Sparse Fourier Transform (lecture 2)

Michael Kapralov¹

¹IBM Watson

MADALGO'15

$$\widehat{x}_f = \frac{1}{n} \sum_{j \in [n]} x_j \omega^{-f \cdot j},$$

where $\omega = e^{2\pi i/n}$ is the *n*-th root of unity.

$$\widehat{x}_f = \frac{1}{n} \sum_{j \in [n]} x_j \omega^{-f \cdot j},$$

where $\omega = e^{2\pi i/n}$ is the *n*-th root of unity.

Goal: find the top k coefficients of \hat{x} approximately

In last lecture:

1-sparse noiseless case: two-point sampling

$$\widehat{x}_f = \frac{1}{n} \sum_{j \in [n]} x_j \omega^{-f \cdot j},$$

where $\omega = e^{2\pi i/n}$ is the *n*-th root of unity.

Goal: find the top k coefficients of \hat{x} approximately

In last lecture:

- 1-sparse noiseless case: two-point sampling
- 1-sparse noisy case: O(log nloglog n) time and samples

$$\widehat{x}_f = \frac{1}{n} \sum_{j \in [n]} x_j \omega^{-f \cdot j},$$

where $\omega = e^{2\pi i/n}$ is the *n*-th root of unity.

Goal: find the top k coefficients of \hat{x} approximately

In last lecture:

- 1-sparse noiseless case: two-point sampling
- 1-sparse noisy case: O(log nloglog n) time and samples
- reduction from k-sparse to 1-sparse case, via filtering

For each $j = 0, \ldots, B - 1$ let

 $\widehat{u}_{f}^{j} = \begin{cases} \widehat{x}_{f}, & \text{if } f \in j\text{-th bucket} \\ 0 & \text{o.w.} \end{cases}$

For each $j = 0, \dots, B - 1$ let

 $\widehat{u}_{f}^{j} = \begin{cases} \widehat{x}_{f}, & \text{if } f \in j\text{-th bucket} \\ 0 & \text{o.w.} \end{cases}$

For each $j = 0, \dots, B - 1$ let

 $\widehat{u}_{f}^{j} = \begin{cases} \widehat{x}_{f}, & \text{if } f \in j\text{-th bucket} \\ 0 & \text{o.w.} \end{cases}$

For each $j = 0, \dots, B - 1$ let

 $\widehat{u}_{f}^{j} = \begin{cases} \widehat{x}_{f}, & \text{if } f \in j\text{-th bucket} \\ 0 & \text{o.w.} \end{cases}$

For each $j = 0, \dots, B - 1$ let

 $\widehat{u}_{f}^{j} = \begin{cases} \widehat{x}_{f}, & \text{if } f \in j\text{-th bucket} \\ 0 & \text{o.w.} \end{cases}$

For each $j = 0, \dots, B - 1$ let

 $\widehat{u}_{f}^{j} = \begin{cases} \widehat{x}_{f}, & \text{if } f \in j\text{-th bucket} \\ 0 & \text{o.w.} \end{cases}$

For each $j = 0, \dots, B - 1$ let

 $\widehat{u}_{f}^{j} = \begin{cases} \widehat{x}_{f}, & \text{if } f \in j\text{-th bucket} \\ 0 & \text{o.w.} \end{cases}$

For each $j = 0, \dots, B - 1$ let

 $\widehat{u}_{f}^{j} = \begin{cases} \widehat{x}_{f}, & \text{if } f \in j\text{-th bucket} \\ 0 & \text{o.w.} \end{cases}$

We want time domain access to u^0 : for any a = 0, ..., n-1, compute

$$U_{a}^{0} = \sum_{-\frac{n}{2B} \le f \le \frac{n}{2B}} \widehat{X}_{f} \cdot \omega^{f \cdot a}.$$

Let

$$\widehat{G}_f = \begin{cases} 1, & \text{if } f \in \left[-\frac{n}{2B} : \frac{n}{2B}\right] \\ 0 & \text{o.w.} \end{cases}$$

Then

$$U_{\underline{a}}^{0} = (\widehat{X_{\cdot + \underline{a}}} * \widehat{G})(0)$$

We want time domain access to u^0 : for any a = 0, ..., n-1, compute

$$U_{a}^{0} = \sum_{-\frac{n}{2B} \le f \le \frac{n}{2B}} \widehat{X}_{f} \cdot \omega^{f \cdot a}.$$

Let

$$\widehat{G}_f = \begin{cases} 1, & \text{if } f \in \left[-\frac{n}{2B} : \frac{n}{2B}\right] \\ 0 & \text{o.w.} \end{cases}$$

Then

$$U_{a}^{0} = (\widehat{X_{\cdot + a}} * \widehat{G})(0)$$

For any j = 0, ..., B - 1

$$u_{a}^{j} = (\widehat{x_{\cdot + a}} * \widehat{G})(j \cdot \frac{n}{B})$$

Reducing k-sparse recovery to 1-sparse recovery

$$\mathcal{U}_{a}^{j} = (\widehat{x_{\cdot+a}} * \widehat{G})(j \cdot \frac{n}{B})$$

time

For any $i = 0, \dots, B-1$

Reducing k-sparse recovery to 1-sparse recovery

For any j = 0, ..., B - 1 $U_{\mathbf{a}}^{j} = (\widehat{X_{\cdot + \mathbf{a}}} * \widehat{G})(j \cdot \frac{n}{B})$ nagnitude -2.5 -800 -400 0 time 800

Reducing k-sparse recovery to 1-sparse recovery

For any j = 0, ..., B - 1 $U_{\mathbf{a}}^{j} = (\widehat{X_{\cdot + \mathbf{a}}} * \widehat{G})(j \cdot \frac{n}{B})$ nagnitude -2.5 -800 -400 0 time 800

Need to evaluate

$$(\widehat{x}_{\cdot+a} * \widehat{G}) (j \cdot \frac{n}{B})$$

for j = 0, ..., B - 1.

