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Given x € C", compute the Discrete Fourier Transform of x:

1 Y
== x0,
N jeln)

where w = €2™/7 is the n-th root of unity.
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Given x € C", compute the Discrete Fourier Transform of x:
%=1 Y x0T
f= Xjw 7,
N jetn]

where o = €2™/" is the n-th root of unity.
Goal: find the top k coefficients of X approximately

In last lecture:
» 1-sparse noiseless case: two-point sampling
» 1-sparse noisy case: O(lognloglogn) time and samples

» reduction from k-sparse to 1-sparse case, via filtering
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Partition frequency domain into B = k buckets
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We want time domain access to u: for any a=0,...

compute
U2= Z Xf U)fa
—pp<f<zp
Let (r [ N n]
= 1, iffe|l-35:35
_ ) 2B - 2B
Gf_{ 0 o.W.
Then
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We want time domain access to u: for any a=0,...,n-1,

compute
U2= Z Xf U)fa
—pp<f<zp
Let [ N n]
~ 1, iffe|-2Z5:2%
- ’ 2B ' 2B
G {0 o.W.
Then

Foranyj=0,...,B-1
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Reducing k-sparse recovery to 1-sparse recovery

Forany j=0,...,B-1

W= (Tax G) 5)
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Reducing k-sparse recovery to 1-sparse recovery

Forany j=0,...,B-1

W= (Tax G) 5)
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Need to evaluate

(%+a+C) i 5)

forj=0,...,B-1.

| We have access to x, not %... |
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Need to evaluate R n
(2= )

forj=0,...,B-1.

| We have access to x, not %... |

By the convolution identity

?._'.a * G = (X.+a ° G)

Suffices to compute

X.+a'Gj.%,j:0,...,B—1
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Suffices to compute
x-Gj_%,j:O,...,B—1

Sample complexity? Runtime?
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To sample all signals /,j=0,...,B—1 in time domain, it suffices
to compute

J—

x-Gjg,j=0,...,.B~1

Computing x - G takes supp(G) samples.

Design G with supp(G) = k that approximates rectangular filter?
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In this lecture:
» permuting frequencies
» filter construction

» recovery algorithm (k-sparse noiseless case)
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. Pseudorandom spectrum permutations
. Filter construction
. Basic block: partial recovery

. Full algorithm

13/75



A W

. Pseudorandom spectrum permutations
. Filter construction
. Basic block: partial recovery

. Full algorithm

14/75



Pseudorandom spectrum permutations

Permutation in time domain plus phase shift = permutation in
frequency domain
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Permutation in time domain plus phase shift = permutation in
frequency domain

Claim |
Leto,be [n], o invertible modulo n. Let y; = x,j0~/°. Then

~

Y =Xo1 (f+b)-

(proof on next slide; a close relative of time shift theorem)
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Pseudorandom spectrum permutations

Permutation in time domain plus phase shift = permutation in
frequency domain

Claim |
Leto,be [n], o invertible modulo n. Let y; = x,j0~/°. Then

~

Y =Xo1 (f+b)-

(proof on next slide; a close relative of time shift theorem)

Pseudorandom permutation:
» select b uniformly at random from [n]

» select o uniformly at random from {1,3,5,...,n—1}
(invertible numbers modulo n)
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Pseudorandom spectrum permutations
Claim _
Letyj = ng(x)_jb. Then j\/f = ?0'1(f+b)'

Proof.

Zy/

/e{n]
B
Jeln]
1 Y xiw~ (097 (change of variables i = o)
ie[n]
-~ Z Xiw Y(f+b)-i
/e[n] ©

= Xcr1(f+b)
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rrrrr

Design G with supp(G) = k that approximates rectangular filter?

Our filter G will approximate the boxcar. Bound collision
probability now.

16/75



Partition frequency domain into buckets, permute spectrum

W

17/75



Partition frequency domain into buckets, permute spectrum

I

18/75



Partition frequency domain into buckets, permute spectrum

I

Frequency / collides with frequency j only if |oi—ajl < 3.
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Partition frequency domain into buckets, permute spectrum

L

coII|S|on

Frequency / collides with frequency j only if |oi—ajl < 3.
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Collision probability

Lemma
Let o be a uniformly random odd numberin1,2,...,n. Then for
any i,je[n],i#j one has

Pr, [lo-i-oj < g] - 0(1/B)
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Proof.
Let A:=j—j=d2° for some odd d.

