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1 Motivation

In the course we have seen many combinatorial problems which can be solved using linear programming.
The first step of this approach is to formulate the problem as a linear program, i.e., describe the convex
hull of the characteristic vectors of feasible solutions via linear inequalities. Then solving the problem
amounts to solving the linear program.

One example is the problem of finding a maximum-weight spanning tree in an n-vertex complete
graph (V,E) with given weights on edges. As seen in previous lectures, the spanning tree polytope, i.e.
the convex hull of characteristic vectors of spanning trees, is the following:

Pst(n) = {x ∈ R|E| : x ≥ 0, x(E) = n− 1, x(E(S)) ≤ |S| − 1 for all S ⊆ V, |S| ≥ 2}.

A bottleneck of this approach is that we have described the polytope using exponentially many
inequalities. Why is this a problem? First, it is of theoretical interest to have low description complexity.
Second, even though we can still optimize over the polytope in polynomial time using the ellipsoid
algorithm and an efficient separation oracle, the ellipsoid algorithm is very slow and not practical. We
would prefer to use algorithms which both have theoretical guarantees and are fast in practice, such as
interior point methods. However, then the runtime crucially depends on the number of constraints.

This motivates the following question: can we describe this polytope using a number of inequalities
which is polynomial in n?

It turns out that the answer is yes, and we will present such an efficient formulation. But, more
interestingly, we will also show that some polytopes do not admit any such compact representation.

1.1 Spanning tree polytope

The first thing that we should probably try is to argue that most of the constraints in our current
description of Pst(n) are redundant. However, this is not the case.

Fact 1 For any subset S ⊆ V with 3 ≤ |S| ≤ n − 3, the polytope P ′st(n) obtained by removing the
contraint x(E(S)) ≤ |S| − 1 from the description above is strictly larger than Pst(n).

Proof We will exhibit a point x ∈ P ′st(n)\Pst(n). Let CS be any cycle containing all vertices of S, and
let CS be any cycle containing all the other vertices. We obtain x by putting value 1 on each edge of CS

and value n−|S|−1
n−|S| on each edge of CS . (Put 0 everywhere else.) Then the constraint x(E(S)) ≤ |S| − 1

is violated, as x(E(S)) = x(CS) = |S|, and thus x 6∈ Pst(n). However, x ∈ P ′st(n):

• x(E) = |S|+ n−|S|−1
n−|S| (n− |S|) = n− 1,

• for any S′ 6= S:

– if S 6⊆ S′, then S′ ∩ S induces a forest and thus

x(E(S′)) = x(E(S′∩S))+x(E(S′\S)) ≤ |S′∩S|−1+|S′\S|n− |S| − 1

n− |S|
≤ |S′∩S|−1+|S′\S| = |S′|−1,

– if S ⊆ S′, then S′ \ S induces a forest (since S′ 6= V ) and

x(E(S′)) = x(E(S′∩S))+x(E(S′\S)) ≤ |S|+(|S′\S|−1)
n− |S| − 1

n− |S|
≤ |S|+|S′\S|−1 = |S′|−1.
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Fact 1 implies that there are only polynomially many inequalities (with |S| < 3 or n−|S| < 3) that we
could possibly remove. (It is easy to check that actually no inequality is safe to remove.) This shows that
the polytope (which is (|E|−1)-dimensional) has exponentially many proper, (|E|−2)-dimensional faces,
and each of them needs “its own” constraint. Therefore we cannot hope to obtain a polynomial-sized
description of the spanning tree polytope – if we stay in the space R|E|.

But what if we were able to describe our polytope as a projection of another polytope in a higher-
dimensional space? While this might sound cryptic as first, note that it just corresponds to introducing
extra variables which help us somehow control the relationships between existing ones. This motivates
the following definition.

