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1 The Probabilistic Method

The probabilistic method was initiated by Paul Erdős and it has been widely used for exploiting ran-
domness in theoretical computer science. Common examples include expander graphs, the Lovász Local
Lemma, and the maximum satisfiability problem. The basis of the method is proving the existence of a
certain combinatorial object by designing an appropriate probability space and showing that a randomly
picked object in the space has the desired structure with positive probability.

An important aspect of the probabilistic method is that the existential argument can often be turned
into an algorithm. We may consider expander graphs as an interesting example. They are highly con-
nected, though fairly sparse graph families. While creating a structure which satisfies either of the
properties is easy (a complete graph and a path respectively), designing an expander graph determinis-
tically has been a difficult task so far. Astonishingly, picking a graph at random from a specific simple
distribution will return an expander with high probability.

In the first part of the lecture, we prove by induction an illustrative existential statement. It relates
the clique size and the independent set size in a graph. Then we introduce the Erdős-Rényi random graph
model to investigate the strength of the statement via the probabilistic method. The basic techniques
that use expectation and variance are complemented by solving two exercises. We finish the lecture by
providing a simple algorithm for finding a clique of size log(n) in a random graph. Additionally, there
is a brief description of the phase transition phenomenon.

2 Cliques and Independent Sets

Our motivation problem called ”the theorem on friends and strangers” is coming from the fields of
Ramsey theory and extremal graph theory. The questions posed there have the following form: what is
a large enough structure such that it contains a substructure with a given property? In graph theory
”friends” and ”strangers” are formally defined as cliques and independent sets respectively.

Lemma 1 Suppose you invite six people for a dinner then either three of them are mutual friends or
three of them are mutual strangers.
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Figure 1: Graph interpretation of friends and strangers with the corresponding cases.

Proof Let A,B,C,D,E, F be the invited people. Consider the person A, the following two possible
cases come naturally from the problem statement:

• Case 1; see Figure 1(a): A has 3 friends. Without loss of generality, assume them to be B, C and
D. If any two of B,C,D are friends, say B and C, then A,B,C are pairwise friends. Otherwise,
B,C,D are pairwise strangers.
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• Case 2; see Figure 1(b): A has 3 strangers, say B,C and D. If any two of B,C,D are mutual
strangers, then there is a group of three people who are all pairwise strangers, otherwise B, C and
D are three friends.

Now, we introduce formal definitions and show a general statement for an arbitrary number of guests,
i.e. on a graph with n vertices. The proof of Lemma 1 uses the case split on a single vertex and analyses
a smaller problem of the same kind. It suggests applying induction in the general setting is a good
choice.

Definition 2 Let G = (V,E) be an undirected graph and V ′ ⊆ V its subset of vertices. Set V ′ is a
clique if for any pair u, v ∈ V ′ the edge {u, v} ∈ E. If for every u, v ∈ V ′ the edge {u, v} /∈ E, V ′ is
called an independent (or stable) set.

Theorem 3 In a subgraph of G = (V,E) with |V | = n there is either an independent set of size s or a
clique of size t as long as n ≥ 2s+t − 1.

Proof By induction on s+ t.
Basis: Observe that the theorem trivially holds for s ≤ 2, t ≤ 2. A single vertex is at is at the same

time a clique and an independent set by the definition. If two vertices are connected by an edge they
form a clique of size 2. Otherwise, they form an independent set of the same size.

Inductive step: We assume that the claim holds for all s and t satisfying s+ t ≤ k − 1 and prove it
for s+ t = k. Consider a vertex A ∈ V :

• Case 1: A has at least n−1
2 = 2s+t−2

2 = 2s+t−1 − 1 neighbours. By the induction hypothesis, the
graph consisting of neighbours of A has either an independent set of size s or a clique of size t− 1;
thus G has either an independent set of size s or a clique of size t.

• Case 2: A has n−1
2 = 2s−1+t − 1 non-neighbours. Using the induction hypothesis on the set of

non-neighbours with s− 1 and t proves the theorem statement analogously to Case 1.

3 Random Graphs

One might be interested to know whether the bounds of the Theorem 3 are tight. It is hard to explicitly
construct a graph which has neither a clique nor an independent set of size 2 log(n). The random graph
model introduced by Erdős and Rényi in 1950s brings us closer to the answer.

