Sparse Fourier Transform (lecture 1)

Michael Kapralov ${ }^{1}$

${ }^{1}$ IBM Watson
MADALGO'15

Given $x \in \mathbb{C}^{n}$, compute the Discrete Fourier Transform (DFT) of x :

$$
\widehat{x}_{i}=\frac{1}{n} \sum_{j \in[n]} x_{j} \cdot \omega^{-i j},
$$

where $\omega=e^{2 \pi i / n}$ is the n-th root of unity.

Given $x \in \mathbb{C}^{n}$, compute the Discrete Fourier Transform (DFT) of x :

$$
\widehat{x}_{i}=\frac{1}{n} \sum_{j \in[n]} x_{j} \cdot \omega^{-i j},
$$

where $\omega=e^{2 \pi i / n}$ is the n-th root of unity.

Assume that n is a power of 2 .

Given $x \in \mathbb{C}^{n}$, compute the Discrete Fourier Transform (DFT) of x :

$$
\widehat{x}_{i}=\frac{1}{n} \sum_{j \in[n]} x_{j} \cdot \omega^{-i j},
$$

where $\omega=e^{2 \pi i / n}$ is the n-th root of unity.
Assume that n is a power of 2 .

DFT has numerous applications:

Fast Fourier Transform (FFT)

Computes Discrete Fourier Transform (DFT) of a length n signal in $O(n \log n)$ time

Fast Fourier Transform (FFT)

Computes Discrete Fourier Transform (DFT) of a length n signal in $O(n \log n)$ time

Cooley and Tukey, 1964

Fast Fourier Transform (FFT)

Computes Discrete Fourier Transform (DFT) of a length n signal in $O(n \log n)$ time

Cooley and Tukey, 1964

Gauss, 1805

Fast Fourier Transform (FFT)

Computes Discrete Fourier Transform (DFT) of a length n signal in $O(n \log n)$ time

Cooley and Tukey, 1964

Gauss, 1805

Code=FFTw (Fastest Fourier Transform in the West)

Sparse FFT

Say that \widehat{x} is k-sparse if \widehat{x} has k nonzero entries

Sparse FFT

Say that \widehat{x} is k-sparse if \widehat{x} has k nonzero entries
Say that \widehat{x} is approximately k-sparse if \hat{x} is close to k-sparse in some norm (ℓ_{2} for this lecture)

Sparse approximations

Given x, compute \widehat{x}, then keep top k coefficients only for $k \ll N$
Used in image and video compression schemes (e.g. JPEG, MPEG)

Sparse approximations

Given x, compute \hat{x}, then keep top k coefficients only for $k \ll N$
Used in image and video compression schemes (e.g. JPEG, MPEG)

Computing approximation fast

Basic approach:

- FFT computes \hat{x} from x in $O(n \log n)$ time
- compute top k coefficients in $O(n)$ time.

Computing approximation fast

Basic approach:

- FFT computes \hat{x} from x in $O(n \log n)$ time
- compute top k coefficients in $O(n)$ time.

Sparse FFT:

- directly computes k largest coefficients of \hat{x} (approximately - formal def later)
- Running time $O\left(k \log ^{2} n\right)$ or faster
- Sublinear time!

Sample complexity

Besides runtime, other efficiency measures are important in some settings

In medical imaging (MRI, NMR), one measures Fourier coefficients \widehat{x} of imaged object x (which is often sparse)

Sample complexity

Besides runtime, other efficiency measures are important in some settings

In medical imaging (MRI, NMR), one measures Fourier coefficients \widehat{x} of imaged object x (which is often sparse)

Sample complexity

Sample complexity=number of samples accessed in time domain.
Governs the measurement complexity of imaging process.
Measure $\widehat{x} \in \mathbb{C}^{n}$, compute the Inverse Discrete Fourier Transform (IDFT) of \widehat{x} :

$$
x_{i}=\sum_{j \in[n]} \widehat{x}_{j} \cdot \omega^{i j} .
$$

Sample complexity

Sample complexity=number of samples accessed in time domain.
Governs the measurement complexity of imaging process.
Measure $\widehat{x} \in \mathbb{C}^{n}$, compute the Inverse Discrete Fourier Transform (IDFT) of \hat{x} :

$$
x_{i}=\sum_{j \in[n]} \widehat{x}_{j} \cdot \omega^{i j} .
$$

Given $x \in \mathbb{C}^{n}$, compute the Discrete Fourier Transform (DFT) of x :

$$
\widehat{x}_{i}=\frac{1}{n} \sum_{j \in[n]} x_{j} \cdot \omega^{-i j}
$$

Sample complexity

Sample complexity=number of samples accessed in time domain.
Governs the measurement complexity of imaging process.
Measure $\hat{x} \in \mathbb{C}^{n}$, compute the Inverse Discrete Fourier Transform (IDFT) of \widehat{x} :

$$
x_{i}=\sum_{j \in[n]} \widehat{x}_{j} \cdot \omega^{i j} .
$$

Given $x \in \mathbb{C}^{n}$, compute the Discrete Fourier Transform (DFT) of x :

$$
\widehat{x}_{i}=\frac{1}{n} \sum_{j \in[n]} x_{j} \cdot \omega^{-i j}
$$

Given access to signal x in time domain, find best k-sparse approximation to \hat{x} approximately

Minimize

1. runtime
2. number of samples

Algorithms

- Randomization
- Approximation
- Hashing
- Sketching
...

Signal processing

- Fourier transform
- Hadamard transform
- Filters
- Compressive sensing
- ...
- Lecture 1: summary of techniques from

Gilbert-Guha-Indyk-Muthukrishnan-Strauss'02, Akavia-Goldwasser-Safra'03, Gilbert-Muthukrishnan-Strauss'05, Iwen'10, Akavia'10, Hassanieh-Indyk-Katabi-Price'12a, Hassanieh-Indyk-Katabi-Price'12b

- Lecture 2: Algorithm with $O\left(k \log ^{2} n\right)$ runtime Hassanieh-Indyk-Katabi-Price'12b
- Lecture 3: Algorithm with $O(k \log n)$ sample complexity Indyk-K.-Price'14, Indyk-K.'14

Outline

1. Computing Fourier transform of 1 -sparse signals fast
2. Sparsity $k>1$: main ideas and challenges

Outline

1. Computing Fourier transform of 1-sparse signals fast
2. Sparsity $k>1$: main ideas and challenges

Sparse Fourier Transform ($k=1$)

Warmup: \widehat{x} is exactly 1 -sparse: $\widehat{x}_{f}=0$ when $f \neq f^{*}$ for some f^{*}

Note: signal is a pure frequency
Given: access to x
Need: find f^{*} and $\widehat{x}_{f^{*}}$

Two-point sampling

Input signal x is a pure frequency, so $x_{j}=\mathbf{a} \cdot \omega^{f^{*} \cdot j}$

Sample x_{0}, x_{1}

Two-point sampling

Input signal x is a pure frequency, so $x_{j}=\mathbf{a} \cdot \omega^{f^{*} \cdot j}$
Sample x_{0}, x_{1}

$$
x_{1}=\mathbf{a} \cdot \omega^{f^{*}}
$$

We have

$$
\begin{aligned}
& x_{0}=\mathbf{a} \\
& x_{1}=\mathbf{a} \cdot \omega^{f^{*}}
\end{aligned}
$$

