Sparse Fourier Transform (lecture 3)

Michael Kapralov ${ }^{1}$

${ }^{1}$ IBM Watson

MADALGO'15

Given $x \in \mathbb{C}^{n}$, compute the Discrete Fourier Transform of x :

$$
\widehat{x}_{i}=\sum_{j \in[n]} x_{j} \omega^{i j},
$$

where $\omega=e^{2 \pi i / n}$ is the n-th root of unity.

Given $x \in \mathbb{C}^{n}$, compute the Discrete Fourier Transform of x :

$$
\widehat{x}_{i}=\sum_{j \in[n]} x_{j} \omega^{i j},
$$

where $\omega=e^{2 \pi i / n}$ is the n-th root of unity.
Goal: find the top k coefficients of \widehat{x} approximately
In last lecture:

- exactly k-sparse: $O(k \log n)$ runtime and samples

Given $x \in \mathbb{C}^{n}$, compute the Discrete Fourier Transform of x :

$$
\widehat{x}_{i}=\sum_{j \in[n]} x_{j} \omega^{i j},
$$

where $\omega=e^{2 \pi i / n}$ is the n-th root of unity.
Goal: find the top k coefficients of \widehat{x} approximately
In last lecture:

- exactly k-sparse: $O(k \log n)$ runtime and samples
- approximately k-sparse: $O\left(k \log ^{2} n\right)$ runtime and samples

This lecture:

- approximately k-sparse: $O(k \log n)$ samples (optimal)

Sample complexity

Sample complexity=number of samples accessed in time domain. In some applications at least as important as runtime

Shi-Andronesi-Hassanieh-Ghazi-
Katabi-Adalsteinsson'
ISMRM'13

Sample complexity

Sample complexity=number of samples accessed in time domain. In some applications at least as important as runtime

Shi-Andronesi-Hassanieh-Ghazi-
Katabi-Adalsteinsson'
ISMRM'13

Given access to $x \in \mathbb{C}^{n}$, find \hat{y} such that

$$
\|\widehat{x}-\widehat{y}\|^{2} \leq C \cdot \min _{k-\text { sparse }}\|\widehat{z}-\widehat{z}\|^{2}
$$

Use smallest possible number of samples?

Uniform bounds (for all):
Candes-Tao'06
Rudelson-Vershynin'08
Cheraghchi-Guruswami-Velingker'12
Bourgain'14
Haviv-Regev'15

Non-uniform bounds (for each):
Goldreich-Levin'89
Kushilevitz-Mansour'91, Mansour'92
Gilbert-Guha-Indyk-Muthukrishnan-
Strauss'02
Gilbert-Muthukrishnan-Strauss'05 Hassanieh-Indyk-Katabi-Price'12a Hassanieh-Indyk-Katabi-Price'12b Indyk-K.-Price'14

Deterministic, $\Omega(n)$ runtime
$O\left(k \log ^{2} k \log n\right)$

Randomized, $O(k \cdot$ poly $(\log n))$ runtime
$O\left(k \log n \cdot(\log \log n)^{C}\right)$

Lower bound: $\Omega(k \log (n / k))$ for non-adaptive algorithms Do-Ba-Indyk-Price-Woodruff'10

Uniform bounds (for all):
Candes-Tao'06
Rudelson-Vershynin'08
Cheraghchi-Guruswami-Velingker'12
Bourgain'14
Haviv-Regev'15

Non-uniform bounds (for each):
Goldreich-Levin'89
Kushilevitz-Mansour'91, Mansour'92
Gilbert-Guha-Indyk-Muthukrishnan-
Strauss'02
Gilbert-Muthukrishnan-Strauss'05
Hassanieh-Indyk-Katabi-Price'12a
Hassanieh-Indyk-Katabi-Price'12b
Indyk-K.-Price'14

Deterministic, $\Omega(n)$ runtime
$O\left(k \log ^{2} k \log n\right)$

Randomized, $O(k \cdot$ poly $(\log n))$ runtime
$O\left(k \log n \cdot(\log \log n)^{C}\right)$

Lower bound: $\Omega(k \log (n / k))$ for non-adaptive algorithms Do-Ba-Indyk-Price-Woodruff'10
Theorem
There exists an algorithm for ℓ_{2} / ℓ_{2} sparse recovery from Fourier measurements using $O(k \log n)$ samples and $O\left(n \log ^{3} n\right)$ runtime.

Optimal up to constant factors for $k \leq n^{1-\delta}$.

Higher dimensional Fourier transform is needed in some applications
Given $x \in \mathbb{C}^{[n]}, N=n^{d}$, compute

$$
\widehat{x}_{j}=\frac{1}{\sqrt{N}} \sum_{i \in[n]} \omega^{i^{\top} j} x_{i} \text { and } x_{j}=\frac{1}{\sqrt{N}} \sum_{i \in[n]} \omega^{-i^{\top} j} \widehat{x}_{i}
$$

where ω is the n-th root of unity, and n is a power of 2 .

Previous sample complexity bounds:

- $O\left(k \log ^{d} N\right)$ in sublinear time algorithms
- runtime $k \log ^{O(d)} N$, for each
- $O\left(k \log ^{4} N\right)$ for any d
- $\Omega(N)$ time, for all

This lecture:
Theorem
There exists an algorithm for ℓ_{2} / ℓ_{2} sparse recovery from Fourier measurements using $O_{d}(k \log N)$ samples and $O\left(N \log ^{3} N\right)$ runtime.

Sample-optimal up to constant factors for any constant d.
What about sublinear time recovery?

Theorem

There exists an algorithm for ℓ_{2} / ℓ_{2} sparse recovery from Fourier measurements using $O_{d}\left(k \log N(\log \log N)^{2}\right)$ samples and $O\left(k \log ^{d+2} N\right)$ runtime .

