
Topics in Theoretical Computer Science May 4, 2015

Lecture 11
Lecturer: Ola Svensson Scribes: Vincent Eggerling, Simon Rodriguez

1 Introduction

In the last lecture we covered the ellipsoid method and its application for solving linear problems. We
saw that to apply this method we mainly needed an efficient separation oracle ; in fact, we do not even
have to be able to write the linear problem : it is possible to have an exponential number of constraints
and still solve the problem. Moreover the ellipsoid method runs theoretically in polynomial time. But
we also saw that the method is slow in practice and that some technicalities at initialization (choosing
the first ellipsoid) and termination limit the use of it.
In this lecture, we are going to cover two other LP resolution methods : the multiplicative weight update
method and the simplex method.

2 Multiplicative weight update method

In this section we present the general idea of the multiplicative weight update method and propose a
corresponding algorithm and its analysis. We will have to restrict ourselves to a certain type of LPs, the
covering LPs, defined as follows.

2.1 Covering LPs

Definition 1 A linear program of the form :

minimize
n∑
j=1

cjxj

subject to Ax ≥ b
1 ≥ xj ≥ 0 ∀j

is a covering linear program if

A ∈ Rm×n
+ , b ∈ Rm+ and c ∈ Rn+

This definition simply ensures that all the coefficients of the constraints and of the objective function
are non-negative.

Let us now introduce an example of covering LP that we will reuse later :

minimize x1 + 2x2 (1)

subject to x1 + 3x2 ≥ 2

2x1 + x2 ≥ 1

1 ≥ x1, x2 ≥ 0

2.2 General idea

The idea of the method is to maintain a weight distribution over the set of constraints of a linear problem
to solve, and to iteratively update those weights to get closer to an extreme point (if it exists).

1



We give to each constraint in the original LP a weight wi, i = 1, . . . ,m. Those weights are initialized
at 1. Then we sum up all the constraints according to their weights and obtain a new LP. Any optimal
solution of the original LP is solution of this reduced problem, so the new problem will have at most the
same cost as the previous one. We define an oracle for solving this reduced problem :

Definition 2 An oracle that, given p1, . . . , pm ≥ 0 s.t
∑
i pi = 1, outputs an optimal solution x∗ to the

following reduced linear problem :

minimize
n∑
j=1

cjxj

subject to

(
m∑
i=1

piAi

)
· x ≥

m∑
i=1

bipi

1 ≥ x ≥ 0

As we want
∑
i pi = 1 we will have to normalize the weights we originally defined by setting pi = wi∑

i wi
.

This linear problem is in practice much easier to solve than the original one and we can design a simple
algorithm for the oracle.

2.3 Implementation of the oracle

The oracle is given an objective function minimize
∑n
i=1 cixi and only one constraint that we can

rewrite as
∑n
i=1 di xi ≥ b (which is the weighted sum of all constraints). We also have 1 ≥ xi ≥ 0 ∀i and

di ≥ 0 ∀i since it is a covering problem.
The idea is to assign the maximum value (namely 1) to the variables that have the highest ratio

constraint coefficient/objective coefficient. That way we will satisfy the constraint as fast as possible
while maintaining a small objective function. Then assign zero to the other variables and possibly an
intermediate value for the variable that is at the limit to make the constraint satisfied. Formally :

• Sort all variables xi in non-increasing order according to di/ci. This gives us a permutation
σ(j), 1 ≤ j ≤ n.

• Let k = min{j :
∑j
i=1 dσ(i) ≥ b} and l = b−

∑k−1
i=1 dσ(i).

• Set xσ(i) := 1 for i = 1, ..., k − 1.

• Set xσ(k) := l/dσ(k).

• Set xσ(i) := 0 for i = k + 1, ..., n.

n∑
i=1

di xi =

n∑
i=1

dσ(i) xσ(i) =

k−1∑
i=1

dσ(i) xσ(i) + dσ(k) xσ(k) +

n∑
i=k+1

dσ(i) xσ(i) =

k−1∑
i=1

dσ(i) + l = b

Therefore the constraint is barely satisfied and this ensures minimality for the objective function.