Two-point sampling

Input signal x is a pure frequency, so $x_{j}=\mathbf{a} \cdot \omega^{f^{*} \cdot j}$
Sample x_{0}, x_{1}

$$
x_{1}=\mathbf{a} \cdot \omega^{f^{*}}
$$

We have

$$
\begin{aligned}
x_{0} & =\mathbf{a} \\
x_{1} & =\mathbf{a} \cdot \omega^{f^{*}}
\end{aligned}
$$

So

$$
x_{1} / x_{0}=\omega^{f^{*}}
$$

Two-point sampling

Input signal x is a pure frequency, so $x_{j}=\mathbf{a} \cdot \omega^{f^{*} \cdot j}$
Sample x_{0}, x_{1}
We have

$$
\begin{aligned}
& x_{0}=\mathbf{a} \\
& x_{1}=\mathbf{a} \cdot \omega^{f^{*}}
\end{aligned}
$$

So

$$
x_{1} / x_{0}=\omega^{f^{*}}
$$

Can read frequency from the angle!

$$
x_{1}=\mathbf{a} \cdot \omega^{f^{*}}
$$

Two-point sampling

Input signal x is a pure frequency, so $x_{j}=\mathbf{a} \cdot \omega^{f^{*} \cdot j}$
Sample x_{0}, x_{1}
We have

$$
\begin{aligned}
& x_{0}=\mathbf{a} \\
& x_{1}=\mathbf{a} \cdot \omega^{f^{*}}
\end{aligned}
$$

So

$$
x_{1} / x_{0}=\omega^{f^{*}}
$$

Can read frequency from the angle!

$$
x_{1}=\mathbf{a} \cdot \omega^{f^{*}}
$$

Pro: constant time algorithm
Con: depends heavily on the sianal being pure

Two-point sampling

$$
\text { Input signal } x \text { is a pure frequency+noise, so } x_{j}=\mathbf{a} \cdot \omega^{f^{*} \cdot j}+\text { noise }
$$

Sample x_{0}, x_{1}

$$
x_{1}=\mathbf{a} \cdot \omega^{f^{*}}
$$

We have

$$
\begin{aligned}
& x_{0}=\mathbf{a}+\text { noise } \\
& x_{1}=\mathbf{a} \cdot \omega^{f^{*}}+\text { noise }
\end{aligned}
$$

So

$$
x_{1} / x_{0}=\omega^{f^{*}}+\text { noise }
$$

Can read frequency from the angle!

Two-point sampling

Input signal x is a pure frequency+noise, so $x_{j}=\mathbf{a} \cdot \omega^{f^{*} \cdot j}+$ noise

Sample x_{0}, x_{1}
We have

$$
\begin{aligned}
& x_{0}=\mathbf{a}+\text { noise } \\
& x_{1}=\mathbf{a} \cdot \omega^{f^{*}}+\text { noise }
\end{aligned}
$$

So

$$
x_{1} / x_{0}=\omega^{f^{*}}+\text { noise }
$$

Can read frequency from the angle!

Two-point sampling

Input signal x is a pure frequency+noise, so $x_{j}=\mathbf{a} \cdot \omega^{f^{*} \cdot j}+$ noise

Sample x_{0}, x_{1}
We have

$$
\begin{aligned}
& x_{0}=\mathbf{a}+\text { noise } \\
& x_{1}=\mathbf{a} \cdot \omega^{f^{*}}+\text { noise }
\end{aligned}
$$

So

$$
x_{1} / x_{0}=\omega^{f^{*}}+\text { noise }
$$

Can read frequency from the angle!

Pro: constant time algorithm
Con: depends heavily on the signal being pure

Sparse Fourier Transform ($k=1$)

Warmup - part 2: \widehat{x} is 1 -sparse plus noise

Note: signal is a pure frequency plus noise
Given: access to x
Need: find f^{*} and $\widehat{x}_{f^{*}}$

Sparse Fourier Transform ($k=1$)

Warmup - part 2: \widehat{x} is 1 -sparse plus noise

Note: signal is a pure frequency plus noise
Given: access to x
Need: find f^{*} and $\widehat{x}_{f^{*}}$

Sparse Fourier Transform ($k=1$)

Warmup - part 2: \widehat{x} is 1 -sparse plus noise

Note: signal is a pure frequency plus noise
Given: access to x
Need: find f^{*} and $\widehat{x}_{f^{*}}$

What if \hat{x} is not 1 -sparse?

Ideally, find 1 -sparse $\widehat{x}_{\text {OPT }}$ containing largest frequency of \widehat{x}
Need to allow approximation: find \hat{y} such that

$$
\|\widehat{x}-\widehat{y}\|_{2} \leq C \cdot\left\|\widehat{x}-\widehat{x}_{\text {OPT }}\right\|_{2}
$$

where $C>1$ is the approximation factor.
(This is the ℓ_{2} / ℓ_{2} guarantee)

What if \hat{x} is not 1 -sparse?

Ideally, find 1 -sparse $\widehat{x}_{O P T}$ containing largest frequency of \widehat{x}
Need to allow approximation: find \widehat{y} such that

$$
\|\widehat{x}-\widehat{y}\|_{2} \leq(1+\varepsilon) \cdot\left\|\widehat{x}-\widehat{x}_{O P T}\right\|_{2}
$$

(This is the ℓ_{2} / ℓ_{2} guarantee)

Approximation guarantee

Find \hat{y} such that

$$
\|\widehat{x}-\hat{y}\|_{2} \leq C\left\|\widehat{x}-\widehat{x}_{\text {OPT }}\right\|_{2}
$$

Approximation guarantee

Find \hat{y} such that

$$
\|\widehat{x}-\hat{y}\|_{2} \leq C\left\|\widehat{x}-\widehat{x}_{\text {OPT }}\right\|_{2}
$$

Approximation guarantee

Find \hat{y} such that

$$
\|\widehat{x}-\widehat{y}\|_{2} \leq C\left\|\widehat{x}-\widehat{x}_{O P T}\right\|_{2}
$$

Note: only meaningful if

$$
\|\widehat{x}-\widehat{y}\|_{2}>C\left\|\widehat{x}-\widehat{x}_{O P T}\right\|_{2}
$$

or, equivalently,

$$
\sum_{f \neq f^{*}}\left|\widehat{x}_{f}\right|^{2} \leq \varepsilon|\mathbf{a}|^{2}
$$

Approximation guarantee

Find \hat{y} such that

$$
\|\widehat{x}-\widehat{y}\|_{2} \leq C\left\|\widehat{x}-\widehat{x}_{O P T}\right\|_{2}
$$

Note: only meaningful if

$$
\|\widehat{x}-\widehat{y}\|_{2}>C\left\|\widehat{x}-\widehat{x}_{\text {OPT }}\right\|_{2}
$$

or, equivalently,

$$
\sum_{f \neq f^{*}}\left|\widehat{x}_{f}\right|^{2} \leq \varepsilon|\mathbf{a}|^{2} \quad \text { (assume this for the lecture) }
$$

