. By the canonical assumption, the coordinates of i′ cannot both be much smaller than
those of i (so also for the jobs), and thus we have that both the jobs and the machines are on roughly L := 1

ε log(n/ε)
different horizontal and vertical lines (corresponding to (1 + ε)−asi and (1 + ε)−ati, for 1 ≤ a ≤ L). The idea is to
split the problem into two subinstances after a small amount of guessing. The two subinstances handle the machines
on the L vertical lines, and the machines not on them (and thus on the L horizontal lines) respectively. This reduces
the instance to a problem where all machines lie on L axis-parallel lines, and we show a simple ”sweep” algorithm for
this case. We now present the details.

Let the dominating machine have speed vector (s, t). By the canonical assumption, the instance in this case satisfies
the property that all the machines and jobs lie on the L horizontal lines below y = t, and the L vertical lines to the left
of x = s. (see Figure 1). We now show how to obtain a QPTAS in this case by separating the machines on horizontal
and vertical lines.
Let M1 be the set of machines on the L vertical lines, as shown in the figure, and let M2 be the machines on the
horizontal lines, excluding the ones that are already in M1. Next we partition the jobs. Note that all the jobs on the
vertical lines have to be scheduled on the machines in M1, or else the makespan would be more than 1. Thus we only
have to decide the assignment of the jobs on the horizontal lines which are not on the vertical lines.
For these, we will guess two sets of integers, first of size L2, which gives precisely the number of jobs of each type in
the box B which will be scheduled on M1, and another set of L integers, which is the number of jobs on the horizontal
lines, but to the left of box B which we will schedule on M1. Once we guess the number of such jobs, we choose to
schedule the right-most of such jobs on the machines in M1, because all these jobs are X-small for machines in M1.
(This is very similar to the argument for the recursive algorithm in the general case).
Thus, having guessed L2 + L integers, we have reduced the problem to that in which all the machines are on L
axis-aligned lines, all vertical, or all horizontal. We will see how to handle these in the next section.
To check feasibility of the instance, it is sufficient to try all possible ways of splitting the jobs in the box B and the
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y

No jobs/machines

machine

(s, t)

M1

M2

B

Figure 1: Unique pareto optimal machine

number of jobs outside of B handled by M1 for each horizontal line, and check if both the resulting sub instances are
feasible. If so, we get a makespan (1 + ε) schedule. If for every splitting, one of the resulting instances is infeasible,
we can declare infeasibility.

4.3 Scheduling on r axis-aligned lines
We now develop a QPTAS for a special case of LRS(2), in which all the jobs as well as all the machines lie on a set of
r axis-aligned lines, which are either all horizontal or all vertical. As before let L := logmn/ε. The algorithm will
then run in time npoly(r,L). As before, let the optimal makespan be 1.4

Without loss of generality, let us assume the lines are vertical, and let them be denoted `1, `2, . . . , `r. The case of
horizontal lines can be handled in a symmetric fashion. The algorithm once again is based on dynamic programming.
The idea is to do a sweep from top to bottom: we sort the machines in the order of decreasing y-coordinate (breaking
ties arbitrarily), and ‘process’ them in this order (i.e., we schedule jobs on them). We begin with the following easy
observation about OPT.

Observation 3. Since the OPT makespan is 1, all jobs located above a machine (s, t) (i.e., job (pj , qj) such that
qj > t) have to be scheduled on machines above (s, t) (i.e., (si, ti) such that ti ≥ t).

This is because the assignment cost of scheduling a job geometrically located above a machine (s, t) is strictly greater
than 1, violating our assumption that the OPT makespan is 1. We thus ensure in our DP that when we “arrive” at
a machine (in the sweep algorithm), all jobs above it (w.r.t the y-coordinate) have been scheduled . Therefore, to
completely characterize the sub instance, it suffices to define the set of jobs which are below the machine, that are yet
to be scheduled. We now argue how to do this using a vector of rL+ r integers in [1, n].

State Information. At each step, we will maintain the following information: (a) the index of the machine we are
scheduling jobs on, which defines the current ‘height’ t, i.e., the y coordinate of that machine; (b) a set of r × L
integers, which is the number of jobs left to be done in each of `1, . . . , `r, in the L horizontal levels below t; (c) the
number of jobs on each of the r lines that are more than L horizontal levels below t. For type (c), it suffices to maintain
just the number of such jobs, because we may in fact assume that the jobs remaining are precisely the ones with the
least y-coordinates. This is because each of these jobs is Y -small for any of the machines we have processed so far,
thus we could have scheduled those with the largest y-coordinates.
This is the dynamic program we will consider. Whenever we are at a machine i, the state information described above
gives precisely the jobs left to be scheduled. We now guess r × L + r integers, which will let us decide which jobs

4Even after scaling, all the machines and jobs lie on at most 2r different lines.
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we schedule on machine i, as well as the set of jobs we need to schedule on machines i + 1, . . . ,m. For each guess,
we check if the set of jobs thus determined for machine i can indeed be scheduled with makespan (1 + ε), and that the
remaining set of jobs can be scheduled on the remaining machines. If for any guess, both sub instances are feasible,
we have our makespan (1+ε) schedule. If for all guesses, at least one of the sub instances is infeasible, we can declare
infeasibility.

Running time. The size of the table in the dynamic program is m × nrL+r = nO(rL). Further updating an entry in
the table depends on looking up nrL+r entries of the table with a higher index i, and thus the dynamic programming
algorithm runs in time nO(rL).
This completes the remaining base case of our dynamic programming algorithm. Thus in the recursive partitioning,
every leaf can be evaluated in time nO(L2), and every internal node can be evaluated, given its children, in time
nO(L2). Since we already bounded the total number of sub instance in our recursive partitioning by nO(L2 log n), we
have established theorem 4.

4.4 Special Case: Sequential or Parallelizable Jobs
Notice that we can cast the problem where each job is either sequential or parallelizable, as LRS(2), where the ma-
chines all line on a vertical line. Indeed, suppose a machine i is expressed as vector (1, si) if it has si cores; A
sequential job is expressed as a vector (σj , 0) and a parallelizable job is expressed as (0, πj). For this special case, we
can in fact modify and simplify the above QPTAS and obtain a true PTAS. To this end, we borrow inspiration from
the PTAS for related machines [7], and perform a bottom-up sweep instead of a top-down sweep. By doing this, a job
which is Y -small (coordinate less than ε2si) for a machine (1, si) will remain Y -small for all subsequent machines
i′ ≥ i.
So when we are at machine i, we will keep track of the exact number of jobs to be done for O(1/ε) levels (w.r.t
powers-of-(1 + ε)) below si. We will also keep track of the total volume of Y -small jobs which have already been
scheduled on earlier machines. These will be for the parallelizable jobs. Again for sequential jobs, we will keep track
of the exact number of jobs to be done for O(1/ε) levels (w.r.t powers-of-(1 + ε)) to the left of machine i, and a total
volume of X-small jobs which have already been scheduled.

5 Open Problems
We leave open several intriguing questions. The first one of course is the classification of the rank three case of the
problem. Our algorithm for the rank two case is polynomial for many interesting cases, such as when the aspect ratio
between machines is bounded. It seems natural to attempt to get a real PTAS for the rank two case. Breaking the
factor two barrier for the general problem is long open, and several special cases have been studied for this problem.
A natural simpler question then is to get a (2 − f(r))-approximation for rank r, for some function f that is bounded
away from zero for constant r (for example f(r) = 1/r). Finally the low rank assumption seems like a natural one,
and it would be interesting to study other scheduling problems with this restriction.
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