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1 Introduction

Last week we explored the notion of Linear Programming Duality and several examples of applications:
minimum cost perfect matching (Hungarian algorithm), maximum cardinality matching and maximum
spanning tree.
Today we will be seeing combinatorial structures that generalize the notion of linear independence in
matrices: matroids.
The notes that follow are based on lecture notes on this topic from Jan Vondrak, Standford University
and from Michel X. Goemans, Massachusetts Institute of Technology.

2 Matroids

There exist different definitions of a matroid. In this course will use the following, based on its indepen-
dence set.

2.1 Definitions

Definition 1 A matroid M = (E, I) is a structure with a finite ground set E, the universe, and a family
of subset of E said to be independent I satisfying:

(I1) if A ⊆ B, B ∈ I, then A ∈ I

(I2) if A,B ∈ I and |B| > |A|, then ∃e ∈ B \A such that A+ e ∈ I

In what follows, we will keep using notation of the form A+ e when it is technically A ∪ {e}.

Definition 2 A maximal (inclusion-wise) independent set is called a base.

Note that by (I2), all bases have the same cardinality.

2.2 Examples

2.2.1 k-Uniform matroid

A matroid M = (E, I) is k-Uniform if I satisfies:

I = {X ⊆ E : |X| ≤ k}

2.2.2 Partition matroid

A matroid M = (E, I) is a partition matroid if E is partitioned into disjoint sets E1, E2, ..., Ee and

I = {X ⊆ E : |Ei ∩X| ≤ ki for i = 1, 2, ...e}

2.2.3 Linear matroid

A matroid M = (E, I) is a linear matroid when it is defined from a matrix A. Let E be the index set of
the columns and for X ⊆ E let AX be the matrix consisting of the columns indexed by X. define I by

I = {X ⊆ E : rank(AX) = |X|}
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2.2.4 Graphic matroid

A matroid M = (E, I) is a graphic matroid when it is defined from a graph G = (V,E), with the edges
being the universe and I defined by

I = {X ⊆ E : X is acyclic}

I1 obviously holds because any subset of an acyclic set of edges will also be acyclic. In order to verify
that I2 holds, we can consider A,B ∈ I, |B| > |A|. A and B are forests consisting of |V | − |A| and
|V | − |B| connected components respectively (because A and B are acyclic). The number of connected
components in the forest A is thus higher than in the forest B, which means that B \ A must have an
edge e between two components of A. We have A+ e ∈ I.

2.2.5 Truncated matroid

A truncated matroid Mk = (E, Ik) is defined from a matroid M = (E, I) such that

Ik = {X ∈ I : |X| ≤ k}

It is quite easy to verify that the axioms still hold for Mk, as X ∈ Ik implies X ∈ I for all X ⊆ E.
(I1) holds because B ∈ Ik means that |B| ≤ k and A ⊆ B thus means |A| ≤ k as well. We know that
M is a matroid so I1 holds for M , which implies A ∈ I. We conclude that A ∈ Ik
The same reasoning can verify I2: if A,B ∈ Ik and |B| > |A|, then |B| ≤ k and |A| ≤ k − 1. We know
that I2 holds for M , so the inclusion of Ik in I tells us that ∃e ∈ B \ A such that A+ e ∈ I. The fact
that |A+ e| ≤ k − 1 + 1 = k allows us to conclude.

3 Greedy Optimization

We want to optimize a matroid, meaning finding the subset in I that maximizes the sum of the weights
of its elements. We give for this task the following greedy algorithm.

Input: Matroid M = (E, I), weight function w : E → R
Output: Find S∗ ∈ I such that1 w(S∗) = max

S∈I
w(s)

1. Order and rename elements such that w1 ≥ w2 ≥ · · · ≥ wn

2. S ← ∅

3. for i = 1 to n

if S + i ∈ I then S ← S + i

4. return S

This algorithm always outputs a base, so when there are negative weights it actually does not return
the maximum weight set in I. If we want it, we can simply change the loop at 3. to ”for i = 1 to q”
where q is such that wq ≥ 0 > wq+1.

Theorem 3 (Rado ’57 / Gale ’68). The greedy algorithm works for any w : E → R if and only if
M = (E, I) is a matroid.

