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Abstract
We propose a (ϵ, δ )-di�erentially private mechanism that, given an input graph G with n ver-

tices andm edges, in polynomial time generates a synthetic graph G ′ approximating all cuts of the
input graph up to an additive error of O

(√mn
ϵ log2(nδ )

)
. �is is the �rst construction of di�eren-

tially private cut approximator that allows additive error o(m) for allm > n logC n. �e best known
previous results gave additive O(n3/2) error and hence only retained information about the cut
structure on very dense graphs. �us, we are making a notable progress on a promiment problem
in di�erential privacy. We also present lower bounds showing that our utility/privacy tradeo� is
essentially the best possible if one seeks to get purely additive cut approximations.

1 Introduction

Consider a social graph where vertices represent users and edges represent some private information
between two users such as friendship information, communication information, and so on. A com-
monly studied problem in social graph analysis is how well two communities of users are connected.
However, it is well known that releasing connectivity information accurately poses a threat to the pri-
vacy of users [28]. A natural question that arises in this context is if it’s possible to release a synthetic
graph which approximately preserves the connectivity information about the communities while pro-
tecting the privacy of users. In this paper we study this question in the context of di�erential privacy.
Di�erential privacy (DP), introduced in the seminal work of Dwork et al. [19], has established itself as
de facto standard de�nition of privacy with a vast body of academic research and growing acceptance
in industry [21, 17, 4, 1]. Among its many strengths, the promise of DP is intuitive to explain: No mat-
ter what the adversary knows about the graph, the privacy of a single user is protected from output of
the algorithm. For more details on di�erential privacy we refer the readers to excellent books on the
topic [18, 47].

�e social network analysis problem mentioned above, and many other commonly studied prob-
lems such as understanding the degree distributions of the graphs [28] etc., can be captured by the
following basic question on graphs:

Given a weighted graph G = (V , E), �nd another graph G ′ = (V , E ′) di�erentially privately such that
for every S ⊂ V , the weight of the cut (S,V \ S) in G is approximated in G ′ with a small error.

∗Part of the research was done while the author was visiting Microso� Research Redmond.
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We use the standard notion of edge privacy, where the edges represent the private information.
�e exponential mechanism [38] is a natural algorithm to solve the above problem, and works as
follows: From the graph sparsi�cation theory [7, 44, 6, 33] we know that for any graph G and for any
η > 0, one can �nd in polynomial time another graph G ′ with at most O(n logn/η2) edges, which
preserves all cuts of G to (1 + η)-approximation multiplicatively. Hence we can restrict the range of
the exponential mechanism to every possible output graph with O(n logn) edges. Furthermore, we
can de�ne the maximum cut error as the scoring function. An easy calculation then shows that the
exponential mechanism allows us to release a synthetic graphG ′ where every cut ofG is approximated
within an additive expected error of O(n logn) and a multiplicative error of (1 + η) in expectation.

Unfortunately, the exponential mechanism described above requires exponential time. Whether
one can design a polynomial time algorithm that matches the guarantees of the exponential mechanism
has remained a prominent open problem in the di�erential privacy literature, despite considerable
a�ention from the community [24, 10, 46]. �e current best polynomial time algorithms for the problem
are due to Gupta, Roth, and Ullman [24] and Blocki et al [10]. At their heart, these results use the
randomized response mechanism [48] on the complete graph, and achieve an additive error ofO(n3/2).
�is is a nontrivial approximation only in the case of dense graphs (withm � n3/2).

In this paper, we give an algorithm with a be�er guarantee for this problem. In particular, it pro-
vides �rst nontrivial cut approximation for any number m of edges in the input graph which is larger
than n logO (1) n (for constant ϵ). Cut distance ofG andG ′, denoted dcut(G,G

′), is (roughly speaking) the
maximum di�erence in weight of some (S,T )-cut in G and G ′. See Section 3 for a precise de�nition.
Our main result is the following.

�eorem 1.1. Let G be the class of weighted graphs with sum of edge weights at mostm. For 0 ≤ ϵ ≤ 1/2
and 0 ≤ δ ≤ 1/2, there is an (ϵ, δ )-di�erentially private mechanism which for any G ∈ G outputs a
weighted graph G ′ such that

E[dcut(G,G
′)] ≤ O

(√mn
ϵ log2(nδ )

)
.

To the best of our knowledge, no known polynomial time algorithm, even allowing multiplicative
cut approximations, has be�er error guarantees than our algorithm. Our proof of the theorem is based
on a mirror descent approach. Using the high probability bounds for mirror descent [40], one can
obtain the same result with probability at least 1−γ instead of just in expectation. Note that our algo-
rithm achieves considerably be�er error guarantee compared to the existing algorithms in the regimes
when m � O(n2). �e average degrees of graphs arising from social networks such as Facebook or
LinkedIn are typically signi�cantly smaller than O(n), and hence it is reasonable to assume that real
world social networks are sparse graphs. Hence, we believe that our algorithm may be relevant to
study the connectivity properties of real world social networks when privacy of users is a concern.

We use the following approach. We start with a scaled complete graph and execute a small number
of iterations of mirror descent minimizing a function which approximates the cut distance between our
current solution and the original graph. To make this process private, we �rst stabilize the gradient of
this function using a regularizer which allows us to achieve desired privacy using only a small amout
of noise added to the gradient evaluations used by mirror descent. More about the intuition behind
our approach can be found in Section 2.

Next we show that error achieved by our algorithm is optimal if one restricts to additive cut ap-
proximations. Note that the exponential mechanism described above loses a multiplicative factor of
(1 + η).

�eorem 1.2. Let M be an (ϵ, δ )-private mechanism and G ∼ G(n,p). In this case, G has m = O(p
(n

2
)
)

edges with high probability. If M answers all (S,T )-cut queries about G up to an additive error α with
probability at least β , then α ≥ Ω

(√
mn/ϵ (1 − c)

)
, where c = e−1

eϵ−1 ·
9δ
β .
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In the preceding theorem, c is a very small number because ϵ and β are assumed to be constants
while δ is usually required to be smaller than inverse of any polynomial in n, see the book of Dwork
and Roth [18]. If we restrict to pure (ϵ, 0)-private mechanisms, we can get a similar bound already for
cuts of type (S,V \ S).

�eorem 1.3. Let G be the class of graphs with edge weights summing up to at most m. Let M be a
mechanism which is (ϵ, 0)-di�erentially private on G and its additive error on cuts of type (S,V \ S) is
bounded by α with constant probability. If the number of edges with non-zero weights is o(n

√
n), then

α ≥ Ω(
√
mn/ϵ). If it is n2/c for some constant c , then we have α ≥ Ω(

√
mn/ϵ · log−1 n).

Our lower bounds for (ϵ, δ )-algorithms are based on connections to discrepancy theory shown by
Muthukrishnan and Nikolov [39], whereas the lowerbound for (ϵ, 0)-mechanisms are based on pack-
ing arguments of Hardt and Talwar [27] and some recent results of Carlson, Kolla, Srivastava and
Trevisan [15] on a certain rigidity phenomenon for cut approximations.

We remark that the synthetic graph released by our algorithm is not necessarily sparse, i.e., having
O(n logn) edges. If needed, one can indeed sparsify the output of our algorithm using any known spar-
si�cation algorithms [7, 44, 6, 33] to obtain a di�erentially private sparsi�er due to the post-processing
property of di�erential privacy. However, this will lead to multiplicative errors.

1.1 Putting our results in context

Because of its broad applicability in the context of social network analysis, the study of di�erentially
private algorithms for answering cut queries has received much a�ention from the community. �ere
are two main lines of work.

In the �rst line of work, o�en called interactive release of cut functions, the goal is to design a
polynomial time algorithm that answers cut queries di�erentially privately. Here the algorithm does
not have to release a synthetic graphG ′ approximatingG, but is only required to answer queries of the
form: what is the size of cut (S,V \S)? A naive algorithm to solve this problem is adding noise sampled
from the Laplace distribution Lap(0, 1

ϵ ). Using this mechanism to answer k (adaptive) cut queries will
give us O(

√
k ϵ, δ )-privacy. Hence, if k � n4, then the error of this mechanism is O(n2), which can be

achieved by the trivial algorithm of releasing an empty graph.
�e above result was substantially improved by Gupta, Roth, and Ullman [24]. �ey introduced an

elegant framework called iterative database construction algorithms (IDC), and showed that an e�cient
IDC for any class of queries Q automatically yields an e�cient private data release mechanism for Q .
Using this framework, they analyzed three (ϵ, δ )-di�erentially private algorithms that can answer all
cut queries with the following error guarantees:

• �e Median mechanism IDC, based on the Median mechanism of [41], achieves error of at most
O(

m1/2n3/4(logn)1/4
ϵ 1/2 ).

• �e Multiplicative Weight Update IDC, based on the private Multiplicative Weight Update algo-
rithm [26], achieves error of at most O(m

1/2n1/2(logn)1/4
ϵ 1/2 ).

• Frieze and Kannan IDC, based an Frieze and Kannan low-rank matrix decomposition algorithm
[22], achieves error of at most O(m1/4n

ϵ 1/2 ).

Note that Frieze and Kannan IDC algorithm does be�er for dense graphs where as IDC based on
Online MWU is be�er for the sparse graphs. We note here that the error bounds above only hold
for interactive release of cut functions, and the algorithms above do not solve the harder problem of
releasing an actual synthetic graph that approximates all cuts well, which is what our algorithm does.
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�e second main research direction in di�erentially private answering of cut queries is releasing
a synthetic graph G ′ that approximates all the cuts of the original graph G. �is is a harder problem
than answering cut queries, and is the focus of our paper. One of the advantages of this approach is
that the data analyst does not have to issue a query to the central authority holding the graphG every
time she wants to evaluate a cut function. Moreover, an analyst can use existing graph algorithms
on the synthetic graph. We emphasize that the three mechanisms mentioned above work only in the
interactive se�ing, and do not imply any polynomial time algorithm for releasing a synthetic graphG ′

that approximates all the cuts. �e problem of releasing a synthetic graphG ′ that approximatesG was
also considered by Gupta, Roth, and Ullman [24]. �ey gave an (ϵ, 0) di�erentially private algorithm
based on randomized response that achieves an error guarantee of O(n

√
n/ϵ).

Lastly, Blocki et al [10] show a nice application of Johnson-Lindenstrauss transform for releasing
a synthetic graph G ′ which approximates a predetermined cut query. Suppose the cut query we are
interested is (S,V \ S). �en the cut (S,V \ S) in the synthetic graph G ′ released using JL algorithm in
[10] has an error of at most O(|S |/ϵ). �ey also show that the algorithm readily extends to answering
k predetermined cut queries achieving an error of O(|S |(

√
logk/ϵ). However, if one is interested in the

values of all cuts, then k = 2n and |S | = n, which leads to an error of O(n
√
n/ϵ).

From the above discussion we conclude that for sparse graphs, the error guarantee obtained by our
algorithm matches even the best known interactive algorithm (MWU IDC of [24]), while solving the
signi�cantly harder problem of synthetic graph release.

�ere has already been prior work on private mirror descent in the context of empirical risk min-
imization by Talwar et al. [45]. However, the authors impose a strong requirement on the objective
function which needs to be of the form 1

k
∑k

i=1 L(x,di ), for some function L, and they study the case
where k is large. Our objective function is monolithic, i.e., k = 1, and their result does not seem to be
applicable. For example, the suggested number of iterations of mirror descent would be smaller than
1.