We have access to x, not \hat{x} ...

Need to evaluate

$$(\widehat{x}_{\cdot+a} * \widehat{G}) (j \cdot \frac{n}{B})$$

for j = 0, ..., B - 1.

We have access to x, not \hat{x} ...

By the convolution identity

$$\widehat{X}_{\cdot+\mathbf{a}} * \widehat{G} = (\widehat{X_{\cdot+\mathbf{a}} \cdot G})$$

Need to evaluate

$$(\widehat{x}_{\cdot+a} * \widehat{G}) (j \cdot \frac{n}{B})$$

for j = 0, ..., B - 1.

We have access to x, not \hat{x} ...

By the convolution identity

$$\widehat{X}_{\cdot+\mathbf{a}} * \widehat{G} = (\widehat{X_{\cdot+\mathbf{a}} \cdot G})$$

Suffices to compute

$$\widehat{x_{\cdot+a}\cdot G_{j\cdot\frac{n}{B}}}, j=0,\ldots,B-1$$

$$\widehat{x_{\cdot+a}\cdot G_{j\cdot\frac{n}{B}}}, j=0,\ldots,B-1$$

$$\widehat{x \cdot G_{j \cdot \frac{n}{B}}}, j = 0, \dots, B-1$$

$$\widehat{x \cdot G_{j \cdot \frac{n}{B}}}, j = 0, \dots, B-1$$

Sample complexity? Runtime?

$$\widehat{x \cdot G_{j \cdot \frac{n}{B}}}, j = 0, \dots, B-1$$

Sample complexity? Runtime?

To sample all signals u^{j} , j = 0, ..., B - 1 in time domain, it suffices to compute

$$\widehat{x \cdot G_{j \cdot \frac{n}{B}}}, j = 0, \dots, B-1$$

Computing $x \cdot G$ takes supp(G) samples.

Design *G* with supp(*G*) \approx *k* that approximates rectangular filter?

In this lecture:

- permuting frequencies
- filter construction
- recovery algorithm (k-sparse noiseless case)

- 1. Pseudorandom spectrum permutations
- 2. Filter construction
- 3. Basic block: partial recovery
- 4. Full algorithm

- 2. Filter construction
- 3. Basic block: partial recovery
- 4. Full algorithm

Permutation in time domain plus phase shift \Longrightarrow permutation in frequency domain

Permutation in time domain plus phase shift \implies permutation in frequency domain

Claim

Let $\sigma, b \in [n]$, σ invertible modulo n. Let $y_j = x_{\sigma j} \omega^{-jb}$. Then

$$\widehat{y}_f = \widehat{x}_{\sigma^{-1}(f+b)}.$$

(proof on next slide; a close relative of time shift theorem)

Permutation in time domain plus phase shift \implies permutation in frequency domain

Claim

Let $\sigma, b \in [n]$, σ invertible modulo n. Let $y_j = x_{\sigma j} \omega^{-jb}$. Then

$$\widehat{y}_f = \widehat{x}_{\sigma^{-1}(f+b)}.$$

(proof on next slide; a close relative of time shift theorem)

Pseudorandom permutation:

- select b uniformly at random from [n]
- select σ uniformly at random from {1,3,5,...,n-1} (invertible numbers modulo *n*)

Claim
Let
$$y_j = x_{\sigma j} \omega^{-jb}$$
. Then $\hat{y}_f = \hat{x}_{\sigma^{-1}(f+b)}$.
Proof.

$$\begin{split} \widehat{y}_{f} &= \frac{1}{n} \sum_{j \in [n]} y_{j} \omega^{-f \cdot j} \\ &= \frac{1}{n} \sum_{j \in [n]} x_{\sigma j} \omega^{-(f+b) \cdot j} \\ &= \frac{1}{n} \sum_{i \in [n]} x_{i} \omega^{-(f+b) \cdot \sigma^{-1} i} \quad \text{(change of variables } i = \sigma j\text{)} \\ &= \frac{1}{n} \sum_{i \in [n]} x_{i} \omega^{-\sigma^{-1}(f+b) \cdot i} \\ &= \widehat{x}_{\sigma^{-1}(f+b)} \end{split}$$

Design *G* with supp(*G*) \approx *k* that approximates rectangular filter?

Our filter \hat{G} will approximate the boxcar. Bound collision probability now.

Frequency *i* collides with frequency *j* only if $|\sigma i - \sigma j| \le \frac{n}{B}$.

Frequency *i* collides with frequency *j* only if $|\sigma i - \sigma j| \le \frac{n}{B}$.

Lemma

Let σ be a uniformly random odd number in 1,2,..., *n*. Then for any $i, j \in [n], i \neq j$ one has

$$\mathbf{Pr}_{\sigma}\left[|\sigma \cdot i - \sigma j| \le \frac{n}{B}\right] = O(1/B)$$

Lemma

Let σ be a uniformly random odd number in 1,2,...,n. Then for any $i, j \in [n], i \neq j$ one has

$$\mathbf{Pr}_{\sigma}\left[|\sigma \cdot i - \sigma j| \le \frac{n}{B}\right] = O(1/B)$$

Proof. Let $\Delta := i - j = d2^s$ for some odd *d*.

The orbit of $\sigma \cdot \Delta$ is $2^s \cdot d'$ for all odd d'.

There are $O(\frac{n}{B2^s})$ values of d' that make $\sigma \cdot \Delta$ fall into $\left[-\frac{n}{B}, \frac{n}{B}\right]$, out of $n/2^{s+1}$.