This extends the result of Indyk-K.-Price'14 to higher dimensions

1. $O(k \log n)$ sample complexity in $O\left(n \log ^{3} n\right)$ time

- extends to higher dimensions d

2. $O\left(k \log N(\log \log N)^{2}\right)$ sample complexity in $O\left(k \log ^{d+2} N\right)$ time
3. $O(k \log n)$ sample complexity in $O\left(n \log ^{3} n\right)$ time

- extends to higher dimensions d

2. $O\left(k \log N(\log \log N)^{2}\right)$ sample complexity in $O\left(k \log ^{d+2} N\right)$ time

Outline:

1. ℓ_{2} / ℓ_{2} sparse recovery guarantee
2. Iterative recovery scheme
3. Sample-optimal algorithm in $O\left(N \log ^{3} N\right)$ time for $d=1$
4. Experiments
ℓ_{2} / ℓ_{2} sparse recovery guarantees:

$$
\|\widehat{x}-\widehat{y}\|^{2} \leq C \cdot \text { min }_{k \text {-sparse }} \hat{z}\|\widehat{x}-\widehat{z}\|^{2}
$$

ℓ_{2} / ℓ_{2} sparse recovery guarantees:

$$
\|\widehat{x}-\widehat{y}\|^{2} \leq C \cdot \min _{k-\text { sparse }} \hat{z}\|\widehat{x}-\hat{z}\|^{2}
$$

$$
\begin{gathered}
\left|\widehat{x}_{1}\right| \geq \ldots \geq|\widehat{\widehat{k}}| \geq \\
\left|\widehat{x}_{k+1}\right| \geq\left|\geq \widehat{x}_{k+2}\right| \geq \ldots \\
\operatorname{Err}_{k}^{2}(\widehat{x})=\sum_{j=k+1}^{n}\left|\widehat{x}_{j}\right|^{2}
\end{gathered}
$$

Residual error bounded by noise energy $\operatorname{Err}_{k}^{2}(\widehat{x})$

μ_{\approx} tail noise $/ \sqrt{k}$
ℓ_{2} / ℓ_{2} sparse recovery guarantees:

$$
\begin{gathered}
\|\widehat{x}-\widehat{y}\|^{2} \leq C \cdot \operatorname{Err}_{k}^{2}(\widehat{x}) \\
\begin{array}{c}
\left|\widehat{x}_{1}\right| \geq \ldots \geq\left|\widehat{x}_{k}\right| \geq \\
\left|\widehat{x}_{k+1}\right| \geq\left|\widehat{x}_{k+2}\right| \geq \ldots
\end{array} \\
\operatorname{Err}_{k}^{2}(\widehat{x})=\sum_{j=k+1}^{n}\left|\widehat{x}_{j}\right|^{2} \\
\text { Residual error bounded by noise } \\
\text { energy } \operatorname{Err}_{k}^{2}(\widehat{x})
\end{gathered}
$$

ℓ_{2} / ℓ_{2} sparse recovery guarantees:

$$
\begin{gathered}
\|\widehat{x}-\widehat{y}\|^{2} \leq C \cdot \operatorname{Err}_{k}^{2}(\widehat{x}) \\
\begin{array}{c}
\left|\widehat{x}_{1}\right| \geq \ldots \geq\left|\widehat{x}_{k}\right| \geq \\
\left|\widehat{x}_{k+1}\right| \geq\left|\widehat{x}_{k+2}\right| \geq \ldots
\end{array} \\
\operatorname{Err}_{k}^{2}(\widehat{x})=\sum_{j=k+1}^{n}\left|\widehat{x}_{j}\right|^{2} \\
\text { Residual error bounded by noise } \\
\text { energy } \operatorname{Err}_{k}^{2}(\widehat{x})
\end{gathered}
$$

ℓ_{2} / ℓ_{2} sparse recovery guarantees:

$$
\|\widehat{x}-\widehat{y}\|^{2} \leq C \cdot \operatorname{Err}_{k}^{2}(\widehat{x})
$$

$\mu_{\approx \text { tail noise }} / \sqrt{k}$

Sufficient to ensure that most elements are below average noise level:

$$
\left|\widehat{x}_{i}-\widehat{y}_{i}\right|^{2} \leq c \cdot \operatorname{Err}_{k}^{2}(\widehat{x}) / k=: \mu^{2}
$$

ℓ_{2} / ℓ_{2} sparse recovery guarantees:

$$
\|\widehat{x}-\widehat{y}\|^{2} \leq C \cdot \operatorname{Err}_{k}^{2}(\widehat{x})
$$

Sufficient to ensure that most elements are below average noise level:

$$
\left|\widehat{x}_{i}-\widehat{y}_{i}\right|^{2} \leq c \cdot \operatorname{Err}_{k}^{2}(\widehat{x}) / k=c \cdot \mu^{2}
$$

ℓ_{2} / ℓ_{2} sparse recovery guarantees:

$$
\|\widehat{x}-\widehat{y}\|^{2} \leq C \cdot \operatorname{Err}_{k}^{2}(\widehat{x})
$$

Sufficient to ensure that most elements are below average noise level:

$$
\left|\widehat{x}_{i}-\widehat{y}_{i}\right| \leq c \mu
$$

Outline:

1. ℓ_{2} / ℓ_{2} sparse recovery guarantee
2. Iterative recovery scheme
3. Sample-optimal algorithm in $O\left(N \log ^{3} N\right)$ time for $d=1$
4. Experiments

Iterative recovery

$$
\begin{aligned}
& \text { Input: } x \in \mathbb{C}^{n} \\
& \widehat{y}_{0} \leftarrow 0 \\
& \text { For } t=1 \text { to } L \\
& \text { - } \widehat{z} \leftarrow \text { PARTIALRECOVERY }\left(x-y_{t-1}\right) \quad \triangleright \text { Takes random samples of } x-y \\
& \text { - Update } \widehat{y}_{t} \leftarrow \widehat{y}_{t-1}+\widehat{z}
\end{aligned}
$$