We now go back to the general multiplicative weight update method with an example.

2



2.4 Application to an example

If we apply the method we described to our example (1) (without normalization), we have two initials
weights w1 = w2 = 1, and we sum all the constraints :

w1(x1 + 3x2) + w2(2x1 + x2) ≥ w1 · 2 + w2 · 1⇔
3x1 + 4x2 ≥ 3

1 ≥ x1, x2 ≥ 0

By using the oracle, an optimal solution to this reduced problem is x1 = 1, x2 = 0. But is this a feasible
solution to our original problem ? By checking the constraints :

2x1 + x2 = 2 ≥ 1 OK

x1 + 3x2 = 1 < 2 not OK

We will need to go back to the original problem and increase the weights of the unsatisfied constraints
to give them more importance. Due to normalization this will decrease the weights of the satisfied ones.
We will then recompute the weighted sum and iterate the process. The way the weights are modified
and the precise output will be discussed in the next section, where we describe the algorithm for this
method.

2.5 Algorithm

We first need to define the width ρ related to a given covering LP. The width represents the maximum
value of the slack of a constraint (either by over-satisfying it or under-satisfying it) and we maximize
over all the constraints.

Definition 3
ρ = max

1≤i≤m
{max(bi, Ai1− bi)}

We can now write the multiplicative weight update algorithm for covering LPs, which will make use
of this definition.

2.5.1 Initialization

Fix a step size η ≤ 1
2 and associate each constraint i with a weight w(1)

i = 1, where the exponent denotes
the current iteration.

2.5.2 Iterations

For t = 1, 2, . . . , T

1. Let x(t) be the solution returned by the oracle with respect to values
(
w

(t)
1

Φt ,
w

(t)
2

Φt , . . . ,
w(t)

m

Φt

)
where

Φt =
∑m
i=1 w

(t)
i .

2. Let m(t)
i = Aix

(t)−bi
ρ be the quality of the solution with respect to the constraint i.

Notice that −1 ≤ m(t)
i ≤ 1. If m(t)

i ≥ 0, the constraint i is satisfied, else it is unsatisfied.

3. Update the weights : w(t+1)
i = wi(t)(1−ηm(t)

i ). This is the step that gave its name to the method:
At the next iteration, constraints which were not satisfied (m(t)

i < 0) will have a higher weight
than satisfied constraints. The step size allows us to control the influence of the quality of the
solution with respect to a given constraint in this process.

3



2.5.3 Output

We cannot just return one of the x(t), because at each iteration the solution will ”advantage” some of
the constraints (those with higher weights). Thus we output the average x in order to almost satisfy the
maximum number of constraints.

x =

T∑
t=1

x(t)

T

2.6 Analysis

Theorem 4 For any constraint i:

0 ≤
T∑
t=1

m
(t)
i + η

T∑
t=1

|m(t)
i |+

ln(m)

η

where m = Φ(1) =
∑
i w

(1)
i .

Corollary 5 If η = ε
4ρ and T = d 8ρ2ln(m)

ε2 e, then for any constraint i, Ax ≥ bi − ε.

Which means that every constraint is almost satisfied and differs from true statisfaction only by ε. We
see that if the oracle runs in polynomial time then the algorithm will be polynomial. We can also no-
tice that the width is important for obtaining a polynomial execution time, as it appears in both η and T .

