
Sparse Fourier Transform
(lecture 3)

Michael Kapralov1

1IBM Watson

MADALGO’15

1 / 45



Given x ∈Cn, compute the Discrete Fourier Transform of x :

x̂i =
∑

j∈[n]
xjω

ij ,

where ω= e2πi/n is the n-th root of unity.

Goal: find the top k coefficients of x̂ approximately

In last lecture:

Ï exactly k -sparse: O(k logn) runtime and samples

Ï approximately k -sparse: O(k log2 n) runtime and samples

This lecture:

Ï approximately k -sparse: O(k logn) samples (optimal)
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Sample complexity

Sample complexity=number of samples accessed in time domain.
In some applications at least as important as runtime

Shi-Andronesi-Hassanieh-Ghazi-
Katabi-Adalsteinsson’

ISMRM’13

Given access to x ∈Cn, find ŷ such that

||x̂ − ŷ ||2 ≤C ·mink−sparse ẑ ||x̂ − ẑ||2

Use smallest possible number of samples?
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Uniform bounds (for all):
Candes-Tao’06
Rudelson-Vershynin’08
Cheraghchi-Guruswami-Velingker’12
Bourgain’14
Haviv-Regev’15

Deterministic, Ω(n) runtime

O(k log2 k logn)

Non-uniform bounds (for each):
Goldreich-Levin’89
Kushilevitz-Mansour’91, Mansour’92
Gilbert-Guha-Indyk-Muthukrishnan-
Strauss’02
Gilbert-Muthukrishnan-Strauss’05
Hassanieh-Indyk-Katabi-Price’12a
Hassanieh-Indyk-Katabi-Price’12b
Indyk-K.-Price’14

Randomized, O(k ·poly(logn)) runtime

O(k logn ·(loglogn)C)

Lower bound: Ω(k log(n/k)) for non-adaptive algorithms Do-Ba-Indyk-Price-Woodruff’10

Theorem
There exists an algorithm for `2/`2 sparse recovery from Fourier
measurements using O(k logn) samples and O(n log3 n) runtime.

Optimal up to constant factors for k ≤ n1−δ.
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Higher dimensional Fourier transform is needed in some applications

Given x ∈C[n], N = nd , compute

x̂j =
1p
N

∑
i∈[n]

ωiT jxi and xj =
1p
N

∑
i∈[n]

ω−iT j x̂i

where ω is the n-th root of unity, and n is a power of 2.

5 / 45



Previous sample complexity bounds:
Ï O(k logd N) in sublinear time algorithms

Ï runtime k logO(d)N, for each

Ï O(k log4 N) for any d
Ï Ω(N) time, for all

This lecture:

Theorem
There exists an algorithm for `2/`2 sparse recovery from Fourier
measurements using Od (k logN) samples and O(N log3 N) runtime.

Sample-optimal up to constant factors for any constant d .

What about sublinear time recovery?
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Theorem
There exists an algorithm for `2/`2 sparse recovery from Fourier
measurements using Od (k logN(loglogN)2) samples and
O(k logd+2 N) runtime.

This extends the result of Indyk-K.-Price’14 to higher dimensions
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1. O(k logn) sample complexity in O(n log3 n) time
Ï extends to higher dimensions d

2. O(k logN(loglogN)2) sample complexity in O(k logd+2 N) time
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Outline:

1. `2/`2 sparse recovery guarantee

2. Iterative recovery scheme

3. Sample-optimal algorithm in O(N log3 N) time for d = 1

4. Experiments
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`2/`2 sparse recovery guarantees:

||x̂ − ŷ ||2 ≤C ·mink−sparse ẑ ||x̂ − ẑ||2

|x̂1| ≥ . . . ≥ |x̂k | ≥
|x̂k+1| ≥ |x̂k+2| ≥ . . .