PartialRecovery (x)
return dominant Fourier coefficients \widehat{z} of x (approximately)
dominant coefficients $\approx\left|\widehat{x}_{i}\right| \geq c \mu$ (above average noise level)

PartialRecovery (x)
return dominant Fourier coefficients \hat{z} of x (approximately)
dominant coefficients $\approx\left|\widehat{x}_{i}\right| \geq c \mu$ (above average noise level)

PARTIALRECOVERY (x)
return dominant Fourier coefficients \hat{z} of x (approximately)
dominant coefficients $\approx\left|\widehat{x}_{i}\right| \geq c \mu$ (above average noise level)
Recap of techniques from previous lectures

Task:approximate top k coeffs of \widehat{x} using few samples
Natural idea: look at the value of the signal on the first $O(k)$ points

Task:approximate top k coeffs of \widehat{x} using few samples
Natural idea: look at the value of the signal on the first $O(k)$ points

Task:approximate top k coeffs of \widehat{x} using few samples
Natural idea: look at the value of the signal on the first $O(k)$ points
This convolves spectrum with sinc: $\overline{(x \cdot G)}=\widehat{x} * \widehat{G}$

Task:approximate top k coeffs of \widehat{x} using few samples
Natural idea: look at the value of the signal on the first $O(k)$ points
This convolves spectrum with sinc: $\overline{(x \cdot G)}=\widehat{x} * \widehat{G}$

$$
\widehat{(G \cdot x)}_{f}=\sum_{f^{\prime} \in[n]} \widehat{x}_{f^{\prime}} \widehat{G}_{f-f^{\prime}}
$$

Task:approximate top k coeffs of \widehat{x} using few samples
Natural idea: look at the value of the signal on the first $O(k)$ points
This convolves spectrum with sinc: $\overline{(x \cdot G)}=\widehat{x} * \widehat{G}$

$$
\overline{(G \cdot x)}_{f}=\widehat{x}_{f}+\sum_{f^{\prime} \in[n], f^{\prime} \neq f} \widehat{x}_{f^{\prime}} \widehat{G}_{f-f^{\prime}}
$$

Task:approximate top k coeffs of \widehat{x} using few samples
Natural idea: look at the value of the signal on the first $O(k)$ points
This convolves spectrum with sinc: $\overline{(x \cdot G)}=\widehat{x} * \widehat{G}$

$$
\overline{(G \cdot x)}_{f}=\widehat{x}_{f}+\sum_{f^{\prime} \in[n], f^{\prime} \neq f} \widehat{x}_{f^{\prime}} \widehat{G}_{f-f^{\prime}}
$$

Task:approximate top k coeffs of \widehat{x} using few samples
Natural idea: look at the value of the signal on the first $O(k)$ points
This convolves spectrum with sinc: $\overline{(x \cdot G)}=\widehat{x} * \widehat{G}$

$$
\overline{(G \cdot x)}_{f}=\widehat{x}_{f}+\sum_{f^{\prime} \in[n], f^{\prime} \neq f} \widehat{x}_{f^{\prime}} \widehat{G}_{f-f^{\prime}}
$$

Task:approximate top k coeffs of \widehat{x} using few samples
Natural idea: look at the value of the signal on the first $O(k)$ points
This convolves spectrum with sinc: $\overline{(x \cdot G)}=\widehat{x} * \widehat{G}$

$$
\overline{(G \cdot x)}_{f} \omega^{-a f}=\widehat{x}_{f}+\sum_{f^{\prime} \in[n] \backslash\{f\}} \omega^{a\left(f^{\prime}-f\right)} \widehat{x}_{f^{\prime}} \widehat{G}_{f-f^{\prime}}
$$

Task:approximate top k coeffs of \widehat{x} using few samples
Natural idea: look at the value of the signal on the first $O(k)$ points
This convolves spectrum with sinc: $\overline{(x \cdot G)}=\widehat{x} * \widehat{G}$

$$
\overline{(G \cdot x)}_{f} \omega^{-a f}=\widehat{x}_{f}+\sum_{f^{\prime} \in[n] \backslash\{f\}} \omega^{a\left(f^{\prime}-f\right)} \widehat{x}_{f^{\prime}} \widehat{G}_{f-f^{\prime}}
$$

Task:approximate top k coeffs of \widehat{x} using few samples
Natural idea: look at the value of the signal on the first $O(k)$ points
This convolves spectrum with sinc: $\overline{(x \cdot G)}=\widehat{x} * \widehat{G}$

$$
\overline{(G \cdot x)}_{f} \omega^{-a f}=\widehat{x}_{f}+\sum_{f^{\prime} \in[n] \backslash\{f\}} \omega^{a\left(f^{\prime}-f\right)} \widehat{x}_{f^{\prime}} \widehat{G}_{f-f^{\prime}}
$$

Task:approximate top k coeffs of \widehat{x} using few samples
Natural idea: look at the value of the signal on the first $O(k)$ points
This convolves spectrum with sinc: $\overline{(x \cdot G)}=\widehat{x} * \widehat{G}$

$$
\overline{(G \cdot x)}_{f} \omega^{-a f}=\widehat{x}_{f}+\sum_{f^{\prime} \in[n] \backslash\{f\}} \omega^{a\left(f^{\prime}-f\right)} \widehat{x}_{f^{\prime}} \widehat{G}_{f-f^{\prime}}
$$

