
Sparse Fourier Transform
(lecture 2)

Michael Kapralov1

1IBM Watson

MADALGO’15

1 / 75

Given x ∈Cn, compute the Discrete Fourier Transform of x :

x̂f =
1
n

∑
j∈[n]

xjω
−f ·j ,

where ω= e2πi/n is the n-th root of unity.

Goal: find the top k coefficients of x̂ approximately

In last lecture:

Ï 1-sparse noiseless case: two-point sampling

Ï 1-sparse noisy case: O(logn loglogn) time and samples

Ï reduction from k -sparse to 1-sparse case, via filtering

2 / 75

Given x ∈Cn, compute the Discrete Fourier Transform of x :

x̂f =
1
n

∑
j∈[n]

xjω
−f ·j ,

where ω= e2πi/n is the n-th root of unity.

Goal: find the top k coefficients of x̂ approximately

In last lecture:

Ï 1-sparse noiseless case: two-point sampling

Ï 1-sparse noisy case: O(logn loglogn) time and samples

Ï reduction from k -sparse to 1-sparse case, via filtering

2 / 75

Given x ∈Cn, compute the Discrete Fourier Transform of x :

x̂f =
1
n

∑
j∈[n]

xjω
−f ·j ,

where ω= e2πi/n is the n-th root of unity.

Goal: find the top k coefficients of x̂ approximately

In last lecture:

Ï 1-sparse noiseless case: two-point sampling

Ï 1-sparse noisy case: O(logn loglogn) time and samples

Ï reduction from k -sparse to 1-sparse case, via filtering

2 / 75

Given x ∈Cn, compute the Discrete Fourier Transform of x :

x̂f =
1
n

∑
j∈[n]

xjω
−f ·j ,

where ω= e2πi/n is the n-th root of unity.

Goal: find the top k coefficients of x̂ approximately

In last lecture:

Ï 1-sparse noiseless case: two-point sampling

Ï 1-sparse noisy case: O(logn loglogn) time and samples

Ï reduction from k -sparse to 1-sparse case, via filtering

2 / 75

Partition frequency domain into B ≈ k buckets

-0.001

-0.0005

0

0.0005

0.001

-1000 -500 0 500 1000

time

-0.5

0

0.5

1

-1000 -500 0 500 1000

frequency

For each j = 0, . . . ,B−1 let

ûj
f =

{
x̂f , if f ∈ j-th bucket
0 o.w.

Restricted to a bucket, signal is likely approximately 1-sparse!

3 / 75

Partition frequency domain into B ≈ k buckets

-0.001

-0.0005

0

0.0005

0.001

-1000 -500 0 500 1000

time

-0.5

0

0.5

1

-1000 -500 0 500 1000

frequency

For each j = 0, . . . ,B−1 let

ûj
f =

{
x̂f , if f ∈ j-th bucket
0 o.w.

Restricted to a bucket, signal is likely approximately 1-sparse!

4 / 75

Partition frequency domain into B ≈ k buckets

-0.001

-0.0005

0

0.0005

0.001

-1000 -500 0 500 1000

time

-0.5

0

0.5

1

-1000 -500 0 500 1000

frequency

For each j = 0, . . . ,B−1 let

ûj
f =

{
x̂f , if f ∈ j-th bucket
0 o.w.

Restricted to a bucket, signal is likely approximately 1-sparse!

4 / 75

Partition frequency domain into B ≈ k buckets

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0.0008

-1000 -500 0 500 1000

time

-0.5

0

0.5

1

-1000 -500 0 500 1000

frequency

For each j = 0, . . . ,B−1 let

ûj
f =

{
x̂f , if f ∈ j-th bucket
0 o.w.

Restricted to a bucket, signal is likely approximately 1-sparse!

5 / 75

Partition frequency domain into B ≈ k buckets

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0.0008

-1000 -500 0 500 1000

time

-0.5

0

0.5

1

-1000 -500 0 500 1000

frequency

For each j = 0, . . . ,B−1 let

ûj
f =

{
x̂f , if f ∈ j-th bucket
0 o.w.

Restricted to a bucket, signal is likely approximately 1-sparse!

6 / 75

Partition frequency domain into B ≈ k buckets

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0.0008

-1000 -500 0 500 1000

time

-0.5

0

0.5

1

-1000 -500 0 500 1000

frequency

For each j = 0, . . . ,B−1 let

ûj
f =

{
x̂f , if f ∈ j-th bucket
0 o.w.

Restricted to a bucket, signal is likely approximately 1-sparse!

6 / 75

Partition frequency domain into B ≈ k buckets

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0.0008

-1000 -500 0 500 1000

time

-0.5

0

0.5

1

-1000 -500 0 500 1000

frequency

For each j = 0, . . . ,B−1 let

ûj
f =

{
x̂f , if f ∈ j-th bucket
0 o.w.

Restricted to a bucket, signal is likely approximately 1-sparse!

6 / 75

Partition frequency domain into B ≈ k buckets

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0.0008

-1000 -500 0 500 1000

time

-0.5

0

0.5

1

-1000 -500 0 500 1000

frequency

For each j = 0, . . . ,B−1 let

ûj
f =

{
x̂f , if f ∈ j-th bucket
0 o.w.

Restricted to a bucket, signal is likely approximately 1-sparse!

6 / 75

Partition frequency domain into B ≈ k buckets

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0.0008

-1000 -500 0 500 1000

time

-0.5

0

0.5

1

-1000 -500 0 500 1000

frequency

For each j = 0, . . . ,B−1 let

ûj
f =

{
x̂f , if f ∈ j-th bucket
0 o.w.

Restricted to a bucket, signal is likely approximately 1-sparse!

6 / 75

Partition frequency domain into B ≈ k buckets

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0.0008

-1000 -500 0 500 1000

time

-0.5

0

0.5

1

-1000 -500 0 500 1000

frequency

For each j = 0, . . . ,B−1 let

ûj
f =

{
x̂f , if f ∈ j-th bucket
0 o.w.

Restricted to a bucket, signal is likely approximately 1-sparse!

6 / 75

We want time domain access to u0: for any a= 0, . . . ,n−1,
compute

u0
a = ∑

− n
2B ≤f≤ n

2B

x̂f ·ωf ·a.

Let

Ĝf =
{

1, if f ∈ [− n
2B : n

2B
]

0 o.w.

Then
u0

a = (x̂·+a ∗ Ĝ)(0)

For any j = 0, . . . ,B−1

uj
a = (x̂·+a ∗ Ĝ)(j · n

B
)

7 / 75

We want time domain access to u0: for any a= 0, . . . ,n−1,
compute

u0
a = ∑

− n
2B ≤f≤ n

2B

x̂f ·ωf ·a.

Let

Ĝf =
{

1, if f ∈ [− n
2B : n

2B
]

0 o.w.

