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Abstract

The problem of approximately computing the & dominant Fourier coefficients of a vector
X quickly, and using few samples in time domain, is known as the Sparse Fourier Transform
(sparse FFT) problem. A long line of work on the sparse FFT has resulted in algorithms with
O(klognlog(n/k)) runtime [Hassanieh et al., STOC’12] and O(k logn) sample complexity [Indyk
et al., FOCS’14]. These results are proved using non-adaptive algorithms, and the latter O(klogn)
sample complexity result is essentially the best possible under the sparsity assumption alone: It
is known that even adaptive algorithms must use Q((klog(n/k))/loglogn) samples [Hassanieh
et al., STOC’12]. By adaptive, we mean being able to exploit previous samples in guiding the
selection of further samples.

This paper revisits the sparse FFT problem with the added twist that the sparse coefficients
approximately obey a (ko, k1)-block sparse model. In this model, signal frequencies are clustered
in kg intervals with width k; in Fourier space, where k = kok; is the total sparsity. Signals arising
in applications are often well approximated by this model with ky < k.

Our main result is the first sparse FFT algorithm for (ko, k1)-block sparse signals with the
sample complexity of O*(koki+ko log(1+ko) logn) at constant signal-to-noise ratios, and sublinear
runtime. A similar sample complexity was previously achieved in the works on model-based
compressive sensing using random Gaussian measurements, but used Q(n) runtime. To the best
of our knowledge, our result is the first sublinear-time algorithm for model based compressed
sensing, and the first sparse FFT result that goes below the O(klogn) sample complexity bound.

Interestingly, the aforementioned model-based compressive sensing result that relies on Gaus-
sian measurements is non-adaptive, whereas our algorithm crucially uses adaptivity to achieve the
improved sample complexity bound. We prove that adaptivity is in fact necessary in the Fourier
setting: Any non-adaptive algorithm must use Q(koki log z7—) samples for the (ko, k1)-block
sparse model, ruling out improvements over the vanilla sparsity assumption. Our main technical
innovation for adaptivity is a new randomized energy-based importance sampling technique that

may be of independent interest.
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1 Introduction

The discrete Fourier transform (DFT) is one of the most important tools in modern signal processing,
finding applications in audio and video compression, radar, geophysics, medical imaging, communi-
cations, and many more. The best known algorithm for computing the DFT of a general signal of
length n is the Fast Fourier Transform (FFT), taking O(nlogn) time, which matches the trivial (n)
lower bound up to a logarithmic factor.

In recent years, significant attention has been paid to exploiting sparsity in the signal’s Fourier
spectrum, which is naturally the case for numerous of the above applications. By sparse, we mean
that the signal can be well-approximated by a small number of Fourier coefficients. Given this
assumption, the computational lower bound of (n) no longer applies. Indeed, the DFT can be
computed in sublinear time, while using a sublinear number of samples in the time domain [1}2].

The problem of computing the DFT of signals that are approximately sparse in Fourier domain
has received significant attention in several communities. The seminal work of [3,4] in compressive
sensing first showed that only klogo(l) n samples in time domain suffice to recover a length n sig-
nal with at most k& nonzero Fourier coefficients. A different line of research on the Sparse Fourier
Transform (sparse FFT), with origins in computational complexity and learning theory, has resulted

O p, runtime (i.e., the runtime is sublinear in

in algorithms that use klogO(l) n samples and klog
the length of the input signal). Many such algorithms have been proposed in the literature |5-23|;
we refer the reader to the recent surveys [1,2] for a more complete overview.

The best known runtime for computing the k-sparse FFT is due to Hassanieh et al. [24], and is
given by O(klognlog(n/k)), asymptotically improving upon the FEFT for all £ = o(n). The recent
works of |22}25] also show how to achieve the optimal sample complexity bound of O(klogn) in linear
time, or in time klogo(l) n at the expense of poly(loglogn) factors. Intriguingly, the aforementioned
algorithms are all non-adaptive. That is, these algorithms do not exploit existing samples in guiding
the selection of the new samples to improve approximation quality. In the same setting, it is also
known that adaptivity cannot improve the sample complexity by more than an O(loglog n) factor |24].

Despite the significant gains permitted by sparsity, designing an algorithm for handling arbitrary
sparsity patterns may be overly generic; in practice, signals often exhibit more specific sparsity
structures. A common example is block sparsity, where significant coefficients tend to cluster on
known partitions, as opposed to being unrestricted in the signal spectrum. Other common examples
include tree-based sparsity, group sparsity, and dispersive sparsity [26-29|.

Such structured sparsity models can be captured via the model-based framework [26]|, where
the number of sparsity patterns may be far lower than (Z) For the compressive sensing problem,
this restriction has been shown to translate into a reduction in the sample complexity, even with
non-adaptive algorithms. Specifically, one can achieve a sample complexity of O(k + log | M]) with
dense measurement matrices based on the Gaussian distribution, where M is the set of permitted
sparsity patterns. Reductions in the sample complexity with other types of measurement matrices,
e.g., sparse measurement matrices based on expanders, are typically less [30,[31]. Other benefits of

exploiting model-based sparsity include faster recovery and improved noise robustness |26, 30].
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Surprisingly, in stark contrast to the extensive work on exploiting model-based sparsity with
general linear measurements, there are no existing sparse FFT algorithms exploiting such structure.
This paper presents the first such algorithm, focusing on the special case of block sparsity. Even
for this relatively simple sparsity model, achieving the desiderata turns out to be quite challenging,
needing a whole host of new techniques, and intriguingly, requiring adaptivity in the sampling.

To clarify our contributions, we describe our model and the problem statement in more detail.

Model and Basic Definitions The Fourier transform of a signal X € C™ is denoted by X , and
defined as

- 1
Xf - E ;} Xiw;fta f € [n]a

where wy, is the n-th root of unity. With this definition, Parseval’s theorem takes the form || X|? =
nl| X113
We are interested in computing the Fourier transform of signals that, in frequency domain, are

well-approximated by a block sparse signal with kg blocks of width ki, formalized as follows.

Definition 1.1 (Block sparsity). Given a sequence X € C™ and an even block width ki, the j-th
interval is defined as I; = ((j — 1/2)k1, (j + 1/2)k1] NZ for j € [kﬁl]’ and we refer to )?1]. as the
j-th block. We say that a signal is (ko, k1)-block sparse if it is non-zero within at most kg of these

intervals.

Block sparsity is of direct interest in several applications [26,[32]; we highlight two examples
here: (i) In spectrum sensing, cognitive radios seek to improve the utilization efficiency in a sparsely
used wideband spectrum. In this setting, the frequency bands being detected are non-overlapping
and predefined. (ii) In multi-sensor processing, a frequency-sparse signal is recorded by an array of
sensors. Each sensor has the same dominant frequencies, but with different delays and amplitudes;
hence, the frequency-domain signals of the sensors can be rearranged to produce a block-sparse signal.
While such rearranging does not directly fall into the framework of the present paper, our techniques
can be applied, and in fact simplified, for this latter setting.

Our goal is to output a list of frequencies and values estimating X , yielding an fo-distance to X
not much larger than that of the best (ko, k1)-block sparse approximation. Formally, we say that an

output signal X' satisfies the fs /la block-sparse recovery guarantee if

|IX=X'o< (146 min IX =V
Y is (ko,k1)-block sparse
for an input parameter € > 0.
The sample complexity and runtime of our algorithm are parameterized by the signal-to-noise

ratio (SNR) of the input signal, defined as follows.



Definition 1.2 (Tail noise and signal-to-noise ratio (SNR)). We define the tail noise level as

Err()A(,ko,h) 125121[12] Z HXM@ (1)
o el

and its normalized version as pu? := %Eer()? , ko, k1), representing the average noise level per block.
X112

The signal-to-noise ratio is defined as SNR := B (K ko)

Throughout the paper, we assume that both n and k; are powers of two. For n, this is a standard
assumption in the sparse FFT literature. As for ki, the assumption comes without too much loss of
generality, since one can always round the block size up to the nearest power of two and then cover
the original kg blocks with at most 2kg larger blocks, thus yielding a near-identical recovery problem
other than a possible increase in the SNR. We also assume that lc% exceeds a large absolute constant;
if this fails, our stated scaling laws can be obtained using the standard FFT.

We use O*(-) notation to hide loglog SNR, loglogn, and log% factors. Moreover, to simplify
the notation in certain lemmas having free parameters that will be set in terms of e, we assume
throughout the paper that e = Q(

convenience, and since the dependence on € is not our main focus; the precise expressions with log%

m), and hence log% = O(loglogn). This is done purely for

factors are easily inferred from the proofs. Similarly, since the low-SNR regime is not our key focus,
we assume that SNR > 2, and thus log SNR is positive.

Contributions. We proceed by informally stating our main result; a formal statement is given in
Section

Theorem 1.1. (Upper bound — informal version) There exists an adaptive algorithm for approxi-
mating the Fourier transform with (ko, k1)-block sparsity that achieves the l3/ls guarantee for any
constant € > 0, with a sample complezity of O* ((kok1 + ko log(1 + ko) logn) log SNR), and a runtime
of O* ((koki log® n + ko log(1 + ko) log® n) log SNR).

The sample complexity of our algorithm strictly improves upon the sample complexity
of O(kokilogn) (essentially optimal under the standard sparsity assumption) when log(1 +
ko)log SNR < ki and log SNR < logn (e.g., SNR = O(1)).

Our algorithm that achieves the above upper bound crucially uses adaptivity. This is in stark
contrast with the standard sparse FFT, where we know how to achieve the optimal O(klogn) bound
using non-adaptive sampling [25]. While relying on adaptivity can be viewed as a weakness, we provide
a lower bound revealing that adaptivity is essential for obtaining the above sample complexity gains.

We again state an informal version, which is formalized in Section [6]

Theorem 1.2. (Lower bound — informal version) Any non-adaptive sparse FET algorithm that
achieves the la/ly sparse recovery guarantee with (ko,k1)-block sparsity must use Q(kokl log ﬁ)

samples.



To the best of our knowledge, these two theorems provide the first results along several important
directions, giving (a) the first sublinear-time algorithm for model-based compressed sensing; (b) the
first model-based result with provable sample complexity guarantees in the Fourier setting; (c) the
first proven gap between the power of adaptive and non-adaptive sparse FFT algorithms; and (d) the
first proven gap between the power of structured (Fourier basis) and unstructured (random Gaussian
entries) matrices for model-based compressed sensing.

To see that (d) is true, note that the sample complexity O(kq log n+kok) for block-sparse recovery
can be achieved non-adaptively using Gaussian measurements [26|, but we show that adaptivity is
required in the Fourier setting.

Dependence of our results on SNR. The sample complexity and runtime of our upper bound
depend logarithmically on the SNR of the input signal. This dependence is common for sparse FFT
algorithms, and even for the case of standard sparsity, algorithms avoiding this dependence in the
runtime typically achieve a suboptimal sample complexity [24,33]. Moreover, all existing sparse FF'T
lower bounds consider the constant SNR regime (e.g., [24,[34,35]).

We also note that our main result, as stated above, assumes that upper bounds on the SNR
and the tail noise are known that are tight to within a constant factor (in fact, such tightness is not
required, but the resulting bound replaces the true values by the assumed values). These assumptions
can be avoided at the expense of a somewhat worse dependence on log SNR, but we prefer to present
the algorithm in the above form for clarity. The theoretical guarantees for noise-robust compressive

sensing algorithms often require similar assumptions [36].

Our techniques: At a high level, our techniques can be summarized as follows:

Upper bound. The high-level idea of our algorithm is to reduce the (ko, k1)-block sparse signal
of length n to a number of downsampled O(kg)-sparse signals of length %’ and use standard sparse
FFT techniques to locate their dominant values, thereby identifying the dominant blocks of the
original signal. Once the blocks are located, their values can be estimated using hashing techniques.
Despite the high-level simplicity, this is a difficult task requiring a variety of novel techniques, the
most notable of which is an adaptive importance sampling scheme for allocating sparsity budgets to
the downsampled signals. Further details are given in Section [2]

Lower bound. Our lower bound for non-adaptive algorithms follows the information-theoretic
framework of |37], but uses a significantly different ensemble of structured approximately block-sparse
signals occupying only a fraction O(ﬁ) of the time domain. Hence, whereas the analysis of [37]
is based on the difficulty of identifying one of (roughly) (Z) sparsity patterns, the difficulty in our
setting is in non-adaptively finding where the signal is non-zero — one must take enough samples to
cover the various possible time domain locations. The details are given in Section [6]

Interestingly, our upper bound uses adaptivity to circumvent the difficulty exploited in this lower
bounding technique, by first determining where the energy lies, and then concentrating the rest of

its samples on the “right” parts of the signal.



Notation: For an even number n, we define [n] := ( -5, %] N Z, where Z denotes the integers.
When we index signals having a given length m, all arithmetic should be interpreted as returning
values in [m] according to modulo-m arithmetic. For z,y € C and A € R, we write y = 2 + A to
denote |y — x| < A. The support of a vector X is denoted by supp(X). For a number a € R, we

write |a|4+ := max{0,a} to denote the positive part of a.

Organization: The paper is organized as follows. In Section , we provide an outline of our
algorithm and the main challenges involved. We formalize our energy-based importance sampling
scheme in Section [3] and provide the corresponding techniques for energy estimation in Section [4
The block-sparse FFT algorithm and its theoretical guarantees are given in Section |5, and the lower

bound is presented and proved in Section[6] Several technical proofs are relegated to the appendices.

2 Overview of the Algorithm

One of our key technical contributions consists of a reduction from the (ko, k1)-block sparse recovery
problem for signals of length n to O(kg)-sparse recovery on a set of carefully-defined signals of reduced
length n/ki, in sublinear time. We outline this reduction below.

A basic candidate reduction to O(kg)-sparse recovery consists of first convolving X with a filter G
whose support approximates the indicator function of the interval [—k1 /2, k1 /2], and then considering
a new signal whose Fourier transform consists of samples of X *G at multiples of k1. The resulting
signal Z of length n /k1 () naturally represents X, as every frequency of this sequence is a (weighted)
sum of the frequencies in the corresponding block, and (b) can be accessed in time domain using a
small number of accesses to X (if G is compactly supported; see below).

This is a natural approach, but its vanilla version does not work: Some blocks in X may entirely
cancel out, not contributing to Z at all, and other blocks may add up constructively and contribute
an overly large amount of energy to Z. To overcome this challenge, we consider not one, but rather
2k; reductions: For each r € [2k1], we apply the above reduction to the shift of X by r - ﬁ in
time domain, and call the corresponding vector Z”. We show that all shifts cumulatively capture the
energy of X well, and the major contribution of the paper is an algorithm for locating the dominant
blocks in X from a small number of accesses to the Z"’s (via an importance sampling scheme).

Formal definitions: We formalize the above discussion in the following, starting with the notion

of a flat filter that approximates a rectangle.

Definition 2.1 (Flat filter). A sequence G' € R™ with Fourier transform G' € R" symmetric about
zero is called an (n, B, F)-flat filter if (i) @f € [0,1] for all f € [n]; (ii) @f >1- (%)F_l

[ € [n] such that |f| < J5; and (iii) @f < (i)lﬁ*l(ﬁ)]m*1 for all f € [n] such that [f] > 3.

for all

The following lemma, proved in Appendix shows that it is possible to construct such a filter
having O(F B) support in time domain.

Lemma 2.1. (Compactly supported flat filter) Fiz the integers (n, B, F) with n a power of two,
B < n, and F > 2 an even number. There exists an (n, B, F)-flat filter G e R™, which (i) is
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supported on a length-O(F B) window centered at zero in time domain, and (ii) has a total energy
satisfying Zfe[n] 1G> < %”.

Throughout the paper, we make use of the filter construction from Lemma 2.1 except where
stated otherwise. To ease the analysis, we assume that G and G are pre-computed and can be
accessed in O(1) time. Without this pre-computation, evaluating G is non-trivial, but possible using
semi-equispaced Fourier transform techniques (cf., Section .

With the preceding definition, the set of 2k; downsampled signals is given as follows.

,2—10), and a signal X €

C", we say that the set of signals {Z"},.¢[or,] With Z" € CH is a (k1,0)-downsampling of X if

Definition 2.2 (Downsampling). Given integers (n, k1), a parameter § € (0

T 1 r .
G-l exgaie 2]
1€[k1]

for an (n, k£1’ F)—ﬁat filter with F' = 10 10g% and support O(Fk%)’ where we define X|" = X;,,, with
ar = % Equivalently, in frequency domain, this can be written as
20 = (X4 Gy = 3 Gy Xguird j e [kﬂ
feln]

(2)

by the convolution theorem and the duality of subsampling and aliasing (e.g., see Appendix [C.1]).

By the assumption of the bounded support of G, along with the choice of F', we immediately
obtain the following lemma, showing that we do not significantly increase the sample complexity by

working with {Z"},¢(ar,) as opposed to X itself.

Lemma 2.2. (Sampling the downsampling signals) Let {Z"},.cpor, be a (k1,d)-downsampling of
X € C" for some (n,ki,8). Then any single entry Z] can be computed in O(log %) time using
O(log %) samples of X.

This idea of using 2k; reductions fixes the above-mentioned problem of constructive and destruc-
tive cancellations: The 2k; reduced signals Z" (r € [2k;]) cumulatively capture all the energy of X
well. That is, while the energy \2}"@ can vary significantly as a function of r, we can tightly control

the behavior of the sum >, o 1 |2]T]% This is formalized in the following.

Lemma 2.3. (Downsampling properties) Fiz (n, k1), a parameter § € (0, %), a signal X € C", and
a (k1,0)-downsampling {Z" },cpor,) of X. The following conditions hold:

1. For all j € [#+],

Srepn 1251 - - 1 X1, 13
- [2];]1 ! >(1- 5)||X1j ||% —30- <||X1jUIj—1ufj+1 ||§ +0 Z j - ;'|F—1>'
i'elz=I\a}
2 Th . T2 - 2rel2k] 1Z713 2
. The total energy satisfies (1 —126)[| X5 < ==5}—— < 6/ X||3.
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The proof is given in Appendix [A-2]

Location via sparse FFT: We expect each Z" to be approximately O(kg)-sparse, as every
block contributes primarily to one downsampled coefficient. At this point, a natural step is to run
O(kop)-sparse recovery on the signals Z" to recover the dominant blocks. However, there are too many
signals Z" to consider! Indeed, if we were to run O(kg)-sparse recovery on every Z", we would recover
the locations of the blocks, but at the cost of O(koki logn) samples. This precludes any improvement
on the vanilla sparse FFT.

It turns out, however, that it is possible to avoid running a kg-sparse FFT on all 2k; reduced
signals, and to instead allocate budgets to them, some of which are far smaller than kg, and some of
which may be zero. This will be key in reducing the sample complexity.

Before formally defining budget allocation, we present the following definition and lemma, showing
that we can use less samples to identify less of the dominant coeflicients of a signal, or more samples

to identify more dominant coefficients.

Definition 2.3. (Covered frequency) Given an integer m, a frequency component j of a signal Zecm
~ o~ 7112
is called covered by budget s in the signal Z if |Z;|? > 1212

s

Lemma 2.4. (LOCATEREDUCEDSIGNAL guarantees — informal version) There exists an algorithm
such that if a signal X € C", a set of budgets {ST}TE[%], and a confidence parameter p are given to it
as input, then it outputs a list that, with probability at least 1 — p, contains any given j that is covered
by s" in Z" for some r € [2k1], where {ET}TE[%] denotes the (k1,0)-downsampling of X. Moreover,
the list size is O( Zr€[2k1] sr), the number of samples that the algorithm takes is O( Zre[%ﬂ s" log n),
and the runtime is O Dorepk] S log? n)

The formal statement and proof are given in Appendix [F] and reveal that s” essentially dictates
how many buckets we hash Z" into in order to locate the dominant frequencies (e.g., see |24}25]).

Hence, the goal of budget allocation is to approximately solve the following covering problem:

Minimize(;r, Y s subject to > 1X513> (1 —a)-|X*|3, (3)

re(2k1] j is covered by s,
in Z" for some re[2k1]

for a suitable constant o € (0, 1), where s” is the budget allocated to 7", and X* is the best (ko.k1)-
block sparse approximation of X. That is, we want to minimize the total budget while accounting
for a constant proportion of the signal energy.

Challenges in budget allocation: Allocating the budgets is a challenging task, as each block
in the spectrum of the signal may have very different energy concentration properties in time domain,
or equivalently, different variations in |2]T]2 as a function of r. To see this more concretely, in Figure
we show three hypothetical examples of such variations, in the case that ky = 2k; = 6 and all of

the blocks have equal energy, leading to equal column sums in the matrices.

! As stated in the formal version, additional terms in the runtime are needed when it comes to subtracting off a
current estimate to form a residual signal.



*T6 000007 ([111111] 7 [35100 0]
0 6 0 0 0 O 111111 1 0 10 0 3
2k1 0 06 0 0 O 111111 1 01 0 2 0
0 00 6 0 0 111111 0 11 6 0 1
0 0 00 6 0 111111 0 01 0 2 1
llooooose] |2 11111] |101021)]
(a) Spiky energies (b) Flat energies (c) Mixed energies

Figure 1: Three hypothetical examples of matrices with (r, j)-th entry given by |Z\;|2, i.e., each row

corresponds to a single sequence Z”, but only at the entries corresponding to the kg blocks in X.

In the first example, each block contributes to a different Z", and thus the blocks could be
located by running 1-sparse recovery separately on the 2k; signals. In stark contrast, in the second
example, each block contributes equally to each Z", so we would be much better off running kg-sparse
recovery on a single (arbitrary) Z”. Finally, in the third example, the best budget allocation scheme
is completely unclear by inspection alone! We need to design an allocation scheme to handle all of
these cases, and to do so without even knowing the structure of the matriz.

While the examples in Figure (1| may seem artificial, and are not necessarily feasible with the
ezact values given, we argue in Appendix [E] that situations exhibiting the same general behavior are
entirely feasible.

Importance sampling: Our solution is to sample r values with probability proportional to an
estimate of ||2T||%, and sample sparsity budgets from a carefully defined distribution (see Section
Algorithm . We show that sufficiently accurate estimates of HZ\T]]% for all r € [2k1] can be obtained
using O(kok1) samples of X via hashing techniques (cf., Section ; hence, what we are essentially
doing is using these samples to determine where most of the energy of the signal is located, and
then favoring the parts of the signal that appear to have more energy. This is exactly the step
that makes our algorithm adaptive, and we prove that it produces a total budget in of the form
O(kolog(1 + ko)), on average.

