Sparse Fourier Transform
(lecture 2)

Michael Kapralov'

1IBM Watson

MADALGO’15

/75

Given x € C", compute the Discrete Fourier Transform of x:

1 Y
== x0,
N jeln)

where w = €2™/7 is the n-th root of unity.

75

Given x € C", compute the Discrete Fourier Transform of x:

1 Y
== x0,
N jeln)

where o = €2™/" is the n-th root of unity.
Goal: find the top k coefficients of X approximately

In last lecture:

» 1-sparse noiseless case: two-point sampling

75

Given x € C", compute the Discrete Fourier Transform of x:

1 Y
== x0,
N jeln)

where o = €2™/" is the n-th root of unity.
Goal: find the top k coefficients of X approximately

In last lecture:
» 1-sparse noiseless case: two-point sampling

» 1-sparse noisy case: O(lognloglogn) time and samples

75

Given x € C", compute the Discrete Fourier Transform of x:
%=1 Y x0T
f= Xjw 7,
N jetn]

where o = €2™/" is the n-th root of unity.
Goal: find the top k coefficients of X approximately

In last lecture:
» 1-sparse noiseless case: two-point sampling
» 1-sparse noisy case: O(lognloglogn) time and samples

» reduction from k-sparse to 1-sparse case, via filtering

75

Partition frequency domain into B = k buckets

100c

75

Partition frequency domain into B = k buckets

100c

75

Partition frequency domain into B = k buckets

100c

Foreachj=0,...,B-1 let

o=

)?f, if fe
f

0 O.W.

Restricted to a bucket, signal is likely approximately 1-sparse!

Partition frequency domain into B = k buckets
- |

Foreachj=0,...,B-1 let

o=

)?f, if fe
f

0 O.W.

Restricted to a bucket, signal is likely approximately 1-sparse!

Partition frequency domain into B = k buckets

Foreachj=0,...,B-1 let

o=

)?f, if fe
f

0 O.W.

Restricted to a bucket, signal is likely approximately 1-sparse!

Partition frequency domain into B = k buckets

‘‘‘‘‘‘‘

Foreachj=0,...,B-1 let

o=

)?f, if fe
f

0 O.W.

Restricted to a bucket, signal is likely approximately 1-sparse!

Partition frequency domain into B = k buckets

‘‘‘‘‘‘‘

Foreachj=0,...,B-1 let

o=

)?f, if fe
f

0 O.W.

Restricted to a bucket, signal is likely approximately 1-sparse!

Partition frequency domain into B = k buckets

‘‘‘‘‘‘‘

Foreachj=0,...,B-1 let

o=

)?f, if fe
f

0 O.W.

Restricted to a bucket, signal is likely approximately 1-sparse!

Partition frequency domain into B = k buckets

Foreachj=0,...,B-1 let

o=

)?f, if fe
f

0 O.W.

Restricted to a bucket, signal is likely approximately 1-sparse!

Partition frequency domain into B = k buckets

Foreachj=0,...,B-1 let

o=

)?f, if fe
f

0 O.W.

Restricted to a bucket, signal is likely approximately 1-sparse!

We want time domain access to u: for any a=0,...

compute
U2= Z Xf U)fa
—pp<f<zp
Let (r [N n]
= 1, iffe|l-35:35
_) 2B - 2B
Gf_{ 0 o.W.
Then

75

We want time domain access to u: for any a=0,...,n-1,

compute
U2= Z Xf U)fa
—pp<f<zp
Let [N n]
~ 1, iffe|-2Z5:2%
- ’ 2B ' 2B
G {0 o.W.
Then

Foranyj=0,...,B-1

75

Reducing k-sparse recovery to 1-sparse recovery

Forany j=0,...,B-1

W= (Tax G) 5)

/75

Reducing k-sparse recovery to 1-sparse recovery

Forany j=0,...,B-1

W= (Tax G) 5)

6
£ o4
nQﬂ\

Reducing k-sparse recovery to 1-sparse recovery

Forany j=0,...,B-1

W= (Tax G) 5)

10/75

Need to evaluate

(%+a+C) i 5)

forj=0,...,B-1.

| We have access to x, not %... |

11/75

Need to evaluate

%22+ 03]

forj=0,...,B-1.

| We have access to x, not %... |

By the convolution identity

?._'.a * G = (X.+a ° G)

11/75

Need to evaluate R n
(2=)

forj=0,...,B-1.

| We have access to x, not %... |

By the convolution identity

?._'.a * G = (X.+a ° G)

Suffices to compute

X.+a'Gj.%,j:0,...,B—1

11/75

Suffices to compute

X.+a'Gj,§,j:O,...,B_1

11/75

Suffices to compute

11/75

Suffices to compute
x-Gj_%,j:O,...,B—1

Sample complexity? Runtime?

11/75

Suffices to compute
x-Gj_%,j:O,...,B—1

Sample complexity? Runtime?

11/75

To sample all signals /,j=0,...,B—1 in time domain, it suffices
to compute

J—

x-Gjg,j=0,...,.B~1

Computing x - G takes supp(G) samples.

Design G with supp(G) = k that approximates rectangular filter?