2 Extended formulations

Definition 2 Let P ⊆ Rn be a polytope.1 Then a polytope Q ⊆ Rn+p, described as

Q =
{

(x, y) ∈ Rn × Rp : E=x+ F=y = d=, E≤x+ F≤y ≤ d≤
}

is called an extended formulation for P iff

πx(Q) = P, that is, P = {x ∈ Rn : (∃y ∈ Rp) (x, y) ∈ Q}.

In other words, P is the orthogonal projection of Q onto the subspace Rn × {(0, ..., 0)}.2
Our objective is obtaining compact extended formulations (or proving that they do not exist). When

will we say that a formulation is small?

Definition 3 Given P and Q as above, define the size size(Q) of the extended formulation Q to be the
number of inequalities in its description (that is, the number of rows of the matrix E≤).

Remark We care only about inequalities and not equalities, since we can always remove the equalities
without increasing the number of inequalities.3 Now we can also see why we distinguished inequalities
and equalities in the description of the polytope Q.

Definition 4 We define the extension complexity of a polytope P to be

xc(P ) = min{size(Q) : Q is an extended formulation for P}.

The main question that we will consider is the following:
Question: Given a polytope P , is xc(P ) polynomial in n?

2.1 Spanning tree polytope revisited

Now we present the polynomial-sized extended formulation for the spanning tree polytope Pst(n) (due
to Kipp Martin, 1991 [Mar91]):

1For the spanning tree polytope, n is the number of vertices, and the dimension of the space is |E|. For general polytopes
we will denote the dimension of the space by n.
2With an abuse of notation, we will denote by Q both a polytope and its linear description. In the literature Q is

usually called an extension and a linear description of Q is called extended formulation.
3Indeed, we can take an equality, choose a variable with nonzero coefficient, compute an expression for it in terms of the

other variables, and remove it completely by plugging this expression in its place in all other equalities and inequalities.
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Q = {(x, y) ∈ R(n
2) × Rn(n−1)(n−2) :

x{v,w} − yv,w,u − yw,v,u = 0 for all distinct u, v, w ∈ V ,

x{v,w} +
∑

u∈V \{v,w}

yv,u,w = 1 for all distinct v, w ∈ V ,

x(E) = n− 1,

x, y ≥ 0}.

Note that the pairs {v, w} are unordered, while the triples u, v, w are ordered.

Exercise 5 Show that Q is an extended formulation for P , that is, P = πx(Q).

Proof We will prove the inclusion ⊆. Let x ∈ P ; we need to produce a y ∈ Rn(n−1)(n−2) such that
(x, y) ∈ Q. WLOG we can assume that x is an extreme point of P – an indicator vector of a spanning
tree T of G. Then we put

yv,w,u =

{
1 if (v, w) ∈ T and u is on w’s side of the edge (v, w) in T ,

0 otherwise.

It is easy to verify that all constraints are satisfied.
We leave the trickier inclusion P ⊇ πx(Q) to the reader.

Clearly size(Q) = Θ(n3) and thus xc(Pst(n)) = O(n3) = poly(n).
Open question: is xc(Pst(n)) = Θ(n3)? (That is, is there a smaller extended formulation?)

3 A general approach

Even though extended formulations are not a new idea, for a long time only upper bounds (and some
conditional lower bounds) were known. However, in recent years exponential lower bounds have been
proved for a number of 0/1 polytopes. These developments are the product of a unified approach to
extension complexity which we will present now. We also show a lower bound for one particular polytope:
the correlation polytope.

3.1 The slack matrix and its nonnegative rank

The first step is to associate with P a matrix called the slack matrix of P , from which we will be able
to extract information about the structure of the extended formulations of P .

Recall that any polytope can be written in two ways: as

P = {x ∈ Rn : Ax ≤ b}

for some matrix A ∈ Rm×n, with m being the number of constraints, or as

P = conv{v1, ..., vd}

with v1, ..., vd ∈ Rn.

Definition 6 Given both of these representations, the slack matrix of P is defined as a matrix S ∈ Rm×d

with
Sij = bi −Aivj ,

where Ai is the i-th row of A.
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Since bi −Aivj is the slack of the i-th constraint at vj ∈ P , we have Sij ≥ 0. Note that S is not unique
for P , as it depends on the choice of A, b, v1, ..., vd.