The orbit of - A is 25-d’ for all odd d'.
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. Pseudorandom spectrum permutations
. Filter construction
. Basic block: partial recovery

. Full algorithm
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Rectangular buckets G have full support in time domain...

-1000 500 o 500 1000 000 s00 o 500 000

Approximate rectangular filter with a filter G with small support?

Need supp(G) = k, so perhaps turn the filter around?
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Let

G- 1/(B+1) ifje[-B/2,B/2]
S 0 o.w.
Have supp(G) = B = k, but buckets leak
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In what follows: reduce leakage at the expense of increasing
supp(G)
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Window functions
Definition
A symmetric filter G is a (B, §)-standard window function if
1. Go=1
2. Gf =0
3. Gl <5 for fe -1, L]

ideal bucket

leakage to other buckets

bounded\fy S« 1

} } }
T T T

n n
2B 0 2B
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Window functions

ideal bucket

leakage to other buckets

bounded by § « 1

~25 0 25
Start with the sinc function:
B o sin(n(B+1)f/n)
F="(B+1)-nf/n
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Window functions

ideal bucket

leakage to other buckets

bounded by § « 1

~25 0 25
Start with the sinc function:
B o sin(n(B+1)f/n)
F="(B+1)-nf/n

For all |f| > 2—’}3 we have

- 1
IGf|S(B+1)nf/nsn/252/nso'9

27175



Window functions

ideal bucket

leakage to other buckets

bounded by 5§ « 1

n n
2B 0 28

N
N

Consider powers of the sinc function:
sin(n(B+1)f/n)\"

oar._
G = (B+1)-nf/n

For all |f| > % we have

1Gl" < (0.9)
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Window functions
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Window functions

..................

ideal bucket

leakage to other buckets

bounded\fy S« 1

_LB 0

N
SR

Consider powers of the sinc function: G;
For all [f| > 55 we have

1Gl" < (0.9)
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Window functions

...................

ideal bucket

leakage to other buckets

bounded\fy S« 1

n n
2B 0 3B

N

Consider powers of the sinc function: G;
For all [f| > 55 we have

1Gl" < (0.9)

So setting r = O(log(1/3)) is sufficient! ‘
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Window functions
Definition
A symmetric filter G is a (B, §)-standard window function if
1. Go=1
2. Gf =0
3. Gl <5 for fe -1, L]

...................

ideal bucket

leakage to other buckets

bounded\fy S« 1

1 1 1
T T T

n n
2B 0 2B
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Window functions
Definition
A symmetric filter G is a (B, 8)-standard window function if
1. Go=1
2. Gf =0
3. |Gsl<sforfe[- 35 25 )

...................

ideal bucket

leakage to other buckets

bounded by 5§ « 1

n n
~2B 0 38

How large is supp(G)<[-T,T]? 9375



Let
G-'—{ 1/(B+1) ifje[-B/2,B/2]
I 0 O.W.

-1000

frequency
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frequency

Let G":= (G°)". How large is the support of G'?
By the convolution identity G" = G+ GO *...» G°
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Let
G-'—{ 1/(B+1) ifje[-B/2,B/2]
I 0 O.W.

-1000

Let G":= (G°)". How large is the support of G'?
By the convolution identity G’ = G« G% ...« G°
Support of GV is in [-B/2,B/2], so

supp(Gx*...« G)c[-r-B/2,r-B/2]
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Flat window function
Definition
A symmetric filter Gis a (B, 3, y)-flat window function if
Gj>1—6f0ra||j€[ (1-Y)35,(1-Y)25]
2. G-e [0,1] for all j
3. Gl <5 forfe -2, 2]

ideal bucket

-
1
1
1
1
1
1
1
1
1
1
1
[}
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Flat window function
Definition
A symmetric filter G is a (B, §, y)-flat window function if
1. Gi=1-8forallje[~(1-y)&, (1-v)5%]
2. Gje[o,1] forall j
3. IGrl=bforf¢ |-y, 4]

1 -y fraction of bucket

ideal bucket

-
1
1
1
1
1
1
1
1
1
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1
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Flat window function
Definition
A symmetric filter G is a (B, §, y)-flat window function if
G,>1—6forallje[ (1-Y)35,(1-Y)25]
2. Gj [0,1] for all j
3. |Gyl < for f¢[-25 25)
0.99 fraction of bucket

ideal bucket

-
1
1
1
1
1
1
1
1
1
1
1
[/
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Flat window function — construction