11/75

In this lecture:
» permuting frequencies
» filter construction

» recovery algorithm (k-sparse noiseless case)

12/75

—

A W

. Pseudorandom spectrum permutations
. Filter construction
. Basic block: partial recovery

. Full algorithm

13/75

A W

. Pseudorandom spectrum permutations
. Filter construction
. Basic block: partial recovery

. Full algorithm

14/75

Pseudorandom spectrum permutations

Permutation in time domain plus phase shift = permutation in
frequency domain

15/75

Pseudorandom spectrum permutations

Permutation in time domain plus phase shift = permutation in
frequency domain

Claim |
Leto,be [n], o invertible modulo n. Let y; = x,j0~/°. Then

~

Y =Xo1 (f+b)-

(proof on next slide; a close relative of time shift theorem)

15/75

Pseudorandom spectrum permutations

Permutation in time domain plus phase shift = permutation in
frequency domain

Claim |
Leto,be [n], o invertible modulo n. Let y; = x,j0~/°. Then

~

Y =Xo1 (f+b)-

(proof on next slide; a close relative of time shift theorem)

Pseudorandom permutation:
» select b uniformly at random from [n]

» select o uniformly at random from {1,3,5,...,n—1}
(invertible numbers modulo n)

15/75

Pseudorandom spectrum permutations
Claim _
Letyj = ng(x)_jb. Then j\/f = ?0'1(f+b)'

Proof.

Zy/

/e{n]
B
Jeln]
1 Y xiw~ (097 (change of variables i = o)
ie[n]
-~ Z Xiw Y(f+b)-i
/e[n] ©

= Xcr1(f+b)

16/75

rrrrr

Design G with supp(G) = k that approximates rectangular filter?

Our filter G will approximate the boxcar. Bound collision
probability now.

16/75

Partition frequency domain into buckets, permute spectrum

W

17/75

Partition frequency domain into buckets, permute spectrum

I

18/75

Partition frequency domain into buckets, permute spectrum

I

Frequency / collides with frequency j only if |oi—ajl < 3.

19/75

Partition frequency domain into buckets, permute spectrum

L

coII|S|on

Frequency / collides with frequency j only if |oi—ajl < 3.

20/75

Collision probability

Lemma
Let o be a uniformly random odd numberin1,2,...,n. Then for
any i,je[n],i#j one has

Pr, [lo-i-oj < g] - 0(1/B)

21/75

Collision probability

Lemma
Let o be a uniformly random odd numberin1,2,...,n. Then for
any i,je[n],i#j one has

Pr, [lo-i-oj < g] - 0(1/B)

Proof.
Let A:=j—j=d2° for some odd d.

The orbit of - A is 25-d’ for all odd d'.

—o—o—o—f—o—o—o—o—o.—o—o—o—o—}—o—o—o—

ji—n ol i+
gl—g ol+g

There are O(g3s) values of d’ that make o-A fall into [-3, 3],
out of n/25+1, O

21/75

Collision probability

Lemma
Let o be a uniformly random odd numberin1,2,...,n. Then for
any i,je[n],i#j one has

Pr, [lo-i-oj < g] - 0(1/B)

Proof.
Let A:=j—j=d2° for some odd d.

The orbit of - A is 25-d’ for all odd d'.

There are O(g3s) values of d’ that make o-A fall into [-3, 3],
out of n/25+1, O

21/75

Collision probability

Lemma
Let o be a uniformly random odd numberin1,2,...,n. Then for
any i,je[n],i#j one has

Pr, [lo-i-oj < g] - 0(1/B)

Proof.
Let A:=j—j=d2° for some odd d.

The orbit of - A is 25-d’ for all odd d'.

1
.. @ T @
H n
O'I+§

There are O(g3s) values of d’ that make o-A fall into [-3, 3],
out of n/25+1, O

21/75

Collision probability

Lemma
Let o be a uniformly random odd numberin1,2,...,n. Then for
any i,je[n],i#j one has

Pr, [lo-i-oj < g] - 0(1/B)

Proof.
Let A:=j—j=d2° for some odd d.

The orbit of - A is 25-d’ for all odd d'.

[i|
@ I L 1 @
. n . n
O'I—P O'I+§

There are O(g3s) values of d’ that make o-A fall into [-3, 3],
out of n/25+1, O

21/75

—

A W

. Pseudorandom spectrum permutations
. Filter construction
. Basic block: partial recovery

. Full algorithm

22/75

Rectangular buckets G have full support in time domain...

-1000 500 o 500 1000 000 s00 o 500 000

Approximate rectangular filter with a filter G with small support?

Need supp(G) = k, so perhaps turn the filter around?

