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Abstract

We consider the problem of testing graph cluster structure: given access to a graph G = (V,E), can we
quickly determine whether the graph can be partitioned into a few clusters with good inner conductance,
or is far from any such graph? This is a generalization of the well-studied problem of testing graph
expansion, where one wants to distinguish between the graph having good expansion (i.e. being a good
single cluster) and the graph having a sparse cut (i.e. being a union of at least two clusters). A recent
work of Czumaj, Peng, and Sohler (STOC’15) gave an ingenious sublinear time algorithm for testing
k-clusterability in time Õ(n1/2poly(k)): their algorithm implicitly embeds a random sample of vertices of
the graph into Euclidean space, and then clusters the samples based on estimates of Euclidean distances
between the points. This yields a very efficient testing algorithm, but only works if the cluster structure
is very strong: it is necessary to assume that the gap between conductances of accepted and rejected
graphs is at least logarithmic in the size of the graph G. In this paper we show how one can leverage
more refined geometric information, namely angles as opposed to distances, to obtain a sublinear time
tester that works even when the gap is a sufficiently large constant. Our tester is based on the singular
value decomposition of a natural matrix derived from random walk transition probabilities from a small
sample of seed nodes.

We complement our algorithm with a matching lower bound on the query complexity of testing
clusterability. Our lower bound is based on a novel property testing problem, which we analyze using
Fourier analytic tools. As a byproduct of our techniques, we also achieve new lower bounds for the
problem of approximating MAX-CUT value in sublinear time.
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1 Introduction

Graph clustering is the problem of partitioning vertices of a graph based on the connectivity structure of
the graph. It is a fundamental problem in many application domains where one wishes to identify groups
of closely related objects, for instance, communities in a social network. The clustering problem is, thus,
to partition a graph into vertex-disjoint subgraphs, namely clusters, such that each cluster contains vertices
that are more similar to each other than the rest of the graph. There are many natural measures that have
been proposed to assess the quality of a cluster; one particularly well-studied and well-motivated measure for
graph clustering is conductance of a cluster [KVV04]. Roughly speaking, conductance of a graph measures
the strength of connections across any partition of vertices relative to the strength of connections inside the
smaller of the two parts. The higher the conductance inside a cluster, the harder it is to split it into non-trivial
pieces. The conductance measure lends itself to a natural graph clustering objective, namely, partition the
vertices of a graph into a small number of clusters such that each cluster has large conductance in the graph
induced by it (the inner conductance of the cluster). Towards this objective, many efficient graph partitioning
algorithms have been developed that partition vertices of a graph into a specified number of clusters with
approximately high conductance (when possible). Any algorithm that outputs such a partition necessarily
requires Ω(n) time – simply to output the solution, and usually Ω(m) time, where n and m respectively
denote the number of vertices and edges in the input graph. On very large-scale graphs, even linear-time
algorithms may prove to be computationally prohibitive, and consequently, there has been considerable
recent interest in understanding the cluster structure of a graph in sublinear time. Specifically, given a
target number of clusters, say k, and a measure φ of desired cluster quality, how much exploration of the
input graph is needed to distinguish between graphs that can be partitioned into at most k clusters with
inner conductance at least φ from graphs that are far from admitting such clustering? The focus of this
paper is to understand the power of sublinear algorithms in discovering the cluster structure of a graph.

In our study, we use by now a standard model of graph exploration for sublinear algorithms, where at
any step, the algorithm can either sample a uniformly at random vertex, query the degree d(u) of a vertex
u, or specify a pair (u, i) and recover the ith neighbor of u for any i ∈ [1..d(u)]. For any positive ε > 0, we
say a pair of graphs is ε-far if one needs to modify at least an ε-fraction of edges to convert one graph into
another.

The simplest form of the cluster structure problem is the case k = 1: how many queries to the graph
are needed to distinguish between graphs that are expanders (YES case) from graphs that are Ω(1)-far from
being expanders (NO case)? A formal study of this basic question was initiated in the work of Goldreich and
Ron [GR02] where they showed that even on bounded degree graphs, Ω(

√
n) queries to the input graph are

necessary to distinguish between expanders and graphs that are far from expanders. On the positive side, it is
known that a bounded degree expander graph with conductance at least φ can be distinguished from a graph
that is Ω(1)-far from a graph with conductance γ × φ2 for some positive constant γ, using only n

1
2 +O(γ)

queries [KS11, NS10]. Thus, even the simplest setting of the graph clustering problem is not completely
understood – the known algorithmic results require additional separation in the conductance requirements
of YES and NO instances. Furthermore, even with this separation in conductance requirements, the best
algorithmic result requires polynomially more queries than suggested by the lower bound.

Lifting algorithmic results above for the case k = 1 to larger values of k turned out to be a challenging
task. A breakthrough was made by Czumaj, Peng, and Sohler [CPS15a] who designed an algorithm that
differentiates between bounded degree graphs that can be clustered into k clusters with good inner conduc-
tance (YES case) from graphs that are far from such graphs (NO case), using only Õ(n

1
2 poly(k)) queries.

This striking progress, however, required an even stronger separation between YES and NO instances of the
problem. In particular, the algorithm requires that in the YES case, the graph can be partitioned into k
clusters with inner conductance at least φ, while in the NO case, the graph is ε-far from admitting k clusters
with conductance φ2/ log n. Thus the cluster quality in the NO case needs to be weakened by a factor that
now depends on the size of the input graph.

The current state of the art raises several natural questions on both algorithmic and lower bound fronts.
On the algorithmic front, does sublinear testing of cluster structure of a graph fundamentally require such
strong separation between the cluster structures of YES and NO cases? On the lower bound front, is there
a stronger barrier than the current Ω(

√
n) threshold for differentiating between the YES and NO cases?

Even for the case of distinguishing an expander for a graph that is far from expander, the known algorithmic

2



results require n
1
2 +Ω(1) queries when the conductance guarantees of YES and NO cases are separated by

only a constant factor.
In this work, we make progress on both questions above. On the algorithmic side, we present a new

sublinear testing algorithm that considerably weakens the separation required between the conductance of
YES and NO instances. In particular, for any fixed k, our algorithm can distinguish between instances that
can be partitioned into k clusters with conductance at least φ from instances that are Ω(1)-far from admitting

k clusters with conductance γφ2, using n
1
2 +O(γ) queries. This generalizes the results of [KS11, NS10] for

k = 1 to any fixed k and arbitrary graphs. Similar to [CPS15a] our algorithm is based on sampling a small
number of vertices and gathering information about the transition probabilities of suitably long random
walks from the sampled points. However, instead of classifying points as pairwise similar or dissimilar based
on `2 similarity between the transition probability vectors, our approach is based on analyzing the structure
of the Gram matrix of these transition probability vectors, which turns out to be a more robust mechanism
for separating the YES and NO cases.

On the lower bound side, we show that arguably the simplest question in this setting, namely, differenti-
ating a bounded degree expander graph with conductance Ω(1) from a graph that is Ω(1)-far from a graph

with conductance γ for some positive constant γ, already requires n
1
2 +Ω(γ) queries. This improves upon the

long-standing previous lower bound of Ω(n
1
2 ). Going past the n

1
2 threshold requires us to introduce new ideas

to handle non-trivial dependencies that manifest due to unavoidable emergence of cycles once an ω(n
1
2 )-sized

component is uncovered in an expander. We use a Fourier analytic approach to handle emergence of cycles
and create a distribution where n

1
2 +Ω(γ) queries are necessary to distinguish between YES and NO cases. We

believe our lower bound techniques are of independent interest and will quite likely find applications to other
problems. As one illustrative application, we show that our approach yields an n

1
2 +Ω(1) query complexity

lower bound for the problem of approximating the max-cut value in graph to within a factor better than 2,
improving the previous best lower bound of Ω(n

1
2 ).