Then
u0

a = (x̂·+a ∗ Ĝ)(0)

For any j = 0, . . . ,B−1

uj
a = (x̂·+a ∗ Ĝ)(j · n

B
)

7 / 75

Reducing k -sparse recovery to 1-sparse recovery

For any j = 0, . . . ,B−1

uj
a = (x̂·+a ∗ Ĝ)(j · n

B
)

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time

m
a
g
n
itu

d
e

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

1

frequency

m
a
g
n
itu

d
e

8 / 75

Reducing k -sparse recovery to 1-sparse recovery

For any j = 0, . . . ,B−1

uj
a = (x̂·+a ∗ Ĝ)(j · n

B
)

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time

m
a
g
n
itu

d
e

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

1

frequency

m
a
g
n
itu

d
e

9 / 75

Reducing k -sparse recovery to 1-sparse recovery

For any j = 0, . . . ,B−1

uj
a = (x̂·+a ∗ Ĝ)(j · n

B
)

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time

m
a
g
n
itu

d
e

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

1

frequency

m
a
g
n
itu

d
e

10 / 75

Need to evaluate
(x̂·+a ∗ Ĝ)

(
j · n

B

)
for j = 0, . . . ,B−1.

We have access to x , not x̂ ...

By the convolution identity

x̂·+a ∗ Ĝ = á(x·+a ·G)

Suffices to compute

àx·+a ·Gj · n
B

, j = 0, . . . ,B−1

11 / 75

Need to evaluate
(x̂·+a ∗ Ĝ)

(
j · n

B

)
for j = 0, . . . ,B−1.

We have access to x , not x̂ ...

By the convolution identity

x̂·+a ∗ Ĝ = á(x·+a ·G)

Suffices to compute

àx·+a ·Gj · n
B

, j = 0, . . . ,B−1

11 / 75

Need to evaluate
(x̂·+a ∗ Ĝ)

(
j · n

B

)
for j = 0, . . . ,B−1.

We have access to x , not x̂ ...

By the convolution identity

x̂·+a ∗ Ĝ = á(x·+a ·G)

Suffices to compute

àx·+a ·Gj · n
B

, j = 0, . . . ,B−1

11 / 75

Suffices to compute

àx·+a ·Gj · n
B

, j = 0, . . . ,B−1

Sample complexity? Runtime?

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

time

0

0.2

0.4

0.6

0.8

1

1.2

-1000 -500 0 500 1000

frequency

Computing x ·G takes Ω(N) time and samples!

11 / 75

Suffices to compute

�x ·Gj · n
B

, j = 0, . . . ,B−1

Sample complexity? Runtime?

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

time

0

0.2

0.4

0.6

0.8

1

1.2

-1000 -500 0 500 1000

frequency

Computing x ·G takes Ω(N) time and samples!

11 / 75

Suffices to compute

�x ·Gj · n
B

, j = 0, . . . ,B−1

Sample complexity? Runtime?

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

time

0

0.2

0.4

0.6

0.8

1

1.2

-1000 -500 0 500 1000

frequency

Computing x ·G takes Ω(N) time and samples!

11 / 75

Suffices to compute

�x ·Gj · n
B

, j = 0, . . . ,B−1

Sample complexity? Runtime?

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

time

0

0.2

0.4

0.6

0.8

1

1.2

-1000 -500 0 500 1000

frequency

Computing x ·G takes Ω(N) time and samples!

11 / 75

To sample all signals uj , j = 0, . . . ,B−1 in time domain, it suffices
to compute �x ·Gj · n

B
, j = 0, . . . ,B−1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

time

0

0.2

0.4

0.6

0.8

1

1.2

-1000 -500 0 500 1000

frequency

Computing x ·G takes supp(G) samples.

Design G with supp(G)≈ k that approximates rectangular filter?

11 / 75

In this lecture:

Ï permuting frequencies

Ï filter construction

Ï recovery algorithm (k -sparse noiseless case)

12 / 75

1. Pseudorandom spectrum permutations

2. Filter construction

3. Basic block: partial recovery

4. Full algorithm

13 / 75

1. Pseudorandom spectrum permutations

2. Filter construction

3. Basic block: partial recovery

4. Full algorithm

14 / 75

Pseudorandom spectrum permutations
Permutation in time domain plus phase shift =⇒ permutation in
frequency domain

Claim
Let σ,b ∈ [n], σ invertible modulo n. Let yj = xσjω

−jb. Then

ŷf = x̂σ−1(f+b).

(proof on next slide; a close relative of time shift theorem)

Pseudorandom permutation:

Ï select b uniformly at random from [n]

Ï select σ uniformly at random from {1,3,5, . . . ,n−1}
(invertible numbers modulo n)

15 / 75

Pseudorandom spectrum permutations
Permutation in time domain plus phase shift =⇒ permutation in
frequency domain

Claim
Let σ,b ∈ [n], σ invertible modulo n. Let yj = xσjω

−jb. Then

ŷf = x̂σ−1(f+b).

(proof on next slide; a close relative of time shift theorem)

Pseudorandom permutation:

Ï select b uniformly at random from [n]

Ï select σ uniformly at random from {1,3,5, . . . ,n−1}
(invertible numbers modulo n)

15 / 75

Pseudorandom spectrum permutations
Permutation in time domain plus phase shift =⇒ permutation in
frequency domain

Claim
Let σ,b ∈ [n], σ invertible modulo n. Let yj = xσjω

−jb. Then

ŷf = x̂σ−1(f+b).

(proof on next slide; a close relative of time shift theorem)

Pseudorandom permutation:

Ï select b uniformly at random from [n]

Ï select σ uniformly at random from {1,3,5, . . . ,n−1}
(invertible numbers modulo n)

15 / 75

Pseudorandom spectrum permutations
Claim
Let yj = xσjω

−jb. Then ŷf = x̂σ−1(f+b).

Proof.

ŷf =
1
n

∑
j∈[n]

yjω
−f ·j

= 1
n

∑
j∈[n]

xσjω
−(f+b)·j

= 1
n

∑
i∈[n]

xiω
−(f+b)·σ−1i (change of variables i =σj)

= 1
n

∑
i∈[n]

xiω
−σ−1(f+b)·i

= x̂σ−1(f+b)

16 / 75

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

time

0

0.2

0.4

0.6

0.8

1

1.2

-1000 -500 0 500 1000

frequency

Design G with supp(G)≈ k that approximates rectangular filter?

Our filter Ĝ will approximate the boxcar. Bound collision
probability now.

16 / 75

Partition frequency domain into buckets, permute spectrum

-0.5

0

0.5

1

-1000 -500 0 500 1000

frequency

Frequency i collides with frequency j only if |σi −σj | ≤ n
B .

17 / 75

Partition frequency domain into buckets, permute spectrum

-0.5

0

0.5

1

-1000 -500 0 500 1000

frequency

Frequency i collides with frequency j only if |σi −σj | ≤ n
B .

18 / 75

Partition frequency domain into buckets, permute spectrum

-0.5

0

0.5

1

-1000 -500 0 500 1000

frequency

Frequency i collides with frequency j only if |σi −σj | ≤ n
B .

