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Given x € C", compute the Discrete Fourier Transform of x:

%i= Y xol,
jetn)

where w = 2™/ is the n-th root of unity.
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45



Given x € C", compute the Discrete Fourier Transform of x:

%i= Y xol,
jetn)

where w = 2™/ is the n-th root of unity.
Goal: find the top k coefficients of X approximately

In last lecture:
» exactly k-sparse: O(klogn) runtime and samples

> approximately k-sparse: O(klog? n) runtime and samples

This lecture:

» approximately k-sparse: O(klogn) samples (optimal)



Sample complexity

Sample complexity=number of samples accessed in time domain.
In some applications at least as important as runtime
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Sample complexity

Sample complexity=number of samples accessed in time domain.
In some applications at least as important as runtime
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Given access to x € C", find y such that

~ ~2 . ~ a2
IX=Y11° = C-miny_gparse 211X — 2|

Use smallest possible number of samples?



Uniform bounds (for all):

Candes-Tao'06
Rudelson-Vershynin’08
Cheraghchi-Guruswami-Velingker'12
Bourgain’14

Haviv-Regev’'15

Deterministic, Q(n) runtime
O(klog? klog n)

Non-uniform bounds (for each):

Goldreich-Levin’89
Kushilevitz-Mansour'91, Mansour'92
Gilbert-Guha-Indyk-Muthukrishnan-
Strauss’02
Gilbert-Muthukrishnan-Strauss’05
Hassanieh-Indyk-Katabi-Price’12a
Hassanieh-Indyk-Katabi-Price’12b
Indyk-K.-Price’14

Randomized, O(k -poly(logn)) runtime
O(klogn-(loglog n)C)

Lower bound: Q(klog(n/k)) for non-adaptive algorithms Do-Ba-Indyk-Price-Woodruff’10
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Rudelson-Vershynin’08
Cheraghchi-Guruswami-Velingker'12
Bourgain’14

Haviv-Regev’'15

Deterministic, Q(n) runtime
O(klog? klogn)

Non-uniform bounds (for each):

Goldreich-Levin’89
Kushilevitz-Mansour'91, Mansour'92
Gilbert-Guha-Indyk-Muthukrishnan-
Strauss’02
Gilbert-Muthukrishnan-Strauss’05
Hassanieh-Indyk-Katabi-Price’12a
Hassanieh-Indyk-Katabi-Price’12b
Indyk-K.-Price’14

Randomized, O(k -poly(logn)) runtime
O(klogn-(loglogn)©)

Lower bound: Q(klog(n/k)) for non-adaptive algorithms Do-Ba-Indyk-Price-Woodruff’10

Theorem

There exists an algorithm for €5 /€5 sparse recovery from Fourier
measurements using O(klog n) samples and O(nlog® n) runtime.

Optimal up to constant factors for k < n'~2.



Higher dimensional Fourier transform is needed in some applications

Given x e Cl"l, N=n?, compute

o1 CiTie
Z‘” Ix; and x; = w1z,

X.
T \/_ /e[n] \/_ /e[n]

where o is the n-th root of unity, and nis a power of 2.
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Previous sample complexity bounds:
» O(klog? N) in sublinear time algorithms
» runtime klog®? N, for each
» O(klog* N) for any d
» Q(N) time, for all

This lecture:

Theorem

There exists an algorithm for €5 /€> sparse recovery from Fourier
measurements using O,(klog N) samples and O(Nlog® N) runtime.

Sample-optimal up to constant factors for any constant d.

What about sublinear time recovery?



Theorem

There exists an algorithm for €, /¢, sparse recovery from Fourier

measurements using Oq(klog N(loglog N)?) samples and
O(klog?*2 N) runtime.

