Sparse Fourier Transform (lecture 3)

Michael Kapralov¹

¹IBM Watson

MADALGO'15

Given $x \in \mathbb{C}^n$, compute the Discrete Fourier Transform of *x*:

$$\widehat{x}_i = \sum_{j \in [n]} x_j \omega^{ij},$$

where $\omega = e^{2\pi i/n}$ is the *n*-th root of unity.

Given $x \in \mathbb{C}^n$, compute the Discrete Fourier Transform of *x*:

$$\widehat{x}_i = \sum_{j \in [n]} x_j \omega^{ij},$$

where $\omega = e^{2\pi i/n}$ is the *n*-th root of unity.

Goal: find the top k coefficients of \hat{x} approximately

In last lecture:

exactly k-sparse: O(k log n) runtime and samples

Given $x \in \mathbb{C}^n$, compute the Discrete Fourier Transform of *x*:

$$\widehat{x}_i = \sum_{j \in [n]} x_j \omega^{ij},$$

where $\omega = e^{2\pi i/n}$ is the *n*-th root of unity.

Goal: find the top k coefficients of \hat{x} approximately

In last lecture:

- exactly k-sparse: O(k log n) runtime and samples
- approximately k-sparse: $O(k \log^2 n)$ runtime and samples

This lecture:

approximately k-sparse: O(k log n) samples (optimal)

Sample complexity

Sample complexity=number of samples accessed in time domain. In some applications at least as important as runtime

Shi-Andronesi-Hassanieh-Ghazi-Katabi-Adalsteinsson' ISMRM'13

Sample complexity

Sample complexity=number of samples accessed in time domain. In some applications at least as important as runtime

Shi-Andronesi-Hassanieh-Ghazi-Katabi-Adalsteinsson' ISMRM'13

Given access to $x \in \mathbb{C}^n$, find \hat{y} such that

$$||\widehat{x} - \widehat{y}||^2 \le C \cdot \min_{k-\text{sparse }\widehat{z}} ||\widehat{x} - \widehat{z}||^2$$

Use smallest possible number of samples?

Uniform bounds (for all):

Candes-Tao'06 Rudelson-Vershynin'08 Cheraghchi-Guruswami-Velingker'12 Bourgain'14 Haviv-Regev'15

Non-uniform bounds (for each):

Goldreich-Levin'89 Kushilevitz-Mansour'91, Mansour'92 Gilbert-Guha-Indyk-Muthukrishnan-Strauss'02 Gilbert-Muthukrishnan-Strauss'05 Hassanieh-Indyk-Katabi-Price'12a Hassanieh-Indyk-Katabi-Price'12b Indyk-K.-Price'14

Deterministic, $\Omega(n)$ runtime $O(k \log^2 k \log n)$

Randomized, $O(k \cdot \text{poly}(\log n))$ runtime $O(k \log n \cdot (\log \log n)^{C})$

Lower bound: $\Omega(k \log(n/k))$ for non-adaptive algorithms Do-Ba-Indyk-Price-Woodruff'10

Uniform bounds (for all):

Candes-Tao'06 Rudelson-Vershynin'08 Cheraghchi-Guruswami-Velingker'12 Bourgain'14 Haviv-Regev'15

Non-uniform bounds (for each):

Goldreich-Levin'89 Kushilevitz-Mansour'91, Mansour'92 Gilbert-Guha-Indyk-Muthukrishnan-Strauss'02 Gilbert-Muthukrishnan-Strauss'05 Hassanieh-Indyk-Katabi-Price'12a Hassanieh-Indyk-Katabi-Price'12b Indyk-K.-Price'14

Deterministic, $\Omega(n)$ runtime $O(k \log^2 k \log n)$

Randomized, $O(k \cdot \text{poly}(\log n))$ runtime $O(k \log n \cdot (\log \log n)^{C})$

Lower bound: $\Omega(k \log(n/k))$ for non-adaptive algorithms Do-Ba-Indyk-Price-Woodruff'10

Theorem

There exists an algorithm for ℓ_2/ℓ_2 sparse recovery from Fourier measurements using $O(k \log n)$ samples and $O(n \log^3 n)$ runtime.