23/75

Let

G- 1/(B+1) ifje[-B/2,B/2]
S 0 o.w.
Have supp(G) = B = k, but buckets leak

24/75

In what follows: reduce leakage at the expense of increasing
supp(G)

25/75

Window functions
Definition
A symmetric filter G is a (B, §)-standard window function if
1. Go=1
2. Gf =0
3. Gl <5 for fe -1, L]

ideal bucket

leakage to other buckets

bounded\fy S« 1

} } }
T T T

n n
2B 0 2B

26/75

Window functions

ideal bucket

leakage to other buckets

bounded by § « 1

~25 0 25
Start with the sinc function:
B o sin(n(B+1)f/n)
F="(B+1)-nf/n

27175

Window functions

ideal bucket

leakage to other buckets

bounded by § « 1

~25 0 25
Start with the sinc function:
B o sin(n(B+1)f/n)
F="(B+1)-nf/n

For all |f| > 2—’}3 we have

- 1
IGf|S(B+1)nf/nsn/252/nso'9

27175

Window functions

ideal bucket

leakage to other buckets

bounded by 5§ « 1

n n
2B 0 28

N
N

Consider powers of the sinc function:
sin(n(B+1)f/n)\"

oar._
G = (B+1)-nf/n

For all |f| > % we have

1Gl" < (0.9)

28/75

Window functions

ideal bucket

leakage to other buckets

bounded by 5§ « 1

n n
2B 0 28

N
N

Consider powers of the sinc function:
sin(n(B+1)f/n)\"

oar._
G = (B+1)-nf/n

For all |f| > % we have

1Gl" < (0.9)

29/75

Window functions

..................

ideal bucket

leakage to other buckets

bounded\fy S« 1

_LB 0

N
SR

Consider powers of the sinc function: G;
For all [f| > 55 we have

1Gl" < (0.9)

30/75

Window functions

...................

ideal bucket

leakage to other buckets

bounded\fy S« 1

n n
2B 0 3B

N

Consider powers of the sinc function: G;
For all [f| > 55 we have

1Gl" < (0.9)

So setting r = O(log(1/3)) is sufficient! ‘

31/75

Window functions
Definition
A symmetric filter G is a (B, §)-standard window function if
1. Go=1
2. Gf =0
3. Gl <5 for fe -1, L]

...................

ideal bucket

leakage to other buckets

bounded\fy S« 1

1 1 1
T T T

n n
2B 0 2B

32/75

Window functions
Definition
A symmetric filter G is a (B, 8)-standard window function if
1. Go=1
2. Gf =0
3. |Gsl<sforfe[- 35 25)

...................

ideal bucket

leakage to other buckets

bounded by 5§ « 1

n n
~2B 0 38

How large is supp(G)<[-T,T]? 9375

Let
G-'—{ 1/(B+1) ifje[-B/2,B/2]
I 0 O.W.

-1000

frequency

33/75

Let
G-'—{ 1/(B+1) ifje[-B/2,B/2]
I 0 O.W.

-1000

frequency

Let G":= (G°)". How large is the support of G'?
By the convolution identity G" = G+ GO *...» G°

32/75

Let
G-'—{ 1/(B+1) ifje[-B/2,B/2]
I 0 O.W.

-1000

Let G":= (G°)". How large is the support of G'?
By the convolution identity G" = G+ GO *...» G°
Support of GV is in [-B/2,B/2], so

supp(Gx*...« G)c[-r-B/2,r-B/2]

31/75

Let
G-'—{ 1/(B+1) ifje[-B/2,B/2]
I 0 O.W.

frequency tine

Let G":= (GP)". How large is the support of G'?
By the convolution identity G’ = G% + GO+ ...+ G°
Support of G0 is in [-B/2,B/2], so

supp(Gx*...« G)c[-r-B/2,r-B/2]

31/75

Let
1/(B+1) ifje[-B/2,B/2]

Gj:= { 0 o.W.

frequency tine

Let G":= (GP)". How large is the support of G'?
By the convolution identity G’ = G% + GO+ ...+ G°
Support of G0 is in [-B/2,B/2], so

supp(Gx*...« G)c[-r-B/2,r-B/2]

31/75

Let
1/(B+1) ifje[-B/2,B/2]

Gj:= { 0 o.W.

frequency tine

Let G":= (GP)". How large is the support of G'?
By the convolution identity G’ = G% + GO+ ...+ G°
Support of G0 is in [-B/2,B/2], so

supp(Gx*...« G)c[-r-B/2,r-B/2]

31/75

Let
G-'—{ 1/(B+1) ifje[-B/2,B/2]
I 0 O.W.

frequency tine

Let G":= (GP)". How large is the support of G'?
By the convolution identity G’ = G% + GO+ ...+ G°
Support of G0 is in [-B/2,B/2], so

supp(Gx*...« G)c[-r-B/2,r-B/2]

31/75

Let
G-'—{ 1/(B+1) ifje[-B/2,B/2]
I 0 O.W.

frequency tine

Let G":= (GP)". How large is the support of G'?
By the convolution identity G’ = G% + GO+ ...+ G°
Support of G0 is in [-B/2,B/2], so

supp(Gx*...« G)c[-r-B/2,r-B/2]

31/75

Let
G-'—{ 1/(B+1) ifje[-B/2,B/2]
I 0 O.W.