We start by giving a proof of this corollary:
Proof Using the expression of m(t)

i , we can rewrite the inequality from the theorem as:

0 ≤
T∑
t=1

Aix
(t) − bi
ρ

+ η

T∑
t=1

|Aix
(t) − bi
ρ

|+ ln(m)

η

=(1 + η)

T∑
t=1

Aix
(t) − bi
ρ

+ 2η
∑
<0

|Aix
(t) − bi
ρ

|+ ln(m)

η

since ∀i, t, |m(t)
i | ≤ 1, we have :

≤(1 + η)

T∑
t=1

Aix
(t) − bi
ρ

+ 2ηT +
ln(m)

η

multiplying by
ρ

T
:

0 ≤(1 + η)

T∑
t=1

Aix
(t) − bi
T

+ 2ηρ+
ρ

T

ln(m)

η

choose η arbitrarily small, η =
ε

4ρ
:

=(1 + η)

T∑
t=1

Aix
(t) − bi
T

+
ε

2
+

4ρ2ln(m)

Tε

choose also T = d8ρ
2ln(m)

ε2
e:

≤(1 + η)

T∑
t=1

Aix
(t) − bi
T

+
ε

2
+
ε

2

4



=(1 + η)(Ai

(
T∑
t=1

x(t)

T

)
− bi) + ε

=(1 + η)(Aix− bi) + ε

Therefore

0 ≤Aix− bi +
ε

1 + η

bi −
ε

1 + η
≤Aix

bi − ε ≤Aix

We will now proceed to the proof of the theorem. To do this, we will express a lower and an upper
bound on Φ(T+1) =

∑m
i=1 w

(T+1)
i , i.e. the sum of the weights for the final output.

Proof
Upper bound : We are going to show that:

Φ(T+1) ≤ m exp(−η
T∑
t=1

m(t) · p(t))

where m(t) = (m
(t)
1 , . . . ,m

(t)
m )T and p(t) = (p

(t)
1 , . . . , p

(t)
m )T .

We have ∀t = 1, . . . , T :

Φ(t+1) =

m∑
i=1

w
(t+1)
i

=

m∑
i=1

(w
(t)
i (1− ηm(t)

i ))

=Φ(t) −
m∑
i=1

w
(t)
i ηm

(t)
i

since p(t)
i =

w
(t)
i

Φ(t)
, then

=Φ(t) −
m∑
i=1

ηm
(t)
i p

(t)
i Φ(t)

=Φ(t)(1− η
m∑
i=1

m
(t)
i p

(t)
i )

=Φ(t)(1− ηm(t) · p(t))

since 1− x ≤ exp(−x) ∀x
≤Φ(t) exp(−ηm(t) · p(t))

Now as Φ(1) = m, we can conclude by induction that :

Φ(T+1) ≤ m exp(−η
T∑
t=1

m(t) · p(t))

5



Lower bound : We have

Φ(T+1) ≥ w(T+1)
i =

∏
t<T

(1− ηm(t)
i ) ≥ (1− η)

∑
mi>0m

(t)
i (1 + η)−

∑
mi<0m

(t)
i

where we used that:

• (1− η)x ≤ (1− ηx) if x ∈ [0, 1]

• (1 + η)−x ≤ (1− ηx) if x ∈ [−1, 0]

This is the lower bound we need. Now, by combining both bounds we can write:

(1− η)
∑

mi>0m
(t)
i (1 + η)−

∑
mi<0m

(t)
i ≤ m exp(−η

T∑
t=1

m(t) · p(t))

ln(1− η)(
∑
mi>0

m
(t)
i )− ln(1 + η)(

∑
mi<0

m
(t)
i ) ≤ ln(m)− η

T∑
t=1

m(t) · p(t)

But, we also have:

m(t) · p(t) =

m∑
i=1

m
(t)
i p

(t)
i =

m∑
i=1

Aix
(t) − bi
ρ

p
(t)
i =

1

ρ

(
(

m∑
i=1

p
(t)
i Ai)x

(t) − (

m∑
i=1

bip
(t)
i )

)
︸ ︷︷ ︸

≥0

Using the constraint of the oracle reduced problem, we know that the term in parenthesis of this expres-
sion is non-negative. Therefore m(t) · p(t) ≥ 0.
Multiplying by −1/η and rearranging we get :

0 ≤1

η

(
ln(m)− ln(1− η)(

∑
mi>0

m
(t)
i ) + ln(1 + η)(

∑
mi<0

m
(t)
i )

)

=
ln(m)

η
− ln(1− η)

η
(
∑
mi>0

m
(t)
i ) +

ln(1 + η)