Optimal up to constant factors for $k \le n^{1-\delta}$.

Higher dimensional Fourier transform is needed in some applications

Given $x \in \mathbb{C}^{[n]}$, $N = n^d$, compute

$$\widehat{x}_j = \frac{1}{\sqrt{N}} \sum_{i \in [n]} \omega^{i^T j} x_i$$
 and $x_j = \frac{1}{\sqrt{N}} \sum_{i \in [n]} \omega^{-i^T j} \widehat{x}_i$

where ω is the *n*-th root of unity, and *n* is a power of 2.

Previous sample complexity bounds:

- $O(k \log^d N)$ in sublinear time algorithms
 - runtime $k \log^{O(d)} N$, for each
- $O(k \log^4 N)$ for any d
 - $\Omega(N)$ time, for all

This lecture:

Theorem

There exists an algorithm for ℓ_2/ℓ_2 sparse recovery from Fourier measurements using $O_d(k \log N)$ samples and $O(N \log^3 N)$ runtime.

Sample-optimal up to constant factors for any constant *d*.

What about sublinear time recovery?

Theorem

There exists an algorithm for ℓ_2/ℓ_2 sparse recovery from Fourier measurements using $O_d(k \log N(\log \log N)^2)$ samples and $O(k \log^{d+2} N)$ runtime.

This extends the result of Indyk-K.-Price'14 to higher dimensions

- 1. $O(k \log n)$ sample complexity in $O(n \log^3 n)$ time
 - extends to higher dimensions d
- 2. $O(k \log N (\log \log N)^2)$ sample complexity in $O(k \log^{d+2} N)$ time

- 1. $O(k \log n)$ sample complexity in $O(n \log^3 n)$ time
 - extends to higher dimensions d
- 2. $O(k \log N (\log \log N)^2)$ sample complexity in $O(k \log^{d+2} N)$ time

Outline:

- 1. ℓ_2/ℓ_2 sparse recovery guarantee
- 2. Iterative recovery scheme
- 3. Sample-optimal algorithm in $O(N\log^3 N)$ time for d = 1
- 4. Experiments

$$||\widehat{x} - \widehat{y}||^2 \le C \cdot \min_{k-\text{sparse }\widehat{z}} ||\widehat{x} - \widehat{z}||^2$$

$$||\widehat{x} - \widehat{y}||^2 \le C \cdot \min_{k-\text{sparse }\widehat{z}} ||\widehat{x} - \widehat{z}||^2$$

$$||\widehat{x} - \widehat{y}||^2 \le C \cdot \operatorname{Err}_k^2(\widehat{x})$$

$$\begin{aligned} |\widehat{x}_1| \geq \ldots \geq |\widehat{x}_k| \geq \\ |\widehat{x}_{k+1}| \geq |\widehat{x}_{k+2}| \geq \ldots \end{aligned}$$

 $\operatorname{Err}_{k}^{2}(\widehat{x}) = \sum_{j=k+1}^{n} |\widehat{x}_{j}|^{2}$

Residual error bounded by noise
energy
$$\operatorname{Err}_{k}^{2}(\hat{x})$$

$$||\widehat{x} - \widehat{y}||^2 \le C \cdot \operatorname{Err}_k^2(\widehat{x})$$

$$\begin{aligned} |\widehat{x}_1| \geq \ldots \geq |\widehat{x}_k| \geq \\ |\widehat{x}_{k+1}| \geq |\widehat{x}_{k+2}| \geq \ldots \end{aligned}$$

 $\operatorname{Err}_{k}^{2}(\widehat{x}) = \sum_{j=k+1}^{n} |\widehat{x}_{j}|^{2}$