1 -y fraction of bucket

ideal bucket

-
1
1
1
1
1
1
1
1
1
1
1
)

k0 %

Let H be a (2B/y,8/n)-standard window function. Note that
|Hil<8/n

for all f outside of

n n
[_YE’YE]'
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Flat window function — construction

1 —vy/2 fraction of bucket

~

ideal bucket

=y

-
1
1
1
1
1
1
1
1
1
1
1
[/

T T =

n n
~3B 0 3B

Let H be a (2B/y,8/n)-standard window function. Note that
|H <8/n

for all f outside of [_ n .IL]
YaB'YaBl
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Flat window function — construction

1 -y fraction of bucket

ideal bucket

==

-
1
1
1
1
1
1
1
1
1
1
1
[/

n
—_ —t — 1 1 1

T T T A T T

_% 0
Let H be a (2B/y,8/n)-standard window function. Note that
|Hil<8/n
for all f outside of

n n
[_Y2ﬁ§’YZZ§]'
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Flat window function — construction

1 -y fraction of bucket

ideal bucket

=
1
1
1
1
1
1

-
1
1
1
1
1
1
1
1
1
1
1
[/

}
%
:

% 0 %

Let H be a (2B/y,8/n)-standard window function. Note that
|Hil<8/n

for all f outside of

n n
[_Y2ﬁ§’YZZ§]'
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Flat window function — construction
To construct G: -
1. sum up shifts H._ over all A€ [-U, U], where

U=(1-v/2)55

2. normalize so that G‘o =146

1 —y fraction of bucket

ideal bucket

-
1
1
1
1
1
1
1
1
1
1
1
[/

e

n n
~3B 0 3B
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Flat window function — construction
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To construct G:
1. sum up shifts H._, over all A€ [-U, U], where

U=(1-v/2)5

2. normalize so that Go=1+6
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To construct G:
1. sum up shifts H._, over all A€ [-U, U], where

n
U=(1-v/2)55
2. normalize so that Go=1+6

Formally:
~ 1/~ ~ ~
Gf = 2 (Hf_U+Hf+1_U+...+Hf+U)

where Z is a normalization factor.
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To construct G:
1. sum up shifts H._, over all A€ [-U, U], where

n
U=(1-v/2)55
2. normalize so that Go=1+6

Formally:

~ 1/~ . -

Gf = 2 (Hf_U+ Hf+1_U+...+ Hf+U)
where Z is a normalization factor.

Upon inspection, Z = ¥ s Hr works.
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Formally:
~ 1/~ N ~
Gf = 2 (Hf—U+ Hf+1—U+"-+ Hf+U)

where Z is a normalization factor.
Upon inspection, Z = ¥ s Hy works.

(Flat region) For any f€[-(1-Y)5g,(1-Y)35] (flat region) one
has

~

Hf_U+Hf+1_U+...+Hf+UZ Z Hf

fe[-Y45 Y45l
> Z —tail of H
>Z-(8/mn=2-%
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Formally:

N 1, N N

Gf = 2 (Hf—U+ Hf+1—U +...+ Hf+U)
where Z is a normalization factor.
Upon inspection, Z = ¥ s Hy works.
Indeed, for any f ¢ [-5g, 5] (zero region) one has

Itlf—U"' Flf+1—U+"'+ PIHU = Z Flf
f>y%

<tail of H<(8/n)n<8
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Flat window function

1 -y fraction of bucket

—_—
--

ideal bucket ;

;K.-------.
1

n
2B 0 2B

How large is support of G:= & (Fl._u +ot Fl.+U)?
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Flat window function

1 -y fraction of bucket

—_—
--

ideal bucket ;

e e e ==

28 0 28
How large is support of G:= & (Fl._u +oF Fl.+U)?
By time shift theorem for every g e [n]

1 ¢ qf
GqI: Hq? .ZU(JJ
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Flat window function

1 -y fraction of bucket

—_—
--

ideal bucket ;

e e e ==

~2B 0 2B
How large is support of G:= & (Fl._u +oF Fl.+U)?
By time shift theorem for every g e [n]

1Y
Gq = Hq' E _Zquj
]:_

Support of G a subset of support of H!
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Flat window functions — construction

n et
| -
H‘ L

ﬁu“ﬂ\u Uﬂ‘\f

= =
| - 4
It |
” f
I |
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. Pseudorandom spectrum permutations
. Filter construction
. Basic block: partial recovery
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Basic block