Approximation guarantee

Find \hat{y} such that

$$
\|\widehat{x}-\hat{y}\|_{2} \leq C\left\|\widehat{x}-\widehat{x}_{\text {OPT }}\right\|_{2}
$$

Note: only meaningful if

$$
\|\hat{x}-\hat{y}\|_{2}>C\left\|\hat{x}-\hat{x}_{\text {OPT }}\right\|_{2}
$$

or, equivalently,

$$
\sum_{f \neq f^{*}}\left|\widehat{X}_{f}\right|^{2} \leq \varepsilon \mid \mathbf{a}^{2} \quad \text { (assume this for the lecture) }
$$

Approximation guarantee

Find \hat{y} such that

$$
\|\widehat{x}-\widehat{y}\|_{2} \leq C\left\|\widehat{x}-\widehat{x}_{O P T}\right\|_{2}
$$

Note: only meaningful if

$$
\|\widehat{x}-\widehat{y}\|_{2}>C\left\|\widehat{x}-\widehat{x}_{\text {OPT }}\right\|_{2}
$$

or, equivalently,

$$
\sum_{f \neq f^{*}}\left|\widehat{x}_{f}\right|^{2} \leq \varepsilon|\mathbf{a}|^{2} \quad \text { (assume this for the lecture) }
$$

A robust algorithm for finding the heavy hitter

Describe algorithm for the noiseless case first ($\varepsilon=0$)
Suppose that $x_{j}=\mathbf{a} \cdot \omega^{\tau^{*} \cdot j}$.

A robust algorithm for finding the heavy hitter

Describe algorithm for the noiseless case first $(\varepsilon=0)$
Suppose that $x_{j}=\mathbf{a} \cdot \omega^{f^{*} \cdot j}$.
Will find f^{*} bit by bit (binary search).

Bit 0

Suppose that $f^{*}=2 f+b$, we want b
Compute

- $x_{0}=\mathbf{a}$
- $x_{n / 2}=\mathbf{a} \cdot \omega^{f^{*} \cdot(n / 2)}$

Claim
For all $r \in[n]$ we have

$$
x_{n / 2}=x_{0} \cdot(-1)^{b}
$$

(Even frequencies are n/2-periodic, odd are n/2-antiperiodic)
Proof.

$$
x_{n / 2}=\mathbf{a} \cdot \omega^{f^{*}(n / 2)}=\mathbf{a} \cdot(-1)^{2 f+b}=x_{0} \cdot(-1)^{b}
$$

Bit 0

Suppose that $f^{*}=2 f+b$, we want b
Compute

- $x_{0+\mathbf{r}}=\mathbf{a} \cdot \omega^{\mathbf{f}^{*} \mathbf{r}}$
- $x_{n / 2+\mathbf{r}}=\mathbf{a} \cdot \omega^{f^{*}(n / 2+\mathbf{r})}$

Claim
For all $r \in[n]$ we have

$$
x_{n / 2+r}=x_{0+r} \cdot(-1)^{b}
$$

(Even frequencies are n/2-periodic, odd are n/2-antiperiodic)
Proof.

$$
x_{n / 2+r}=\mathbf{a} \cdot \omega^{f^{*}(n / 2+\mathbf{r})}=\mathbf{a} \cdot \omega^{\mathbf{f}^{*} r} \cdot(-1)^{2 f+b}=x_{0+r} \cdot(-1)^{b}
$$

Bit 0

Suppose that $f^{*}=2 f+b$, we want b
Compute

- $X_{r}=\mathbf{a} \cdot \omega^{\mathbf{f}^{*} \mathbf{r}}$
- $x_{n / 2+\mathbf{r}}=\mathbf{a} \cdot \omega^{f^{*}(n / 2+\mathbf{r})}$

Claim
For all $r \in[n]$ we have

$$
x_{n / 2+r}=x_{r} \cdot(-1)^{b}
$$

(Even frequencies are n/2-periodic, odd are n/2-antiperiodic)
Proof.

$$
x_{n / 2+r}=\mathbf{a} \cdot \omega^{f^{*}(n / 2+r)}=\mathbf{a} \cdot \omega^{\mathbf{f}^{*} \mathbf{r}} \cdot(-1)^{2 f+b}=x_{r} \cdot(-1)^{b}
$$

Bit 0

Suppose that $f^{*}=2 f+b$, we want b
Compute

- $X_{\mathrm{r}}=\mathbf{a} \cdot \omega^{\mathbf{f}^{*} \mathbf{r}}$
- $x_{n / 2+\mathbf{r}}=\mathbf{a} \cdot \omega^{f^{*}(n / 2+\mathbf{r})}$

Claim
For all $r \in[n]$ we have

$$
x_{n / 2+r}=x_{r} \cdot(-1)^{b}
$$

(Even frequencies are n/2-periodic, odd are n/2-antiperiodic)
Proof.

$$
x_{n / 2+r}=\mathbf{a} \cdot \omega^{f^{*}(n / 2+\mathbf{r})}=\mathbf{a} \cdot \omega^{\mathbf{f}^{* r}} \cdot(-1)^{2 f+b}=x_{\mathrm{r}} \cdot(-1)^{b}
$$

Will need arbitrary r's for the noisy setting

Bit 0 test

Set

$$
\begin{aligned}
& b_{0} \leftarrow 0 \text { if }\left|x_{n / 2+r}+x_{r}\right|>\left|x_{n / 2+r}-x_{r}\right| \\
& b_{0} \leftarrow 1 \text { o.w. }
\end{aligned}
$$

Bit 0 test

Set

$$
\begin{aligned}
& b_{0} \leftarrow 0 \text { if }\left|x_{n / 2+r}+x_{r}\right|>\left|x_{n / 2+r}-x_{r}\right| \\
& b_{0} \leftarrow 1 \text { o.w. }
\end{aligned}
$$

Correctness:

If $b=0$, then $\left|x_{n / 2+r}+x_{r}\right|=2\left|x_{r}\right|=2|a|$
and $\quad\left|x_{n / 2+r}-x_{r}\right|=0$

Bit 0 test

Set

$$
\begin{aligned}
& b_{0} \leftarrow 0 \text { if }\left|x_{n / 2+r}+x_{r}\right|>\left|x_{n / 2+r}-x_{r}\right| \\
& b_{0} \leftarrow 1 \text { o.w. }
\end{aligned}
$$

Correctness:

If $b=0$, then $\left|x_{n / 2+r}+x_{r}\right|=2\left|x_{r}\right|=2|a|$
and $\quad\left|x_{n / 2+r}-x_{r}\right|=0$
If $b=1$, then $\left|x_{n / 2+r}+x_{r}\right|=0$

$$
\text { and } \quad\left|x_{n / 2+r}-x_{r}\right|=2\left|x_{r}\right|=2|\mathrm{a}|
$$

Bit 1

Can pretend that $b_{0}=0$. Why?
Claim (Time shift theorem)
If $y_{j}=x_{j} \cdot \omega^{j \cdot \Delta}$, then $\widehat{y}_{f}=\widehat{x}_{f-\Delta}$.
Proof.