Residual error bounded by noise
energy
$$\operatorname{Err}_{k}^{2}(\hat{x})$$

Sufficient to ensure that most elements are below average noise level:

$$|\widehat{x}_i - \widehat{y}_i|^2 \le c \cdot \operatorname{Err}_k^2(\widehat{x})/k =: \mu^2$$

Sufficient to ensure that most elements are below average noise level:

$$|\widehat{x}_i - \widehat{y}_i|^2 \le c \cdot \operatorname{Err}_k^2(\widehat{x})/k = c \cdot \mu^2$$

Sufficient to ensure that most elements are below average noise level:

$$|\widehat{x}_i - \widehat{y}_i| \le C \mu$$

Outline:

- 1. ℓ_2/ℓ_2 sparse recovery guarantee
- 2. Iterative recovery scheme
- 3. Sample-optimal algorithm in $O(N\log^3 N)$ time for d = 1
- 4. Experiments

Iterative recovery

Input: $x \in \mathbb{C}^n$ $\hat{y}_0 \leftarrow 0$ **For** t = 1 to L

- ▶ $\hat{z} \leftarrow \text{PARTIALRECOVERY}(x y_{t-1})$ ▷Takes random samples of x y
- Update $\hat{y}_t \leftarrow \hat{y}_{t-1} + \hat{z}$

PARTIALRECOVERY(x)

return dominant Fourier coefficients \hat{z} of x (approximately)

dominant coefficients $\approx |\hat{x}_i| \ge c\mu$ (above average noise level)

PARTIALRECOVERY(x)

return dominant Fourier coefficients \hat{z} of x (approximately)

dominant coefficients $\approx |\hat{x}_i| \geq c \mu$ (above average noise level)

PARTIALRECOVERY(x)

return dominant Fourier coefficients \hat{z} of x (approximately)

dominant coefficients $\approx |\hat{x}_i| \geq c\mu$ (above average noise level)

Recap of techniques from previous lectures

Natural idea: look at the value of the signal on the first O(k) points

Natural idea: look at the value of the signal on the first O(k) points

Natural idea: look at the value of the signal on the first O(k) points

Natural idea: look at the value of the signal on the first O(k) points

$$\widehat{(G \cdot x)}_f = \sum_{f' \in [n]} \widehat{x}_{f'} \widehat{G}_{f-f'}$$

Natural idea: look at the value of the signal on the first O(k) points

$$\widehat{(G \cdot x)}_{f} = \widehat{X}_{f} + \sum_{f' \in [n], f' \neq f} \widehat{X}_{f'} \widehat{G}_{f-f'}$$

Natural idea: look at the value of the signal on the first O(k) points

$$\widehat{(G \cdot x)}_f = \widehat{\mathbf{x}}_f + \sum_{f' \in [n], f' \neq f} \widehat{\mathbf{x}}_{f'} \widehat{G}_{f-f'}$$

Natural idea: look at the value of the signal on the first O(k) points

$$\widehat{(G \cdot x)}_f = \widehat{\mathbf{x}}_f + \sum_{f' \in [n], f' \neq f} \widehat{\mathbf{x}}_{f'} \widehat{\mathbf{G}}_{f-f'}$$

Natural idea: look at the value of the signal on the first O(k) points

Natural idea: look at the value of the signal on the first O(k) points

Natural idea: look at the value of the signal on the first O(k) points

Task:approximate top k coeffs of \hat{x} using few samples

Natural idea: look at the value of the signal on the first O(k) points

This convolves spectrum with sinc: $\widehat{(x \cdot G)} = \widehat{x} * \widehat{G}$

Task:approximate top k coeffs of \hat{x} using few samples

Natural idea: look at the value of the signal on the first O(k) points

This convolves spectrum with sinc: $\widehat{(x \cdot G)} = \widehat{x} * \widehat{G}$

- Expected error in terms of l₂ norm (Parseval's indentity).
- Take median of independent trials

- Expected error in terms of l₂ norm (Parseval's indentity).
- Take median of independent trials

What if two frequencies are close?

