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Lecture 7
Lecturer: Ola Svensson Scribes: Cedric Bastin

The lecture and notes were inspired by

• http://www-math.mit.edu/ goemans/18433S09/matroid-intersect-notes.pdf

• http://math.mit.edu/ goemans/18438F09/lec11.pdf

• https://courses.engr.illinois.edu/cs598csc/sp2010/Lectures/Lecture17.pdf

1 Last lecture

Matroid A matroid is defined as M = (E, I) where E is the ground set and I ⊆ 2E is a set containing
subsets of E which we call independent sets, such that:

(i) if A ⊆ B ⊆ E and B ∈ I then A ∈ I (downward monotonicity).

(ii) if A ∈ I and B ∈ I and |A| > |B| the ∃a ∈ A\B s.t. B + a ∈ I (here, the + operator is defined as
follows: given A ⊆ E and a ∈ E, A+ a = A ∪ {a}).

A matroid typically represents a problem that can be solved optimally using a greedy algorithm, and
thus has a limited expressiveness. This follows from the fact that there is a greedy algorithm that, given
any matroid, returns a maximum weight independent set.

Circuit A circuit of a matroid is a minimal dependent set (inclusion wise), i.e., for matroid M = (E, I)
C ⊆ E is a circuit iff C /∈ I and {C − x : ∀x ∈ C} are independent sets. It follows that if S ∈ I and
C = S + e is a circuit, C is the only subset of S + e that is a circuit.

Rank Given a matroid M = (E, I), the rank function rM : 2E → N of M is defined as:

rM (S) = max{|I| : I ⊆ S, I ∈ I}
Frequently, we drop the subscript and write r instead of rM . The rank function has the following
properties: 0 ≤ r(S) ≤ |S| and r(S) ≤ r(T ) for S ⊆ T .

Span Given a matroid M = (E, I), the span of S ⊆ E is the set defined as:

span(S) = {e ∈ E : r(S + e) = r(S)}
Clearly, for any S ⊆ E, S ⊆ span(S).

Matroid Polytope Given a matroid M = (E, I), its matroid polytope PM = conv({xs ∈ {0, 1}|E| :
S ∈ I}) is the convex hull of the incidence vectors of the independent sets of M . It can be proved that
the matroid polytope can be described exactly by the following set of linear inequalities:

PM = {x ∈ R|E|+ :
∑
e∈S

xe ≤ r(S),∀S ⊆ E}

Matroid Base Polytope Similarly, given a matroid M = (E, I), its matroid base polytope is de-
fined as is the convex hull of the incidence vectors of the bases of M : PB

M = conv({xs ∈ {0, 1}|E| :
S is a base of M}). Similarly to the case of the matroid polytope, the matroid base polytope can be
described by the following set of linear inequalities:

PB
M = {x ∈ R|E|+ :

∑
e∈S

xe ≤ r(S),∀S ⊆ E and
∑
e∈E

xe = r(E)}
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2 Matroid Intersection

To overcome the limited expressiveness of matroids we introduce matroid intersection, which allows us
to express additional combinatorial optimization problems such as bipartite matching. The algorithm
for optimizing over the intersection of 2 matroids runs in polynomial time, whereas optimizing over
the intersection of 3 or more matroids is NP-hard. We will introduce some related concepts and show
examples of matroid intersection.

Definition 1 (Matroid Intersection) Given two matroids M1 = (E, I1) and M2 = (E, I2) over the
same ground set E, the intersection of the two matroids is defined as M1 ∩M2 = (E, I1 ∩ I2).

Example 1 (Bipartite matching) Given G = (A ∪ B,E ⊆ A × B), the bipartite matching problem
can be formulated as the intersection of two matroids M1, M2 which have E as their ground set and

I1 = {S ⊆ E|∀v ∈ A : |S ∩ δ(v)| ≤ 1}
I2 = {S ⊆ E|∀v ∈ B : |S ∩ δ(v)| ≤ 1}

where δ(v) is the set of all matched edges incident to v. Now, I1 ∩ I2 is the set of all sets of edges that
contain at most one edge incident to each vertex, hence the set of all matchings.

Example 2 (Arborescence) Consider a directed graph G=(V,E); a set T ⊆ E is called an arbores-
cence if:

• T contains no undirected cycle.

• The in-degree of each vertex is at most 1.

We can express arborescences as the edge sets contained in the intersection of two matroids, where E is
the common ground set and:

• I1 is the set of all edges that form a forest, i.e., (E, I1) is a graphic matroid.

• I2 is the set of all edges which contains at most 1 edge in Ev, for all vertices v, where Ev is the
set of incoming edges of v. Since G is directed, the different Ev-s are disjoint, and hence this set
of edges forms a matroid called partition matroid.