Lemma

Let σ be a uniformly random odd number in 1,2,...,n. Then for any $i, j \in [n], i \neq j$ one has

$$\mathbf{Pr}_{\sigma}\left[|\sigma \cdot i - \sigma j| \le \frac{n}{B}\right] = O(1/B)$$

Proof. Let $\Delta := i - j = d2^s$ for some odd *d*.

The orbit of $\sigma \cdot \Delta$ is $2^s \cdot d'$ for all odd d'.

There are $O(\frac{n}{B2^s})$ values of d' that make $\sigma \cdot \Delta$ fall into $[-\frac{n}{B}, \frac{n}{B}]$, out of $n/2^{s+1}$.

Lemma

Let σ be a uniformly random odd number in 1,2,...,n. Then for any $i, j \in [n], i \neq j$ one has

$$\mathbf{Pr}_{\sigma}\left[|\sigma \cdot i - \sigma j| \le \frac{n}{B}\right] = O(1/B)$$

Proof. Let $\Delta := i - j = d2^s$ for some odd *d*.

The orbit of $\sigma \cdot \Delta$ is $2^s \cdot d'$ for all odd d'.

There are $O(\frac{n}{B2^s})$ values of d' that make $\sigma \cdot \Delta$ fall into $[-\frac{n}{B}, \frac{n}{B}]$, out of $n/2^{s+1}$.

Lemma

Let σ be a uniformly random odd number in 1,2,...,n. Then for any $i, j \in [n], i \neq j$ one has

$$\mathbf{Pr}_{\sigma}\left[|\sigma \cdot i - \sigma j| \le \frac{n}{B}\right] = O(1/B)$$

Proof. Let $\Delta := i - j = d2^s$ for some odd *d*.

The orbit of $\sigma \cdot \Delta$ is $2^s \cdot d'$ for all odd d'.

There are $O(\frac{n}{B2^s})$ values of d' that make $\sigma \cdot \Delta$ fall into $[-\frac{n}{B}, \frac{n}{B}]$, out of $n/2^{s+1}$.

- 1. Pseudorandom spectrum permutations
- 2. Filter construction
- 3. Basic block: partial recovery
- 4. Full algorithm

Rectangular buckets \hat{G} have full support in time domain...

Approximate rectangular filter with a filter G with small support?

Need supp(G) $\approx k$, so perhaps turn the filter around?

Have supp(G) = $B \approx k$, but buckets leak

In what follows: reduce leakage at the expense of increasing supp(G)

Definition

A symmetric filter G is a (B,δ) -standard window function if

Start with the sinc function:

$$\widehat{G}_f := \frac{\sin(\pi(B+1)f/n)}{(B+1)\cdot\pi f/n}$$

Start with the sinc function:

$$\widehat{G}_f := \frac{\sin(\pi(B+1)f/n)}{(B+1)\cdot \pi f/n}$$

For all $|f| > \frac{n}{2B}$ we have

$$|\widehat{G}_{f}| \leq \frac{1}{(B+1)\pi f/n} \leq \frac{1}{\pi/2} \leq 2/\pi \leq 0.9$$

Consider powers of the sinc function:

$$\widehat{\mathsf{G}}_{f}^{r} := \left(\frac{\sin(\pi(B+1)f/n)}{(B+1)\cdot\pi f/n}\right)^{t}$$

For all $|f| > \frac{n}{2B}$ we have

 $|\widehat{G}_f|^r \leq (0.9)^r$

Consider powers of the sinc function:

$$\widehat{\mathsf{G}}_{f}^{r} := \left(\frac{\sin(\pi(B+1)f/n)}{(B+1)\cdot\pi f/n}\right)^{t}$$

For all $|f| > \frac{n}{2B}$ we have

 $|\widehat{G}_f|^r \leq (0.9)^r$

Consider **powers of the sinc function**: \hat{G}_{f}^{r} For all $|f| > \frac{n}{2B}$ we have

 $|\widehat{G}_f|^r \leq (0.9)^r$

Consider **powers of the sinc function**: \hat{G}_{f}^{r} For all $|f| > \frac{n}{2B}$ we have

 $|\widehat{G}_f|^r \leq (0.9)^r$

So setting $r = O(\log(1/\delta))$ is sufficient!

Definition

A symmetric filter G is a (B,δ) -standard window function if

Definition

A symmetric filter G is a (B,δ) -standard window function if

How large is $supp(G) \subseteq [-T, T]$?

Let $\widehat{G}^r := (\widehat{G}^0)^r$. How large is the support of G^r ?

Let $\hat{G}^r := (\hat{G}^0)^r$. How large is the support of G^r ? By the convolution identity $G^r = G^0 * G^0 * ... * G^0$

Let $\hat{G}^r := (\hat{G}^0)^r$. How large is the support of G^r ? By the convolution identity $G^r = G^0 * G^0 * ... * G^0$ Support of G^0 is in [-B/2, B/2], so

 $\operatorname{supp}(G*\ldots*G) \subseteq [-r \cdot B/2, r \cdot B/2]$

Let $\hat{G}^r := (\hat{G}^0)^r$. How large is the support of G^r ? By the convolution identity $G^r = G^0 * G^0 * ... * G^0$ Support of G^0 is in [-B/2, B/2], so $\operatorname{supp}(G * ... * G) \subseteq [-r \cdot B/2, r \cdot B/2]$

Let $\hat{G}^r := (\hat{G}^0)^r$. How large is the support of G^r ? By the convolution identity $G^r = G^0 * G^0 * ... * G^0$ Support of G^0 is in [-B/2, B/2], so $\operatorname{supp}(G * ... * G) \subseteq [-r \cdot B/2, r \cdot B/2]$