-1000

Let G":= (G°)". How large is the support of G'?
By the convolution identity G’ = G« G% ...« G°
Support of GV is in [-B/2,B/2], so

supp(Gx*...« G)c[-r-B/2,r-B/2]

31/75

Flat window function
Definition
A symmetric filter Gis a (B, 3, y)-flat window function if
Gj>1—6f0ra||j€[(1-Y)35,(1-Y)25]
2. G-e [0,1] for all j
3. Gl <5 forfe -2, 2]

ideal bucket

-
1
1
1
1
1
1
1
1
1
1
1
[}

32/75

Flat window function
Definition
A symmetric filter G is a (B, §, y)-flat window function if
1. Gi=1-8forallje[~(1-y)&, (1-v)5%]
2. Gje[o,1] forall j
3. IGrl=bforf¢ |-y, 4]

1 -y fraction of bucket

ideal bucket

-
1
1
1
1
1
1
1
1
1
1
1
[/

33/75

Flat window function
Definition
A symmetric filter G is a (B, §, y)-flat window function if
G,>1—6forallje[(1-Y)35,(1-Y)25]
2. Gj [0,1] for all j
3. |Gyl < for f¢[-25 25)
0.99 fraction of bucket

ideal bucket

-
1
1
1
1
1
1
1
1
1
1
1
[/

34/75

Flat window function — construction

1 -y fraction of bucket

ideal bucket

-
1
1
1
1
1
1
1
1
1
1
1
)

k0 %

Let H be a (2B/y,8/n)-standard window function. Note that
|Hil<8/n

for all f outside of

n n
[_YE’YE]'

35/75

Flat window function — construction

1 —vy/2 fraction of bucket

~

ideal bucket

=y

-
1
1
1
1
1
1
1
1
1
1
1
[/

T T =

n n
~3B 0 3B

Let H be a (2B/y,8/n)-standard window function. Note that
|H <8/n

for all f outside of [_ n .IL]
YaB'YaBl

36/75

Flat window function — construction

1 -y fraction of bucket

ideal bucket

==

-
1
1
1
1
1
1
1
1
1
1
1
[/

n
—_ —t — 1 1 1

T T T A T T

_% 0
Let H be a (2B/y,8/n)-standard window function. Note that
|Hil<8/n
for all f outside of

n n
[_Y2ﬁ§’YZZ§]'

37/75

Flat window function — construction

1 -y fraction of bucket

ideal bucket

=
1
1
1
1
1
1

-
1
1
1
1
1
1
1
1
1
1
1
[/

}
%
:

% 0 %

Let H be a (2B/y,8/n)-standard window function. Note that
|Hil<8/n

for all f outside of

n n
[_Y2ﬁ§’YZZ§]'

38/75

Flat window function — construction
To construct G: -
1. sum up shifts H._ over all A€ [-U, U], where

U=(1-v/2)55

2. normalize so that G‘o =146

1 —y fraction of bucket

ideal bucket

-
1
1
1
1
1
1
1
1
1
1
1
[/

e

n n
~3B 0 3B

39/75

Flat window function — construction
To construct G: -
1. sum up shifts H._ over all A€ [-U, U], where

U=(1-v/2)55

2. normalize so that G‘o =146

1 —y fraction of bucket

ideal bucket

-
1
1
1
1
1
1
1
1
1
1
1
[/

A

n n
~3B 0 3B

39/75

Flat window function — construction

To construct G:

1. sum up shifts H._ over all A € [-U, U], where
n
—(1-y/2)~
U=(1-v/2)35

2. normalize so that G‘o =146

ideal bucket

1 —y fraction of bucket

-
1
1
1
1
1
1
1
1
1
1
1
[/

39/75

Flat window function — construction

To construct G:

1. sum up shifts H._ over all A € [-U, U], where
n
—(1-y/2)~
U=(1-v/2)35

2. normalize so that G‘o =146

ideal bucket

1 —y fraction of bucket

-
1
1
1
1
1
1
1
1
1
1
1
[/

39/75

Flat window function — construction

To construct G:

1. sum up shifts H._ over all A € [-U, U], where
n
—(1-y/2)~
U=(1-v/2)35

2. normalize so that G‘o =146

ideal bucket

1 —y fraction of bucket

-
1
1
1
1
1
1
1
1
1
1
1
[/

40/75

Flat window function — construction

To construct G:

1. sum up shifts H._, over all Ae [-U, U], where

U=(1-v/2)55

2. normalize so that G‘o =146

ideal bucket

1 —y fraction of bucket

-
1
1
1
1
1
1
1
1
1
1
1
[/

40/75

Flat window function — construction

To construct G:

1. sum up shifts H._, over all Ae [-U, U], where

U=(1-v/2)55

2. normalize so that G‘o =146

ideal bucket

1 —y fraction of bucket

-
1
1
1
1
1
1
1
1
1
1
1
[/

41/75

Flat window function — construction

To construct G:

1. sum up shifts H._, over all Ae [-U, U], where

U=(1-v/2)55

2. normalize so that G‘o =146

ideal bucket

1 —y fraction of bucket

-
1
1
1
1
1
1
1
1
1
1
1
[/

41/75

Flat window function — construction

To construct G:

1. sum up shifts H._, over all Ae [-U, U], where

U=(1-v/2)55

2. normalize so that G‘o =146

ideal bucket

1 —y fraction of bucket

-
1
1
1
1
1
1
1
1
1
1
1
[/

41/75

Flat window function — construction

To construct G:

1. sum up shifts H._, over all Ae [-U, U], where

U=(1-v/2)55

2. normalize so that G‘o =146

ideal bucket

1 —y fraction of bucket

-
1
1
1
1
1
1
1
1
1
1
1
[/

41/75

Flat window function — construction

To construct G:

1. sum up shifts H._ over all A € [-U, U], where
n
—(1-y/2)~
U=(1-v/2)35

2. normalize so that G‘o =146

ideal bucket

1 —y fraction of bucket

-
1
1
1
1
1
1
1
1
1
1
1
[/

41/75

Flat window function — construction

To construct G:

1. sum up shifts H._ over all A € [-U, U], where
n
—(1-y/2)~
U=(1-v/2)35

2. normalize so that G‘o =146

ideal bucket

1 —y fraction of bucket

-
1
1
1
1
1
1
1
1
1
1
1
[/

41/75

Flat window function — construction

To construct G:

1. sum up shifts H._ over all A € [-U, U], where
n
—(1-y/2)~
U=(1-v/2)35

2. normalize so that G‘o =146

ideal bucket

1 —y fraction of bucket

-
1
1
1
1
1
1
1
1
1
1
1
[/

41/75

Flat window function — construction
To construct G: -
1. sum up shifts H._ over all A€ [-U, U], where

U=(1-v/2)55

2. normalize so that G‘o =146

1 —y fraction of bucket

ideal bucket

-
1
1
1
1
1
1
1
1
1
1
1
[/

41/75

Flat window function — construction
To construct G: -
1. sum up shifts H._ over all A€ [-U, U], where

U=(1-v/2)55

2. normalize so that G‘o =146

1 —y fraction of bucket

ideal bucket

-
1
1
1
1
1
1
1
1
1
1
1
[/

41/75

To construct G:
1. sum up shifts H._, over all A€ [-U, U], where

U=(1-v/2)5

2. normalize so that Go=1+6

42/75

To construct G:
1. sum up shifts H._, over all A€ [-U, U], where

n
U=(1-v/2)55
2. normalize so that Go=1+6

Formally:
~ 1/~ ~ ~
Gf = 2 (Hf_U+Hf+1_U+...+Hf+U)

where Z is a normalization factor.

42/75

To construct G:
1. sum up shifts H._, over all A€ [-U, U], where

n
U=(1-v/2)55
2. normalize so that Go=1+6

Formally:

~ 1/~ . -

Gf = 2 (Hf_U+ Hf+1_U+...+ Hf+U)
where Z is a normalization factor.

Upon inspection, Z = ¥ s Hr works.

43/75

Formally:
~ 1/~ N ~
Gf = 2 (Hf—U+ Hf+1—U+"-+ Hf+U)

where Z is a normalization factor.
Upon inspection, Z = ¥ s Hy works.

(Flat region) For any f€[-(1-Y)5g,(1-Y)35] (flat region) one
has

~

Hf_U+Hf+1_U+...+Hf+UZ Z Hf

fe[-Y45 Y45l
> Z —tail of H
>Z-(8/mn=2-%

44/75

Formally:

N 1, N N

Gf = 2 (Hf—U+ Hf+1—U +...+ Hf+U)
where Z is a normalization factor.
Upon inspection, Z = ¥ s Hy works.
Indeed, for any f ¢ [-5g, 5] (zero region) one has

Itlf—U"' Flf+1—U+"'+ PIHU = Z Flf
f>y%

<tail of H<(8/n)n<8

45/75

Flat window function

1 -y fraction of bucket

—_—
--

ideal bucket ;

;K.-------.
1

n
2B 0 2B

How large is support of G:= & (Fl._u +ot Fl.+U)?

46/75

Flat window function

1 -y fraction of bucket

—_—
--

ideal bucket ;

e e e ==

28 0 28
How large is support of G:= & (Fl._u +oF Fl.+U)?
By time shift theorem for every g e [n]

1 ¢ qf
GqI: Hq? .ZU(JJ
]:_

46/75

Flat window function

1 -y fraction of bucket

—_—
--

ideal bucket ;

e e e ==

~2B 0 2B
How large is support of G:= & (Fl._u +oF Fl.+U)?
By time shift theorem for every g e [n]

1Y
Gq = Hq' E _Zquj
]:_

Support of G a subset of support of H!

46/75

Flat window functions — construction

n et
| -
H‘ L

ﬁu“ﬂ\u Uﬂ‘\f

= =
| - 4
It |
” f
I |

47175

—

N

. Pseudorandom spectrum permutations
. Filter construction
. Basic block: partial recovery

. Full algorithm

48/75

Basic block

Assume
» nis a power of 2

» X contains at most k coefficients with polynomial precision
(e.g. X in {—=n°M) .., nOMy)
Then there exists an O(klogn) time algorithm that
» outputs at most k potential coefficients

» outputs each nonzero X; correctly with probability at least
1—p for a constant p>0

49/75

1 -y fraction of bucket

ideal bucket

leakage to other buckets

bounded\fy S« 1

-
1
1
1
1
1
1
1
1
1
1
1
I

n n
3B 0 3B

Let G be a (B,5/n,y)-flat window function:
» B buckets
» flat region of width 1 -y
> leakage <5/n=1/n°"

Such G can be constructed with
supp(G) = O((k/y)logn)