Ideally, one would hope to solve using a total budget of O(kg), since there are only kg blocks.
However, the log(1 + ko) factor is not an artifact of our analysis: We argue in Appendix [E| that very
different sampling techniques would be needed to remove it in general. Specifically, we design a signal
X for which the optimal solution to (3) indeed satisfies 3, ciop,1 " = (ko log(1 + ko))

Iterative procedure and updating the residual: The techniques described above allow us
to recover a list of blocks that contribute a constant fraction (e.g., 0.9) of the signal energy. We
use O(log SNR) iterations of our main procedure to reduce the SNR to a constant, and then achieve
(1 + €)-recovery with an extra “clean-up” step. Most of the techniques involved in this part are
more standard, with a notable exception: Running a standard sparse FFT with budgets s on the
reduced space (i.e., on the vectors Z") is not easy to implement in kokipoly(logn) time when Z"

are the residual signals. The natural approach is to subtract the current estimate X of X from our

10



samples and essentially run on the residual, but subtraction in kgkjpoly(logn) time is not easy to
achieve. Our solution crucially relies on a novel block semi-equispaced FFT (see Section |4.2)), and

the idea of letting the location primitives in the reduced space operate using common randomness
(see Appendix [F)).

3 Location via Importance Sampling

As outlined above, our approach locates blocks by applying standard sparse FFT techniques to
the downsampled signals arising from Definition In this section, we present the techniques for
assigning the corresponding sparsity budgets (cf., (3)).

We use a novel procedure called energy-based importance sampling, which approximately samples r

values with probability proportional to ||2 "||2. Since these energies are not known exactly, we instead

2k’1)

sample proportional to a general vector v = (y!,...,v?¥1), where we think of 4" as approximating

H27"H2 The techniques for obtaining these estimates are deferred to Section

The details are shown in Algorithm , where we repeatedly sample from the distribution wg,

corresponding to independently sampling r proportional to 4", and ¢ from a truncated geometric

12713
1024
The intuition behind sampling ¢ proportional to 277 is that this gives a high probability of producing

distribution. The resulting ssity level to apply to Z" is selected to be s" = 10 - 29.

According to Definition [2.3] s = 10 - 27 covers any given frequency j for which ]2;]2 >

small ¢ values to cover the heaviest signal components, while having a small probability of producing
large g values to cover the smaller signal components. We only want to do the latter rarely, since it

costs significantly more samples.

Algorithm 1 Procedure for allocating sparsity budgets to the downsampled signals

procedure BUDGETALLOCATION(7, ko, k1, 0, p)
S0
for i e {1,...,%k0-10g%} do

10

5k°} with probability w; — 2-4 AT

1-8/(10ko) T

1:

2

3

4 Sample (73, q;) € [2k1] x {1,...,log,
5: S(—SU{(Ti,qi)}

6 for r € [2k;] do

7 q* < max(, gnes{q'} > By convention, max () = —oo
8 s" 1027

9 return s = [s"],c[o,]

We first bound the expected total sum of budgets returned by BUDGETALLOCATION.

Lemma 3.1. (BUDGETALLOCATION budget guarantees) For any integers ko and ki, any positive
vector v € R?*' | and any parameters p € (0, %) and 6 € (0,1), if the procedure BUDGETALLOCATION
n Algorithm is run with inputs (v, ko, k1,9,p), then the expected value of the total sum of budgets
returned, {s"},cjor,), satisfies E[Zre[%ﬂ s < 200’3—010g%010g%. The runtime of the procedure is
O(% log % + k:l).

11



Proof. Each time a new (r,q) pair is sampled, the sum of the s” values increases by at most 10 - 29,
and hence the overall expected sum is upper bounded by the number of trials 10k log times the

expected value of 10 - 29 for a single trial:

10g2 lOkO
E{ Z s’"}g—ko logf Z Z wy - 10 - 27
T‘E[le] T‘G 2k1 q=1
1 log 10kq
100kq log b QZ Z
5 1—-5/ 10ko) = o] HVHl
ko ko 1
< 200— log — log —

where the second line follows from the definition of wy, and the third line follows from ﬁ < 1 (since

6 <1)and 3, cpop ||7ﬁ1 b

Runtime: Note that sampling from wy

corresponding alphabet sizes are O( log %) and O(kq) respectively. The stated runtime follows since

amounts to sampling ¢ and r values independently, and the

we take O(%‘J log %) samples, and sampling from discrete distributions can be done in time linear in
the alphabet size and number of samples |38]. The second loop in Algorithm (1| need not be done

explicitly, since the maximum ¢ value can be updated after taking each sample. O

As we discussed in Section [2] the log ko term in the number of samples would ideally be avoided;
however, in Appendix we argue that even the optimal solution to can contain such a factor.
We now turn to formalizing the fact that the budgets returned by BUDGETALLOCATION are such

that most of the dominant blocks are found. To do this, we introduce the following notion.

Definition 3.1 (Active frequencies). Given (n, ko, k1), a signal X € C", a parameter 6 € (0,1), and
a (k1,6)-downsampling {Z"},.cfar,) of X, the set of active frequencies S is defined as

o L ey 12713
s=velil 2 1BF ) 2 =% W

~ —~ 21" 2
Observe that if 4" = || Z7||3, this reduces to D re2h] |ZJ’-’|2 >0 - %w, thus essentially

stating that the sum of the energies over r € [2k;] for the given block index j is an Q(%) fraction
of the total energy. Combined with Lemma this roughly amounts to || X 1|13 exceeding an Q(lf—o)
fraction of H)A(H%

To formalize and generalize this intuition, the following lemma states that the frequencies within

S account for most of the energy in X, as long as each 4" approximates HZTH% sufficiently well.

Lemma 3.2. (Properties of active frequencies) Fiz (n, kg, k1), a parameter § € (0, 2—0) a signal

X € C", and a (k1,6)-downsampling {Z" },cjor,) of X. Moreover, fix an arbitrary set S* C [k:%] of
cardinality at most 10kg, and a vector v € R** satisfying

> 1258 -], <105 Y 12713 *)

T

27
re(2k1] r€[2k1]
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Fiz the set of active frequencies S according to Definition and define the signal )?5 to equal X
on all intervals {I;;j € S} (see Definition , and zero elsewhere. Then H)/(\'S*\§||% < 100\/3”)?”%

The proof of Lemma [3.2] is given in Appendix
What remains is to show that if j is active, then j is covered by some s” in 7" with high constant

probability upon running Algorithm [I] This is formulated in the following.

Lemma 3.3. (BUDGETALLOCATION covering guarantees) Fiz (n, ko, k1), the parameters 6 € (0,1)
and p € (0, %), a signal X € C", and a (k1,0)-downsampling {Z" },¢(ar,) of X. Moreover, fix a vector
v € Rt satisfying
<10 > 12705 (5)
re[2k1]
Suppose that BUDGETALLOCATION in Algom'thm is run with inputs (v, ko, k1,6, p), and outputs the
budgets {s" },cjor,)- Then for any active j (i.e., j € S as per Definition , the probability that there

exists some r € [2k1] such that j is covered by s" in 7" is at least 1 —-p

Proof. Recall from Definition [2.3] E 3| that if a pair (7, ¢) is sampled in the first loop of BUDGETALLO-

CATION, then j is covered provided that \Zj’f|2 > Hli rJf We therefore define

Z\r 2
q;j = min {q c Z ‘ZT‘Z H H2} (6)

— 10-2¢
and note that the event described in the lemma statement is equivalent to some pair (r,q) being
sampled with ¢7 < ¢. Note that due to the range of ¢ from which we sample (cf., Algorithm , this
can only occur if g7 < log, 10]"0
Taking a single sample. We first compute the probability of being covered for a single random
sample of (g, ), denoting the corresponding probability by P;[-]. Recalling from line {4f of Algorithm

that we sample each (g,7) with probability wy, = % Ml’ we obtain

Py [j covered] = Z Z wy

TE[2]€1] 7_“<q<10g2 %

_ ¢
st ey D DR DI R

T‘E[le] qr< <lo 08, IOkO

> % 3 o4 1

r€(2k1] : g} <log, 10k0 H’YHI

r

1 i —a; 7
S 27— — = >, 2
2 2 2V TS T
re[2k1] r€[2ki]:q 7 >logy 0

[y

where the third line follows since §/(10kg) < % due to the assumption that § < 1.

_ 0|Z7
Bounding the first term in : Observe from @ that 27% > 1 10Z;1*

27 ZTHQ , and recall the definition
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of being active in . Combining these, we obtain the following when j is active:

. r /Z\rQ r
;> i e T U0
A (TR T A VA

106 Zreprg 12715 _ 6
> . > —
Ayl ko 4ko
where the last inequality follows from the assumption on ||y||; in the lemma statement.
Bounding the second term in : We have
T T
IR DT
2 [yl — 2 10ko [Ivlli  20ko

T€[2k1] : ¢ >log, % T€[2k1]

Hence, we deduce from (7)) that P;[j covered] > %.
Taking multiple independent samples: Since the sampling is done %ko . log% times inde-
pendently, the overall probability of an active block j being covered satisfies
5\ @ kotogs 10 . 1
P[jcovered]21—<1—5ko> zl—exp<—5.logp>21—p,
where we have applied the inequality 1 — ¢ < e~¢ for ¢ > 0. O

3.1 The Complete Location Algorithm

In Algorithm [2] we give the details of MULTIBLOCKLOCATE, which performs the above-described
energy-based importance sampling procedure, runs the sparse FFT location algorithm (see Appendix
F)) with the resulting budgets, and returns a list L containing the block indices that were identified.

MULTIBLOCKLOCATE calls two primitives that are defined later in the paper, but their precise

details are not needed in order to understand the location step:

e ESTIMATEENERGIES (see Section [4.4) provides us with a vector 7 providing a good approxima-
tion of each HZ\TH%, in the sense of satisfying the preconditions of Lemmas and

e LOCATEREDUCEDSIGNALS (see Appendix accepts the sparsity budgets {s"} and runs a
standard s"-sparse fast FF'T algorithm on each downsampled signal Z” in order to locate the

dominant frequencies.

Note that in addition to X, these procedures accept a second signal ; this becomes relevant when we
iteratively run the block sparse FFT (cf., Section , representing previously-estimated components
that are subtracted off to produce a residual.

The required guarantees on LOCATEREDUCEDSIGNALS are given in Lemma (and more for-
mally in Appendix , and in order to prove our main result on MULTIBLOCKLOCATE, we also
need the following lemma ensuring that we can compute energy estimates satisfying the preconditions
of Lemmas [3.2] and [3-3} the procedure and proof are presented in Section [£.4]

Lemma 3.4. (ESTIMATEENERGIES guarantees) Given (n,ko, k1), the signals X € C" and

X € C* with | X — X3 > m”;ﬂb, and the parameter § € (L,%), the procedure
14



ESTIMATEENERGIES(X, X, n, ko, k1,0) returns a vector v € R?*1 such that, for any given set S* of

cardinality at most 10ky, we have the following with probability at least %
LY e 12513 = 7" L SA003 ey 127115

2. [l <103, cppp 112713

where {Z" } ok, 15 the (k1,8)-downsampling of X — x (see Definition .
koki

Moreover, if X is (O(ko), k1)-block sparse, then the sample complezity is O(%* log % log %), and

the runtime is O(kg# log? 3 log?n).

Remark 3.1. The preceding lemma ensures that the 4" provide good approximations of HE’"H% ina
“restricted” and “one-sided” sense, while not over-estimating the total energy by more than a constant
factor. Specifically, the first part concerns the energy of 77 restricted to a fixed set of size O(ko),
and characterizes the extend to which the energies are under-estimated. It appears to be infeasible to
characterize over-estimation in the same way (e.g., replacing |- |+ by |-]), since several of the samples

could be overly large due to spiky noise.

Remark 3.2. Here and subsequently, the poly(n) lower bounds regarding ()? , X) are purely technical,
resulting from extremely small errors when subtracting off X. See Section for further details.

Algorithm 2 Multi-block sparse location

1: procedure MULTIBLOCKLOCATE(X, X, n, ko, k1, 9, p)

2 ar < g for each r € [2k1]

3 forte{l,...,lOlog%}do

4 v < ESTIMATEENERGIES(X, X, 7, ko, k1, ) > See Section
5: s) < BUDGETALLOCATION(v, ko, k1, 0, 16p) by = .., y%)
6 s « max; s (element-wise with respect to r € [2ki])

7 L + LOCATEREDUCEDSIGNALS(X, X, n, ko, k1, S, 0, %(5;0) > See Appendix
8 return L

We are now in a position to provide our guarantees on MULTIBLOCKLOCATE, namely, on the behavior

of the list size, and on the energy that the components in the list capture.

Lemma 3.5. (MULTIBLOCKLOCATE guarantees) Given (n, ko, k1), the parameters 0 € (%, 21—0) and
11

p € (ﬁ, 5), and the signals X € C" and x € C" with Xo uniformly distributed over an arbitrarily

length—pﬂ@l(i) interval, the output L of the function MULTIBLOCKLOCATE(X,)?,kl,ko,n,é,p) has

the following properties for any set S* of cardinality at most 10kg:

1. E[|L]] = O(%—Olog% logl%log2 %);
2. 3 jesn\L H()A( — X113 < 200\/3”)2 — X|I3 with probability at least 1 — p.

Moreover, if X is (O(ko), k1)-block sparse, and we have 6 = Q(%) and p = Q(

1
poly(logn poly(logn) ) ’
kok1

then (i) the expected sample complexity is O*(%O log(1 + ko) logn + =43 ), and the expected runtime
15




is O* (k—olog( + ko) log®n + kOkl log?n + m log? n) (i) if the procedure returns L, then we are
guaranteed that the algorithm used O*(|L] - logn + kokl) samples and O*(|L| - log®n + kOkl log?n +

kok1
5 log?® n) runtime.

Remark 3.1. The procedure MULTIBLOCKLOCATE is oblivious to the choice of S* in this theorem

statement.

Proof. First claim: Note that in each iteration of the outer loop when we run BUDGETALLOCA-
TION(~, ko, k1, 6, %(5})), Lemma implies that for any ¢, the following holds true:
ko 1
5[ 3 o] =0(F e Prox ).
2 5085 By
T€[2k1]

(t)

where s, is the r-th entry of the budget allocation vector s’ at iteration t. Therefore,

10 log 1

IE[ Z sr] :E[ Z max }_ Z [ Z } (kolog%logflog;) (8)

=1,...,101
1 t=L...,10 Og TE[2k1]

We now apply Lemma which is formalized in Appendix the assumption max,¢p,) Sr = O(’%—O)
therein is satisfied due to the range of ¢ from which we sample in BUDGETALLOCATION. We set
the target success probability to 1 — %(5}7, which guarantees that the size of the list returned by the
function LOCATEREDUCEDSIGNALS is O( 3, ¢o,] Sr 108 55). Therefore, by (), we have
ko ko 1
E[|L]] = O(* 1o 107102 =),
[1L]] 5 108 5 log log” =
yielding the first statement of the lemma.
Second claim: Let X' = X — x, and consider the set S* given in the theorem statement, and
an arbitrary iteration ¢. By Lemma in Section (also stated above), the approximate energy

vector v in any given iteration of the outer loop satisfies

1Z5:13 =], <405 >~ 12713
T€[2k1} T€[2k1]
Il <10 7 1271 9)

TE[le]
with probability at least % When this is the case, the vector v meets the requirements of Lemmas
[3-2] and [3:3] That means that the probability of having an energy estimate ~ that meets these
requirements in at least one iteration is lower bounded by 1 — (2)1010g p>1-—
We now consider an arbitrary iteration in which the above conditions on v are satisﬁed. We write
T2 12 T2
DoXLIE= Y0 UXLB+ Y IXLIB (10)
JES*\L FE(S*NS\L jeSs*\(SuUL)
The second term is bounded by
T 12 T 112 7112
Yoo IXLIE< Do XL I3 < 100V X3 (11)
jES*\(SuUL) jES*\S
by Lemma which uses the first condition on v in @
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We continue by calculating the expected value of the first term in ([10)) with respect to the ran-

domness of BUDGETALLOCATION and LOCATEREDUCEDSIGNALS:

El > I =E] Y 1%,z ¢ 1]]
Jje(S*NS)\L JE(S*NS)
<D IXLI5 - Prlj ¢ L]. (12)
jes

We thus consider the probability Pr[j ¢ L] for an arbitrary j € S. If j € S, then by Lemma
and the choice of the final parameter of %(510 passed to BUDGETALLOCATION, there is at least one
r € [2k;] such that j is covered, with probability at least 1 — %5}9. We also know from Lemma
that the failure probability of LOCATEREDUCEDSIGNALS for some covered j is at most %(5;0. A union

bound on these two events gives
Pr[j¢ L] <dp, VjeS.
Hence, we deduce from that
o2 (2
El > IXLIE] <o IXI5
FE(S*NS\L
and Markov’s inequality gives
12 SUIP
> IXLIE < I1X3
JE(S*NSH\L
with probability at least 1 — p. Combining this with 7, and using the assumption § < 2% to
write § < 100v/8, we complete the proof.
Sample complexity and runtime: We first consider the sample complexity and runtime as a
function of the output L.
There are two operations that cost us samples. The first is the call to ESTIMATEENERGIES, which

costs O(kg§1 log? %) by Lemma@ The second is the call to LOCATEREDUCEDSIGNALS; by Lemma

in Appendix [F|, with dp in place of p, this costs O(Zre[%ﬂ s" log 5%; log % log n) samples (recall

that X is (O(ko), k1)-block sparse by assumption), which is O(|L\ log%log%log n) Adding these
contributions gives the desired result; the log% and log% factors are hidden in the O*(-) notation,

since we have assumed that § and p behave as Q(m).

The time complexity follows by the a similar argument, with ESTIMATEENERGIES cost-

ing O(%%5log? $1log?n) by Lemma and the call to LOCATEREDUCEDSIGNALS costing
O(|L] log % log % log®n + k({% log % log® n) by Lemma in Appendix . The complexity of Es-
TIMATEENERGIES dominates that and of calling BUDGETALLOCATION, which is O(k1 + %0 log %) by
Lemma 3.1

The expected sample complexity and runtime follow directly from those depending on L, by simply

substituting the expectation of |L| given in the lemma statement. O
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4 Energy Estimation

In this section, we provide the energy estimation procedure used in the MULTIBLOCKLOCATE proce-
dure in Algorithm [2] and prove its guarantees that were used in the proof of Lemma[3.5] To do this, we
introduce a variety of tools needed, including hashing and the semi-equispaced FFT. While such tech-
niques are well-established for the standard sparsity setting |25], applying the existing semi-equispaced
FFT algorithms separately for each Z” in our setting would lead to a runtime of kok?poly(logn). Our
techniques allow us to compute the required FFT values for all r in kokipoly(logn) time, as we detail
in Section (4.2l

4.1 Hashing Techniques

The notion of hashing plays a central role in our estimation primitives, and in turn makes use of

random permutations.

Definition 4.1 (Approximately pairwise-independent permutation). Fix n, and let 7 : [n] — [n] be
a random permutation. We say that m is approzimately pairwise-independent if, for any 4,4’ € [n] and

any integer ¢, we have P[|x(i) — m(i')| < t] < 2.

It is well known that such permutations exist in the form of a simple modulo-n multiplication;

we will specifically use the following lemma from [39].

Lemma 4.1. (Choice of permutation |39, Lemma 3.2|) Let n be a power of two, and define w(i) = o1,
where o is chosen uniformly at random from the odd numbers in [n]. Then 7 is an approximately

pairwise-independent random permutation.

We now turn to the notion of hashing a signal into buckets. We do this by applying the random
permutation from Lemma [{.T]along with a random shift in time domain, and then applying a suitable

filter according to Definition [2.1

Definition 4.2 (Hashing). Given integers (n, B), parameters o, A € [n], and the signals X € C"
and G € C", we say that U € CP is an (n, B, G, 0, A)-hashing of X if
B .
Up=— > XoarjipiGivsi J€[Bl. (13)
US|

Moreover, we define the following quantities:
e 7(j) = o - j, representing the approximately pairwise random permutation;

e h(j) = round (j%), representing the bucket in [B] into which a frequency j hashes;

e 0;(j") = m(j") — h(j) j, representing the offset associated with two frequencies (7, ).

With these definitions, we have the following lemma, proved in Appendix Note that here we
write the exact Fourier transform of U as U * since later we will use U for its near-ezact counterpart

to simplify notation.
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Lemma 4.2. (Fourier transform of hashed signal) Fiz (n, B) and the signals X € C" and G € C"
with the latter symmetric about zero. If U is an (n, B, G, o0, A)-hashing of X, then its exact Fourier
transform U* is given by
Uy = XGoppwr™, be(B).
feln]
We conclude this subsection by stating the following technical lemma regarding approximately

pairwise independent permutations and flat filters.

Lemma 4.3. (Additional filter property) Fix n, and let G be an (n, B, F)-flat filter. Let () be
an approzimately pairwise-independent random permutation (cf., Definition , and for f, f € [n],
define of(f') = w(f') — Lround(w(f)2). Then for any x € C" and f € [n], we have

. N 10 ~
S 1 B 1oy 2] < 2R, (1)
['#f

The proof is given in Appendix

4.2 Semi-Equispaced FFT

Algorithm 3 Semi-equispaced inverse FFT for approximating the inverse Fourier transform, with
standard sparsity (top) and block sparsity (bottom)

1: procedure SEMIEQUIINVERSEFFT(X’, n,k,C)
2: G« FHJTE/P\{(n, k, Q) > See |25, Sec. 12]; same as proof of Lemma
3: Y; + (X xGQ)in for each i € [2k]

2k
4
5

Y + INVERSEFFT(Y)
return {Yj}ljlég

: procedure SEMIEQUIINVERSEBLOCKFFT()?, n, ko, k1, ¢)
7: G < FILTER(n, k1,n™°) > See proof of Lemma

=]

8: for je [%ﬂ such that ()?*(A});Llj may be non-zero (O(ckologn) in total) do
2

9: }/jb — %1 Zi:kll Xb+2kllG%j—(b+2kﬂ) for each b € [2]{31]

10: (V.. Y M) « IFFT(Y], ... Y™

11: for r € [2ki] do _

12: YT (8,0

13: Y™ + SEMIEQUIINVERSEFFT (Y, &, ko, n~(eT)

: r
14: return {Y; }re[2k1],|j|§%°

One of the steps of our algorithm will be to take the inverse Fourier transform of our current
estimate of the spectrum, so that it can be subtracted off and we can work with the residual. The sem;-
equispaced inverse FFT provides an efficient method for doing this, and is based on the application
of the standard inverse FF'T to a filtered and downsampled signal.