$$
\begin{aligned}
\widehat{y}_{f} & =\frac{1}{n} \sum_{j \in[n]} y_{j} \cdot \omega^{-f j}=\frac{1}{n} \sum_{j \in[n]} x_{j} \cdot \omega^{j \cdot \Delta} \cdot \omega^{-f j} \\
& =\frac{1}{n} \sum_{j \in[n]} x_{j} \cdot \omega^{-j \cdot(f-\Delta)} \\
& =\widehat{x}_{f-\Delta}
\end{aligned}
$$

Bit 1

Can pretend that $b_{0}=0$. Why?
Claim (Time shift theorem)
If $y_{j}=x_{j} \cdot \omega^{j \cdot \Delta}$, then $\widehat{y}_{f}=\widehat{x}_{f-\Delta}$.
Proof.

$$
\begin{aligned}
\widehat{y}_{f} & =\frac{1}{n} \sum_{j \in[n]} y_{j} \cdot \omega^{-f j}=\frac{1}{n} \sum_{j \in[n]} x_{j} \cdot \omega^{j \cdot \Delta} \cdot \omega^{-f j} \\
& =\frac{1}{n} \sum_{j \in[n]} x_{j} \cdot \omega^{-j \cdot(f-\Delta)} \\
& =\widehat{x}_{f-\Delta}
\end{aligned}
$$

If $b_{0}=1$, then replace x with $y_{j}:=x_{j} \cdot \omega^{j \cdot b}$.

Bit 1

Assume $b_{0}=0$. Then we have $f^{*}=2 f$, so

$$
x_{j}=\mathbf{a} \cdot \omega^{f^{* * j}}=\mathbf{a} \cdot \omega^{2 f \cdot j}=\mathbf{a} \cdot \omega_{N / 2}^{f \cdot j} .
$$

Bit 1

Assume $b_{0}=0$. Then we have $f^{*}=2 f$, so

$$
x_{j}=\mathbf{a} \cdot \omega^{f^{*} j}=\mathbf{a} \cdot \omega^{2 f \cdot j}=\mathbf{a} \cdot \omega_{N / 2}^{f \cdot j} .
$$

Let $\widehat{z}_{j}:=\widehat{x}_{2 j}$, i.e. spectrum of z contains even components of spectrum of \widehat{x}

Bit 1

Assume $b_{0}=0$. Then we have $f^{*}=2 f$, so

$$
x_{j}=\mathbf{a} \cdot \omega^{f^{*} j}=\mathbf{a} \cdot \omega^{2 f \cdot j}=\mathbf{a} \cdot \omega_{N / 2}^{f \cdot j} .
$$

Let $\widehat{z}_{j}:=\widehat{x}_{2 j}$, i.e. spectrum of z contains even components of spectrum of \widehat{x}

Then

- $\left(x_{0}, \ldots, x_{N / 2-1}\right)=\left(z_{0}, \ldots, z_{N / 2-1}\right)$ are time samples of z_{j}; and
- $\widehat{z}_{f}=\mathbf{a}$ is the heavy hitter in z.

Bit 1

Assume $b_{0}=0$. Then we have $f^{*}=2 f$, so

$$
x_{j}=\mathbf{a} \cdot \omega^{f^{*} j}=\mathbf{a} \cdot \omega^{2 f \cdot j}=\mathbf{a} \cdot \omega_{N / 2}^{f \cdot j} .
$$

Let $\widehat{z}_{j}:=\widehat{x}_{2 j}$, i.e. spectrum of z contains even components of spectrum of \widehat{x}

Then

- $\left(x_{0}, \ldots, x_{N / 2-1}\right)=\left(z_{0}, \ldots, z_{N / 2-1}\right)$ are time samples of z_{j}; and
- $\widehat{z}_{f}=\mathbf{a}$ is the heavy hitter in z.

So by previous derivation $z_{N / 4+r}=z_{r} \cdot(-1)^{b_{1}}$
And hence

$$
x_{n / 4+r} \omega^{(n / 4+r) b_{0}}=x_{r} \omega^{r \cdot b_{0}} \cdot(-1)^{b_{1}}
$$

Bit 1

Assume $b_{0}=0$. Then we have $f^{*}=2 f$, so

$$
x_{j}=\mathbf{a} \cdot \omega^{f^{*} j}=\mathbf{a} \cdot \omega^{2 f \cdot j}=\mathbf{a} \cdot \omega_{N / 2}^{f \cdot j} .
$$

Let $\widehat{z}_{j}:=\widehat{x}_{2 j}$, i.e. spectrum of z contains even components of spectrum of \widehat{x}

Then

- $\left(x_{0}, \ldots, x_{N / 2-1}\right)=\left(z_{0}, \ldots, z_{N / 2-1}\right)$ are time samples of z_{j}; and
- $\widehat{z}_{f}=\mathbf{a}$ is the heavy hitter in z.

So by previous derivation $z_{N / 4+r}=z_{r} \cdot(-1)^{b_{1}}$
And hence

$$
x_{n / 4+r} \omega^{(n / 4) b_{0}}=x_{r} \cdot(-1)^{b_{1}}
$$

Decoding bit by bit

Set $\quad b_{0} \leftarrow 0$ if $\left|x_{n / 2+r}+x_{r}\right|>\left|x_{n / 2+r}-x_{r}\right|$ $b_{0} \leftarrow 1$ o.w.

Decoding bit by bit

Set

$$
\begin{aligned}
& b_{0} \leftarrow 0 \text { if }\left|x_{n / 2+r}+x_{r}\right|>\left|x_{n / 2+r}-x_{r}\right| \\
& b_{0} \leftarrow 1 \text { o.w. }
\end{aligned}
$$

Set $\quad b_{1} \leftarrow 0$ if $\left|\omega^{(n / 4) b_{0}} x_{n / 4+r}+x_{r}\right|>\left|\omega^{(n / 4) b_{0}} x_{n / 4+r}-x_{r}\right|$

$$
b_{1} \leftarrow 1 \text { o.w. }
$$

Decoding bit by bit

Set $\quad b_{0} \leftarrow 0$ if $\left|x_{n / 2+r}+x_{r}\right|>\left|x_{n / 2+r}-x_{r}\right|$
$b_{0} \leftarrow 1$ o.w.
Set $\quad b_{1} \leftarrow 0$ if $\left|\omega^{(n / 4) b_{0}} x_{n / 4+r}+x_{r}\right|>\left|\omega^{(n / 4) b_{0}} x_{n / 4+r}-x_{r}\right|$
$b_{1} \leftarrow 1$ o.w.
$\ldots\left|\omega^{(n / 8)\left(2 b_{1}+b_{0}\right)} x_{n / 8+r}+x_{r}\right|>\left|\omega^{(n / 8)\left(2 b_{1}+b_{0}\right)} x_{n / 8+r}-x_{r}\right| \ldots$