Let $\hat{G}^r := (\hat{G}^0)^r$. How large is the support of G^r ? By the convolution identity $G^r = G^0 * G^0 * \dots * G^0$ Support of G^0 is in [-B/2, B/2], so $\operatorname{supp}(G * \dots * G) \subseteq [-r \cdot B/2, r \cdot B/2]$

Let $\hat{G}^r := (\hat{G}^0)^r$. How large is the support of G^r ? By the convolution identity $G^r = G^0 * G^0 * ... * G^0$ Support of G^0 is in [-B/2, B/2], so $\operatorname{supp}(G * ... * G) \subseteq [-r \cdot B/2, r \cdot B/2]$

Let $\hat{G}^r := (\hat{G}^0)^r$. How large is the support of G^r ? By the convolution identity $G^r = G^0 * G^0 * \dots * G^0$ Support of G^0 is in [-B/2, B/2], so $\operatorname{supp}(G * \dots * G) \subseteq [-r \cdot B/2, r \cdot B/2]$

Let $\hat{G}^r := (\hat{G}^0)^r$. How large is the support of G^r ? By the convolution identity $G^r = G^0 * G^0 * ... * G^0$ Support of G^0 is in [-B/2, B/2], so

 $\operatorname{supp}(G*\ldots*G) \subseteq [-r \cdot B/2, r \cdot B/2]$

Flat window function

Definition

A symmetric filter G is a (B, δ, γ) -flat window function if

1.
$$\hat{G}_j \ge 1 - \delta$$
 for all $j \in \left[-(1 - \gamma)\frac{n}{2B}, (1 - \gamma)\frac{n}{2B}\right]$

2. $\widehat{G}_j \in [0, 1]$ for all j

3.
$$|\widehat{G}_f| \le \delta$$
 for $f \notin \left[-\frac{n}{2B}, \frac{n}{2B}\right]$

Flat window function

Definition

A symmetric filter G is a (B, δ, γ) -flat window function if

3.
$$|\widehat{G}_f| \le \delta$$
 for $f \notin \left[-\frac{n}{2B}, \frac{n}{2B}\right]$

Flat window function

Definition

A symmetric filter G is a (B, δ, γ) -flat window function if

1.
$$\widehat{G}_j \ge 1 - \delta$$
 for all $j \in \left[-(1 - \gamma)\frac{n}{2B}, (1 - \gamma)\frac{n}{2B}\right]$

2. $\widehat{G}_j \in [0, 1]$ for all j

3.
$$|\widehat{G}_f| \le \delta$$
 for $f \not\in \left[-\frac{n}{2B}, \frac{n}{2B}\right]$

Flat window function – construction

Let *H* be a $(2B/\gamma, \delta/n)$ -standard window function. Note that $|\widehat{H}_f| \le \delta/n$

for all f outside of

$$\left[-\gamma \frac{n}{4B}, \gamma \frac{n}{4B}\right].$$

Flat window function – construction

Let *H* be a $(2B/\gamma, \delta/n)$ -standard window function. Note that $|\widehat{H}_f| \le \delta/n$

for all f outside of

$$\left[-\gamma \frac{n}{4B}, \gamma \frac{n}{4B}\right].$$

Let *H* be a $(2B/\gamma, \delta/n)$ -standard window function. Note that $|\widehat{H}_f| \le \delta/n$

for all f outside of

$$\left[-\gamma \frac{n}{4B}, \gamma \frac{n}{4B}\right].$$

Let *H* be a $(2B/\gamma, \delta/n)$ -standard window function. Note that $|\widehat{H}_f| \le \delta/n$

for all f outside of

$$\left[-\gamma \frac{n}{4B}, \gamma \frac{n}{4B}\right].$$

To construct \hat{G} :

1. sum up shifts $\widehat{H}_{-\Delta}$ over all $\Delta \in [-U, U]$, where

$$U=(1-\gamma/2)\frac{n}{2E}$$

To construct \hat{G} :

1. sum up shifts $\widehat{H}_{-\Delta}$ over all $\Delta \in [-U, U]$, where

$$U=(1-\gamma/2)\frac{n}{2E}$$

To construct \hat{G} :

1. sum up shifts $\widehat{H}_{-\Delta}$ over all $\Delta \in [-U, U]$, where

$$U=(1-\gamma/2)\frac{n}{2E}$$

To construct \hat{G} :

1. sum up shifts $\widehat{H}_{-\Delta}$ over all $\Delta \in [-U, U]$, where

$$U=(1-\gamma/2)\frac{n}{2E}$$

To construct \hat{G} :

1. sum up shifts $\widehat{H}_{-\Delta}$ over all $\Delta \in [-U, U]$, where

$$U=(1-\gamma/2)\frac{n}{2E}$$

To construct \hat{G} :

1. sum up shifts $\widehat{H}_{-\Delta}$ over all $\Delta \in [-U, U]$, where

$$U=(1-\gamma/2)\frac{n}{2E}$$

To construct \hat{G} :

1. sum up shifts $\widehat{H}_{-\Delta}$ over all $\Delta \in [-U, U]$, where

$$U=(1-\gamma/2)\frac{n}{2E}$$

To construct \hat{G} :

1. sum up shifts $\widehat{H}_{-\Delta}$ over all $\Delta \in [-U, U]$, where

$$U=(1-\gamma/2)\frac{n}{2E}$$

To construct \hat{G} :

1. sum up shifts $\widehat{H}_{-\Delta}$ over all $\Delta \in [-U, U]$, where

$$U=(1-\gamma/2)\frac{n}{2E}$$

To construct \hat{G} :