Example 7 Let G = (V,E) be a complete graph on n vertices. A perfect matching is a matching
covering all vertices. We can describe the perfect matching polytope of G as

M(n) =
{
x ∈ R|E| : x ≥ 0, x(δ(v)) = 1 for each v ∈ V , x(δ(U)) ≥ 1 for each odd set U ⊆ V

}
and as

M(n) = conv{1M : M is a perfect matching in G}.

Let S be the slack matrix of M(n). Then the columns of S are indexed by perfect matchings M of G
(and by edges e, but we ignore those), and the rows corresponding to inequalities x(δ(U) ≥ 1 are indexed
by odd sets U . The entry of the slack matrix in column M and row corresponding to U is

SU,M = |M ∩ δ(U)| − 1 ≥ 0.

To say how S can be useful for us, we need another definition.

Definition 8 Given any nonnegative matrix S ∈ Rm×d
≥0 , we say that a pair of matrices (T,U) is a

rank-r nonnegative factorization of S if:

T ∈ Rm×r
≥0 , U ∈ Rr×d

≥0 , S = TU.

We define the nonnegative rank of S as

rk+(S) = min{r : S has a rank-r nonnegative factorization}.

Remark The name comes from the fact that if we skip “nonnegative” and “≥0” everywhere in Defi-
nition 8, we will get an equivalent definition of the rank of a matrix.

3.2 Yannakakis’ Theorem

Now we can state the fundamental result which explains our interest in slack matrices.

Theorem 9 (Yannakakis’ Factorization Theorem [Yan88]) Let P be a polytope and S its slack
matrix. Suppose dim(P ) ≥ 1. Then

xc(P ) = rk+(P ).

We need a few lemmas for the proof:

Exercise 10 If S′ is a minor of S, then rk+(S′) ≤ rk+(S).

Proof Given a rank-r factorization S = TU and a minor S′ = S[X×Y ], factorize S′ = T [X× [r]][[r]×
Y ].

Exercise 11 For a matrix S ∈ Rm×d
≥0 we have rk+(S) ≤ min(m, d). Moreover, rk+(S) is at most the

number of nonzero rows of S.

Proof We have the following factorizations: S = Im×mS = SId×d. For the second part, suppose that
the nonzero rows of S are the first r rows; then write S = JS′, where J ∈ Rm×r is the identity matrix
Ir×r padded with m− r zero rows and S′ = S[[r]× [m]] is the nonzero part of S.

4



Lemma 12 Let P = {x ∈ Rn : Ax ≤ b} be a polytope with dim(P ) ≥ 1. If the inequality cx ≤ δ is valid
for P ,4 then it can be written as a nonnegative combination of the constraints Ax ≤ b, i.e.

(∃y ≥ 0) yA = c, yb = δ.

Proof idea: This statement reminds us of Farkas’ lemma and LP duality. However, those results would
only give us cx ≤ δ′ for some δ′ ≤ δ, instead of cx ≤ δ. We need the assumption that dim(P ) ≥ 1 to fix
this.
Proof

Step 1: we prove that the inequality cx ≤ δ′ is a nonnegative combination of the rows of Ax ≤ b,
for some δ′ ≤ δ.

LP duality gives us that

max{cx : Ax ≤ b} = min{yb : yA = c, y ≥ 0},

since the primal program is feasible (as dim(P ) ≥ 1) and bounded (as cx ≤ δ is valid5). Let δ′ be the
optimum primal-dual value; we have that δ′ ≤ δ (again, as cx ≤ δ is valid). Furthermore let y? be an
optimum dual solution. Therefore:

y? ≥ 0, y?A = c, y?b = δ′.