This extends the result of Indyk-K.-Price’14 to higher dimensions



1. O(klogn) sample complexity in O(nlog® n) time
» extends to higher dimensions d
2. O(klogN(loglog N)?) sample complexity in O(klog®*2 N) time
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1. O(klogn) sample complexity in O(nlog® n) time
» extends to higher dimensions d
2. O(klogN(loglog N)?) sample complexity in O(klog®*2 N) time
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Outline:
1. €»/0> sparse recovery guarantee
2. lterative recovery scheme
3. Sample-optimal algorithm in O(Nlog® N) time for d = 1

4. Experiments
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05 /0> sparse recovery guarantees:

~ 2 . ~ a2
[IX=yll SC'mmk—sparse2||X—Z||

wll

H~ tail noise/ vk
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€5 /0, sparse recovery guarantees:

~ 2 . ~ a2
[IX=yll SC'mmk—sparse2||X—Z||

IX1]=...= Xk =
[Xki1] = [ Xiiol = ... Residual error bounded by noise
, energy Err2(X)
n
Erre (%) =X 1y %12

S TP M= tail noise/ vk
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05 /€5 sparse recovery guarantees:
IX =1 < C-Er(x)

IX1]=...> Xk =
[Xii1] = [ Xiiol = ... Residual error bounded by noise

- - energy Err2(X)
Erre(X) =L k1 1%

S TP H= tail noise/ vk
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05 /€5 sparse recovery guarantees:
IX =1 < C-Er(x)

IX1]=...> Xk =
[Xii1] = [ Xiiol = ... Residual error bounded by noise

- - energy Err2(X)
Erre(X) =L k1 1%

S TP H= tail noise/ vk
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05 /05 sparse recovery

guarantees:

IX =PI < C-Er(x)

_ Ll

Ll ol

H~ tail noise/ vk

Sufficient to ensure that most elements are below average noise

level:

% - Jil? < ¢ Erré(X) /k =: p®
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€5 /0, sparse recovery guarantees:

J‘—'—'—“—"‘—"— H= tail noise/ vk

IX-yI12 < C-Erré(x)

Sufficient to ensure that most elements are below average noise

1% - yil? < c-Err(X)/k = c-p®

level:
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€5 /0, sparse recovery guarantees:

J‘—'—'—“—"‘—"— H= tail noise/ vk

IX-yI12 < C-Erré(x)

Sufficient to ensure that most elements are below average noise

level:

IXj—Yyil<cu
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Outline:
1. €5/€5 sparse recovery guarantee
2. lterative recovery scheme
3. Sample-optimal algorithm in O(Nlog® N) time for d = 1

4. Experiments
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lterative recovery

Input: xeC”

Yo—0

Fort=1toL
» Z— PARTIALRECOVERY(Xx—);_1) ©>Takes random samples of x —y
» Update y; — ys_1+2

PARTIALRECOVERY(X)

return dominant Fourier coefficients Z of x (approximately)

dominant coefficients= |X;| = cu(above average noise level)
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PARTIALRECOVERY(X)

return dominant Fourier coefficients Z of x (approximately)

dominant coefficients~ |X;| = cu(above average noise level)
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PARTIALRECOVERY(X)

return dominant Fourier coefficients Z of x (approximately)

dominant coefficients~ |X;| = cu(above average noise level)

Recap of techniques from previous lectures

17/45
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Task:approximate top k coeffs of X using few samples

Natural idea: look at the value of the signal on the first O(k) points

LTI HMH‘\‘ |

|
:

s ‘ g 08
i i

sf 4 02r

000 -800 -6 ~1000 -800 600  -400  -200

00 400 200 o 1000

19/45



magnitude

Task:approximate top k coeffs of X using few samples

Natural idea: look at the value of the signal on the first O(k) points
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magnitude

Task:approximate top k coeffs of X using few samples
Natural idea: look at the value of the signal on the first O(k) points

This convolves spectrum with sinc: (x-G) =X G

magnitude
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magnitude

Task:approximate top k coeffs of X using few samples
Natural idea: look at the value of the signal on the first O(k) points

This convolves spectrum with sinc: (x-G) =X G

(G'X)f:)?f‘F Z ?f/Gf_f/
fre[n]. f2f
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magnitude

Task:approximate top k coeffs of X using few samples

Natural idea: look at the value of the signal on the first O(k) points

[

This convolves spectrum with sinc: (x-G) =X =
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magnitude

Task:approximate top k coeffs of X using few samples
Natural idea: look at the value of the signal on the first O(k) points

This convolves spectrum with sinc: (x-G) =X * G
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(G-X)f=)A(f+ Z ?f/Gf_fr
f'e[n),f'#f
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magnitude

i 7 by |
4 W ﬁ VARY/

Task:approximate top k coeffs of X using few samples
Natural idea: look at the value of the signal on the first O(k) points