3 Matroid Intersection Polytope

The matroid intersection polytope with 2 matroids is:

∑
e∈S

xe ≤ r1(S),∀S ⊆ E∑
e∈S

xe ≤ r2(S),∀S ⊆ E

xe ≥ 0,∀e ∈ E

The polytope for the intersection between 3 or more matroids is not as easy to formulate and will be
covered in the lecture of week 8.

Theorem 2 Given 3 matroids M1, M2 and M3 it is NP -hard to find a maximum cardinality independent
set I1 ∩ I2 ∩ I3

The theorem can be proven by providing a reduction to the Hamiltonian cycle problem which is well
known to be NP-complete.
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4 Matroid Intersection Theorem

Theorem 3 (Matroid Intersection Theorem) For matroids M1 = (E, I1),M2 = (E, I2)

max
I∈I1∩I2

|I| = min
U⊆E

(r1(U) + r2(E\U))

Proof ⇒ (max ≤ min):
To see that max ≤ min for U ⊆ E and I ∈ I1 ∩ I2, we have

|I| = |I ∩ U |+ |I ∩ (E\U)| ≤ r1(U) + r2(E\U)

since I ∩ U is an independent set in I1 and I ∩ (E\U) is an independent set in I2.

⇐ The main goal of this lecture is to prove the other direction.

Note that the matroid intersection theorem generalizes König’s theorem:

maximum matching = max
I∈I1∩I2

|I| = min
U⊆E

(r1(U) + r2(E\U)) = minimum vertex cover

Exercise 1 (a) If A ⊆ B then span(A) ⊆ span(B)

(b) If e ∈ span(A) then span(A+ e) = span(A)

Proof The proof will use the submodularity of the rank function:

r(X) + r(Y ) ≥ r(X ∩ Y ) + r(X ∪ Y )

(a) Suppose that e ∈ span(A), by submodularity with X = A+ e and Y = B
r(A+ e) + r(B) ≥ r((A+ e) ∩B) + r((A+ e) ∪B)
r(A+ e) + r(B) ≥ r((A+ e) ∩B) + r(B + e)
r(A+ e) + r(B) ≥ r(A) + r(B + e)
r(B) ≥ r(B + e) as r(A) = r(A+ e) for e ∈ span(a)
Since r(B) = r(B + e)⇒ e ∈ span(B), e ∈ span(A)⇒ e ∈ span(B) and span(A) ⊆ span(B).

(b) By the previous proof we know that: A ⊆ A+ e⇒ span(A) ⊆ span(A+ e). Take f ∈ span(A+ e);
we need to show that f ∈ span(A). Let X = A+ e and Y = A+ f ; by submodularity of the rank
function we have:
r(A+ e) + r(A+ f) ≥ r(A+ e ∩A+ f) + r(A+ e ∪A+ f)
r(A) + r(A+ f) ≥ r(A) + r(A+ e+ f)
r(A+ f) ≥ r(A+ e+ f)⇒ r(A+ f) = r(A+ e+ f)
But f ∈ span(A+ e) and e ∈ span(A) so r(A+ f) = r(A) and f ∈ span(A). Note that we also get:
span(span(A)) = span(A)

Exercise 2 Consider the graph G with a k-coloring, i.e., the edge set E is partitioned into (disjoint)
color classes E1 ∪ E2 ∪ ... ∪ Ek. Formulate the question, whether there exists a colorful spanning tree
(i.e., a spanning tree with edges of different colors), as a matroid intersection problem.
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Solution One matroid M1 can obviously be specified as the graphic matroid which defines an acyclic
subgraph in a graph. The second matroid M2 can be considered to be the partition matroid which
partitions the colorful edges such that only one edge of each color can be picked.

5 Strong Basis Exchange Property

The following is a well-known fact concerning matroids, often called the Strong Basis Exchange Property:

Lemma 4 Given a matroid M = (E, I), for any two bases B,B′, ∀x ∈ B\B′,∃y ∈ B′\B, s.t. B−x+y
and B′ − y + x are independent and thus new bases.

Proof Consider x ∈ B\B′. Since B′ is a base and B′ + x is dependent, there is a unique circuit
C ⊆ B′ + x. We have x ∈ span(C − x) ⇒ x ∈ span((B ∪ C) − x). As seen in the previous exercise
span((B ∪ C) − x) = span(B ∪ C) = E (because B is a base of E). Hence we have a new base B′′ ⊆
(B ∪ C)− x because the rank of a set containing a base equals the cardinality of a base.
B − x and B′′ are independent with |B′′| > |B − x| ⇒ ∃y ∈ B′′\(B − x) s.t. B − x+ y ∈ I
However B′′\(B − x) ⊆ (B ∪ C − x)\(B − x) ⊆ C − x and y ∈ C − x
So both x, y ∈ C and therefore B′ + x− y ∈ I.