This is the sought combination.
Step 2: we show that 0x ≤ 1 is also a nonnegative combination of Ax ≤ b.
Since dim(P ) ≥ 1, at least one of the inequalities in Ax ≤ b is not always tight.6 That is, for some i,

min{Aix : x ∈ P} = b′i < bi,

where Ai is the i-th row of A.7 Therefore the inequality Aix ≥ b′i is valid, and by Step 1 it can be
obtained as a nonnegative combination of Ax ≤ b.8 So the following inequalities can be so obtained:
−Aix ≤ −b′i, Aix ≤ bi, and in consequence also their sum: (Ai − Ai)x ≤ bi − b′i, which after scaling
yields 0x ≤ 1.

Step 3: now we can take cx ≤ δ′ with multiplier 1, 0x ≤ 1 with multiplier δ − δ′ ≥ 0, and thus get
cx ≤ δ.

Exercise 13 Let
P = {x ∈ Rn : Ax ≤ b} = conv{v1, ..., vd}

be a polytope with dim(P ) ≥ 1 and S its slack matrix. Suppose cx ≤ δ is a valid inequality for P . Then
rk+(S) = rk+(S′), where S′ is the matrix obtained by adjoining to S one extra row for the slack of the
inequality cx ≤ δ.9

Proof Of course, by Exercise 10 we have rk+(S) ≤ rk+(S′) and we need to prove the converse.
Use Lemma 12 to get a nonnegative combination

y ≥ 0, yA = c, yb = δ.

4That is, for each x ∈ P we have cx ≤ δ.
5Also, for us a polytope is bounded by definition.
6Otherwise P would be an affine subspace, and since it is bounded, it would be a point (dim(P ) = 0).
7Also, b′i 6= −∞ because P is bounded.
8Actually, Step 1 only guarantees obtaining a stronger inequality: Ax ≥ b′′i for some b′′i ≥ b′i. However, we must also

have b′′i ≤ b′i since this new inequality, as a combination of Ax ≤ b, is also valid for P (in particular, for the point where
the minimum of Aix is attained). So in fact b′′i = b′i.
9In other words, S′ is the slack matrix for the polytope P written as P = {x ∈ Rn : Ax ≤ b, cx ≤ δ} = conv{v1, ..., vd}.
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Denote r = rk+(S) and take a nonnegative rank-r factorization

S = TU, T ∈ Rm×r
≥0 , U ∈ Rr×d

≥0 .

We claim that
S′ = T ′U, T ′ ∈ R(m+1)×r

≥0 , U ∈ Rr×d
≥0 ,

where T ′ is T with the extra row yT adjoined, is a nonnegative rank-r factorization of S′. Indeed, if we
denote the extra row of S′ by β (βj = δ − cvj), then we have β = (yT )U , because for each column j,

((yT )U)j = (y(TU))j = (yS)j = ySj =

m∑
i=1

yiSij =

m∑
i=1

yi(bi −Aivj) = yb− yAvj = δ − cvj = βj .

Now we can prove Yannakakis’ theorem.
Proof [of Theorem 9]

Denote the description of P from which S was created by:

P = {x ∈ Rn : Ax ≤ b} = conv{v1, ..., vd}.

Direction xc(P ) ≤ rk+(S): given a rank-r nonnegative factorization of S:

T ∈ Rm×r
≥0 , U ∈ Rr×d

≥0 , S = TU,

we can obtain an extended formulation of size r as follows:10

Q = {(x, y) ∈ Rn × Rr : Ax+ Ty = b, y ≥ 0} .

Then:

• size(Q) = r (note that there are many more equalities),

• we show that πx(Q) ⊆ P : given (x, y) ∈ Q we have Ty ≥ 0 since T ≥ 0 and y ≥ 0, so Ax =
(Ax+ Ty)− Ty = b− Ty ≤ b and thus x ∈ P ,

• we show that πx(Q) ⊇ P : given x ∈ P , we need to produce a y such that (x, y) ∈ Q. WLOG
assume that x is an extreme point of P – then we must have x = vi for some i. We take y = U i to
be the i-th column of U . Then y ≥ 0 and Ax+ Ty = Avi + TU i = Avi + Si = Avi + b−Avi = b,
so (x, y) ∈ Q.