Err2
k (x̂)=

∑n
j=k+1 |x̂j |2

Residual error bounded by noise
energy Err2

k (x̂)

head

tail

µ≈ tail noise/
p

k
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`2/`2 sparse recovery guarantees:

||x̂ − ŷ ||2 ≤C ·Err2
k (x̂)

µ≈ tail noise/
p

k

Sufficient to ensure that most elements are below average noise
level:

|x̂i − ŷi |2 ≤ c ·Err2
k (x̂)/k =:µ2
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Outline:

1. `2/`2 sparse recovery guarantee

2. Iterative recovery scheme

3. Sample-optimal algorithm in O(N log3 N) time for d = 1

4. Experiments
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Iterative recovery

Input: x ∈Cn

ŷ0 ← 0
For t = 1 to L

Ï ẑ ← PARTIALRECOVERY(x−yt−1) BTakes random samples of x −y
Ï Update ŷt ← ŷt−1 + ẑ

PARTIALRECOVERY(x)

return dominant Fourier coefficients ẑ of x (approximately)

dominant coefficients≈ |x̂i | ≥ cµ(above average noise level)
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dominant coefficients≈ |x̂i | ≥ cµ(above average noise level)

Recap of techniques from previous lectures

17 / 45



PARTIALRECOVERY(x)

return dominant Fourier coefficients ẑ of x (approximately)
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Task:approximate top k coeffs of x̂ using few samples

Natural idea: look at the value of the signal on the first O(k) points

This convolves spectrum with sinc: à(x ·G)= x̂ ∗ Ĝ
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f ′∈[n]
x̂f ′Ĝf−f ′

18 / 45



Task:approximate top k coeffs of x̂ using few samples

Natural idea: look at the value of the signal on the first O(k) points

This convolves spectrum with sinc: à(x ·G)= x̂ ∗ Ĝ
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What if two frequencies are close?
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−af − x̂f |2
]
= ∑

f ′∈[n]\{f }

|x̂f ′ |2|Ĝf−f ′ |2

Ï Expected error in terms of `2 norm (Parseval’s indentity).
Ï Take median of independent trials
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Pseudorandom permutation

Gilbert-Muthukrishnan-Strauss’05:

Do a random invertible linear transformation of time domain:

(Pσ,a,qx)i = xσ(i−a)ω
σqi

This operation permutes the spectrum:

á(Pσ,a,qx)πσ,q(i) = x̂iω
aσi ,

where
πσ,a(i)=σ(i −a) mod n.
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PARTIALRECOVERY(x)

return dominant Fourier coefficients ẑ of x (approximately)

Take M =C logn independent measurements:

y j ← (Pσj ,aj ,qj x) ·G
Sample complexity= filter support× logn

Estimate each f ∈ [n] as

ŵf ←median
{
ŷ j
π1(f )

ω−a1σ1f , . . . , ŷ j
πM(f )ω

−aMσM f
}

=:median
{
ỹ1

f , . . . , ỹM
f

}
.

Claim
If G =boxcar filter with support k/α, then with probability at least
1−n−Ω(C)

|x̂f − ŵf |2 =O(α) · ||x̂ ||22/k

Àµ2
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Most work so far: make PARTIALRECOVERY step more efficient
(better filters!)
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Outline:

1. `2/`2 sparse recovery guarantee

2. Iterative recovery scheme

3. Sample-optimal algorithm in O(N log3 N) time for d = 1

4. Experiments
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Iterative recovery

Input: x ∈Cn

ŷ0 ← 0
For t = 1 to L

Ï ẑ ← PARTIALRECOVERY(x−yt−1) BTakes random samples of x −y
Ï Update ŷt ← ŷt−1 + ẑ

In most prior works sampling complexity is

samples per PARTIALRECOVERY step×number of iterations

Lots of work on carefully choosing filters, reducing number of
iterations:
Hassanieh-Indyk-Katabi-Price’12,
Ghazi-Hassanieh-Indyk-Katabi-Price-Shi’13, Indyk-K.-Price’14

Ï still lose Ω(loglogn) in sample complexity (number of iterations)
Ï lose Ω((logn)d−1 loglogn) in higher dimensions
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ŷ0 ← 0
For t = 1 to L

Ï ẑ ← PARTIALRECOVERY(x−yt−1) BTakes random samples of x −y
Ï Update ŷt ← ŷt−1 + ẑ

Our sampling complexity is

samples per PARTIALRECOVERY step×number of iterations

Do not use fresh randomness in each iteration! In general
challenging: only one paper Bayati-Montanari’11 gives provable

guarantees, with Gaussians

Can use very simple filters!
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Ï ẑ ← PARTIALRECOVERY(x−yt−1) BTakes random samples of x −y
Ï Update ŷt ← ŷt−1 + ẑ
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Our filter=boxcar convolved with itself O(1) times