1The weight function w applied to a set S means w(S) =
∑
e∈S

w(e)
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Proof
Let’s start by the ”if” direction (⇐=)
Suppose towards contradiction that the algorithms returns a non-optimal solution Sk = {s1, s2, · · · , sk}.
Let Tk = {t1, t2, · · · , tk} be a higher weight solution and p be the smallest index such that w(tp) > w(sp).
Define A = {t1, · · · , tp} and B = {s1, · · · , sp−1}.
By (I1) (and the way the algorithm works), we have A,B ∈ I. Since |A| > |B|, (I2) gives that ∃e ∈ A\B
such that B + e ∈ I. But this is a contradiction, because by definition w(e) > w(sp), and therefore the
greedy algorithm would add e before sp.

Now the ”only if” direction (=⇒)
We prove the contrapositive: if M is not a matroid, then ∃w : E → R for which the algorithm fails.

Case 1: Axiom (I1) is not satisfied
There is a S ⊆ T such that T ∈ I but S /∈ I. Then we set

w(e) =

 2 if e ∈ S
1 if e ∈ T \ S
0 if otherwise

The algorithm first inspects elements in S, then in T . Let Sq be those elements of S that the
algorithm picks. As S /∈ I we have S1 ( S, hence the weight of the returned solution is at most
2(|S| − 1) + |T \ S|. But w(T ) = 2|S|+ |T \ S|, so the algorithm fails.

Case 2: Axiom (I1) is satisfied, but (I2) is not
There is a S, T ∈ I such that |T | > |S| but ∀i ∈ T \ S, s+ i /∈ I. Then we set

w(e) =


1 + 1

2|S| if e ∈ S

1 if e ∈ T \ S
0 if otherwise

Since (I1) holds, all subsets of S are independent and thus the algorithm picks S and then can
not pick any element in T \ S. The weight of the returned solution is |S|(1 + 1

2|S| ) = |S|+
1
2 . But

w(T ) = |T | ≥ |S|+ 1, so the algorithm fails.

4 Circuits

Definition 4 A minimal (inclusion-wise) dependent set is called a circuit. In the case of a graphic
matroid derived from the graph G, a circuit is thus a cycle in G.

Theorem 5 Let M = (E, I) be a matroid. Let S ∈ I and e ∈ E such that S + e /∈ I, then there exists
a unique circuit C ⊆ S + e.

Before proving the theorem, we can derive an important property: if we consider any f ∈ C, then
S + e− f ∈ I.

Proof Suppose towards contradiction that S + e contains two circuits C1 and C2 with C1 6= C2. By
minimality of C1, C2, we have that ∃f ∈ C1 \ C2. Clearly C1 − f ∈ I (minimality of C1), so we can
expand it to X, the maximal independent set of S + e containing C1 − f . Since S is also independent,
we have that |X| = |S| and since e ∈ C1− f we have X = S+ e− f ∈ I. This is a contradiction because
C2 ⊆ S + e− f = X but C2 is dependent.
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We give without proof2 the following lemma.

Lemma 6 (Strong Basis Exchange property)
Given two basis B1 and B2, ∃e ∈ B1 and f ∈ B2 such that B1 − e+ f ∈ I and B2 − f + e ∈ I

5 Rank Function

Similarly to the rank function of a matrix, we can define the rank function for a matroid.

Definition 7 The rank of a matroid M = (E, I) is a function 2E → N denoted r or simply rM such
that

r(S) = max{|X| : X ⊆ S,X ∈ I} for any S ⊆ E

5.1 Examples

The rank function for a k-Uniform matroid is r(S) = min(|S|, k).
The rank function for a graphic matroid from the graph G = (V,E) is r(A) = n− #componants in (V,A).
The rank function for a truncated matroid Mk is rk(S) = min(r(S), k), where r is the rank function of
the original matroid.

5.2 Matroid Rank Theorem

Theorem 8 r : 2E → N is a rank function for a matroid if and only if

(i) r(∅) = 0 and r(A+ e)− r(A) ∈ {0, 1} ∀A ⊆ E, e ∈ E

(ii) r is submodular: for S, T ⊆ E: r(S) + r(T ) ≥ r(S ∩ T ) + r(S ∪ T )

Proof
We start by the ”only if” direction (=⇒):
Condition (i) is clear. We need to prove that r is submodular. Let J be the maximal independant set of
S∩T . Extend J to obtain maximal independent set JS of S. Extend JS to obtain maximal independent
set JST of S ∪ T .
We have J ⊆ JS and |JS | = r(S), |J | = r(S ∩ T ). Moreover, JS \ J = JS \ T because J was maximal.
In order to verify that

r(S) + r(T ) ≥ r(S ∩ T ) + r(S ∪ T )

m
|JS |+ r(T ) ≥ |J |+ |JST |

m
r(T ) ≥ |JST | − |JS |+ |J |

And we have that r(T ) ≥ |JST \ (JS \ T )| = |JST \ (JS \ J)| = |JST | − |JS |+ |J |.
The ”if” direction (⇐=):
We will use the following property of submodular functions: for any A ⊆ B and e /∈ B, one has
f(A+ e)− f(A) ≥ f(B + e)− f(B).
We will prove that the two matroid axioms hold for I := {A : r(A) = |A|}
It is clear from the first condition on r that I is closed under taking subsets. Since r(∅) = 0 and