- Expected error in terms of l₂ norm (Parseval's indentity).
- Take median of independent trials

Pseudorandom permutation

Gilbert-Muthukrishnan-Strauss'05:

Do a random invertible linear transformation of time domain:

$$(P_{\sigma,a,q}x)_i = x_{\sigma(i-a)}\omega^{\sigma q i}$$

This operation permutes the spectrum:

$$(\widehat{P_{\sigma,a,q}x})_{\pi_{\sigma,q}(i)} = \widehat{x}_i \omega^{a\sigma i},$$

where

$$\pi_{\sigma,a}(i) = \sigma(i-a) \mod n.$$

PARTIALRECOVERY(x)

return dominant Fourier coefficients \hat{z} of x (approximately)

Take $M = C \log n$ independent measurements:

$$y^j \leftarrow (P_{\sigma_j,a_j,q_j}x) \cdot G$$

Sample complexity= filter support × log n

Estimate each $f \in [n]$ as

$$\widehat{w}_{f} \leftarrow \text{median}\left\{\widehat{y}_{\pi_{1}(f)}^{j}\omega^{-a_{1}\sigma_{1}f}, \dots, \widehat{y}_{\pi_{M}(f)}^{j}\omega^{-a_{M}\sigma_{M}f}\right\}$$
$$=: \text{median}\left\{\widetilde{y}_{f}^{1}, \dots, \widetilde{y}_{f}^{M}\right\}.$$

Claim

If G = boxcar filter with support k/α , then with probability at least $1 - n^{-\Omega(C)}$

$$|\widehat{x}_f - \widehat{w}_f|^2 = O(\alpha) \cdot ||\widehat{x}||_2^2 / k$$

PARTIALRECOVERY(x)

return dominant Fourier coefficients \hat{z} of x (approximately)

Take $M = C \log n$ independent measurements:

$$y^j \leftarrow (P_{\sigma_j,a_j,q_j}x) \cdot G$$

Sample complexity= filter support × log n

Estimate each $f \in [n]$ as

$$\widehat{w}_{f} \leftarrow \text{median}\left\{\widehat{y}_{\pi_{1}(f)}^{j}\omega^{-a_{1}\sigma_{1}f}, \dots, \widehat{y}_{\pi_{M}(f)}^{j}\omega^{-a_{M}\sigma_{M}f}\right\}$$
$$=: \text{median}\left\{\widetilde{y}_{f}^{1}, \dots, \widetilde{y}_{f}^{M}\right\}.$$

Claim

If G = boxcar filter with support k/α , then with probability at least $1 - n^{-\Omega(C)}$

$$|\widehat{x}_f - \widehat{w}_f|^2 = O(\alpha) \cdot ||\widehat{x}||_2^2 / k \gg \mu^2$$

Like hashing heavy hitters into buckets (COUNTSKETCH, COUNTMIN), but buckets leak

Most work so far: make PARTIALRECOVERY step more efficient (better filters!)

Increases filter support to k log n...

Outline:

- 1. ℓ_2/ℓ_2 sparse recovery guarantee
- 2. Iterative recovery scheme

3. Sample-optimal algorithm in $O(N \log^3 N)$ time for d = 1

4. Experiments

Input: $x \in \mathbb{C}^n$ $\hat{y}_0 \leftarrow 0$ **For** t = 1 to L

- ▶ $\hat{z} \leftarrow \text{PARTIALRECOVERY}(x y_{t-1})$ ▷ Takes random samples of x y
- Update $\hat{y}_t \leftarrow \hat{y}_{t-1} + \hat{z}$

Input: $x \in \mathbb{C}^n$ $\hat{y}_0 \leftarrow 0$ **For** t = 1 to L

- ► $\hat{z} \leftarrow \text{PARTIALRECOVERY}(x y_{t-1})$ $\triangleright \text{Takes random samples of } x y$
- Update $\hat{y}_t \leftarrow \hat{y}_{t-1} + \hat{z}$