Acknowledgements. Authors would like to thank the anonymous reviewer for suggesting how to
improve the lower bound in �eorem 1.2 to have the optimal dependency on ϵ .

2 Our techniques

We now outline our approach. Recall that a sparsi�er for graphG is another graphG ′ (with O(n logn)
edges) such that G ′ approximately preserves all the cuts in G. Graph sparsi�cation has rich and beau-
tiful theory ([7, 44, 6, 33]), and seems a natural place to start for our quest towards a di�erentially
private algorithm for releasing synthetic graphs. �us we begin with a high level of overview of the
sparsi�cation techniques, which will also help us highlight the main technical challenges di�erential
privacy brings to this problem.

Given a graph G = (V , E), how can one generate a sparsi�er? All previously known approaches
essentially proceed by assigning a measure of importance to edges of the input graph, and then se-
lecting a small number of edges according to this measure of importance. For Karger’s original cut
sparsi�ers [29, 8, 23] the measure of importance was proportional to strong connectivity or inverse
connectivity, for spectral sparsi�ers [43] the measure of importance is the e�ective resistance of the
edge. �e work of Batson, Spielman and Srivastava [5] on linear size spectral sparsi�ers and more
e�cient constructions [31, 2, 32] use a carefully designed potential function that induces an measure
of importance on edges of G, which then changes over a number of iterations, ensuring that the total
number of edges added to the sparsi�er is only linear in the number of vertices.

All of the aforementioned methods for constructing sparsi�ers turn out to be very hard to make
di�erentially private for one common reason: the measure of importance of edges to include in a
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sparsi�er is supported on the edges of the input graphG only, and edges other than edges ofG are never
output! To illustrate the point, consider the following natural approach to making e�ective resistance
sampling di�erentially private. Suppose that given a graph G one �rst adds a regularizer to G, namely
logn
ϵn K , a complete graph with average degree ≈ logn/ϵ , where ϵ is the privacy parameter, and then

samples ≈ n logn edges F with probability proportional to e�ective resistance. �is edge set contains
a sparsi�er, and one might hope that the distribution is di�erentially private. In fact, one can verify
that for every pair of graphs G,G ′ that di�er by an edge e the divergence between the distribution of
F \ {e} (i.e. the edges sampled when input is G, except the edge e) and F ′ \ {e} (i.e. the edges sampled
when input is G ′, except the edge e) is in fact only O(ϵ). �is seems promising, but the probability
assigned to the edge e is very di�erent inG andG ′, exactly because e�ective resistance sampling never
outputs non-edges, and this problem is fundamental. �us, as a prerequisite to designing di�erentially
private cut approximations we need to �rst design a new method for constructing synthetic graphs
that naturally outputs non-edges of the input graph G. We outline our approach to constructing such
synthetic graphs below, and show how to make them di�erentially private.

Let G = (V , E) denote the input graph, let A ∈ Rn×n denote the adjacency matrix of G. For a
weight vector w ∈ R(

V
2 )
+ let Aw denote the adjacency matrix of the weighted complete graph Gw with

weight of edge e ∈
(V

2
)

given by we . A very natural approach to making Gw a di�erentially private
approximation to G would be to approximately �nd the optimum of

min
w ≥0∑
e we=m

max
∅⊂S ⊂V

���� ∑
e ∈S×(V \S )

we − |E ∩ S × (V \ S)|

����, (1)

through an iterative process, adding noise to the iterates to achieve privacy (e.g., such an approach
has been successful in designing di�erentially private algorithms for SVD [25, 20]). �ere is a problem
with this approach, however, since a natural iterative process seems to require �nding the maximum
cut in the di�erence of the actual graph G and the graph Gw constructed so far, which is challenging.
We �x this issue by replacing the worst case di�erence over all cuts in (1) with the tractable cut norm
relaxation. �e resulting optimization problem admits a solution by stochastic mirror descent, and a
careful design of the gradient oracle allows us to achieve privacy.

Speci�cally, we consider instead the optimization problem (2) below: �nd a weight vectorw ∈ R(
V
2 )

that minimizes the cut norm relaxation instead of minimizing over all cuts, adding a regularization term
to the cut norm relaxation to ensure privacy (we provide the necessary background in Section 3.3) .
For a parameter λ ≈

√
m/n we approximately optimize1

min
w ≥0∑
e we=m

 max
X is symmetric,

X �0, and Xii=1 ∀i

(
0 A −Aw

A −Aw 0

)
• X + λ log detX

 . (2)

We �nd a nearly-optimal weight vector w using stochastic mirror descent (see Section 3.4), which
is an iterative process that at every point requires an approximation to the gradient of the objective
function. �is gradient, when evaluated at a current iteratew , by Danskin’s theorem (see �eorem 4.1
below) is exactly the optimum X in the inner optimization problem at w . At every iteration of mirror
descent we release an approximation to the gradient in a di�erentially private manner. Speci�cally,
we think of X (which is a PSD matrix with ones on the diagonal) as a covariance matrix of a Gaussian
distribution, and release a sample from that Gaussian. More formally, we let ζ ∼ N (0, I2n) be a random
variable distributed as an isotropic multivariate normal, and release X 1/2ζ , see Algorithm 2 line 9. �is
su�ces to implement the gradient oracle for stochastic gradient descent in Algorithm 2.

1�e optimization problem below is slightly simpli�ed for the purposes of this overview, where we add constraints to X
to ensure that its eigenvalues are bounded away from 0; we also replace the constraints that the weights add up tom with a
di�erentially private version.

5



Now the privacy analysis amounts to the following question: given two graphs G and G ′ that
di�er by at most 1 in `1 norm, let X denote the optimum of the inner optimization problem in (2) when
the objective A is the adjacency matrix of G, and let X ′ denote the optimum in the inner optimization
problem when the objective is the adjacency matrix ofG ′. We show (see Section 4.3) that δ -approximate
max divergence between X 1/2ζ and (X ′)1/2ζ is small, speci�cally smaller than O(1/λ), where λ is the
regularization parameter above. �e intuition behind the proof consists of noting that on the one hand,
the divergence between the above Gaussians can be bounded in terms of | |X−1/2(X − X ′)X−1/2 | |F (see
Section 4.3, Lemma 4.10), and on the other hand | |X−1/2(X − X ′)X−1/2 | |2F is essentially the quadratic
term in the Taylor expansion of our regularizer in (2) – this is exactly the rationale behind the choice
of λ log detX as the regularizer in the optimization problem above (see Section 4.3, Lemma 4.9). �is
shows that the privacy loss per iteration is ≈ 1/λ, which implies by the adaptive composition theorem
in di�erential privacy (see �eorem 3.5 in Section 3.2), that the privacy loss over T iterations is about√
T /λ, and hence we can run mirror descent for T ≈ λ2 steps (se�ing the privacy parameter to be

a constant for this outline). At the same time, one can show that the distance to optimum a�er T
iterations of mirror descent applied to (2) is

≈
m
√
T
+ λn,

where the second term is due to the distortion contributed by the regularizer in (2) (we ignore loga-
rithmic factors for simplicity). Since T ≤ λ2 is forced by the privacy constraint, we need to minimize
m√
T
+
√
Tn. �is leads to the choice T ≈m/n and therefore to total error ofm/

√
T +
√
Tn logn ≈

√
mn,

as required.
Finally, we prove that the ≈

√
mn error is best possible for di�erentially private algorithms if we are

only interested in additive cut approximations. We prove two results. First, we show, using a connec-
tion to discrepancy due to the work of Muthukrishnan and Nikolov [39], that any (ϵ, δ )-di�erentially
private approximation that succeeds with probability at least β must incur error of Ω(

√
mn/ϵ (1 − c)),

where c depends on ϵ, β , and δ . �is matches the error incurred by our algorithm up to polyloga-
rithmic factors in n. We also show that any (ϵ, 0)-di�erentially private algorithm must incur error of
Ω(

√
mn/ϵ log−1 n) already for cuts of type (S,V \S). �e la�er bound is by a packing argument that re-

lies on the recent results of Carlson, Kolla, Srivastava and Trevisan [15] that establish a certain rigidity
phenomenon for cut approximation, namely to show that any two d-regular graphs that approximate
each other’s cuts be�er than to a ≈ 1 ± 0.1/

√
d factor must share a constant fraction of edges.

3 Preliminaries

We are given a graph G with weights w ∈ R(
V
2 )
+ , such that

∑
e we =m. For S,T ⊆ V , we denote w(S,T )

the total weight of the edges e ∈ S ×T . Our task is to �nd a graph G ′ with weights w ′, such that the
maximum of |w ′(S,V \S)−w(S,V \S)| over the choice of S ⊂ V is as small as possible, while preserving
the di�erential privacy as will be de�ned below.

3.1 Matrices and norms

In this paper, we o�en work with matrices and semide�nite programs and this requires some notation
and terminology. Let A ∈ Rn×n be a matrix with eigenvalues λ1, . . . , λn . We de�ne the trace of A as
tr(A) =

∑n
i=1 Ai ,i =

∑n
i=1 λi . Trace has a cyclic property, i.e., for a squared matrix M = M1M2 · · ·Mk ,

we have tr(M1M2 · · ·Mk ) = tr(MkM1 · · ·Mk−1). We say that A is positive semide�nite (PSD), if λi ≥ 0
for each i = 1, . . . ,n. If all these inequalities are strict, we call A positive de�nite. Another equivalent
de�nitions are that x>Ax ≥ 0 resp. x>Ax > 0 for each x , 0. A symmetric positive semide�nite matrix
A can be wri�en as A = B>B, i.e., there are b1, . . . ,bn ∈ R

n such that Ai , j = b>i bj for each i, j. If A,B
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are positive (semi)de�nite matrices, then also Aα , where α ∈ R, and ABA are positive (semi)de�nite2.
�e notation A � B (and A � B) means that A−B is positive (semi)de�nite. For A,B ∈ Rn×n , we de�ne
A • B = tr(A>B) =

∑n
i , j=1 Ai , jBi , j . Note that A • B ≥ 0 for positive semide�nite A and B.

We use several matrix norms. �e Frobenius norm is de�ned as ‖A‖F = (
∑n

i , j=1 A
2
i , j )

1/2 =
√

tr(A>A).
We also de�ne ‖A‖1 =

∑n
i , j=1 |Ai , j |. �e operator norm is de�ned as ‖A‖op = sup‖x ‖2=1‖Ax ‖2. For

symmetric A, we have ‖A‖op = maxni=1 |λi |. For symmetric matrix A, we have

‖A‖op ≤ ‖A‖F ≤ ‖A‖1. (3)

We use Dk f (x)[v1,v2, · · · ,vk ] for the kth directional derivative of f at x along v1,v2, · · · ,vk . We
will use the regularizer log det(A), which has the following properties.

Proposition 3.1. Let A ∈ Rn×n be a symmetric positive de�nite matrix with eigenvalues λ1, . . . , λn . �e
following holds.