In what follows, we formally define our clustering problem, present our main results, and give an overview
of our techniques.

1.1 Problem Statement

We start by introducing basic definitions, then proceed to define the problems that we design algorithms for
(namely PartitionTesting and testing clusterability) in Section 1.2, and finally discuss the communication
game that we use to derive query complexity lower bounds (namely the NoisyParities game) and state our
results on lower bounds in Section 1.3.

Definition 1 (Internal and external conductance). Let G = (VG, EG) be a graph. Let deg(v) be the
degree of vertex v. For a set S ⊆ VG, let vol(S) =

∑
v∈S deg(v) denote the volume of set S. For a set

S ⊆ C ⊆ VG, the conductance of S within C, denoted by φGC(S), is the number of edges with one endpoint
in S and the other in C \ S divided by vol(S). Equivalently, φGC(S) is the probability that a uniformly
random neighbor, of a vertex in S selected with probability proportional to degree, is in C \S. The internal
conductance of C, denoted by φG(C), is defined to be min

S⊆C,0<vol(S)≤ vol(C)
2

φGC(S) if |C| > 1 and one

otherwise. The external conductance of C is defined to be φGVG(C).

Based on the conductance parameters, clusterability and unclusterability of graphs is defined as follows.

Definition 2 (Graph clusterability). Graph G = (VG, EG) is defined to be (k, ϕ)-clusterable if VG can
be partitioned into C1, . . . , Ch for some h ≤ k such that for all i = 1, . . . , h, φG(Ci) ≥ ϕ. Graph G is defined
to be (k, ϕ, β)-unclusterable if VG contains k + 1 pairwise disjoint subsets C1, . . . , Ck+1 such that for all

i = 1, . . . , k + 1, vol(Ci) ≥ β · vol(VG)
k+1 , and φGVG(Ci) ≤ ϕ.

The following algorithmic problem was implicitly defined in [CPS15a]:

Definition 3. PartitionTesting (k, ϕin, ϕout, β) is the problem of distinguishing between the following two
types of graphs.

1. The YES case: graphs which are (k, ϕin)-clusterable
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2. The NO case: graphs which are (k, ϕout, β)-unclusterable

The ultimate problem that we would like to solve is the Clusterability problem, defined below:

Definition 4. Clusterability(k, ϕ, k′, ϕ′, ε) is the problem of distinguishing between the following two
types of graphs.

1. The YES case: graphs which are (k, ϕ)-clusterable

2. The NO case: graphs which are ε-far from (k′, ϕ′)-clusterable.

Here, a graph G = (V,E) is ε-far from (k′, ϕ′)-clusterable if there does not exist a (k′, ϕ′)-clusterable graph
G′ = (V,E′) such that |E ⊕E′| ≤ ε · |E| (⊕ denotes the symmetric difference, or equivalently, the Hamming
distance).

Note that in the clusterability problem considered by Czumaj et al. [CPS15a], the YES instances were
required to have clusters with small outer conductance, whereas we have no such requirement.
Queries and Complexity. We assume that the algorithm has access to graph G via the following queries.

1. Vertex query: returns a uniformly random vertex v ∈ VG

2. Degree query: outputs degree deg(v) of a given v ∈ VG.

3. Neighbor query: given a vertex v ∈ VG, and i ∈ [n], returns the i-th neighbor of v if i ≤ deg(v), and
returns fail otherwise.

The complexity of the algorithm is measured by number of access queries.

1.2 Algorithmic Results

Theorem 1. Suppose ϕout ≤ 1
480ϕ

2
in. Then there exists a randomized algorithm for PartitionTesting

(k, ϕin, ϕout, β) which gives the correct answer with probability at least 2/3, and which makes poly(1/ϕin) ·
poly(k) · poly(1/β) · poly log(m) ·m1/2+O(ϕout/ϕ

2
in) queries on graphs with m edges.

Observe that even when the average degree of the vertices of the graph is constant, the dependence
of query complexity on n, the number of vertices, is Õ(n1/2+O(ϕout/ϕ

2
in)). We also note that our current

analysis of the tester is probably somewhat loose: the tester likely requires no more than Õ(n1/2+O(ϕout/ϕ
2
in))

for graphs of arbitrary volume (specifically, the variance bound provided by Lemma 19 can probably be
improved).

Theorem 1 allows us to obtain the following result on testing clusterability, which removes the logarithmic
gap assumption required for the results in [CPS15b] in the property testing framework.

Theorem 2. Suppose ϕ′ ≤ α4.5ε, (for the constant α4.5 = Θ(min(d−1, k−1)) from Lemma 4.5 of [CPS15b],
where d denotes the maximum degree), and ϕ′ ≤ c′ε2ϕ2/k2 for some small constant c′. Then there exists
a randomized algorithm for Clusterability(k, ϕ, k, ϕ′, ε) problem on degree d-bounded graphs that gives the
correct answer with probability at least 2/3, and which makes poly(1/ϕ)·poly(k)·poly(1/ε)·poly(d)·poly log(n)·
n1/2+O(ε−2k2·ϕ′/ϕ2) queries on graphs with n vertices.

The proof of the theorem follows by combining Theorem 1 and Lemma 4.5 of [CPS15b]. The details of
the proof are provided in Section 5.

Furthermore, we strengthen Lemma 4.5 of [CPS15b] to reduce the dependence of the gap between inner
and outer conductance to logarithmic in k, albeit at the expense of a bicriteria approximation. This gives
us the following theorem, whose proof is provided in Section 5.

Theorem 3. Let 0 ≤ ε ≤ 1
2 . Suppose ϕ′ ≤ α, (for α = min{ cexp150d ,

cexp·ε
1400 log( 16k

ε )
}, where d denotes the maxi-

mum degree), and ϕ′ ≤ c·ε2ϕ2/ log( 32k
ε ) for some small constant c. Then there exists a randomized algorithm

for Clusterability(k, ϕ, 2k, ϕ′, ε) problem on degree d-bounded graphs that gives the correct answer with prob-

ability at least 2/3, and which makes poly(1/ϕ)·poly(k)·poly(1/ε)·poly(d)·poly log(n)·n1/2+O(ε−2 log( 32k
ε )·ϕ′/ϕ2)

queries on graphs with n vertices.
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1.3 Lower bound Results

Our lower bounds are based on the following communication problem that we refer to as the NoisyParities
(d, ε):

Definition 5. NoisyParities (d, ε) is the problem with parameters d ≥ 3 and ε ≤ 1/2 defined as follows. An
adversary samples a random d-regular graph G = (V,E) from the distribution induced by the configuration
model of Bollobás [Bol80]. The adversary chooses to be in the YES case or the NO case with probability
1/2, and generates a vector of binary edge labels Y ∈ {0, 1}E as follows:

YES case: The vector Y is chosen uniformly at random from {0, 1}E , that is, the labels Y (e) for all edges
e ∈ E are independently 0 or 1 with probability 1/2;

NO case: A vector X ∈ {0, 1}V is sampled uniformly at random. Independently, a “noise” vector Z ∈
{0, 1}E is sampled such that all the Z(e)’s are independent Bernoulli random variables which are 1
with probability ε and 0 with probability 1 − ε. The label of an edge e = (u, v) ∈ E is given by
Y (e) = X(u) +X(v) + Z(e).