Direction xc(P ) ≥ rk+(S): let

Q =
{

(x, y) ∈ Rn × Rp : E=x+ F=y = d=, E≤x+ F≤y ≤ d≤
}

be an extended formulation of P with size(Q) = r (that is, the matrix (E≤, F≤) has r rows). The
objective is to show rk+(S) ≤ r.

Observation: since πx(Q) = P , all inequalities valid for P are also valid for Q. So our plan is the
following: we will write down a slack matrix S′ for Q, note that it has rank at most r, add the slacks of
inequalities Ax ≤ b to it as extra rows (without increasing the rank), and then argue that S is a minor
of the matrix so obtained, so S also has rank at most r.

Let then S′ be the slack matrix of Q defined as follows. The first rows of S′ contain the slack of
inequalities E≤x+F≤y. The remaining rows contain the slack of constraints E=x+F=y = d=, written

10On some level, this is the usual trick of adding nonnegative slack variables used to transform an LP of the form Ax ≤ b
to one of the form Ax = b, x ≥ 0. T having few columns means we do not have to add many slack variables.
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as inequalities (two for each equality). Note that the latter are zero rows. As for the columns, we take
any generating set of points of Q whose first d elements are preimages of the points v1, ..., vd: denote
them by (v1, y1), ..., (vd, yd). From Exercise 11, rk+(S′) ≤ r.

Now add to S′ rows corresponding to slacks of all inequalities Ax ≤ b, obtaining a matrix S′′. Because
these inequalities are valid for Q, by Exercise 13, rk+(S′′) = rk+(S′) ≤ r.

We are done if we prove that S is a minor of S′′, since then by Exercise 10 we have rk+(S) ≤
rk+(S′′) ≤ r. Indeed, S is the minor corresponding to the newly-added rows and to the first d columns.

3.3 Rectangle covers

Definition 14 Given a matrix S ∈ Rm×d
≥0 , a rectangle R = (X,Y ) in S is a subset of rows X and a

subset of columns Y such that all entries of the minor S[X × Y ] are positive. If we define supp(R) to be
X × Y , then in other words we want that supp(R) ⊆ supp(S).

Definition 15 A family R of rectangles of S is called a rectangle cover if these rectangles together cover
all positive entries of S, i.e., ⋃

R∈R
supp(R) = supp(S).

We might think that a matrix which has no cover with a small number of rectangles has a complicated
structure. Indeed:

Theorem 16 rk+(S) ≥ min{|R| : R is a rectangle cover of S}.

Proof Let r = rk+(S) and write the nonnegative factorization:

S = TU =

r∑
l=1

T lUl

where T l is the l-th column of T and Ul is the l-th row of U . Then

supp(S) =

r⋃
l=1

supp(T lUl) =

r⋃
l=1

supp(T l)× supp(Ul)

which yields a rectangle cover of size r.

Some remarks on this theorem are in order:

• One can ignore the exact values in the matrix – it only matters whether they are zero or not. This
can often be helpful.

• The inequality is not tight – there are examples where rk+(S) is exponential, but the minimum
rectangle cover is only polynomial-sized.

• However, it will be useful for the correlation polytope, as we will see now.
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4 The correlation polytope

Now we are well-equipped to prove an exponential lower bound.

Definition 17 We define the correlation polytope corr(n) to be

corr(n) = conv{yb : b ∈ {0, 1}n} ⊆ Rn×n,

where yb ∈ Rn×n is the outer product
yb = bb>.

Example 18

corr(2) = conv
{(

0 0
0 0

)
,

(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
1 1
1 1

)}
.

Note that xc(corr(n)) ≤ 2n, for corr(n) is a convex hull of 2n points (see Exercise 11). The rest of
the lecture is devoted to the proof of the following theorem:

Theorem 19 xc(corr(n)) = 2Ω(n).