2The proof can be found online in Michel X. Goemans notes on matroid intersection.
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r(B) = |B| then we can see by induction that for all set A ⊆ B r(A) = |A|
We claim that for any set S, all maximal subset of S which are in I have the same size, which clearly
implies (I2). In order to prove this claim let’s consider any set A such that A ⊂ S and r(A) = |A|. We
have r(A + i) − r(A) ∈ {0, 1}. Moreover as long as r(A) < r(S) it is the case (by submodularity) that
r(A + i) = r(A) + 1. Hence if A is maximal such that r(A) = |A|, we have r(A) = r(S). So all bases
have the same size: r(S).

5.3 Span

Definition 9 Given a matroid M = (E, I) and S ⊆ E, let

span(S) = {e ∈ E : r(S + e) = r(S)}.

We can state the following observations: S ⊆ span(S) and r(S) = r(span(S)).

Definition 10 A set S is said to be closed if S = span(S).

We note that our greedy algorithm of section 3 actually returns for w1 ≥ w2 ≥ · · · ≥ wn the set

{i : i /∈ span({1, . . . , i− 1})}

because it checks to increment the rank of S every time it adds an element to it. This results in the fact
that this set is the base of maximum weight of a matroid.

6 Matroid Polytope

Definition 11 Given a matroid M = (E, I), we define by P(M) the matroid polytope

P (M) = conv({xS ∈ {0, 1}|E| : S ∈ I})

Theorem 12 We have that

P (M) = {x ∈ R|E| :x(S) ≤ r(S) ∀S ⊆ E

xe ≥ 0 ∀e ∈ E }

where x(S) :=
∑
e∈S

xe.

Proof There exist multiple ways to prove this theorem. We will present here the outline of a Primal-
Dual proof3.
We need to show that all extreme points are integral. But for any extreme point, there exists an objective
function for which it is the unique optimal. We can write down the two linear programming formulations:
Primal:

maximize :
∑

wexe

subject to : x(S) ≤ r(S) ∀S ⊆ E

x ≥ 0

3Other versions of this proof can be found in Jan Vondrak lecture 9 notes, section 3 (references [3]) and in Gomans’
Lecture Notes on matroid optimization, section 4.4 (references [1])

5



Dual:

minimize :
∑
S⊆E

ySr(S)

subject to :
∑

S:e∈S
yS ≥ w(e) ∀e ∈ E

y ≥ 0

We then state complementary slackness and define the primal solution x∗ and the dual solution y∗. We
first run our greedy algorithm of section 3, and note S = {s1, . . . , sk} the set it returns indexed in the
order they were picked. Let

xe =

{
1 if e ∈ S
0 if otherwise

For j = 1, . . . , k define Sj = {s1, . . . , sj} the first j elements picked and let Uj be all elements in our
ordering up to and excluding Sj+1. We observe that r(Uj) = r(Sj) = j. Indeed by the independence of
Sj , r(Sj) = |Sj | = j and if r(Uj) > r(Sj) then there would be an element ep ∈ Uj \ Sj that the greedy
algorithm would have picked, a contradiction.
Now we set non-zero elements of y∗ to be y∗Uj

= w(Sj)− w(Sj+1) for j = 1, . . . , k.
By the ordering of the elements we have that y∗ ≥ 0. In addition, for any e ∈ E, we have

∑
S:e∈S

y∗S =

k∑
j=t

y∗Uj
= w(st) ≥ w(e),

where t is the least index such that e ∈ Ut (implying that e does not come before st in the ordering).
We have thus showed that y∗ is a feasible dual solution. Let’s verify complementarity slackness. First,
y∗Uj

> 0 ⇒ x∗(Uj) = |Sj | = r(Sj) = r(Uj), by the observation mentioned above. Second, x∗st > 0 ⇒∑
S:e∈S y∗S =

∑k
j=t y

∗
Uj

= w(st). Therefore x∗ is optimal which finishes the proof.
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