The algorithm can query vertices q ∈ V in an adaptive manner deterministically. Upon querying a vertex
q ∈ V , the algorithm gets the edges incident on q together with their labels as a response to the query, and
must ultimately determine whether the adversary was in the YES or the NO case.

Our main result is a tight lower bound on the query complexity of NoisyParities . Before stating our
lower bound we note that it is easy to see that unless the set of edges that the algorithm has discovered
contains a cycle, the algorithm cannot get any advantage over random guessing. Indeed, if the set of
discovered edges were a path P = (e1, . . . , eT ) where ei = (vi−1, vi), the label Y (ei) = X(v1)+X(vi−1)+Z(ei)
of ei in the NO case is uniform and independent of the labels of e1, . . . , ei−1, because X(vi) is uniform and
independent of Y (e1) . . . , Y (ei−1). A similar argument holds when the set of discovered edges is a forest.
Thus, the analysis must, at the very least, prove that Ω(

√
n) queries are needed in our model for the algorithm

to discover a cycle in the underlying graph G. In the noisy case (i.e. when ε > 0) detecting a single cycle does
not suffice. Indeed, a natural test would be to add up the labels over the edges of a cycle C, that is, consider∑
e∈C Y (e). In the YES case, this is uniformly 0 or 1, whereas in the NO case, it is equal to

∑
e∈C Z(e),

which is 0 with probability (1/2) · (1 + (1− 2ε)|C|) and 1 with probability (1/2) · (1− (1− 2ε)|C|). Thus, the
deviation of the distribution of

∑
e∈C Y (e) from uniform is n−Θ(ε), even in the NO case, if |C| = Θ(log n).

Theorem 4. Any deterministic algorithm that solves the NoisyParities problem correctly with probability
at least 2/3 must make at least n1/2+Ω(ε) queries on n-vertex graphs, for constant d.

We note that this lower bound is tight up to constant factors multiplying ε in the exponent. For example,
it suffices to find nΘ(ε) disjoint cycles. This can be done as follows. Sample nΘ(ε) vertices in G uniformly at
random, and run ≈

√
n random walks from each of them. With at least constant probability, for most of the

seed nodes the walks will intersect. Then for each cycle Ci, compute ζi =
∑
e∈Ci Y (e). In the YES case, this

is uniformly 0 and 1, whereas in the NO case, it is n−Θ(ε)-far from uniform. Furthermore, since the cycles
are disjoint, ζi’s are independent. The Chernoff bound implies that, with a constant probability, less than
(1/2) · (1 + n−Θ(ε)/2) fraction of the ζi’s will be zero in the YES case, and more than (1/2) · (1 + n−Θ(ε)/2)
fraction of the ζi’s will be zero in the NO case.

As a consequence of Theorem 4 and appropriate reductions, we derive the following lower bounds.

Theorem 5. Any algorithm that distinguishes between a (1, ϕin)-clusterable graph (that is, a ϕin-expander)
and a (2, ϕout, 1)-unclusterable graph on n vertices (in other words, solves PartitionTesting(1, ϕin, ϕout, 1))
correctly with probability at least 2/3 must make at least n1/2+Ω(ϕout) queries, even when the input is restricted
to regular graphs, for constant ϕin.

Theorem 6. Any algorithm that approximates the maxcut of n-vertex graphs within a factor 2 − ε′ with
probability at least 2/3 must make at least n1/2+Ω(ε′/ log(1/ε′)) queries.

Remark 1. After posting our paper on arXiv, we learnt that the above result was already known due to
Yoshida (Theorem 1.2 of [Yos11]; the proof appears in the full version [Yos10]). We note, however, that our
proof is very different from Yoshida’s proof, and may be of independent interest.
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1.4 Our techniques

In this section we give an overview of the new techniques involved in our algorithm and lower bounds.

1.4.1 Algorithms

We start by giving an outline the approach of [CPS15a], outline the major challenges in designing robust
tester of graph cluster structure, and then describe our approach.

As [CPS15a] show, the task of distinguishing between (k, ϕ)-clusterable graphs and graphs that are ε-far
from (k, ϕ′)-clusterable reduces to PartitionTesting (k, ϕin, ϕout, β), where β = poly(ε). In this problem
we are given query access to a graph G, and would like to distinguish between two cases: either the graph
can be partitioned into at most k clusters with inner conductance at least ϕin (the YES case, or ‘clusterable’
graphs) or there exists at least k+1 subsets C1, . . . , Ck+1 with outer conductance at most ϕout, and containing
nontrivial (i.e. no smaller than βn/(k+1)) number of nodes (the NO case, or ‘non-clusterable’ graphs). Here
ϕin = ϕ, and ϕout is a function of the conductance ϕ′, the number of nodes k, and the precision parameter
ε.

A very natural approach to PartitionTesting (k, ϕin, ϕout, β) is to sample 10k nodes, say, run random
walks of appropriate length from the sampled nodes, and compare the resulting distributions: if a pair of
nodes is in the same cluster, then the distributions of random walks should be ‘close’, and if the nodes
are in different clusters, the distributions of random walks should be ‘far’. The work of [CPS15a] shows
that this high level approach can indeed be made to work: if one compares distributions in `2 norm, then
for an appropriate separation between ϕin and ϕout random walks whose distributions are closer than a
threshold θ in `2 sense will indicate that the starting nodes are in the same cluster, and if the distributions
are further than 2θ apart in `2, say, then the starting points must have been in different clusters. Using
an ingenious analysis [CPS15a] show that one can construct a graph on the sampled nodes where ‘close’
nodes are connected by an edge, and the original graph is clusterable if and only if the graph on the sampled
nodes is a union of at most k connected components. The question of estimating `2 norm distance between
distributions remains, but this can be done in about

√
n time by estimating collision probabilities (by the

birthday paradox), or by using existing results in the literature. The right threshold θ turns out to be
≈ 1/

√
n.

The main challenge. While very beautiful, the above approach unfortunately does not work unless the
cluster structure in our instances is very pronounced. Specifically, the analysis of [CPS15a] is based on
arguing that random walks of O(log n) length from sampled nodes that come from the same cluster mostly
don’t leave the cluster, and this is true only if the outer conductance of the cluster is no larger than 1/ log n.
This makes the approach unsuitable for handling gaps between conductances that are smaller than log n
(it is not hard to see that the walk length must be at least logarithmic in the size of the input graph, so
shortening the walk will not help).

One could think that this is a question of designing of a more refined analysis of the algorithm of [CPS15a],
but the problem is deeper: it is, in general, not possible to choose a threshold θ that will work even if the
gap between conductances is constant, and even if we want to distinguish between 2-clusterable and far from
2-clusterable graphs (such a choice is, in fact, possible for k = 1). The following simple example illustrates
the issue. First consider a d-regular graph G composed of two Ω(1)-expanders A and B, each of size n

2 .
Further, suppose that the outer conductance of both A and B is upper bounded by 1

4d , i.e. at most one
quarter of the nodes in each of the clusters have connections to nodes on the other side. Let t = C log n for a
constant C > 0, and let ptu denote the probability distribution of t-step random walk starting from vertex u.
Lemma C.1 of [CPS15b] implies that for at least one of these two clusters (say A), ||ptu−ptv||2 = Ω(d−2n−1/2)
for all u, v in some large subset Ã of A. Thus, any tester that considers two sampled vertices close when
their Euclidean distance is at most θ must use θ > d−2n−1/2. On the other hand, consider the following
3-clusterable instance.