We start by describing an existing technique of this type for standard sparsity; the details are
shown in the procedure SEMIEQUIINVERSEFFT in Algorithm and the resulting guarantee from |25,
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Sec. 12] is stated as followsE|

Lemma 4.4. (SEMIEQUIINVERSEFFT guarantees [25, Lemma 12.1, Cor. 12.2|) (i) Fiz n and a
parameter ¢ > 0. If)? € C" is k-sparse for some k, then SEMIEQUIINVERSEFFT()?,n, k,() returns
a set of values {Yj}|ji<x/2 in time O(klog %), satisfying

Y5 — X;| < ClIX2.

(ii) Given two additional parameters o,A € [n| with o odd, it is possible to compute a set of
values {Y;} for all j equaling o3’ + A for some j" with |j'| < k/2, with the same running time and

approrimation guarantee.

For the block-sparse setting, we need to adapt the techniques of [25], making use of a two-level
scheme that calls SEMIEQUIINVERSEF F'T. The resulting procedure, SEMIEQUIINVERSEBLOCKFFT,
is described in Algorithm [3] The main result of the procedure is the following analog of Lemma [£.4]

Lemma 4.5. (SEMIEQUIINVERSEBLOCKFFT guarantees) (i) Fiz (n, ko, k1), a (ko, k1)-block sparse
signal X e C", and a constant ¢ > 1. Define the shifted signals { X" },c[or,) with X] = Xi+%' The
procedure SEMIEQUIINVERSEBLOCKFFT (X, n, ko, k1, c) returns a set of values Y[ for allr € [2k1 ]
and |j] < %0 in time O(c*kok1 log? n), satisfying

Y7~ XJ] < 207X ] (15)
(i) Given two additional parameters o, A € [l%} with o odd, it is possible to compute a set of
values Y] for all v € [2k1] and j equaling oj' + A (modulo ) for some |j'| < o with the same

running time and approrimation guarantee.
The proof is given in Appendix

Remark 4.1. In the preceding lemmas, the signal sparsity and the number of values we wish to
estimate will not always be identical. However, this can immediately be resolved by letting the

parameter kg therein equal the maximum of the two.

4.3 Combining the Tools

In Algorithm [, we describe two procedures combining the above tools. The first, HASHTOBINS,
accepts the signal X and its current estimate X, uses SEMIEQUIINVERSEFFT to approximate the
relevant entries of x, and computes a hashing of X — y as per Definition [£.2] The second, HASHTO-
BINSREDUCED, is analogous, but instead accepts a (k1, §)-downsampling of X, and uses SEMIEQUIIN-
VERSEBLOCKFFT. It will prove useful to allow the function to hash into a different number of buckets
for differing 7 values, and hence accept {G" },¢c[ax,) and {B"},¢[2,] as inputs. For simplicity, Algo-
rithm [4] states the procedures without precisely giving the parameters passed to the semi-equispaced

FFT, but the details are given in the proof of the following.

*Note that the roles of time and frequency are reversed here compared to [25].
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Algorithm 4 Hash to bins functions for original signal (top) and reduced signals (bottom)

1: procedure HASHTOBINS(X, X, G, n, B,o,A)

2: Compute {x;} using SEMIEQUIINVERSEFFT with input (X, n, O(FB),n~¢)

3 > See Lemma ; F equals the parameter of filter G, and ¢’ is a large constant
4: Ux < (n,B,G, 0, A)-hashing of X > See Definition
5: Uy « (n,B,G, 0, A)-hashing of x

6: U+ FFT of Ux — U,

7 return U

8: procedure HASHTOBINSREDUCED ({Z% }repor,]s X> {G" Fref2ra]s 7 K1, { B }rejan), 0, A)
9: Brax <+ maXyc(2k;] B"

10: ko < minimal value such that X is (ko, k1)-block sparse

11: Compute {y;} using SEMIEQUIINVERSEBLOCKFFT; input (X, n, O(FpaxBmax + ko), k1,¢)

12: > See Lemma Fiax equals the maximal parameter of the filters {G"}, and ¢’ is a large
constant

13: {25 rejory) < (K1, 0)-downsampling of x > See Definition

14: for r € [2k] do

15: Uy (k%? B",G", 0, A)-hashing of Z% > See Definition

16: Uy < (k%’ B",G",0,A)-hashing of Z}

17: U+ FFT of Uy — U,

18: return {ﬁr}re[le]

Lemma 4.6. (HAsHTOBINS and HASHTOBINSREDUCED guarantees) (i) Fiz (n,k,B,F), an
(n, B, F)-flat filter G supported on an interval of length O(FB), a signal X € C", a k-sparse signal
X For any (o,A), the procedure HASHTOBINS(X, X, G, n, B, 0, A) returns a sequence U such that

U = Uloo < n™ X2,

where U* is the exact Fourier transform of the (n, B, G, o, A)-hashing of X — x (see Definition ,
and ¢ = +0(1) for ¢ in Algorithm . Moreover, the sample complexity is O(FB), and the runtime
is O(cF (B + k)logn).

(ii) Fiz (n, ko, k1) and the parameters ({B" },c[or,], £, 0). For eachr € [2k1], fir an (kﬂl, B",F)-flat
filter G™ supported on an interval of length O(FB"). Moreover, fix a signal X € C" and its (k1,0)-
downsampling {Z" },cjar,) with 6 € (%, %
procedure HASHTOBINSREDUCED({Z" },¢(2k,), Xs {G” }rej2ky » T K1, { B }refor,» 0, A) returns a set of

), and a (ko, k1)-block sparse signal X. For any (o, A), the

sequences {(/jr}re[%ﬂ such that
10" =T oo < 0 °|Rll2s 7 € [2k1],

where U*" is the exact Fourier transform of the (%, B",G", 0, A) -hashing for the (ki,9)-downsampling
of X —x, and ¢ = ¢ + O(1) for ¢ in Algorithm . Moreover, the sample complexity is
O(F Zre[%l] B" log %), and the runtime is O(CQ(BmaXF + ko)k1 log? n) with Bpax = max,¢gk,) B

The proof is given in Appendix

Remark 4.2. Throughout the paper, we consider ¢ in Lemma [£.6] to be a large absolute constant.

Specifically, various results make assumptions such as | X — X2 > mﬂ Xll2, and the results hold
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true when c is sufficiently large compared to implied exponent in the poly(n) notation. Essentially,
the n~¢ error term is so small that it can be thought of as zero, but we nevertheless handle it explicitly

for completeness.

4.4 Estimating the Downsampled Signal Energies

We now come to the main task of this section, namely, approximating the energy of each Z". To do
this, we hash into B = (;% - ko buckets (cf., Definition , and form the estimate as the energy of
the hashed signal. The procedure is shown in Algorithm

Before stating the guarantees of Algorithm [5] we provide the following lemma characterizing the
approximation quality for an ezact hashing of a signal, as opposed to the approximation returned
by HASHTOBINSREDUCED. Intuitively, the first part states that we can accurately estimate the
top coefficients well without necessarily capturing the noise, and the second part states that, in

expectation, we do not over-estimate the total signal energy by more than a small constant factor.

Algorithm 5 Procedure for estimating energies of downsampled signals

1: procedure ESTIMATEENERGIES(X, X, n, ko, k1,0)

2 B+ (;% - ko

3 F+« 10log}

4 H + (l?—l, B, F)-flat filter > See Definition
5: A < uniform random sample from []?—1]

6 0 < uniform random sample from odd numbers in [kﬂl]

7 {Z"}refory) ¢ (K1, 6)-downsampling of X — x > See Definition
8 H« (H,...,H)

9 B« (B,...,B)

10: {ﬁr}re[%ﬂ + HASHTOBINSREDUCED({Z" },¢(ok,], X, H, 1, k1, B, 0, A) > See Section
11: for r € [2k;] do
12: Y [|TT13
13: return v > Length-2k; vector of 4" values

Lemma 4.7. (Properties of exact hashing) Fiz the integers (m, B), the parameters 6 € (0, %) and
F' > 1010g%, and the signal Y € C™ and (m, B, F")-flat filter H (cf., Definition . Let U be an
(m, B, H,0,A)-hashing of Y for uniformly random o, A € [m] with o odd, and let 7(-) be defined as
in Definition @ Then, letting U* denote the ezact Fourier transform of U, we have the following:

1. For any set S C [m],

. N IS S .
19505 10712] ] < (001504 15150 105,
N B B

where |.|; = max{.,0}, and H}/}SH% denotes ;g |}/;]]2

EA,ﬂ' |:

2. We have
Eax[IIU*3] < 3[IY]3.

The proof is given in Appendix
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We now present the following lemma, showing that the procedure ESTIMATEENERGIES provides
us with an estimator satisfying the preconditions of Lemmas and

Lemma (ESTIMATEENERGIES guarantees — re-stated from Section [3.1) Given (n, ko, k1), the
signals X € C" and ¥ € C" with | X — X||3 > WHX\HQ, and the parameter § € (%,%), the
procedure ESTIMATEENERGIES (X, X, n, ko, k1,0) returns a vector v € R?* such that, for any given

set S* of cardinality at most 10ky, we have the following with probability at least %

13 epon 12515 =" L S 4002 ey 127115

2. [l <103, epppy I12713;

where {Z" } ok, 18 the (k1,8)-downsampling of X — x (see Definition .
Moreover, if X is (O(ko), k1)-block sparse, then the sample complexity is O(kglg€1 log? %), and the

runtime is O(kg% log? 3 log?n).

Proof. Analysis for the exact hashing sequence: We start by considering the case that the
call to HASHTOBINSREDUCED is replaced by an evaluation of the exact hashing sequence U T ie.,
Definition applied to Z" resulting from the (ki,0)-downsampling of X — x. In this case, by
applying Lemma H with Y = Z", B = (;%ko and S = S* (and hence |S| < 10kp), the right-hand
side of the first claim therein becomes (56 4 (42 + 2)52)||27"||% < 65||/Z\’"||%, since § < 5. By applying
the lemma separately for each r € [2k;] with Y = Z", and summing the corresponding expectations
a v 3= 10*13],] < 653, con, 127113 and
D re2hi] E[|U*]3] <3 Dore[2h] |1 Z7||3. We apply Markov’s inequality with a factor of 6 in the former
and 3 in the latter, to conclude that the quantities v*" = H(/}*TH% satisfy

in the two claims therein over r, we obtain 3, cpoy, | E[| ||Z\§*

> (1253 <365 S 1271 (16)
r€[2k1] r€[2k1]
<o Y 12713, (a7
TE[Qkﬂ

with probability at least 1/2.

Incorporating L error from use of semi-equispaced FFT in HASHTOBINSREDUCED:

nC
Since U" is computed using HASHTOBINSREDUCED, the energy vector +y is different from the exact
one v*, and we write

> 125 -], < X 12515 -

re(2ki] re(2k:]

L=l (18)

By substituting 7" = [|U”||2 and 4*" = ||U*"||2, and using the identity lall3 = 13| < 2lla— b2 -
b]]2 + ||@ — b]|3, we can write
S =yl X (2007 =TT + 107 - T ). (19)
TE[2]€1} 7"6[2]{:1]

Upper bounding the ¢, norm by the fo, norm times the vector length, we have ||[U" — U*"[|y <
\/ﬁ||l7 r—U oo < n~t/2||R|l2, where the second inequality follows from Lemma [4.6 Moreover,
from the definition of U*" resulting from Definition applied to Z", along with the filter property
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|G|l in Definition 2.1} it follows that ||T*" |l < ||&llacl| 27|l < v/l|Z" |2 Combining these into
gives

S b= Y (20 R Z o 4 0 RI)
r€[2k1] re(2kq]

<2 TNTIRIB DD 12713+ TP kIR
TG[le] 7‘6[2]{31]

<20 BRIz, [ D0 12713+ n 2 RIS, (20)
T€[2k1]

where the second line is by Cauchy-Schwarz, and the third by k; < n.
By the second part of Lemma and the assumption § < 2—10, we have Zre[%l] ||27"||%A2 %H)? —
X2 > L |IX||3, where the second equality holds for some ¢ > 0 by the assumption | X — ¥||3 >

4n
WHX\HZ Hence, gives
Z |’YT _’Y*T‘ < 4(n70+3n0//2 _|_nf2c+2nc/) Z HZ\TH% (21>
7’6[2]?1} TG[le]

Since we have chosen 6 > 1/n, the coefficient to the summation is upper bounded by 4§ when c is
sufficiently large, thus yielding the first part of the lemma upon combining with .
To prove the second part, note that by the triangle inequality,

Il < 1"+ Il = |
<O NZTI3+ D> -
TE[Qkﬂ TE[Qkﬂ
where we have applied . Again applying and noting that the coefficient to the summation is

less than one for sufficiently large ¢, the second claim of the lemma follows.

(22)

)

Sample complexity and runtime: The only step that uses samples is the call to HASH-

ToOBINSREDUCED. By Lemma and the choices B = (;%k:g and F = 1010g%, this uses

O(leB log %) = O(kgfl log? %) samples per call. The time complexity follows by the same ar-

gument along the assumption that X is (O(ko), k1)-block sparse, with an additional log?n factor
following from Lemma[4.6] Note that the call to HASHTOBINSREDUCED dominates the computation
of 4", which is O(k1 B), O

5 The Block-Sparse Fourier Transform

In this section, we combine the tools from the previous sections to obtain the full sublinear-time block

sparse FFT algorithm, and provide its guarantees.

5.1 Additional Estimation Procedures

Before stating the final algorithm, we note the main procedures that it relies on: MULTIBLOCKLO-
CATE, PRUNELOCATION, and ESTIMATEVALUES. We presented the first of these in Section [3] The

latter two are somewhat more standard, and hence we relegate them to the appendices. However, for
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the sake of readability, we provide some intuition behind them here, and state their guarantees.

We begin with PRUNELOCATION. The procedure MULTIBLOCKLOCATE gives us a list of block
indices containing the dominant signal blocks with high probability, with a list size L = O* (kzo log ko).
Estimating the values of all of these blocks in every iteration would not only cost O*(koky log ko)
samples, but would also destroy the sparsity of the input signal: Most of the blocks correspond to
noise, and thus the estimation error may dominate the values being estimated. The PRUNELOCATION
primitive is designed to alleviate these issues, pruning L to a list that contains mostly “signal” blocks,
i.e., blocks that contain a large amount of energy. Some false positives and false negatives occur, but
are controlled by Lemma [5.1] below. The procedure is given in Algorithm [§in Appendix [G]

The following lemma shows that with high probability, the pruning algorithm retains most of the

energy in the head elements, while removing most tail elements.

Lemma 5.1. (PRUNELOCATION guarantees) Given (n,ko, k1), a list of block indices L, the pa-

rameters 8 > 0, § € (%,%) and p € (0,1), and the signals X € C" and ¥ € C" with

”)?—55”2 > mHS{Hg, the output L' of PRUNELOCATION(X, X, L, n, ko, k1,0, p, 8) has the following

properties:

a. Let Sia denote the tail elements in signal X - X, defined as
. [n S . 0,5
S = {j € || + 1K =D ll2 < VB = /=X =Rl },
k‘l kO
where I is defined in Definition[1.1. Then, we have
E[‘L/ N Staﬂ” < dp - |L N Stait-

b. Let Sheaq denote the head elements in signal X - X, defined as

S = {3 €[] £ I8 =R 122 VO + /212 - xa}.

Then, we have

El Y 1=l <o Y IE =Rl

je(LmShead)\L/ JELNShead

k05k1 log % log %), and the run-

Moreover, provided that ||X]lo = O(kok1), the sample complexity is O(

time is O(k(’(;’“1 log%log % logn + ky - |L|log %)

The proof is given in Appendix [G]

We are left with the procedure ESTIMATEVALUES, which is a standard procedure for estimating
the values at the frequencies within the blocks after they have been located. The details are given in
Algorithm [9] in Appendix [H]

Lemma 5.2. (ESTIMATEVALUES guarantees) For any integers (n, ko, ki), list of block indices L,
parameters § € (%, &) and p € (0,1/2), and signals X € C" and X € C" with 1X =Xz > m\\ﬂ\g,
the output W of the function ESTIMATEVALUES(X, X, L, n, ko, k1,0, p) has the following property:
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N I Pt
> Wy - (X - P < a1 % - R
feUjer 1;
with probability at least 1 —p, where I; is the j-th block. Moreover, provided that || x|o = O(kok1), the
sample complezity is O(% log 113 log %), and the runtime is O(k%ﬁ log % log % logn + ky - |L|log %)

The proof is given in Appendix [H]

5.2 Statement of the Algorithm and Main Result

Our overall block-sparse Fourier transform algorithm is given in Algorithm [6] It first calls RE-
DUCESNR, which performs an iterative procedure that picks up high energy components of the signal,
subtracts them from the original signal, and then recurses on the residual signal X = X — y(@).
Once this is done, the procedure RECOVERATCONSTSNR performs a final “clean-up” step to obtain

the (1 + €)-approximation guarantee.

Algorithm 6 Block-sparse Fourier transform.

1: procedure BLOCKSPARSEFT (X, n, ko, k1, SNR’, 12, ¢)

2: > X € C" is approximately (ko, k1)-block sparse
3 > (SNR/, %) are upper bounds on (SNR, ;%) from Definition
4: > € is the parameter for (1 + O(e))-approximate recovery
5: X < REDUCESNR/(X,n, ko, k1, SNR/, 1/?).

6 X < RECOVERATCONSTSNR(X, X, n, ko, k1, V2, €).

7
8
9

return

. procedure REDUCESNR(X, n, ko, k1, SNR’, v/?) > Iteratively locate/estimate to reduce SNR

: T + log SNR/
10: 6 < small absolute constant
11: p m > Failure probability for subroutines
12: 0«0 > Y is our current estimate of X
13: fort e {l1,...,7T} do
14: L + MuLTIBLOCKLOCATE(X, X~V n, k1, ko, 0, p)
15: 6 < 10-27t - 2SNR’ > Threshold for pruning
16: L' + PRUNELOCATION(X, X~V L n, ko, k1,9,p,0)
17: L — x4+ EsTiMATEVALUES(X, XD, L/ n, ko, k1, 6, p)
18: return 7
19: procedure RECOVERATCONSTSNR(X, X, n, ko, k1, €) > A final “clean-up” step
20: n < small absolute constant
21: P Zem > Upper bound on failure probability for subroutines

22: L + MULTIBLOCKLOCATE(X, X, n, k1, ko, €2, p)
23 6+ 200er?

24: L' + PRUNELOCATION(X, X, L, n, ko, k1, €,p, 0)
25: W « ESTIMATEVALUES(X, X, L', n, 3ko /€, k1, €, p)
26: X+ W+X

27: return \’
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With these definitions in place, we can now state our final result, which formalizes Theorem [I.1]

Theorem |1 - Upper bound — formal version) Given (n, ko, k1), the parameter e € ( , 20) and the
signal X € C", if X, SNR/, p?, and v? satisfy the following for (u*, SNR) given in Definition :

1. ,U,2 < 1/2,'
2. | X3 < (kov?) - SNR';
3. SNR' = O(poly(n));

X3 .
4o p? —p y(2)

then with probability at least 0.8, the procedure BLOCKSPARSEFT(X, n, ko, k1, SNR, 2, €) satisfies the
following: (i) The output X satisfies

IX = RII3 < ko + O(er?)).
(i) The sample complezity is is O* (ko log(1+ ko) log SNR' log n+ koky log SNR’ + %2 log(1+ ko) log n+
kokl) and the runtime is O* (ko log(1+ko) log SNR’ log? n+kok1 log SNR’ log® n+3 ko log(1+ko) log? n+
%log n—i—%log n).

The assumptions of the theorem are essentially that we know upper bounds on the tail noise z?
and SNR. Moreover, in order to get the (1 + €)-approximation guarantee, the former upper bound
should be tight to within a constant factor.

In the remainder of the section, we provide the proof of Theorem [I.I] deferring the technical

details to the appendices.

Guarantees for REDUCESNR and RECOVERATCONSTSNR. The following theorem proves
the success of the function REDUCESNR. We again recall the definitions of Err?, u2, and SNR in
Definition

Lemma 5.3. (REDUCESNR guarantees) Given (n, kg, k1), parameters (v, SNR'), and a signal X €
C", if X, SNR/, and v? satisfy the following for (u?, SNR) given in Definition :

1. ,U,2 < V2,'
2. || X3 < (kov?) - SNR';
3. SNR' = O(poly(n));

13 .
4752 oty

then the procedure REDUCESNR(X, n, ko, k1, SNR/, v2) satisfies the following guarantees with proba-
bility at least 0.9 when the constant & therein is sufficiently small: (i) The output X satisfies

T is (3kg, k1)-block sparse
1X = 713 < 100kor>.
(ii) The number of samples used is O* (kolog(1+ ko) log SNR log n + koki1 log SNR), and the runtime
is O* (ko log(1 + ko) log SNR/ log? n + kok; log SNR! log® n).
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The proof is given in Appendix
The following theorem proves the success of the function RECOVERATCONSTSNR.

X113

Lemma 5.4. (RECOVERATCONSTSNR guarantees) Given (n,ko, k1), parameters v? > — =
poly(n

) and
€€ (%, %), and the signals X € C™ and X € C™ satisfying

1. Err?(X — X, 10ko, k1) < kov?;
2. | X — X% < 100kor?;

the procedure RECOVERATCONSTSNR(X, X, n, ko, k1, €) satisfies the following guarantees with prob-
ability at least 0.9 when the constant n therein is sufficiently small: (i) The output X' satisfies

| X = |13 < Err®(X — X, 10k, k1) + (4 - 10%)ekor?. (23)

(i1) If X is (O(ko), k1)-block sparse, then the number of samples used is O*(% log(1+ ko) logn+ kifl)
and the runtime is O*(’j—g log(1 + ko) log®n + % log® n + % log®n).