Decoding bit by bit

Set $\quad b_{0} \leftarrow 0$ if $\left|x_{n / 2+r}+x_{r}\right|>\left|x_{n / 2+r}-x_{r}\right|$

$$
b_{0} \leftarrow 1 \text { o.w. }
$$

Set $\quad b_{1} \leftarrow 0$ if $\left|\omega^{(n / 4) b_{0}} x_{n / 4+r}+x_{r}\right|>\left|\omega^{(n / 4) b_{0}} x_{n / 4+r}-x_{r}\right|$ $b_{1} \leftarrow 1$ o.w.
$\ldots\left|\omega^{(n / 8)\left(2 b_{1}+b_{0}\right)} x_{n / 8+r}+x_{r}\right|>\left|\omega^{(n / 8)\left(2 b_{1}+b_{0}\right)} x_{n / 8+r}-x_{r}\right| \ldots$

Overall: $O(\log n)$ samples to identify f^{*}. Runtime $O(\log n)$

Noisy setting (dealing with ε)

We now have

$$
\begin{aligned}
x_{j} & =\mathbf{a} \cdot \omega^{f^{*} \cdot j}+\sum_{f \neq f^{*}} \widehat{x}_{f} \omega^{f j} \\
& =\mathbf{a} \cdot \omega^{f^{*} \cdot j}+\mu_{j} \quad\left(\mu_{j} \text { is the noise in time domain }\right)
\end{aligned}
$$

Argue that μ_{j} is usually small?

Noisy setting (dealing with ε)

We now have

$$
\begin{aligned}
x_{j} & =\mathbf{a} \cdot \omega^{f^{*} \cdot j}+\sum_{f \neq f^{*}} \widehat{x}_{f} \omega^{f j} \\
& =\mathbf{a} \cdot \omega^{f^{*} \cdot j}+\mu_{j} \quad\left(\mu_{j} \text { is the noise in time domain }\right)
\end{aligned}
$$

Argue that μ_{j} is usually small?
Parseval's equality: noise energy in time domain is proportional to noise energy in frequency domain:

$$
\sum_{j=0}^{N-1}\left|\mu_{j}\right|^{2}=n \sum_{f \neq f^{*}}\left|\widehat{x}_{f}\right|^{2}
$$

Noisy setting (dealing with ε)

We now have

$$
\begin{aligned}
x_{j} & =\mathbf{a} \cdot \omega^{f^{*} \cdot j}+\sum_{f \neq f^{*}} \widehat{x}_{f} \omega^{f j} \\
& =\mathbf{a} \cdot \omega^{f^{*} \cdot j}+\mu_{j} \quad\left(\mu_{j} \text { is the noise in time domain }\right)
\end{aligned}
$$

Argue that μ_{j} is usually small?
Parseval's equality: noise energy in time domain is proportional to noise energy in frequency domain:

$$
\sum_{j=0}^{N-1}\left|\mu_{j}\right|^{2}=n \sum_{f \neq f^{*}}\left|\widehat{x}_{f}\right|^{2}
$$

So on average $\left|\mu_{j}\right|^{2}$ is small:

$$
\mathbf{E}_{j}\left[\left|\mu_{j}\right|^{2}\right] \leq \sum_{f \neq f^{*}}\left|\widehat{x}_{f}\right|^{2} \leq \varepsilon|\mathbf{a}|^{2}
$$

Need to ensure that:

1. f^{*} is decoded correctly
2. \mathbf{a} is estimated well enough to satisfy ℓ_{2} / ℓ_{2} guarantees:

$$
\|\widehat{x}-\widehat{y}\|_{2} \leq C \cdot\left\|\widehat{x}-\widehat{x}_{O P T}\right\|_{2}
$$

Decoding in the noisy setting

Bit 0: set $b_{0} \leftarrow 0$ if $\left|x_{n / 2+r}+x_{r}\right|>\left|x_{n / 2+r}-x_{r}\right|$ and $b_{0} \leftarrow 1$ o.w.

Claim
If $\mu_{n / 2+r}<|\mathbf{a}| / 2$ and $\mu_{r}<|\mathbf{a}| / 2$, then outcome of the bit test is the same.

Decoding in the noisy setting

Bit 0: set $b_{0} \leftarrow 0$ if $\left|x_{n / 2+r}+x_{r}\right|>\left|x_{n / 2+r}-x_{r}\right|$ and $b_{0} \leftarrow 1$ o.w.

Claim
If $\mu_{n / 2+r}<|\mathbf{a}| / 2$ and $\mu_{r}<|\mathbf{a}| / 2$, then outcome of the bit test is the same.

Suppose $b_{0}=0$.

Decoding in the noisy setting

Bit 0: set $b_{0} \leftarrow 0$ if $\left|x_{n / 2+r}+x_{r}\right|>\left|x_{n / 2+r}-x_{r}\right|$ and $b_{0} \leftarrow 1$ o.w.

Claim
If $\mu_{n / 2+r}<|\mathbf{a}| / 2$ and $\mu_{r}<|\mathbf{a}| / 2$, then outcome of the bit test is the same.

Suppose $b_{0}=0$.

Then

$$
\left|x_{n / 2+r}+x_{r}\right| \geq 2|\mathbf{a}|-\left|\mu_{n / 2+r}\right|-\left|\mu_{r}\right|>|\mathbf{a}|
$$

Decoding in the noisy setting

Bit 0: set $b_{0} \leftarrow 0$ if $\left|x_{n / 2+r}+x_{r}\right|>\left|x_{n / 2+r}-x_{r}\right|$ and $b_{0} \leftarrow 1$ o.w.

Claim
If $\mu_{n / 2+r}<|\mathbf{a}| / 2$ and $\mu_{r}<|\mathbf{a}| / 2$, then outcome of the bit test is the same.

Suppose $b_{0}=0$.

Then
$\left|x_{n / 2+r}+x_{r}\right| \geq 2|\mathbf{a}|-\left|\mu_{n / 2+r}\right|-\left|\mu_{r}\right|>|\mathbf{a}|$
and

$$
\left|x_{n / 2+r}-x_{r}\right| \leq\left|\mu_{n / 2+r}\right|+\left|\mu_{r}\right|<|\mathbf{a}|
$$

$$
x_{n / 2+r}=\mathbf{a} \cdot \omega^{f^{*} \cdot(n / 2+r)}+\mu_{n / 2+r}
$$

Decoding in the noisy setting

On average $\left|\mu_{j}\right|^{2}$ is small:

$$
\mathbf{E}_{j}\left[\left|\mu_{j}\right|^{2}\right] \leq \sum_{f \neq f^{*}}\left|\widehat{X}_{f}\right|^{2} \leq \varepsilon|\mathbf{a}|^{2}
$$

By Markov's inequality

$$
\operatorname{Pr}_{j}\left[\left|\mu_{j}\right|^{2}>|\mathbf{a}|^{2} / 4\right] \leq \operatorname{Pr}_{j}\left[\left|\mu_{j}\right|^{2}>(1 /(4 \varepsilon)) \cdot \mathbf{E}_{j}\left[\left|\mu_{j}\right|^{2}\right]\right] \leq 4 \varepsilon
$$