Fix ε ∈ (0, 1), and let C be regular graph with degree 1
ε − 3, inner conductance Ω(1) and size n

3 . Let
G′ = (V,E) be a 1/ε-regular graph composed of three copies of C (say C1, C2, C3), where for each vertex
u ∈ C, its three copies in C1, C2, C3 are pairwise connected (i.e. form a triangle), and each vertex has a
self-loop. We say that an edge is bad if it is a triangle edge or self-loop, otherwise we call it good. Notice
that at any step the random walk takes a bad edge with probability 3ε, and takes an edge inside one of the
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copies with probability 1− 3ε. We can think that at any step, the random walk first decides to take a good
edge or a bad edge, and then takes a random edge accordingly. With probability (1− 3ε)t the random walk
never decides to take a bad edge and mixes inside the starting copy. On the other hand, if the random walk
does decide to take a bad edge, it is thereafter equally likely to be in any of the three copies of any vertex
of C. Let t = c log n for a constant c > 0, and let ptu denote the probability distribution of t-step random
walk starting from vertex u. We are interested in bounding ||ptu − ptv||2 for a pair of nodes u, v in different
clusters (say u ∈ C1 and v ∈ C2). For u ∈ C1 and a ∈ V , let qt

′

u (a) denote the probability that a t′-step
random walk in C1 starting from u ends up in the copy of a in C1. Notice that since C1 is constant-expander,
if t′ = Θ(t), then for every a we have qt

′

u (a) ' 1
n/3 . Consider a t-step random walk from u in G, and let

t′ denote the number good edges taken. Notice that t′ is binomially distributed with parameters (t, 3ε), so
that t′ ' t(1− 3ε) with high probability. Now, for a ∈ C1, we have,

ptu(a) = (1− 3ε)t · qtu(a) +
1

3
(1− (1− 3ε)t)Et′ [qt

′

u (a)|t′ > 0] ' 3n−1−3cε +
(
1− n−3cε

)
n−1,

while for b /∈ C1, we have ptu(b) = 1
3 (1−(1−3ε)t)Et′ [qt

′

u (b)|t′ > 0] '
(
1− n−3cε

)
n−1. A symmetric argument

holds for v. Hence we have ||ptu−ptv||22 ≤ Θ(n−1−6cε). Therefore for a pair of nodes u, v in different clusters
one has ||ptu− ptv||2 ≤ n−1/2−Ω(ε) � d−2n−1/2 for constant d and ε. Thus, in order to ensure that vertices in
different clusters will be considered far, one must take the threshold θ to be smaller than d−2n−1/2. Thus, no
tester that uses a fixed threshold can distinguish between the two cases correctly. To summarize, euclidean
distance between distributions is no longer a reliable metric if one would like to operate in a regime close to
theoretical optimum, and a new proxy for clusterability is needed.

Our main algorithmic ideas. Our main algorithmic contribution is a more geometric approach to an-
alyzing the proximity of the sampled points: instead of comparing `2 distances between points, our tester
considers the Gram matrix of the random walk transition probabilities of the points, estimates this matrix
entry-wise to a precision that depends on the gap between ϕin and ϕout in the instance of PartitionTesting
(k, ϕin, ϕout, β) that we would like to solve, and computes the (k + 1)-st largest eigenvalue of the matrix.
This quantity turns out to be a more robust metric, yielding a tester that operates close to the theoretical
optimum, i.e. able to solve PartitionTesting (k, ϕin, ϕout, β) as long as the gap ϕout/ϕ

2
in is smaller than

an absolute constant.1 Specifically, our tester (see Algorithms 1 and 2 in Section 3.1 for the most basic ver-
sion) samples a multiset S of s ≈ poly(k) log n vertices of the graph G independently and with probability
proportional to the degree distribution (this can be achieved in ≈

√
n time per sample using the result of

Eden and Rosenbaum [ER18]), and computes the matrix

A := (D−
1
2M tS)>(D−

1
2M tS), (1)

where M is the random walk transition matrix of the graph G, and D is the diagonal matrix of degrees.
Note that this is the Gram matrix of the t-step distributions of random walks from the sampled nodes in G,
for a logarithmic number of steps walk. Intuitively, the matrix A captures pairwise collision probabilities of
random walks from sampled nodes, weighted by inverse degree. The algorithm accepts the graph if the (k+1)-
st largest eigenvalue of the matrix A is below a threshold, and rejects otherwise. Specifically, the algorithm
accepts if µk+1(A) . vol(VG)−1−Θ(ϕout/ϕ

2
in) and rejects otherwise. Before outlining the proof of correctness

for the tester, we note that, of course, the tester above cannot be directly implemented in sublinear time, as
computing the matrix A exactly is expensive. The actual sublinear time tester approximately computes the
entries of the matrix A to additive precision about 1

poly(k)vol(VG)−1−Θ(ϕout/ϕ
2
in) and uses the eigenvalues of

the approximately computed matrix to decide whether to accept or reject. Such an approximation can be
computed in about vol(VG)

1
2 +Θ(ϕout/ϕ

2
in) queries by rather standard techniques (see Section 3.2).

We now outline the proof of correctness of the tester above (the detailed proof is presented in Section 3.1).
It turns out to be not too hard to show that the tester accepts graphs that are (k, ϕin)-clusterable. One first
observes that Cheeger’s inequality together with the assumption that each of the k clusters is a ϕin-expander
implies that the (k + 1)-st eigenvalue of the normalized Laplacian of G is at least ϕ2

in/2 (Lemma 10). It

1 Note that our runtime depends on ϕout/ϕ2
in as opposed to ϕout/ϕin due to a loss in parameters incurred through Cheeger’s

inequality. This loss is quite common for spectral algorithms.
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follows that the matrix M t of t-step random walk transition probabilities, for our choice of t = (C/ϕ2
in) log n,

is very close to a matrix of rank at most k, and thus the (k + 1)-st eigenvalue of the matrix A above
(see (1)) is smaller than 1/n2, say. The challenging part is to show that the tester rejects graphs that are
(k, ϕout, β)-unclusterable, since in this case we do not have any assumptions on the inner structure of the
clusters C1, . . . , Ck+1. The clusters C1, . . . , Ck+1 could either be good expanders, or, for instance, unions
of small disconnected components. The random walks from nodes in those clusters behave very differently
in these two cases, but the analysis needs to handle both. Our main idea is to consider a carefully defined
k + 1-dimensional subspace of the eigenspace of the normalized Laplacian of G that corresponds to small
(smaller than O(ϕout)) eigenvalues, and show that our random sample of points is likely to have a well-
concentrated projection onto this subspace. We then show that this fact implies that the matrix A in (1) has
a large (k+1)-st eigenvalue with high probability. The details of the argument are provided in Section 3.1.2:
the definition of matrix U and projection operator Ph at the beginning of Section 3.1.2 yield the (k + 1)-
dimensional subspace in question (this subspace is the span of the columns of U projected onto the first
h eigenvectors of the normalized Laplacian of G), and a central claims about the subspace in question are
provided by Lemmas 13, 14 and 15. The assumption that vertices in S are sampled with probabilities
proportional to their degrees is crucial to making the proof work for general (sparse) graphs.

One consequence of the fact that our algorithm for PartitionTesting (k, ϕin, ϕout, β) estimates the

entries of the Gram matrix referred to above to additive precision ≈ n−1−Θ(ϕout/ϕ
2
in) is that the runtime

≈ n1/2+Θ(ϕout/ϕ
2
in). If ϕout � ϕ2

in/ log n, then we recover the ≈
√
n runtime of [CPS15a], but for any

constant gap between ϕout and ϕ2
in our runtime is polynomially larger than

√
n. Our main contribution on

the lower bound side is to show that this dependence is necessary. We outline our main ideas in that part of
the paper now.