η
(
∑
mi<0

m
(t)
i )

=
ln(m)

η
+

1

η
ln

(
1

1− η

)
(
∑
mi>0

m
(t)
i ) +

ln(1 + η)

η
(
∑
mi<0

m
(t)
i )

As η ≤ 1
2 , we have ln

(
1

1−η

)
≤ η + η2 and ln(1 + η) ≥ η − η2. Taking into account the signs of the two

sums, we have:

0 ≤ ln(m)

η
+

1

η
(η + η2)

∑
mi>0

m
(t)
i +

1

η
(η − η2)

∑
mi<0

m
(t)
i

=
ln(m)

η
+
∑
mi>0

m
(t)
i + η

∑
mi>0

m
(t)
i +

∑
mi<0

m
(t)
i − η

∑
mi<0

m
(t)
i

=
ln(m)

η
+

m∑
i=1

m
(t)
i + η(

∑
mi>0

m
(t)
i −

∑
mi<0

m
(t)
i )

=
ln(m)

η
+

m∑
i=1

m
(t)
i + η

m∑
i=1

|m(t)
i |

We have the result.

6



3 The Simplex Method

In this section we will talk about the simplex method which is used to solve LP problems. It was
invented in 1947 by George Dantzig1 and remains one of the most important algorithm of the 20th
century. Despite the fact that its running time can be proved to be exponential in worst case, it runs
very fast in practice and is widely used in industry even though we now know other algorithms that do
run in polynomial time but that are slower for pratical purposes.

3.1 Example

We will introduce this method using a concrete example. Let us now focus on the following LP with its
associated polytope :

maximize x1 + x2

subject to − x1 + x2 ≤ 1

x1 ≤ 3

x2 ≤ 2

x1, x2 ≥ 0

x1

x2

−x1 + x2 ≤ 1

x1 ≤ 3

x2 ≤ 2

(0,0)

(0,1)

(1,2)

(3,0)

(3,2)

The simplex method does not work with inequalities hence we have to change inequality signs with
equalities. This can be achieved by introducing slack variables s1, .., sm that compensate for the equal-
ities. We also add a new line that will represent our current objective function which is expressed as
z = objective function. At the beginning the objective function is the one given in the original problem.
Also we will remember that all variables must be non-negative including the slack variables. This gives
us the following modified LP :

−x1 + x2 + s1 = 1 (1)

x1 + s2 = 3 (2)

x2 + s3 = 2 (3)

z = x1 + x2

In this initial configuration we set all xi := 0 which implies the following assignation for the slack
variables s1 := 1, s2 := 3, s3 = 2 according to the constraints. Now the solving procedure can really
start. We will maintain a simplex tableau which consists of all the constraints and the objective function,
and we will always write the constraints such that the non-zero variables are on the left-hand side. These
are called basic variables. This gives us:

s1 = 1 + x1 − x2 (1)

s2 = 3− x1 (2)

s3 = 2− x2 (3)

z = x1 + x2

x1 := 0 x2 := 0 s1 := 1 s2 := 3 s3 := 2

1http://www.ams.org/notices/200703/fea-cottle.pdf

7



Now the goal is to maximize the objective function x1 + x2. We will iteratively increase as much as
possible one variable appearing in the objective function that has a positive coefficient (since we want
to maximize). In our case let us consider x2.2 Clearly since there is a positive coefficient in front of
it (namely 1), an increase of x2 will get us closer to the optimal solution (remember that currently
x1 := 0, x2 := 0 ⇒ z = 0) but in the process we will necessarily have to decrease other variables to
preserve the equalites. We now need to check by how much we can increase x2 without breaking non-
negativity for all variables. (1) tells us that x2 ≤ 1, (2) says nothing about x2 and (3) implies x2 ≤ 2
therefore we increase x2 by 1.

We will compensate this increase by modifying all the variables appearing on the left-hand sides of
the constraints. Note that for the constraint that imposes the value for the variable ((1) in our case) the
basic variable will become zero. Therefore we decrease s1 and s3 by 1.