The proof is given in Appendix

Proof of Theorem [1.1. We are now in a position to prove Theorem via a simple combination
of Lemmas and (.4

Success event associated with REDUCESNR: Define a successful run of RE-
DUCESNR(X,n, kg, k1, SNR, ?) to mean mean the following conditions on the output x7:

1X — 7|2 < 100ko1?
Err2()2 37, 10ko, k1) < Koy
By Lemma it follows that the probability of having a successful run of REDUCESNR is at least
0.9. Note that the second condition is not explicitly stated in Lemmal[5.3] but it follows by using 3k

blocks to cover the parts where X7 is non-zero, and ko blocks to cover the dominant blocks of X , in
accordance with Definition

Success event associated with RECOVERATCONSTSINR: Define a successful run of RECOV-
ERATCONSTSNR(X, X, ko, k1,7, €) to mean the following conditions on the output :

|X — |3 < Err®(X — X, 10ko, k1) + (4 - 10%)ekor?.

Conditioning on event of having a successful run of REDUCESNR, by Lemma [5.4] it follows that the
probability of having a successful run to RECOVERATCONSTSNR is at least 0.9.

By a union bound, the aforementioned events occur simultaneously with probability at least 0.8,
as desired. Moreover, the sample complexity and runtime are a direct consequence of summing the
contributions from Lemmas and 5.4
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6 Lower Bound

Our upper bound in Theorem in several scaling regimes, provides a strict improvement over
standard sparse FFT algorithms in terms of sample complexity. The corresponding algorithm is
inherently adaptive, which raises the important question of whether adaptivity is necessary in order
to achieve these improvements. In this section, we show that the answer is affirmative, by proving
the following formalization of Theorem

Theorem (Lower bound — formal version) Fiz (n, ko, k1) and C > 0, and suppose that there exists
a non-adaptive algorithm that, when given a signal Y with Fourier transform l/;, outputs a signal %
satisfying the following Lo /la-guarantee with probability at least %
Iy -Y|3<c_ min 1Y =3, (24)
Y* is (ko,k1)—block sparse
Then the number of samples taken by the algorithm must behave as Q(k:okl log ﬁ)

Hence, for instance, if kg = O(1) and SNR = O(1) then our adaptive algorithm uses O(k; +1logn)
samples, whereas any non-adaptive algorithm must use Q(k:l log kﬂl) samples.

The remainder of this section is devoted to the proof of Theorem [I.2] Throughout the section,
we let k = kok; denote the total sparsity.

High-level overview: Our analysis follows the information-theoretic framework of [37]. How-
ever, whereas |37 considers a signal with k arbitrary dominant frequency locations and uniform noise,
we consider signals where the k = kok; dominant frequencies are (nearly) contiguous, and both the
noise and signal are concentrated on an O(%) fraction of the time domain.

As a result, while the difficulty in |37] arises from the fact that the algorithm needs to recover
roughly log 7 bits per frequency location for & such locations, our source of difficulty is different.
In our signal, there are only roughly log # bits to be learned about the location of all the blocks
in frequency domain, but the signal is tightly concentrated on an O(%) fraction of the input space.
As a consequence, any non-adaptive algorithm is bound to waste most of its samples on regions of
the input space where the signal is zero, and only an O(%) fraction of its samples can be used to
determine the single frequency that conveys the location of the blocks. In the presence of noise, this
results in a lower bound on sample complexity of Q(k log %)

Information-theoretic preliminaries: We will make use of standard results from information
theory, stated below. Here and subsequently, we use the notations H(X), H(Y|X), I(X;Y) and
I(X;Y|U) for the (conditional) Shannon entropy and (conditional) mutual information (e.g., see [40]).

We first state Fano’s inequality, a commonly-used tool for proving lower bounds by relating a

conditional entropy to an error probability.

Lemma 6.1. (Fano’s Inequality [40, Lemma 7.9.1]) Fiz the random variables (X,Y") with X being
discrete, let X' be an estimator of X such that X —Y — X' forms a Markov chain (i.e., X and X'
are conditionally independent given'Y ), and define P, := P[X’ # X]. Then

H(Y|X) <1+ P.log|X|,
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where X = supp(X). Consequently, if X is uniformly distributed, then
I(X;Y)> -1+ (1 — P.)log|X]|.
The next result gives the formula for the capacity of a complex-valued additive white Gaussian
noise channel, often referred to as the Shannon-Hartley theorem. Here and subsequently, CN(u, 02)
denotes the complex normal distribution.

Lemma 6.2. (Complex Gaussian Channel Capacity |40, Thm. 2.8.1]) For Z ~ CN(0,02) and any
2

2, we have

complex random variable X with E[|X|?] = o

0,2
I(X; X + Z) <log <1+ Ug)

z
with equality if X ~ CN(0,02).
The following lemma states the data processing inequality, which formalizes the statement that

processing a channel output cannot increase the amount of information revealed about the input.

Lemma 6.3. (Data Processing Inequality [40, Thm. 2.8.1]) For any random variables (X,Y, Z) such
that X —Y — Z forms a Markov chain, we have I[(X;Z) < I(X;Y).

Finally, the following lemma bounds the mutual information between two vectors in terms of the

individual mutual information terms between components of those vectors.

Lemma 6.4. (Mutual Information for Vectors [40, Lemma 7.9.2]) For any random vectors X =
(X1,...,Xn) and Y = (Y1,...,Ys), if the entries of Y are conditionally independent given X, then
I(X5Y) <3000 I(X5 Vi)

A communication game: We consider a communication game consisting of channel coding
with a state known at both the encoder (Alice) and decoder (Bob), where block-sparse recovery is
performed at the decoder. Recalling that we are in the non-adaptive setting, by Yao’s minimax
principle, we can assume that the samples are deterministic and require probability—% recovery over a
random ensemble of signals, as opposed to randomizing the samples and requiring constant-probability
recovery for any given signal in the ensemble. Hence, we denote the fized sampling locations by A.

We now describe our hard input distribution. Each signal in the ensemble is indexed by two
parameters (u, f*), and is given by

fr C'n _
w tEU,...,u+ 1
X, = t ey (25)

0 otherwise,

where C” > 0 is a constant that will be chosen later, and where all indices are modulo-n. Hence, each
signal is non-zero only in a window of length CTI", and within that window, the signal oscillates at
a rate dictated by f*. Specifically, u specifies where the signal is non-zero in time domain, and f*
specifies where the energy is concentrated in frequency domain. We restrict the values of u and f*

to the following sets:

UZ{C]{’;n’2C’k’n”.7<Ck:’I_ )C];n,n}
f:{k;,%,...,(%—l)k:,n-



The communication game is as follows:
1. Nature selects a state U and a message F uniformly from U and F, respectively.
2. An encoder maps (U, F') to the signal X according to (125)).

3. A state-dependent channel adds independent CN(0, ) noise to X; for each t € {u,...,u+ C,;"

1}, while keeping the other entries noiseless. This is written as Y; = X; + Wy, where

CN(0, u,...,u+c—/"—1
S Cro -1 o)
0 otherwise.

The channel output is given by Y = {Y; };c4 for the sampling locations .A.

4. A decoder receives U and Y, applies (ko, k1)-block sparse recovery to Y to obtain a signal }7’,
and then selects F” to be the frequency f’ € F such that the energy in Y’ within the length-k

window centered at f’ is maximized:

F' = arg max Y/ / 2, 27
| I Ik(f)HZ (27)
where It(f) ={f'+ A : A€ [k]}.

We observe that if adaptivity were allowed, then the knowledge of U at the decoder would make the
block-sparse recovery easy — one could let all of the samples lie within the window given in .
The problem is that we are in the non-adaptive setting, and hence we must take enough samples to
account for all of the possible choices of U.

We denote the subset of A falling into {u,...,u+ CT/" — 1} by A,, its cardinality by m,, and the
total number of measurements by m = |A| = ), m,. Moreover, we let X4, and Yy, denote the
sub-vectors of X and Y indexed by A,.

Information-theoretic analysis: We first state the following lemma.

Lemma 6.5. (Mutual information bound) In the setting described above, the conditional mutual
information I(F;Y|U) satisfies I(F;Y|U) < C'/Tmlog (1 + é), where « is variance of the additive

Gaussian noise within A,,.
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Proof. We have

/
I(F;Y|U) = %ZI(F;Y]U =)
/
= ?ZI(F;YAJUZU)
/
< ?ZI(XAu;YAulU = u)

C/
<20 I YU =)

u teA,
c’ 1
<=3 m,l (1 7)
=7 a My, log —l—a

= C];m log (1 + é), (28)

where:

Line 1 follows since U is uniform on a set of cardinality %;

Line 2 follows since given U = u, only the entries of Y indexed by A, are dependent on F' (cf.,

(125));

Line 3 follows by noting that given U = u we have the Markov chain F' — X4, — Y4,, and
applying the data processing inequality (Lemma ;

Line 4 follows from Lemma and , where the conditional independence assumption holds

because we have assumed the random variables W, are independent;

Line 5 follows from the Shannon-Hartley Theorem (Lemma [6.2); in our case, the signal power
is exactly one by , and the average noise energy is a by construction.

Next, defining 0,, := Pr[F’ # F |U = u], Fano’s inequality (Lemma gives

I(F;Y|U =u) > 1+ (1 - (5u)10g%,

and averaging both sides over U gives

I(F;Y|U) > —1+ (1—90) log%,

where 0 := E[6y] = Pr[F’ # F.
Hence, and by Lemma if we can show that our fy/fs-error guarantee gives I/ = F

constant probability, then we can conclude that

. k((1—6)log kT 1) — Q(klog n)
C'log (1+ 2) g

We therefore conclude the proof of Theorem by proving the following lemma.
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Lemma 6.6. (Probability of error characterization) Fiz (n, ko, k1) and C > 0. If the (ko, k1)-block
sparse recovery algorithm used in the above communication game satisfies (24) with probability at
least %, then there exist choices of C' and « such that the decoder’s estimate of F' according to
satisfies F' = F with probability at least %.

Proof. By the choice of estimator in , it suffices to show that Y’ , the output of the block-sparse
Fourier transform algorithm, has more than half of its energy within the length-k window Ij(f*)
centered of f*. We show this in three steps.

Characterizing the energy of X within I(f*):  The Fourier transform of X in is a
shifted sinc function of “width” % centered at f* when the time window is centered at zero, and
more generally, has the same magnitude as this sinc function. Hence, by letting C’ be suitably large,
we can ensure that an arbitrarily high fraction of the energy of X falls within the length-k window

centered at f* € F. Formally, we have
X5 () l13 = (1 =) XI5 (29)
for n € (0,1) that we can make arbitrarily small by choosing C’ large.

Characterizing the energy of Y within 7, & (f*): We now show that, when the noise level « in
it sufficiently small, the energy in Y within I :(f*) is also large with high probability:

Yo Y= (- 2m)lIX. (30)
FEL(f*)
To prove this, we first note that D/}f\Q =X F+ Wf\Q for all f € [n], from which it follows that

STOE- Y KPR < YD W2 ST IXg] W

fen(f*) FelL(f*) fel(f*) JeIL(f*)

Upper bounding the summation over \/I/I?fIQ by the total noise energy, and upper bounding the sum-

mation over |)/(> [iE ]Wﬂ using the Cauchy-Schwarz inequality, we obtain

S - > XA

fel(f*) Fel(f*)

< WIS + 20X ]2 - [W]2- (31)

We therefore continue by bounding the total noise energy HWH%, the precise distribution of the noise
across different frequencies is not important for our purposes.

Recall that every non-zero entry of X has magnitude one, and every non-zero time-domain entry of
W is independently distributed as CN(0, «). Combining these observations gives E[||W ]3] = o|| X |3,
or equivalently IE[HWH%] = a||X||2 by Parseval. Therefore, by Markov’s inequality, we have HWH% <
40| X |3 with probability at least 2. When this occurs, gives

STOVE- YD xR
felp(f*) fel(f*)
2

If we choose a = {k5, then we have 4(a + /a) = % + % < 7. In this case, by and (32), the
length-k window I (f*) centered at f* satisfies (30)).
Characterizing the energy of Y’ within I k(f*): The final step is to prove that and

< 4(a+ Va)| X3 (32)
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imply the following with constant probability for a suitable choice of 7:
. 1~
SR SIVB ()
FEIR(f*)
where Y is the output of the block-sparse recovery algorithm. This clearly implies that F' = F’, due
to our choice of estimator in .
As a first step towards establishing , we rewrite as
Yo VP <IYIE - - 20X (34)
FEMNIL(F*)
We can interpret as an error term H}Af - ?*H% for a signal Y* coinciding with Y within I (f*)
and being zero elsewhere. Since I(f*) contains k contiguous elements, this signal is (ko, k1)-block

sparse, and hence if the guarantee in holds, then combining with gives
IV = V13 < (V13 - (1 - 2m)II X13). (35)

We henceforth condition on both (24) and the above-mentioned event HWH% < 40| X||2. Since the
former occurs with probability at least 5 by assumption, and the latter occurs with probability at
least 2 %, their intersection occurs with probablhty at least i.

Next, we write the conditions in and in terms of H?H%, rather than H)?H% Since
X =Y — W, we can use the triangle inequality to write 1 X2 = Y]z — HW”g, and combining this
with ||I/VH2 < 4aHXH2, we obtain ||X||2 > ¥l Hence, we can weaken and to

1+2f
~ 1-—
> VP> IY]3 > 0.99] Y3 (36)
1+ 2/a)?
fel(f*) (1+ f)

~ ~ 1 —277 —~ —~
IV -vI3<c(1 ) IV < 00175, (37)

(1 +2ya)?

where the second step in each equation holds for sufficiently small 1 due to the choice o = 177—020.
It only remains to use f to bound the left-hand side of . To do this, we first note that

by interpreting both and as bounds on [|Y]|2, and using ||Y — Y’|2 > ||V — ?/)Ik(f*)H% in

the latter, we have
SOV -YiE<002 > Y
Fel(f*) FEL(f*)

since 0—01 < 0.02. Taking the square root and applying the triangle inequality to the ¢o-norm on the

left-hand side, we obtain

SOYE= 10022 > |y (38)
Felu(f*) Fel(f*)
Next, writing [|Y’|j2 = ||Y + (Y’ = Y)||2, and applying the triangle inequality followed by [B7), we
have ||[Y'||2 < 1.1]|Y]|2, and hence ||[Y |2 > 0.9]|Y”||2. Squaring and substituting into (36), we obtain
> VP = 08]¥3. (39)
Fel(f*)

Finally, combining and yields , and we have thus shown that holds (and hence
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F = F') with probability at least 7. O
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A Omitted Proofs from Section [2

A.1 Proof of Lemma [2.1]

Our filter construction is similar to [39], but we prove and utilize different properties, and hence

provide the details for completeness.
Definition A.1 (Rectangular pulse). For an even integer B’, let rect?’ denote the rectangular pulse
of width B’ — 1, i.e.
/ 1, ifjt<Z
rect? = ’ g 2
0 otherwise.

For an integer B’ > 0 a power of 2, define the length-n signal

. n B’ n B’
W—<B,_1~rect >*---*<B,_1-rect ), (40)

where the convolution is performed F times. As noted in [39], we have supp(W¥) C [-F-B', F - B'],

and the Fourier transform is given by
F

— 1 | (S8 =D f/n) E
Wi=|mo1 2 @ ((3/1)sin(7rf/n)> @)

B/
If <5

for f # 0, and Wy = 1.

Lemma A.1. (Properties of W) For every even F' > 2, the following hold for the signal W defined
in (A0)—(41)-

1 Wy e [0,1] for all f € [n];

2 There exists an absolute constant C > 0 such that for every A > 1,

Soowr< ey Wy

felnl If1> 35 fen]

Proof. First note that the maximum of /V[7f is achieved at 0 and equals 1. Since F' is even by
assumption, we have from that Wf > 0 for all f. These two facts establish the first claim.
To prove the second claim, note that for all f € [n], we have
—  |sin(x(B' —1)f/n) " 1 F
| (B’ = 1)sin(n f/n) (B" — 1)sin(w f/n)
F
< ‘1
(B =1)2f|/n
35

(since |sin(mx)| < 1)

(since |sin(mzx)| > 2|z| for |x| < 1/2). (42)




We claim that this can be weakened to

W < (Bf’lﬂ)F (43)

For f € [-n/B’,n/B’] the right-hand side is at least one, and hence this claim follows directly from
the first claim above. On the other hand, if |f| > n/B’, we have

2(B" = 1)|f|/n = 2B'|f|/n = 2|f|/n
> 2B'|f|/n—1 (since |f] <n/2)
> B'|f|/n (since |f| = n/B'),

and hence follows from .
Using , we have

—~ n F n
Y Wis 3 () —o0 g (14)

1> 28 1> 28

At the same time, for any f € [—5%, 5], we have
= sin(w(B' — 1)f/n) |*

(B’ —1)sin(wf/n)

2(B'—=1)f/n

(B"—1)sin(mwf/n)
2(B'—=1)f/n
(B' = m(f/n)

-

SN Y W <>F;‘, (45)

fGn] fe[ B/72B/]
Putting together with , we get

Z I//(\/f — o\, % <C'- ( ) —F+1 Z g
Feml 11235 f€ln]

2B/

F

AV

(since |sin(mz)| > 2|z| for |z| < 1/2)

v

(since | sin(rz)| < 7|z|)

This means that

for an absolute constant ¢’ > 0. The desired claim follows since C'(7/2)F = ((C")/F-1 .
(m/2)F/F=DNF=1 < (C" - (7/2)%)F =1 (due to the assumption that F > 2). O

We now fix an integer B, and define G by
~ 1 i —~
=7 2 Wra
A=_3n
4B

where Z = el /Wf. By interpreting this as a convolution with a rectangle, we obtain that the
inverse Fourier transform Gy is obtained via the multiplication of W; with a sinc pulse.

We proceed by showing that, upon identifying B’ = 8C'B (where B’ was used in defining W, and
(' is the implied constant in Lemma , this filter satisfies the claims of Lemma We start with
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the three properties in Definition
Proof of [Lemma (filter property 1)]: For every f, we have

@f—— Z WfA<*ZWfA—1
A= A€[n]

Similarly, the non-negativity of G follows directly from that of wW. O
Proof of [Lemma (filter property 2)]: For every f € [n] with |f| < g5, we have

Sn
Gr=7 Z Wi-a
-1-3 Z Wy-a
|A|>
2 —~
>1- 7 Z Wye (since | f| < % and W is symmetric)
>3
-2 Y W
= Z Z f/
F">35 357

F—
>1- (20 : g) 1. (by Lemma[A.1)

Since B'/B = 8C by our choice of B" above, we get éf >1—(1/4)F~1 as required. [
Proof of [Lemma (filter property 3)|: For every f € [n] with |f| > 5, we have

Z Z Wf A
A=— 4B
— n
Y. W Oylfl=5)
PP -3
Defining ¢ > 1 such that |f| = (3 + ¢) {5, this becomes
1 —~
Gr<— Z 2. Wy
P55

=7 Z Wy

B
f’:\f’IZ%B S

2CB
< ( B ) (by Lemma [A.1)
1\ F-1
= (Q> (since B" = 8CB).
Rearranging the definition of (, we obtain ( =
|f| > %. Therefore, Gy < ()" . O

Proof of [Lemma [2.1] (additional property 1)]: We have already shown that W is supported
on a window of length O(FB’) = O(F B) centered at zero. The same holds for G since it is obtained

<

N[~

—4Bn|f‘ — 3, and hence ¢ > % due to the fact that
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via a pointwise multiplication of W with a sinc pulse. [
Proof of [Lemma (additional property 2)]: Since @f € [0, 1], the total energy across | f| <
is at most %". On the other hand, we have from the third property in Definition that

> er=2y ()7 ()

If1>%
1 2
< 5 2o (Bif) (since F' > 2)
5
1 nxl
LSt
= 2
8 szlf
n =1
< B (since ; 7 <38)

Combining this with the contribution from |f| < % concludes the proof. [

A.2 Proof of Lemma 2.3

We are interested in the behavior of 3, ¢ \2;]2 for each j (first part), and summed over all j
(second part). We therefore begin with the following lemma, bounding this summation in terms of
the signal X and the filter G.

Lemma A.2. (Initial downsampling bound) For any integers (n, k1), parameter § € (0, %), signal
X € C" and its corresponding (k1,6)-downsampling {Z" },.caor,], the following holds for all j € [kﬂl]
1 ~ LI N
‘ STUZIE =3 Gl 1K P

2ky re2k1] =1

n
<38 |Gyl - 1 XfI%
f=1

Proof. Directly evaluating the sum: Using the definition of the signals Z" in , we write

_ n _ tpn - ,
Yo 1ZiP= ) <2Gfk1j‘Xf‘wﬁrf> <ZGf'—kj'Xf"w3Tf>

TG[le] TG[le] f=1 f=1
n n R R N R
=SNG X Gy Xy ( Sl —f))
f=1f=1 r€[2k1]

ar(f'=f) :

where (- )Jr denotes the complex conjugate. Since a, = 2k , the term ZTE[%] Wn is equal to 2k;

if f— f"is a multiple of 2k; (including f = f’) and zero otherwise, yielding

n
S NZFP =2k Y <|Gf—k1j|2‘|Xf|2+ > G}—klj'X?'Gf—zklj’—klj'Xf—2k1j'>- (46)
r€[2k] f=1 J E[Qk ]

J 750

Without loss of generality, we can assume that j = 0; otherwise, we can simply consider a version of

X shifted in frequency domain by k7. Setting j =0 in and applying the triangle inequality, we
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obtain

n n
YoNZEP =2k Y |G X P <2k Y Y |G X Gy Xpoong|- (47)
ref2ki] = 1<ty =1
§'#0
Bounding the right-hand side of : We write
n
Yo |GG G Xpoony
|]/|§2(27]L€l) f:]-
5170
n
= 3 D (IGHM 1G ok M) 1GNP [ Kkl (48)
< gy J=1
7140
In Lemma below, we show that
A 112 A 1/2 (3!
2
(G2 1G |2 < j|F2

for all f € [n] and all |j/| < 5ry With j # 0. Definition ensures that (%)F_l < 4§, and
substitution into (48)) gives

DS

7|< 5y F=1

G7- X7 Croony - Xpoany

2(2kq)
J'#0
1 A2 o A 12 | %
<é- Z WZWH P X G ok | | X pog| (49)
|j/‘§2(;}:1) /=1
J#0

Next, we apply the Cauchy-Schwarz inequality to upper bound the inner summation over f above

for any fixed j' € [g3-], yielding

n n n
S NGH? AXF NG gk jr M2 1 X ool < D NG 1K DG by | [ X pamyr 2
=1 =1 =1
n o~ A~
= 1Gyl - IXG1, (50)
F=1

where we used the fact that {|@f—2k1j’| : |Xf—2k1j/|2}7‘;:1 is a permutation of {|CAJf\ : |X}\2}?:1
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Wrapping up: Substituting into (49) gives

n
Yo N |G X Groong - Xy—on

15’ |<2(2k y f=1
J'#0
<0 Y e G 5P
= j/|F-1/2 f f
|5’ |<2(2k1) f=1
J'#0

n
<36 |Gyl 1 Xy,

f=1

where the last inequality follows from the fact that <2 W <2 ZQ,O 1 H(F%)/Q, which
§'#0

is upper bounded by 3 for F' > 8, a condition guaranteed by Definition 2.2 We therefore obtain the

following bound from .

n
s 2 VZP = SDIGsP 1%

TG[le] f=1

n
<36 |Gyl |XgI%
f=1
The lemma follows by recalling that the choice j = 0 was without loss of generality, with the general

case amounting to replacing 20 by 2j and G ¢ by G fekij- 0l

In the preceding proof, we made use of the following technical result bounding the product of the

filter G evaluated at two locations separated by some multiple of 2k;.