19 / 75

Partition frequency domain into buckets, permute spectrum

-0.5

0

0.5

1

-1000 -500 0 500 1000

frequency

collision

Frequency i collides with frequency j only if |σi −σj | ≤ n
B .

20 / 75

Collision probability
Lemma
Let σ be a uniformly random odd number in 1,2, . . . ,n. Then for
any i , j ∈ [n], i 6= j one has

Prσ
[
|σ · i −σj | ≤ n

B

]
=O(1/B)

Proof.
Let ∆ := i − j = d2s for some odd d .

The orbit of σ ·∆ is 2s ·d ′ for all odd d ′.

[]
σi − n

B
σi σi + n

B

There are O
(n

B2s

)
values of d ′ that make σ ·∆ fall into

[− n
B , n

B
]
,

out of n/2s+1.

21 / 75

Collision probability
Lemma
Let σ be a uniformly random odd number in 1,2, . . . ,n. Then for
any i , j ∈ [n], i 6= j one has

Prσ
[
|σ · i −σj | ≤ n

B

]
=O(1/B)

Proof.
Let ∆ := i − j = d2s for some odd d .

The orbit of σ ·∆ is 2s ·d ′ for all odd d ′.

[]
σi − n

B
σi σi + n

B

There are O
(n

B2s

)
values of d ′ that make σ ·∆ fall into

[− n
B , n

B
]
,

out of n/2s+1.
21 / 75

Collision probability
Lemma
Let σ be a uniformly random odd number in 1,2, . . . ,n. Then for
any i , j ∈ [n], i 6= j one has

Prσ
[
|σ · i −σj | ≤ n

B

]
=O(1/B)

Proof.
Let ∆ := i − j = d2s for some odd d .

The orbit of σ ·∆ is 2s ·d ′ for all odd d ′.

[]
σi − n

B
σi σi + n

B

There are O
(n

B2s

)
values of d ′ that make σ ·∆ fall into

[− n
B , n

B
]
,

out of n/2s+1.
21 / 75

Collision probability
Lemma
Let σ be a uniformly random odd number in 1,2, . . . ,n. Then for
any i , j ∈ [n], i 6= j one has

Prσ
[
|σ · i −σj | ≤ n

B

]
=O(1/B)

Proof.
Let ∆ := i − j = d2s for some odd d .

The orbit of σ ·∆ is 2s ·d ′ for all odd d ′.

[]
σi − n

B
σi σi + n

B

There are O
(n

B2s

)
values of d ′ that make σ ·∆ fall into

[− n
B , n

B
]
,

out of n/2s+1.
21 / 75

Collision probability
Lemma
Let σ be a uniformly random odd number in 1,2, . . . ,n. Then for
any i , j ∈ [n], i 6= j one has

Prσ
[
|σ · i −σj | ≤ n

B

]
=O(1/B)

Proof.
Let ∆ := i − j = d2s for some odd d .

The orbit of σ ·∆ is 2s ·d ′ for all odd d ′.

[]
σi − n

B
σi σi + n

B

There are O
(n

B2s

)
values of d ′ that make σ ·∆ fall into

[− n
B , n

B
]
,

out of n/2s+1.
21 / 75

1. Pseudorandom spectrum permutations

2. Filter construction

3. Basic block: partial recovery

4. Full algorithm

22 / 75

Rectangular buckets Ĝ have full support in time domain...

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

time

0

0.2

0.4

0.6

0.8

1

1.2

-1000 -500 0 500 1000

frequency

Approximate rectangular filter with a filter G with small support?

Need supp(G)≈ k , so perhaps turn the filter around?

23 / 75

Let

Gj :=
{

1/(B+1) if j ∈ [−B/2,B/2]
0 o.w.

0

0.2

0.4

0.6

0.8

1

1.2

-1000 -500 0 500 1000

time

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

Have supp(G)=B ≈ k , but buckets leak

24 / 75

=⇒

In what follows: reduce leakage at the expense of increasing
supp(G)

25 / 75

Window functions
Definition
A symmetric filter G is a (B,δ)-standard window function if

1. Ĝ0 = 1
2. Ĝf ≥ 0
3. |Ĝf | ≤ δ for f 6∈ [− n

2B , n
2B

]

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

26 / 75

Window functions

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

Start with the sinc function:

Ĝf :=
sin(π(B+1)f/n)
(B+1) ·πf/n

For all |f | > n
2B we have

|Ĝf | ≤
1

(B+1)πf/n
≤ 1
π/2

≤ 2/π≤ 0.9

27 / 75

Window functions

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

Start with the sinc function:

Ĝf :=
sin(π(B+1)f/n)
(B+1) ·πf/n

For all |f | > n
2B we have

|Ĝf | ≤
1

(B+1)πf/n
≤ 1
π/2

≤ 2/π≤ 0.9

27 / 75

Window functions

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

Consider powers of the sinc function:

Ĝr
f :=

(
sin(π(B+1)f/n)
(B+1) ·πf/n

)r

For all |f | > n
2B we have

|Ĝf |r ≤ (0.9)r

28 / 75

Window functions

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

Consider powers of the sinc function:

Ĝr
f :=

(
sin(π(B+1)f/n)
(B+1) ·πf/n

)r

For all |f | > n
2B we have

|Ĝf |r ≤ (0.9)r

29 / 75

Window functions

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

Consider powers of the sinc function: Ĝr
f

For all |f | > n
2B we have

|Ĝf |r ≤ (0.9)r

So setting r =O(log(1/δ)) is sufficient!

30 / 75

Window functions

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

Consider powers of the sinc function: Ĝr
f

For all |f | > n
2B we have

|Ĝf |r ≤ (0.9)r

So setting r =O(log(1/δ)) is sufficient!
31 / 75

Window functions
Definition
A symmetric filter G is a (B,δ)-standard window function if

1. Ĝ0 = 1
2. Ĝf ≥ 0
3. |Ĝf | ≤ δ for f 6∈ [− n

2B , n
2B

]

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

32 / 75

Window functions
Definition
A symmetric filter G is a (B,δ)-standard window function if

1. Ĝ0 = 1
2. Ĝf ≥ 0
3. |Ĝf | ≤ δ for f 6∈ [− n

2B , n
2B

]

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

How large is supp(G)⊆ [−T ,T]? 33 / 75

Let

Gj :=
{

1/(B+1) if j ∈ [−B/2,B/2]
0 o.w.

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

0

0.2

0.4

0.6

0.8

1

1.2

-1000 -500 0 500 1000

time

Let Ĝr := (Ĝ0)r . How large is the support of Gr ?

By the convolution identity Gr =G0 ∗G0 ∗ . . .∗G0

Support of G0 is in [−B/2,B/2], so

supp(G∗ . . .∗G)⊆ [−r ·B/2,r ·B/2]

33 / 75

Let

Gj :=
{

1/(B+1) if j ∈ [−B/2,B/2]
0 o.w.

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

0

0.2

0.4

0.6

0.8

1

1.2

-1000 -500 0 500 1000

time

Let Ĝr := (Ĝ0)r . How large is the support of Gr ?