Definition 4 For given n and p ∈ [0, 1], a graph G sampled from G(n, p) is a graph with labelled set
of vertices V (G) = {1, 2, . . . , n}, obtained by taking each edge e ∈

(
[n]
2

)
with probability p, independently

from any other edge; thus forming the edge set E(G).

The above model is one of the most widely used random graph models. It is an adequate way for
modelling ”logical” networks such as peer-to-peer networks and social networks. For such graphs it is
necessary to let p depend on n. The reason is that the number of edges per vertex grows linearly in n
for any fixed p. However, the real-world networks are usually much sparser.

After this small digression we go back to our initial problem with sampling a random graph G from
G(n, 12 ). Observe that G and its complement Ḡ are equiprobable in this setting. A clique in G is an
independent set in Ḡ and vice versa; therefore it is equally probable to have a clique of size t in G and
the independent set of the same size.
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Theorem 5 A graph G ∼ G(n, 12 ) has no independent set or clique of size 2 log2(n) + 1 with high
probability.

Proof For any subset S ⊆ V (G) of size t = 2 log2(n) + 1, let XS be an indicator variable such that
XS = 1 if S is a clique and XS = 0 otherwise. For XS to be equal to 1 all

(
t
2

)
edges between vertices of

S have to be present in the set of edges E(G). This gives E[XS ] = Pr[S is a clique] = ( 1
2 )(

t
2). Let X be

the number of cliques of size t in G then its expectation is:

E[X] = E

∑
|S|=t

XS

 =
∑
|S|=t

E[XS ] =
∑
|S|=t

2−(t2) =

(
n

t

)
· 2−(t2)

≤ nt

t!
· 1

2
t(t−1)

2

=
1

t!
·
(

n

2
t−1
2

)t
≤ 1

t!
·
(n
n

)t
=

1

t!
= o(1).

Now by using Markov’s inequality:

Pr[X ≥ 1] ≤ E[X]

1
= o(1).

As we discussed earlier, the probability of having an independent set of size t is the same as the probability
of having a clique of size t. Applying the union bound gives the statement of the theorem.

The proof above uses linearity of expectation, the fact that
(
n
t

)
= n·(n−1)·...·(n−t+1)

t! ≤ nt

t! , and the
following basic probabilistic tool:

Theorem 6 (Markov’s inequality). If X is a nonnegative random variable and a > 0, then

Pr[X ≥ a] ≤ E[X]

a
.

4 Exercises

We continue by solving two exercises in order to better our understanding of the probabilistic method.

Exercise 1

For a given constant positive integer l, what is the largest value of p so that G ∼ G(n, p) has no cycle of
length l with high probability?

Solution to Exercise 1:

We proceed in a similar manner as the proof of Theorem 5. The main difference is that for each subset
S ⊆ V (G) of size l there is l!

2l distinct labelled cycles up to automorphism, while there is only a single
labelled clique (or independent set). The number l!

2l is obtained by dividing the number of permutations
with l (since cycle can be rotated) and 2 (for two possible directions). Denote with XC an indicator
variable for a specific labelled cycle of size l, then E[XC ] = Pr[E(C) ⊆ E(G)] = pl. Let X be the number
of cycles of size l. We will calculate its expectation:

E[X] = E

∑
|S|=l

∑
C s.t.
V (C)=S

XC

 =
∑
|S|=l

∑
C s.t.
V (C)=S

E[XC ] =
∑
|S|=l

∑
C s.t.
V (C)=S

pl

=

(
n

l

)
· l!

2l
· pl ≤ nl

2l
· pl =

1

2l
· (p · n)

l
.
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Again by using Markov’s inequality:

Pr[X ≥ 1] ≤ E[X]

1
≤ 1

2l
· (p · n)

l
.

For p = 1
n(1+ε) and an arbitrary small constant ε > 0, the probability goes to 0 as n→∞.