Lemma A.3. (Additional filter property) Given (n, k1) and a parameter F' > 2, if G is an (n, 1+, F)-
flat filter, then the following holds for all f € [n] and all j € [,71] with |j'| < and j' #0:

1/2 ~ (%)Ffl

_|J|

52k

GM? |G o]

Proof. For clarity, let f; and fy denote the frequencies corresponding to f and f — 2k;j’ respectively,
defined in the range (—n/2,n/2] according to modulo-n arithmetic. By definition, f; — fo is equal
to 2k17" modulo-n, and since |j'| < m, we have [2k1j'| < §. This immediately implies that the
distance A = |f; — fa| according to regular arithmetic is lower bounded by the distance according to
modulo-n arithmetic: A > 2k|[j’|.

Since f and fy are at a distance A according to regular arithmetic, it must be the case that either
|fil > % or |fa] > %. Moreover, since j' # 0, we have, from the above-established fact A > 2kq|j'|,
that > k1, and hence we can apply the third filter property in Definition to conclude that
|G, | (Z)F 1(221) " for either v = 1 or v = 2. Substituting A > 2kq|j’|, upper bounding
Gy, <1 (cf., Definition for the index ' € {1,2} differing from v, and taking the square root,

we obtain the desired result. ]

A
2
<

We are now in a position to prove the claims of Lemma
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Proof of first part of Lemma Recall from Lemma [A2] that

1 sy A -
‘%1 S AZIP =D Gk 1X P
rel2k] =1

<30 ) |Gronyl - 1XgI% (51)
F=1

We proceed by lower bounding 3%, ]@f,k1j|2 : |)?f|2 and upper bounding »7_; ’@f*klj‘ . \)?f\Q.
Starting with the former, recalling that I; = ((j — 1/2)k1, (j + 1/2)k1] N Z, we have

n

D NGk X2 2 Y G s - 1 X

f:1 fEIj
INF-1\2
(1= ()" ) 1%
> (1 - 5)HX13H37 (52)

where the second line is by the second filter property in Definition and the third line is by the
choice of F' in Definition
Next, we upper bound »7_; ‘af—k1j| : |)/(>f|2 as folows:

n
D NGy ksl 1X P < > |G gl - | X + > Gyl - 1Xs 2 (53)

/= JELUL =10l Feln] ks> gt

By the third property in Definition the filter decays as |@f\ < (i)lu’_l(lk—l‘)F_1 for |f| > k1, and
therefore the second term in is bounded by

A < 1y F-1 X1, 13
Y Gl %P (3) Y e
|fI>krj+ 351 el 1 —il>2
F-1 X1, |2
< (1) S Xl
2 ey =l
J'elzz i}
Xr,13
<0 ) m (54)
'€l I\a}
where the second line follows from [j' — j| — 1 > o /; 3l and the third line follows since the choice of

. " F—1 = S 9.
F in Definition ensures that (%) < 4. We boundAthe term ZfteUIj_lqu+1 |G kil - 1 Xf]? in
using the first property in Definition namely, Gy < 1:

> |Gkl - 1X 51 < 1 X o0 5 (55)
fEIjUIj,1UIj+1
Hence, combining 7, we obtain
LN > > 1X1, 113
2 2 !
Z |fok1j‘ ) |Xf’ < HXIjUIj—lLJIjJrlHZ +0- Z W
f=1 '€l NI}
The first claim of the lemma follows by combining , , and . O
Proof of second part of Lemma By following the same steps as those used to handle ,

(56)

41



we obtain the following analog of with \é #|? in place of ](A} fl:

no ~ - I1X2, 13
S G s X4 P < I Xpur o3 +6- > W (57)
= FelENG)

Combining , , and , we obtain

Sreprl 12517 _ o 1 Xz, 13

relh) < ‘|XIjUIj71UIj+1 H% +4- Z 12 ;:_1

2k |7/]2(F-1)
i'elgr M}

. 11,113
+ 34 - <HXIjUIj—1UIj+1H%+5 Z ‘]l—;’F_l),
eENG)

and summing over j € [n] gives

r ||)?I/||%
g 5 127 2 (430 B+ G240 S )

_ 4|F-1
rei] jei) yetmhn 0

. I1X7, 113
=3(1+30)|X|5+ (302 +46) Y > T ;'|F71

jeml e ZNG)

(58)

The double summation is upper bounded by > /¢, H)?Ij, 13-23° % x7—t = 21 X2 - 5%, =T
which in turn is upper bounded by 3||)? |3 for F > 4, a condition guaranteed by Definition We
can therefore upper bound by | X[12(3(1 + 38) + 3(362 + 4)), which is further upper bounded by
6/|X 13 for § < o, as is assumed in Definition

For the lower bound, we sum the first part of the lemma over all j, yielding

7 Zr 2k ‘Z\TP S ”XI/H%
> 12> ZEE s IR - (3R Y Y ).

ref2ki] jelzzli'elz=I\a}

We showed above that the double summation is upper bounded by 3HX |2, yielding an lower bound
of (1—96—90— 3(52)||)/(:H% This is lower bounded by (1 — 126)“)?“% for§ < 5. O

B Omitted Proofs from Section [3

B.1 Proof of Lemma [3.2]
. n . = 2 .
Note that for any j € [H]’ solving the first part of Lemma for || Xy, |5 gives

. 1 1 ~ Y I1X7, 13
1X5,15 < 13 (2131 > 1z +36- <||leu1j_1u1j+1||% +6 > ,_;|F_1> - (59)

re2ki] FElENI} s

We will sum both sides over j € S *\5’ ; we proceed by analyzing the resulting terms.
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Second term in summed over j € S*\S: We have

~ HXI/H%
Z 36 - (||XIjUIjlulj+1||% +0 Z bl_J]Fl)

jes\& FelEN}

N I1Xr, 113
<OOIX[5+30% D Y =T
jes:\5 i’ el \s}

< 95| X3 + 106 X3 < 100] X3, (60)
where the last line follows by expanding the double summation to all j, ;' € [I?T] with j # 7/, noting
that 2% "X, ﬁ < 2.5 for F' > 4 (a condition guaranteed by Definition , and then applying the
assumption § < %.

First term in (59) summed over j € S *\S‘ : We first rewrite the sum of squares in terms of a

weighted sum of fourth moments:

7 2
1 - 1 - oo 1250l
R ZT 2 = —_— ZT = 2 = ZT * =~
> g T GP=g 3 1gli= 3 17— 2
jes*\S re(2k:] re(2kq] re(2k1]
7 4
<ol () ( T S5ER), (61)
2k 127]]
T‘G[le] 7’6[2]61} 2
, . .5 175 5113
by Cauchy-Schwarz applied to the length-2k; vectors containing entries || Z"||2 and 7
2
The second summation inside the square root is upper bounded as
1Z5.. 5114 1248
> s S 2 25l ==
1Z7]| 127l
re[2k1} 2 T‘E[Zk’ﬂ 2
12, 513 125, 5113
5:\3 5 54\8
< S =2 > 125 B (62)
127 ]] + Az
re(2k] 2 re(2k] 2
where the first inequality follows since HET*\ SH% < HZQ* |2 and the second inequality uses HZ’;* 13 <
V255 -
Now observe that by definition of S (Definition , for every j ¢ S, we have
5r0 Y Zre[zkl} 12713
> (ZF L) <o 2l
S 12713 :
and summing both sides over all j € S*\S' gives
1Z5. 513 515%\8
S*\§ |S*\5] > >
> iz Sk o lIZTE <108 Y (12715,
TE[Qk‘l] || ||2 TE[Qk,‘l] T€[2k‘1]
[
since |S*| < 10ky by assumption. Applying this to the first term in , as well as ||SZT\HS2 2 <1 for
2
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the second term, we obtain

1Z2, ol _
> Z,} <106 3 1273+ Y |1Z505 -
’I’E[le] H H2 T€[2k1] T€[2k1]
<500 Y (12713 (63)
T€[2k1]

where we have applied the assumption (*) of the lemma.
Finally, substituting into yields

I2

oz oL - 2>< Hfg*\g 2>
S LA (I EAE [ o

jES*\S re[2k1] re[2ki] re[2k1]

1 ~ ~
<o > 1Z13) (506 > 11273 (by (63))
2k1
T‘E[Qk‘l] T€[2k1]
V506 Sy ~
T 12713 < 43V6)| X3, (64)
b ek

27‘ 2
where the last inequality uses the fact that 27“6[2+1””2 < 6/| X2 by the second part of Lemma

The proof is concluded by substituting and into 7 and using the assumption § < 2% to
deduce that 115 (43v/6 4 108) < 100V/0.

C Omitted Proofs from Section [4]

C.1 Proof of Lemma 4.2

The (exact) Fourier transform of U, denoted by U *, is given by

Z Ubwfbj

be [B]

- Z > XoarprpinGorpiwy”
bE[B]z €[5l

1 -
_ = (Y. ,—tijn/B
= " Z XU(A+Z)szn N (65)
i€[n]
where we used the fact that wg) is periodic with period B, and then applied wp = wﬁ/ B We see that
is the Fourier transform of the signal { X, (a14)Gi}icjn) evaluated at frequency jn/B, and hence,

since multiplication and convolution are dual under the Fourier transform, we obtain

Uy = (Y % G)juys, (66)

44



where Y; = X;(a14). Now, by standard Fourier transform properties, we have fff = )20_1 fw,? ! , and
substitution into gives
=3 X, 1;Gin_y

f€(n]

oA
= Z XfGJf_%jwn f,
feln]
where we have used the assumed symmetry of G about zero.

C.2 Proof of Lemma 4.3

For brevity, let ¥ = >, \X’ 7 IPE:[|G, £ f/)|2] denote the left-hand side of (14). Following the
approach of [39, Lemma 3.3, we define the intervals F; = (w(f)—%?t, 7T(f)—|—%2t] fort =1,...,logy b,

and write

log, B
U< Z |Xfl|2 Z ]P ) € Fi\Fi— 1] max |G0f(f”)’2
":7‘((f”)€]:t\.7:t71
I'#f
4 log, B
< = Xpl2(2+ 2! max G, 2), 67
N B%;' s < ; PP, Cos] (67)

where the second line follows by (i) upper bounding P[r(f’) € Fi\Fi—1] < P[x(f’) € Fi] and applying
the approximate pairwise independence property (cf., Definition ; (ii) using the fact that there
are at most z - 2!+1 integers within F;, and applying |@ #| <1 for the case t = 1.
To handle the term containing ]éo £ f//)\2, we use the triangle inequality to write
1 " n B
los (5] 2 [=(f) = 7(f")| = |=(f) = Fround(x(/) )]

n
n

> fr(f) 7"~
For any f” with 7(f”) ¢ F;—1, we have |7(f) — 7(f”)] > %2"!, and hence |of(f”)] > %271 — 1).

As a result, for ¢ > 2, the third property in Definition 2.1] gives
~ 1\ F—1 1 F-1 INF-1, 1 \F-1 1\ F-1
Gos(r) = <1> (2t—1 - 1) = (Z) <2t—2) - <?) ’

log, B

oo
a 1\ 2F-1
2! ma; nl? < <—) .
; PPz, [Gorts) —tz; 2

This sum is less than § for all F' > 2, and hence substitution into gives U < %)HX' 2, as desired.

and hence

C.3 Proof of Lemma [4.5

We use techniques resembling those used for a (k1, €)-downsampling in Section , but with the notable
difference of using a more rapidly-decaying filter with bounded support in frequency domain.
Choice of filter: We let G € R"™ be the filter used in |25] (as opposed to that used in Definition

, satisfying the following:
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e There exists an ideal filter G’ satisfying G'; € [0, 1] for all f, and

Lf] < g
= - (68)

such that |G — G'||l2 < n™¢
e G is supported on a window of length O(ck; logn) centered at zero;
e Each entry of G can be computed in time O(1).

Intuition behind the proof. Before giving the details, we provide the intuition for the proof.
Recall that our goal is to compute X7 for |j| < ko/2, for all 7 € [2k;]. To do this, we first note that X}),
for |j] < ko/2 (i.e., for only one value of r, namely 0), can be computed via a reduction to standard
semi-equispaced FFT (Lemma on an input signal of length 2n/k;. To achieve this, consider the
signal X - G aliased to length 2n/k;, which is close to X on all points j such that |j| < n/(2k1). In
order to compute XJQ for |j] < ko/2, it essentially suffices (modulo boundary issues; see below) to
calculate (X - G); for |j| < ko/2. We show below that this can be achieved using Lemma [£.4] because
multiplication followed by aliasing are dual to convolution and subsampling: the input (ko, k1)-block
sparse signal of length n can be naturally mapped to an O(kglogn)-sparse signal in a reduced space
with ~ n/k; points, in which standard techniques (Lemma can be applied.

This intuition only shows how to compute the values of X7 for r = 0 and [j] < ko/2, but we need
the values for all r € [2k;]. As we show below, the regular structure of the set of shifts that we are
interested in allows us use the standard FFT on a suitably defined set of length-2k; signals, without
increasing the runtime by a k; factor. It is interesting to note that our runtime is O(logn) worse
than the runtime of Lemma [£.4] due to the two-level nature of our scheme; this is for reasons similar
to the log? n scaling of runtime of high-dimensional semi-equispaced FFT (e.g. [22,41]).

We now give the formal proof of the lemma.

Computing a convolved signal: Here we show that we can efficiently compute the values
i}jr = (X" xG) oy at all j € [%’f] where it is non-zero, for all values of r € [2k;]. We will later show
that applying Lemma to these signals (as a function of j) gives accurate estimates of the desired
values of X.

Note that in the definition of l/}j?", each non-zero block is convolved with a filter of support
O(ckilogn), and so contributes to at most O(clogn) values of j. Since there are kg non-zero blocks,
there are O(ckglogn) values of j for which the result is non-zero.

The procedure is as follows:

1. For all j such that 171-’" may be non-zero (O(ckplogn) in total), compute 17;’ =

7k T A : : : S A
D Xb+2kllG%jf(b+2k1l) for b € [2k1]. That is, alias the signal {XfG%lj,f} down to

2
k1
length O(cki logn), this can be done in time O(clogn) per entry, for a total of O(ck; logn) per

length 2k;, and normalize by = (for later convenience). Since G is supported on an interval of

j value, or O(c?koky log®n) overall.

46



2. Compute the length-2k; inverse FFT of }7] = (}7j1, ... ,132’“1) to obtain EA/] € C?¥1. This can be
done in time O(kq log(1 4 k1)) per j value, or O(koky log(1 + k1) logn) overall.

We now show that ?jr = TI(X” *G)ry  forr=1,...,2k;. By the definition of the inverse Fourier

71
2
transform, we have
2k1
o Z b
Y} Y (A}le
b=1
2k1 2k1
rb
Z Z Xb“kllG’“l —(b+2k11)VY2k
b=1 =1

ZXfG’“l wzkl
LS oS X
2 TR

kl - YT 3 .
=5 ;X}G%j_f (since X(,y = X(~)+% by Definition ,

where the second line is by the definition of ?b, the third by the periodicity of wag, , and the fifth since

translation and phase shifting are dual under the Fourier transform. Hence, ?T =k (X "% G) b

Applying the standard semi-equispaced FFT:AFor r € [2kq], define yr = (Y1 e n/k1)’
We have already established that the support of each Y” is a subset of a set having size at most
k' = O(ckologn). We can therefore apply Lemma with ¢ = n=(*) to conclude that we can
evaluate Y] for |j] < % satisfying

Y] = Y3 < 0Dy, (69)

where Y*" is the exact inverse Fourier transform of Y. Moreover, this can be done in time
O(K log n?(/c]ill)) = O(c?kolog? n) per r value, or O(c?kok; log® n) overall.

Proof of first part of lemma: It remains to show that the above procedure produces estimates of
the desired X values of the form (|15)).

Recall that ?j’" =k (X " x G) Ly . By the convolution theorem and the fact that subsampling and

aliasing are dual (e.g., see Append1x , the inverse Fourier transform of Y7 satisfies the following
when || < 7~
ijr Z (G X )]—i-klz
ie[®]
=GXj+ Y (G X m,
ie[%L],i#0
(@ X © X ) £16- CLIX,
ie[%],i#0
= X7 £n X2, (70)

47



where the last line follows from the definition of G’ in and the assumption |G — G'[|2 < n~°.
Combining and and using the triangle inequality, we obtain

Y7 = X1 < n Y g + 0 X

Since we have already shown that we can efficiently compute Y] for l7] < %/ with ¥ = O(ckglogn),
it only remains to show that ||Y || < n|/X]|?. To do this, we use the first line of to write

V1< 3 1G il 1X )
ie[®]
.
<2 Z |Xj+i—’;i‘

ie[®]

ie[®]

where the first line is the triangle inequality, the second line follows since the first filter assumption
above ensures that |G| < 2 for all j, and the third line follows since the squared ¢;-norm is upper
bounded by the squared ¢o-norm times the vector length.

Squaring both sides of and summing over all j gives |[Y"||3 < 2k1[ X|? < n?||X||* (under
the trivial assumption n > 2), thus completing the proof.

Proof of second part of lemma: In the proof of the first part, we applied Lemma [1.4] to signals
of length %’f It follows directly from the arguments in [25, Cor. 12.2] that since we can approximate
the entries of X7 for all l7] < %0, we can do the same for all j equaling o7’ + b modulo—%1 for some
l7'] < %0 Specifically, this follows since the multiplication by ¢ and shift by b simply amounts to a
phase shift and a linear change of variables f — o1 f in frequency domain, both of which can be

done in constant time.

However, the second part of the lemma regards indices modulo—%, as opposed to modulo—i—?.
To handle the former, we note that for any integer a, we either have a mod % = a mod i—’f or

a mod kﬂl = (a + k—"l) mod i—? Hence, we obtain the desired result by simply performing two calls to

the first part, one with a universal shift of %

C.4 Proof of Lemma [4.6]
C.4.1 First Part

Since Ux is computed according to X itself in Algorithm EL we only need to compute the error in U, .

In the definition of hashing in Definition since G has support O(F B), we see that the values
of X used correspond to a permutation of an interval having length £’ = O(F B). We can therefore
apply the second part of Lemmawith sparsity &’ and parameter ¢ = n~¢ for some ¢ > 0, ensuring
an {y-guarantee of n=¢||x||2 for the signal .

Since U is computed from these values using followed by the FFT, we readily obtain via the
relation ||v]|os < ||v]l2 < v/||vloe (for v € C™) and Parseval’s theorem that U has an fo-guarantee
of n=(@=OW)||x||2, which can be made to equal n~¢||Y||2 by choosing ¢ = ¢+ O(1).
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Sample complexity and runtime: The only operation that consumes samples from the signal X
is the hashing operation applied to X. From the definition of hashing in Definition 1.2 and the fact
that the filter G has support O(F'B), we find that the sample complexity is also O(F'B).

The runtime is dominated by the application of the semi-equispaced FFT, which is O(cF (|| X|lo +
B)logn) by Lemma In particular, this dominates the O(Blog B) time to perform the FFT in

Algorithm [4] and the hashing operation, whose time complexity is the same as the sample complexity.

C.4.2 Second Part

Recall the definition of a (k1,d)-downsampling of a signal X from :
2= Y G Xupaic 1]
1€[k1]
For each r € [2k1]. Now in order to compute (,?—1, B".G", o, A)—hashing of 2’“, by Definition it
is needed to have the samples of Z7 at points j = o(j' + A) mod 7+ for |5'| < F'B" (because G" is
supported on [—FB",+FB"]). Note that F'B" is further upper bounded by O(F Bpax), as a result,
in the second part of Lemma it suffices to set the sparsity level to O(F Bpax + ko); here we add
ko in accordance with Remark and the fact that Y is (ko, k1)-block sparse. The reason that this
works is that Z” has length % and one sample of Z3 can be computed from X;." i = X;Jr% for
|i| < F as per Definition and the fact that the filter G is supported on [—F %, +F7*]. Therefore
all we need is X;// for each ' € [2k1] and for all /' = o(j + A) mod ﬁ with || < FnaxBmax-
Applying the second part of Lemma with sparsity O(FiaxBmax + ko) and parameter ¢ = n~¢
for some ¢ > 0, ensuring an {o.-guarantee of 2n~ || x||2 on the computed values of y. By an analogous
argument to the first case, this implies an ¢,-guarantee of n~¢||x||2 on the FF'T U" of the hashing of

Z3, with ¢ = ¢ + O(1).