This convolves spectrum with sinc: (x-G) =X = G
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magnitude

Task:approximate top k coeffs of X using few samples
Natural idea: look at the value of the signal on the first O(k) points

This convolves spectrum with sinc: (x-G) =X * G
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magnitude

Task:approximate top k coeffs of X using few samples
Natural idea: look at the value of the signal on the first O(k) points

This convolves spectrum with sinc: (x-G) =X * G
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magnitude

i 7 by |
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Task:approximate top k coeffs of X using few samples
Natural idea: look at the value of the signal on the first O(k) points

This convolves spectrum with sinc: (x-G) =X = G
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magnitude
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» Expected error in terms of £, norm (Parseval’s indentity).

» Take median of independent trials
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magnitude
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» Expected error in terms of £, norm (Parseval’s indentity).

» Take median of independent trials

25/45



What if two frequencies are close?

rrrrrrrr

» Expected error in terms of 5 norm (Parseval’s indentity).
» Take median of independent trials
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Pseudorandom permutation

Gilbert-Muthukrishnan-Strauss’05:

Do a random invertible linear transformation of time domain:
(Po,aqX)i = Xo(i—a)wcql

This operation permutes the spectrum:

(Po-’a,qx)no'q(i) = )?[(DaU[,

where

27/45



PARTIALRECOVERY(X)

return dominant Fourier coefficients Z of x (approximately)

Take M = Clog n independent measurements:
yj - (Po'jvaj)qjx) -G
Sample complexity= filter support x logn

Estimate each fe[n] as

& ; ol -ajoqf ol -ayouf
W — median {y!u(f)u) 101 ,,..,yer(f)m MO M }
::median{ﬂ,...,?}”}.

Claim

If G =boxcar filter with support k /«, then with probability at least
1-no(©)

X — Wel? = O(at) - 1IX115/ K
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PARTIALRECOVERY(X)

return dominant Fourier coefficients Z of x (approximately)

Take M = Clog n independent measurements:
yj - (Po'jvaj)qjx) -G
Sample complexity= filter support x logn

Estimate each fe[n] as

& ; ol -ajoqf ol -ayouf
W — median {y!u(f)u) 101 ,,..,yer(f)m MO M }
::median{ﬂ,...,?}”}.

Claim

If G =boxcar filter with support k /«, then with probability at least
1-no(©)

X — Wrl? = O() - |IXI15/ k > 1i?

28/45



magnitude

Like hashing heavy hitters into buckets (COUNTSKETCH,
COUNTMIN), but buckets leak

150 1t
s 08
o5 h I\ 06
| \ 1 ‘ il 2 os
1 :
-05 02 |
ab
—1sb 02 \/ \/
-04
000 800 600 400 200 200 400 600 800 1000 “looo 800 600 400 200 0 200 400 600 800 1000

29/45



magnitude.

Most work so far: make PARTIALRECOVERY step more efficient
(better filters!)

: :
y Lo
:

Increases filter support to klogn... 30/45



Outline:
1. €5/€5 sparse recovery guarantee
2. lterative recovery scheme
3. Sample-optimal algorithm in O(Nlog® N) time for d = 1

4. Experiments
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lterative recovery

Input: xeC”

Yo—0

Fort=1toL
» Z— PARTIALRECOVERY(x-y;_1) ©>Takes random samples of x —y
» Update y; — ys_1+2
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lterative recovery

Input: xeC”

Yo—0

Fort=1toL
» Z— PARTIALRECOVERY(x-y;_1) ©>Takes random samples of x —y
» Update y; — ys_1+2

In most prior works sampling complexity is

samples per PARTIALRECOVERY step x number of iterations
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lterative recovery
Input: xeC”
Yo—0
Fort=1toL
» Z— PARTIALRECOVERY(Xx—y;_1) ©>Takes random samples of X — y
» Update y; — y;-1+2

In most prior works sampling complexity is
samples per PARTIALRECOVERY step x number of iterations

Lots of work on carefully choosing filters, reducing number of
iterations:
Hassanieh-Indyk-Katabi-Price’12,
Ghazi-Hassanieh-Indyk-Katabi-Price-Shi’13, Indyk-K.-Price’14
» still lose Q(loglog n) in sample complexity (number of iterations)
> lose Q((logn)?-"loglogn) in higher dimensions
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lterative recovery