Assume
» nis a power of 2

» X contains at most k coefficients with polynomial precision
(e.g. X in {—=n°M) .., nOMy)
Then there exists an O(klogn) time algorithm that
» outputs at most k potential coefficients

» outputs each nonzero X; correctly with probability at least
1—p for a constant p>0
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1 -y fraction of bucket

ideal bucket

leakage to other buckets

bounded\fy S« 1

-
1
1
1
1
1
1
1
1
1
1
1
I

n n
3B 0 3B

Let G be a (B,5/n,y)-flat window function:
» B buckets
» flat region of width 1 -y
> leakage <5/n=1/n°"

Such G can be constructed with
supp(G) = O((k/y)logn)
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PARTIALRECOVERY — algorithm

Main idea: filter, then run 1-sparse algorithm on each
subproblem

PARTIALRECOVERY(X, B, Y, )
Choose random be[n]and odd o €{1,2,...,n}

Define x/ — Xgjod?
1! !
Xj - Xj+1
Compute Ej’..ﬁ,j €[B], where ¢’ =x"-G
B
Ejf_’ﬂ,je [B], where ¢ =x"-G
B

Run 1-sparse decoding one ¢’,¢”
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PARTIALRECOVERY — algorithm

Recovering 5-sparse signal X from measurements of x

Permute spectrum
Filter signal

1-sparse decoding

0
frequency

Isolated frequencies are decoded successfully
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Recovering 5-sparse signal X from measurements of x

Permute spectrum
Filter signal

1-sparse decoding

0
frequency

Isolated frequencies are decoded successfully
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PARTIALRECOVERY — algorithm

Choose random b€ [n] and odd
ce{l1,2,....n}

Define x; — Xgjo/P
X=X
Compute Ej’.hﬁ,je [B], where ¢'=x"-G
B
Elffﬂ,j € [B], where c"=x"-G
B
For je[B]
If |C/,'-n/B| >1/2
i~
Decode from Cin/pr
(Two-point sampling)
End
End

X
Cin/B
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Basic block — analysis

Claim
For each u € supp(X) the probability that u is not reported is
bounded by O(k/B+Y).
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Basic block — analysis

Claim
For each u € supp(X) the probability that u is not reported is
bounded by O(k/B+Y).

Proof.

Probability of being mapped
» within n/B of another frequency is O(k/B)
» close to boundary of the bucket is O(y)

1 -y fraction of bucket

—_—
-- =

ideal bucket ;
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Computing C;.n/8

Option 1 — directly compute FFT of (x-G)_7,...,(x-G)T,
T=0((k/y)logn)

» Can be done in time O((k/y)log? n)

» Computes too many samples of X x G
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Computing C;.n/8

Option 1 — directly compute FFT of (x-G)_7,...,(x-G)T,
T=0((k/y)logn)

» Can be done in time O((k/y)log? n)
» Computes too many samples of X x G

Option 2 — alias x- G to B bins first

» Compute

bi= )Y xy.8GijB
Jjeln/B]

» Compute FFT of bin time

O(BlogB) = O((k/y)log )

59/75
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. Pseudorandom spectrum permutations
. Filter construction
. Basic block: partial recovery

. Full algorithm
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Full algorithm

Let C> 0 be a sufficiently large constant.

PARTIALRECOVERY(x,C-k ,7s ,1/poly(n))
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Full algorithm

Let C> 0 be a sufficiently large constant.

PARTIALRECOVERY(x,10-k ,{s ,1/poly(n))
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Full algorithm

Permute spectrum
Hash to 8 buckets
Recover isolated coeffs
Permute spectrum
Hash to 4 buckets

Recover isolated coeffs  «:¢
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Modified PARTIALRECOVERY

PARTIALRECOVERY(B, a, List)
Choose random b, odd o
Define x; = Xgjod?
X=X
Compute 5,’-.,5,/6 [B], where ¢'=x"-G

5/’{ ,j€[B], where ¢"=x"-G

Wl

For je[B]
If |a;-n/B| >1/2
Decode from E;,H/B,Elf,’n/B
(Two-point sampling)
End
End
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PARTIALRECOVERY — updating the bins

Previously located elements are still in the signal...