In most prior works sampling complexity is

samples per PARTIALRECOVERY step × number of iterations

Input: $x \in \mathbb{C}^n$ $\hat{y}_0 \leftarrow 0$ **For** t = 1 to L

- ► $\hat{z} \leftarrow \text{PARTIALRECOVERY}(x y_{t-1}) \triangleright \text{Takes random samples of } x y$
- Update $\hat{y}_t \leftarrow \hat{y}_{t-1} + \hat{z}$

In most prior works sampling complexity is

samples per PARTIALRECOVERY step × number of iterations

Lots of work on carefully choosing filters, reducing number of iterations:

Hassanieh-Indyk-Katabi-Price'12,

Ghazi-Hassanieh-Indyk-Katabi-Price-Shi'13, Indyk-K.-Price'14

- still lose Ω(log log n) in sample complexity (number of iterations)
- lose $\Omega((\log n)^{d-1} \log \log n)$ in higher dimensions

Input: $x \in \mathbb{C}^n$ $\hat{y}_0 \leftarrow 0$ **For** t = 1 to L

► $\hat{z} \leftarrow \text{PARTIALRECOVERY}(x - y_{t-1})$ $\triangleright \text{Takes random samples of } x - y$

• Update $\hat{y}_t \leftarrow \hat{y}_{t-1} + \hat{z}$

Our sampling complexity is

samples per PARTIALRECOVERY step × number of iterations

Input: $x \in \mathbb{C}^n$ $\hat{y}_0 \leftarrow 0$ **For** t = 1 to L

- ► $\hat{z} \leftarrow \text{PARTIALRECOVERY}(x y_{t-1}) \triangleright \text{Takes random samples}$ of x y
- Update $\hat{y}_t \leftarrow \hat{y}_{t-1} + \hat{z}$

Our sampling complexity is

Input: $x \in \mathbb{C}^n$ $\hat{y}_0 \leftarrow 0$ **For** t = 1 to L

- ▶ $\hat{z} \leftarrow \text{PARTIALRECOVERY}(x y_{t-1})$ ▷Takes random samples of x y
- Update $\hat{y}_t \leftarrow \hat{y}_{t-1} + \hat{z}$

Our sampling complexity is

Can use very simple filters!

Our filter=boxcar convolved with itself O(1) times Filter support is O(k) (=samples per measurement) $O(k \log n)$ samples in PARTIALRECOVERY step

Can choose a rather weak filter, but do not need fresh randomness

Our filter=boxcar convolved with itself O(1) times Filter support is O(k) (=samples per measurement) $O(k \log n)$ samples in PARTIALRECOVERY step

Can choose a rather weak filter, but do not need fresh randomness

Our filter=boxcar convolved with itself O(1) times Filter support is O(k) (=samples per measurement) $O(k \log n)$ samples in PARTIALRECOVERY step

Can choose a rather weak filter, but do not need fresh randomness

$$\hat{z}_0 \leftarrow 0$$

For $t = 1, \dots, T = O(\log n)$:

For
$$f \in [n]$$
:
 $\widehat{w}_f \leftarrow \text{median}\left\{\widetilde{y}_f^1, \dots, \widetilde{y}_f^M\right\}$
If $|\widehat{w}_f| < 2^{T-t} \mu/3$ then
 $\widehat{w}_f \leftarrow 0$

End

$$\widehat{z}_{t+1} = \widehat{z}_t + \widehat{w} y^m \leftarrow y^m - (P_m w) \cdot G for m = 1, ..., M$$