1. log det(A) =
∑n

i=1 log λi

2. log det(A) ≤ tr(A − I )

3. ∇ log det(A) = A−1

4. D2 log det(A)[E, E] = − tr(A−1EA−1E)

Proof. �e �rst claim is true because det(A) =
∏n

i=1 λi . �e second one can be veri�ed by considering
the KL-divergence of N (0, I ) and N (0,A) which is always non-negative. Here, N (x, Σ) denotes the
multivariate normal distribution with mean x and covariance matrix Σ. �e last two properties can be
found in the book of Boyd and Vandenberghe [12, Appendix A.4]. �

3.2 Approximate di�erential privacy

De�nition 3.2. Let us denote C the family of all cuts. A mechanism M for releasing cut sizes is a family

of probability measures M = {µx ; x ∈ R(
n
2)
+ } where µx is a probability measure on RC for each graph x .

We say that M is (ϵ, δ )-di�erentially private, if for all x, x ′ ∈ R(
n
2)
+ such that ‖x − x ′‖1 ≤ 1 and for all

measurable subsets S ⊆ RC , we have µx (S) ≤ exp(ϵ)µx ′(S) + δ .

Given M = {µx }, we denote pdfx the probability density function of µx .

Lemma 3.3. Let M be a mechanism such that for any x, x ′ such that ‖x − x ′‖1 ≤ 1, M is ϵ-private with
probability at least (1− δ ), i.e., for Q = {y ∈ RC ; pdfx (y) ≤ eϵ pdfx ′(y)} we have µx (Q) ≥ (1− δ ). �en,
M is also (ϵ, δ )-private.

Proof. For any measurable set S ⊆ RC , we have

µx (S) =

∫
y∈S∩Q

pdfx (y)dy +
∫
y∈S\Q

pdfx (y)dy ≤
∫
y∈S∩Q

eϵ pdfx ′(y)dy + δ ≤ eϵ µx ′(S) + δ . �

In the opposite direction, only a weaker relation holds. �e following lemma can be found in the
paper by McGregor et al. [35, Lemma A.3].

Lemma 3.4. Let M : {0, 1}n → R be an (ϵ, δ )-di�erentially private mechanism. �en, for every γ > 0,
and every x, x ′ ∈ {0, 1}n with Hamming distance 1, if we generate y = M(x), then we have exp(−ϵ −γ ) ≤
P(M (x )=y)
P(M (x ′)=y) ≤ exp(ϵ + γ ) with probability at least 1 − δ ′, where δ ′ = δ · 1+exp(−ϵ−γ )

1−exp(−γ ) .
2�e eigenvalues of Aα are λαi . For ABA, we have (x>A)B(Ax) ≥ 0 or > 0 respectively.
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�eorem 3.5 (Advanced composition theorem [18]). For all 0 ≤ ϵ ≤ 1
2
√
k
, 0 ≤ δ ≤ 1

2 , the class of (ϵ, δ )-

di�erentially private mechanisms satis�es (2
√
k ln( 2

kδ )ϵ, 2kδ )-di�erential privacy under k-fold adaptive
composition.

For b ∈ R, we denote Lap(b) the Laplace distribution with probability density function Lap(x |b) =
1

2b exp(−|x |/b). It is o�en used in di�erential privacy and the following lemma is one example: it
describes a special case of the so-called Laplacian mechanism. Proof can be found in [18], see Lemma 3.6
and Fact 3.7.

Lemma 3.6. Let us choose Y ∼ Lap(1/ϵ). A mechanism, which given a numberm returnsm′ =m +Y is
(ϵ, 0)-di�erentially private. Moreover, we have P(|Y | ≥ t/ϵ) ≤ e−t .

Corollary 3.7. Given graph G with edge weights w such that
∑

e we = m, we can release m′ = m + Y
satisfying (ϵ, 0)-di�erential privacy. Moreover, w ′ = m′

m w satis�es

|w ′(S,T ) −w(S,T )| ≤ ϵ−1 logη−1 for all S,T ⊆ V

with probability at least (1 − η) over the choice of Y .

Proof. For each pair S,T we have

w ′(S,T ) = m+Y
m w(S,T ) = w(S,T ) + Y

mw(S,T ) ≤ w(S,T ) + Y ,

where |Y | ≥ logη−1ϵ−1 with probability at most η. �

For more information on di�erential privacy, we recommend the book of Dwork and Roth [18].

3.3 Cut norm and cut distance

Consider graphsG andG ′, their adjacency matricesA andA′ and D = A−A′ their di�erence. Note that
if both graphs G and G ′ have m edges, we have

∑
i , j Di j = 0 and

∑
i , j |Di j | ≤

∑
i , j Ai j +

∑
i , j A

′
i j ≤ 4m.

We say that G ′ approximates the cuts of G up to an additive error speci�ed as follows:

max
{�� ∑
v ∈S ,u ∈V \S

Auv −
∑

v ∈S ,u ∈V \S

A′uv
��; S ⊂ V }

= max{|x>Dy |; x,y ∈ {0, 1}n, xi + yi = 1∀i}.

Note that this expression is bounded from above by the following norm.

De�nition 3.8. For a matrix D ∈ Rn×n , we de�ne its cut norm as

‖D‖cut = max{|x>Dy |; x,y ∈ {0, 1}n}.

For two graphs G and G ′ with adjacency matrices A and A′, we de�ne their cut distance as

dcut(G,G
′) = ‖A −A′‖cut.

Note that the cut distance captures also di�erence in edge weights connecting S and T , where S
and T are not a partition of V and can even overlap. Cut norm and cut distance are well known in the
literature [22, 34] and can be approximated up to a constant factor using the following SDP, see the
paper of Alon and Naor [3].

max
{(

0 D
D 0

)
• X ; X is symmetric, X � 0, and Xii = 1 ∀i

}
(∗)
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3.4 Convex optimization

Our algorithm is based on mirror descent which can minimize a convex function f (x) over a convex
set X. We choose a mirror map Φ, step length η, and proceed as in Algorithm 1, where

DΦ(x, x
′) = Φ(x) − Φ(x ′) − ∇Φ(x ′)>(x − y)

denotes the Bregman divergence associated to Φ. See [13] for more information about mirror descent.

Algorithm 1: Stochastic mirror descent
choose x (1) ∈ arg minx ∈X Φ(x);
for t = 1, . . . ,T do

let д(t ) be an unbiased estimator of ∇f (x (t ));
choose y(t+1) such that ∇Φ(y(t+1)) = ∇Φ(x (t )) − ηд(t );
x (t+1) = arg minx ∈X DΦ(x,y

(t+1));
return 1

T
∑T

t=1 x
(t );

At each iteration, the evaluation of the gradient is the only input needed by mirror descent to per-
form its step. �e following theorem bounds the error depending on the parameters of the optimization
problem and the number of iterations.

�eorem 3.9 (Stochastic Mirror Descent [13]). Let Φ be a mirror map ρ-strongly convex with respect
to ‖·‖, and let ‖·‖∗ denote the norm dual to ‖·‖. Let f be convex with x∗ = arg minx ∈X f (x). Let R2 =
Φ(x∗)−minx ∈X Φ(x). Assume that E[д(t )] = ∇f (x (t )) and E[‖д(t )‖2∗] ≤ B2 for all t . A�erT iterations with
step length η = R

B

√
2/T , stochastic mirror descent outputs x ∈ X such that E[f (x)] ≤ f (x∗) + RB

√
2/ρT .

We will instantiate �eorem 3.9 with ‖·‖ being the `1 norm, so that ‖·‖∗ is the `∞ norm. We use
X = {x ∈ R

(V2 )
+ ;

∑
e ∈(V2 )

we = m}, where m is the released approximation of the sum of edge weights
of the input graph, and Φ(x) =

∑
e ∈(V2 )

xe logxe . It can be shown that Φ is 1/m-strongly convex on X
with respect to the `1 norm by following the proof of Pinsker’s inequality. Moreover the step is given
by the explicit formula

x (t+1)
e =

m · x (t )e exp(−ηд(t )e )∑
e x
(t )
e exp(−ηд(t )e )

.

We use mirror descent to minimize a function f (w) over w ∈ X which tells us how well does a graph
with weights w approximate the input graph. �is function will be de�ned in the following Section.

4 Algorithm

Given the input graph G whose edge weights sum up to m, we use the mirror descent algorithm to
�nd a graph G ′ with the same sum of edge weights which approximates each cut of G to the desired
precision. For now, we can assume thatm is public, since we can release a private approximation ofm
and normalize the weights using Corollary 3.7 incurring only a constant additive error. We could �nd
a suitable G ′ by minimizing the function which evaluates the SDP (∗). However, each evaluation of its
gradient leaks information about the input graph and it turns out that we need a function with a more
stable gradient to achieve the desired privacy.

We will minimize the following function instead. Let A be the adjacency matrix of G. Given a
graph G ′ with adjacency matrix A′, we denote D = A − A′, as described in preliminaries. We de�ne

9



our function as follows:

F
( ( 0 D

D 0
) )
= max

{(
0 D
D 0

)
• X + λ log detX ; X ∈ D

}
, (∗∗)

where the regularizer λ log detX controls the stability of the optimum and

D = {X ; X is symmetric, Xii = 1 ∀i,X � 1
n I2n}

is a domain which is slightly more restricted compared to the program (∗) in order to keep log det(X )
bounded. �e parameter λ will be used to control the privacy.

In the following text, we show that (∗∗) is still a good approximation of ‖D‖cut (Subsection 4.1).
In Subsection 4.2 we show that we can use the gradient of F in the mirror descent algorithm to �nd a
graph G ′ with adjancency matrix A′ such that ‖A −A′‖cut ≤ O(

√
mn log

1
2 n + λn logn). Subsection 4.3

contains the privacy analysis which shows that λ = Θ(
√m

n · ϵ
−1 log2 m

δn ) is enough to achieve (ϵ, δ )-
di�erential privacy. At last, in Subsection 4.4, we show that our algorithm can be implemented in
polynomial time.

4.1 Properties of the cut norm relaxation

First, let us state some useful properties of (∗∗). We note that the gradient of (∗∗) can be computed
using the following theorem.

�eorem 4.1 (Danskin’s theorem [16, 9]). LetD be a compact subset of Rm and let ϕ : Rn ×D → R be
a continuous function such that ϕ(·, x) is convex for each x ∈ D. �en the function f : Rn → R de�ned as

f (z) = max
x ∈D

ϕ(z, x)

is convex. If there is a unique maximizer x∗ such that ϕ(z, x∗) = maxx ∈D ϕ(z, x) and that ϕ(·, x∗) is
di�erentiable at z, then f is di�erentiable at z and

∇f (z) = ∇zϕ(z, x
∗) =

(
∂ϕ(z, x∗)

∂zi

)n
i=1
.

Observation 4.2. For X ∈ D with eigenvalues λ1, . . . , λ2n and for any M ∈ R2n×2n , the following holds.

1. We have λi ∈ [ 1
n , 2n] and Xi j ∈ [−1, 1] for any i and j.

2. �e function F (M) is convex and we have ∇F (M) = XM , whereXM denotes the maximizer such that
F (M) = M • XM + λ log det(XM ).

Proof. Note that the eigenvalues of any X ∈ D are between 1/n and 2n = trX . Moreover, since X � 0,
there are vectors x1, . . . , x2n such that Xi j = x>i x j for each i, j. �ese vectors have unit length, since
Xii = 1 for each i and therefore Xi j ∈ [−1, 1] for each i, j.

We prove the second statement using �eorem 4.1. We de�ne

ϕ(M,X ) = M • X + λ log det(X ) and f (M) = maxX ∈D ϕ(M,X ).