Decoding in the noisy setting

On average $\left|\mu_{j}\right|^{2}$ is small:

$$
\mathbf{E}_{j}\left[\left|\mu_{j}\right|^{2}\right] \leq \sum_{f \neq f^{*}}\left|\widehat{X}_{f}\right|^{2} \leq \varepsilon|\mathbf{a}|^{2}
$$

By Markov's inequality

$$
\operatorname{Pr}_{j}\left[\left|\mu_{j}\right|^{2}>|\mathbf{a}|^{2} / 4\right] \leq \operatorname{Pr}_{j}\left[\left|\mu_{j}\right|^{2}>(1 /(4 \varepsilon)) \cdot \mathbf{E}_{j}\left[\left|\mu_{j}\right|^{2}\right]\right] \leq 4 \varepsilon
$$

By a union bound

$$
\mathbf{P r}_{r}\left[\left|\mu_{r}\right| \leq|\mathbf{a}| / 2 \text { and }\left|\mu_{n / 2+r}\right| \leq|\mathbf{a}| / 2\right] \geq 1-8 \varepsilon
$$

Decoding in the noisy setting

On average $\left|\mu_{j}\right|^{2}$ is small:

$$
\mathbf{E}_{j}\left[\left|\mu_{j}\right|^{2}\right] \leq \sum_{f \neq f^{*}}\left|\widehat{X}_{f}\right|^{2} \leq \varepsilon|\mathbf{a}|^{2}
$$

By Markov's inequality

$$
\operatorname{Pr}_{j}\left[\left|\mu_{j}\right|^{2}>|\mathbf{a}|^{2} / 4\right] \leq \operatorname{Pr}_{j}\left[\left|\mu_{j}\right|^{2}>(1 /(4 \varepsilon)) \cdot \mathbf{E}_{j}\left[\left|\mu_{j}\right|^{2}\right]\right] \leq 4 \varepsilon
$$

By a union bound

$$
\mathbf{P r}_{r}\left[\left|\mu_{r}\right| \leq|\mathbf{a}| / 2 \text { and }\left|\mu_{n / 2+r}\right| \leq|\mathbf{a}| / 2\right] \geq 1-8 \varepsilon
$$

Thus, a bit test is correct with probability at least $1-8 \varepsilon$.

Decoding in the noisy setting

Bit 0: set b_{0} to zero if

$$
\left|x_{n / 2+r}+x_{r}\right|>\left|x_{n / 2+r}-x_{r}\right|
$$

and to 1 otherwise

For $\varepsilon<1 / 64$ each test is correct with probability $\geq 3 / 4$.
Final test: perform $T \gg 1$ independent tests, use majority vote.

How large should T be? Success probability?

Decoding in the noisy setting

For $j=1, \ldots, T$ let

$$
Z_{j}=\left\{\begin{array}{cc}
1 & \text { if } j \text {-th test is correct } \\
0 & \text { o.w. }
\end{array}\right.
$$

We have $\mathrm{E}\left[Z_{j}\right] \geq 3 / 4$.

Decoding in the noisy setting

For $j=1, \ldots, T$ let

$$
Z_{j}=\left\{\begin{array}{cc}
1 & \text { if } j \text {-th test is correct } \\
0 & \text { o.w. }
\end{array}\right.
$$

We have $\mathrm{E}\left[Z_{j}\right] \geq 3 / 4$.
Chernoff bounds

$$
\operatorname{Pr}\left[\sum_{j=1}^{T} Z_{j}<T / 2\right]<e^{-\Omega(T)}
$$

Set $T=O(\log \log n)$
Majority is correct with probability at least $1-1 /\left(16 \log _{2} n\right)$
So all bits correct with probability $\geq 15 / 16$

Estimating the value of heavy hitter

 Recall that$$
\left.x_{r}=\mathbf{a} \cdot \omega^{f^{*} \cdot r}+\mu_{r} \quad \text { (noise }\right)
$$

Our estimate: pick random $r \in[n]$ and output

$$
\text { est } \leftarrow \mathbf{x}_{\mathbf{r}} \omega^{-\mathbf{f}^{*} \cdot \mathbf{r}}
$$

Expected squared error?
$\mathbf{E}_{r}\left[\mid\right.$ est $\left.-\left.\mathbf{a}\right|^{2}\right]$

Estimating the value of heavy hitter

 Recall that$$
\left.x_{r}=\mathbf{a} \cdot \omega^{f^{*} \cdot r}+\mu_{r} \quad \text { (noise }\right)
$$

Our estimate: pick random $r \in[n]$ and output

$$
\text { est } \leftarrow \mathbf{X}_{\mathbf{r}} \omega^{-\mathbf{u} \cdot \mathbf{r}}
$$

Expected squared error?

$\mathbf{E}_{r}\left[|e s t-\mathbf{a}|^{2}\right]=\mathbf{E}_{r}\left[\left|x_{r} \omega^{-f^{*} \cdot r}-\mathbf{a}\right|^{2}\right]$

Estimating the value of heavy hitter

 Recall that$$
x_{r}=\mathbf{a} \cdot \omega^{f^{*} \cdot r}+\mu_{r} \quad(\text { noise })
$$

Our estimate: pick random $r \in[n]$ and output

$$
\text { est } \leftarrow \mathbf{X}_{\mathbf{r}} \omega^{-\mathbf{u} \cdot \mathbf{r}}
$$

Expected squared error?

$\mathbf{E}_{r}\left[|e s t-\mathbf{a}|^{2}\right]=\mathbf{E}_{r}\left[\left|x_{r} \omega^{-f^{*} \cdot r}-\mathbf{a}\right|^{2}\right]=\mathbf{E}_{r}\left[\left|x_{r}-\mathbf{a} \cdot \omega^{f^{*} \cdot r}\right|^{2}\right]$

Estimating the value of heavy hitter

Recall that

$$
\left.x_{r}=\mathbf{a} \cdot \omega^{f^{*} \cdot r}+\mu_{r} \quad \text { (noise }\right)
$$

Our estimate: pick random $r \in[n]$ and output

$$
\text { est } \leftarrow \mathbf{x}_{\mathbf{r}} \omega^{-\mathbf{u} \cdot \mathbf{r}}
$$

Expected squared error?

$\mathbf{E}_{r}\left[|e s t-\mathbf{a}|^{2}\right]=\mathbf{E}_{r}\left[\left|x_{r} \omega^{-f^{*} \cdot r}-\mathbf{a}\right|^{2}\right]=\mathbf{E}_{r}\left[\left|x_{r}-\mathbf{a} \cdot \omega^{f^{*} \cdot r^{2}}\right|^{2}\right]=\mathbf{E}_{r}\left[\left|\mu_{r}\right|^{2}\right]$
Now by Markov's inequality

$$
\operatorname{Pr}_{r}\left[|e s t-\mathbf{a}|^{2}>4 \varepsilon|\mathbf{a}|^{2}\right]<1 / 4
$$

Putting it together: algorithm for 1 -sparse signals

Let

$$
\widehat{y}_{f}=\left\{\begin{array}{cc}
\text { est } & \text { if } f=f^{*} \\
0 & \text { o.w. }
\end{array}\right.
$$

By triangle inequality

$$
\begin{aligned}
\|\widehat{y}-\widehat{x}\|_{2} & \leq\left\|\widehat{y}_{f^{*}}-\mathbf{a}\right\|_{2}+\left\|\widehat{y}_{-f^{*}}-\widehat{x}_{-f^{*}}\right\|_{2} \\
& \leq 2 \sqrt{\varepsilon}|\mathbf{a}|+\sqrt{\varepsilon}|\mathbf{a}| \\
& =3| | \widehat{x}-\widehat{x}_{O P T} \|_{2} .
\end{aligned}
$$

Thus, with probability $\geq 2 / 3$ our algorithm satisfies ℓ_{2} / ℓ_{2} guarantee with $C=3$.