1.4.2 The lower bound

We show that the n1+Ω(ϕout/ϕ
2
in) runtime is necessary for PartitionTesting (k, ϕin, ϕout, β) problem, thereby

proving that our runtime is essentially best possible for constant k. More precisely, we show that even distin-
guishing between an expander and a graph that contains a cut of sparsity ε for ε ∈ (0, 1/2) requires n1+Ω(ε)

adaptive queries, giving a lower bound for the query complexity (and hence runtime) of PartitionTesting
(1,Ω(1), ε, 1) that matches our algorithm’s performance.

The NoisyParities problem. Our main tool in proving the lower bound is a new communication com-
plexity problem (the NoisyParities problem) that we define and analyze: an adversary chooses a regular
graph G = (V,E) and a hidden binary string X ∈ {0, 1}V , which can be thought of as encoding a hidden
bipartition of G. The algorithm can repeatedly (and adaptively) query vertices of G. Upon querying a vertex
v, the algorithm receives the edges incident on v and a binary label Y (e) on each edge e. In the NO case
the labels Y (e) satisfy Y (e) = X(u) +X(v) +Z(e), where Z(e) is an independent Bernoulli random variable
with expectation ε (i.e. the algorithm is told whether the edge crosses the hidden bipartition, but the answer
is noisy). In the YES case each label Y (e) is uniformly random in {0, 1}. The task of the algorithm is to
distinguish between the two cases using the smallest possible number of queries to the graph G.

It is easy to see that if ε = 0, then the algorithm can get a constant advantage over random guessing as
long as it can query all edges along a cycle in G. If G is a random d-regular graph unknown to the algorithm,
one can show that this will take at least Ω(

√
n) queries, recovering the lower bound for expansion testing

due to Goldreich and Ron [GR02]. In the noisy setting, however, detecting a single cycle is not enough, as
cycles that the algorithm can locate in a random regular graph using few queries are generally of logarithmic
length, and the noise added to each edge compounds over the length of the cycle, leading to only advantage
of about n−O(ε) over random guessing that one can obtain from a single cycle. Intuitively. this suggests
that the algorithm should find at least nΩ(ε) cycles in order to get a constant advantage. Detecting a single
cycle in an unknown sparse random graphs requires about

√
n queries, which together leads to the n1/2+Ω(ε)

lower bound. Turning this intuition into a proof is challenging, however, as (a) the algorithm may base its
decisions on labels that it observes on its adaptively queried subgraph of G and (b) the algorithm does not
have to base its decision on observed parities over cycles. We circumvent these difficulties by analyzing the
distribution of labels on the edges of the subgraph that the algorithm queries in the NO case and proving
that this distribution is close to uniformly random in total variation distance, with high probability over the
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queries of the algorithm. We analyze this distribution using a Fourier analytic approach, which we outline
now.

Suppose that we are in the NO case, i.e. the edge labels presented to the algorithm are an ε-noisy version
of parities of the hidden boolean vector X ∈ {0, 1}n, and suppose that the algorithm has discovered a subset
Equery ⊆ EG of edges of the graph G (recall that the graph G, crucially, is not known to the algorithm)
together with their labels. The central question that our analysis needs to answer in this situation turns out
to be the following: given the observed labels on edges in Equery and an edge e = (a, b) ∈ EG what is the
posterior distribution of X(a)+X(b) given the information that the algorithm observed so far? For example,
if Equery does not contain any cycles (i.e. is a forest), then X(a) + X(b) is a uniformly random Bernoulli
variable with expectation 1/2 if the edge (a, b) does not close a cycle when added to Equery. If it does close
a cycle but Equery is still a forest, then one can show that if the distance in Equery from a to b is large (at
least Ω(log n)), then the posterior distribution of X(a)+X(b) is still n−Ω(ε) close, in total variation distance,
to a Bernoulli random variable with expectation 1/2. Our analysis needs to upper bound this distance to
uniformity for a ‘typical’ subset Equery that arises throughout the interaction process of the algorithm with
the adversary, and contains two main ideas. First, we show using Fourier analytic tools (see Theorem 12 in
Section 4.3.3) that for ‘typical’ subset of queried edges Equery and any setting of observed labels, one has
that the bias of X(a) +X(b), i.e. the absolute deviation of the expectation of this Bernoulli random variable
from 1/2, satisfies

bias(X(a) +X(b)) .
∑

E′⊆Equery s.t. E′∪{a,b} is Eulerian

(1− 2ε)|E
′|. (2)

Note that for the special case of Equery being a tree, the right hand side is exactly the (1− 2ε)dist(a,b), where
dist(a, b) stands for the shortest path distance from a to b in T . Since ‘typical’ cycles that the algorithm
will discover will be of Ω(log n) length due to the fact that G is a constant degree random regular graph,
this is n−Ω(ε), as required. Of course, the main challenge in proving our lower bound is to analyze settings
where the set of queried edges Equery is quite far from being a tree, and generally contains many cycles, and
control the sum in (2). In other words, we need to bound the weight distribution of Eulerian subgraphs of
Equery. The main insight here is the following structural claim about ‘typical’ sets of queried edges Equery:
we show that for typical interaction scenarios between the algorithm and the adversary one can decompose
Equery as Equery = F ∪ R, where F is a forest and R is a small (about nO(ε) size) set of ‘off-forest’ edges
that further satisfies the property that the endpoints of edges in R are Ω(log n)-far from each other in the
shortest path metric induced by F . This analysis relies on basic properties of random graphs with constant
degrees and is presented in Section 4.3.2. Once such a decomposition of Equery = T ∪F is established, we get
a convenient basis for the cycle space of Equery, which lets us control the right hand side in (2) as required
(see Section 4.3.4). The details of the lower bound analysis are presented in Section 4.3.

Finally, our lower bound on the query complexity of NoisyParities yields a lower bound for Parti-
tionTesting (1,Ω(1), ε, 1) (Theorem 5), as well as a lower bound for better than factor 2 approximation
to MAX-CUT value in sublinear time (Theorem 6). Both reductions are presented in Section 4.2. The
reduction to MAX-CUT follows using rather standard techniques (e.g. is very similar to [KKSV17]; see
Section 4.2.2). The reduction to PartitionTesting (1,Ω(1), ε, 1) is more delicate and novel: the difficulty
is that we need to ensure that the introduction of random noise Ze on the edge labels produces graphs that
have the expansion property (in contrast, the MAX-CUT reduction produces graphs with a linear fraction
of isolated nodes). This reduction is presented in Section 4.2.1.

1.5 Related Work

Goldreich and Ron [GR02] initiated the framework of testing graph properties via neighborhood queries. In
this framework, the goal is to separate graphs having a certain property from graphs which are “far” from
having that property, in the sense that they need many edge additions and deletions to satisfy the property.
The line of work closest to this paper is the one on testing expansion of graphs [GR00, NS10, CS10, KS11]
which proves that expansion testing can be done in about Õ(

√
n) queries, and Ω(

√
n) queries are indeed

necessary. Going beyond expansion (that is, 1-clusterability), Kannan et al. [KVV04] introduced (internal)
conductance as a measure of how well a set of vertices form a cluster. In order to measure the quality
of a clustering, that is, a partition of vertices into clusters, Zhu et al. [ALM13] and Oveis Gharan and
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Trevisan [GT14] proposed bi-criteria measures which take into account the (minimum) internal conductance
and the (maximum) external conductance of the clusters. Considering this measure, Czumaj et al. [CPS15a]
defined the notion of clusterable graphs parameterized requirements on the minimum internal expansion and
by the maximum external expansion, and gave an algorithm for testing clusterability.