Sample complexity and runtime: We take O(FB") samples of the r-th downsampled signal
each time we do the hashing, separately for each r € [2k;]. By Lemma accessing a single sample
of Z% costs us O(log %) samples of X. Hence, the sample complexity is O(F Zre[%l] B" log %)

We now turn to the runtime. By Lemma , the call to SEMIEQUIINVERSEBLOCKFFT with
O(F Bax+ko) in place of kg takes time 0(02 (F Bmax+ko)k1 log? n). The hashing operation’s runtime
matches its sample complexity, and since we have assumed 0 > %, its contribution is dominated by

the preceding term.

C.5 Proof of Lemma

First part of lemma: We start with the following upper bound on the expression inside the

expectation:

19513 = 1071, < |I¥s13 1 Tiesn s, ],

where h(S) = {h(j) : j € S} with h(j) = round(w(j)£), denoting the bucket into which element j

hashes. We define S to be a subset of S containing the elements that collide with each other, i.e.,
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Scoll = {.7 € S ‘ h(]) N h(S\{j}) 7& @}7 yielding

ITsIB - 10, < | mP- > G,

jes beR(S\Scon)

=| X meE X (IGP-10,P)|,
jeSCOll jes\scoll

< TP+ |P - 1T (72)
Jescoll JGS

where the final line follows from the inequality [a + b4+ < |a| + [b]+.
Bounding the first term in : We start by evaluating the expected value of the term

corresponding to Scon over the random permutation m:

Ee| 30 19F] < Ba[ S ITP215 € Seanl]

jGScoll ]GS
<Y IR D> Pr(a) = h(j")]
jes 7'eS\{7}
~ 54
<N ’Yj|2§
jJjeS j'EeS
4|8 ~
- s (73)
JES

where the second line follows from the union bound, and the third line follows since 7 is approximately
pairwise independent as per Definition [.1]

Bounding the second term in . We apply Lemma to obtain U hG) =
DY e[m]Y H, G )wmAjl with 0;(j") = 7(j') — h(j)5. We write this as Uh( N = YH " )wmA + err;
with err; := 37 () }A//ﬁ i -/)wUAj/, yielding

> |I%R — 1052

jes

<Z‘|Y! \Y;H, 0; (/)W AT 4 err;|? ‘

<> (\W = [V Ho, )| + lern; [ + 2ler;| - \?jﬁfoj(J-ﬂ) (74)
jes
by ||+ < |£| and the triangle inequality. We have by definition that |o;(j)| < 53,
in Definition 2.1 yields H, ;) > 1— (f)F/_ which in turn implies H2 () >1-— 2( ) F=1 Combining
this with Hy <1 from item 1 in Definition we can weaken (| . ) to
S |G = G|, <3 (2|errjr T+ e +2(3) TR (75)
JjES

jes

and hence item 2

We proceed by bounding the expected value of \errj\2. We first take the expectation over A, using

Parseval’s theorem to write

Ealler;[) = > [VylPH,,
J'elm]\ {5}
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Taking the expectation over m, we obtain

Easflersi’) =Bx| 3 [VpllHyy 0P

Jem\{5}
= > PR Hyy )
J'elm\{5}
10 - 10 ~
<= > |Yj'|2§§||Y||%-
J'elm\{5}

where the final line follows from Lemma [4.3]
Substituting into (75]), and using Jensen’s inequality to write E[|err;|] < \/E[|errj\2], we obtain

EM[ZMY|2 T r\]<22 2173 rY|+—Z|rYH2+2() DI

jES

151 5]

<10 ||Y||2 + <10 + 252) Y3, (76)

where the second line follows from the fact that |[v]|; < /[S[||v]lz for any v € CI5l) as well as
F'—1

(i) < ¢ by the choice of F’. The claim follows by substituting and into (|72]).
Second part of lemma: By the definition of U (cf., Definition , we have

EA(I0°18] =Ba[ 3 | 3 Biflagy-sgel] ]

be[B] je[m]
=> > |}/}j‘2’ﬁﬂ(j)fb%|2
be[B] j€[m]

by Parseval. Taking the expectation with respect to m, we obtain

EA,W[HU*H%} = Ew[ > |}/>j‘2|ﬁ7r(j)—b%|2}

be[B] JE[m]
= > 3 PRy 0y
bG[BUG[ ]

<Y 2 WP =3IV
be[B] Je[m]

where the final line follows by noting that 7(j) — b% is uniformly distributed over [m], and applying
the second part of Lemma [2.1]

D Omitted Proofs from Section 5l

D.1 Proof of Lemma [5.3

1 . . .
Note on ol (1) assumptions in lemmas: Throughout the proof, we apply Lemmas and

The first of these assumes that X uniformly distributed over an arbitrarily length—Q(p(')'f?y”(i))

. . v ~ 1 ~
interval, and the latter two use the assumption || X — X|[2 > WHXH%

We argue that these assumptions are trivial and can be ignored. To see this, we apply a minor
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technical modification to the algorithm as follows. Suppose the implied exponent to the poly(n)
notation is ¢. By adding a noise term to Yo on each iteration uniform in [—n ¢+ %)%, n¢+10%|1?],
we immediately satisfy the first assumption above, and we also find that the probability of ||)A( —Xll2 <
WHEH% is at most O(n~19), and the additional error in the estimate is O(n¢T19||¥||?). Since we
only do O(log SNR’) = O(n) iterations (by the assumption SNR’ = O(poly(n))), this does not affect

the result because the accumulated noise added to Xo which we denote by err(Xp), does not exceed
X113
poly(n)

which by the final assumption of the lemma implies that err(xo) < v/2.

Overview of the proof: We introduce the approzimate support set of the input signal X , given
by the union of the top k¢ blocks of the signal and the blocks whose energy is more than the tail

noise level:

. n ) . >
Sp = {j c [7} : ||X,j||§z,ﬁ}u argmin > || X7, 13). (77)
k p
SCliyl jerns
|Sl=ko "~ "1

From the definition of p? in Definition we readily obtain |Sy| < 2kg. For each t = 1,2,...,T,
define the set S; as
Sy =85;1 U Lé,

where Lj is the output of PRUNELOCATION at iteration ¢ of REDUCESNR. S; containes the set of
the head elements of X plus every element that is modified by the algorithm so far which can be
both potetially large in the residual.

We prove by induction on the iteration number ¢ = 1,...,T that there exist events & 2O & 2
... 2 &p such that conditioned on &, the following conditions hold true:

a. |Sy| < 2ko+ ““TO;

b. Hﬁ?ng =0 for all j € [£]\Si;

IX — x®|12 < 99 - SNR! (kov?)/2";

e

and for each t < T', we have Pr[&1|&] > 1 — ﬁ.
Base case of the induction: We have already deduced that |Sy| < 2ko and defined X(*) = 0, and
we have ||)A( —x0)3 = H)?H% < SNR' - (kou?)/2° by the two assumptions of the lemma. Hence, we
can let & be the trivial event satisfying Pr[&] = 1.

Inductive step: We seek to define an event &1 that occurs with probability at least 1 — 10%
conditioned on &, and such that the induction hypotheses a, b, and c are satisfied for t+1 conditioned
on & y1. To do this, we will introduce three events Eioc ¢, Eprune,ts and Eest ¢, and set E11 = Ejger N

Eprune,t N Eest,t N E. Throughout the following, we let , 6, and p be chosen as in Algorithm |§|
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Success event associated with MULTIBLOCKLOCATE: Let &, be the event of having a
successful run of MULTIBLOCKLOCATE(X, X", n, ki, ko, d,p) at iteration ¢ + 1 of the algorithm,

meaning the following conditions on the output L:
ko

ko
L<CcC-T-—1log—1lo
Ll <C 5g5g5p (78)
S =X)L 13 < 01X — W3, (79)

FESN\L
where C is a constant to be specified shortly, for a small enough 6. To show this, we invoke Lemma
with S* = S;. Note that inductive hypothesis (a ) implies |S¢| < (2 + o stNR’)kO < 3kp. By the
first part of Lemma we have E[|L[] < C'% ko log log & L log2 1 for an absolute constant C’; and
hence ([78) follows with C' = 100C" and probablhty at least 1— 100T7
By the second part of Lemma m . holds with probability at least 1 — p provided that

0 < (STIO) , s0 by the union bound, the event &+ occurs with probability at least Pr[€oc | &) >

by Markov’s inequality.

1
e e i

Success event associated with PRUNELOCATION: Let & rune,t be the event of having a success-
ful run of PRUNELOCATION(X, X, L, ko, k1,8, p,n,0) at iteration ¢t + 1 of the algorithm, meaning

the following conditions on the output L’:
k
[L'\S¢| < ?0 (80)
> X =) 515 < 0.2)X — V)3 + ko(p® + 33v*SNR//21H). (81)

jelEINL

The probability of holding: In order to bound |L'\S;|, first recall that the set Siay, defined
in Lemma [5.1| part (a), has the following form:

St = {7 € ||+ IX =22 <V - \f 1X = %012}

By substituting § = 10 - 2=¢+1 . ,2(SNR’) and using | X — X®||2 < 99 - SNR/ (kor2) /2 from part ¢

of the inductive hypothesis, we have

5o
VB[ 2% 30,
ko
5
Lo—(t41) . 2 n_ , N o2
> /10-2-(+1 - 2(SNR)) ,/ko\/gg SNR! (kov2) /2t

> \/9- v2(SNRY) /241,

where the last inequality holds when § is sufficiently small. Hence,
. n S A~
S 2 {j € ||+ IX =XO)5[13 < 9-v2(SNRY) /2 . (82)
1
Now, to prove that holds with high probability, we write
[L\Se] = (L' N Seait) \St| + [ L\ (Stait U St (83)
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To upper bound the first term, note that by the first part of Lemma [5.1], we have
EUL, N Staﬂ” <ép-|L],
and hence by Markov’s inequality, the following holds with probability at least 1 —
|(L' N Stait) \St| < |L' N Stail

IOOT

< 100T6p - |L|
ko ko, 51
< 100T6p - CT—1 log
= p CT 5 log 7 log’ o
2 ko, 351
= 100CT"p - kg logglog »

100046 - kg log® 5—
~ log ko .1og? SNR'’
where the third line follows from (we condition on &ey), and the fifth line follows from T' =

log SNR’ and the choice p = W in Algorlthmﬁ Again using this choice of p, we find that
O

10005 log? 2
log 20 £ -log SNR/
of 1/p on ky and SNR! is logarithmic therefore in the numerator we have log® log kg and log® log SNR/

< 1 for sufficiently small § regardless of the values (ko, SNR’) because the dependence

while the denuminator has log kg and log? SNR’ which means that the ratio is upper bounded and

can be made arbitraryly small by choosing a small enough constant §. Hence,
ko
}(L N Stall \St‘ =~ 1o SNR/

with probability at least 1 — 100T

We now show that the second term in is zero, by showing that Si.n U Sy = [ﬁ] To see this,
note that the term v2(SNR’)/2*! in the bound on Sty in satisfies
1 1
V?(SNR/) /21 > 51/2 > §u2, (84)
by applying t < T = log SNR/, followed by the first assumption of the lemma. Hence,

. n S —~
S 2 {7 € [E]\se: 108 -2l < 02},
By part b of the inductive hypothesis, we have ||(X — X )1 I3 = HXI |3 for all j ¢ S;, and hence
. n S
Suse 2 {3 € [[-\S: + 15 < 0 .

But from (77), we know that Sy (and hence S;) contains all j with H)?[ 3 > 4u?, so we obtain
Stail \St D [ﬂ] \S¢, and hence Siaq U Sy = (Stail\St) U Sy = [ } as required.

Therefore, the probability of (80 . holding conditioned on & and Ejocy is at least 1 — 100T

The probability of holding: To show , we use the second part of Lemma . The set
Shead therein is defined as

D PP PN N L)
Shesa = 1 € o]+ 1K =21l = VB[ 1K =50
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By substituting § = 10 - 2-(+1 . ,2(SNR’) and using || X — ® 12 <99 - SNR/(kgv?) /2! from part ¢

of the inductive hypothesis, we have

P
VCERVAR D B
0
— ! 6 /
— /102041 . 2(SNRY) + k—\/gg.SNR (kov2) /2!
0
< \/11-22(SNR/) /211

for sufficiently small §, and hence

. n S o~
Sheaa 2 {3 € [7] ¢ 1K =05 1B > 11 w2 (SNR) /21 . (85)
Next, we write
Yo X =)0 = > I(X = D), 115 + > 1K =D 13
Jelzr N JE(SeNSheaaNL)\L/ JE€(StNSheaa) \(L'UL)
+ > X =B Y K =)l (86)
JES\(SheaaUL) JELENI/US))

and we proceed by upper bounding the four terms.

Bounding the first term in : By the second part of Lemma and the use of Markov, we

have

> IX =)l <s Y X =xD), 113 < 0)IX — x93
je(StﬁSheadﬂL)\L’ JE€LNShead

with probability at least 1 — p.

Bounding the second term in : Conditioned on & ¢, we have
> IX =N pl3 < Y0 I =) 505 < 01X — D3,
jE(Sthhead)\(LUL/) jESt\L
where we have applied .

Bounding the third term in : We have
> X=Xl Y IE -5
jeSt\(sheadULl) jest\shead

< |G\ S - ma X — ), 112
< 8¢\ Shead| jest\s};.@dH( X llz

< [S¢|(11 - ¥2SNR/ /2t
by (85)). Part a of the inductive hypothesis implies that |S;| < 3ko, and hence

> (X —xXM)7,]13 < 33ko - v?SNR//2!*1.
jE(LﬂSt)\(sheadUL/)
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Bounding the fourth term in (86):

Yo IE =gl Y0 I =05

FElFEINL/USE) [ \Se
= > 1K1 < kor,
[ \Se
where the equality follows from part b of the inductive hypothesis, and the final step holds since S
contains all elements with H)?Ij 13 > p? (cf, [T7).
Adding the above four contributions and applying the union bound, we find that conditioned on
& and Ejoet, holds with probability at least Pr[€prunet|€t N Eloct] > 1 —p provided that
J is a sufficiently small constant (§ < 0.1).

1
1007"

Success event associated with ESTIMATEVALUES: Let Eq ¢ be the event of having a successful
run of ESTIMATEVALUES(X, X®), L', ko, k1, 6, p) at iteration t + 1 of the algorithm conditioned on &,
meaning the following conditions on the output signal W:
We=0forall f¢F

Y IE = RO —w)l” <81 X - V3, (87)

jerL’
where F contains the frequencies within the blocks indexed by L’. By Lemma and the fact
that |L’| < 3ko conditioned on Eprunet, Eloct, and &, it immediately follows that Eeg ¢ occurs with
probability at least Pr[€est t|Eprune,t N Eloc,e NEJ > 1 —p

Combining the events: We can now wrap everything up as follows:
Pr [gt—i-l ‘gt] =Pr [gloc,t N gprune,t N gest,t N& ‘gt]
=Pr [gest,t ‘gloc,t N gprune,t N 51&] Pr [gprune,t ‘gloc,t N gt] Pr [5100,1& }&5] .

Substituting the probability bounds into the above equation, we have

2 1
Pr[gt+1|gt] = 1_3p_ m = >1— 207'1"’

by the choice of p in Algorithm [6] along with 7' = log SNR.

Now we show that the event &1 = Eioct N Eprune,t N Eest,t N & implies the induction hypothesis.
Conditioned on Eprune,tNEs, we have , which immediately gives part a. Conditioned on &EpeiNEest, t,
from the definition S;y1 = Sy U L', part b of the inductive hypothesis follows from the fact that only

elements in L' are updated. Finally, conditioned on & N Eprunet N Eest,t, We have

IX =V =D IX =)l + Y I = RE)5l3

jer jelENL
=D IX =D =W)l3+ > IX =R
jer jElENL

< 0.2+ 0)| X — XY + ko(u® + 33v2SNR//2!*+1)
< 9912 kSNR/ /201,
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where the second line holds since W is non-zero only for the blocks indexed by L', the third line
follows from and , and the last line holds for sufficiently small § from part ¢ of the induction
hypothesis, and the upper bound p? < 2v2(SNR’)/2!*! given in (84).

The first part of the lemma now follows from a union bound over the T iterations and the fact that
the accumulated error err(xo) < v?, and by noting that the three parts of the induction hypothesis
immediately yield the two claims therein. We conclude by analyzing the sample complexity and

runtime.

Sample complexity: We have from Lemma [3.5] that the ezpected sample complexity of MULTI-

BLOCKLOCATE in a given iteration is O*(%‘)log(l + ko) logn + kgfl), and multiplying by the

number 7' = O(log SNR/) of iterations gives a total of O*(log SNR’(%O log(1 + ko) logn + kg];l)).
Hence, by Markov’s inequality, this is also the total sample complexity across all calls to MULTI-

BLOCKLOCATE with probability at least 1 — ﬁ; this probability can be combined with the
union bound that we applied above. Since 6 = Q(1), the above sample complexity simplifies to
O* (ko log(1 + ko) log SNR' log n + koky log SNR/).

By Lemma the sample complexity of PRUNELOCATION is O(% log % log %), and by Lemma
the sample complexity of ESTIMATEVALUES is O(koék1 log % log %) Substituting the choices of §
and p, these behave as O*(koky) per iteration, or O*(kok; log SNR’) overall.

Runtime: By Lemma the expected runtime of MULTIBLOCKLOCATE in a given iteration
is O*(%O log(1 4 ko) log®n + % log?n + koTlﬂ log®n). Moreover, by Lemma H the runtime of
PRUNELOCATION as a function of |L| is O(k°5k1 log % log 3 logn + ky - |L|log %), and substituting
EULH = O(%O log %0 log % log? %) from Lemma , this becomes O*(% log n) in expectation, by

absorbing the log% and log% factors into the O*(-) notation.

Summing the preceding per-iteration expected runtimes, multiplying by the number of itera-
tions 7', and substituting the choices of T, p and §, we find that their combined expectation is
O* (ko log ko log SNR' log? n + kok1 log SNR'log® n). Hence, by Markov’s inequality, this is also the
total sample complexity across all calls to MULTIBLOCKLOCATE and PRUNELOCATION with prob-
ability at least 1 — {35. A union bound over this failure event, & and the 1/poly(n) probability
failure event arising from random perturbations of Y yields the required bound of 0.9 on the success
probability.

By Lemma the runtime of ESTIMATEVALUES is O(% log ]% log % logn+ky-|L'|log Il?), which
behaves as O(@T1 log % log % logn) conditioned on Eprunesr N & (see and recall that |S;| < 3ko).
By our choices of p and 6, this simplifies to O*(kok; logn) per iteration, or O*(kok1 log SNR' log n)

overall.

D.2 Proof of Lemma [5.4]

The proof resembles that of Lemma[5.3] but is generally simpler, and has some differing details. We

provide the details for completeness.
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Note on assumptions in lemmas: We use an analogous argument to the start of Section

1
poly(n) N -
D.1| to handle the assumptions | Xy — Xol2 > WHQH% and || X —X||2 > WHX\H% in Lemmas

5.1, and Specifically, we add a noise term to Yo uniform in [—n~¢+10||g||2, n¢+10||%)|?]. This

does not affect the result, since the noise added to Yo which we denote by err(yp), does not exceed
IX13
poly(n)

which by the assumptions of the lemma implies that err(xg) < ev?.

Overview of the proof: We first introduce the approrimate support set of the input signal X - X,
given by the top 10k blocks of the signal:
Sp :=argmin » (X = X)1, 13 (88)
SClzy] ¢S
|S|=10k0

We also introduce another set indexing blocks whose energy is sufficiently large:

. n S 12 E1ﬂ1"2()/(> — X, 10k, k1)
so={ie|p]  IX - " b U S (89)

It readily follows from this definition and Definition [1.2| that |S.\So| < ko/e.

The function calls three other primitives, and below, we show that each of them succeeds with

high probability by introducing suitable success events. Throughout, we let 8, p, and 1 be as chosen
in Algorithm [0]

Success event of the location primitive: Let &, be the event of having a successful run of

MULTIBLOCKLOCATE(X, X, k1, ko, n, €2, p), meaning the following conditions on the output L:

ko, ko 1
IL| < Czloge—Qlogz)’ o (90)
> IX =R)5 5 < 200¢| X - X3, (91)

JESo\L
where C'is a constant to be specified shortly. To verify these conditions, we invoke Lemma [3.5 with
S* = Sp. By the first part of Lemma we have E [|L|] < C’l:—g log k—eo log? é for an absolute constant
C’, and hence follows with C' = 100C" and probability at least 1 — ﬁ, by Markov’s inequality.
By the second part of Lemma with 0 = €2, holds with probability at least 1 — p, so by

1

the union bound, the event & occurs with probability at least 1 — p — 100

Success event of the pruning primitive: Let &y une be the event of having a successful run of
PRUNELOCATION(X, X, L, n, ko, k1, €, p, 8), meaning the following conditions on the output L’:
2kq
e

> X = Q)5 113 < 300X — R)13 + 6000ev2ko + Err®(X — X, 10ko, k1 ). (93)
jelzy N

[L'\So| < (92)
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Bounding the probability of : In order to bound |L"\ S|, first note that the set Si.;, defined
in Lemma [5.1| part (a), has the following form:

Sua = {i €[] + IR =Ryl < VA= [ 1% - 2l

By substituting § = 200 - ev? (cf., Algorithm @) and using the assumption H)? — X3 < 100kor? in

the lemma, we have
Vi J 1% = Rl = VB0 - 1% Kl
0 0
> V200 - ev? — V100 - er?
> V16 - ev?. (94)

Hence,
S 2 {3 € [1] ¢ 1K = X913 < 1617,
Now, to prove that holds with high probability, we write
[L\So| = [(L" N Se)\So| + [L"\(So U Se)
< (LN S)\Sol + [(L' N Seait) \Se| + [ L\ (Stait U Se)-
We first upper bound the first term as follows:
(L' S)\So| < [S\So| < ko/e,

(95)

which follows directly from the definition of S.. To upper bound the second term in , note that
by Lemma [5.1| part (a) with 6 = ¢,
EUL/ N Stail‘] <ep-|L],
and hence by Markov’s inequality, the following holds with probability at least 1 — 1—(1)0:
‘(L, N Stail)\S€’ < }L/ N Stail|
< 100ep - | L]
k k 1
< 100ep - c2 log s log® —
€ € €p
k 1
= 100Cp - kg log U log® —
€ ep
100Ce - kg log® é

)

log %0

where the third line follows from (90]) (we condition on &), and the fifth line follows from and the

100Cnelog® X

choice p = —15— in Algorithm |6, Again using this choice of p, we find that 2 < 1 for

log® Lo} log ko

sufficiently small 7 regardless of the value of kg because the dependence of 1/p on kg is logarithmic
therefore in the numerator we have log®log ko while the denuminator has log ky which means that
the ratio is upper bounded and can be made arbitraryly small by choosing a small enough constant

1. Hence

(L' O Seain) \Se| < ko
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with probability at least 1 — ﬁ.