Task:approximate top k coeffs of \widehat{x} using few samples
Natural idea: look at the value of the signal on the first $O(k)$ points
This convolves spectrum with sinc: $\overline{(x \cdot G)}=\widehat{x} * \widehat{G}$

$$
\overline{(G \cdot x)}_{f} \omega^{-a f}=\widehat{x}_{f}+\sum_{f^{\prime} \in[n] \backslash\{f\}} \omega^{a\left(f^{\prime}-f\right)} \widehat{x}_{f^{\prime}} \widehat{G}_{f-f^{\prime}}
$$

$$
\mathbf{E}_{a}\left[\left.\left|\left(\widehat{(G \cdot x)}_{f} \omega^{-a f}-\left.\widehat{x}_{f}\right|^{2}\right]=\sum_{f^{\prime} \in[n] \backslash\{f\}}\right| \widehat{x}_{f^{\prime}}\right|^{2}\left|\widehat{G}_{f-f^{\prime}}\right|^{2}\right.
$$

- Expected error in terms of ℓ_{2} norm (Parseval's indentity).
- Take median of independent trials

$$
\mathbf{E}_{a}\left[\left.\left|\left(\overline{G \cdot x}_{f} \omega^{-a f}-\left.\widehat{x}_{f}\right|^{2}\right]=\sum_{f^{\prime} \in[n] \backslash\{f\}}\right| \widehat{x}_{f^{\prime}}\right|^{2}\left|\widehat{G}_{f-f^{\prime}}\right|^{2}\right.
$$

- Expected error in terms of ℓ_{2} norm (Parseval's indentity).
- Take median of independent trials

What if two frequencies are close?

$$
\mathbf{E}_{a}\left[\left|\widehat{(G \cdot x)}_{f} \omega^{-a f}-\widehat{x}_{f}\right|^{2}\right]=\sum_{f^{\prime} \in[n] \backslash\{f\}}\left|\widehat{x}_{f^{\prime}}\right|^{2}\left|\widehat{G}_{f-f^{\prime}}\right|^{2}
$$

- Expected error in terms of ℓ_{2} norm (Parseval's indentity).
- Take median of independent trials

Pseudorandom permutation

Gilbert-Muthukrishnan-Strauss'05:
Do a random invertible linear transformation of time domain:

$$
\left(P_{\sigma, \mathrm{a}, q} x\right)_{i}=x_{\sigma(i-a)} \omega^{\sigma q i}
$$

This operation permutes the spectrum:

$$
\left(\overline{P_{\sigma, a, q} x}\right)_{\pi_{\sigma, q}(i)}=\widehat{x}_{i} \omega^{a \sigma i}
$$

where

$$
\pi_{\sigma, a}(i)=\sigma(i-a) \quad \bmod n .
$$

PARTIALRECOVERY (x)
return dominant Fourier coefficients \hat{z} of x (approximately)
Take $M=C \log n$ independent measurements:

$$
y^{j} \leftarrow\left(P_{\sigma_{j}, a_{j} ; q_{j}} x\right) \cdot G
$$

Sample complexity $=$ filter support $\times \log n$
Estimate each $f \in[n]$ as

$$
\begin{aligned}
\widehat{w}_{f} & \leftarrow \operatorname{median}\left\{\hat{y}_{\pi_{1}(f)}^{j} \omega^{-a_{1} \sigma_{1} f}, \ldots, \widehat{y}_{\pi_{M}(f)}^{j}\left(\omega^{-a_{M} \sigma_{M} f}\right\}\right. \\
& =\operatorname{median}\left\{\tilde{y}_{f}^{1}, \ldots, \tilde{y}_{f}^{M}\right\} .
\end{aligned}
$$

Claim
If $G=$ boxcar filter with support k / α, then with probability at least $1-n^{-\Omega(C)}$

$$
\left|\widehat{x}_{f}-\widehat{w}_{f}\right|^{2}=O(\alpha) \cdot\|\widehat{x}\|_{2}^{2} / k
$$

PARTIALRECOVERY (x)
return dominant Fourier coefficients \hat{z} of x (approximately)
Take $M=C \log n$ independent measurements:

$$
y^{j} \leftarrow\left(P_{\sigma_{j}, a_{j} ; q_{j}} x\right) \cdot G
$$

Sample complexity $=$ filter support $\times \log n$
Estimate each $f \in[n]$ as

$$
\begin{aligned}
\widehat{w}_{f} & \leftarrow \operatorname{median}\left\{\hat{y}_{\pi_{1}(f)}^{j} \omega^{-a_{1} \sigma_{1} f}, \ldots, \widehat{y}_{\pi_{M}(f)}^{j} \omega^{-a_{M} \sigma_{M} f}\right\} \\
& =\operatorname{median}\left\{\tilde{y}_{f}^{1}, \ldots, \tilde{y}_{f}^{M}\right\} .
\end{aligned}
$$

Claim
If $G=$ boxcar filter with support k / α, then with probability at least $1-n^{-\Omega(C)}$

$$
\left|\widehat{x}_{f}-\widehat{w}_{f}\right|^{2}=O(\alpha) \cdot\|\widehat{x}\|_{2}^{2} / k \gg \mu^{2}
$$

Like hashing heavy hitters into buckets (CountSketch, CountMin), but buckets leak

Most work so far: make PartialRecovery step more efficient (better filters!)