There has been an extensive work on testing many other graph properties in the framework of Goldreich
and Ron. For instance, Czumaj et al. [CGR+14] give algorithms for testing several properties including cycle-
freeness, whereas Eden et al. [ELR18] design algorithms to test arboricity. Estimation of graph parameters
such as degree distribution moments [ERS17b], number of triangles [ELRS17], and more generally, number
of k-cliques [ERS17a] has also received attention recently.

A closely related model of property testing is the one where the graph arrives as a random order stream
and the property testing algorithm is required to use sublinear space. Although this appears to be a
less powerful model because the algorithm no longer has the ability to execute whatever queries it wants,
interestingly, Peng and Sohler [PS18] show that sublinear property testing algorithms give rise to sublinear
space algorithms for random order streams.

Other graph property testing models include extension to dense graphs [GR10, GR11] where the algo-
rithm queries the entries of the adjacency matrix of the graph, and the non-deterministic property testing
model [LV13, GS13], where the algorithm queries the graph and a certificate, and must decide whether the
graph satisfies the property. We refer the reader to [CPS15a] for a more comprehensive survey of the related
work.

2 Preliminaries

Let G = (VG, EG) be a graph and let A be its adjacency matrix.

Definition 6. The normalized adjacency matrix A of G is D−
1
2AD−

1
2 , where D is the diagonal matrix of

the degrees. The normalized Laplacian of G is L = I −A.

Definition 7. The random walk associated with G is defined to be the random walk with transition matrix
M = I+AD−1

2 . Equivalently, from any vertex v, this random walk takes every edge of G incident on v with

probability 1
2·deg(v) , and stays on v with probability 1

2 . We can write the transition matrix asM = D
1
2MD−

1
2 ,

where M = I − L
2 .

To see the equivalence of the two definitions of M above, observe that the transition matrix is M =
I+AD−1

2 = (D+A
2 )D−1 and M = I − L

2 = I+A
2 = D−

1
2 (D+A

2 )D−
1
2 . Hence, M = D

1
2MD−

1
2 .

Our algorithm and analysis use spectral techniques, and therefore, we setup the following notation.

• 0 ≤ λ1 ≤ . . . ≤ λn ≤ 2 are the eigenvalues of L, the normalized Laplacean of G. Λ is the diagonal
matrix of these eigenvalues in ascending order.

• (v1, . . . , vn) is an orthonormal basis of eigenvectors of L, with Lvi = λivi for all i. V ∈ RVG×[n]

is the matrix whose columns are the orthonormal eigenvectors of L arranged in increasing order of
eigenvalues. Thus, LV = V Λ.

• Observe that each vi is also an eigenvector of M , with eigenvalue 1− λi
2 . Σ is the diagonal matrix of

the eigenvalues of M in descending order. Then Σ = I − Λ/2 and MV = V Σ.

• For a vertex a ∈ VG, 1a ∈ RVG denotes the indicator of a, that is, the vector which is 1 at a and 0
elsewhere. Fix some total order on VG. For a (multi) set S = {a1, . . . , as} of vertices from VG where
a1, . . . , as are sorted, we abuse notation and also denote by S the VG × s matrix whose ith column is
1ai .

• For a symmetric matrix B, µh(B) (resp. µmax(B) µmin(B)) denotes the hth largest (resp. maximum,
minimum) eigenvalue of B.

Claim 1. Let V ∈ RVG×[n] be the matrix whose columns are the orthonormal eigenvectors of M arranged in
descending order of eigenvalues. Let Σ denote the diagonal matrix of the eigenvalues of M . Then

V >D−
1
2M = ΣV >D−

1
2 and, M>D−

1
2V = D−

1
2V Σ.
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Proof. Notice that for each vi, we can write v>i D
− 1

2M as v>i D
− 1

2 (D
1
2MD−

1
2 ) = v>i MD−

1
2 = (1−λi

2 )v>i D
− 1

2 .

Hence, v>i D
− 1

2 is a left eigenvector of M with eigenvalue 1− λi
2 . Similarly, D−

1
2 vi is a right eigenvector of

M> with eigenvalue 1− λi
2 . Then we have V >D−

1
2M = ΣV >D−

1
2 and M>D−

1
2V = D−

1
2V Σ.

We will use the following standard results on matrix norms and eigenvalues.

Lemma 1. Frobenius norm ‖·‖F (resp. spectral norm µmax(·)) is submultiplicative on all (resp. positive
semidefinite) matrices. That is, for any two m × m (positive semidefinite) matrices A and B, ‖AB‖F ≤
‖A‖ · ‖B‖ (resp. µmax(AB) ≤ µmax(A) · µmax(B)).

The following is a result from [HJ90] (Theorem 1.3.20 on page 53).

Lemma 2. For any m× n matrix A and any n×m matrix B, the multisets of nonzero eigenvalues of AB
and BA are equal. In particular, if one of AB and BA is positive semidefinite, then µh(AB) = µh(BA).

Lemma 3 (Weyl’s Inequality). Let A and E be symmetric m × m matrices. Then for all i = 1, . . . ,m,
µi(A) + µmin(E) ≤ µi(A+ E) ≤ µi(A) + µmax(E).

The next linear algebraic lemma will be useful in our analysis. The (simple) proof is given in Appendix A.

Lemma 4. Let A be an m × n matrix, V be a m × p matrix with orthonormal columns, and U be a n × q
matrix with orthonormal columns. Then for all h = 1, . . . , n,

1. µh(A>A) ≥ µh(A>V V >A).

2. µh(A>A) ≥ µh(U>A>AU).

Lemma 5 (Courant-Fischer). Let A be a symmetric n × n matrix with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn If
Vk denotes the set of subspaces of Rn of dimension k, then

λk = max
W∈Vk

min
x∈W,w 6=0

x>Ax

x>x
.

Lemma 6 (Gershgorin Circle Theorem). Let Q be a n × n matrix, with entries qij. For i ∈ [n], let
Ri =

∑
j 6=i |qij | be the sum of the absolute values of the non-diagonal entries in the i-th row. Let D(qii, Ri)

be the closed disc centered at qii with radius Ri. Such a disc is called a Gershgorin disc. Every eigenvalue
of Q lies within at least one of the Gershgorin discs D(qii, Ri).

3 Algorithm for PartitionTesting

The goal of this section is to present an algorithm for the PartitionTesting problem, analyze it, and hence,
prove Theorem 1. We restate this theorem here for the reader’s convenience, and its proof appears at the
end of Section 3.2.
Theorem 1 (restated). Suppose ϕout ≤ 1

480ϕ
2
in. Then there exists a randomized algorithm for Parti-

tionTesting (k, ϕin, ϕout, β) which gives the correct answer with probability at least 2/3, and which makes

poly(1/ϕin) · poly(k) · poly(1/β) · poly log(m) ·m1/2+O(ϕout/ϕ
2
in) queries on graphs with m edges.

Towards proving this theorem, we first make the following simplifying assumption. We assume that we
have the following oracle at our disposal: the oracle takes a vertex a as input, and returns D−

1
2M t1a, where

D is the diagonal matrix of the vertex degrees, M is the transition matrix of the lazy random walk associated
with the input graph, and 1a is the indicator vector of a. We first present and analyze, in Section 3.1, an
algorithm for PartitionTesting which makes use of this oracle. Following this, in Section 3.2, we show how
the oracle can be (approximately) simulated, and thereby, get an algorithm for PartitionTesting.