By the convolution identity Gr =G0 ∗G0 ∗ . . .∗G0

Support of G0 is in [−B/2,B/2], so

supp(G∗ . . .∗G)⊆ [−r ·B/2,r ·B/2]

32 / 75

Let

Gj :=
{

1/(B+1) if j ∈ [−B/2,B/2]
0 o.w.

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

0

0.2

0.4

0.6

0.8

1

1.2

-1000 -500 0 500 1000

time

Let Ĝr := (Ĝ0)r . How large is the support of Gr ?

By the convolution identity Gr =G0 ∗G0 ∗ . . .∗G0

Support of G0 is in [−B/2,B/2], so

supp(G∗ . . .∗G)⊆ [−r ·B/2,r ·B/2]

31 / 75

Let

Gj :=
{

1/(B+1) if j ∈ [−B/2,B/2]
0 o.w.

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

0

0.2

0.4

0.6

0.8

1

1.2

-1000 -500 0 500 1000

time

Let Ĝr := (Ĝ0)r . How large is the support of Gr ?

By the convolution identity Gr =G0 ∗G0 ∗ . . .∗G0

Support of G0 is in [−B/2,B/2], so

supp(G∗ . . .∗G)⊆ [−r ·B/2,r ·B/2]

31 / 75

Let

Gj :=
{

1/(B+1) if j ∈ [−B/2,B/2]
0 o.w.

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

0

0.2

0.4

0.6

0.8

1

1.2

-1000 -500 0 500 1000

time

Let Ĝr := (Ĝ0)r . How large is the support of Gr ?

By the convolution identity Gr =G0 ∗G0 ∗ . . .∗G0

Support of G0 is in [−B/2,B/2], so

supp(G∗ . . .∗G)⊆ [−r ·B/2,r ·B/2]

31 / 75

Let

Gj :=
{

1/(B+1) if j ∈ [−B/2,B/2]
0 o.w.

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

0

0.2

0.4

0.6

0.8

1

1.2

-1000 -500 0 500 1000

time

Let Ĝr := (Ĝ0)r . How large is the support of Gr ?

By the convolution identity Gr =G0 ∗G0 ∗ . . .∗G0

Support of G0 is in [−B/2,B/2], so

supp(G∗ . . .∗G)⊆ [−r ·B/2,r ·B/2]

31 / 75

Let

Gj :=
{

1/(B+1) if j ∈ [−B/2,B/2]
0 o.w.

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

0

0.2

0.4

0.6

0.8

1

1.2

-1000 -500 0 500 1000

time

Let Ĝr := (Ĝ0)r . How large is the support of Gr ?

By the convolution identity Gr =G0 ∗G0 ∗ . . .∗G0

Support of G0 is in [−B/2,B/2], so

supp(G∗ . . .∗G)⊆ [−r ·B/2,r ·B/2]

31 / 75

Let

Gj :=
{

1/(B+1) if j ∈ [−B/2,B/2]
0 o.w.

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

0

0.2

0.4

0.6

0.8

1

1.2

-1000 -500 0 500 1000

time

Let Ĝr := (Ĝ0)r . How large is the support of Gr ?

By the convolution identity Gr =G0 ∗G0 ∗ . . .∗G0

Support of G0 is in [−B/2,B/2], so

supp(G∗ . . .∗G)⊆ [−r ·B/2,r ·B/2]

31 / 75

Let

Gj :=
{

1/(B+1) if j ∈ [−B/2,B/2]
0 o.w.

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

0

0.2

0.4

0.6

0.8

1

1.2

-1000 -500 0 500 1000

time

Let Ĝr := (Ĝ0)r . How large is the support of Gr ?

By the convolution identity Gr =G0 ∗G0 ∗ . . .∗G0

Support of G0 is in [−B/2,B/2], so

supp(G∗ . . .∗G)⊆ [−r ·B/2,r ·B/2]

31 / 75

Flat window function
Definition
A symmetric filter G is a (B,δ,γ)-flat window function if

1. Ĝj ≥ 1−δ for all j ∈ [−(1−γ) n
2B ,(1−γ) n

2B
]

2. Ĝj ∈ [0,1] for all j

3. |Ĝf | ≤ δ for f 6∈ [− n
2B , n

2B
]

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

32 / 75

Flat window function
Definition
A symmetric filter G is a (B,δ,γ)-flat window function if

1. Ĝj ≥ 1−δ for all j ∈ [−(1−γ) n
2B ,(1−γ) n

2B
]

2. Ĝj ∈ [0,1] for all j

3. |Ĝf | ≤ δ for f 6∈ [− n
2B , n

2B
]

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

1−γ fraction of bucket

33 / 75

Flat window function
Definition
A symmetric filter G is a (B,δ,γ)-flat window function if

1. Ĝj ≥ 1−δ for all j ∈ [−(1−γ) n
2B ,(1−γ) n

2B
]

2. Ĝj ∈ [0,1] for all j

3. |Ĝf | ≤ δ for f 6∈ [− n
2B , n

2B
]

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

0.99 fraction of bucket

34 / 75

Flat window function – construction

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

1−γ fraction of bucket

Let H be a (2B/γ,δ/n)-standard window function. Note that

|Ĥf | ≤ δ/n

for all f outside of [
−γ n

4B
,γ

n
4B

]
.

35 / 75

Flat window function – construction

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

1−γ fraction of bucket

1−γ/2 fraction of bucket

Let H be a (2B/γ,δ/n)-standard window function. Note that

|Ĥf | ≤ δ/n

for all f outside of [
−γ n

4B
,γ

n
4B

]
.

36 / 75

Flat window function – construction

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

1−γ fraction of bucket

Let H be a (2B/γ,δ/n)-standard window function. Note that

|Ĥf | ≤ δ/n

for all f outside of [
−γ n

4B
,γ

n
4B

]
.

37 / 75

Flat window function – construction

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

1−γ fraction of bucket

Let H be a (2B/γ,δ/n)-standard window function. Note that

|Ĥf | ≤ δ/n

for all f outside of [
−γ n

4B
,γ

n
4B

]
.