Outline:

1. ℓ_{2} / ℓ_{2} sparse recovery guarantee
2. Iterative recovery scheme
3. Sample-optimal algorithm in $O\left(N \log ^{3} N\right)$ time for $d=1$
4. Experiments

Iterative recovery

Input: $x \in \mathbb{C}^{n}$
$\hat{y}_{0} \leftarrow 0$
For $t=1$ to L

- $\widehat{z} \leftarrow \operatorname{PaRTIALRECOVERY}\left(x-y_{t-1}\right) \quad \triangleright$ Takes random samples of $x-y$
- Update $\widehat{y}_{t} \leftarrow \hat{y}_{t-1}+\hat{z}$

Iterative recovery

Input: $x \in \mathbb{C}^{n}$
$\hat{y}_{0} \leftarrow 0$
For $t=1$ to L

- $\hat{z} \leftarrow \operatorname{PaRTIALRECOVERY}\left(x-y_{t-1}\right) \quad \triangleright$ Takes random samples of $x-y$
- Update $\widehat{y}_{t} \leftarrow \widehat{y}_{t-1}+\widehat{z}$

In most prior works sampling complexity is
samples per PartialRecovery step \times number of iterations

Iterative recovery

Input: $x \in \mathbb{C}^{n}$
$\widehat{y}_{0} \leftarrow 0$
For $t=1$ to L

- $\widehat{z} \leftarrow \operatorname{PaRtIALRECOVERY}\left(x-y_{t-1}\right) \quad \triangleright$ Takes random samples of $x-y$
- Update $\widehat{y}_{t} \leftarrow \widehat{y}_{t-1}+\hat{z}$

In most prior works sampling complexity is

samples per PartialRecovery step \times number of iterations

Lots of work on carefully choosing filters, reducing number of iterations:
Hassanieh-Indyk-Katabi-Price'12,
Ghazi-Hassanieh-Indyk-Katabi-Price-Shi'13, Indyk-K.-Price'14

- still lose $\Omega(\log \log n)$ in sample complexity (number of iterations)
- lose $\Omega\left((\log n)^{d-1} \log \log n\right)$ in higher dimensions

Iterative recovery

Input: $x \in \mathbb{C}^{n}$
$\widehat{y}_{0} \leftarrow 0$
For $t=1$ to L

- $\widehat{z} \leftarrow \operatorname{PaRtIALRECOVERY}\left(x-y_{t-1}\right) \quad \triangleright$ Takes random samples of $x-y$
- Update $\widehat{y}_{t} \leftarrow \hat{y}_{t-1}+\widehat{z}$

Our sampling complexity is
samples per PartialRecovery step \times number of iterations

Iterative recovery

Input: $x \in \mathbb{C}^{n}$
$\widehat{y}_{0} \leftarrow 0$
For $t=1$ to L

- $\widehat{z} \leftarrow \operatorname{PARTIALRECOVERY}\left(x-y_{t-1}\right) \quad \triangleright$ Fakes random samples of $x-y$
- Update $\widehat{y}_{t} \leftarrow \widehat{y}_{t-1}+\widehat{z}$

Our sampling complexity is
samples per PartialRecovery step \times number of iterations

Iterative recovery

Input: $x \in \mathbb{C}^{n}$
$\widehat{y}_{0} \leftarrow 0$
For $t=1$ to L

- $\hat{z} \leftarrow \operatorname{PaRtIALRECOVERY}\left(x-y_{t-1}\right) \quad \triangleright$ Takes random samples of $x-y$
- Update $\widehat{y}_{t} \leftarrow \widehat{y}_{t-1}+\widehat{z}$

Our sampling complexity is
samples per PartialRecovery step $*$ number of iterations

Can use very simple filters!

Our filter=boxcar convolved with itself $O(1)$ times

Filter support is $O(k)$ (=samples per measurement)

$$
O(k \log n) \text { samples in Partial Recovery step }
$$

Can choose a rather weak filter, but do not need fresh randomness

Our filter=boxcar convolved with itself $O(1)$ times

Filter support is $O(k)$ (=samples per measurement)

$O(k \log n)$ samples in PartialRecovery step

Can choose a rather weak filter, but do not need fresh randomness

Our filter=boxcar convolved with itself $O(1)$ times

Filter support is $O(k)$ (=samples per measurement)

$O(k \log n)$ samples in PartialRecovery step

Can choose a rather weak filter, but do not need fresh randomness
$G \leftarrow B * B * B$
Let $y^{m} \leftarrow\left(P_{m} x\right) \cdot G$

$$
m=0, \ldots, M=C \log n
$$

$\hat{z}_{0} \leftarrow 0$
For $t=1, \ldots, T=O(\log n)$:
For $f \in[n]$:

$$
\begin{gathered}
\widehat{w}_{f} \leftarrow \operatorname{median}\left\{\tilde{y}_{f}^{1}, \ldots, \widetilde{y}_{f}^{M}\right\} \\
\text { If }\left|\widehat{w}_{f}\right|<2^{T-t} \mu / 3 \text { then } \\
\widehat{w}_{f} \leftarrow 0
\end{gathered}
$$

End

$$
\begin{aligned}
& \widehat{z}_{t+1}=\widehat{z}_{t}+\widehat{w} \\
& y^{m} \leftarrow y^{m}-\left(P_{m} w\right) \cdot G \\
& \quad \text { for } m=1, \ldots, M
\end{aligned}
$$

End

\triangleright Take samples of x
\triangleright Loop over thresholds
\triangleright Estimate, prune small elements
\triangleright Update samples

$G \leftarrow B * B * B$

Let $y^{m} \leftarrow\left(P_{m} x\right) \cdot G$

$$
m=0, \ldots, M=C \log n
$$

$\widehat{z}_{0} \leftarrow 0$
For $t=1, \ldots, T=O(\log n)$:
For $f \in[n]$:

$$
\widehat{w}_{f} \leftarrow \operatorname{median}\left\{\widetilde{y}_{f}^{1}, \ldots, \widetilde{y}_{f}^{M}\right\}
$$

If $\left|\widehat{w}_{f}\right|<2^{T-t} \mu / 3$ then $\widehat{w}_{f} \leftarrow 0$
End

$$
\begin{aligned}
& \widehat{z}_{t+1}=\widehat{z}_{t}+\widehat{w} \\
& y^{m} \leftarrow y^{m}-\left(P_{m} w\right) \cdot G \\
& \quad \text { for } m=1, \ldots, M
\end{aligned}
$$