We remark that our algorithms use the value of vol(VG), which is not available directly through the access
model described in Section 1.1. However, by the result of [Ses15], it is possible to approximate the value of
vol(VG) with an arbitrarily small multiplicative error using Õ(

√
|VG|) queries.
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3.1 The algorithm under an oracle assumption

Let G = (VG, EG) be a graph and let A be its adjacency matrix. Recall that in Definition 7 we associated

with such a graph the random walk given by the transition matrix M = I+AD−1

2 . That is, from any vertex,
the walk takes each edge incident on the vertex with probability 1

2·deg(v) , and stays at the same vertex with

probability 1
2 . Fix t, the length of the random walk. For this section, we assume that we have the following

oracle at our disposal: the oracle takes a vertex a ∈ VG as input, and returns D−
1
2M t1a. Our algorithm

for PartitionTesting is given by Algorithm 2 called PartitionTest. The goal of this section is to prove
guarantees about this algorithm, as stated in the following theorem.

Theorem 7. Suppose ϕ2
in > 480ϕout. For every graph G, integer k ≥ 1, and β ∈ (0, 1),

1. If G is (k, ϕin)-clusterable (YES case), then PartitionTest(G, k, ϕin, ϕout, β) accepts.

2. If G is (k, ϕout, β)-unclusterable (NO case), then PartitionTest(G, k, ϕin, ϕout, β) rejects with prob-
ability at least 2

3 .

Algorithm 1 Estimate(G, k, s, t, η)

1: procedure Estimate(G, k, s, t, η)
2: Sample s vertices from VG independently and with probability proportional to the degree of the

vertices at random with replacement using sampler(G, η) (See Lemma 7). Let S be the multiset of
sampled vertices.

3: Compute D−
1
2M tS using the oracle.

4: Return µk+1((D−
1
2M tS)>(D−

1
2M tS)).

Algorithm 2 PartitionTest(G, k, ϕin, ϕout, β)

1: procedure PartitionTest(G, k, ϕin, ϕout, β) . Need: ϕ2
in > 480ϕout

2: η := 0.5.
3: s := 1600(k + 1)2 · ln(12(k + 1)) · ln(vol(VG))/(β(1− η)).
4: c := 20

ϕ2
in

, t := c ln(vol(VG)) . Observe: c > 0.

5: µthres := 1
2 ·

8(k+1) ln(12(k+1))
β·(1−η) × vol(VG)−1−120cϕout .

6: if Estimate(G, k, s, t, η) ≤ µthres then
7: Accept G.
8: else
9: Reject G.

Algorithm PartitionTest calls the procedure Estimate given by Algorithm 1, compares the value
returned with a threshold, and then decides whether to accept or reject. Procedure Estimate needs to draw
several samples of vertices, where each vertex of the input graph is sampled with probability proportional
to its degree. This, by itself, is not allowed in the query model under consideration defined in Section 1.1.
Therefore, procedure Estimate makes use of the following result by Eden and Rosenbaum to (approximately)
sample vertices with probabilities proportional to degree.

Lemma 7 (Corollary 1.5 of [ER18]). Let G = (VG, EG) be an arbitrary graph, and η > 0. Let D denote the

degree distribution of G (i.e., D(v) = deg(v)
vol(G)). Then there exists an algorithm, denoted by sampler(G, η),

that with probability at least 2
3 produces a vertex v sampled from a distribution P over VG, and outputs “Fail”

otherwise. The distribution P is such that for all v ∈ VG,

|P(v)−D(v)| ≤ η · D(v).

The algorithm uses Õ

(
|VG|√
η·vol(VG)

)
vertex, degree and neighbor queries.
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The proof of Theorem 7 relies on the following guarantees about the behavior of the algorithm in the YES
case, and the NO case respectively, whose proofs are given in Section 3.1.1 and Section 3.1.2 respectively.

Theorem 8. Let ϕin > 0 and integer k ≥ 1. Then for every (k, ϕin)-clusterable graph G = (VG, EG) (see
definition 2), with minv∈VG deg(v) ≥ 1 the following holds:

Estimate(G, k, s, t, η) ≤ s ·
(

1− ϕ2
in

4

)2t

.

Theorem 9. Let ϕout > 0, β ∈ (0, 1), and integer k ≥ 1. Let

s = 1600(k + 1)2 · ln(12(k + 1)) · ln(vol(VG))/(β · (1− η)).

Then for every (k, ϕout, β)-unclusterable graph G = (VG, EG) (see definition 2), with minv∈VG deg(v) ≥ 1,
the following holds with probability at least 2

3 .

Estimate(G, k, s, t, η) ≥ 8(k + 1) ln(12(k + 1))

β · (1− η) · vol(VG)
× (1− 30ϕout)

2t.

Proof of Theorem 7. Let t = c ln(vol(VG)) for c = 20
ϕ2

in
. We call the procedure Estimate with

s = 1600(k + 1)2 · ln(12(k + 1)) · ln(vol(VG))/(β · (1− η)),

and t = c ln(vol(VG)). In the YES case, by Theorem 8, Estimate returns a value at most

s ·
(

1− ϕ2
in

4

)2t

≤ s · exp

(
−ϕ

2
int

2

)
= s · exp

(
−ϕ

2
inc ln(vol(VG))

2

)
=

1600(k + 1)2 · ln(12(k + 1)) · ln(vol(VG))

β · (1− η)
× vol(VG)−c

ϕ2
in
2

≤ 1

2
· 8(k + 1) ln(12(k + 1))

β · (1− η)
× vol(VG)2−cϕ

2
in
2 .

In the last inequality we use the fact that k + 1 ≤ vol(VG), and |VG| is large enough to insure that
200 ln(vol(VG)) ≤ vol(VG). In the NO case, by Theorem 9, with probability at least 2

3 , Estimate returns a
value at least

8(k + 1) ln(12(k + 1))

β · (1− η) · vol(VG)
× (1− 30ϕout)

2t ≥ 8(k + 1) ln(12(k + 1))

β · (1− η) · vol(VG)
× exp (−120ϕoutc ln(vol(VG)))

≥ 1

2
· 8(k + 1) ln(12(k + 1))

β · (1− η)
× vol(VG)−1−120cϕout .

Since ϕ2
in > 480ϕout, the value of c = 20

ϕ2
in

, chosen in PartitionTest is such that 2− cϕ
2
in

2 < −1− 120cϕout.

Therefore for |VG| large enough, the upper bound on the value returned by Estimate in the YES case is

less than µthres = 1
2 ·

8(k+1) ln(12(k+1))
β·(1−η) × vol(VG)−1−120cϕout , which is less than the lower bound on the value

returned by Estimate in the NO case.

3.1.1 Proof of Theorem 8 (the YES case)

The main result of this section is a proof of Theorem 8, restated below for convenience of the reader:
Theorem 8 (Restated) Let ϕin > 0 and integer k ≥ 1. Then for every (k, ϕin)-clusterable graph G =
(VG, EG) (see definition 2), with minv∈VG deg(v) ≥ 1 the following holds:

Estimate(G, k, s, t, η) ≤ s ·
(

1− ϕ2
in

4

)2t

.

Consider the YES case, where the vertices of G can be partitioned into h subsets with C1, . . . , Ch for some
h ≤ k, such that for each i, φG(Ci) ≥ ϕin. We are interested in bounding µk+1((D−

1
2M tS)>(D−

1
2M tS))

from above.
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Lemma 8. Let ϕin > 0, integer k ≥ 1, and G = (VG, EG) be a (k, ϕin)-clusterable graph (see definition 2),
with minv∈VG deg(v) ≥ 1. Let L be its normalized Laplacian matrix, and M be the transition matrix of the
associated random walk. Let S be a (multi)set of s vertices of G. Then

µk+1((D−
1
2M tS)>(D−

1
2M tS)) ≤ s ·

(
1− λk+1

2

)2t

,

where λk+1 is the (k + 1)-st smallest eigenvalue of L.