Input: xeC”

Yo—0

Fort=1toL
» Z— PARTIALRECOVERY(Xx—y;_1) ©>Takes random samples of x — y
» Update y; — yi_1+2

Our sampling complexity is

samples per PARTIALRECOVERY step x number of iterations
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lterative recovery

Input: xeC”
Yo—0
Fori=1to L

» Z— PARTIALRECOVERY(Xx-y;_1) D>Takesrandemsamples of x—y
» Update y; — ys_1+2

Our sampling complexity is

samples per PARTIALRECOVERY step »—rumber-of-terations
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lterative recovery

Input: xeC”
Yo—0
Fori=1to L

» Z— PARTIALRECOVERY(Xx—);_1) ©>Takes random samples of x —y
» Update y; — yi_1+2
Our sampling complexity is

samples per PARTIALRECOVERY step ——rumber-of-terations

Can use very simple filters!

32/45



Our filter=boxcar convolved with itself O(1) times
Filter support is O(k) (=samples per measurement)

O(klogn) samples in PARTIALRECOVERY step

magnitude
magnitude
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Can choose a rather weak filter, but do not need fresh randomness
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Our filter=boxcar convolved with itself O(1) times
Filter support is O(k) (=samples per measurement)

O(klogn) samples in PARTIALRECOVERY step

magnitude
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Can choose a rather weak filter, but do not need fresh randomness
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G—BxBxB

Zp—0
For t=1,..., T =0O(logn):
For fe[n|:
i — median{y/,..., y}
If Wl <27-1u/3 then
ws—0
End

2t+1 =2t+ w

End

> Take samples of x

>> Loop over thresholds

> Estimate, prune small
elements

> Update samples
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G—BxBxB
Let y™ — (Pmx)-G
m=0,...,M=Clogn

Zp—0 o
For t=1,...,T=O(logn): I B
For fe[n|:

Ws — median {I/f‘j/f"”}
If |yl <27-1u/3 then
W —0

End

2t+1 :2t+ w
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G—Bx+BxB
Let y™ — (Pmx)-G
m=0,...,M=Clogn

Zo—0
For t=1,...,7T=0O(logn):
For fe(p):

W,««—median{jlg,...,j/f"”}
If |yl <27-1u/3 then
W —0

End

S =2 W
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m=0,...,M=Clogn
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End
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G—Bx«BxB

Zo—0
For t=1,...,T=O(logn):

For fe[n|:
W,««—median{yg,...,j/)f‘”}
If |yl <27-1u/3 then

wg—0  mmmmmoooeooooo-

End R ||"||‘ il u

S =2 W

End
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G—BxB«B
Let y™ — (Pmx)-G
m=0,...,M=Clogn

Zo—0
For t=1,...,7T=0O(logn):
For fe(p):

Wy — median {}7,1}7;‘/’}
If |7l <27-1u/3 then
Wf<—0 77777777777777777

End _II_I.I_I.LIILIl_ u

21 =2+ W
y"—y"—(Pmw)-G
form=1,....M

End

Main challenge: lack of fresh randomness. Why does median work?
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Main estimation step:
y™—(Pmx)-G,m=0,...,M=Clogn
Ws — median {}7,1,...,}7,’”}

Main idea of analysis: split estimation error into two parts:

|¥r — X¢| = noise from head elements +tail noise
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Let S denote the set of heavy hitters:
S={ie[n]: x> u}.

There cannot be too many of them: |S| = O(k)

head —

tail
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Let S denote the set of heavy hitters:
S={ie[n]: x> u}.