50/75

PARTIALRECOVERY — algorithm

Main idea: filter, then run 1-sparse algorithm on each
subproblem

PARTIALRECOVERY(X, B, Y,)
Choose random be[n]and odd o €{1,2,...,n}

Define x/ — Xgjod?
1! !
Xj - Xj+1
Compute Ej’..ﬁ,j €[B], where ¢’ =x"-G
B
Ejf_’ﬂ,je [B], where ¢ =x"-G
B

Run 1-sparse decoding one ¢’,¢”

51/75

PARTIALRECOVERY — algorithm

Recovering 5-sparse signal X from measurements of x

Permute spectrum
Filter signal

1-sparse decoding

0
frequency

Isolated frequencies are decoded successfully

52/75

PARTIALRECOVERY — algorithm

Recovering 5-sparse signal X from measurements of x

Permute spectrum
Filter signal

1-sparse decoding

0
frequency

Isolated frequencies are decoded successfully

53/75

PARTIALRECOVERY — algorithm

Recovering 5-sparse signal X from measurements of x

Permute spectrum
Filter signal

1-sparse decoding

0
frequency

Isolated frequencies are decoded successfully

54/75

PARTIALRECOVERY — algorithm

Recovering 5-sparse signal X from measurements of x

Permute spectrum
Filter signal

1-sparse decoding

0
frequency

Isolated frequencies are decoded successfully

55/75

PARTIALRECOVERY — algorithm

Choose random b€ [n] and odd
ce{l1,2,....n}

Define x; — Xgjo/P
X=X
Compute Ej’.hﬁ,je [B], where ¢'=x"-G
B
Elffﬂ,j € [B], where c"=x"-G
B
For je[B]
If |C/,'-n/B| >1/2
i~
Decode from Cin/pr
(Two-point sampling)
End
End

X
Cin/B

56/75

Basic block — analysis

Claim
For each u € supp(X) the probability that u is not reported is
bounded by O(k/B+Y).

57/75

Basic block — analysis

Claim
For each u € supp(X) the probability that u is not reported is
bounded by O(k/B+Y).

Proof.

Probability of being mapped
» within n/B of another frequency is O(k/B)
» close to boundary of the bucket is O(y)

1 -y fraction of bucket

—_—
-- -

ideal bucket ;

57/75

Basic block — analysis

Claim
For each u € supp(X) the probability that u is not reported is
bounded by O(k/B+Y).

Proof.

Probability of being mapped
» within n/B of another frequency is O(k/B)
» close to boundary of the bucket is O(y)

1 -y fraction of bucket

—_—
-- -

ideal bucket

58/75

Basic block — analysis

Claim
For each u € supp(X) the probability that u is not reported is
bounded by O(k/B+Y).

Proof.

Probability of being mapped
» within n/B of another frequency is O(k/B)
» close to boundary of the bucket is O(y)

1 -y fraction of bucket

—_—
-- -

ideal bucket ;

58/75

Basic block — analysis

Claim
For each u € supp(X) the probability that u is not reported is
bounded by O(k/B+Y).

Proof.

Probability of being mapped
» within n/B of another frequency is O(k/B)
» close to boundary of the bucket is O(y)

1 -y fraction of bucket

—_—
-- -

ideal bucket ;

58/75

Basic block — analysis

Claim
For each u € supp(X) the probability that u is not reported is
bounded by O(k/B+Y).

Proof.

Probability of being mapped
» within n/B of another frequency is O(k/B)
» close to boundary of the bucket is O(y)

1 -y fraction of bucket

—_—
-- -

ideal bucket ;

58/75

Basic block — analysis

Claim
For each u € supp(X) the probability that u is not reported is
bounded by O(k/B+Y).

Proof.

Probability of being mapped
» within n/B of another frequency is O(k/B)
» close to boundary of the bucket is O(y)

1 -y fraction of bucket

—_—
-- -

ideal bucket ;

58/75

Basic block — analysis

Claim
For each u € supp(X) the probability that u is not reported is
bounded by O(k/B+Y).

Proof.

Probability of being mapped
» within n/B of another frequency is O(k/B)
» close to boundary of the bucket is O(y)

1 -y fraction of bucket

—_—
-- -

ideal bucket ;

58/75

Basic block — analysis

Claim
For each u € supp(X) the probability that u is not reported is
bounded by O(k/B+Y).

Proof.

Probability of being mapped
» within n/B of another frequency is O(k/B)
» close to boundary of the bucket is O(y)

1 -y fraction of bucket

—_—
-- -

ideal bucket ;

58/75

Basic block — analysis

Claim
For each u € supp(X) the probability that u is not reported is
bounded by O(k/B+Y).

Proof.

Probability of being mapped
» within n/B of another frequency is O(k/B)
» close to boundary of the bucket is O(y)

1 -y fraction of bucket

—_—
-- -

ideal bucket ;

58/75

Basic block — analysis

Claim
For each u € supp(X) the probability that u is not reported is
bounded by O(k/B+Y).

Proof.