 \triangleright Take samples of *x*

Loop over thresholds

Estimate, prune small elements

Update samples

End

 $\begin{aligned} \widehat{z}_{0} \leftarrow 0 \\ \text{For } t = 1, \dots, T = O(\log n): \\ \text{For } f \in [n]: \\ \widehat{w}_{f} \leftarrow \text{median} \left\{ \widetilde{y}_{f}^{1}, \dots, \widetilde{y}_{f}^{M} \right\} \\ \text{If } |\widehat{w}_{f}| < 2^{T-t} \mu/3 \text{ then} \\ \widehat{w}_{f} \leftarrow 0 \\ \text{End} \end{aligned}$

$$\hat{z}_{t+1} = \hat{z}_t + \hat{w}$$

$$y^m \leftarrow y^m - (P_m w) \cdot G$$
for $m = 1, ..., M$
End

$$\begin{split} \widehat{z}_{0} &\leftarrow 0\\ \textbf{For } t = 1, \dots, T = O(\log n):\\ \textbf{For } f \in [n]:\\ \widehat{w}_{f} \leftarrow \text{median}\left\{\widetilde{y}_{f}^{1}, \dots, \widetilde{y}_{f}^{M}\right\}\\ \textbf{If } |\widehat{w}_{f}| < 2^{T-t}\mu/3 \textbf{ then}\\ \widehat{w}_{f} \leftarrow 0\\ \textbf{End} \end{split}$$

$$\widehat{z}_{t+1} = \widehat{z}_t + \widehat{w}$$

$$y^m \leftarrow y^m - (P_m w) \cdot G$$
for $m = 1, ..., M$
End

$$\begin{aligned} \widehat{z}_{0} \leftarrow 0 \\ \textbf{For } t &= 1, \dots, T = O(\log n): \\ \textbf{For } f \in [n]: \\ \widehat{w}_{f} \leftarrow \text{median} \left\{ \widetilde{y}_{f}^{1}, \dots, \widetilde{y}_{f}^{M} \right\} \\ \textbf{If } |\widehat{w}_{f}| &< 2^{T-t} \mu/3 \textbf{ then} \\ \widehat{w}_{f} \leftarrow 0 \\ \textbf{End} \end{aligned}$$

$$\widehat{z}_{t+1} = \widehat{z}_t + \widehat{w}$$

$$y^m \leftarrow y^m - (P_m w) \cdot G$$
for $m = 1, ..., M$
End

 $\hat{z}_{0} \leftarrow 0$ For $t = 1, ..., T = O(\log n)$:
For $f \in [n]$: $\hat{w}_{f} \leftarrow \text{median} \left\{ \tilde{y}_{f}^{1}, ..., \tilde{y}_{f}^{M} \right\}$ If $|\hat{w}_{f}| < 2^{T-t} \mu/3$ then $\hat{w}_{f} \leftarrow 0$ End $\hat{c} = \hat{c} = \hat{c}$

$$z_{t+1} = z_t + w$$

$$y^m \leftarrow y^m - (P_m w) \cdot G$$

for $m = 1, ..., M$
End

 $\hat{z}_{0} \leftarrow 0$ For $t = 1, ..., T = O(\log n)$:
For $f \in [n]$: $\hat{w}_{f} \leftarrow \text{median} \left\{ \tilde{y}_{f}^{1}, ..., \tilde{y}_{f}^{M} \right\}$ If $|\hat{w}_{f}| < 2^{T-t} \mu/3$ then $\hat{w}_{f} \leftarrow 0$ End $\hat{z}_{t+1} = \hat{z}_{t} + \hat{w}$

$$y^{m} \leftarrow y^{m} - (P_{m}w) \cdot G$$

for $m = 1, ..., M$
End

Main challenge: lack of fresh randomness. Why does median work?

Main estimation step:

$$y^{m} \leftarrow (P_{m}x) \cdot G, m = 0, \dots, M = C \log n$$
$$\widehat{w}_{f} \leftarrow \text{median} \left\{ \widetilde{y}_{f}^{1}, \dots, \widetilde{y}_{f}^{M} \right\}$$

Main idea of analysis: split estimation error into two parts:

 $|\tilde{y}_f - \hat{x}_f|$ = noise from head elements + tail noise

Let *S* denote the set of heavy hitters:

$$S = \left\{ i \in [n] : |\widehat{x}_i| > \mu \right\}.$$

There cannot be too many of them: |S| = O(k)