We can use the expected number of cycles from Exercise 1 to create a dense graph with no cycles of
length l. The algorithm is following:

1. Sample G ∼ G(n, p);
2. For each cycle of length l remove an edge.

The expected number of edges in the resulting graph G̃ is:

E
[
|E(G̃)|

]
≥ E [|E(G)|]− E[X] ≥

(
n

2

)
· p− nl

2l
· pl

We are looking for a function p = p(n, l) that is going to maximize the above expression. In order
to simplify the calculation we make several simple assumptions. Since we are mainly interested in
asymptotic behaviour we consider only the leading terms without coefficients, i.e. n2 · p − nl · pl. We
assume l ≥ 3 and write p as n−f(l), where ∀l : f(l) ≥ 0. The restated expression is:

max
f(l)

n2 · n−f(l) − nl · n−lf(l) = max
f(l)

n2−f(l)(1− n(l−2)−(l−1)f(l))

= max
f(l)

n2−f(l)(1− n1−
(l−1)
(l−2)

f(l)).

For f(l) < l−2
l−1 the the whole expression becomes negative for large enough n. On the other hand, for

f(l) ≥ l−2
l−1 the second product term (1− n1−

(l−1)
(l−2)

f(l)) goes to 1 as n → ∞, while the first term n2−f(l)

is maximized for f(l) = l−2
l−1 . The expected number of edges E

[
|E(G̃)|

]
= Ω(n1+

1
l−1 ) for p = n−

l−2
l−1 .

Exercise 2

What is the largest value of t so that G ∼ G(n, 12 ) has in expectation at least one clique of size t?

Solution to Exercise 2:

We would like to prove the statement for t = 2(1− ε) log2(n) + 1 and an arbitrary small constant ε > 0.
Let X the number of cliques of size t. We use a part of the calculation from the proof of Theorem 5
with the difference that we want to lower-bound the expectation:

E[X] =

(
n

t

)
·
(

1

2

)(t2)
≥
(n
t

)t
· 1

2
t(t−1)

2

=
( n

tn1−ε

)t
=

(
nε

t

)t
,

where we used
(
n
t

)
= n

t · . . . ·
n−t+1

1 ≥
(
n
t

)t
since n−i

t−i ≥
n
t for 0 ≤ i < t and n ≥ t. We obtain that:

lim
n→+∞

E[X] = +∞.

This still does not imply that Pr[X ≥ 1] also grows arbitrarily close to 1 as n grows large. Consider
for example a random variable X with the following PDF:

f(x) = 0.99δ(x) + 0.01δ(x− 1012),
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where δ(x) indicates the Dirac delta function.1

This is clearly a PDF, as integral of f equals to 1. Furthermore, the expected value of x is quite
large:

E[X] = 0.99 · 0 + 0.01 · 1012 = 1010.

Nonetheless the probability that x > 1 is only 0.01.
What is noticeable in this example is that the standard deviation of the random variable x is also very
large:

Var[X] = E[X2]− E[X]2 = 1022 − 1020 ≈ 1022 ⇒ σ[X] ≈ 1011

where Var[X] = σ2[X].
One can empirically conclude that a random variable can be arbitrarily far from its expected value

with a high probability, given that its standard deviation is sufficiently large. This gives rise to the
following question: does having a small standard deviation guarantee that a random variable remains
close to its expected value with high probability? Chebyshev’s inequality gives an affirmative answer:

Theorem 7 (Chebyshev’s inequality). If X is a random variable with finite expected value µ and finite
non-zero standard deviation σ, then for any positive λ:

Pr[|X − µ| ≥ λ · σ] ≤ 1

λ2
.

Proof
σ2 = Var[X] = E[(X − µ)2] ≥ Pr[|X − µ| ≥ λ · σ] · λ2σ2,

where the last inequality follows from Markov’s inequality for the random variable |X − µ|2 and the
parameter λ2σ2. Dividing both sides by λ2σ2 gives Chebyshev’s inequality.