It is easy to see that ϕ(·,X ) is linear (and therefore convex and di�erentiable) for any �xed X ∈ D.
�erefore, we have∇f (M) = ∇Mϕ(M,X ∗) = X ∗, whereX ∗ is the maximizer such that f (M) = ϕ(M,X ∗).

�

Lemma 4.3. LetG andG ′ be graphs whose edge weights sum up tom and D = A−A′ be the di�erence of
their adjacency matrices. �en, the di�erence between the optimum values of the optimization programs
(∗∗) and (∗) is O(m/n + λn logn).
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Proof. Let X be the optimum solution to (∗). �en, X ′ = (1− 1
n )X +

1
n I is a feasible solution to (∗∗) and,

using Observation 4.2, we get

|
( 0 D
D 0

)
• X −

( 0 D
D 0

)
• X ′ − λ log detX ′ | ≤ |

( 0 D
D 0

)
• ( 1

nX )| + |λ log detX ′ | ≤ O(m/n + λn logn),

because Xi j ∈ [−1, 1],
∑

i , j |
( 0 D
D 0

)
i j | = 4m, and log detX =

∑2n
i=1 log λi , where λi ∈ [1/n, 2n] are

eigenvalues of X . �

4.2 Precision analysis

Let Ĝ be the input graph, Â its adjacency matrix and m̂ the sum of its edge weights. We denote m the
(ϵ0, 0)-di�erentially private approximation of m̂ from Corollary 3.7 and G the graph with adjacency
matrix A = (m/m̂)Â. By Corollary 3.7, G approximates all cuts of Ĝ up to a constant additive error.

We formulate an optimization problem over the weight vectors in order to �nd a graph which
approximates the cuts ofG. Let us denote Buv the adjacency matrix of an unweighted graph with only
a single edge between u and v . For any vector w ∈ R(

V
2 ), we denote Aw =

∑
e ∈(V2 )

weBe the adjacency
matrix of the graph Gw with edge weights w . Using the function F from equation (∗∗), which is our
proxy to the cut norm, we de�ne

f (w) = F

( ( 0 Aw
Aw 0

)
−

( 0 A
A 0

) )
,

which quanti�es how wellGw approximates the cuts inG. We will apply the mirror descent algorithm
to the optimization problem

min
{
f (w); we ≥ 0,

∑
e ∈(V2 )

we =m

}
(4)

with the mirror map Φ(w) =
∑

e we logwe . In each iteration, we randomize the gradient of f by
applying Johnson–Lindenstrauss transform to achieve desired privacy, see Algorithm 2.

Lemma 4.4. Let us denote M =
( 0 Aw
Aw 0

)
−

( 0 A
A 0

)
and XM the maximizer of F (M). We have

∇f (w)e = XM •
( 0 Be
Be 0

)
for each e ∈

(V
2
)
.

Proof. Let xe ∈ R(
V
2 ) be a vector having 1 in the coordinate corresponding to e and 0 elsewhere. Using

Observation 4.2, we have

Df (w)[xe ] = DF (M)[
( 0 Be
Be 0

)
] = XM •

( 0 Be
Be 0

)
. �

Lemma 4.5. Let дe = (X 1/2ζ ζ >X 1/2) •
( 0 Be
Be 0

)
be the stochastic gradient oracle, where ζ ∼ N (0, I ) and

X is the maximizer of F (M). �en, we have that E[дe ] = X •
( 0 Be
Be 0

)
and E[‖д‖2∞] = O(log2 n).

Proof. First, we show that E[дe ] = X •
( 0 Be
Be 0

)
. For each i , we have ζiζi distributed according to

chi-squared distribution with expectation equal to 1. On the other hand, for each pair i , j, ζiζj is
distributed according to the product normal distribution whose expectation is 0. �erefore, we have
E[ζ ζ >] = I2n and E[дe ] = X 1/2IX 1/2 •

( 0 Be
Be 0

)
= X •

( 0 Be
Be 0

)
since it is a linear function of ζ ζ >.

Now, let us bound E[‖д‖2∞]. By cyclic property of trace, we can write

дe = tr(X 1/2ζ ζ >X 1/2)
( 0 Be
Be 0

)
= tr(ζ >X 1/2 ( 0 Be

Be 0
)
X 1/2ζ ) = ζ >Nζ ,
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Algorithm 2: Private Cut Approximation
1 Input: Ĝ and the sum of its edge weights m̂.
2 Release private approximationm of m̂, see Corollary 3.7.
3 Normalize the edge weights to sum up tom: set A = (m/m̂)Â.
4 Choose the initial solution w (1)e =m/

(n
2
)

for all e ∈
(V

2
)
.

5 for t = 1, . . . ,T do
6 M =

( 0 At
At 0

)
−

( 0 A
A 0

)
, where At is the adjacency matrix of graph with weights w (t ).

7 Find the maximizer XM of F (M), where F is de�ned in (∗∗).
8 Choose a random vector ζ ∼ N (0, I2n).
9 Release X

1
2
Mζ .

10 Compute the approximate gradient: д(t )e = (X
1
2
Mζ ζ

>X
1
2
M ) •

( 0 Be
Be 0

)
for all e ∈

(V
2
)
.

11 Mirror descent step: w (t+1)
e =

m ·w (t )e exp(−ηд(t )e )∑
e w
(t )
e exp(−ηд(t )e )

for every e ∈
(V

2
)
.

12 returnw = 1
T

∑T
t=1w

(t ).

where we denoted N = X 1/2 ( 0 Be
Be 0

)
X 1/2. Since Be has only two non-zeros with values ±1, we can

write N =
∑4

i=1 X
1
2EiX

1
2 , where Ei contains only one non-zero entry with value ±1. Hence, we have

| tr(X
1
2 NX

1
2 )| = |

4∑
i=1

tr(XEi )| ≤ 4,

since XNi is a matrix with a single non-zero column which equals to some column of X and Xi , j ∈

[−1, 1] for each i, j by Observation 4.2. Moreover, we have

‖X
1
2 NX

1
2 ‖2F = tr(X

1
2 NX

1
2X

1
2 NX

1
2 ) =

4∑
i , j=1

tr(XEiXEj ) =
4∑

i , j=1
(XEi )

> • (XEj ) ≤ 16,

because each summand (XEi )> • (XEj ) equals Xk ,` · Xk ′,`′ ∈ [−1, 1] for some k, `,k ′, `′, since (XEi )>
equals to a single column of X while (XEj ) to a single row.

Hence, we have |trN | ≤ 4 and ‖N ‖F ≤ 4. Applying �eorem 4.11, we have

P(| tr(N ) − дe | ≥ t) ≤ O(1) · e−Ω(t ).

By applying union bound over
(n

2
)
< n2 coordinates of д, and choosing t = s +O(logn2), we get

E[‖д‖2∞] = O(1) ·
∫ ∞

s=1
n2e− logn2−s ·

(
O(logn2) + s

)2
ds ≤ O(log2 n) ·

∫ ∞

s=1
e−sds +O(1) ·

∫ ∞

s=1
e−ss2ds,

which is at most O(log2 n), since both integrals are bounded by a constant. �

�e following lemma is a corollary of �eorem 3.9.

Lemma 4.6. A�erT steps with η = R
B

√
2/T , Algorithm 2 returnsw , such that

Aw−A


cut ≤ O
(m log3/2 n
√
T
+

λn logn
)
.

Proof. By �eorem 3.9, we have E[f (w)] ≤ f (w∗) + RB
√

2
ρT , where R2 = Φ(x∗) − minx ∈D Φ(x) =

O(m logn), ρ = Ω( 1
m ), and B2 = O(log2 n). So, E[f (w)] − f (w∗) is at most

RB

√
2
ρT
=
mO(log3/2 n)

√
T

.
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So, we have E[f (w)] − f (w∗) ≤ O( m√
T

log3/2 n). Combining with Lemma 4.3, we get the desired
bound. �

4.3 Privacy analysis

We know thatm is (ϵ0, 0)-di�erentially private. Moreover, since we rescale the weights in the beginning
of the algorithm, all the neighboring graphs have edge weights summing up to m. Our strategy is to
bound the privacy loss caused by the evaluation of the gradient д(t ) at each time t , and then apply the
advanced composition (�eorem 3.5) over all the steps of our algorithm. Let us denoteAt the adjacency
matrix of our solution at time t . We explore how much would д(t ) change if the input graph was notG
but some G̃ which di�ers from G in one edge.

Let us make this precise. We denote A and Ã the adjacency matrices of G and G̃ respectively, a�er
re-weighting in step 3 of Algorithm 2, such that ‖A− Ã‖1 ≤ 2. Let us denote M =

( 0 A
A 0

)
−

( 0 At
At 0

)
and

M̃ =
( 0 Ã
Ã 0

)
−

( 0 At
At 0

)
.

First, we state two useful technical propositions. �e �rst one relates the stability of the optimum
to the Bregman divergence associated to the regularizer. �e second one is a useful fact about positive
de�nite matrices.

Proposition 4.7. Let F (M) = max{M • X + H (X ); X ∈ D}, where D is a convex set and H (X ) is
concave function on D. For two matrices M and M̃ , we denote X ∗ the maximizer of F (M) such that
F (M) = M • X ∗ + H (X ∗) and X̃ ∗ the maximizer of F (M̃). �en, we have

−DH (X̃
∗,X ∗) ≤ (M̃ −M) • (X̃ ∗ − X ∗).

Proof. We have the following:

FM̃ (X̃
∗)

= M̃ • X̃ ∗ + H (X̃ ∗)

= M̃ • X̃ ∗ + H (X ∗) + ∇H (X ∗) • (X̃ ∗ − X ∗) + DH (X̃
∗,X ∗)

= M • (X̃ ∗ − X ∗) + ∇H (X ∗) • (X̃ ∗ − X ∗) + H (X ∗) + DH (X̃
∗,X ∗) + M̃ • X̃ ∗ −M • (X̃ ∗ − X ∗)

≤ M̃ • X ∗ + H (X ∗) + DH (X̃
∗,X ∗) − M̃ • X ∗ + M̃ • X̃ ∗ −M • (X̃ ∗ − X ∗)

= FM̃ (X
∗) + DH (X̃

∗,X ∗) + (M̃ −M) • (X̃ ∗ − X ∗).

�e inequality holds becauseX ∗ is the maximizer of F (M) overD and therefore we have M •(Y −X ∗)+
∇H (X ∗) • (Y − X ∗) ≤ 0 for any Y ∈ D. Since FM̃ (X̃

∗) ≥ FM̃ (X
∗), we get

(M̃ −M) • (X̃ ∗ − X ∗) ≥ −DH (X̃
∗,X ∗). �

Proposition 4.8. For positive de�nite matrices X and X̃ , we de�ne t̄ = 1
2 ·

1
1+‖X −

1
2 (X̃−X )X −

1
2 ‖F

and Xt =

tX̃ + (1 − t)X . �en, for every 0 ≤ t ≤ t̄ , we have X−1
t �

1
2X
−1.

Proof. We prove that Xt � 2X for each t ≤ t̄ . Note that Xt − X = t(X̃ − X ). By the choice of t̄ , and
using the relation of the norms (3), we have the following:

‖X−
1
2 (Xt − X )X

− 1
2 ‖op ≤ ‖X

− 1
2 (Xt − X )X

− 1
2 ‖F ≤ t ‖X−

1
2 (X̃ − X )X−

1
2 ‖F ≤ 1/2.