1. sum up shifts $\widehat{H}_{-\Delta}$ over all $\Delta \in [-U, U]$, where

$$U = (1 - \gamma/2) \frac{n}{2E}$$

To construct \hat{G} :

1. sum up shifts $\widehat{H}_{-\Delta}$ over all $\Delta \in [-U, U]$, where

$$U = (1 - \gamma/2) \frac{n}{2E}$$

To construct \hat{G} :

1. sum up shifts $\widehat{H}_{-\Delta}$ over all $\Delta \in [-U, U]$, where

$$U = (1 - \gamma/2) \frac{n}{2E}$$

To construct \hat{G} :

1. sum up shifts $\widehat{H}_{-\Delta}$ over all $\Delta \in [-U, U]$, where

$$U = (1 - \gamma/2) \frac{n}{2E}$$

To construct \hat{G} :

1. sum up shifts $\widehat{H}_{-\Delta}$ over all $\Delta \in [-U, U]$, where

$$U = (1 - \gamma/2) \frac{n}{2E}$$

To construct \hat{G} :

1. sum up shifts $\widehat{H}_{-\Delta}$ over all $\Delta \in [-U, U]$, where

$$U=(1-\gamma/2)\frac{n}{2E}$$

To construct \hat{G} :

1. sum up shifts $\widehat{H}_{-\Delta}$ over all $\Delta \in [-U, U]$, where

$$U = (1 - \gamma/2) \frac{n}{2B}$$

To construct \hat{G} :

1. sum up shifts $\widehat{H}_{-\Delta}$ over all $\Delta \in [-U, U]$, where

$$U=(1-\gamma/2)\frac{n}{2B}$$

2. normalize so that $\widehat{G}_0 = 1 \pm \delta$

Formally:

$$\widehat{G}_{f} := \frac{1}{Z} \left(\widehat{H}_{f-U} + \widehat{H}_{f+1-U} + \dots + \widehat{H}_{f+U} \right)$$

where Z is a normalization factor.

To construct \hat{G} :

1. sum up shifts $\widehat{H}_{-\Delta}$ over all $\Delta \in [-U, U]$, where

$$U=(1-\gamma/2)\frac{n}{2B}$$

2. normalize so that $\widehat{G}_0 = 1 \pm \delta$

Formally:

$$\widehat{G}_{f} := \frac{1}{Z} \left(\widehat{H}_{f-U} + \widehat{H}_{f+1-U} + \dots + \widehat{H}_{f+U} \right)$$

where Z is a normalization factor.

Upon inspection, $Z = \sum_{f \in [n]} \hat{H}_f$ works.

Formally:

$$\widehat{G}_{f} := \frac{1}{Z} \left(\widehat{H}_{f-U} + \widehat{H}_{f+1-U} + \dots + \widehat{H}_{f+U} \right)$$

where Z is a normalization factor.

Upon inspection, $Z = \sum_{f \in [n]} \hat{H}_f$ works.

(Flat region) For any $f \in [-(1-\gamma)\frac{n}{2B}, (1-\gamma)\frac{n}{2B}]$ (flat region) one has

$$\widehat{H}_{f-U} + \widehat{H}_{f+1-U} + \dots + \widehat{H}_{f+U} \ge \sum_{f \in [-\gamma \frac{n}{4B}, \gamma \frac{n}{4B}]} \widehat{H}_{f}$$
$$\ge Z - \text{tail of } \widehat{H}$$
$$\ge Z - (\delta/n)n \ge Z - \delta$$

Formally:

$$\widehat{G}_{f} := \frac{1}{Z} \left(\widehat{H}_{f-U} + \widehat{H}_{f+1-U} + \dots + \widehat{H}_{f+U} \right)$$

where Z is a normalization factor.

Upon inspection, $Z = \sum_{f \in [n]} \hat{H}_f$ works.

Indeed, for any $f \notin [-\frac{n}{2B}, \frac{n}{2B}]$ (zero region) one has

$$\widehat{H}_{f-U} + \widehat{H}_{f+1-U} + \dots + \widehat{H}_{f+U} \le \sum_{f > \gamma \frac{n}{4B}} \widehat{H}_{f}$$

 $\le \text{tail of } \widehat{H} \le (\delta/n)n \le \delta$

Flat window function

How large is support of $\widehat{G} := \frac{1}{Z} \left(\widehat{H}_{.-U} + ... + \widehat{H}_{.+U} \right)$?

Flat window function

By time shift theorem for every $q \in [n]$

$$G_q := H_q \cdot \frac{1}{Z} \sum_{j=-U}^U \omega^{qj}$$

Flat window function

By time shift theorem for every $q \in [n]$

$$G_q := H_q \cdot \frac{1}{Z} \sum_{j=-U}^U \omega^{qj}$$

Support of *G* a subset of support of *H*!

- 1. Pseudorandom spectrum permutations
- 2. Filter construction
- 3. Basic block: partial recovery
- 4. Full algorithm

Basic block

Assume

- n is a power of 2
- *x̂* contains at most *k* coefficients with polynomial precision (e.g. *x̂_f* in {−*n*^{O(1)},...,*n*^{O(1)}})

Then there exists an $O(k \log n)$ time algorithm that

- outputs at most k potential coefficients
- outputs each nonzero \hat{x}_f correctly with probability at least 1β for a constant $\beta > 0$

Let *G* be a $(B, \delta/n, \gamma)$ -flat window function:

- B buckets
- flat region of width 1 γ
- leakage $\leq \delta/n = 1/n^{O(1)}$

Such G can be constructed with

 $\operatorname{supp}(G) = O((k/\gamma)\log n)$

PARTIALRECOVERY - algorithm

Main idea: filter, then run 1-sparse algorithm on each subproblem

PARTIAL RECOVERY (x, B, γ, δ)