Subtract recovered elements from the bins

For each (pos, val) € List

U—a-pos—b

j—closest binto u
off —u—jn/B

=~ I~ o
Cj~n/B - Cj-n/B -val- Gol‘f

~

/!
Cin/B

/C\/,'-,n/B — —val-oY- Goff

End
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PARTIALRECOVERY — updating the bins

Previously located elements are still in the signal...

Subtract recovered elements from the bins

For each (pos, val) € List
U—a-pos—b

j—closest binto u
off —u—jn/B

=~ I~ o
Cj~n/B - Cj-n/B -val- Gol‘f

~

c

C j’..,n/B—Va/'(DU'Goff

/-,n/B -
End

frequency
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Full algorithm

List— ¢

For t=0 tologk
B; — Ck /4! > # of buckets to hash to
yi—1/(C2") > sharpness of filter

List — List+ PARTIALRECOVERY(B;, vy, List)
End
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Full algorithm — analysis
Let
e; — contents of the list after stage t.

Define ‘good event’ &; as
& = {||)?—é,||0 sk/sf}

Conditional on &;_1, for every f € [n] the probability of failure to
recover is at most the sum of
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Full algorithm — analysis
Let
e; — contents of the list after stage t.

Define ‘good event’ &; as
& = {||)?—é,||o sk/sf}

Conditional on &;_1, for every f € [n] the probability of failure to
recover is at most the sum of

» probability of collision with another element, which is no more
than
k/8' _ k/8' 1
Bi C-k/4t~ C.2t

» probability of being hashed to the non-flat region, which is no
more than

O(1)=0( 557
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Full algorithm — analysis

Define ‘good event’ &; as
&:={lIX—@llo < k/8'}

Then

1
Pr[&:1&6:-1] < Pr[fraction of failures is = 1/8|6;_1] < O(ﬁ)
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Full algorithm — analysis

Define ‘good event’ &; as
&r:={IX~&llo < k/8'}

Then

1
Pr[&:1&;_1] < Pr[fraction of failures is=1/8|&;_1] = O(ﬁ)

So for a sufficiently large C >0

Pr&1V...v8iogk] < O(1/C)-(1/2+1/4+..)=0(1/C) <1/10
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Full algorithm — analysis

List— ¢

Fort=1 tologk
B; — Ck /4!
ye—1/(C2%)

List — List+ PARTIALRECOVERY/(B;, vy, List)
End

Time complexity

» DFT:
O(klogn)+ O((k/4)logn) +...= O(klogn)

» List update: k-logn
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Sample complexity

List— ¢
Fort=1 tologk
B; — Ck /4!

ye—1/(C2")

List — List+ PARTIALRECOVERY(B;, 1, List)
End

Sample complexity O(klogn)+ O((k/4)logn)+...= O(klogn)

Suboptimal: sufficient to measure xg, X1,..., Xox t0 reconstruct
X if supp(X) < k (exercise).
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PARTIALRECOVERY (noisy setting)

Choose random b€ [n] and odd
ce{l1,2,....n}

Define x; — Xgjo/P
X=X
Compute Ej’.hﬁ,je [B], where ¢'=x"-G
B
Elffﬂ,j € [B], where c"=x"-G
B
For je[B]
If |C/,'-n/B| >1/2
i~
Decode from Cin/pr
(Two-point sampling)
End
End

X
Cin/B
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PARTIALRECOVERY (noisy setting)

Choose random b e [n] and odd

oe{l,2,...,n
- Fors=0,...,logon
Define x%%" — Xy (j.nwl 1P 92
XS1F _ \s0r r=1,...,0(loglogn)
) j+n/2s+1

Compute (M)j,n/,g, for je [B]
(XS’1’r' G)j-n/B’ forj€ [B]

For je[B]
If IC;,,,/BI >1/2
Decode from )A(g,()/,l; (or decode top k elements)
In
(As in lecture 1)
End
End
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Runtime and sample complexity

Noiseless: runtime O(klogn), sample complexity
O(klognloglogn)

Noisy: runtime O(klog® n), sample complexity
O(klog? nloglog n)

O(loglogn) can be removed, see
Hassanieh-Indyk-Katabi-Price’'STOC12

Sample complexity lower bound: Q(klog(n/k)) (Do Ba, Indyk,
Price, Woodruff’ SODA10)
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Next lecture:

O(klogn) samples and O(nlog® n) runtime
(Indyk-Kapralov’'FOCS14)
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