38 / 75

Flat window function – construction
To construct Ĝ:

1. sum up shifts Ĥ ·−∆ over all ∆ ∈ [−U ,U], where

U = (1−γ/2)
n

2B
2. normalize so that Ĝ0 = 1±δ

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

1−γ fraction of bucket

39 / 75

Flat window function – construction
To construct Ĝ:

1. sum up shifts Ĥ ·−∆ over all ∆ ∈ [−U ,U], where

U = (1−γ/2)
n

2B
2. normalize so that Ĝ0 = 1±δ

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

1−γ fraction of bucket

39 / 75

Flat window function – construction
To construct Ĝ:

1. sum up shifts Ĥ ·−∆ over all ∆ ∈ [−U ,U], where

U = (1−γ/2)
n

2B
2. normalize so that Ĝ0 = 1±δ

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

1−γ fraction of bucket

39 / 75

Flat window function – construction
To construct Ĝ:

1. sum up shifts Ĥ ·−∆ over all ∆ ∈ [−U ,U], where

U = (1−γ/2)
n

2B
2. normalize so that Ĝ0 = 1±δ

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

1−γ fraction of bucket

39 / 75

Flat window function – construction
To construct Ĝ:

1. sum up shifts Ĥ ·−∆ over all ∆ ∈ [−U ,U], where

U = (1−γ/2)
n

2B
2. normalize so that Ĝ0 = 1±δ

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

1−γ fraction of bucket

40 / 75

Flat window function – construction
To construct Ĝ:

1. sum up shifts Ĥ ·−∆ over all ∆ ∈ [−U ,U], where

U = (1−γ/2)
n

2B
2. normalize so that Ĝ0 = 1±δ

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

1−γ fraction of bucket

40 / 75

Flat window function – construction
To construct Ĝ:

1. sum up shifts Ĥ ·−∆ over all ∆ ∈ [−U ,U], where

U = (1−γ/2)
n

2B
2. normalize so that Ĝ0 = 1±δ

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

1−γ fraction of bucket

41 / 75

Flat window function – construction
To construct Ĝ:

1. sum up shifts Ĥ ·−∆ over all ∆ ∈ [−U ,U], where

U = (1−γ/2)
n

2B
2. normalize so that Ĝ0 = 1±δ

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

1−γ fraction of bucket

41 / 75

Flat window function – construction
To construct Ĝ:

1. sum up shifts Ĥ ·−∆ over all ∆ ∈ [−U ,U], where

U = (1−γ/2)
n

2B
2. normalize so that Ĝ0 = 1±δ

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

1−γ fraction of bucket

41 / 75

Flat window function – construction
To construct Ĝ:

1. sum up shifts Ĥ ·−∆ over all ∆ ∈ [−U ,U], where

U = (1−γ/2)
n

2B
2. normalize so that Ĝ0 = 1±δ

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

1−γ fraction of bucket

41 / 75

Flat window function – construction
To construct Ĝ:

1. sum up shifts Ĥ ·−∆ over all ∆ ∈ [−U ,U], where

U = (1−γ/2)
n

2B
2. normalize so that Ĝ0 = 1±δ

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

1−γ fraction of bucket

41 / 75

Flat window function – construction
To construct Ĝ:

1. sum up shifts Ĥ ·−∆ over all ∆ ∈ [−U ,U], where

U = (1−γ/2)
n

2B
2. normalize so that Ĝ0 = 1±δ

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

1−γ fraction of bucket

41 / 75

Flat window function – construction
To construct Ĝ:

1. sum up shifts Ĥ ·−∆ over all ∆ ∈ [−U ,U], where

U = (1−γ/2)
n

2B
2. normalize so that Ĝ0 = 1±δ

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

1−γ fraction of bucket

41 / 75

Flat window function – construction
To construct Ĝ:

1. sum up shifts Ĥ ·−∆ over all ∆ ∈ [−U ,U], where

U = (1−γ/2)
n

2B
2. normalize so that Ĝ0 = 1±δ

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

1−γ fraction of bucket

41 / 75

Flat window function – construction
To construct Ĝ:

1. sum up shifts Ĥ ·−∆ over all ∆ ∈ [−U ,U], where

U = (1−γ/2)
n

2B
2. normalize so that Ĝ0 = 1±δ

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

1−γ fraction of bucket

41 / 75

To construct Ĝ:
1. sum up shifts Ĥ ·−∆ over all ∆ ∈ [−U ,U], where

U = (1−γ/2)
n

2B

2. normalize so that Ĝ0 = 1±δ

Formally:

Ĝf :=
1
Z

(
Ĥ f−U + Ĥ f+1−U + . . .+ Ĥ f+U

)
where Z is a normalization factor.

Upon inspection, Z =∑
f∈[n] Ĥf works.

42 / 75

To construct Ĝ:
1. sum up shifts Ĥ ·−∆ over all ∆ ∈ [−U ,U], where

U = (1−γ/2)
n

2B

2. normalize so that Ĝ0 = 1±δ

Formally:

Ĝf :=
1
Z

(
Ĥ f−U + Ĥ f+1−U + . . .+ Ĥ f+U

)
where Z is a normalization factor.

Upon inspection, Z =∑
f∈[n] Ĥf works.

42 / 75

To construct Ĝ:
1. sum up shifts Ĥ ·−∆ over all ∆ ∈ [−U ,U], where

U = (1−γ/2)
n

2B

2. normalize so that Ĝ0 = 1±δ

Formally:

Ĝf :=
1
Z

(
Ĥ f−U + Ĥ f+1−U + . . .+ Ĥ f+U

)
where Z is a normalization factor.

Upon inspection, Z =∑
f∈[n] Ĥf works.

43 / 75

Formally:

Ĝf :=
1
Z

(
Ĥ f−U + Ĥ f+1−U + . . .+ Ĥ f+U

)
where Z is a normalization factor.

Upon inspection, Z =∑
f∈[n] Ĥf works.

(Flat region) For any f ∈ [−(1−γ) n
2B ,(1−γ) n

2B] (flat region) one
has

Ĥ f−U + Ĥ f+1−U + . . .+ Ĥ f+U ≥ ∑
f∈[−γ n

4B ,γ n
4B]

Ĥf

≥Z − tail of Ĥ
≥Z − (δ/n)n ≥Z −δ

44 / 75

Formally:

Ĝf :=
1
Z

(
Ĥ f−U + Ĥ f+1−U + . . .+ Ĥ f+U

)
where Z is a normalization factor.

Upon inspection, Z =∑
f∈[n] Ĥf works.

Indeed, for any f 6∈ [− n
2B , n

2B] (zero region) one has

Ĥ f−U + Ĥ f+1−U + . . .+ Ĥ f+U ≤ ∑
f>γ n

4B

Ĥf

≤ tail of Ĥ ≤ (δ/n)n ≤ δ

45 / 75

Flat window function

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

1−γ fraction of bucket

How large is support of Ĝ := 1
Z

(
Ĥ ·−U + . . .+ Ĥ ·+U

)
?

By time shift theorem for every q ∈ [n]

Gq :=Hq · 1
Z

U∑
j=−U

ωqj

Support of G a subset of support of H!

46 / 75

Flat window function

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

1−γ fraction of bucket

How large is support of Ĝ := 1
Z

(
Ĥ ·−U + . . .+ Ĥ ·+U

)
?

By time shift theorem for every q ∈ [n]

Gq :=Hq · 1
Z

U∑
j=−U

ωqj

Support of G a subset of support of H!

46 / 75

Flat window function

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

1−γ fraction of bucket

How large is support of Ĝ := 1
Z

(
Ĥ ·−U + . . .+ Ĥ ·+U

)
?