There cannot be too many of them: |S| = O(k)

head —

tail

Main invariant: never modify X outside of S

Intuition: we only modify large frequencies (say those larger than 4p),
and only those that we have reliable estimates for
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At time t:

» get 1+1/3 approximation to
near-maximum coordinates

» |IX|l decreases at least by factor
of 2

» only update elementsin S
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» get 1+1/3 approximation to
near-maximum coordinates

» |IX|l decreases at least by factor
of 2

» only update elementsin S

Main estimation step:
ym —(Pmx)-G,m=0,...,M=Clogn
W — median {}7,])7;‘/’}

Need to show that estimation error is small:

|Vr — X¢| = noise from head elements + O()
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Need to show that estimation error is small:

Vi-% = Y 0@ DR Gripyon(ry + O(1)
f'e S\{f}
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Need to show that estimation error is small:

Vi-%= Y 0" DRGripy-n(ry + OR)
f'e S\{f}

» Cannot assume that a is random, but that is ok here! (use ¢4
bounds)
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Need to show that estimation error is small:

V=%l = X 1Xell Griy-n(ry| + O(k)
f'e S\{f}

» Cannot assume that a is random, but that is ok here! (use ¢4
bounds)

39/45



Need to show that estimation error is small:

|}~’f—)7f|5||?s||oo- > Ian(f)_n(f,)|+0(u)
f'e S\{f}

» Cannot assume that a is random, but that is ok here! (use ¢4
bounds)

» Peel off largest elements only, so ok with error bounds like
1Xlloo/100
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Definition (Isolated at scale )
Suppose that filter support is k/a for some constanta<1. A
frequency f e [n] is isolated under &t at scale t if

n(f)+[~(n/b)-2',(n/b)-2]

contains at most O(v/a)-2(3/2)t elements of (S).
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Definition (Isolated at scale t)
Suppose that filter support is k/a for some constanta<1. A
frequency f e [n] is isolated under &t at scale t if
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Definition (Isolated at-seale)
Suppose that filter support is k/a for some constanta<1. A
frequency f € [n] is isolated under n at-seafe-t if

n(f)+[~(n/b)-2',(n/b) 2]

contains at most O(v/a)-2(3/2)t elements of n(S) for all t = 0.
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Lemma
Any i€ |[n] is isolated in 2/3 fraction of measurements whp.
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Lemma
Any i€ |[n] is isolated in 2/3 fraction of measurements whp.

Main estimation step:
Yy —(Pmx)-G,m=0,...,M=Clogn
thmedian{?;,...,j/}”}

If fis isolated, then
[1Xll0o /100 + O(p)

so we have 1+1/3 estimates for near-maximum elements, e.g.

IXil = 11Xlloo/3
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Lemma
Any i€ |[n] is isolated in 2/3 fraction of measurements whp.

Main estimation step:
Yy —(Pmx)-G,m=0,...,M=Clogn
Wf«—median{y},...,j/}”}

If fis isolated, then
[1Xll0o /100 + O(p)

so we have 1+1/3 estimates for near-maximum elements, e.g.
Xl = 11Xlloo /3

Proved that this works just like with fresh randomness!
(as long as we recover starting from largest frequencies)
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Lecture so far

» Optimal sample complexity by reusing randomness
» Very simple algorithm, can be implemented

» Extension to higher dimensions: algorithm is the same,
permutations are different.

» Choose random invertible linear transformation over 79
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Experimental evaluation

Problem: recover support of a random k-sparse signal from
Fourier

measurements.
Parameters: n=2"% k=10,20,...,100
Filter: boxcar filter with support k + 1
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number of measurements

Comparison to £4-minimization (SPGL1)

O(klog® klog n) sample complexity, requires LP solve

n=32768, L1 minimization n=32768, B=k, random phase, non-monotone
1 T T T T T T T 1
0.9 0.9
2000 g 0s 2000 R 0.8
0.7 0.7
5
1500 0.6 £ 1500 B 0.6
§
05 & 05
B
1000 0.4 é 1000 0.4
5
2
03 03
500 = 02 500 0.2
0.1 0.1
10 20 30 40 50 60 70 80 % 100 10 20 30 40 50 60 70 80 90 o
sparsity sparsity

Within a factor of 2 of £4 minimization
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Open questions:
» O(klogn) in O(klog®n) time?
» O(klogn) runtime?

» remove dependence on dimension? Current approaches lose
C% in sample complexity, (logn)? in runtime
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http://groups.csail.mit.edu/netmit/sFFT/index.html

Open questions:
» O(klogn) in O(klog? n) time?
» O(klogn) runtime?

» remove dependence on dimension? Current approaches lose
C% in sample complexity, (logn)? in runtime

More on sparse FFT:
http://groups.csail.mit.edu/netmit/sFFT/index.html
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