Probability of being mapped
» within n/B of another frequency is O(k/B)
» close to boundary of the bucket is O(y)

1 -y fraction of bucket

—_—
-- =

ideal bucket ;

58/75

Computing C;.n/8

Option 1 — directly compute FFT of (x-G)_7,...,(x-G)T,
T=0((k/y)logn)

» Can be done in time O((k/y)log? n)

» Computes too many samples of X x G

59/75

Computing C;.n/8

Option 1 — directly compute FFT of (x-G)_7,...,(x-G)T,
T=0((k/y)logn)

» Can be done in time O((k/y)log? n)
» Computes too many samples of X x G

Option 2 — alias x- G to B bins first

» Compute

bi=)Y xy.8GijB
Jjeln/B]

» Compute FFT of bin time

O(BlogB) = O((k/y)log)

59/75

—

w

. Pseudorandom spectrum permutations
. Filter construction
. Basic block: partial recovery

. Full algorithm

60/75

Full algorithm

Let C> 0 be a sufficiently large constant.

PARTIALRECOVERY(x,C-k ,7s ,1/poly(n))

61/75

Full algorithm

Let C> 0 be a sufficiently large constant.
PARTIALRECOVERY(x,C-k ,7s ,1/poly(n))

PARTIALRECOVERY(x,C-k/2, 1‘—6 -271,1/poly(n))

61/75

Full algorithm

Let C> 0 be a sufficiently large constant.
PARTIALRECOVERY(x,C-k ,7s ,1/poly(n))

PARTIALRECOVERY(X, C-k /2, 6 -271,1/poly(n))

PARTIALRECOVERY(X, C-k/4, 7= 16 -4711/poly(n))

61/75

Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY(x,C-k ,7s ,1/poly(n))
PARTIALRECOVERY(X, C-k /2, 6 -271,1/poly(n))
PARTIALRECOVERY(X, C-k/4, 7= 16 -4711/poly(n))

PARTIALRECOVERY(x, C-k/8,7s-87",1/poly(n))

61/75

Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY(x,C-k ,7s ,1/poly(n))
PARTIALRECOVERY(X, C-k /2, 6 -271,1/poly(n))
PARTIALRECOVERY(X, C-k/4, 7= 16 -4711/poly(n))

PARTIALRECOVERY(x, C-k/8,7s-87",1/poly(n))

61/75

Full algorithm

Let C> 0 be a sufficiently large constant.

PARTIALRECOVERY(x,10-k ,{s ,1/poly(n))

62/75

Full algorithm

Let C> 0 be a sufficiently large constant.
PARTIALRECOVERY(x,10-k ,{s ,1/poly(n))

PARTIALRECOVERY(x,10-k/2, 1‘—6 -271,1/poly(n))

62/75

Full algorithm

Let C> 0 be a sufficiently large constant.
PARTIALRECOVERY(x,10-k ,{s ,1/poly(n))

PARTIALRECOVERY(x,10- k/2,16 -271,1/poly(n))

PARTIALRECOVERY(x,10- k/4,16 -471,1/poly(n))

62/75

Full algorithm

Let C> 0 be a sufficiently large constant.

PARTIALRECOVERY(x,10-k ,{s ,1/poly(n))
PARTIALRECOVERY(x,10- k/2,16 -271,1/poly(n))
PARTIALRECOVERY(x,10- k/4,16 -471,1/poly(n))

PARTIALRECOVERY(x,10-k/8, 7 -871,1/poly(n))

62/75

Full algorithm

Let C> 0 be a sufficiently large constant.

PARTIALRECOVERY(x,10-k ,{s ,1/poly(n))
PARTIALRECOVERY(x,10- k/2,16 -271,1/poly(n))
PARTIALRECOVERY(x,10- k/4,16 -471,1/poly(n))

PARTIALRECOVERY(x,10-k/8, 7 -871,1/poly(n))

62/75

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover isolated coeffs
Permute spectrum
Hash to 4 buckets

Recover isolated coeffs «:¢

0 1 L 1 L
-1000 -500 0 500 1000
frequency

63/75

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover isolated coeffs
Permute spectrum
Hash to 4 buckets

Recover isolated coeffs «:¢

0 1 1 .
-1000 -500 0 500 1000
frequency

63/75

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover isolated coeffs
Permute spectrum
Hash to 4 buckets

Recover isolated coeffs ~ «:t

0 4
-1000 -500 0 500 1000
frequency

63/75

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover isolated coeffs
Permute spectrum
Hash to 4 buckets

Recover isolated coeffs ~ «:t

-1000 -500 0 500 1000
frequency

63/75

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover isolated coeffs
Permute spectrum
Hash to 4 buckets

Recover isolated coeffs «:¢

0 1 1
-1000 -500 0 500 1000
frequency

63/75

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover isolated coeffs
Permute spectrum
Hash to 4 buckets

Recover isolated coeffs «:¢

0 . . .
-1000 -500 0 500 1000
frequency

63/75

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover isolated coeffs
Permute spectrum
Hash to 4 buckets

Recover isolated coeffs

0
frequency

63/75

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover isolated coeffs
Permute spectrum
Hash to 4 buckets

Recover isolated coeffs

0
frequency

63/75

Modified PARTIALRECOVERY

PARTIALRECOVERY(B, a, List)
Choose random b, odd o
Define x; = Xgjod?
X=X
Compute 5,’-.,5,/6 [B], where ¢'=x"-G

5/’{ ,j€[B], where ¢"=x"-G

Wl

For je[B]
If |a;-n/B| >1/2
Decode from E;,H/B,Elf,’n/B
(Two-point sampling)
End
End

64/75

PARTIALRECOVERY — updating the bins

Previously located elements are still in the signal...