By time shift theorem for every q ∈ [n]

Gq :=Hq · 1
Z

U∑
j=−U

ωqj

Support of G a subset of support of H!
46 / 75

Flat window functions – construction

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

*

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

=

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

47 / 75

1. Pseudorandom spectrum permutations

2. Filter construction

3. Basic block: partial recovery

4. Full algorithm

48 / 75

Basic block

Assume
Ï n is a power of 2

Ï x̂ contains at most k coefficients with polynomial precision
(e.g. x̂f in {−nO(1), . . . ,nO(1)})

Then there exists an O(k logn) time algorithm that

Ï outputs at most k potential coefficients

Ï outputs each nonzero x̂f correctly with probability at least
1−β for a constant β> 0

49 / 75

n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

1−γ fraction of bucket

Let G be a (B,δ/n,γ)-flat window function:
Ï B buckets
Ï flat region of width 1−γ
Ï leakage ≤ δ/n = 1/nO(1)

Such G can be constructed with

supp(G)=O((k/γ) logn)

50 / 75

PARTIALRECOVERY – algorithm

Main idea: filter, then run 1-sparse algorithm on each
subproblem

PARTIALRECOVERY(x ,B,γ,δ)

Choose random b ∈ [n] and odd σ ∈ {1,2, . . . ,n}

Define x ′
j ← xσjω

jb

Define

x ′′
j ← x ′

j+1

Compute ĉ′
j · n

B
, j ∈ [B], where c′ = x ′ ·G

Compute

ĉ′′
j · n

B
, j ∈ [B], where c′′ = x ′′ ·G

Run 1-sparse decoding one ĉ′, ĉ′′

51 / 75

PARTIALRECOVERY – algorithm

Recovering 5-sparse signal x̂ from measurements of x

Permute spectrum

Filter signal

1-sparse decoding

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

Isolated frequencies are decoded successfully

52 / 75

PARTIALRECOVERY – algorithm

Recovering 5-sparse signal x̂ from measurements of x

Permute spectrum

Filter signal

1-sparse decoding

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

Isolated frequencies are decoded successfully

53 / 75

PARTIALRECOVERY – algorithm

Recovering 5-sparse signal x̂ from measurements of x

Permute spectrum

Filter signal

1-sparse decoding

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

Isolated frequencies are decoded successfully

54 / 75

PARTIALRECOVERY – algorithm

Recovering 5-sparse signal x̂ from measurements of x

Permute spectrum

Filter signal

1-sparse decoding

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

Isolated frequencies are decoded successfully

55 / 75

PARTIALRECOVERY – algorithm

Choose random b ∈ [n] and odd
σ ∈ {1,2, . . . ,n}

Define x ′
j ← xσjω

jb

Define

x ′′
j ← x ′

j+1

Compute ĉ′
j · n

B
, j ∈ [B], where c′ = x ′ ·G

Compute

ĉ′′
j · n

B
, j ∈ [B], where c′′ = x ′′ ·G

For j ∈ [B]
If |ĉ′

j ·n/B | > 1/2
Decode from ĉ′

j ·n/B , ĉ′′
j ·n/B

(Two-point sampling)
End

End

56 / 75

Basic block – analysis
Claim
For each u ∈ supp(x̂) the probability that u is not reported is
bounded by O(k/B+γ).

Proof.
Probability of being mapped

Ï within n/B of another frequency is O(k/B)

Ï close to boundary of the bucket is O(γ)

N
2B 0 N

2B

ideal bucket

1−γ fraction of bucket

57 / 75

Basic block – analysis
Claim
For each u ∈ supp(x̂) the probability that u is not reported is
bounded by O(k/B+γ).
Proof.
Probability of being mapped

Ï within n/B of another frequency is O(k/B)

Ï close to boundary of the bucket is O(γ)

N
2B 0 N

2B

ideal bucket

1−γ fraction of bucket

57 / 75

Basic block – analysis
Claim
For each u ∈ supp(x̂) the probability that u is not reported is
bounded by O(k/B+γ).
Proof.
Probability of being mapped

Ï within n/B of another frequency is O(k/B)

Ï close to boundary of the bucket is O(γ)

N
2B 0 N

2B

ideal bucket

1−γ fraction of bucket

58 / 75

Basic block – analysis
Claim
For each u ∈ supp(x̂) the probability that u is not reported is
bounded by O(k/B+γ).
Proof.
Probability of being mapped

Ï within n/B of another frequency is O(k/B)

Ï close to boundary of the bucket is O(γ)

N
2B 0 N

2B

ideal bucket

1−γ fraction of bucket

58 / 75

Basic block – analysis
Claim
For each u ∈ supp(x̂) the probability that u is not reported is
bounded by O(k/B+γ).
Proof.
Probability of being mapped

Ï within n/B of another frequency is O(k/B)

Ï close to boundary of the bucket is O(γ)

N
2B 0 N

2B

ideal bucket

1−γ fraction of bucket

58 / 75

Basic block – analysis
Claim
For each u ∈ supp(x̂) the probability that u is not reported is
bounded by O(k/B+γ).
Proof.
Probability of being mapped

Ï within n/B of another frequency is O(k/B)

Ï close to boundary of the bucket is O(γ)

N
2B 0 N

2B

ideal bucket

1−γ fraction of bucket

58 / 75

Basic block – analysis
Claim
For each u ∈ supp(x̂) the probability that u is not reported is
bounded by O(k/B+γ).
Proof.
Probability of being mapped

Ï within n/B of another frequency is O(k/B)

Ï close to boundary of the bucket is O(γ)

N
2B 0 N

2B

ideal bucket

1−γ fraction of bucket

58 / 75

Basic block – analysis
Claim
For each u ∈ supp(x̂) the probability that u is not reported is
bounded by O(k/B+γ).
Proof.
Probability of being mapped

Ï within n/B of another frequency is O(k/B)

Ï close to boundary of the bucket is O(γ)

N
2B 0 N

2B

ideal bucket

1−γ fraction of bucket

58 / 75

Basic block – analysis
Claim
For each u ∈ supp(x̂) the probability that u is not reported is
bounded by O(k/B+γ).
Proof.
Probability of being mapped

Ï within n/B of another frequency is O(k/B)

Ï close to boundary of the bucket is O(γ)

N
2B 0 N

2B

ideal bucket

1−γ fraction of bucket

58 / 75

Basic block – analysis
Claim
For each u ∈ supp(x̂) the probability that u is not reported is
bounded by O(k/B+γ).
Proof.
Probability of being mapped

Ï within n/B of another frequency is O(k/B)

Ï close to boundary of the bucket is O(γ)

N
2B 0 N

2B

ideal bucket

1−γ fraction of bucket

58 / 75

Basic block – analysis
Claim
For each u ∈ supp(x̂) the probability that u is not reported is
bounded by O(k/B+γ).
Proof.
Probability of being mapped

Ï within n/B of another frequency is O(k/B)

Ï close to boundary of the bucket is O(γ)

N
2B 0 N

2B

ideal bucket

1−γ fraction of bucket

58 / 75

Computing ĉj ·n/B

Option 1 – directly compute FFT of (x ·G)−T , . . . ,(x ·G)T ,
T =O((k/γ) logn)