We now show that the third term in is zero, by showing that S, U Se = [%] To see this,

2 ’\7,\
note that the term 2 in the definition of Sis; is more than Brr (X lif)’wko’kl) by the first assumption

of the lemma, and hence

Err?(X — ¥, 10ko, k1) }
ko

However, the definition of S, in reveals that the condition upper bounding H()? — X)) lI3 is

redundant, and Sg;1\Se D [%}\SE, and hence Sgaj1 U Se = (Stai\Se) U Se = [kﬂl]

Seai\Se 3 {7 € | 7| \Se ¢ (X~ ), I < 166

Bounding the probability of : To show , we use the second part of Lemma The set
Shead therein is defined as

Shwa = {3 € [] + 1% = Dl = VB + | [E1Z - R},

By substituting # = 200¢ - v2 (cf., Algorithm @ and using the assumption || X — Xl13 < 100kor? in

the lemma, we have

VB I8 - Rl = Va0 | [ - Rl < V007,
0 0

and hence
. n S ~
Shean 2 {3 € [7] ¢ 1K =), 13 > 600e -2}, (96)
Next, we write
Y IX =R)5l3= > I(X = X)5,15 + > I(X = X)5,1l5
Jelzr N F€(SoNSheaaNL)\L! J€(SoNSheaa)\(L'UL)
+ > IX -5+ >, I(X=R5l3, (97)
J€S0\(SheaadUL’) FE[FEINL/USo)

and we proceed by upper bounding the four terms.

Bounding the first term in (97): By part b of Lemma the choice § = ¢, and the use of

Markov, we have

> IX=Rpl3<e > X =R)pll5 < el X -3
F€(S0NSheaa ML)\ L’ JELNShead

with probability at least 1 — p.

Bounding the second term in : Conditioned on &y, we have

> X =R5l3< D> IX =053

JE€(SoNShead)\(LUL) JESO\L
< 200¢| X — RI3,
where we have applied .
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Bounding the third term in : We have
> IX-5l3< Y. IX =05l
JES0\(SheadUL") JES0\Shead

< |S0\Shead| - _max  [[(X = R)5, 3
J

€50\ Shead
< |S0|(600€ - /%)
by (96). We have by definition that |So| = 10kg (cf., (88))), and hence

> 1(X — R)1, 13 < 6000koe - 2.
je(LmSO)\(SheadUL/)

Bounding the fourth term in : We have
Yoo X =05l Y X =05l
JelzE I\ LUSo) J€lzzN\So
= Err®(X — X, 10k, k1),
which follows from the definition of Sy in , along with Definition

Hence by the union bound, it follows that &,rune holds with probability at least 1 —p — ﬁ

conditioned on &jyc.

Success event of estimation primitive: Let &g be the event of having a successful run of
ESTIMATEVALUES(X, X, L, n, 3ko/€, k1, €, p), meaning the following conditions on the output, W:

Wy =0forall f¢&F

DX = =Wy P < el X = RI5, (98)
jeL
where F contains the frequencies within the blocks indexed by L’. Since the assumption of the
theorem implies that ||x|jo = O(kok1), by Lemma (with 6 = € and 3ko/e in place of ko) and
the fact that conditioned on Eyrune we have |L'| < 3kg/e (cf., ), it follows that . occurs with
probability at least 1 — p.

Combining the events: We can now can wrap everything up.

Letting £ denote the overall success event corresponding to the claim of the lemma, we have
Pr[&] = Pr[Eioc N Eprune N Eest ]
=Pr [gest Eloc N 5prune] Pr [gprune ‘gloc} Pr [gloc] .

By the results that we have above, along with the union bound, it follows that

Pr[€] > 1—2/100 — 3p > 0.95

for sufficiently small 1 in Algorithm @ A union bound over £ and the 1/poly(n) probability fail-
ure event arising from random perturbations of Y yields the required bound of 0.9 on the success
probability.

What remains is to first show that the statement of the lemma follows from Ejoc N Eprune M Eest -
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To do this, we observe that, conditioned on these events,

IX=X13=D X =l + > X =X)gl3 + err(Ro)

st JelENL
=D X ==+ Y X =R 13 + err(Ro)
jer’ Jelr N

< €| X — X2 + 300€]| X — %13 + 6000er ko 4 Err?(X — X, 10ko, k1) + v
< (4-10°)ev’ko + Err® (X — R, 10ko, k1),
where the second line follows since X' = X + W and W is non-zero only within the blocks indexed

by L', the third line follows from and , and the final line follows from the assumption
H)? — X3 < 100kor? in the lemma.

Sample complexity: We condition on EjocNEprune NEest and calculate the number of samples used.

By Lemmaﬁwith § = €2, the sample complexity of MULTIBLOCKLOCATE is O*(|L|-log n+ kokl)
which behaves O*(@—S log(1 + ko) logn + % log ]3) conditioned on & (see (91))).

By Lemma with § = ¢, the sample complexity of PRUNELOCATION is O(koeilog élog %)
Moreover, by Lemma with 6§ = €, the sample complexity of ESTIMATEVALUES is
O(% log % log %)

The claim follows by summing the three terms and noting from the choice of p in Algorithm [f]

that, up to loglog k?o factors, we can replace p by € in the above calculations.

Runtime: As in sample complexity analysis, we condition on &joe N Eprune N Eest -

By Lemmaﬁwith § = €2, the runtime of MULTIBLOCKLOCATE is O* (\L| log?n + kg% log?n+
% log® n), which behaves as O* (’j—g log k?o log?n+ % log? n + % log® n) conditioned on &, (see
).

By Lemma with § = €, the runtime of PRUNELOCATION is O(@logélog%logn + k-
|L| log é), which behaves as O(%%1 log é log Llogn + k; - ’:—8 log %0 Jog* %) conditioned on &), (see
).

By Lemma with § = ¢, the runtime of ESTIMATEVALUES is O(@log % logélogn + k-
|L'|log %), which behaves as O(ko—ekl log % log 2 log n) conditioned on Eprune (see (92) and recall that
S| = 10ko).

The claim follows by summing the above terms and replacing p by €, with the log log n, log log SNR/

and log 1 terms absorbed into the O*(+) notation.

E Discussion on Energy-Based Importance Sampling

Here we provide further discussing on the adaptive energy-based importance sampling scheme de-

scribed in Sections Recall from Definition that given the signal X and filter G, we are

considering downsampled signals of the form 2]’" = (X'” * é)jkl with X] = Xt oo for r € [2k4],
1

and recall from that the goal of energy-based importance sampling is to approximately solve the
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covering problem

Minimize(;rp Y s"  subject to > 1X5]3 > (1—a)|| X3 (99)

re[2k] o IZ713
JZ|ZJT| >—r=

for some €2k ]

for suitable a € (0,1), where X* is the best (ko.k;)-block sparse approximation of X.

To ease the discussion, we assume throughout this appendix that the filter G is a vvidth—/,?—1
rectangle in time domain, corresponding to a sinc pulse of “width” k; in frequency domain. Such
a filter is less tight than the one we use (see the proof of Lemma [2.1), but similar enough for the

purposes of the discussion.

E.1 Examples — Flat vs. Spiky Energies

We begin by providing two examples for the 1-block sparse case, demonstrating how the energies
can vary with r. An illustration of the energy in each Z" is illustrated in Figure [2| in two different
cases — one in which X is a sinc pulse (i.e., rectangular in frequency domain), and one in which X is
constant (i.e., a delta function in frequency domain). Both of the signals are (1, k;)-block sparse with
k1 = 16, and the signal energy is the same in both cases. However, the sinc pulse gives significantly
greater variations in |Z\}”|2 as a function of r. In fact, these examples demonstrate two extremes that
can occur — in one case, the energy exhibits no variations, and in the other case, the energy is O(k;)
times its expected value for an O(é) fraction of the r values.

The second example above is, of course, an extreme case of a (1, k1)-block sparse signal, because
it is also (1,1)-block sparse. Nevertheless, one also observes a similar flatness in time domain for
other signals; e.g., one could take the first example above and randomize the signs, as opposed to

letting them all be positive.

E.2 The log(1l + ko) factor

Here we provide an example demonstrating that, as long as we rely solely on frequencies being covered
according to Definition after performing the budget allocation, the extra log(1 + kg) factor in
our analysis is unavoidable. Specifically, we argue that for a certain signal X, the optimal solution
to (3) satisfies 3, cpop, 8" = Q(kolog(1 + ko)). However, we do not claim that this log(1 + ko) factor
is unavoidable for arbitrary sparse FFT algorithms.

We consider a scenario where kg = ©(k1) = o(n), and for concreteness, we let both ko and ky
behave as ©(n®1); hence, log(1 + ko) = O(log ko)

Constructing a base signal: We first specify a base signal W € C" that will be used to
construct the approximately (ko, k1)-block sparse signal. Specifically, we fix the integers C' and L,
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Figure 2: Behavior of ||2’"H§ as a function of r for a sinc function (top) and a rectangular function
(bottom), both of which are (1, 16)-block sparse.

Xy

Figure 3: Base signal and its Fourier transform, for constructing a signal where a logky loss is
unavoidable with our techniques.
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and set

- c
2L-1 ¢ < T
- 3C
2L—2 ﬁ <t < g7t
0—1__
2L-1-1)Cn (2k-1)Cn
1 o <<t )
2L+l_1)C
0 1f| > %

Hence, the signal contains L regions of exponentially increasing width but exponentially decreasing
magnitude. See Figure [3[for an illustration (L = 3), and observe that we can express this function as
a sum of rectangles having geometrically decreasing magnitudes. Hence, we can specify its Fourier
transform as a sum of sinc functions.

The narrowest of the rectangles has width %‘, and hence the widest of the sinc pulses has width
%. This means that by choosing C' to be sufficiently large, we can ensure that an arbitrarily high pro-
portion of the energy lies in a window of length k1 in frequency domain, meaning W is approximately
1-block sparse.

Constructing a block-spare signal: We construct a kg-block sparse signal by adding multiple
copies of W together, each shifted by a different amount in time domain, and also modulated by a
different frequency (i.e., shifted by a different amount in frequency domain). We choose L such that
the cases in collectively occupy the whole time domain, yielding L = @(log k1) = ©(log ko).

Then, we set ko = & and let each copy of W be shifted by a multiple of , so that the copies are
separated by a dlstance equal to the length of the thinnest segment of W, and collectively these thin
segments cover the whole space [n]. As for the modulation, we choose these so that the resulting peaks
in frequency domain are separated by Q(k{), so that there the tail of the copy of W corresponding
to one block has a negligible effect on the other blocks. This is possible within n coefficients, since
we have chosen k1 = O(n%!).

Evaluating the values of ]Z;T\Q Recall that we are considering G in equaling a rectangle
of width % Because of the above-mentioned separation of the blocks in frequency domain, each
copy of W can essentially be treated separately. By construction, within a window of length ;*,
we have one copy of W at magnitude VorL-1 , two copies at magnitude \/2L7—2, and so on. Upon
subsampling by a factor of k1, the relative magnitudes remain the same; there is no aliasing, since
we let G be rectangular. Hence, the dominant coefficients in the spectrum of the subsampled signal
exhibit this same structure, having energies of a form such as (8,4,4,2,2,2,2,1,1,1,1,1,1,1,1) when
sorted and scaled (up to negligible leakage effects). Moreover, the matrix of ]2}"[2 values (cf., Figure
' essentially amounts to circular shifts of a vector of this form — the structure of any given zr
maintains this geometric structure, but possibly in a different order.

Lower bounding the sum of budgets allocated: We now turn to the allocation problem in

. Allocating a sparsity budget s to a signal Z" covers all coefficients j for which |2]7']2 > @ For
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the signal we have constructed, the total energy E is equally spread among the L geometric levels:

21*5@

The ¢-th level consists of 2671 coefficients of energy T

s> L-2°
Hence, setting s = L - 271 covers the top ¢ levels, for a total of 2¢ — 1 coefficients. That

and hence covering that level requires

is, covering some number of coefficients requires letting s be (L) times that number, and hence
covering a constant fraction of the kg coefficients requires the sum of sparsity budgets to be Q(Lky).
Moreover, we have designed every block to have the same energy, so accounting for a constant fraction
of the energy amounts to covering a constant fraction of the kg coefficients.

Since we selected L = O(log ko), this means that the sum of sparsity budgets is Q(ko log ko), so
that the log kg factor must be present in any solution to .

F Location of Reduced Signals

In Algorithm[7], we provide a location primitive that, given a sequence of budgets s”, locates dominant
frequencies in the sequence of reduced signals Z" using O(ZTE[%] s" log n) samples. The core of
the primitive is a simple k-sparse recovery scheme, where k frequencies are hashed into B = Ck
buckets for a large constant C' > 1, and then each bucket is decoded individually. Specifically, for
each bucket that is approximately 1-sparse (i.e., dominated by a single frequency that hashed into
it) the algorithm accesses the signal at about a logarithmic number of locations and decodes the
bit representation of the dominant frequency bit by bit. More precisely, to achieve the right sample
complexity we decode the frequencies in blocks of O(loglogn) bits. Such schemes or versions thereof
have been used in the literature (e.g., [10}22}24]).

A novel aspect of our decoding scheme is that it receives access to the input signal X, but must
run a basic sparse recovery scheme as above on each reduced signal Z". Specifically, for each r it must
hash Z" into s” buckets (the budget computed in MULTIBLOCKLOCATE and passed to LOCATESIGNAL
as input). This would be trivial since Z" can be easily accessed given access to X (cf., Lemma ,
but the fact that we need to operate on the residual signal X — x (where X is block sparse and given
explicitly as input) introduces difficulties.

The difficulty is that we would like to compute y on the samples that individual invocations
of sparse recovery use, for each r € [2k1], but computing this directly would be very costly. Our
solution consists of ensuring that all invocations of sparse recovery use the same random permutation
m, and therefore all need to access X — x on a set of shifted intervals after a change of variables
given by 7 (crucially, this change of variables is shared across all r). The lengths of the intervals are
different, and given by s", but it suffices to compute the values of x on the shifts of the largest of
these intervals, which is done in HASHTOBINSREDUCED (see Lemma . We present the details
below in Algorithm [7]

For convenience, throughout this section, we use m to denote the reduced signal length n/k;.
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Algorithm 7 Location primitive: Given access to the input signal X, a partially recovered signal X,
a budget k£ and bound on failure probability p, recovers any given j € [n/k;] with |Z]T-’|2 > 1273/
for some r € [2k;], in the (k1,0)-downsampling of X — x.

1: procedure LOCATEREDUCEDSIGNALS(X, X, 1, ko, k1, {5" } 2k, 6, D)

2 > Uses large absolute constants C1, Cy, Cs > 0
3 B" + (Cys" for each r in[2k;]

4: H" < (m, B, F")-flat filter for each r € [2k], for sufficiently large F’ > 2

5: Bpax < B”
6

7

8

9

{Z% }reppry ¢ (k1,9)-downsampling of X > See Definition
m <« n/k;
L+ 0
fort={1,...,C1log(2/p)} do
10: o < uniformly random odd integer in [m)]
11: A « C3loglog m uniformly random elements in [m] x [m]
12: A + 2l3 gz logs m) N « Alogam™l  Implicitly extend X to an m-periodic length-N signal
13: for (a, ) € Ado
14: w < NA™Y
15: A—a+w-j
16: H « {HT}TG[2k1]
17: B« {B"}epon)
18: U (a+w - ) + HASHTOBINSREDUCED({ Z% }refon,)» X H, n, k1, B, o, A)
19: for r € [2k;] do
20: B« (Cys” > Rounded up to a power of two
21: for b € [B] do > Loop over all hash buckets
22: f<0
23: for g ={1,...,logy N} do
24: w < NA™Y
25: If there exists a unique A € {0,1,..., A — 1} such that
26: wx)"ﬂ w (NATIE)B % - 1’ < 1 for at least 2 fraction of (o, B) € A
27: then f < f 4+ A9~1. )\
28: L+ Lu{oc'f -2} > Add recovered element to output list
29: return L

Lemma (LOCATEREDUCEDSIGNAL guarantees — formal version) Fix (n, ko, k1), the signals

pﬂfg':n) interval, the sparsity bud-

gets {sr}re[%] with s" = O(%O) for all v, and the parameters § € (%, 2—10) and p € (7%3’ %), and let
{Z" }reonr) be the (k1,6)-downsampling of X — x.

If L denotes the output of LOCATEREDUCEDSIGNALS(X, X, 1, ko, k1, {8" }rc(ox,), 6, ), then for any
je [k%] such that ]Z]’f]2 > ||Z"|13/s" for some r € [2k1], one has j € L with probability at least 1 — p.
The list size satisfies |L| = O( > ek S 108 1). Moreover, if X is (O(ko), k1)-block sparse, the sample

complexity is O( Zre[%ﬂ s" log % log % log n), and the runtime is O( ZTE[%] s" log % log % log?n +

X, X € C™ with Xo uniformly distributed over an arbitrarily length-

% log % log3 n) )

Proof. We first note that the claim on the list size follows immediately from the fact that B = O(s")
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entries are added to the list for each ¢ and r, and the loop over ¢ is of length O(log %)

In order to prove the main claim of the lemma, it suffices to show that for any single value of
r, if we replace the loop over r by that single value, then L contains any given j € [k%] such that
|Zj’f|2 > ||Z7||3/s", with probability at least 1 — p. Since this essentially corresponds to a standard
sparse recovery problem, we switch to simpler notation throughout the proof: We let Y denote a
generic signal Z", we write its length as m = n/kj, we index its entries in frequency domain as }/}f,
and we define k = s".

The proof now consists of two steps. First, we show correctness of the location algorithm assuming
that the SEMIEQUIINVERSEBLOCKFFT computation in line 11 computes all the required values for
the computation of U in line 19 (step 1 below). We then prove that SEMIEQUIINVERSEBLOCKFFT
indeed computes all the required values of x, and conclude with sample complexity and runtime
bounds (step 2 below).

Proving correctness of the location process We show that each element f with DA’f]Q >
||§A/||%/k: is reported in a given iteration of the outer loop over t = 1,...,C11og(2/p), with probability
at least 9/10. Since the loops use independent randomness, the probability of f not being reported
in any of the iterations is bounded by (1/10)¢11°8(/P) < /2 if Cy is sufficiently large.

Fix an iteration t. We first show that the random set A chosen in LOCATEREDUCEDSIGNALS has
useful error-correcting properties with high probability. Specifically, we let Epalanced denote the event
that for every A € [A], A # 0 at least a fraction 49/100 of the numbers {w/’\\"g }(a,8)e.4 have non-positive
real part; in that case, we say that A is balanced. We have for fixed A € [A], A # 0 that since the pair

Fis uniformly distributed on

(cr, B) was chosen uniformly at random from [m] x [m], the quantity w//\\'
the set of roots of unity of order 2° for some s > 0 (since A # 0). At least half of these roots have non-
positive real part, so for every fixed A € [A], A # 0 one has Prg [Re(w?{ﬂ ) < 0] > 1/2. It thus follows by
standard concentration inequalities that for every fixed A at least 49/100 of the numbers {wiﬂ Ha,8)eA
have non-positive real part with probability at least 1 — e ¥4 = 1 — exp(—Q(C3loglogm))) >
1—1/(1001og, m) as long as Cs is larger than an absolute constant. A union bound over A < log, m
values of A\ shows that Pr[€palanced] > 1 — (logam) - /(100logy m) = 1 — 1/100 for sufficiently large
m (recall from Section (1| that % exceeds a large absolute constant by assumption). We henceforth
condition on Epalanced-

Fix any f such that ]}A/fP > ||}A/|]§ /k, and let ¢ = oi for convenience. We show by induction on
g=1,...,logy N that before the g-th iteration of lines 24}{27) of Algorithm[7], we have that f coincides
with q on the bottom g -logy A bits, i.e., f —q =0 mod A1

The base of the induction is trivial and is provided by g = 1. We now show the inductive
step. Assume by the inductive hypothesis that f — q = 0 mod A97!, so that q = £ + AI~1(\g +
AN+ A%Xy +...). Thus, (Ao, A1,...) is the expansion of (q — f)/A9~! base A, and ) is the least
significant digit. We now show that Ag is the unique value of A that satisfies the condition of line
of Algorithm [7, with high probability

In the following, we use the definitions of =(f), h(f), and of(f’) from Definition 4.2 with A = 0.
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First, we have for each a = (o, 5) € A and w € W that

H, Uiy (et w o ) = Yyt ™0 = H4 0 Oy o w - ) = Vyod ™ 2% o
=H, > HyupVpwi O perr, = B(w),
prefmhr}

where err,, = HO_ (f)(Uh(f) - [A],’:(f))(a +w- ).
And s1m11arly
1( Oy (@) = Yyt = ﬁf;fl( Ui (@) = Yiwit + err
1(f) Z .FAI (f/)Yf,w Y terr = E.
frem\{r}

where err = Ho_fl(f)(Uh(f) - U;;(f))(a).
We will show that f is recovered from bucket h(f) with high (constant) probability. The bounds
above imply that

Unipyla+wpB))  Viole ™09 4 Bl (w)
ﬁh(f)(a) ?fw?\‘,q + B .
The rest of the proof consists of two parts. We first show that with high probability over the

(101)

choice of 7, the error terms E’'(w) and E” are small in absolute value for most a = («a, 8) € A with

extremely high probability. We then use this assumption to argue that f is recovered.