Choose random $b \in [n]$ and odd $\sigma \in \{1, 2, ..., n\}$

Define
$$x'_{j} \leftarrow x_{\sigma j} \omega^{jo}$$

 $x''_{j} \leftarrow x'_{j+1}$
Compute $\widehat{c}'_{j \cdot \frac{n}{B}}, j \in [B]$, where $c' = x' \cdot G$
 $\widehat{c}''_{j \cdot \frac{n}{B}}, j \in [B]$, where $c'' = x'' \cdot G$

••

Run 1-sparse decoding one \hat{c}', \hat{c}''

PARTIALRECOVERY - algorithm

Recovering 5-sparse signal \hat{x} from measurements of x

PARTIALRECOVERY - algorithm

Recovering 5-sparse signal \hat{x} from measurements of x

PARTIALRECOVERY – algorithm

Recovering 5-sparse signal \hat{x} from measurements of x

PARTIAL RECOVERY - algorithm

Recovering 5-sparse signal \hat{x} from measurements of x

PARTIAL RECOVERY – algorithm

Choose random $b \in [n]$ and odd $\sigma \in \{1, 2, ..., n\}$

Define $x'_{j} \leftarrow x_{\sigma j} \omega^{jb}$ $x''_{j} \leftarrow x'_{j+1}$ Compute $\widehat{c}'_{j \cdot \frac{n}{B}}, j \in [B]$, where $c' = x' \cdot G$ $\widehat{c}''_{j \cdot \frac{n}{B}}, j \in [B]$, where $c'' = x'' \cdot G$

For $j \in [B]$ If $|\widehat{c}'_{j \cdot n/B}| > 1/2$ Decode from $\widehat{c}'_{j \cdot n/B}, \widehat{c}''_{j \cdot n/B}$ (Two-point sampling) End End

Basic block – analysis

Claim

For each $u \in supp(\hat{x})$ the probability that u is not reported is bounded by $O(k/B + \gamma)$.

Claim

For each $u \in supp(\hat{x})$ the probability that u is not reported is bounded by $O(k/B + \gamma)$.

Proof.

- within n/B of another frequency is O(k/B)
- close to boundary of the bucket is O(y)

Claim

For each $u \in supp(\hat{x})$ the probability that u is not reported is bounded by $O(k/B + \gamma)$.

Proof.

- within n/B of another frequency is O(k/B)
- close to boundary of the bucket is O(y)

Claim

For each $u \in supp(\hat{x})$ the probability that u is not reported is bounded by $O(k/B + \gamma)$.

Proof.

- within n/B of another frequency is O(k/B)
- close to boundary of the bucket is O(y)

Claim

For each $u \in supp(\hat{x})$ the probability that u is not reported is bounded by $O(k/B + \gamma)$.

Proof.

- within n/B of another frequency is O(k/B)
- close to boundary of the bucket is O(y)

Claim

For each $u \in supp(\hat{x})$ the probability that u is not reported is bounded by $O(k/B + \gamma)$.

Proof.

- within n/B of another frequency is O(k/B)
- close to boundary of the bucket is O(y)

Claim

For each $u \in supp(\hat{x})$ the probability that u is not reported is bounded by $O(k/B + \gamma)$.

Proof.

- within n/B of another frequency is O(k/B)
- close to boundary of the bucket is O(y)

Claim

For each $u \in supp(\hat{x})$ the probability that u is not reported is bounded by $O(k/B + \gamma)$.

Proof.

- within n/B of another frequency is O(k/B)
- close to boundary of the bucket is O(y)

Claim

For each $u \in supp(\hat{x})$ the probability that u is not reported is bounded by $O(k/B + \gamma)$.

Proof.

- within n/B of another frequency is O(k/B)
- close to boundary of the bucket is O(y)

Claim

For each $u \in supp(\hat{x})$ the probability that u is not reported is bounded by $O(k/B + \gamma)$.

Proof.

- within n/B of another frequency is O(k/B)
- close to boundary of the bucket is O(y)

Claim

For each $u \in supp(\hat{x})$ the probability that u is not reported is bounded by $O(k/B + \gamma)$.

Proof.

- within n/B of another frequency is O(k/B)
- close to boundary of the bucket is O(y)

Computing $\widehat{c}_{j \cdot n/B}$

Option 1 – directly compute FFT of $(x \cdot G)_{-T}, ..., (x \cdot G)_{T}$, $T = O((k/\gamma) \log n)$

- Can be done in time $O((k/\gamma)\log^2 n)$
- Computes too many samples of $\hat{x} * \hat{G}$

Computing $\widehat{c}_{j \cdot n/B}$

Option 1 – directly compute FFT of $(x \cdot G)_{-T}, ..., (x \cdot G)_{T}$, $T = O((k/\gamma) \log n)$

- Can be done in time $O((k/\gamma)\log^2 n)$
- Computes too many samples of $\hat{x} * \hat{G}$
- **Option 2** alias $x \cdot G$ to B bins first
 - Compute

$$b_i = \sum_{j \in [n/B]} x_{i+j \cdot B} G_{i+j \cdot B}$$

Compute FFT of b in time

$$O(B\log B) = O((k/\gamma)\log n)$$

- 1. Pseudorandom spectrum permutations
- 2. Filter construction
- 3. Basic block: partial recovery
- 4. Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY($x, C \cdot k$, $\frac{1}{16}$, 1/poly(n))

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY $(x, C \cdot k, \frac{1}{16}, 1/\text{poly}(n))$ PARTIALRECOVERY $(x, C \cdot k/2, \frac{1}{16} \cdot 2^{-1}, 1/\text{poly}(n))$