Ï Can be done in time O((k/γ) log2 n)

Ï Computes too many samples of x̂ ∗ Ĝ

Option 2 – alias x ·G to B bins first
Ï Compute

bi =
∑

j∈[n/B]

xi+j ·BGi+j ·B

Ï Compute FFT of b in time

O(B logB)=O((k/γ) logn)

59 / 75

Computing ĉj ·n/B

Option 1 – directly compute FFT of (x ·G)−T , . . . ,(x ·G)T ,
T =O((k/γ) logn)

Ï Can be done in time O((k/γ) log2 n)

Ï Computes too many samples of x̂ ∗ Ĝ

Option 2 – alias x ·G to B bins first
Ï Compute

bi =
∑

j∈[n/B]

xi+j ·BGi+j ·B

Ï Compute FFT of b in time

O(B logB)=O((k/γ) logn)

59 / 75

1. Pseudorandom spectrum permutations

2. Filter construction

3. Basic block: partial recovery

4. Full algorithm

60 / 75

Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY(x ,C ·k

/2

, 1
16

·2−1

,1/poly(n))

PARTIALRECOVERY(x ,C ·k/2, 1
16 ·2−1,1/poly(n))

PARTIALRECOVERY(x ,C ·k/4, 1
16 ·4−1,1/poly(n))

PARTIALRECOVERY(x ,C ·k/8, 1
16 ·8−1,1/poly(n))

. . .

61 / 75

Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY(x ,C ·k

/2

, 1
16

·2−1

,1/poly(n))

PARTIALRECOVERY(x ,C ·k/2, 1
16 ·2−1,1/poly(n))

PARTIALRECOVERY(x ,C ·k/4, 1
16 ·4−1,1/poly(n))

PARTIALRECOVERY(x ,C ·k/8, 1
16 ·8−1,1/poly(n))

. . .

61 / 75

Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY(x ,C ·k

/2

, 1
16

·2−1

,1/poly(n))

PARTIALRECOVERY(x ,C ·k/2, 1
16 ·2−1,1/poly(n))

PARTIALRECOVERY(x ,C ·k/4, 1
16 ·4−1,1/poly(n))

PARTIALRECOVERY(x ,C ·k/8, 1
16 ·8−1,1/poly(n))

. . .

61 / 75

Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY(x ,C ·k

/2

, 1
16

·2−1

,1/poly(n))

PARTIALRECOVERY(x ,C ·k/2, 1
16 ·2−1,1/poly(n))

PARTIALRECOVERY(x ,C ·k/4, 1
16 ·4−1,1/poly(n))

PARTIALRECOVERY(x ,C ·k/8, 1
16 ·8−1,1/poly(n))

. . .

61 / 75

Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY(x ,C ·k

/2

, 1
16

·2−1

,1/poly(n))

PARTIALRECOVERY(x ,C ·k/2, 1
16 ·2−1,1/poly(n))

PARTIALRECOVERY(x ,C ·k/4, 1
16 ·4−1,1/poly(n))

PARTIALRECOVERY(x ,C ·k/8, 1
16 ·8−1,1/poly(n))

. . .

61 / 75

Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY(x ,10 ·k

/2

, 1
16

·2−1

,1/poly(n))

PARTIALRECOVERY(x ,10 ·k/2, 1
16 ·2−1,1/poly(n))

PARTIALRECOVERY(x ,10 ·k/4, 1
16 ·4−1,1/poly(n))

PARTIALRECOVERY(x ,10 ·k/8, 1
16 ·8−1,1/poly(n))

. . .

62 / 75

Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY(x ,10 ·k

/2

, 1
16

·2−1

,1/poly(n))

PARTIALRECOVERY(x ,10 ·k/2, 1
16 ·2−1,1/poly(n))

PARTIALRECOVERY(x ,10 ·k/4, 1
16 ·4−1,1/poly(n))

PARTIALRECOVERY(x ,10 ·k/8, 1
16 ·8−1,1/poly(n))

. . .

62 / 75

Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY(x ,10 ·k

/2

, 1
16

·2−1

,1/poly(n))

PARTIALRECOVERY(x ,10 ·k/2, 1
16 ·2−1,1/poly(n))

PARTIALRECOVERY(x ,10 ·k/4, 1
16 ·4−1,1/poly(n))

PARTIALRECOVERY(x ,10 ·k/8, 1
16 ·8−1,1/poly(n))

. . .

62 / 75

Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY(x ,10 ·k

/2

, 1
16

·2−1

,1/poly(n))

PARTIALRECOVERY(x ,10 ·k/2, 1
16 ·2−1,1/poly(n))

PARTIALRECOVERY(x ,10 ·k/4, 1
16 ·4−1,1/poly(n))

PARTIALRECOVERY(x ,10 ·k/8, 1
16 ·8−1,1/poly(n))

. . .

62 / 75

Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY(x ,10 ·k

/2

, 1
16

·2−1

,1/poly(n))

PARTIALRECOVERY(x ,10 ·k/2, 1
16 ·2−1,1/poly(n))

PARTIALRECOVERY(x ,10 ·k/4, 1
16 ·4−1,1/poly(n))

PARTIALRECOVERY(x ,10 ·k/8, 1
16 ·8−1,1/poly(n))

. . .

62 / 75

Full algorithm

Permute spectrum

Hash to 8 buckets

Recover isolated coeffs

Permute spectrum

Hash to 4 buckets

Recover isolated coeffs

. . .
0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

63 / 75

Full algorithm

Permute spectrum

Hash to 8 buckets

Recover isolated coeffs

Permute spectrum

Hash to 4 buckets

Recover isolated coeffs

. . .
0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

63 / 75

Full algorithm

Permute spectrum

Hash to 8 buckets

Recover isolated coeffs

Permute spectrum

Hash to 4 buckets

Recover isolated coeffs

. . .
0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

63 / 75

Full algorithm

Permute spectrum

Hash to 8 buckets

Recover isolated coeffs

Permute spectrum

Hash to 4 buckets

Recover isolated coeffs

. . .
0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

63 / 75

Full algorithm

Permute spectrum

Hash to 8 buckets

Recover isolated coeffs

Permute spectrum

Hash to 4 buckets

Recover isolated coeffs

. . .
0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

63 / 75

Full algorithm

Permute spectrum

Hash to 8 buckets

Recover isolated coeffs

Permute spectrum

Hash to 4 buckets

Recover isolated coeffs

. . .
0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

63 / 75

Full algorithm

Permute spectrum

Hash to 8 buckets

Recover isolated coeffs

Permute spectrum

Hash to 4 buckets

Recover isolated coeffs

. . .
0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

63 / 75

Full algorithm

Permute spectrum

Hash to 8 buckets

Recover isolated coeffs

Permute spectrum

Hash to 4 buckets

Recover isolated coeffs

. . .
0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

63 / 75

Modified PARTIALRECOVERY

PARTIALRECOVERY(B,α,List)

Choose random b, odd σ

Define x ′
j = xσjω

jb

Define

x ′′
j = x ′

j+1

Compute ĉ′
j · n

B
, j ∈ [B], where c′ = x ′ ·G

Compute

ĉ′′
j · n

B
, j ∈ [B], where c′′ = x ′′ ·G

For j ∈ [B]
If |ĉ′

j ·n/B | > 1/2
Decode from ĉ′

j ·n/B , ĉ′′
j ·n/B

(Two-point sampling)
End

End

So ĉ′ = x̂ ′∗ Ĝ

So ĉ′′ = x̂ ′′∗ Ĝ

64 / 75

PARTIALRECOVERY – updating the bins

Previously located elements are still in the signal...