Let *S* denote the set of heavy hitters:

$$S = \left\{ i \in [n] : |\widehat{x}_i| > \mu \right\}.$$

There cannot be too many of them: |S| = O(k)

Main invariant: never modify \hat{x} outside of S

Intuition: we only modify large frequencies (say those larger than 4μ), and only those that we have reliable estimates for

- get 1 ± 1/3 approximation to near-maximum coordinates
- ► || x̂ ||_∞ decreases at least by factor of 2
- ► only update elements in S

- ► get 1 ± 1/3 approximation to near-maximum coordinates
- ► || x̂ ||_∞ decreases at least by factor of 2
- ► only update elements in S

Main estimation step:

$$y^{m} \leftarrow (P_{m}x) \cdot G, m = 0, \dots, M = C \log n$$
$$\widehat{w}_{f} \leftarrow \text{median} \left\{ \widetilde{y}_{f}^{1}, \dots, \widetilde{y}_{f}^{M} \right\}$$

- get 1 ± 1/3 approximation to near-maximum coordinates
- ► || x̂ ||_∞ decreases at least by factor of 2
- ► only update elements in S

Main estimation step:

$$y^{m} \leftarrow (P_{m}x) \cdot G, m = 0, \dots, M = C \log n$$
$$\widehat{w}_{f} \leftarrow \operatorname{median}\left\{\widetilde{y}_{f}^{1}, \dots, \widetilde{y}_{f}^{M}\right\}$$

Need to show that estimation error is small:

 $|\tilde{y}_f - \hat{x}_f|$ = noise from head elements + tail noise

- get 1 ± 1/3 approximation to near-maximum coordinates
- ► || x̂ ||_∞ decreases at least by factor of 2
- ► only update elements in S

Main estimation step:

$$y^{m} \leftarrow (P_{m}x) \cdot G, m = 0, \dots, M = C \log n$$
$$\widehat{w}_{f} \leftarrow \operatorname{median}\left\{\widetilde{y}_{f}^{1}, \dots, \widetilde{y}_{f}^{M}\right\}$$

Need to show that estimation error is small:

$$|\tilde{y}_f - \hat{x}_f|$$
 = noise from head elements + $O(\mu)$

Need to show that estimation error is small:

Need to show that estimation error is small:

Cannot assume that a is random, but that is ok here! (use l₁ bounds)

Cannot assume that a is random, but that is ok here! (use l₁ bounds)

- Cannot assume that a is random, but that is ok here! (use l₁ bounds)
- ▶ Peel off largest elements only, so ok with error bounds like $||\hat{x}||_{\infty}/100$

- ► Cannot assume that *a* is random, but that is ok here! (use ℓ₁ bounds)
- ▶ Peel off largest elements only, so ok with error bounds like $||\hat{x}||_{\infty}/100$
- ▶ If other head elements are far from $\pi(f)$, estimation error is small!

- ► Cannot assume that *a* is random, but that is ok here! (use ℓ₁ bounds)
- ▶ Peel off largest elements only, so ok with error bounds like $||\hat{x}||_{\infty}/100$
- If other head elements are far from $\pi(f)$, estimation error is small!

- ► Cannot assume that *a* is random, but that is ok here! (use ℓ₁ bounds)
- ▶ Peel off largest elements only, so ok with error bounds like $||\hat{x}||_{\infty}/100$
- ► If other head elements are far from $\pi(f)$, estimation error is small!

- ► Cannot assume that *a* is random, but that is ok here! (use ℓ₁ bounds)
- ▶ Peel off largest elements only, so ok with error bounds like $||\hat{x}||_{\infty}/100$
- ▶ If other head elements are far from $\pi(f)$, estimation error is small!

Suppose that filter support is k/α for some constant $\alpha < 1$. A frequency $f \in [n]$ is isolated under π at scale *t* if

$$\pi(f) + \left[-(n/b) \cdot 2^t, (n/b) \cdot 2^t\right]$$

contains at most $O(\sqrt{\alpha}) \cdot 2^{(3/2)t}$ elements of $\pi(S)$.