Subtract recovered elements from the bins

For each (pos, val) € List

U—a-pos—b

j—closest binto u
off —u—jn/B

=~ I~ o
Cj~n/B - Cj-n/B -val- Gol‘f

~

/!
Cin/B

/C\/,'-,n/B — —val-oY- Goff

End

65/75

PARTIALRECOVERY — updating the bins

Previously located elements are still in the signal...

Subtract recovered elements from the bins

For each (pos, val) € List
U—a-pos—b

j—closest binto u
off —u—jn/B

=~ I~ o
Cj~n/B - Cj-n/B -val- Gol‘f

~

c

C j’..,n/B—Va/'(DU'Goff

/-,n/B -
End

frequency

66/75

Full algorithm

List— ¢

For t=0 tologk
B; — Ck /4! > # of buckets to hash to
yi—1/(C2") > sharpness of filter

List — List+ PARTIALRECOVERY(B;, vy, List)
End

67/75

Full algorithm — analysis
Let
e; — contents of the list after stage t.

Define ‘good event’ &; as
& = {||)?—é,||0 sk/sf}

Conditional on &;_1, for every f € [n] the probability of failure to
recover is at most the sum of

68/75

Full algorithm — analysis
Let
e; — contents of the list after stage t.

Define ‘good event’ &; as
& = {||)?—é,||0 sk/sf}

Conditional on &;_1, for every f € [n] the probability of failure to
recover is at most the sum of

» probability of collision with another element, which is no more
than
k/8' _ k/8' 1
Bi C-k/4t~ C.2t

68/75

Full algorithm — analysis
Let
e; — contents of the list after stage t.

Define ‘good event’ &; as
& = {||)?—é,||o sk/sf}

Conditional on &;_1, for every f € [n] the probability of failure to
recover is at most the sum of

» probability of collision with another element, which is no more
than
k/8' _ k/8' 1
Bi C-k/4t~ C.2t

» probability of being hashed to the non-flat region, which is no
more than

O(1)=0(557

68/75

Full algorithm — analysis

Define ‘good event’ &; as
&:={lIX—@llo < k/8'}

Then

1
Pr[&:1&6:-1] < Pr[fraction of failures is = 1/8|6;_1] < O(ﬁ)

69/75

Full algorithm — analysis

Define ‘good event’ &; as
&r:={IX~&llo < k/8'}

Then

1
Pr[&:1&;_1] < Pr[fraction of failures is=1/8|&;_1] = O(ﬁ)

So for a sufficiently large C >0

Pr&1V...v8iogk] < O(1/C)-(1/2+1/4+..)=0(1/C) <1/10

69/75

Full algorithm — analysis

List— ¢

Fort=1 tologk
B; — Ck /4!
ye—1/(C2%)

List — List+ PARTIALRECOVERY/(B;, vy, List)
End

Time complexity

» DFT:
O(klogn)+ O((k/4)logn) +...= O(klogn)

» List update: k-logn

70/75

Sample complexity

List— ¢
Fort=1 tologk
B; — Ck /4!

ye—1/(C2")

List — List+ PARTIALRECOVERY(B;, 1, List)
End

Sample complexity O(klogn)+ O((k/4)logn)+...= O(klogn)

Suboptimal: sufficient to measure xg, X1,..., Xox t0 reconstruct
X if supp(X) < k (exercise).

71/75

PARTIALRECOVERY (noisy setting)

Choose random b€ [n] and odd
ce{l1,2,....n}

Define x; — Xgjo/P
X=X
Compute Ej’.hﬁ,je [B], where ¢'=x"-G
B
Elffﬂ,j € [B], where c"=x"-G
B
For je[B]
If |C/,'-n/B| >1/2
i~
Decode from Cin/pr
(Two-point sampling)
End
End

X
Cin/B

72/75

PARTIALRECOVERY (noisy setting)

Choose random b e [n] and odd

oe{l,2,...,n
- Fors=0,...,logon
Define x%%" — Xy (j.nwl 1P 92
XS1F _ \s0r r=1,...,0(loglogn)
) j+n/2s+1

Compute (M)j,n/,g, for je [B]
(XS’1’r' G)j-n/B’ forj€ [B]

For je[B]
If IC;,,,/BI >1/2
Decode from)A(g,()/,l; (or decode top k elements)
In
(As in lecture 1)
End
End

73/75

Runtime and sample complexity

Noiseless: runtime O(klogn), sample complexity
O(klognloglogn)

Noisy: runtime O(klog® n), sample complexity
O(klog? nloglog n)

O(loglogn) can be removed, see
Hassanieh-Indyk-Katabi-Price’'STOC12

Sample complexity lower bound: Q(klog(n/k)) (Do Ba, Indyk,
Price, Woodruff’ SODA10)

74/75

Next lecture:

O(klogn) samples and O(nlog® n) runtime
(Indyk-Kapralov’'FOCS14)

75175