Back to our problem. We would like to prove that Pr[X > 0] → 1 as n → ∞, having in mind that
X is integer valued and thus Pr[X > 0] = Pr[X ≥ 1]. We apply Chebyshev’s inequality to bound the
standard deviation of X, by setting λ = µ

σ we obtain:

Pr[X = 0] ≤ Pr[|X − µ| ≥ µ] ≤ σ2

µ2
=

Var[X]

E[X]2

Now, we use the definition of variance to bound the last expression:

Var[X] = E[X2]− E[X]2 = E[(
∑
|XS |=t

XS)2]− (E[
∑
|XS |=t

XS ])2 = E[
∑
|A|=t,
|B|=t

XAXB ]−
∑
|A|=t,
|B|=t

E[XA]E[XB ]

If A and B are disjoint, then XA and XB are independent. Thus E[XAXB ] − E[XA]E[XB ] = 0. The
same argument holds when A and B intersect in only one vertex, as in such case they do not have any
edges in common, thus again XA and XB are independent. So, we assume that A and B intersect in at
least two vertices.

Var[X] ≤
∑
|XA|=t

∑
|XB |=t,
|A∩B|≥2

E[XAXB ] =

(
n

t

)
2−(t2)

t∑
i=2

(
t

i

)(
n− t
t− i

)
2−(t2)+(i2)

Here the term
(
n
t

)
stands for the number of different ways one can choose XA. The probability that XA

is a clique is 2−(t2). The term
(
t
i

)
accounts for all possible ways for XB and XA to share i vertices. XB

1To be precise, δ is a generalized function that ranges over the reals, such that δ(x) = 0 if x 6= 0, and

∞∫
−∞

δ(t)dt = 1.
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may choose the remaining vertices in
(
n−t
t−i
)

different ways. Finally, 2−(t2)+(i2) is the probability that the
remaining edges of XB are also connected and thus XB is a clique as well.

Var[X]

E[X]2
≤
(
n
t

)
2−2(

t
2)
∑t
i=2

(
t
i

)(
n−t
t−i
)
2(i2)(

n
t

)2
2−2(

t
2)

=

t∑
i=2

(
t
i

)(
n−t
t−i
)
2(i2)(

n
t

) .

The remaining part of the proof is inspired by the original paper on cliques in random graphs by Erdős
and Bollobás dated in 1975. Denote the i-th summation term with Ti for 2 ≤ i ≤ t. For a sufficiently
large n and 3 ≤ i ≤ t− 1 it is not hard to prove the following statement:

Ti < T3 + Tt−1.

The inequality trivially holds for i = 3 and i = t − 1, while for other terms we use monotonicity
Ti+1

Ti
= (t−i)2·2i

(t−i+1)(i+1) = (t2−2i+i2)·2i
ti−i2+t+1 > 1. We proceed by giving an upper-bound for our main expression:

Var[X]

E[X]2
< T2 + Tt + t · (T3 + Tt−1) <

t4

2n2
2 +

1

E[X]
+ t ·

(
t6

6n3
23 +

tn2−(t−1)

E[X]

)
=
t4

n2
+

1

E[X]
+

4t7

3n3
+

1

E[X]
· t2

n1−2ε
.

We have already shown that E[X]→∞ as n→∞, thus its inverse goes to 0. All the other terms go to
0 so it does Pr[X = 0] ≤ Var[X]

E[X]2 too.

We have proven that almost all graphs from G(n, 12 ) have a clique of size 2(1− ε) log2(n) + 1 for any
small and positive constant ε. But this does not mean that it is easy to detect such a clique. In fact, it
is still an open problem to find a clique of expected size c log(n) where c > 0 in polynomial time in a
graph from G(n, 12 ). As a result, we have a double threshold chart; see Figure 2. It is interesting that
up to size 2 log(n) there is a huge number of cliques and than suddenly this number drops to zero. This
phenomenon is called phase transition. The same behaviour has been recently proven for k-SAT.

log(n) 2 log(n)
Clique size

Pr

1

Figure 2: In a graph G ∼ G(n, 12 ) there is a known polynomial algorithm to find a clique of the given
size (blue line). A clique of a given size exists with high probability (red line).

Here we describe an algorithm which finds a clique in the case c = 1.

1. Set S = ∅;
2. Pick any vertex v at random and set S = S ∪ {v};
3. Discard v and all vertices not connected to v from the graph;
4. If the graph is not empty, go back to step 2.

Since in G(n, 12 ) every edge exists with probability 1
2 , in every step of the algorithm half of the nodes

are discarded on average. Thus the expected size of the returned clique is log(n).
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