We then rewrite the constraint that dictates the value for the chosen variable (constraint (1)) by
swapping the left-hand side and the variable (s1 ↔ x2). This operation is called pivoting. We then
substitute the new right-hand side of x2 in the other constraints and in the objective function:

x2 = 1 + x1 − s1 (1)

s2 = 3− x1 (2)

s3 = 2− (1 + x1 − s1)︸ ︷︷ ︸
=x2

(3)

z = x1 + (1 + x1 − s1)︸ ︷︷ ︸
=x2

=⇒
x2 = 1 + x1 − s1 (1)

s2 = 3− x1 (2)

s3 = 1− x1 + s1 (3)

z = 1 + 2x1 − s1

x1 := 0 x2 := 1 s1 := 0 s2 := 3 s3 := 1

Now we see that only one variable has a positive coefficient in the objective function, namely x1 and
we will therefore try to increase it. Constraint (1) does not give any upperbound on x1, (2) imposes
x1 ≤ 3 and (3) enforces x1 ≤ 1 thus we increase x1 by 1 which leads s2 and s3 to decrease by 1 and
x2 to increase by 1. We now pivote x1 in constraint (3) and substitute its right-hand side in the rest :

x2 = 1 + (1− s3 + s1)︸ ︷︷ ︸
=x1

−s1 (1)

s2 = 3− (1− s3 + s1)︸ ︷︷ ︸
=x1

(2)

x1 = 1− s3 + s1 (3)

z = 1 + 2 (1− s3 + s1)︸ ︷︷ ︸
=x1

−s1

=⇒
x2 = 2− s3 (1)

s2 = 2 + s3 − s1 (2)

x1 = 1− s3 + s1 (3)

z = 3− 2s3 + s1

x1 := 1 x2 := 2 s1 := 0 s2 := 2 s3 := 0

Again the only choice is to increase s1 since it is the only variable that has a positive coefficient. (1)
gives nothing about s1, (2) dictates s1 ≤ 2 and (3) does not upperbound s1. We therefore increase s1

by 2, this implies to decrease s2 by 2 and increase x1 by 2, pivote s1 and s2 in (2) and substitute the
new right-hand side of s1.

2Note that we could have chosen to increase x1 since it has also a positive coefficient. Actually there is a whole industry
behind the choice of the variable to increase in each step. A simple idea could be to choose the one with the largest
coefficient but there can be other strategies.

8



x2 = 2− s3 (1)

s1 = 2 + s3 − s2 (2)

x1 = 1− s3 + (2 + s3 − s2)︸ ︷︷ ︸
=s1

(3)

z = 3− 2s3 + (2 + s3 − s2)︸ ︷︷ ︸
=s1

=⇒
x2 = 2− s3 (1)

s1 = 2 + s3 − s2 (2)

x1 = 3− s2 (3)

z = 5− s3 − s2

x1 := 3 x2 := 2 s1 := 2 s2 := 0 s3 := 0

Now we cannot increase any variables since they all have negative coefficients which would deteri-
orate the objective function. Therefore we stop the procedure and we can read the optimal solution
z = 5− 0− 0 = 5 achieved with x1 = 3, x2 = 2. (We ignore the values of the slack variables).

If we look carefully at the values taken by x1 and x2 throughout the procedure we can see that at
each step we actually follow an edge of the polytope that brings us closer to the optimal solution :

x1

x2

−x1 + x2 ≤ 1

x1 ≤ 3

x2 ≤ 2

(0,0)

(0,1)

(1,2)

(3,0)

(3,2)

x1

x2

−x1 + x2 ≤ 1

x1 ≤ 3

x2 ≤ 2

(0,0)

(0,1)

(1,2)

(3,0)

(3,2)

x1

x2

−x1 + x2 ≤ 1

x1 ≤ 3

x2 ≤ 2

(0,0)

(0,1)

(1,2)

(3,0)

(3,2)

How can we be sure that this is the optimal solution ? Let us consider any feasible solution
{x̄1, x̄2, s̄1, s̄2, s̄3}. We know that any of such feasible solution has to satisfy the equalities in the tableau
and since all variables must be non-negative it is clear that the objective function is upperbounded by
5: z = 5− s̄3− s̄2 ≤ 5. Therefore we cannot hope to achieve better than 5 in the objective function and
the values we got for x1 and x2 lead exactly to 5.