�is implies that X− 1
2 (Xt − X )X

− 1
2 � 1

2 I and therefore (Xt − X ) �
1
2X and Xt �

3
2X � 2X . �

�e following lemma shows that the maximizers of F (M) and F (M̃) are close to each other.
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Lemma 4.9. Let X and X̃ be the maximizers of F (M) and F (M̃) respectively. If λ is larger than some
universal constant, we have

‖X−
1
2 (X̃ − X )X−

1
2 ‖F ≤ O(

1
λ
).

Proof. Using cyclic property of trace, we can write

(M̃ −M) • (X̃ − X ) = tr(X−
1
2X

1
2 (M̃ −M)X

1
2X−

1
2 )(X̃ − X ) = trX

1
2 (M̃ −M)X

1
2X−

1
2 (X̃ − X )X−

1
2 .

�erefore, Proposition 4.7 together with Cauchy-Schwarz inequality imply that

−DH (X̃ ,X ) ≤ ‖X
1
2 (M̃ −M)X

1
2 ‖F · ‖X

− 1
2 (X̃ − X )X−

1
2 ‖F , (5)

where DH is the Bregman divergence of H (X ) = λ log det(X ).
To lower bound the le� hand side, we de�ne Xt = tX̃ + (1 − t)X and h(t) = H (Xt ) = λ log detXt .

By Proposition 3.1, we have

h′(t) = DH (Xt )[X̃ − X ] = λX
−1
t • (X̃ − X ) and

h′′(t) = D2H (Xt )[X̃ − X , X̃ − X ] = −λ trX−1
t (X̃ − X )X

−1
t (X̃ − X ).

Using Taylor’s theorem with integral remainder, we get

λ log detX1 = h(1) = h(0) + h′(0) · (1 − 0) +
∫ 1

0
h′′(t) · (1 − t) dt

= λ log detX0 + λX
−1
0 • (X̃ − X ) − λ

∫ 1

0
(1 − t) trX−1

t (X̃ − X )X
−1
t (X̃ − X ) dt .

Since DH (X̃ ,X ) = λ log det X̃ − λ log detX − λX−1 • (X̃ − X ), we get

−
1
λ
DH (X̃ ,X ) =

∫ 1

0
(1 − t) trX−1

t (X̃ − X )X
−1
t (X̃ − X )dt . (6)

By Proposition 4.8, we can choose t̄ = 1
2 ·

1
1+‖X −

1
2 (X̃−X )X −

1
2 ‖F

, so that for any t ≤ t̄ , we have X−1
t �

1
2X
−1. For two PSD matrices A � A′, we have trAB ≥ trA′B, because trAB − trA′B = tr(A −A′)B ≥ 0

for (A −A′) � 0. Since (1 − t̄) = ‖X −
1
2 (X̃−X )X −

1
2 ‖F

1+‖X −
1
2 (X̃−X )X −

1
2 ‖F

, we get

−
1
λ
DH (X̃ ,X ) ≥

1
4

∫ t

0
(1 − t) trX−1(X̃ − X )X−1(X̃ − X )dt

≥
1
16

‖X−
1
2 (X̃ − X )X−

1
2 ‖2F

1 + ‖X− 1
2 (X̃ − X )X−

1
2 ‖F
.

Pu�ing this into (5), we get

1
2 ‖X

− 1
2 (X̃ − X )X−

1
2 ‖F ≤

‖X−
1
2 (X̃ − X )X−

1
2 ‖F

1 + ‖X− 1
2 (X̃ − X )X−

1
2 ‖F
≤

16
λ
‖X

1
2 (M̃ −M)X

1
2 ‖F ,

whenever ‖X− 1
2 (X̃ − X )X−

1
2 ‖F ≤ 1, which needs to hold for λ larger than some universal constant.

So, it is enough to show that ‖X 1
2 (M̃ − M)X

1
2 ‖F is bounded by a constant. Since ‖M − M̃ ‖1 =

2‖A − Ã‖1 ≤ 4, we can write M − M̃ =
∑(2n)2

i ciEi , where
∑(2n)2

i ci ≤ 4 and each matrix Ei has a single
non-zero entry equal to 1. So, we can write ‖X 1

2 (M̃ −M)X
1
2 ‖F as

tr
(
X

(∑
i

ciEi
)
X

(∑
i

ciEi
) )
=

∑
i , j

cic j · tr(XEiXEj ) =
∑
i , j

cic j · (XEi )
> • (XEj ).
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Note that
∑

i , j cic j = (
∑

i ci )
2 ≤ 16. Moreover, XEi contains precisely one column of X while (XEi )>

precisely one row. �erefore, we have (XEi )> • (XEj ) = (Xk ,`)
2 ≤ 1 for some k, ` dependent on the

position of non-zeros in Ei and Ej and proof is �nished. �

�e following technical lemma together with Lemma 3.3 bounds the privacy of X 1
2 ζ which is used

to construct the gradient oracle. We will use the following notation. For a vector x ∈ Rn and a
symmetric positive de�nite matrix Σ ∈ Rn×n , we denote N (x, Σ) the multivariate normal distribution
with mean x and covariance matrix Σ. Note that if we have ζ ∼ N (0, I ), then Σ

1
2 ζ ∼ N (0, Σ).

Lemma 4.10. Let δ0 be a �xed parameter and X , X̃ ∈ R2n×2n be symmetric positive de�nite matrices
such that ‖X−

1
2 (X̃ − X )X−

1
2 ‖F < 1/2. Let us denote pdfX and pdf X̃ the probability density functions of

N (0,X ) and N (0, X̃ ) respectively. For ϵ0 = O(log 1
δ0
) · ‖X−

1
2 (X̃ − X )X−

1
2 ‖F , we have

pdfX (x) ≤ eϵ0 · pdf X̃ (x)

with probability at least (1 − δ0) over x ∼ N (0,X ).

In the proof, we use the following concentration inequality.

�eorem 4.11 (Hanson–Wright theorem [42]). Let A be an n ×n matrix with entries ai , j . If X1, . . . ,Xn
are mean zero, variance one independent random variables with sub-Gaussian tail decay, i.e., such that
for all t > 0 we have P(|Xi | ≥ t) ≤ 2 exp(−t2/K2) for some K > 0, then

P

(�� tr(A) − n∑
i , j=1

ai , jXiX j
�� ≥ t

)
≤ 2 exp

(
−min

{
t2

CK4‖A‖2F
,

t

CK2‖A‖op

})
for some universal constant C > 0.

Proof of Lemma 4.10. For a symmetric PSD matrix Σ, the density function of Σ 1
2 ζ ∼ N (0, Σ) is

pdfΣ(x) = (2π )−n det(Σ)− 1
2 exp(− 1

2x
>Σ−1x).

We have

2 log
(pdfX (x)
pdf X̃ (x)

)
= log det(X−

1
2 X̃X−

1
2 ) − xT (X−1 − X̃−1)x

≤ tr(X−
1
2 (X̃ − X )X−

1
2 ) − ζTX

1
2 (X−1 − X̃−1)X

1
2 ζ

(7)

because log det(B) ≤ tr(B − I ) holds for any positive de�nite matrix B by Proposition 3.1. Here, we
have B = X−

1
2 X̃X−

1
2 . Let us denote E = X−

1
2 (X̃ − X )X−

1
2 and E ′ = X

1
2 (X−1 − X̃−1)X

1
2 .

We use Hanson-Wright �eorem 4.11 to show that ζ >E ′ζ concentrates around tr(E ′). We have

P(| tr(E ′) − ζ >E ′ζ | ≥ t) ≤ 2 exp(−min{t2/C‖E ′‖2F , t/C‖E
′‖op}).

Since ‖E ′‖F ≥ ‖E ′‖op, we can choose t = O(log 1
δ0
)‖E ′‖F and then

| tr(E ′) − ζ >E ′ζ | ≤ O(log 1
δ0
)‖E ′‖F

holds with probability at least 1−δ0. We will use this to bound (7) by relating tr(E) = tr(X− 1
2 (X̃−X )X−

1
2 )

to tr(E ′) and ‖E ′‖F to ‖E‖F to get the desired bound.
First, we show that ‖E ′‖F = O(‖E‖F ). Note that E ′ = I − B−1 and B = I + E. By expanding

B−1 = (I + E)−1 =
∑∞

i=0(−1)iEi in a power series, we get

‖I − B−1‖F = ‖
∑∞

i=1(−1)iEi ‖F ≤ ‖E‖F
∑∞

i=1(−1)i ‖E‖i−1
F ≤ O(‖E‖F ),
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since ‖E‖F < 1/2.
Our second claim is that | tr(E) − tr(E ′)| ≤ ‖E ′‖F · ‖E‖F . We can write

tr(E ′) = tr(X̃−
1
2 (X̃ − X )X̃−

1
2 ) = tr(X̃−

1
2X

1
2X−

1
2 (X̃ − X )X−

1
2X

1
2 X̃−

1
2 ).

Using the cyclic property of trace, the last term can be wri�en as tr(B−1E). So, we have
| tr(E) − tr(E ′)| = | tr

(
(I − B−1)E

)
| ≤ ‖I − B−1‖F · ‖E‖F

by Cauchy-Schwarz inequality.
Pu�ing everything together, we have

2 log
(pdfX (x)
pdf X̃ (x)

)
≤ O(log(1/δ0))‖E‖F + ‖E

′‖F · ‖E‖F ≤ O(log(1/δ0)‖E‖F )

with probability at least (1 − δ0). �

�eorem 4.12. Algorithm 2 with parameter λ = Θ(ϵ−1)
√
T log3/2(T /δ ) and T = Θ( ϵm

n log( nδ )
) is (ϵ, δ )-

private and achieves error at most O
(√mn

ϵ log2(nδ )
)
.

Proof. First, we check the privacy. We choose δ0 =
δ

2T and ϵ0 = O( 1
λ ) log 1

δ0
. By Corollary 3.7, m

is (ϵ0, 0)-di�erentially private. Combining lemmas 3.3, 4.10, and 4.9, we get that each gradient д(t )
is (ϵ0, δ0)-di�erentially private. According to �eorem 3.5, the total privacy of T steps of the mirror
descent is (

ϵ0 · 2
√
T log 4

δ , δ

)
.

�erefore, it is enough to set λ = Θ(ϵ−1)
√
T log3/2(T /δ ), so that we have total privacy (ϵ, δ ).

Now, by Corollary 3.7 and lemmas 4.3 and 4.6, the error is at most

O

(
1
ϵ0
+
m log3/2 n
√
T

+ λn logn
)
≤O

(
m log3/2(nTδ )
√
T

+

√
T

ϵ
n log5/2(

nT

δ
)

)
≤O

(√
mn

ϵ
log2(

n

δ
)

)
,

since we pick T = Θ( ϵm
n log( nδ )

). �

4.4 Implementation remarks

Lemma 4.13. �is algorithm can be implemented in time Õ(n7 logO (1)(n))with constant factor additional
error and constant factor privacy loss.