Runtime $=O(\log n \log \log n)$

Sample complexity $=O(\log n \log \log n)$

Runtime $=O(\log n \log \log n)$

Sample complexity $=O(\log n \log \log n)$

Ex. 1: reduce sample complexity to $O(\log n)$, keep $O($ poly $(\log n))$ runtime

Ex. 2: reduce sample complexity to $O\left(\log _{1 / \varepsilon} n\right)$

Runtime $=O(\log n \log \log n)$

Sample complexity $=O(\log n \log \log n)$

Ex. 1: reduce sample complexity to $O(\log n)$, keep $O($ poly $(\log n))$ runtime

Ex. 2: reduce sample complexity to $O\left(\log _{1 / \varepsilon} n\right)$
What about $k>1$

Outline

1. Sparsity: definitions, motivation
2. Computing Fourier transform of 1-sparse signals fast
3. Sparsity $k>1$: main ideas and challenges

Sparsity $k>1$

Let $\widehat{x}_{\text {OPT }} \leftarrow$ best k-sparse approximation of \widehat{x}
Our goal: find \hat{y} such that

$$
\|\widehat{x}-\widehat{y}\|_{2} \leq C \cdot\left\|\widehat{x}-\widehat{x}_{\text {OPT }}\right\|_{2}
$$

where $C>1$ is the approximation factor.
(This is the ℓ_{2} / ℓ_{2} guarantee)

Sparsity $k>1$

Main idea: implement hashing to reduce to 1-sparse case:

- 'hash' frequencies into $\approx k$ bins
- run 1-sparse algo on isolated elements

Assumption: can randomly permute frequencies (will remove in next lecture)

Implement hashing? Need to design a bucketing scheme for the frequency domain

Partition frequency domain into $B \approx k$ buckets

Partition frequency domain into $B \approx k$ buckets

Partition frequency domain into $B \approx k$ buckets

For each $j=0, \ldots, B-1$ let

$$
\widehat{u}_{f}^{j}=\left\{\begin{array}{cc}
\widehat{x}_{f}, & \text { if } f \in j \text {-th bucket } \\
0 & \text { o.w. }
\end{array}\right.
$$

Restricted to a bucket, signal is likely approximately 1 -sparse!

Partition frequency domain into $B \approx k$ buckets

For each $j=0, \ldots, B-1$ let

$$
\widehat{u}_{f}^{j}=\left\{\begin{array}{cc}
\widehat{x}_{f}, & \text { if } f \in j \text {-th bucket } \\
0 & \text { o.w. }
\end{array}\right.
$$

Restricted to a bucket, signal is likely approximately 1 -sparse!

Partition frequency domain into $B \approx k$ buckets

For each $j=0, \ldots, B-1$ let

$$
\widehat{u}_{f}^{j}=\left\{\begin{array}{cc}
\widehat{x}_{f}, & \text { if } f \in j \text {-th bucket } \\
0 & \text { o.w. }
\end{array}\right.
$$

Restricted to a bucket, signal is likely approximately 1-sparse!

Partition frequency domain into $B \approx k$ buckets

For each $j=0, \ldots, B-1$ let

$$
\widehat{u}_{f}^{j}=\left\{\begin{array}{cc}
\widehat{x}_{f}, & \text { if } f \in j \text {-th bucket } \\
0 & \text { o.w. }
\end{array}\right.
$$

Restricted to a bucket, signal is likely approximately 1-sparse!

Partition frequency domain into $B \approx k$ buckets

For each $j=0, \ldots, B-1$ let

$$
\widehat{u}_{f}^{j}=\left\{\begin{array}{cc}
\widehat{x}_{f}, & \text { if } f \in j \text {-th bucket } \\
0 & \text { o.w. }
\end{array}\right.
$$

Restricted to a bucket, signal is likely approximately 1 -sparse!

Partition frequency domain into $B \approx k$ buckets

For each $j=0, \ldots, B-1$ let

$$
\widehat{u}_{f}^{j}=\left\{\begin{array}{cc}
\widehat{x}_{f}, & \text { if } f \in j \text {-th bucket } \\
0 & \text { o.w. }
\end{array}\right.
$$

Restricted to a bucket, signal is likely approximately 1-sparse!

Partition frequency domain into $B \approx k$ buckets

For each $j=0, \ldots, B-1$ let

$$
\widehat{u}_{f}^{j}=\left\{\begin{array}{cc}
\widehat{x}_{f}, & \text { if } f \in j \text {-th bucket } \\
0 & \text { o.w. }
\end{array}\right.
$$

Restricted to a bucket, signal is likely approximately 1-sparse!

Partition frequency domain into $B \approx k$ buckets

For each $j=0, \ldots, B-1$ let

$$
\widehat{u}_{f}^{j}=\left\{\begin{array}{cc}
\widehat{x}_{f}, & \text { if } f \in j \text {-th bucket } \\
0 & \text { o.w. }
\end{array}\right.
$$

Restricted to a bucket, signal is likely approximately 1-sparse!

Zero-th bucket signal u^{0} :

$$
\widehat{u}_{f}^{0}=\left\{\begin{array}{cc}
\widehat{x}_{f}, & \text { if } f \in\left[-\frac{n}{2 B}: \frac{n}{2 B}\right] \\
0 & \text { o.w. }
\end{array}\right.
$$

Zero-th bucket signal u^{0} :

$$
\widehat{u}_{f}^{0}=\left\{\begin{array}{cc}
\widehat{x}_{f}, & \text { if } f \in\left[-\frac{n}{2 B}: \frac{n}{2 B}\right] \\
0 & \text { o.w. }
\end{array}\right.
$$

We want time domain access to u^{0} : for any $a=0, \ldots, n-1$, compute

$$
u_{a}^{0}=\sum_{f} \hat{u}_{f}^{0} \cdot \omega^{f \cdot a}
$$

Zero-th bucket signal u^{0} :

$$
\widehat{u}_{f}^{0}=\left\{\begin{array}{cc}
\widehat{x}_{f}, & \text { if } f \in\left[-\frac{n}{2 B}: \frac{n}{2 B}\right] \\
0 & \text { o.w. }
\end{array}\right.
$$

We want time domain access to u^{0} : for any $a=0, \ldots, n-1$, compute

$$
u_{a}^{0}=\sum_{f} \widehat{u}_{f}^{0} \cdot \omega^{f \cdot a}=\sum_{-\frac{n}{2 B} \leq f \leq \frac{n}{2 B}} \widehat{x}_{f} \cdot \omega^{f \cdot a}
$$

Zero-th bucket signal u^{0} :

$$
\widehat{u}_{f}^{0}=\left\{\begin{array}{cc}
\widehat{x}_{f}, & \text { if } f \in\left[-\frac{n}{2 B}: \frac{n}{2 B}\right] \\
0 & \text { o.w. }
\end{array}\right.
$$

We want time domain access to u^{0} : for any $a=0, \ldots, n-1$, compute

$$
u_{a}^{0}=\sum_{f} \widehat{u}_{f}^{0} \cdot \omega^{f \cdot a}=\sum_{-\frac{n}{2 B} \leq f \leq \frac{n}{2 B}} \widehat{x}_{f} \cdot \omega^{f \cdot a}=\sum_{-\frac{n}{2 B} \leq f \leq \frac{n}{2 B}} \widehat{y}_{f},
$$

where $y_{j}=x_{j+a}$ (y is a time shift of x by the time shift theorem).