End

$G \leftarrow B * B * B$

Let $y^{m} \leftarrow\left(P_{m} x\right) \cdot G$

$$
m=0, \ldots, M=C \log n
$$

$\widehat{z}_{0} \leftarrow 0$
For $t=1, \ldots, T=O(\log n)$:
For $f \in[n]$:

$$
\widehat{w}_{f} \leftarrow \operatorname{median}\left\{\widetilde{y}_{f}^{1}, \ldots, \widetilde{y}_{f}^{M}\right\}
$$

If $\left|\widehat{w}_{f}\right|<2^{T-t} \mu / 3$ then $\widehat{w}_{f} \leftarrow 0$
End

$$
\begin{aligned}
& \widehat{z}_{t+1}=\widehat{z}_{t}+\widehat{w} \\
& y^{m} \leftarrow y^{m}-\left(P_{m} w\right) \cdot G \\
& \quad \text { for } m=1, \ldots, M
\end{aligned}
$$

End

$G \leftarrow B * B * B$

Let $y^{m} \leftarrow\left(P_{m} x\right) \cdot G$
$m=0, \ldots, M=C \log n$
$\widehat{z}_{0} \leftarrow 0$
For $t=1, \ldots, T=O(\log n)$:
For $f \in[n]$:
$\widehat{w}_{f} \leftarrow \operatorname{median}\left\{\widetilde{y}_{f}^{1}, \ldots, \widetilde{y}_{f}^{M}\right\}$
If $\left|\widehat{w}_{f}\right|<2^{T-t} \mu / 3$ then $\widehat{w}_{f} \leftarrow 0$
End

$$
\begin{aligned}
& \widehat{z}_{t+1}=\widehat{z}_{t}+\widehat{w} \\
& y^{m} \leftarrow y^{m}-\left(P_{m} W\right) \cdot G \\
& \quad \text { for } m=1, \ldots, M
\end{aligned}
$$

End

$G \leftarrow B * B * B$

Let $y^{m} \leftarrow\left(P_{m} x\right) \cdot G$
$m=0, \ldots, M=C \log n$
$\widehat{z}_{0} \leftarrow 0$
For $t=1, \ldots, T=O(\log n)$:
For $f \in[n]$:

$$
\widehat{w}_{f} \leftarrow \operatorname{median}\left\{\widetilde{y}_{f}^{1}, \ldots, \widetilde{y}_{f}^{M}\right\}
$$

If $\left|\widehat{w}_{f}\right|<2^{T-t} \mu / 3$ then $\widehat{w}_{f} \leftarrow 0$
End

$$
\begin{aligned}
& \widehat{z}_{t+1}=\widehat{z}_{t}+\widehat{w} \\
& y^{m} \leftarrow y^{m}-\left(P_{m} W\right) \cdot G \\
& \quad \text { for } m=1, \ldots, M
\end{aligned}
$$

End

$G \leftarrow B * B * B$

Let $y^{m} \leftarrow\left(P_{m} x\right) \cdot G$
$m=0, \ldots, M=C \log n$
$\widehat{z}_{0} \leftarrow 0$
For $t=1, \ldots, T=O(\log n)$:
For $f \in[n]$:

$$
\widehat{w}_{f} \leftarrow \operatorname{median}\left\{\widetilde{y}_{f}^{1}, \ldots, \widetilde{y}_{f}^{M}\right\}
$$

If $\left|\widehat{w}_{f}\right|<2^{T-t} \mu / 3$ then

$$
\widehat{w}_{f} \leftarrow 0
$$

End
-

$$
\begin{aligned}
& \widehat{z}_{t+1}=\widehat{z}_{t}+\widehat{w} \\
& y^{m} \leftarrow y^{m}-\left(P_{m} W\right) \cdot G \\
& \quad \text { for } m=1, \ldots, M
\end{aligned}
$$

End
$G \leftarrow B * B * B$
Let $y^{m} \leftarrow\left(P_{m} x\right) \cdot G$
$m=0, \ldots, M=C \log n$
$\hat{z}_{0} \leftarrow 0$
For $t=1, \ldots, T=O(\log n)$:
For $f \in[n]$:

$$
\widehat{w}_{f} \leftarrow \operatorname{median}\left\{\tilde{y}_{f}^{1}, \ldots, \tilde{y}_{f}^{M}\right\}
$$

If $\left|\widehat{w}_{f}\right|<2^{T-t} \mu / 3$ then

$$
\widehat{w}_{f} \leftarrow 0
$$

End

$$
\begin{aligned}
\widehat{z}_{t+1} & =\widehat{z}_{t}+\widehat{w} \\
y^{m} & \leftarrow y^{m}-\left(P_{m} w\right) \cdot G \\
& \text { for } m=1, \ldots, M
\end{aligned}
$$

End
Main challenge: lack of fresh randomness. Why does median work?

Main estimation step:

$$
\begin{aligned}
& y^{m} \leftarrow\left(P_{m} x\right) \cdot G, m=0, \ldots, M=C \log n \\
& \widehat{w}_{f} \leftarrow \operatorname{median}\left\{\widetilde{y}_{f}^{1}, \ldots, \widetilde{y}_{f}^{M}\right\}
\end{aligned}
$$

Main idea of analysis: split estimation error into two parts:
$\left|\widetilde{y}_{f}-\widehat{x}_{f}\right|=$ noise from head elements + tail noise

Let S denote the set of heavy hitters:

$$
S=\left\{i \in[n]:\left|\widehat{x}_{i}\right|>\mu\right\} .
$$

There cannot be too many of them: $|S|=O(k)$

Let S denote the set of heavy hitters:

$$
S=\left\{i \in[n]:\left|\widehat{x}_{i}\right|>\mu\right\} .
$$

There cannot be too many of them: $|S|=O(k)$

Main invariant: never modify \widehat{x} outside of S
Intuition: we only modify large frequencies (say those larger than 4μ), and only those that we have reliable estimates for