Proof. Let X ∗ be the maximizer of F (M). We can �nd X such that
‖(X ∗)−1/2(X ∗ − X )(X ∗)−1/2‖F ≤ µ,

using the algorithm of Lee, Sidford, and Wong [30] in time O
(
n6 logO (1)(n/µ)

)
, see Lemma A.2 in the

appendix.
To estimate the approximation error, we prove a variant of �eorem 3.9 which assumes that the

expectation of the stochastic oracle might di�er slightly from the real gradient. We can show that the
additional error in precision is linear to µ, see Lemma A.4 and �eorem A.3. So, we can make the
additional error small enough by se�ing µ = 1/nO (1). We need T = O(n) iterations of mirror descent
which implies the overall running time.

For the privacy loss, note that Lemma 4.10 does not depend on X and X̃ being minimizers. On the
other hand, Lemma 4.9 does. It is enough to show that ‖X− 1

2 (X − X̃ )X−
1
2 ‖F is also bounded by O(1/λ),

just the constant is slightly larger, see Lemma A.5. �is way, each gradient д(t ) is (ϵ0, δ0)-di�erentially
private, as needed in the proof of �eorem 4.12. �
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5 Lower bounds

We prove the lower bound using the connection to discrepancy by Muthukrishnan and Nikolov [39,
Lemma 10].

We consider an unweighted graph G = (V , E). We construct a matrix A with
(n

2
)

columns corre-
sponding to the edges and rows corresponding to the pairs of disjoint sets S,T ⊂ V , such that

A(S ,T ),e =

{
1 if e ∈ (S ×T )
0 otherwise.

Note that A is �xed and does not depend on G. Let x ∈ {0, 1}(
n
2) be the indicator vector of E. �en the

vector Ax speci�es the size of all (S,T )-cuts in G, i.e., we have (Ax)(S ,T ) = |E ∩ (S × T )| for each pair
(S,T ). We show that A satis�es the following discrepancy property.

De�nition 5.1. Let M be a 0/1 matrix with
(n

2
)

columns and C ⊆ {−1, 0,+1}(
n
2) be the set of allowed

edge colorings. We de�ne
discC (M) = min{‖Mχ ‖∞ ; χ ∈ C}

�e next lemma is a variant of the result of Bollobás and Sco� [11].

Lemma 5.2. For d ≤ n/2 and σ ∈ [0, 1], letCσ ,d be the set of all vectors χ = x − x ′, where both x and x ′

are the indicator vectors of graphs with all degrees belonging to [d/2, 2d], such that ‖χ ‖1 ≥ σdn. For the
matrix A de�ned above, we have

discCσ ,d (A) ≥ Ω(σn
√
d).

Proof. To prove the lemma, we show that for any χ ∈ Cσ , we can �nd disjoint S,T ⊂ V such that
disc(S,T ) = |

∑
e ∈S×T χe | ≥ Ω(σ

√
mn). �is implies that ‖Aχ ‖∞ ≥ Ω(σ

√
mn).

Let us �x some χ ∈ Cσ and choose a random bipartitionX ∪Y = V . Foru ∈ X , we use the following
notation: sdisc(u) =

∑
uv ∈E χuv , sdisc(u,Y ) =

∑
y∈Y ,uy χuy , and sdisc(X ,Y ) =

∑
e ∈X×Y χe . Note that

disc(X ,Y ) = | sdisc(X ,Y )|.
First, for any x ∈ V , we bound E[| sdisc(x,Y \ {x})|]. We de�ne random variables ρv ∼ U ({0, 1})

and ϵv = U ({−1,+1}). Since X and Y are a random bipartition, we have

E[| sdisc(x,Y \ {x})|] = E
[�� ∑
y∈Y \{x }

χx ,y
��] = E[��∑

y,x

ρx χxy
��] = E[�� 1

2

∑
y,x

χxy +
1
2

∑
y,x

ϵxy χxy
��]

≥ max
{

1
2 | sdisc(x)|, 1

2E[|
∑
y,x

ϵxy χxy |]

}
.

Using Khinchine inequality, we haveE[|
∑

xy∈E ϵxy χxy |] = E[|
∑
χxy=+1 ϵxy+

∑
χxy=−1(−ϵxy )|] ≥

√
α(x) · 2d ,

where α(x) · 4d = |{v ; χxv = ±1}|. In other words, α(x) ≤ 1 is the fraction of the maximum possible
number of edges (4d) incident to x with non-zero color. So, we have

E[| sdisc(x,Y \ {x})|] ≥ max
{

1
2 | sdisc(x)|, 12

√
2α(x)d

}
.

Now, we show that E[
∑

x ∈X | sdisc(x,Y )|] ≥ Ω(αn
√
d). We de�ne I (x) the indicator whether x ∈ X .
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We have

E[
∑
x ∈X

| sdisc(x,Y )|] = E[
∑
x ∈V

I (x) · | sdisc(x,Y \ {x})|]

=
1
2

∑
x ∈V

E[| sdisc(x,Y \ {x})|]

≥ Ω(1) ·
∑
x ∈V

max
{
| sdisc(x)|,

√
2α(x)d

}
≥ Ω(1) ·

∑
x ∈V

(| sdisc(x)| +
√

2α(x)d)

≥ Ω(1) ·
√
d ·

∑
x ∈V

√
α(x)) ≥ Ω(

√
d · αn).

�e second line follows from the independence of I (x) and sdisc(x,Y \ {x}). �e last inequality holds
because αdn ≤ 1

2
∑

x ∈V α(x) · 4d implying that αn = 2
∑

x ∈V α(x) ≤ 2
∑

x ∈V
√
α(x), since α(x) ∈ [0, 1]

for each x ∈ V .
To �nish the proof, let us chooseX andY which achieve at least the expectation of

∑
x ∈X | sdisc(x,Y )|.

We set X+ = {x ∈ X ; sdisc(x,Y ) ≥ 0} and X− = X \ X+. �en, we have

Ω(α
√
dn) ≤

∑
x ∈X

| sdisc(x,Y )| =
∑
x ∈X +

| sdisc(x,Y )| +
∑
x ∈X −

| sdisc(x,Y )|.

Moreover, the two terms in the right-hand side are | sdisc(X+,Y )| and | sdisc(X−,Y )| respectively, and
therefore at least one of them has to be of order Ω(α

√
dn). �

Note that if m = Θ(dn), we have n
√
d = Θ(

√
mn). �e paper of Muthukrishnan and Nikolov

contains a lemma simmilar to the following one [39, Lemma 10]. �e proof is also very simillar, but
we include it for completeness.

Lemma 5.3. Let x be the indicator vector of the edge set of some graph G such that the degrees of all its
vertices belong to [d/2, 2d]. �ere is a deterministic algorithmA which given an output y = M(x) of some
mechanism M such that ‖y −Ax ‖∞ < 1

2 discCσ ,d (A) satis�es

‖A(y) − x ‖1 ≤ σdn.

Proof. Giveny = M(x), the algorithm outputs an indicator vector x ′ of any graph with degrees belong-
ing to [d/2, 2d] such that ‖y −Ax ′‖∞ < 1

2 discCσ ,d (A). Note that such x ′ exists, since already x satis�es
the required properties. We consider the vector (x ′−x) ∈ {−1, 0,+1}. For the sake of contradiction, lets
assume that ‖x ′ − x ‖1 > σdn. �en, x ′ − x belongs to Cσ ,d and therefore ‖A(x ′ − x)‖∞ ≥ discCσ ,d (A).
However, by triangle inequality, we have ‖A(x ′ − x)‖∞ ≤ ‖Ax ′ − y‖∞ + ‖Ax − y‖∞ < discCσ ,d (A) — a
contradiction. �

Let X be the distribution of vectors x ∈ {0, 1}(
n
2), where each coordinate xi is choosen indepen-

dently such that xi = 1 with probability p. �is way, the distribution X is the distribution of indicator
vectors of graphs G ∼ G(n,p), where G(n,p) denotes the distribution of Erdős–Rényi random graphs.

Lemma 5.4. Let M be an (ϵ, δ )-di�erentially private mechanism and let Y be the probability distribution
over the transcripts of M(x) where x is drawn from distribution X . �en, for any γ > 0 and y ∼ Y , the
distribution X |Y=y with δ ′ = 2δ · 1+e−ϵ−γ

1−e−γ is p-biased δ ′-approximate strongly 2ϵ+γ -unpredictable source,
i.e., with probability 1 − δ ′ over i ∈ [n] and y ← X |Y=y , we have

2−ϵ−γ 1 − p
p
≤
Px←X |Y=y (xi = 0|x−i )
Px←X |Y=y (xi = 1|x−i )

≤ 2ϵ+γ 1 − p
p
, (8)

where x−i denotes the vector of all coordinates of x excluding xi .
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Proof. We can write
P(xi = 0|x−i ,Y = y)
P(xi = 1|x−i ,Y = y)

=
P(Y = y |xi = 0, x−i ) · P(xi = 0|x−i )
P(Y = y |xi = 1, x−i ) · P(xi = 1|x−i )

=
P(Y = y |xi = 0, x−i )
P(Y = y |xi = 1, x−i )

·
1 − p
p
,

where the �rst fraction is betwen 2−ϵ−γ and 2ϵ+γ with probability at least (1 − δ ′) by Lemma 3.4. �

�e following lemma together with Lemma 5.2 directly implies �eorem 1.2 for ϵ = 1.
Lemma5.5. LetG ∼ G(n,p), wherep ≤ 1/2, be a random graph and letM be an (1, δ )-private mechanism
which approximates (S,T )-cuts of G up to additive error α with probability β . �en, α ≥ Ω(discCσ ,d (A)),
where d = bp

(n
2
)
/nc and σ = Ω(1 − 9δ

β ).

Proof. By the previous lemma, X |Y=y is an δ ′-approximate 2ϵ ′-unpredictable source, where we choose
ϵ = 1 and ϵ ′ = ϵ + 10, and therefore δ ′ ≤ 3δ .

For the sake of contradiction, we assume that M has error smaller than discCσ ,d (A)/2 − 1 with
probability at least β . We will show that for each possible output y of the mechanism M , the inequality
(8) is violated with probability larger than δ ′.

For a �xed y and a �xed x , we de�ne an indicator function I (x, i) which equals 1 ifA(y)i , xi and
0 otherwise. We say that x ∼ X |Y=y is good, if ‖Ax − y‖∞ ≤ discCσ ,d (A)/2 − 1 and the degrees of x
belong to [d/2, 2d]. If x is good, we have ∑(n2)

i=1 I (x, i) ≤ σdn

by Lemma 5.3. Moreover, the probability that x ∼ X |Y=y is good is at least (1 − 1/poly(n)) · β , because
x ∼ X has degrees in [d/2, 2d] with probability at least (1 − 1/poly(n)).

We have
E
[∑

i

I (x, i)
]
=

∑
x

P(x) ·
∑
i

I (x, i) ≤ σdn

over x ∼ X |Y=y, x good. We de�ne Q = {i;
∑

x P(x)I (x, i) ≤ 2σdn/
(n

2
)
}. By Markov’s inequality, we

have P(i ∈ Q) ≥ 1
2 . For each i ∈ Q , we have

2σdn/
(n

2
)
≥ P(xi , A(y)i ) =

∑
x−i

P(xi , A(y)i | x−i ) · P(x−i ) = Ex−i [P(xi , A(y)i | x−i )],

where the probability is over x ∼ X |Y=y, x good. Using Markov’s inequality, we have

Px

(
P
(
xi , A(y)i | x−i

)
≥ c · 2σdn/

(n
2
) )
≤ 1/c .