We want time domain access to u^{0} : for any $a=0, \ldots, n-1$, compute

$$
u_{a}^{0}=\sum_{-\frac{n}{2 B} \leq f \leq \frac{n}{2 B}} \widehat{y}_{f},
$$

where $y_{j}=x_{j+a}(y$ is a time shift of $x)$.

We want time domain access to u^{0} : for any $a=0, \ldots, n-1$, compute

$$
u_{a}^{0}=\sum_{-\frac{n}{2 B} \leq f \leq \frac{n}{2 B}} \widehat{y}_{f},
$$

where $y_{j}=x_{j+a}(y$ is a time shift of $x)$.

Let

$$
\widehat{G}_{f}=\left\{\begin{array}{cc}
1, & \text { if } f \in\left[-\frac{n}{2 B}: \frac{n}{2 B}\right] \\
0 & \text { o.w. }
\end{array}\right.
$$

Then

$$
u_{a}^{0}=\sum_{-\frac{n}{2 B} \leq f \leq \frac{n}{2 B}} \widehat{y}_{f}
$$

We want time domain access to u^{0} : for any $a=0, \ldots, n-1$, compute

$$
u_{a}^{0}=\sum_{-\frac{n}{2 B} \leq f \leq \frac{n}{2 B}} \widehat{y}_{f},
$$

where $y_{j}=x_{j+a}(y$ is a time shift of $x)$.

Let

$$
\widehat{G}_{f}=\left\{\begin{array}{cc}
1, & \text { if } f \in\left[-\frac{n}{2 B}: \frac{n}{2 B}\right] \\
0 & \text { o.w. }
\end{array}\right.
$$

Then

$$
u_{a}^{0}=\sum_{-\frac{n}{2 B} \leq f \leq \frac{n}{2 B}} \widehat{y}_{f}=\sum_{f \in[n]} \widehat{y}_{f} \widehat{G}_{f}
$$

We want time domain access to u^{0} : for any $a=0, \ldots, n-1$, compute

$$
u_{a}^{0}=\sum_{-\frac{n}{2 B} \leq f \leq \frac{n}{2 B}} \widehat{y}_{f},
$$

where $y_{j}=x_{j+a}(y$ is a time shift of $x)$.

Let

$$
\widehat{G}_{f}=\left\{\begin{array}{cc}
1, & \text { if } f \in\left[-\frac{n}{2 B}: \frac{n}{2 B}\right] \\
0 & \text { o.w. }
\end{array}\right.
$$

Then

$$
u_{a}^{0}=\sum_{-\frac{n}{2 B} \leq f \leq \frac{n}{2 B}} \widehat{y}_{f}=\sum_{f \in[n]} \widehat{y}_{f} \widehat{G}_{f}=(\widehat{y} * \widehat{G})(0)
$$

We want time domain access to u^{0} : for any $a=0, \ldots, n-1$, compute

$$
u_{a}^{0}=\sum_{-\frac{n}{2 B} \leq f \leq \frac{n}{2 B}} \widehat{y}_{f},
$$

where $y_{j}=x_{j+a}(y$ is a time shift of $x)$.

Let

$$
\widehat{G}_{f}=\left\{\begin{array}{cc}
1, & \text { if } f \in\left[-\frac{n}{2 B}: \frac{n}{2 B}\right] \\
0 & \text { o.w. }
\end{array}\right.
$$

Then

$$
u_{a}^{0}=\sum_{-\frac{n}{2 B} \leq f \leq \frac{n}{2 B}} \widehat{y}_{f}=\sum_{f \in[n]} \widehat{y}_{f} \widehat{G}_{f}=(\widehat{y} * \widehat{G})(0)=(\widehat{x+a} * \widehat{G})(0)
$$

Need to evaluate

$$
(\widehat{x} * \widehat{G})\left(\mathrm{j} \cdot \frac{\mathbf{n}}{\mathbf{B}}\right)
$$

for $j=0, \ldots, B-1$.

We have access to x, not $\widehat{x} . .$.

Need to evaluate

$$
(\widehat{x} * \widehat{G})\left(\mathrm{j} \cdot \frac{\mathbf{n}}{\mathrm{~B}}\right)
$$

for $j=0, \ldots, B-1$.

We have access to x, not \widehat{x}...

By the convolution identity

$$
\widehat{x} * \widehat{G}=\widehat{(x \cdot G)}
$$

Need to evaluate

$$
(\widehat{x} * \widehat{G})\left(\mathrm{j} \cdot \frac{\mathbf{n}}{\mathbf{B}}\right)
$$

for $j=0, \ldots, B-1$.

We have access to x, not \widehat{x}...

By the convolution identity

$$
\widehat{x} * \widehat{G}=\widehat{(x \cdot G)}
$$

Suffices to compute

$$
\widehat{x \cdot G}_{j \cdot \frac{n}{B}}, j=0, \ldots, B-1
$$

Suffices to compute

$$
\widehat{x \cdot G}_{j \cdot \frac{n}{B}}, j=-B / 2, \ldots, B / 2-1
$$

Sample complexity? Runtime?

Suffices to compute

$$
\widehat{x \cdot G}_{j \cdot \frac{n}{B}}, j=-B / 2, \ldots, B / 2-1
$$

Sample complexity? Runtime?

Suffices to compute

$$
\widehat{x \cdot G}_{j \cdot \frac{n}{B}}, j=-B / 2, \ldots, B / 2-1
$$

Sample complexity? Runtime?

Suffices to compute

$$
\widehat{X \cdot G}_{j \cdot \frac{n}{B}, j}=-B / 2, \ldots, B / 2-1
$$

Sample complexity? Runtime?

Computing $x \cdot G$ takes $\Omega(N)$ time and samples!

Suffices to compute

$$
\widehat{X \cdot G}_{j \cdot \frac{n}{B}, j}=-B / 2, \ldots, B / 2-1
$$

Sample complexity? Runtime?

Computing $x \cdot G$ takes $\Omega(N)$ time and samples!
Design a filter $\operatorname{supp}(G) \approx k$? Truncate sinc? Tolerate imprecise hashing? Collisions in buckets?