We begin by relating the extension complexity of corr(n) to the nonnegative rank of a smartly defined
matrix S.11

Definition 20 Define the matrix S ∈ R2n×2n

≥0 as follows. Let its rows and columns be indexed by vectors
a, b ∈ {0, 1}n, and write

Sab =

{
0 if |a ∩ b| = 1,

1 otherwise.

See Figure 1 for an illustration of S.

Lemma 21 xc(corr(n)) ≥ rk+(S).

Proof By Theorem 9 and Exercise 10, it is enough to show that S is a minor of some slack matrix of
corr(n). For the column set of the minor, we will choose all the vertices of S (the matrices yb). For the
row set, we need to come up with a family of inequalities valid for corr(n) parametrized by a such that
the slack of the a-th inequality at yb is 0 exactly when |a ∩ b| = 1.

How to define the a-th inequality? Fix a, and consider first the following function of the variable
x = (x1, ..., xn) ∈ {0, 1}n:

πa : {0, 1}n → Z≥0, πa(x) = (〈a, x〉 − 1)
2 ≥ 0.

We linearize this function by expanding it into a multivariate polynomial in x1, ..., xn and replacing
all occurences of xixj with a variable yij and all occurences of x2

i (and xi, which is equivalent since
xi ∈ {0, 1}) with a variable yii. We thus obtain a linear functional ρa : Rn×n → R with the property
that ρa(yb) = ρa(bb>) = πa(b) for any b ∈ {0, 1}n. Our choice of inequality is ρa(y) ≥ 0. Note that it is
valid for corr(n), since for each vertex yb we have ρa(yb) = πa(b) ≥ 0, and that for any b we have that
ρa(yb) = πa(b) = 0 iff 1 = 〈a, b〉 = |a ∩ b|.

Now our task is reduced to showing that rk+(S) is exponentially large. We will do this by proving
that S has no small rectangle cover.

11For the remainder of the notes, n will be suppressed in the notation.
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4.1 The lower bound

Theorem 19 will follow from Theorem 16 if we can show that S cannot be covered by a small number of
rectangles. We will actually show a somewhat stronger statement:

Theorem 22 Any collection R of rectangles in S which covers the subset S′ of positive entries of S
defined as follows:

(a, b) ∈ S′ ⇔ |a ∩ b| = 0

is of size at least 2Ω(n).

See Figure 1 for an illustration of S′.

Figure 1: The matrix S for n = 3. Entries in green are those belonging to S′ (see Theorem 22).

000 100 010 001 110 101 011 111



000 1 1 1 1 1 1 1 1
100 1 0 1 1 0 0 1 0

010 1 1 0 1 0 1 0 0

001 1 1 1 0 1 0 0 0

110 1 0 0 1 1 0 0 1

101 1 0 1 0 0 1 0 1

011 1 1 0 0 0 0 1 1

111 1 0 0 0 1 1 1 1

Note that positive entries in S are those (a, b) with |a ∩ b| 6= 1, so they have either |a ∩ b| = 0 or
|a ∩ b| ≥ 2. The set S′ contains only the first ones. Recall that each rectangle of S can only contain
positive entries, i.e. it contains no entry equal to 0.

To prove Theorem 22, let us first count how many entries there are to cover. The answer is simple:
|S′| = 3n, and this is because for each of the n elements we independently decide whether it is in a, in
b, or in none of them.

So we will be done once we prove the following:

Theorem 23 Any rectangle R in S covers at most 2n entries of S′.

This will imply that we need at least 3n/2n = (3/2)n = 2Ω(n) rectangles to cover S′.
Proof [of Theorem 23]

For a rectangle R in S, we write |R|0 = |S′ ∩ R| (magnitude of R). We must prove |R|0 ≤ 2n. (See
Figure 2 for an example.)

The proof is by induction on n. The case n = 1 is easy. Suppose we have the claim for n− 1.
Proof idea: we will cover R∩S′ using two rectangles, and show that the magnitude of each of those

rectangles is at most the magnitude of a rectangle which ignores the element n. By induction hypothesis,
this is at most 2n−1.