We choose σ = 1
4c 2−ϵ ′ , so that q = 2cσdn/

(n
2
)
< 1

2 · 2
−ϵ ′dn/

(n
2
)
= 1

2 2−ϵ ′p. �is way, both
q

1 − q ·
p

1 − p and 1 − q
q
·

p

1 − p

are outside [2−ϵ ′, 2ϵ ′], since 1 − q ≥ 1/2 and p
1−p ≤ 1. Note that A is deterministic and A(y)i ∈ {0, 1}

is a constant. Now, if we draw x ∼ X |Y=y , the inequality

2−ϵ ′ ≤ P(xi = 0 | x−i )
P(xi = 1 | x−i )

·
p

1 − p ≤ 2ϵ ′

is violated with probability

P(x is good) · P(i ∈ Q) · (1 − 1
c ) = (1 − 1/poly(n)) · β · 1

2 · (1 −
1
c ) > δ

′,

where we choose c = β
β−3δ ′ . �erefore, we have σ = 2−ϵ ′ · 1

4 · (1 −
3δ ′
β ). �
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We are almost ready to prove �eorem 1.2. However, let us �rst state this proposition on group
privacy which will be useful in the proof.

Proposition 5.6 (Lemma 2.1.2 in [14]). Let M : X → R be an (ϵ, δ )-di�erentially private mechanism,
c ∈ N, and x, x ′ ∈ X such that ‖x − x ′‖1 ≤ c . �en, for every S ⊆ R, we have

P(M(x) ∈ S) ≤ ecϵP(M(x ′) ∈ S) +
ecϵ − 1
eϵ − 1 δ .

Now, we can prove �eorem 1.2.

Proof of �eorem 1.2. Lemma 5.5 together with Lemma 5.2 imply that there is no (1, δ )-DP mechanism
M whose error with probability at least β is below o(

√
mn(1 − δ · 9

β )).
Let’s assume for contradiction, that there is an (ϵ, δ )-DP mechanism M(x) whose error is smaller

than o(
√
mn/ϵ(1 − c)) with probability β , where c = e−1

eϵ−1δ ·
9
β . Let us consider a mechanism ϵM( 1ϵ x).

By Proposition 5.6, it is (1, e−1
eϵ−1δ )-DP. Moreover, it has error

ϵ · o
(√m

ϵ ·
n
ϵ (1 − c)

)
≤ o

(√
mn (1 − e−1

eϵ−1δ ·
9
β )

)
with probability at least β — a contradiction. �

6 Open problems

�e exponential mechanism achieves an additive errorO(n logn)while allowing a small multiplicative
error. Comparing to our result, this is a signi�cant improvement for small cuts while the approximation
of large cuts remains acceptable. However, the exponential mechanism is not e�cient. Is there a
mechanism with a similar guarantee which runs in polynomial time?

In some scenarios, edge-level privacy, as studied in this paper, is not enough: although it does not
reveal existence of any single link, it may reveal that a single individual has many links to some other
group of individuals which may be seen as a violation of his/her privacy. In node-level di�erential
privacy, we use a stronger notion of neighboring graphs: they do not di�er only in a single edge
but rather in a whole neighborhood of a single vertex. What guarantees in terms of additive and/or
multiplicative error can be achieved while preserving node-level di�erential privacy?
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A Implementation remarks

We use the result by Lee, Sidford, Wong [30] which solves the following problem. For ϕ : Rd → R ∪
{+∞}, �nd minx ∈Rd ϕ(x) given only a subgradient oracle for ϕ.

�eorem A.1 (�eorem 42 in [30]). Let ϕ : Rd → R be a convex function and X be a convex set
containing a minimizer of ϕ. Suppose that X is contained in a ball of radius R and contains a ball of
radius r . Suppose that for any x , we can compute the subgradient of ϕ and the separation oracle of X at x
in time T . �en, we can compute x ∈ X such that

ϕ(x) − min
x ′∈X

ϕ(x ′) ≤ α
(
max
x ′∈X

ϕ(x ′) − min
x ′∈X

ϕ(x ′)
)

in expected time O
(
dT log(dRαr ) + d

3 logO (1)(dRαr )
)
.

Lemma A.2. Let X ∗ be the maximizer of F (M) with ‖M ‖op = nO (1) and λ ≥ 1. In expected time
O(n6 logO (1)(nµ )), we can �nd a matrix X such that

‖(X ∗)−1/2(X ∗ − X )(X ∗)−1/2‖F ≤ µ and ‖X ∗ − X ‖F ≤ µ .

Proof. Recall that
F (M) = max

X � 1
n I2n ,Xii=1

M • X + λ log detX .

We translate the problem to a full dimensional problem as follows. For a vector x of variables xi , j ,
where i > j and i, j ∈ {1, 2, · · · , 2n}, we construct a matrix X (x) such that X (x)i ,i = 1, X (x)i , j = xi , j
for i > j and X (x)i , j = x j ,i for i < j. Now, we de�ne

ϕ(x) =

{
−M • X (x) − λ log detX (x) if X (x) � 1

n I2n

+∞ otherwise.

Note that ϕ is a convex function with O(n2) many variables. Furthermore, one can check that the
convex set X = {x : X (x) � 1

n I2n} is contained in a ball of radius nO (1) and contains a ball of radius
1

nO (1) . �erefore, �eorem A.1 shows that we can �nd x such that

ϕ(x) − min
x ′∈X

ϕ(x ′) ≤ α(max
x ′∈X

ϕ(x ′) − min
x ′∈X

ϕ(x ′)) ≤ O(αλnO (1))

in expected timeO(n2T log( nα )+n
6 logO (1)( nα ))where T is the cost of the oracle. Note that the subgra-

dient ofϕ involves the gradient of log det and the separation oracle involves the constraintX (x) � 1
n I2n .

�e �rst involves matrix inversion and the second involves �nding minimum eigenvector. Both can be
done in nω time. Hence, the total expected time is O(n6 logO (1)( nα )).

Let x∗ be the minimizer of ϕ on X. Note that

ϕ(x) − ϕ(x∗) ≥ Dϕ (x, x
∗) = −DH (x, x

∗)

≥
λ

16
‖X (x∗)−

1
2 (X (x) − X (x∗))X (x∗)−

1
2 ‖2F

1 + ‖X (x∗)− 1
2 (X (x) − X (x∗))X (x∗)−

1
2 ‖F

=
λ

16
‖(X ∗)−

1
2 (X (x) − X (x∗))(X ∗)−

1
2 ‖2F

1 + ‖(X ∗)− 1
2 (X (x) − X (x∗))(X ∗)−

1
2 ‖F
.

Se�ing α = µ2

nO (1) , then we have that ϕ(x) − ϕ(x∗) ≤ λµ2

1600n2 and hence we have the result

‖(X ∗)−
1
2 (X (x) − X (x∗))(X ∗)−

1
2 ‖2F ≤ µ

2/n2.

24



Note that X ∗ � 2nI (Observation 4.2) and hence I � 2n · (X ∗)−1. Applying Lemma A.6 with A =
X (x) − X ∗, B = I and C = 2n · (X ∗)−1 and get

‖X − X ∗‖2F ≤ (2n)2‖(X ∗)−
1
2 (X − X ∗)(X ∗)−

1
2 ‖2F ≤ µ

2.

�

�eoremA.3. Let Φ be a mirror map ρ-strongly convex with respect to ‖ · ‖ and let ‖ · ‖∗ denote the norm
dual to ‖ · ‖. Let f be convex with x∗ = arg minx ∈X f (x). Let R2 = maxx ∈X Φ(x) − minx Φ(x). Assume
that

E [
д(t ) − ∇f (x (t )))

]
∗
≤ η and E‖д(t )‖2∗ ≤ G2 for all t . A�er T iterations, stochastic mirror descent

outputs x ∈ X such that Ef (x) ≤ f (x∗) + RG
√

2
ρT + 2

√
2
ρηR.

Proof. We run T iterations of the mirror descent, let x (t ) be the solution of the t-th iteration. At the
end, we choose x = 1

T
∑

t x
(t ). Since f is convex and ∇f is a subgradient of f , we have f (x (t ))− f (x∗) ≤

∇f (x (t ))>(x (t ) − x∗) for any x (t ). We get

E[f (x (t )) − f (x∗)] ≤ E[∇f (x (t ))>(x (t ) − x∗)]

≤ E

[ (
E[д(t ) |x (t )]

)>
(x (t ) − x∗) +

(
E[(∇f (x (t )) − д(t ))|x (t )]

)>
(x (t ) − x∗)

]
≤ E

[
(д(t ))>(x (t ) − x∗)

]
+ E

[E[(∇f (x (t )) − д(t ))|x (t )]
∗

x (t ) − x∗] .
Using that Φ is ρ-strong convexity with function value bounded by R2, we have that for xΦ =

arg minx Φ(x) and any x ∈ X

R2 ≥ Φ(x) − Φ(xΦ) ≥
ρ

2 ‖x − xΦ‖
2.

�erefore, the diameter of X is bounded by 2
√

2
ρR and hence

E[f (x (t )) − f (x∗)] ≤ E[(д(t ))>(x (t ) − x∗)] + 2

√
2
ρ
ηR.

�e result follows from the standard analysis of stochastic mirror descent (See [13, Proof of �eo-
rem 4.2]). �

Lemma A.4. A�er T steps, we have f (w) ≤ f (w∗) +O( m√
T

log3/2 n).

Proof. By the stochastic gradient descent theorem, we have f (w) ≤ f (w∗) + RG
√

2
ρT + 2

√
2
ρ µR.

To estimate the error of the gradient η, we note that

‖E[д − ∇f (ω)]‖ =
∑
e

����(X − X ∗) • (
0 Be
Be 0

)���� (9)

where X ∗ is the true maximizer of F while X is our approximation. Using Cauchy Schwarz inequality
and that Be has 2 non-zeros with value 1, we have that

(X − X ∗) •

(
0 Be
Be 0

)
≤ ‖X − X ∗‖F

( 0 Be
Be 0

)
F
≤ O(1) ‖X − X ∗‖F = O(µ). (10)

Combining (9) and (10), we have that η = O(µ). For the rest of the parameters, we have R2 = O(m logn),
ρ = Ω( 1

m ), G
2 = O(1). Se�ing µ = 1√

T
, we have

f (w) ≤ f (w∗) + RG

√
2
ρT
+ 2

√
2
ρ
µR = f (w∗) +O(

m
√
T

log3/2 n).

�
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Lemma A.5. LetX , X̃ be the approximate maximizers of F (M) and F (M̃). If µ ≤ 1/λ and λ is larger than
some universal constant, we have ‖X−

1
2 (X − X̃ )X−

1
2 ‖F ≤ O(1/λ).