For example, the above implies we can switch 2 edges between 2 spanning trees over the same graph
and obtain 2 new spanning trees. The Strong Basis Exchange Property will be used to design an
algorithm which finds a maximum cardinality set in the intersection of two matroids.

6 Exchange Graph

A key object in the algorithm for finding a maximum cardinality set in the intersection of two matroids
is the so-called exchange graph:

Definition 5 Given a matroid M = (E, I) and an independent set I ∈ I, the exchange graph DM (I)
is a bipartite graph with left hand side I, right hand side E\I and an edge (y, x) from y ∈ I to x ∈
E\I if I − y + x ∈ I.

Example 3 A graphic matroid with the exchange graph D({e1, e2, e3}).

e1
e2

e3

e4

e5 e6

e1

e2

e3

e4

e5

e6

Next, we will prove a couple of properties that we will use in the design of the matroid intersection
algorithm.

Lemma 6 Let I, J ∈ I s.t. |I| = |J |
Then there is a perfect matching between I\J and J\I in DM (I)

Proof We define a truncated matroid M ′ = (S, I ′ = {I ′ ∈ I : |I ′| ≤ |I|}); then I and J are bases in
M ′. We take x ∈ J\I; by the strong basis exchange lemma there exists y ∈ I\J s.t. J − x+ y ∈ I and
I − y + x ∈ I are bases in M ′, which implies that (y, x) is an edge in DM (I).

We ”match” y with x and replace I, J with I, J − x+ y and proceed inductively. As I\J decreases
in each step we will eventually end up with a perfect matching. (Note that |I\J | = |I\(J − x+ y)|+ 1)
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Example

I = {e1, e2, e3}, J = {e4, e5, e6}
The proof algorithm could develop as follows:
- select e4 and match it to e1 then update J to be {e1, e5, e6}
- select e5 and match it to e2 then update J to be {e1, e2, e6}
- finally select e6 and match it to e3.
Remark: The converse of the above lemma does not hold in general!

Lemma 7 Let I ∈ I with exchange graph DM (I). Let J be a set with |J | = |I| s.t. DM (I) has a unique
matching between I\J and J\I; then J ∈ I.

Proof Let N be a unique matching. Orient the edges of N from E\I to I (left to right) and the other
edges are oriented from I to E\I (right to left). Now, the graph is acyclic, otherwise the matching would
not be unique (i.e., switch matched edges on the alternating cycle) hence we can topologically sort the
vertices.

We number the edges N = {(y1, x1), ..., (yt, xt)} s.t. there is no edge (yi, xj) with j > i. We suppose
toward contradiction that J /∈ I (not independent) and let C be a circuit of J . We take the smallest
index i s.t. xi ∈ C; then there is no edge (yi, x)∀x ∈ C − xi due to the ordering we performed (yi
must exist by construction). This mean that I − yi + x /∈ I ⇒ x ∈ span(I − xi),∀x ∈ C − xi hence
C − xi ⊆ (I − yi). Now, span(C − xi) ⊆ span(span(I − yi)) = span(I − yi), but C is a circuit and
hence xi ∈ span(C − xi) ⇒ xi ∈ span(I − yi) with rank r(C − xi) = |C − xi| = |C| − 1. This implies
I − yi + xi /∈ I contradicting that there was an edge (yi, xi).

7 ”Augmenting path” Matroid Intersection Algorithm

The Matroid Intersection Algorithm has the following main procedure: Given I ∈ I1 ∩ I2 the algorithm
produces J ∈ I1 ∩ I2 s.t. |J | = |I|+ 1, or it gives a certificate that I is an independent set of maximum
cardinality in |I1 ∩ I2| by exhibiting a set U ⊆ E s.t. |I| = r1(U) + r2(E\U).

In order to fully define the Matroid Intersection Algorithm, we need to define its exchange graph:

Definition 8 (Matroid Intersection Exchange Graph) For I ∈ I1∩I2, the exchange graph DM1,M2(I)
is the directed bipartite graph with left hand side I and right hand side E\I with edges (y, x) if I−y+x ∈
I1 and edges (x, y) if I − y + x ∈ I2.