Bounding the error terms E’'(w) and E” (part (i)). We have by Parseval’s theorem that
2 o Fj-2 772 2 2 771 7
Eo[|E'(w)]’] < H, 7, > H Vel + Jerry| + 2lerry | H, () > Hyup|Ypl, (102)

rem\{f} frem\{f}
and
BJE'PI<H 2, S B2V e + 2lenlH L S Hoygpn |V,
fre[m\{f} frem\{f}

where we used the fact that o + w/3 is uniformly random in [m] (due to a being uniformly random
in [m] and independent of 3 by definition of A in line 6 of Algorithm [7)).
Taking the expectation of the term H Zf, m\{f} H () |Yy:|? with respect to m, we obtain

Ex [ﬁo}?n > ﬁff(mwfﬂ = O(|[Y[l3/B) = O(||X"|[5/(Cak))
frem\{r}
by Lemma (note that F’ > 2, so the lemma applies) and the choice B = Cs - k (line [20| of
Algorithm . We thus have by Markov’s inequality together with the assumption that |}7f]2 >
1Y|[3/k that

Pr, H;f? Z H (0| Yp > > [V /1700 < O(1/Cy) < 1/40
elm\{f}

and

~

Pr, Hj(f) %{f}H Y2 > Y52 /1700 < 0(1/Cq) < 1/40
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since Cs is larger than an absolute constant by assumption.

Bounding err and err,, (numerical errors from semi-equispaced FFT computation):
[Ix11?
. ™ - poly(n)
interval, and that Y = Z" for some Z" in the (kp,d)-downsampling of X — x. By decomposing

Recall that we have by assumption that Xy uniformly distributed over an arbitrarily length-

2;" = (X" —x")*G) jk, into a deterministic part and a random part (in terms of the above-mentioned

uniform distribution), we readily obtain for some ¢ > 0 that
o112
172 > Xl (103)
nC
with probability at least 1 — # Since p > % by assumption, we deduce that this also holds with

probability at least 1 — p/2. By the the accuracy of the X values stated in Lemma along with
the argument used in f its proof in Appendix to convert (103]) to accuracy on hashed
values, we know that \ﬁh(f) — ﬁ;(f)\ <||U = U*|loo < n~¢™||X]l2. Hence, by using \ﬁof(f)]*Z < 2 and
a,a+w- 8 <m, we find that
lexr| < 207 Rl < 20TV |2

Jerry,| < 20T R]la < 207 Yo,

where the second inequality in each equation holds for some ¢’ > 0 by (103]).
Note also that Ho_fl(f) 2 pempisr HopnYpl < 2[Yln < 2¢/m[Y]|2, since we have Ho_fl(f) <2
and Hp| <1 for all f/. We can thus write
jeref? - 2lert| - AL S [T < fertf? + av/mlert] - 7o
frem\{r}
< 4n720+2c’+2”i}”% +8nfc+c’+3/2||i}”%

= DY |3, (104)

which can thus be made to behave as WH?H% by a suitable choice of c.

Bounding the error terms E'(w) and E” (part (ii)). By the union bound, we have |E'(w)|? <
Y|2/1600 and |E”|?> < |Y{|?/1600 simultaneously with probability at least 1 — 1/20 — denote the
success event by E}J(w). Conditioned on 5}m(w), we thus have by (102 and (104)), along with the
fact that A is independent of 7, that
Eu[|E/(w)2l) < [V2/1600 and  E,[|E"?] < [¥71%/1600.
Another application of Markov’s inequality gives
Pro[|E (w)|? > |Y;|?/40] < 1/40 and Pro[|E"> > |Yf|?/40] < 1/40.

This means that conditioned on E}J(w), with probability at least 1 — e~ (M) > 1 —1/(1001logy m)
over the choice of A, both events occur for all but 2/5 fraction of a € A; denote this success event
by 5}7 A(w). We condition on this event in what follows. Let A*(w) C A denote the set of values of
a € A that satisfy the bounds above.
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In particular, we can rewrite (101) as
Onip o+ wB) _ Yplg ™9 4 B(w)

ﬁh(f) () B ?fw?\é[q + E”
(atwp)q 1+ w-@twhap! (w) /Y]
w
-t (Where T ey f)

_ w](\?ﬂrvvﬁ)q—aq €
_ (")Nﬁq 5
We thus have for a € A*(w) that

|E'(w)|/[Y}] <1/40 and  |E"|/|Y}] < 1/40. (105)

Showing that A*(w) C A suffices for recovery. By the above calculations, we get
Uh(f) (Oé + Wﬁ)
Un(py(@)
We proceed by analyzing the first term, and we will later show that the second term is small. Since
q="f+ A" Ao+ AN + A%y +...), by the inductive hypothesis, we have
—AB | NATIEL wxl\fgﬂq _ w—AvB . NA*g(qff)'ﬁ

WBq E=w A 98q £= A gﬁq+ NA™ gﬁq(§ 1).

WA N
_ N GNATIATT Qo+ AN +A A2 +.)) B
=Wp  WN
_ W ME (N/A)~(/\0+A>\1+A2>\2+---)'5
A
-8 >\0 B
= Wa Wa
(=A+X0)-8
= wA 3

N/A _ 2w f(N/A)/N _ g2rf/A

where we used the fact that w)y, = wp. Thus, we have

Wy MB L~ (VA Uh(]/‘\) (a+wp) _ wﬁ\—)x—&-)\o)-ﬁf'
Un(p) ()

We now consider two cases. First suppose that A = A\g. Then w( Ato)-B = 1, and it remains to
note that by (105) we have |£ — 1| < }ﬂ;ig 1 < 1/3. Thus, every a € A*(w) passes the test in
line 25 of Algorithm [7} Since |A*(w)| > (3/5)|A| by the argument above, we have that Ao passes the
test in line 25] It remains to show that Ao is the unique element in 0,..., A — 1 that passes this test.

Suppose that A # Ag. Then, by conditioning on Epalanced, at least a 49/100 fraction of w/(\_’\J”\O)'B

have negative real part. This means that for at least 49/100 of a € A, we have
A+ . .
wh e 1) 2 i Jel - 1] = |(7/9)i — 1 > 1/3,

and hence the condition in line 16 of Algorithm [7]is not satisfied for any A # A¢.
We thus get that conditioned on Epalanced and the intersection of 5} .(w) for all w € W and Sjtc A

recovery succeeds for all values of ¢ = 1,...,logy N. By a union bound over the failure events, we
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get that

Pr | Enatanced NEF 4N ) E}W(w)} >1—1/100 — (logy N) > 98/100.

wew 1001ogy m
This shows that location is successful for f in a single iteration ¢ with probability at least 98/100 >
9/10, as required.

Sample complexity and runtime. We first consider the calls to HASHTOBINSREDUCED.

logm
loglogm

This is called for loglogm values of («, 5) and logy N = O( ) values of g in each iteration, the
product of which is O(logm) = O(logn). Moreover, the number of iterations is O(log %) Hence,
using Lemmaﬁ we find that the combination of all of these calls costs O(F ZTE[%ﬂ B" log % log n)
samples, with a runtime of O((BmaXF + ko)ky log? n), where Bpax = O(max, s"), and kg is such
that ¥ is (O(ko), k1)-block sparse. By the assumption max, s" = O(%O), the runtime simplifies to
0 (% log® n)

O

G Pruning the Location List

Algorithm 8 Prune a location list via hashing and thresholding techniques.

1: procedure PRUNELOCATION(X, X, L, n, ko, k1,0, p, 0)
2. B« 160551

3 F + 10log }

4: G «+ (n, B, F)-flat filter

5 T+« 10log 5

6 fort € {1,...,T} do

7 A < uniform random sample from [kﬂl]
8 o < uniform random sample from odd numbers in [kﬁl]
9

: U + HasHTOBINS(X, ¥, G, n, B, 0, A)
~N— =3 —0o 2 . . oy
10: Wj(t) +— Zfelj |G0f1(f)Uh(f)wn Af‘ forall j € L > h(f),or(f) in Deﬁmtlon
11: W; Mediant(Wj(t)) forall j € L
12: L,%{jGL:WjZQ}
13: return L/

The pruning procedure is given in Algorithm Its goal is essentially to reduce the size of the
list returned by MULTIBLOCKLOCATE (cf., Algorithm [1)) from O(kglog(1 + ko)) to O(kg). More
formally, the following lemma shows that with high probability, the pruning algorithm retains most

of the energy in the head elements, while removing most tail elements.

Lemma (PRUNELOCATION guarantees — re-stated from Section Given (n, ko, k1), the

parameters 6 > 0, § € (%,2—10) and p € (0,1), and the signals X € C" and X € C" with
|])?—)?||2 2 WHQHQ, the output L' of PRUNELOCATION(X, X, L, ko, k1,8, p,n,0) has the following
properties:
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a. Let Sian denote the tail elements in signal X — X, defined as

. In PR 0,5
S = {5 €[] + 10X =R ll2 < VO— /= I1X = Rla
1 0
where I is defined in Definition[1.1. Then, we have
E[[L/ 0 Siaal| < 0p+ 120 Sl

b. Let Sheaq denote the head elements in signal X - X, defined as

Sheaa = {3 €[] ¢+ 1K =R > VB + ﬁouﬁ? = X}

El Y 1=l < Y IE -0l

jE(LmShcad)\L, jELmShead

Then, we have

Moreover, provided that ||X||lo = O(kok1), the sample complexity is O(% log % log %), and the run-
time is O(¥ log £ 1og 3 logn + k1 - |L|log 55).

Proof. We begin by analyzing the properties of the random variables W; used in the threshold test.
We define X’ = X — y, let U be the output of HASHTOBINS, and let U* be its exact counterpart as
defined in Lemma . It follows that we can write the random variable Wj(t) (¢f., Algorithm [8) as

t) _ A1l —onf|?
Wi = Z Gof(f)Uh(f)Wn )
fEIj
~ —~ ~ ~ ~ 2
_ —1 * —oAf —1 * —oAf
=2 |Go,nUnipywn ™™ +Go i WUnipy = Uppy)on
fel;
~ 2
= Z X5+ errgct) + e/rvr;t) ) (106)
fel;

where (i) errgct) = @;fl(f) Zfle[n}\{f} )?},éof(f/)ng(f,_f), with (o, A) implicitly depending on ¢; this

follows directly from Lemma , along with the definitions 7(f) = o f and of(f") = n(f') — Zh(f).
(i) éi"i"gct) = @;fl(f)(ﬁh(f) - ﬁ;(f))w*"Af, a polynomially small error term (c¢f., Lemma .

Bounding errgct) and éﬁ"gf): In Lemma |G.1| below, we show that

20 =
Ean|lenl?] < ZIX'I (107)
e < 207X, (108)

where c is used in HASHTOBINS, and ¢ is value such that | X — {2 > = ||X]l2. For (T08), we upper

n¢
bound the ¢5 norm by the square root of the vector length times the ¢, norm, yielding

2 R < Vi )| < 207 et X, (109)
S
fen]

We now calculate the probability of a given block j passing the threshold test, considering two

separate cases.

If j is in the tail: The probability for j to pass the threshold is closely related to Pr[Wj(t) >0 =
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Pr[ Wj(t) > \/5] From , \/W(t is the fo-norm of a sum of three signals, and hence we
can apply the triangle inequahty to obtain

~ , ~ 2
Pr[w” > ] < P{Z jerr {2 > (\/5— I> 0 IX 2 —2n et +1/2”)(/||2) ]
felj fEIj

where we have applied (109)).

By definition, for any j € Siai, we have v — HX’}]HQ > 1/%”2/“2. Hence, and recalling that
o> %, if ¢ if sufficiently large so that ,/% — op-etdH1/2 > 0,'7'25, then Markov’s inequality
yields

t t 0.99 =
P > 0] < Pr[ S et > kOHX’H%]
Jel;
EA,w[Zfe[ |er1"(t)’2}
<
0901 X|I3

2 23

- 0 96 H X’||2
1
< —
— 6
where the third line follows form (107) and |I;| = k;, and the final line follows from the choice

B = 160]""{%. Since W; is the median of T" independent such random variables, it can only

exceed 6 if there exists a subset of ¢ values of size % with Wj(t) > 6. Hence,

T 1\7/2 2\T/2
Pr[W; > 6] < (T /2) (5) " <(5) <o
where we applied (T%) < 27 followed by T = 10log % (cf., Algorithm .

If j is in the head: We proceed similarly to the tail case, but instead use the triangle inequality in

the form of a lower bound (i.e., ||a + b||2 > ||all2 — ||b]|2), yielding

Pr [W() <9 <Pr|:2|err ( Z |X/|2 \/> n —c+c+1/2HX || ) :|
fel; fel;

By definition, for any j € Shead, We have H)A(}]HQ —Vo > \/%H)A(’Hg. Hence, if ¢ if sufficiently
large so that w/% —opetd /2 > 0];—%5, then analogously to the tail case above, we have

Pr [W()<0 <Pr[2|err >095||X’||2] Sé,
fel;

and consequently Pr[W; < 6] < dp.

First claim of lemma: Since L' C L, we have

El[LnSwl] = Y Prlier]= Y Prw;206].

jeLmS‘call JELmStdll
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Since we established that P[W; > 6] is at most ép, we obtain

E[‘L/ N Staﬂ” < Y dp=0p-|LN Shal-
JELNSail

Second claim of lemma: In order to upper bound ) N7 H)?}]H%, we first calculate its

jE(LﬂShead
expected value as follows:

El Y IKB =B X IXL3zL ¢ L]
jE(LmShead)\Ll jeLmShead
= > XL ¢ L]

jGLmShcad
— Y IRy 3Pew < o).
jeLmShead
The probability Pr [Wj < (9] for j € L N Sheaq is at most dp, and hence

Bl Y IR <o X ISLIB

je(LnShead)\L, jeLmShead

Sample complexity and runtime For the sample complexity, note that the algorithm only uses
samples via its call to HASHTOBINS. By part (i) of Lemma and the choices B = 160% and

F =10log %, the sample complexity is O(FB) = O( k({% log %) per hashing operation. Since we run

the hashing in a loop 10log % times, the sample complexity is O(/I“O(Sk1 log % log %).

The runtime depends on three operations. The first is calling HASHTOBINS, for which an anal-
ogous argument as that for the sample complexity holds, with the extra logn factor arising from
Lemma The second operation is the computation of Wj(t), which takes |I;| = O(k1) time for each
j € L. Hence, the total contribution from the loop is O(k; - |L|log %). Finally, since the median can
be computed in linear time, computing the medians for every j € L costs O(|L]|log %) time, which
is dominated by the computation of Wj(t).

O

In the preceding proof, we made use of the following.

Lemma G.1. (ESTIMATEVALUES guarantees — re-stated from Section Fiz (n, ko, k1, B), the
signals X € C" and ¥ € C™ with | X —x]|2 > ﬁ”)?“g, and the uniformly random parameters o, A € [n]
with o odd, and let U be the output of HASHTOBINS(X, \, G, n, B,o,A) and U* its ezact counterpart.

: _ A1 Al aA(f'—f) . _ A1 (77 77 —oA
Then defining erry = Gof(f) Zf’e[n]\{f} X}/Gof(f/)wn and erry = GOf(f)(Uh(f) — Uh(f))w f
(for h and oy in Definition , we have
20, =
B |lerrs?] < ZIX1B (110)
7] < 207 | K] (1)

for ¢ used in HASHTOBINS.
Proof. We take the expectation of |errs|?, first over A:
Ea [\errf\Q] =1Go,n| ™ D0 1Xp PG

freln]\{f}
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by Parseval. By Definition and the definition of of(-), we can upper bound |@Of(f)\_2 < 2
Continuing, we take the expectation with respect to the random permutation =:
Eanllers?] <Ec[2 S0 1X5RIG, ()]
frelm\{f}
~ . 20 ~
—2 ¥ |X},|2Eﬂ[yaof(f,)|2} < ZIX'I3 (112)
frem\{f}
by Lemma (4.3
We now turn to erry. We know from Lemmathat \Uh(f) - ﬁ;(f)| < U = Ul < n~¢[IX]]2-
Hence, and again using |éof(f)\_2 < 2, we find that
o7t p| < 207Xz < 207 X2, (113)

where the second inequality follows since ||X||2 < n¢[|X’||2 for some ¢ > 0 by assumption. O

H Estimating Individual Frequency Values

Algorithm 9 Energy estimation procedure for individual frequencies

1: procedure ESTIMATEVALUES(X, X, L, n, ko, k1, 0, p)

2 B+ 125&/{30]{1

3 F+10 log%

4: G < (n, B, F)-flat filter > See Definition
5: F+A{fen]: round(%) €L}

6 T+ 10 log%

7 forte{1,...,T} do

8 A < uniform random sample from [7*]

9: o 4 uniform random sample from odd numbers in [7*]

10: U+ HasHTOBINS(X, X, G, n, B,o, A) > o0¢(f), h(f) in Definition
11: W}t) — @;fl(f)ﬁh(f)w_aAf for each f € F

12: Wy Mediant(ng)) for each f € F > Separately for the real and imaginary parts

13: return W

Once we have located the blocks, we need to estimate the frequency values with them. The
function ESTIMATEVALUES in Algorithm [9] performs this task for us via basic hashing techniques.

The following lemma characterizes the guarantee on the output.

Lemma (Re-stated from Section For any integers (n, ko, k1), list of block indices L, param-
eters § € (%, 55) and p € (0,1/2), and signals X € C" and Y € C™ with 1X =Xz > WHX\HQ, the
output W of the function ESTIMATEVALUES(X, X, L, n, ko, k1,0, p) has the following property:

S o Ll s o
> Wy (8 =R <yl IR - X3
feUjer 15
with probability at least 1 — p, where I; is the j-th block. Moreover, the sample complexity is
O(k%ﬁl log % log $), and if |X|lo = O(kok1), then the runtime is O(k%ﬁl log ;1) log % log n+k; - |L|log %)
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Proof. Let X' = X — x, and let U be the output of HASHTOBINS and U* its exact counterpart. We
start by calculating W}t) for an arbitrary f € F:

A—1  7rx —oA — 7% —oA
=G,y Uninw ™™ + Gy Onepy = i)™
= )?} + errgct) + éﬁ"gf) (by Lemma [4.2), (114)

) _ A-1 s Aal o '— ~—(t) _ 1 7T -0
where err,’ = Gof(f) Zf/e[n]\{f} X},Gof(f/)w AUF' =), and err G o )(Uh(f) - Uh(f))w Al for
(0, A) implicitly depending on t.

Bounding err}t) and err( ),

Using Lemma |G.1|in Appendix |G}, we have

20, &
Ea|lenr??] < ZIR13 (115)
e)| < 20t X, (116)

where ¢ is used in HASHTOBINS, and ¢’ is the exponent in the poly(n) notation of the assumption
1% = Rl 2 IRl )
In order to characterize \W}t) -X }]2, we use the following:
—~ ) =t —etd) | P et | P t
et p[? + 2ferr ] - err ] < 4n?eF || X3 4 4t X - ferr ). (117)
which follows directly from ({116]).
Characterizing |W}” — X/|*: We have from (T14), (I15), and (IT7) that
O t ) o=t —(t
EHW} ) _ X}]2] < IEUelrlrSc)|2 + 2|err§c)\ : |err§£)] + |err§c)]2]

20, & NS PN
< SIX'B + an*CEO X3 + dn | X [Jorr'y]

20, - AP 20 .o
SIXB + 4n* DX G + 44/ o= X, (118)

where the last line follows by writing ]E[|err§f)ﬂ < E[|err§ct)|2} via Jensen’s inequality, and then
applying (115).

Since B = % and we have assumed § > %, we have B < 1200n3, and hence we have for
sufficiently large ¢ that (118) simplifies to E[\W}t) - X }\2] < Q—B‘r’HX ’|I3. This means that

E |W(t) _ X 2
= 160t A,m ! f
Praq|[Wf" - X = —=I1X3] < | |

IN

<

1
= —. 119
g 6t .

by Markov’s inequality.

Taking the median: Recall that Wy is the median of T' independent random variables, with
the median taken separately for the real and imaginary parts. Since |W|? = |Re(W)|? + |Im(W)|?,
we find that (| - ) holds true when W} )X/ 7l replaced by its real or imaginary part. Hence, with
probability at least 1 — (T/Q)( )T/Q, we have |Re(W}t) — )?})|2 < 100 | X’||2, and analogously for the

imaginary part. Combining these and applying the union bound, we obtain
- 320t T\ /1\7/2 2\T/2 _ p
B{|Wy - Xp2 > “o= X (7> <2(7) < P 120
Wy — X}l XU <2( 0 J(G7)  =2(51)  <am (120)
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where we first applied (T%) < 2T and then the choice T = 10log % from Algorithm |§| and the choice
of p<1/2.

We now bound the error as follows:

s 320, & s 320
Wy - K52 < SR+ Wy - P - SR (121)
We write the expected value of the second term as
S 320 oo S 320
B[|wy - %o = UKB] ] = [ Peffiwy - K52 - SRR > o]aw
oo s 320
= [ Peliwy - %5 > SRR + e
°° 320 320v
= | T IXBPe Wy - X > SR X B o
where we applied the change of variable v = 1 + w By incorporating 1j into this integral,
we obtain ? :
o 5 320 320 < 5
B[|wy - %5 - IRB| | < IR [ e
320 D
< 7“ 13 e
T/2—1
< ZIX (122)

where the second line is by explicitly evaluating the integral (with T > 2), and the third by 7/2—1 > 4
(cf., Algorithm [9).
Summing (121)) over over F = Ujerl;, we find that the total error is upper bounded as follows:

5o 320[F] o S 320
>o 1wy - K52 < SRR Y Wy - K52 - IR
feF feF

%HX’H%, and hence

From ([122)), the expected value of the second term is at most p -
N 400|F| =
Z Wy — Xj[? < ?HX,H%
fer
with probability at least 1 — p, by Markov. The lemma follows since B = %kokl in Algorithm |§|

Sample complexity and runtime: To calculate the sample complexity, note that the only opera-
tion in the algorithm that takes samples is the call to HASHTOBINS. By Lemma[4.6] and the choices
B = 1200%0% kokl and F = 10log (1;, the sample complexity is O(kok1 log %) per hashing performed. Since

we run the hashlng in a loop 1010g £ times, this amounts to a total of O(kok1 log log & )

The runtime depends on two operatlons. The first one is calling HASHTOBINS, whose analysis
follows similarly to the aforementioned sample complexity analysis using the assumption ||xl|jo =
O(kok1), but with an extra logn factor compared to the sample complexity, as per Lemma
(t)

The other operation is computation of W, which takes unit time for each f € F. Since the size
of |F| = k1 - |L|, running it in a loop costs O(k; - |L|log %) Computing the median is done in linear

time which consequently results in |F|T = O(k; - |L|log %) O
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