At time t :

- get $1 \pm 1 / 3$ approximation to near-maximum coordinates
- $\|\widehat{X}\|_{\infty}$ decreases at least by factor of 2
- only update elements in S

At time t :

- get $1 \pm 1 / 3$ approximation to near-maximum coordinates
- $\|\widehat{x}\|_{\infty}$ decreases at least by factor of 2
- only update elements in S

Main estimation step:

$$
\begin{aligned}
& y^{m} \leftarrow\left(P_{m} x\right) \cdot G, m=0, \ldots, M=C \log n \\
& \widehat{w}_{f} \leftarrow \operatorname{median}\left\{\widetilde{y}_{f}^{1}, \ldots, \widehat{y}_{f}^{M}\right\}
\end{aligned}
$$

At time t :

- get $1 \pm 1 / 3$ approximation to near-maximum coordinates
- $\|\widehat{x}\|_{\infty}$ decreases at least by factor of 2
- only update elements in S

Main estimation step:

$$
\begin{aligned}
& y^{m} \leftarrow\left(P_{m} x\right) \cdot G, m=0, \ldots, M=C \log n \\
& \widehat{w}_{f} \leftarrow \operatorname{median}\left\{\widetilde{y}_{f}^{1}, \ldots, \widehat{y}_{f}^{M}\right\}
\end{aligned}
$$

Need to show that estimation error is small:

$$
\left|\widetilde{y}_{f}-\widehat{x}_{f}\right|=\text { noise from head elements + tail noise }
$$

At time t :

- get $1 \pm 1 / 3$ approximation to near-maximum coordinates
- $\|\widehat{x}\|_{\infty}$ decreases at least by factor of 2
- only update elements in S

Main estimation step:

$$
\begin{aligned}
& y^{m} \leftarrow\left(P_{m} x\right) \cdot G, m=0, \ldots, M=C \log n \\
& \widehat{w}_{f} \leftarrow \operatorname{median}\left\{\widetilde{y}_{f}^{1}, \ldots, \widehat{y}_{f}^{M}\right\}
\end{aligned}
$$

Need to show that estimation error is small:

$$
\left|\widetilde{y}_{f}-\widehat{x}_{f}\right|=\text { noise from head elements }+O(\mu)
$$

Need to show that estimation error is small:

$$
\left|\widetilde{y}_{f}-\widehat{x}_{f}\right| \leq \sum_{f^{\prime} \in S \backslash\{f\}} \omega^{a \sigma\left(f^{\prime}-f\right)} \widehat{x}_{f^{\prime}} \widehat{G}_{\pi(f)-\pi\left(f^{\prime}\right)}+O(\mu)
$$

Need to show that estimation error is small:

$$
\left|\widetilde{y}_{f}-\widehat{x}_{f}\right| \leq \sum_{f^{\prime} \in S \backslash\{f\}} \omega^{\operatorname{a\sigma }\left(f^{\prime}-f\right)} \widehat{x}_{f^{\prime}} \widehat{G}_{\pi(f)-\pi\left(f^{\prime}\right)}+O(\mu)
$$

- Cannot assume that a is random, but that is ok here! (use ℓ_{1} bounds)

Need to show that estimation error is small:

$$
\left|\widetilde{y}_{f}-\widehat{x}_{f}\right| \leq \sum_{f^{\prime} \in S \backslash\{f\}}\left|\widehat{x}_{f^{\prime}}\right|\left|\widehat{G}_{\pi(f)-\pi\left(f^{\prime}\right)}\right|+O(\mu)
$$

- Cannot assume that a is random, but that is ok here! (use ℓ_{1} bounds)

Need to show that estimation error is small:

$$
\left|\widetilde{y}_{f}-\widehat{x}_{f}\right| \leq\left\|\widehat{x}_{S}\right\|_{\infty} \cdot \sum_{f^{\prime} \in S \backslash\{f\}}\left|\widehat{G}_{\pi(f)-\pi\left(f^{\prime}\right)}\right|+O(\mu)
$$

- Cannot assume that a is random, but that is ok here! (use ℓ_{1} bounds)
- Peel off largest elements only, so ok with error bounds like $\|\widehat{X}\|_{\infty} / 100$

Need to show that estimation error is small:

$$
\left|\tilde{y}_{f}-\widehat{x}_{f}\right| \leq\left\|\widehat{X}_{S}\right\|_{\infty} \cdot \sum_{f^{\prime} \in \mathcal{S} \backslash\{f\}}\left|\widehat{G}_{\pi(f)-\pi\left(f^{\prime}\right)}\right|+O(\mu)
$$

- Cannot assume that a is random, but that is ok here! (use ℓ_{1} bounds)
- Peel off largest elements only, so ok with error bounds like $\|\widehat{X}\|_{\infty} / 100$
- If other head elements are far from $\pi(f)$, estimation error is small!

Need to show that estimation error is small:

$$
\left|\tilde{y}_{f}-\widehat{x}_{f}\right| \leq\left\|\widehat{x}_{S}\right\|_{\infty} \cdot \sum_{f^{\prime} \in S \backslash\{f\}}\left|\widehat{G}_{\pi(f)-\pi\left(f^{\prime}\right)}\right|+O(\mu)
$$

- Cannot assume that a is random, but that is ok here! (use ℓ_{1} bounds)
- Peel off largest elements only, so ok with error bounds like $\|\widehat{X}\|_{\infty} / 100$
- If other head elements are far from $\pi(f)$, estimation error is small!