Subtract recovered elements from the bins

For each (pos,val) ∈ List
u ←σ ·pos−b

j ← closest bin to u

off ← u− jn/B

ĉ′
j ·n/B ← ĉ′

j ·n/B −val · Ĝoff

ĉ′′
j ·n/B ← ĉ′′

j ·n/B −val ·ωu · Ĝoff

End

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

65 / 75

PARTIALRECOVERY – updating the bins

Previously located elements are still in the signal...

Subtract recovered elements from the bins

For each (pos,val) ∈ List
u ←σ ·pos−b

j ← closest bin to u

off ← u− jn/B

ĉ′
j ·n/B ← ĉ′

j ·n/B −val · Ĝoff

ĉ′′
j ·n/B ← ĉ′′

j ·n/B −val ·ωu · Ĝoff

End

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

66 / 75

Full algorithm

List←;
For t = 0 to logk

Bt ←Ck/4t . # of buckets to hash to

γt ← 1/(C2t) . sharpness of filter

List ← List +PARTIALRECOVERY(Bt ,γt ,List)
End

67 / 75

Full algorithm – analysis
Let

êt ← contents of the list after stage t .

Define ‘good event’ Et as

Et :=
{
||x̂ − êt ||0 ≤ k/8t

}
Conditional on Et−1, for every f ∈ [n] the probability of failure to
recover is at most the sum of

Ï probability of collision with another element, which is no more
than

k/8t

Bt
= k/8t

C ·k/4t ≤
1

C ·2t

Ï probability of being hashed to the non-flat region, which is no
more than

O(γt)=O
(

1
C2t

)

68 / 75

Full algorithm – analysis
Let

êt ← contents of the list after stage t .

Define ‘good event’ Et as

Et :=
{
||x̂ − êt ||0 ≤ k/8t

}
Conditional on Et−1, for every f ∈ [n] the probability of failure to
recover is at most the sum of

Ï probability of collision with another element, which is no more
than

k/8t

Bt
= k/8t

C ·k/4t ≤
1

C ·2t

Ï probability of being hashed to the non-flat region, which is no
more than

O(γt)=O
(

1
C2t

)

68 / 75

Full algorithm – analysis
Let

êt ← contents of the list after stage t .

Define ‘good event’ Et as

Et :=
{
||x̂ − êt ||0 ≤ k/8t

}
Conditional on Et−1, for every f ∈ [n] the probability of failure to
recover is at most the sum of

Ï probability of collision with another element, which is no more
than

k/8t

Bt
= k/8t

C ·k/4t ≤
1

C ·2t

Ï probability of being hashed to the non-flat region, which is no
more than

O(γt)=O
(

1
C2t

)
68 / 75

Full algorithm – analysis

Define ‘good event’ Et as

Et :=
{
||x̂ − êt ||0 ≤ k/8t

}
Then

Pr[Et |Et−1]≤Pr[fraction of failures is≥ 1/8|Et−1]≤O
(

1
C ·2t

)

So for a sufficiently large C > 0

Pr[E 1 ∨ . . .∨E logk]≤O(1/C) · (1/2+1/4+ . . .)=O(1/C)< 1/10

69 / 75

Full algorithm – analysis

Define ‘good event’ Et as

Et :=
{
||x̂ − êt ||0 ≤ k/8t

}
Then

Pr[Et |Et−1]≤Pr[fraction of failures is≥ 1/8|Et−1]≤O
(

1
C ·2t

)

So for a sufficiently large C > 0

Pr[E 1 ∨ . . .∨E logk]≤O(1/C) · (1/2+1/4+ . . .)=O(1/C)< 1/10

69 / 75

Full algorithm – analysis

List←;
For t = 1 to logk

Bt ←Ck/4t

γt ← 1/(C2t)

List ← List +PARTIALRECOVERY(Bt ,γt ,List)
End

Time complexity

Ï DFT:
O(k logn)+O((k/4) logn)+ . . . =O(k logn)

Ï List update: k · logn

70 / 75

Sample complexity

List←;
For t = 1 to logk

Bt ←Ck/4t

γt ← 1/(C2t)

List ← List +PARTIALRECOVERY(Bt ,γt ,List)
End

Sample complexity O(k logn)+O((k/4) logn)+ . . . =O(k logn)

Suboptimal: sufficient to measure x0,x1, . . . ,x2k to reconstruct
x̂ if supp(x̂)≤ k (exercise).

71 / 75

PARTIALRECOVERY (noisy setting)

Choose random b ∈ [n] and odd
σ ∈ {1,2, . . . ,n}

Define x ′
j ← xσjω

jb

Define

x ′′
j ← x ′

j+1

Compute ĉ′
j · n

B
, j ∈ [B], where c′ = x ′ ·G

Compute

ĉ′′
j · n

B
, j ∈ [B], where c′′ = x ′′ ·G

For j ∈ [B]
If |ĉ′

j ·n/B | > 1/2
Decode from ĉ′

j ·n/B , ĉ′′
j ·n/B

(Two-point sampling)
End

End

72 / 75

PARTIALRECOVERY (noisy setting)
Choose random b ∈ [n] and odd
σ ∈ {1,2, . . . ,n}

Define xs,0,r
j ← xσ(j+r)ω

(j+r)b

Define

xs,1,r
j ← xs,0,r

j+n/2s+1

Compute á(xs,0,r ·G)j ·n/B , for j ∈ [B]

Compute

á(xs,1,r ·G)j ·n/B , for j ∈ [B]

For j ∈ [B]
If |ĉ′

j ·n/B | > 1/2

Decode from x̂s,0,r
j ·n/B

(As in lecture 1)
End

End

For s = 0, . . . , log2 n

For

r = 1, . . . ,O(loglogn)

(or decode top k elements)

73 / 75

Runtime and sample complexity

Noiseless: runtime O(k logn), sample complexity
O(k logn loglogn)

Noisy: runtime O(k log2 n), sample complexity
O(k log2 n loglogn)

O(loglogn) can be removed, see
Hassanieh-Indyk-Katabi-Price’STOC12

Sample complexity lower bound: Ω(k log(n/k)) (Do Ba, Indyk,
Price, Woodruff’SODA10)

74 / 75

Next lecture:

O(k logn) samples and O(n log3 n) runtime
(Indyk-Kapralov’FOCS14)

75 / 75