I E \ I

y x

y′ x′
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Remark DM1,M2
is the union of DM1

(I) and the reverse of DM2
(I)

The algorithm for finding a maximum cardinality independent set in the intersection of two matroids
works as follows: it is an iterative algorithm, and at every iteration we have a tentative independent set
I in the intersection of I1 and I2 (in the absence of an initial one, finding a set of cardinality 1 is easy).
The algorithm repeats the following:

• Given I, construct DM1,M2
(I). Let X1 = {e ∈ E\I : I + e ∈ I1}, X2 = {e ∈ E\I : I + e ∈ I2}.

Try to find a shortest path P from X1 to X2 in DM1,M2
(I), which can be found (if it exists) by

considering X1 and X2 as two nodes in the exchange graph (i.e., collapse them into two nodes)
and applying breadth-first search unto the resulting graph, starting from X1.

• If there is such a shortest path P , set I ′ = I 4 V (P ) and iterate.

• Otherwise, if there is no such path between X1 and X2, output I.

7.1 Optimality

In order to prove that the algorithm returns a maximum cardinality independent set in the intersection
of the two matroids, we have to prove that:

• If we find a shortest path between X1 and X2, I ′ ∈ I1 ∩ I2.

• If there is no such path, then I is a maximum cardinality set in I1 ∩ I2.

We proceed to prove the above:

Lemma 9 If no X1−X2 path in DM1,M2
(I) then I is a maximum cardinality independent set of I1∩I2.

Proof Note that if X1 = ∅ then I is base of M1 and hence optimal. The same applies to M2 so we
assume X1 6= ∅ 6= X2.

Let U be those nodes that can reach a vertex in x2 in DM1,M2
(I). The existence of no X1−X2 path

implies that X2 ⊆ U,X1 ∩ U = ∅, δ−(U) = ∅.

I E \ I

X1

X2

U

y

x

Claim 10 r1(U) ≤ |I ∩ U |.
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Proof If r1(U) > |I ∩U |, ∃x ∈ U\(I ∩U) s.t. (I ∩U) + x ∈ I1. Note that I + x /∈ I1 since x ∈ U and
X1 = ∅. Since (I ∩ U) + x ∈ I1 but I + x 6∈ I1, there must exist a y ∈ I\U s.t. I − y + x ∈ I1. Then
(y, x) would be an edge in DM1,M2

(I) which contradicts δ−(U) = ∅ (c.f. figure).

Claim 11 r2(E\U) ≤ |I\U |.

Proof If r2(E\U) > |I\U | then ∃x ∈ (E\U)\(I\U) s.t. I\U + x ∈ I2 but then ∃y ∈ I ∩ U s.t.
I − y + x ∈ I2. This would result in (x, y) being an arc in DM1,M2 contradicting that x /∈ U .

Thus |I| = |I∩U |+|I\U | ≥ r1(U)+r2(E\U), and therefore I is the maximum cardinality independent
set in I1 ∩ I2 with |I| = r1(U) + r2(E\U).

The above lemma also implies the Matroid Intersection Theorem, since it establishes that whenever
we cannot find an augmenting path, we can assert that |I| = r1(U) + r2(E\U):
Proof of ⇐ of matroid intersection theorem:

Finally we have: |I| = |I ∩ U |+ |I\U | ≥ r1(U) + r2(E\U).
Combined with the other direction proved earlier we finally have: |I| = |I ∩ U | + |I\U | = r1(U) +

r2(E\U).

I E \ I

y1 x0

y2 x1

yt xt

Lemma 12 If P is a shortest path X1 −X2 in DM1,M2 then I ′ = I∆V (P ) is in I1 ∩ I2.

Proof Let P = x0, y1, x1, ...yt, xt be the shortest path from X1 to X2. Let J = {x1, .., xt} ∪
(I\{y1, ..., yt}); we have J ⊆ E, |J | = |I| s.t. the arcs from both paths form a unique matching from I\J
to J\I i.e., from {y1, ..., yt} to {x1, ..., xt}since otherwise P would have a shortcut and would not be a
shortest path. Hence, by Lemma 6 J ∈ I1.

Now, xi /∈ X1 for i ≥ 1, otherwise the path P would be longer than the shortest X1 − X2 path.
This means that I + xi /∈ I1 → r1(I ∪ J) = r1(I) = r1(J) = |I| = |J |, so @x ∈ I\J s.t. J + x
would be independent; however I + x0 is independent and |I + x0| = |J | + 1 hence J + x0 ∈ I1 and
I ′ = (I\{y1, ..., yt}) ∪ {x0, ..., xt} ∈ I1. Finally, by symmetry I ′ ∈ I2.

Running Time With r = max(r1(E), r2(E)) we construct DM1,M2
in O(rn) calls to the oracle. The

augmenting path can be found in time O(rn) which we have to do at most r times before we obtain an
independent set. Thus the algorithm runs in O(r2n) time.
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