Fix a rectangle R = P × C. Let

R1 = P1 × C1,

P1 = {a ∈ P : a 3 n} ∪ {a ∈ P : a ∪ {n} 6∈ P},
C1 = {b ∈ C : b 63 n}

and let
R1 = {(a \ {n}, b) : (a, b) ∈ R1}.
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Figure 2: An example rectangle R = {000, 101, 111} × {000, 101, 111}, with |R|0 = 5 ≤ 23.

000 100 010 001 110 101 011 111



000 1 1 1 1 1 1 1 1
100 1 0 1 1 0 0 1 0
010 1 1 0 1 0 1 0 0
001 1 1 1 0 1 0 0 0
110 1 0 0 1 1 0 0 1

101 1 0 1 0 0 1 0 1
011 1 1 0 0 0 0 1 1

111 1 0 0 0 1 1 1 1

Note that R1 is a rectangle, for R1 = {a \ {n} : a ∈ P1}×C1. Moreover, R1 ⊆ {0, 1}n−1×{0, 1}n−1. So
|R1|0 ≤ 2n−1 by the induction hypothesis. Observe that (a, b) ∈ S′∩R1 if and only if (a\{n}, b) ∈ S′∩R1.
In order to conclude |R1|0 = |R1|0 ≤ 2n−1, it is then enough to show that for each (a, b) ∈ R1, exactly
one of (a, b) and (a ∪ {n}, b) belongs to R1. But this immediately follows by definition of P1.

Define analogously:

R2 = P2 × C2,

P2 = {a ∈ P : a 63 n},
C2 = {b ∈ C : b 3 n} ∪ {b ∈ C : b ∪ {n} 6∈ C}

and let
R2 = {(a, b \ {n}) : (a, b) ∈ R2} ⊆ {0, 1}n−1 × {0, 1}n−1.

Then repeating the arguments above, we deduce |R2|0 ≤ 2n−1.
Claim: R ∩ S′ ⊆ (R1 ∪R2) ∩ S′.
Once we have this, we conclude that |R|0 ≤ |R1|0 + |R2|0 ≤ 2n−1 + 2n−1 = 2n.
So let (a, b) ∈ R ∩ S′. There are four cases:

• a 3 n, b 63 n: then (a, b) ∈ R1,

• a 63 n, b 3 n: then (a, b) ∈ R2,

• a 3 n, b 3 n: then n ∈ a ∩ b and so |a ∩ b| 6= 0, a contradiction with (a, b) ∈ S′,

• a 63 n, b 63 n: if a∪{n} 6∈ P or b∪{n} 6∈ C, then (a, b) ∈ R1 or (a, b) ∈ R2, respectively. So suppose
that a∪{n} ∈ P and b∪{n} ∈ C, which means that (a∪{n}, b∪{n}) ∈ P ×C = R. On the other
hand, this pair cannot be covered by R, since the corresponding entry in S is zero. Indeed, since
(a, b) ∈ S′, we have a∩ b = ∅ and thus |(a∪{n})∩ (b∪{n})| = |{n}| = 1, so (a∪{n}, b∪{n}) 6∈ R.
This contradiction concludes the proof.

5 Discussion

An exponential lower bound on the extension complexity of the correlation polytope was first proved by
Fiorini et al. in 2012 [FMP+12]. The above proof is due to Kaibel and Weltge [KW15]. It can also be
made not to use Yannakakis’ Theorem at all, at the cost of making it more magical.
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It turns out that one can prove similar lower bounds for many polytopes, some of them using a
reduction to the correlation polytope. Examples include the stable set polytope and the travelling
salesman polytope.

Seeing these results, one might think that computational complexity and extension complexity are
tightly related: polytopes corresponding to hard (NP-complete) problems have high extension complex-
ity, and polytopes that can be optimized over in polynomial time (like the spanning tree polytope) have
polynomial extension complexity.

However, this is not true: in 2014 Rothvoss proved that the extension complexity of the matching
polytope is exponential [Rot14].
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