Filter support is O(k) (=samples per measurement)

O(k logn) samples in PARTIALRECOVERY step
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Can choose a rather weak filter, but do not need fresh randomness
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G ←B∗B∗B
Let ym ← (Pmx) ·G

m = 0, . . . ,M =C logn

ẑ0 ← 0
For t = 1, . . . ,T =O(logn):

For f ∈ [n]:
ŵf ←median

{
ỹ1

f , . . . , ỹM
f

}
If |ŵf | < 2T−tµ/3 then

ŵf ← 0
End

ẑt+1 = ẑt + ŵ
ym ← ym − (Pmw) ·G

for m = 1, . . . ,M
End

B Take samples of x

B Loop over thresholds

B Estimate, prune small
elements

B Update samples

Main challenge: lack of fresh randomness. Why does median work?
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f

}
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f

}
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Main estimation step:

ym ← (Pmx) ·G,m = 0, . . . ,M =C logn

ŵf ←median
{
ỹ1

f , . . . , ỹM
f

}
Main idea of analysis: split estimation error into two parts:∣∣ỹf − x̂f

∣∣= noise from head elements+ tail noise
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Let S denote the set of heavy hitters:

S = {
i ∈ [n] : |x̂i | >µ

}
.

There cannot be too many of them: |S| =O(k)

head

tail

Main invariant: never modify x̂ outside of S

Intuition: we only modify large frequencies (say those larger than 4µ),
and only those that we have reliable estimates for
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At time t :
Ï get 1±1/3 approximation to

near-maximum coordinates
Ï ||x̂ ||∞ decreases at least by factor

of 2
Ï only update elements in S

µ

Main estimation step:

ym ← (Pmx) ·G,m = 0, . . . ,M =C logn

ŵf ←median
{
ỹ1

f , . . . , ŷM
f

}
Need to show that estimation error is small:∣∣ỹf − x̂f

∣∣= noise from head elements+ tail noise
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Need to show that estimation error is small:∣∣ỹf − x̂f
∣∣≤ ∑

f ′∈S\{f }

ωaσ(f ′−f )x̂f ′Ĝπ(f )−π(f ′)+O(µ)

π(f )

Ï Cannot assume that a is random, but that is ok here! (use `1
bounds)

Ï If other head elements are far from π(f ), estimation error is small!
Ï Peel off largest elements only, so ok with error bounds like

||x̂ ||∞/100
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∣∣≤ ||x̂S ||∞ · ∑

f ′∈S\{f }
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Definition (Isolated at scale t)
Suppose that filter support is k/α for some constant α< 1. A
frequency f ∈ [n] is isolated under π at scale t if

π(f )+ [−(n/b) ·2t ,(n/b) ·2t ]

contains at most O(
p
α) ·2(3/2)t elements of π(S).

π(f )
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π(f )+ [−(n/b) ·2t ,(n/b) ·2t ]

contains at most O(
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Lemma
Any i ∈ [n] is isolated in 2/3 fraction of measurements whp.

Main estimation step:

ym ← (Pmx) ·G,m = 0, . . . ,M =C logn

ŵf ←median
{
ỹ1

f , . . . , ỹM
f

}
If f is isolated, then

||x̂ ||∞/100+O(µ)

so we have 1±1/3 estimates for near-maximum elements, e.g.

|x̂i | ≥ ||x̂ ||∞/3

Proved that this works just like with fresh randomness!
(as long as we recover starting from largest frequencies)
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Lecture so far

Ï Optimal sample complexity by reusing randomness

Ï Very simple algorithm, can be implemented

Ï Extension to higher dimensions: algorithm is the same,
permutations are different.

Ï Choose random invertible linear transformation over Zd
n
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Experimental evaluation

Problem: recover support of a random k -sparse signal from
Fourier

measurements.
Parameters: n = 215, k = 10,20, . . . ,100
Filter: boxcar filter with support k +1
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Comparison to `1-minimization (SPGL1)

O(k log3 k logn) sample complexity, requires LP solve
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Open questions:

Ï O(k logn) in O(k log2 n) time?

Ï O(k logn) runtime?

Ï remove dependence on dimension? Current approaches lose
Cd in sample complexity, (logn)d in runtime

More on sparse FFT:
http://groups.csail.mit.edu/netmit/sFFT/index.html
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