Proof. Let X ∗ and X̃ ∗ be the real maximizers of F (M) and F (M̃). Let ∆ = X −X ∗ and ∆̃ = X̃ − X̃ ∗. Since
‖(X ∗)−

1
2 (X − X ∗)(X ∗)−

1
2 ‖F ≤

1
2 , we have (X ∗)− 1

2 (X − X ∗)(X ∗)−
1
2 � − 1

2 I and hence X � 1
2X
∗. Using this

and Lemma A.6,

‖X−
1
2 (X − X̃ )X−

1
2 ‖F

≤2‖(X ∗)−
1
2 (X − X̃ )(X ∗)−

1
2 ‖F

≤2‖(X ∗)−
1
2 (X − X̃ )(X ∗)−

1
2 ‖F + 2‖(X ∗)−

1
2 (∆ + ∆̃)(X ∗)−

1
2 ‖F

≤2‖(X ∗)−
1
2 (X − X̃ )(X ∗)−

1
2 ‖F + 2‖(X ∗)−

1
2 ∆(X ∗)−

1
2 ‖F

+ 2‖(X ∗)−
1
2 ∆̃(X ∗)−

1
2 ‖F

≤2‖(X ∗)−
1
2 (X − X̃ )(X ∗)−

1
2 ‖F + 2‖(X ∗)−

1
2 ∆(X ∗)−

1
2 ‖F

+ 4‖(X̃ ∗)−
1
2 ∆̃(X̃ ∗)−

1
2 ‖F

=O(
1
λ
+ η).

where we used Lemma 4.9 and Lemma A.2 at the end. �e result follows from the assumption µ ≤ 1/λ.
�

Finally, we prove the helper lemma we used above:

Lemma A.6. For any symmetric matrix A and any positive de�nite matrices B and C such that B � C ,
we have

‖B
1
2AB

1
2 ‖2F ≥ ‖C

1
2AC

1
2 ‖2F .

Proof. We have

‖B
1
2AB

1
2 ‖2F = trB

1
2AB

1
2B

1
2AB

1
2

= trB
1
2ABAB

1
2

≥ trB
1
2ACAB

1
2

= trC
1
2ABAC

1
2

≥ trC
1
2ACAC

1
2 = ‖C

1
2AC

1
2 ‖2F

where we used cyclic properties of trace for the second and third equality and we used B � C for the
�rst and second inequality. �

B Lower bound for (ϵ, 0)-di�erential privacy
In this section we prove the following theorem.

�eorem B.1. Let G be the class of graphs with m edges with weights Θ(1/ϵ) and let M be an (ϵ, 0)-
di�erentially private mechanism on G.

Ifm ≤ n · o(
√
n), then M has additive error at least Ω(ϵ−1√mn).

Ifm = n2/c , where c ≥ 213 is a constant, then M has additive error at least Ω(ϵ−1 n3/2

c logn ).
If we denoteW the sum of the weights in those graphs, i.e.,W = Θ(ϵ−1m), then the lower bounds can

be wri�en as Ω̃(ϵ−
1
2
√
Wn).
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We prove the lower bound using packing argument like in the paper of Hardt and Talwar [27]. �e
key ingredient is to show that the space of all graphs with at mostm edges contains a packing of many
balls with large diameter. When proving this, we focus on d-regular graphs, where m = dn, and show
that already the space of d-regular graphs contains a desired packing.

�e following estimate on number of d-regular graphs by McKay and Wormald, see Corollary 2.4
and below in [49], will be useful for our purposes.

Proposition B.2. For d = o(
√
n), the number of d-regular graphs on n vertices is

|Gn,d | ∼
(dn)!

(dn/2)! 2dn/2 (d!)n
exp

(
1 − d2

4 −
d3

12n +O(d
2/n)

)
. [37]

For d = d(n), such that dn is even and min{d,n − d − 1} > cn/logn, e.g. if d = pn where p is a constant,
the number of d-regular graphs on n vertices is

|Gn,d | ∼
√

2(2πnλd+1(1 − λ)n−d )−n/2 exp
(
−1 + 10λ − 10λ2

12λ(1 − λ)

)
, [36]

where λ = d/(n − 1).

Corollary B.3. For d = o(
√
n) and for d = pn, where p is a constant, the number of d-regular graphs on

n vertices is
|Gn,d | ≥ Ω(2(dn ln(n/d ))/3).

�e same bound holds also for d-regular bipartite graphs on 2n vertices:

|Gn,n,d | ≥ |Gn,d | ≥ Ω(2(dn ln(n/d ))/3).

Proof. �e �rst statement can be shown by applying standard estimates to the bounds in the preceding
proposition. To get the bound for bipartite graphs: for each G ∈ Gn,d , we have G ⊗ K2 ∈ Gn,n,d ,
where ⊗ denotes the graph tensor product. Moreover, G × K2 , H ⊗ K2 if G , H . So, we have
|Gn,n,d | ≥ |Gn,d |. �

Let us consider graph G = (V , E), its Laplacian LG , the set of vertices S ⊂ V , and vector x ∈ {±1}n
such that xu = +1 if u ∈ S and xu = −1 otherwise. �en, we have

cut(S,V \ S) = 1
4

∑
uv ∈E

wuv (xu − xv )
2 =

1
4x
>LGx .

Let f : {−1, 1}n → R be a function. We say that f approximates the cuts of G up to an additive
error α , if for each x ∈ {±1}n we have

x>LGx − 4α ≤ f (x) ≤ x>LGx + 4α

We de�ne the distance between two graphs G,H as ρ(G,H ) = 1
4 maxx ∈{±1} |x

>LGx − x
>LHx |. We

want to know the number of d-regular graphs which can be contained in a ball determined by this
distance function. �en, comparing this number with the number of all d-regular graphs, we get the
lower bound on the size of the smallest covering by such balls. �is was recently investigated by
Carlson, Kolla, Srivastava, and Trevisan [15].

Lemma B.4 ([15]). For any f : {−1, 1}n → R, the number of d-regular bipartite graphs on n vertices
whose cuts are approximated by f up to an additive error α = ηdn/4 is at most

2dn/2+3η
√
d ·dn ·logn .

27



�e key statement to prove this lemma is the following.

Lemma B.5 (Lemma 3.1 in [15]). Suppose G,H are d-regular bipartite graphs with the same bipartition
L ∪ R such that for any x ∈ {−1, 1}n

x>LGx − ηdn ≤ x>LHx ≤ x>LGx + ηdn.

�en, G and H must have at least dn
2 (1 − 3η

√
d) edges in common.

Proof of Lemma B.4. Let us �x some H such that for each x ∈ {−1, 1}n we have f (x) = xTLHx ± ηdn.
For any other such graph G, we have (for every x )

−2ηdn ≤ xTLGx − x
TLHx =

(
xTLGx − f (x)

)
−

(
f (x) − xTLHx

)
≤ 2ηdn.

�en, by the previous lemma, G and H share at least k := dn
2 (1 − 6η

√
d) edges.

So, to encode each graphG α-approximated by f , it is enough to specify the subset of E(H ) present
inG (dn/2 bits) and (dn2 −k) logn = 6η

√
d · dn2 · logn bits for the rest of the edges. In total, we can have

at most 2dn
2 +6η

√
d · dn2 ·logn graphs approximated by f . �

LemmaB.6 ([27]). Let us denote µi an output of some (ϵ, 0)-private algorithm for graphGi . If ρ(Gi ,G j ) ≤

k , then µi (R)
µ j (R)

≥ exp(−ϵk) for any measurable set R.

Proof. By de�nition, we have µi (R)
µ` (R)

≥ exp(−ϵ) whenever ρ(Gi ,G`) ≤ 1. So, we can take graphs Gi =

G`0,G`1, . . . ,G`k = G j such that ρ(G`i−1,G`i ) ≤ 1 for every i = 1, . . . ,k . �en, we have

µi (R)

µ j (R)
=
µ`0(R)

µ`1(R)
·
µ`1(R)

µ`2(R)
· · ·

µ`k−1(R)

µ`k (R)
≥ exp(−ϵk).

�

LemmaB.7. LetG be the class of graphs withm edges with weights 1/ϵ and letM be an (ϵ, 0)-di�erentially
private mechanism on G. Ifm ≤ n · o(

√
n), then M has additive error at least Ω(ϵ−1√mn).

Proof. We choose η = 1
a
√
d

, where the constant a > 1 will be chosen later. Combining Corollary B.3
and Lemma B.4, every covering of Gn

2 ,
n
2 ,d by balls of diameter 2ηdn, must have size at least

exp(dn ln(n/2d))/6)
2dn/2+3·2η ·d3/2n logn

≈ exp(Ω(dn logn)).

since ln(n/2d) ≥ 1
2 lnn and 3ηd3/2n logn = 3

adn logn so that we can choose the constant a large enough
to make the equation hold.

Let us consider a covering byN = exp(Ω(dn logn)) balls of radius 2ηdn centered in graphsG1, . . . ,GN .
�en, the balls B1, . . . ,BN , where Bi = B(Gi ,ηdn) form a packing. Let G0 be an empty bipartite graph
on n vertices. We have ρ(Gi ,G0) ≤ dn for each i . Let us �x some (ϵ, 0)-di�erentially private mechanism
M , denoting µi the probability distribution over the output with Gi as an input, where i = 0, 1, . . . ,N .

We denote λBi the set of graphs in Bi with edge-weights scaled by λ = 1/ϵ . Note that this trans-
formation also scales the distances by the same factor. Using Lemma B.6, we get

µ0(λBi ) ≥ exp(−ϵλdn) · µi (λBi ) ≥ exp(−ϵλdn) · β,

where β is a constant denoting the probability with whichM achieves the error ≤ ληdn, since µi (λBi ) ≥
β by Markov inequality. On the other hand, by pairwise disjointness of these balls, we have

1 ≥
n∑
i=1

µ0(bi ) ≥ N · exp(−ϵλdn) · β ≥ exp(Ω(dn logn)) · exp(−dn) · β > 1,

a contradiction. �
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Lemma B.8. Let G be the class of graphs with m edges with weights Θ(1/ϵ) and let M be an (ϵ, 0)-
di�erentially private mechanism on G. Ifm = n2/c , where c ≥ 213 is a constant, then M has additive error
at least Ω(ϵ−1 n3/2

c logn ).

Proof. We choose η = 1
6
√
d logn

. Combining Corollary B.3 and Lemma B.4, every covering of Gn
2 ,

n
2 ,d by

balls of diameter 2ηdn, must have size at least

exp(dn ln(n/2d))/6)
2dn/2+3·2η ·d3/2n logn

≥ exp(n
2 ln c
12c −

n2

2c −
n2

2c ) ≈ exp(Ω(n2/c)).

Let us consider a covering byN = exp(Ω(dn logn)) balls of radius 2ηdn centered in graphsG1, . . . ,GN .
�en, the balls B1, . . . ,BN , where Bi = B(Gi ,ηdn) form a packing. Let us �x some (ϵ, 0)-di�erentially
private mechanism M , denoting µi the probability distribution over the output with Gi as an input,
where i = 0, 1, . . . ,N .

We denote λBi the set of graphs in Bi with edge-weights scaled by λ = 1/bcϵ . Using Lemma B.6,
we get

µ0(λBi ) ≥ exp(−ϵλdn) · µi (λBi ) ≥ exp(−ϵλdn) · β,

where β is a constant denoting the probability with whichM achieves the error ≤ ληdn, since µi (λbi ) ≥
1/2 by Markov inequality if the algorithm has error ≤ ληdn. On the other hand, by pairwise disjointness
of these balls, we have

1 ≥
n∑
i=1

µ0(bi ) ≥ N · exp(−ϵλdn) · β ≥ exp(Ω(n2/c)) · exp(−n2/bc) · β > 1,

for a suitable choice of the constant b — a contradiction. �
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