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY $(x, C \cdot k, \frac{1}{16}, 1/\text{poly}(n))$ PARTIALRECOVERY $(x, C \cdot k/2, \frac{1}{16} \cdot 2^{-1}, 1/\text{poly}(n))$

PARTIALRECOVERY($x, C \cdot k/4, \frac{1}{16} \cdot 4^{-1}, 1/\text{poly}(n)$)

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY $(x, C \cdot k, \frac{1}{16}, 1/\text{poly}(n))$ PARTIALRECOVERY $(x, C \cdot k/2, \frac{1}{16} \cdot 2^{-1}, 1/\text{poly}(n))$ PARTIALRECOVERY $(x, C \cdot k/4, \frac{1}{16} \cdot 4^{-1}, 1/\text{poly}(n))$ PARTIALRECOVERY $(x, C \cdot k/8, \frac{1}{16} \cdot 8^{-1}, 1/\text{poly}(n))$

. . .

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY($x, C \cdot k$, $\frac{1}{16}$, 1/poly(n)) PARTIALRECOVERY($x, C \cdot k/2, \frac{1}{16} \cdot 2^{-1}, 1/\text{poly}(n)$) PARTIALRECOVERY($x, C \cdot k/4, \frac{1}{16} \cdot 4^{-1}, 1/\text{poly}(n)$) PARTIALRECOVERY($x, C \cdot k/8, \frac{1}{16} \cdot 8^{-1}, 1/\text{poly}(n)$)

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY($x, 10 \cdot k$, $\frac{1}{16}$, 1/poly(n))

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY $(x, 10 \cdot k, \frac{1}{16}, 1/\text{poly}(n))$ PARTIALRECOVERY $(x, 10 \cdot k/2, \frac{1}{16} \cdot 2^{-1}, 1/\text{poly}(n))$

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY $(x, 10 \cdot k, \frac{1}{16}, 1/\text{poly}(n))$ PARTIALRECOVERY $(x, 10 \cdot k/2, \frac{1}{16} \cdot 2^{-1}, 1/\text{poly}(n))$

PARTIALRECOVERY($x, 10 \cdot k/4, \frac{1}{16} \cdot 4^{-1}, 1/\text{poly}(n)$)

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY $(x, 10 \cdot k, \frac{1}{16}, 1/\text{poly}(n))$ PARTIALRECOVERY $(x, 10 \cdot k/2, \frac{1}{16} \cdot 2^{-1}, 1/\text{poly}(n))$ PARTIALRECOVERY $(x, 10 \cdot k/4, \frac{1}{16} \cdot 4^{-1}, 1/\text{poly}(n))$ PARTIALRECOVERY $(x, 10 \cdot k/8, \frac{1}{16} \cdot 8^{-1}, 1/\text{poly}(n))$

. . .

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY $(x, 10 \cdot k, \frac{1}{16}, 1/\text{poly}(n))$ PARTIALRECOVERY $(x, 10 \cdot k/2, \frac{1}{16} \cdot 2^{-1}, 1/\text{poly}(n))$ PARTIALRECOVERY $(x, 10 \cdot k/4, \frac{1}{16} \cdot 4^{-1}, 1/\text{poly}(n))$ PARTIALRECOVERY $(x, 10 \cdot k/8, \frac{1}{16} \cdot 8^{-1}, 1/\text{poly}(n))$

Modified PARTIALRECOVERY

PartialRecovery($B, \alpha, List$)

Choose random *b*, odd σ

Define $x'_i = x_{\sigma j} \omega^{jb}$ $X_{i}^{\prime\prime} = X_{i+1}^{\prime}$ Compute $\hat{c}'_{i,\frac{n}{2}}$, $j \in [B]$, where $c' = x' \cdot G$ $\widehat{c}_{i,\frac{n}{2}}^{\prime\prime}, j \in [B]$, where $c^{\prime\prime} = x^{\prime\prime} \cdot G$ **For** *j* ∈ [*B*] If $|\hat{c}'_{i\cdot n/B}| > 1/2$ Decode from $\hat{c}'_{j\cdot n/B}, \hat{c}''_{j\cdot n/B}$ (Two-point sampling) End End

PARTIAL RECOVERY – updating the bins

Previously located elements are still in the signal...

Subtract recovered elements from the bins

65/75

PARTIAL RECOVERY – updating the bins

Previously located elements are still in the signal...

Subtract recovered elements from the bins

List $\leftarrow \phi$ For t = 0 to $\log k$ $B_t \leftarrow Ck/4^t$ \triangleright # of buckets to hash to $\gamma_t \leftarrow 1/(C2^t)$ \triangleright sharpness of filter List \leftarrow List + PARTIALRECOVERY($B_t, \gamma_t, List$) End

Full algorithm – analysis Let

 $\hat{e}_t \leftarrow \text{contents of the list after stage } t.$

Define 'good event' \mathcal{E}_t as

$$\mathscr{E}_t := \left\{ ||\widehat{x} - \widehat{e}_t||_0 \le k/8^t \right\}$$

Conditional on \mathcal{E}_{t-1} , for every $f \in [n]$ the probability of failure to recover is at most the sum of

Full algorithm – analysis Let

 $\hat{e}_t \leftarrow \text{contents of the list after stage } t.$

Define 'good event' \mathcal{E}_t as

$$\mathscr{E}_t := \left\{ ||\widehat{x} - \widehat{e}_t||_0 \le k/8^t \right\}$$