Suppose that filter support is k/α for some constant $\alpha < 1$. A frequency $f \in [n]$ is isolated under π at scale *t* if

$$\pi(f) + [-(n/b) \cdot 2^t, (n/b) \cdot 2^t]$$

contains at most $O(\sqrt{\alpha}) \cdot 2^{(3/2)t}$ elements of $\pi(S)$.

Suppose that filter support is k/α for some constant $\alpha < 1$. A frequency $f \in [n]$ is isolated under π at scale *t* if

$$\pi(f) + [-(n/b) \cdot 2^t, (n/b) \cdot 2^t]$$

contains at most $O(\sqrt{\alpha}) \cdot 2^{(3/2)t}$ elements of $\pi(S)$.

Suppose that filter support is k/α for some constant $\alpha < 1$. A frequency $f \in [n]$ is isolated under π *at scale t* if

$$\pi(f) + \left[-(n/b) \cdot 2^t, (n/b) \cdot 2^t\right]$$

contains at most $O(\sqrt{\alpha}) \cdot 2^{(3/2)t}$ elements of $\pi(S)$ for all $t \ge 0$.

Lemma Any $i \in [n]$ is isolated in 2/3 fraction of measurements whp. Lemma

Any $i \in [n]$ is isolated in 2/3 fraction of measurements whp. Main estimation step:

$$y^{m} \leftarrow (P_{m}x) \cdot G, m = 0, \dots, M = C \log n$$
$$\widehat{w}_{f} \leftarrow \operatorname{median}\left\{\widetilde{y}_{f}^{1}, \dots, \widetilde{y}_{f}^{M}\right\}$$

If f is isolated, then

 $||\hat{\boldsymbol{x}}||_{\infty}/100 + O(\mu)$

so we have $1 \pm 1/3$ estimates for near-maximum elements, e.g.

 $|\widehat{x}_i| \ge ||\widehat{x}||_{\infty}/3$

Lemma

Any $i \in [n]$ is isolated in 2/3 fraction of measurements whp. Main estimation step:

$$y^{m} \leftarrow (P_{m}x) \cdot G, m = 0, \dots, M = C \log n$$
$$\widehat{w}_{f} \leftarrow \operatorname{median}\left\{\widetilde{y}_{f}^{1}, \dots, \widetilde{y}_{f}^{M}\right\}$$

If f is isolated, then

 $||\widehat{x}||_{\infty}/100 + O(\mu)$

so we have $1 \pm 1/3$ estimates for near-maximum elements, e.g.

$$|\widehat{x}_i| \ge ||\widehat{x}||_{\infty}/3$$

Proved that this works just like with fresh randomness! (as long as we recover starting from largest frequencies)

- Optimal sample complexity by reusing randomness
- Very simple algorithm, can be implemented
- Extension to higher dimensions: algorithm is the same, permutations are different.
 - Choose random invertible linear transformation over \mathbb{Z}_n^d

Experimental evaluation

Problem: recover support of a random *k*-sparse signal from Fourier

measurements. **Parameters**: $n = 2^{15}$, k = 10, 20, ..., 100**Filter:** boxcar filter with support k + 1

Comparison to ℓ_1 -minimization (SPGL1)

$O(k \log^3 k \log n)$ sample complexity, requires LP solve

Within a factor of 2 of ℓ_1 minimization

Open questions:

- $O(k \log n)$ in $O(k \log^2 n)$ time?
- ► O(k log n) runtime?
- remove dependence on dimension? Current approaches lose
 C^d in sample complexity, (log n)^d in runtime

Open questions:

- $O(k \log n)$ in $O(k \log^2 n)$ time?
- ► O(k log n) runtime?
- remove dependence on dimension? Current approaches lose
 C^d in sample complexity, (log n)^d in runtime

More on sparse FFT:

http://groups.csail.mit.edu/netmit/sFFT/index.html