3.2 Technicalities

We present here some problems that can arise when trying to apply the simplex method. We will not
go into the details on how to get around these issues but it is good to be aware of them.

Unboundness : It might happen that the chosen variable to increase is not bounded by any con-
straint. This is the case when the polytope defined by the original constraints (the ones with inequalities)
is not bounded and the optimal solution is infinite.

Degeneracy : During the execution of the simplex algorithm it might happen that we cannot in-
crease any variable but still need to pivot two of them in order to proceed. The swapped variable will
become a basic variable (on the left-hand side) even though its current value will be zero. This does not
prevent the algorithm to find the final solution but we have to be careful not to cycle if we keep pivoting
the same variables without changing their values. This can be avoid using different strategies such as a
lexicographic ordering of the variables.

9



Infeasability : If the constraints define an empty polytope then there is no feasible solution. This
can be detected easily by the simplex algorithm.

Initial vertex : In our exemple it was quite clear that x1 := 0, x2 := 0 was a feasible starting
solution. In the general case the initial assignment is not trival and demands to solve another linear
program to get the starting values. This is called the Phase I of the simplex method followed by the
Phase II which is what we showed above.

3.3 Exercise

We present now another application of the simplex algorithm this time with a minimization problem.
We will not go as deep in the details as we did above but still show the analysis at each step. Note that in
this case we will choose the variables that have negative coefficients to increase since it is a minimization
problem.

minimize − 2x1 + x2

subject to x2 ≤ 3

x1 − 3x2 ≤ 3

x1, x2 ≥ 0

=⇒
s1 = 3− x2 (1)

s2 = 3− x1 + 3x2 (2)

z = −2x1 + x2

x1 := 0, x2 := 0, s1 := 3, s2 := 3

↗ x1 −→ x1 ≤ ? (1), x1 ≤ 3 (2) −→ x1 := 3, s2 := 0

s1 = 3− x2 (1)

x1 = 3− s2 + 3x2 (2)

z = −2(3− s2 + 3x2) + x2

x1 := 3, x2 := 0, s1 := 3, s2 := 0

=⇒
s1 = 3− x2 (1)

x1 = 3− s2 + 3x2 (2)

z = −6 + 2s2 − 5x2

↗ x2 −→ x2 ≤ 3 (1), x2 ≤ ∞ (2) −→ x2 := 3, s1 := 0, x1 := 12

x2 = 3− s1 (1)

x1 = 3− s2 + 3(3− s1) (2)

z = −6 + 2s2 − 5(3− s1)

x1 := 12, x2 := 3, s1 := 0, s2 := 0

=⇒
x2 = 3− s1 (1)

x1 = 12− s2 +−3s1 (2)

z = −21 + 2s2 + 5s1

no negative weight⇒ OPT = −21 at x1 = 12, x2 = 3

References

[1] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-
algorithm and applications. Theory of Computing, 8(1):121–164, 2012.

10



[2] Gerard Cornuejols and Michael Trick. Quantitative methods for the management sciences, 1998.
http://mat.gsia.cmu.edu/classes/QUANT/NOTES/chap7.pdf.

[3] Anupam Gupta. Solving lps/sdps using multiplicative weights. http://http://www.cs.cmu.edu/
afs/cs.cmu.edu/academic/class/15859-f11/www/notes/lecture17.pdf.

[4] Jiri Matousek and Bernd Gärtner. Understanding and using linear programming. Springer Science
& Business Media, 2007.

[5] Scott Provan. The simplex method, 2013. http://www.unc.edu/depts/stat-or/courses/provan/
STOR614_web/lect03_simplex.pdf.

11