Conditional on \mathscr{E}_{t-1} , for every $f \in [n]$ the probability of failure to recover is at most the sum of

probability of collision with another element, which is no more than

$$\frac{k/8^t}{B_t} = \frac{k/8^t}{C \cdot k/4^t} \le \frac{1}{C \cdot 2^t}$$

Full algorithm – analysis Let

 $\hat{e}_t \leftarrow \text{contents of the list after stage } t.$

Define 'good event' \mathscr{E}_t as

$$\mathscr{E}_t := \left\{ ||\widehat{x} - \widehat{e}_t||_0 \le k/8^t \right\}$$

Conditional on \mathscr{E}_{t-1} , for every $f \in [n]$ the probability of failure to recover is at most the sum of

probability of collision with another element, which is no more than

$$\frac{k/8^t}{B_t} = \frac{k/8^t}{C \cdot k/4^t} \le \frac{1}{C \cdot 2^t}$$

probability of being hashed to the non-flat region, which is no more than

$$O(\gamma_t) = O\left(\frac{1}{C2^t}\right)$$

Full algorithm - analysis

Define 'good event' \mathcal{E}_t as

$$\mathscr{E}_t := \left\{ ||\widehat{x} - \widehat{e}_t||_0 \le k/8^t \right\}$$

Then

 $\mathbf{Pr}[\mathscr{E}_t | \mathscr{E}_{t-1}] \leq \mathbf{Pr}[\text{fraction of failures is} \geq 1/8 | \mathscr{E}_{t-1}] \leq O\left(\frac{1}{C \cdot 2^t}\right)$

Full algorithm – analysis

Define 'good event' \mathscr{E}_t as

$$\mathscr{E}_t := \left\{ ||\widehat{x} - \widehat{e}_t||_0 \le k/8^t \right\}$$

Then

$$\mathbf{Pr}[\mathscr{E}_t | \mathscr{E}_{t-1}] \leq \mathbf{Pr}[\text{fraction of failures is} \geq 1/8 | \mathscr{E}_{t-1}] \leq O\left(\frac{1}{C \cdot 2^t}\right)$$

So for a sufficiently large C > 0

$$\mathbf{Pr}[\overline{\mathscr{E}}_1 \vee \ldots \vee \overline{\mathscr{E}}_{\log k}] \le O(1/C) \cdot (1/2 + 1/4 + \ldots) = O(1/C) < 1/10$$

Full algorithm – analysis

List
$$\leftarrow \emptyset$$

For $t = 1$ to $\log k$
 $B_t \leftarrow Ck/4^t$
 $\gamma_t \leftarrow 1/(C2^t)$
List $\leftarrow List + PARTIALRECOVERY(B_t, \gamma_t, List)$
End

Time complexity

- ► DFT: O(k log n) + O((k/4) log n) + ... = O(k log n)
- List update: k · log n

Sample complexity

List $\leftarrow \phi$ For t = 1 to $\log k$ $B_t \leftarrow Ck/4^t$ $\gamma_t \leftarrow 1/(C2^t)$ List $\leftarrow List + PARTIALRECOVERY(B_t, \gamma_t, List)$ End

Sample complexity $O(k \log n) + O((k/4) \log n) + ... = O(k \log n)$

Suboptimal: sufficient to measure $x_0, x_1, ..., x_{2k}$ to reconstruct \hat{x} if supp $(\hat{x}) \le k$ (exercise).

PARTIALRECOVERY (noisy setting)

Choose random $b \in [n]$ and odd $\sigma \in \{1, 2, ..., n\}$

Define $x'_{j} \leftarrow x_{\sigma j} \omega^{jb}$ $x''_{j} \leftarrow x'_{j+1}$ Compute $\widehat{c}'_{j \cdot \frac{n}{B}}, j \in [B]$, where $c' = x' \cdot G$ $\widehat{c}''_{j \cdot \frac{n}{B}}, j \in [B]$, where $c'' = x'' \cdot G$ For $j \in [B]$ If $|\widehat{c}'_{j \cdot n/B}| > 1/2$

If $|\hat{c}'_{j\cdot n/B}| > 1/2$ Decode from $\hat{c}'_{j\cdot n/B}, \hat{c}''_{j\cdot n/B}$ (Two-point sampling) End End

PARTIALRECOVERY (noisy setting)

Choose random $b \in [n]$ and odd $\sigma \in \{1, 2, ..., n\}$

Define
$$x_j^{\mathbf{s},\mathbf{0},\mathbf{r}} \leftarrow x_{\sigma(j+\mathbf{r})} \omega^{(j+\mathbf{r})b}$$

 $x_j^{\mathbf{s},\mathbf{1},\mathbf{r}} \leftarrow x_{j+\mathbf{n}/2^{\mathbf{s}+1}}^{\mathbf{s},0,r}$

Compute $(\widehat{x^{s,0,r} \cdot G})_{j \cdot n/B}$, for $j \in [B]$

$$(\widehat{x^{s,1,r} \cdot G})_{j \cdot n/B}$$
, for $j \in [B]$

For $j \in [B]$ If $|\widehat{c}'_{j \cdot n/B}| > 1/2$ Decode from $\widehat{x}^{s,0,r}_{j \cdot n/B}$ (As in lecture 1) End End

For
$$s = 0, \dots, \log_2 n$$

 $r = 1, \dots, O(\log \log n)$

(or decode top k elements)

Runtime and sample complexity

Noiseless: runtime $O(k \log n)$, sample complexity $O(k \log n \log \log n)$

Noisy: runtime $O(k \log^2 n)$, sample complexity $O(k \log^2 n \log \log n)$

O(log log n) can be removed, see Hassanieh-Indyk-Katabi-Price'STOC12

Sample complexity lower bound: $\Omega(k \log(n/k))$ (Do Ba, Indyk, Price, Woodruff'SODA10)

Next lecture:

 $O(k \log n)$ samples and $O(n \log^3 n)$ runtime (Indyk-Kapralov'FOCS14)