Need to show that estimation error is small:

$$
\left|\tilde{y}_{f}-\widehat{x}_{f}\right| \leq\left\|\widehat{x}_{S}\right\|_{\infty} \cdot \sum_{f^{\prime} \in \mathcal{S}\{\{f\}}\left|\widehat{G}_{\pi(f)-\pi\left(f^{\prime}\right) \mid}\right|+O(\mu)
$$

- Cannot assume that a is random, but that is ok here! (use ℓ_{1} bounds)
- Peel off largest elements only, so ok with error bounds like $\|\widehat{X}\|_{\infty} / 100$
- If other head elements are far from $\pi(f)$, estimation error is small!

Need to show that estimation error is small:

$$
\left|\widetilde{y}_{f}-\widehat{x}_{f}\right| \leq\left\|\widehat{x}_{S}\right\|_{\infty} \cdot \sum_{f^{\prime} \in S \backslash\{f\}}\left|\widehat{G}_{\pi(f)-\pi\left(f^{\prime}\right)}\right|+O(\mu)
$$

- Cannot assume that a is random, but that is ok here! (use ℓ_{1} bounds)
- Peel off largest elements only, so ok with error bounds like $\|\widehat{X}\|_{\infty} / 100$
- If other head elements are far from $\pi(f)$, estimation error is small!

Definition (Isolated at scale t)

Suppose that filter support is k / α for some constant $\alpha<1$. A frequency $f \in[n]$ is isolated under π at scale t if

$$
\pi(f)+\left[-(n / b) \cdot 2^{t},(n / b) \cdot 2^{t}\right]
$$

contains at most $O(\sqrt{\alpha}) \cdot 2^{(3 / 2) t}$ elements of $\pi(S)$.

Definition (Isolated at scale t)

Suppose that filter support is k / α for some constant $\alpha<1$. A frequency $f \in[n]$ is isolated under π at scale t if

$$
\pi(f)+\left[-(n / b) \cdot 2^{t},(n / b) \cdot 2^{t}\right]
$$

contains at most $O(\sqrt{\alpha}) \cdot 2^{(3 / 2) t}$ elements of $\pi(S)$.

Definition (Isolated at scale t)

Suppose that filter support is k / α for some constant $\alpha<1$. A frequency $f \in[n]$ is isolated under π at scale t if

$$
\pi(f)+\left[-(n / b) \cdot 2^{t},(n / b) \cdot 2^{t}\right]
$$

contains at most $O(\sqrt{\alpha}) \cdot 2^{(3 / 2) t}$ elements of $\pi(S)$.

Definition (Isolated at scale \ddagger)

Suppose that filter support is k / α for some constant $\alpha<1$. A frequency $f \in[n]$ is isolated under π at seate $t i$ if

$$
\pi(f)+\left[-(n / b) \cdot 2^{t},(n / b) \cdot 2^{t}\right]
$$

contains at most $O(\sqrt{\alpha}) \cdot 2^{(3 / 2) t}$ elements of $\pi(S)$ for all $t \geq 0$.

Lemma
Any $i \in[n]$ is isolated in $2 / 3$ fraction of measurements whp.

Lemma

Any $i \in[n]$ is isolated in 2/3 fraction of measurements whp. Main estimation step:

$$
\begin{aligned}
& y^{m} \leftarrow\left(P_{m} x\right) \cdot G, m=0, \ldots, M=C \log n \\
& \widehat{w}_{f} \leftarrow \operatorname{median}\left\{\widetilde{y}_{f}^{1}, \ldots, \widetilde{y}_{f}^{M}\right\}
\end{aligned}
$$

If f is isolated, then

$$
\|\widehat{x}\|_{\infty} / 100+O(\mu)
$$

so we have $1 \pm 1 / 3$ estimates for near-maximum elements, e.g.

$$
\left|\widehat{x}_{i}\right| \geq\|\widehat{x}\|_{\infty} / 3
$$

Lemma

Any $i \in[n]$ is isolated in $2 / 3$ fraction of measurements whp. Main estimation step:

$$
\begin{aligned}
& y^{m} \leftarrow\left(P_{m} x\right) \cdot G, m=0, \ldots, M=C \log n \\
& \widehat{w}_{f} \leftarrow \operatorname{median}\left\{\widetilde{y}_{f}^{1}, \ldots, \widetilde{y}_{f}^{M}\right\}
\end{aligned}
$$

If f is isolated, then

$$
\|\widehat{x}\|_{\infty} / 100+O(\mu)
$$

so we have $1 \pm 1 / 3$ estimates for near-maximum elements, e.g.

$$
\left|\widehat{x}_{i}\right| \geq\|\widehat{x}\|_{\infty} / 3
$$

Proved that this works just like with fresh randomness! (as long as we recover starting from largest frequencies)

Lecture so far

- Optimal sample complexity by reusing randomness
- Very simple algorithm, can be implemented
- Extension to higher dimensions: algorithm is the same, permutations are different.
- Choose random invertible linear transformation over \mathbb{Z}_{n}^{d}

Experimental evaluation

Problem: recover support of a random k-sparse signal from Fourier
measurements.
Parameters: $n=2^{15}, k=10,20, \ldots, 100$ Filter:
boxcar filter with support $k+1$

Comparison to ℓ_{1}-minimization (SPGL1)

$O\left(k \log ^{3} k \log n\right)$ sample complexity, requires LP solve

Within a factor of 2 of ℓ_{1} minimization

Open questions:

- $O(k \log n)$ in $O\left(k \log ^{2} n\right)$ time?
- $O(k \log n)$ runtime?
- remove dependence on dimension? Current approaches lose C^{d} in sample complexity, $(\log n)^{d}$ in runtime

Open questions:

- $O(k \log n)$ in $O\left(k \log ^{2} n\right)$ time?
- $O(k \log n)$ runtime?
- remove dependence on dimension? Current approaches lose C^{d} in sample complexity, $(\log n)^{d}$ in runtime

More on sparse FFT:
http://groups.csail.mit.edu/netmit/sFFT/index.html