Proof. Recall from Section 2 that M = D
1
2MD−

1
2 , hence, M t = D

1
2M

t
D−

1
2 . Thus we can write

µk+1((D−
1
2M tS)>(D−

1
2M tS)) = µk+1((D−

1
2D

1
2MD−

1
2S)>(D−

1
2D

1
2MD−

1
2S))

= µk+1(S>D−
1
2M

2t
D−

1
2S).

Recall from Section 2 that 1 − λ1

2 ≥ · · · ≥ 1 − λn
2 are the eigenvalues of M , Σ is the diagonal matrix

of these eigenvalues in descending order, and V is the matrix whose columns are orthonormal eigenvectors

arranged in descending order of their eigenvalues. We have M
2t

= V Σ2tV >. Let Σ1:k be n × n diagonal
matrix with first k entries 1 − λ1

2 ≥ · · · ≥ 1 − λk
2 and the rest zero and let Σk+1:n denote n × n diagonal

matrix with first k entries zero and rest 1− λk+1

2 ≥ · · · ≥ 1− λn
2 . We have Σ2t = Σ2t

1:k + Σ2t
k+1:n, thus we get

µk+1((D−
1
2M tS)>(D−

1
2M tS)) = µk+1(S>D−

1
2M

2t
D−

1
2S)

= µk+1(S>D−
1
2 (V Σ2tV >)D−

1
2S)

= µk+1(S>D−
1
2V (Σ2t

1:k + Σ2t
k+1:n)V >D−

1
2S)

≤ µk+1(S>D−
1
2V Σ2t

1:kV
>D−

1
2S) + µmax(S>D−

1
2V Σ2t

k+1:nV
>D−

1
2S)

The last inequality follows from Lemma 3. Here µk+1(S>D−
1
2V Σ2t

1:kV
>D−

1
2S) = 0, because the rank of

Σ2t
1:k is k. We are left to bound µmax(S>D−

1
2V Σ2t

k+1:nV
>D−

1
2S). By Lemmas 2 and 1, we have,

µmax(S>D−
1
2V Σ2t

k+1:nV
>D−

1
2S)

= µmax(D−
1
2V Σ2t

k+1:nV
>D−

1
2SS>) (By Lemma 2)

≤ µmax(D−
1
2V Σ2t

k+1:nV
>D−

1
2 ) · µmax(SS>) (By Lemma 1)

= µmax(V Σ2t
k+1:nV

>D−1) · µmax(SS>) (By Lemma 2)

≤ µmax(V Σ2t
k+1:nV

>) · µmax(SS>) · µmax(D−1) (By Lemma 1)

= µmax(Σ2t
k+1:nV

>V ) · µmax(SS>) · µmax(D−1) (By Lemma 2)

= µmax(Σ2t
k+1:n) · µmax(SS>) · µmax(D−1) (Since V >V = I)

Next, observe that SS> ∈ N × N is a diagonal matrix whose (a, a)th entry is the multiplicity of vertex a
in S. Thus, µmax(SS>) is the maximum multiplicity over all vertices, which is at most s. Also notice that

µmax(D−1) = maxv∈VG
1

deg(v) ≤ 1, and µmax(Σ2t
k+1:n) = (1− λk+1

2 )2t. Thus we get,

µk+1((D−
1
2M tS)>(D−

1
2M tS)) ≤ µmax(S>D−

1
2V Σ2t

k+1:nV
>D−

1
2S) ≤ s ·

(
1− λk+1

2

)2t

.

Next, we bound λk+1 from below. For this, we prove a lemma that can be seen as a strengthening of
Lemma 5.2 of [CPS15b]. Let us first recall Cheeger’s inequality that we use later in the proof of Lemma 10.

Lemma 9 (Cheeger’s inequality). For a general graph G, let L denote the normalized Laplacian of G, and
λ2 be the second smallest eigenvalue of L. Then

φ(G)2

2
≤ λ2 ≤ 2φ(G).
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Lemma 10. Let G be any graph which is (k, ϕin)-clusterable. Let L be its normalized Laplacian matrix, and

λk+1 be the (k + 1)st smallest eigenvalue of L. Then λk+1 ≥ ϕ2
in

2 .

Proof. Let C1, . . . , Ch be a partition of VG which achieves φG(Ci) ≥ ϕ for all i, and h ≤ k. Let Gin be the
graph consisting of edges of G with endpoints in the same cluster Ci for some i. Let Gout be the graph
consisting of edges of G with endpoints in different clusters. Let D, Din, and Dout be the diagonal matrices
of the degrees of the vertices in G, Gin, and Gout respectively, so that D = Din +Dout. Let A, Ain, and Aout

be the adjacency matrices of G, Gin, and Gout respectively, so that A = Ain +Aout. Recall that λk+1 is the
(k + 1)st eigenvalue of the the normalized Laplacian L. Observe that,

L = I −A = D−
1
2 (D −A)D−

1
2 = D−

1
2 (Din −Ain)D−

1
2 +D−

1
2 (Dout −Aout)D

− 1
2

Let λin
k+1 be the (k+1)st smallest eigenvalue of D−

1
2 (Din−Ain)D−

1
2 and λout

1 be the minimum eigenvalue

of D−
1
2 (Dout−Aout)D

− 1
2 . Then by Lemma 3, λk+1 ≥ λin

k+1 +λout
1 . Observe that λout

1 ≥ 0, since D−
1
2 (Dout−

Aout)D
− 1

2 is positive semi-definite. Therefore, it is sufficient to lower bound λin
k+1.

Let graph G′in is obtained from Gin by increasing the degree of every a ∈ VG by D(aa) − Din(aa), by
adding self-loops. Let A′in, and L′in be the adjacency matrix and the normalized Laplacian of Gin respectively.

Observe that D−
1
2 (Din −Ain)D−

1
2 = D−

1
2 (D −A′in)D−

1
2 = L′in.

Consider the graph G′in. It is composed of h disconnected components, each of which has internal
expansion ϕin. Thus, by applying Cheeger’s inequality to each component, we get that, the second smallest

eigenvalue of the normalized Laplacian of each component is at least
ϕ2

in

2 . Now the set of eigenvalues of L′in
is the multi-union of the sets of eigenvalues of the components. Thus, we have λin

1 = · · · = λin
h = 0 and

ϕ2
in

2 ≤ λ
in
h+1 ≤ . . . ≤ λin

k+1. This implies λk+1 ≥ ϕ2
in

2 , as required.

Proof of Theorem 8. Follows from Lemma 8 and Lemma 10.

3.1.2 Proof of Theorem 9 (the NO case)

The main result of this section is a proof of Theorem 9, restated below for convenience of the reader:
Theorem 9 (Restated) Let ϕout > 0, β ∈ (0, 1), and integer k ≥ 1. Let

s = 1600(k + 1)2 · ln(12(k + 1)) · ln(vol(VG))/(β · (1− η)).

Then for every (k, ϕout, β)-unclusterable graph G = (VG, EG) (see definition 2), with minv∈VG deg(v) ≥ 1,
the following holds with probability at least 2

3 .

Estimate(G, k, s, t, η) ≥ 8(k + 1) ln(12(k + 1))

β · (1− η) · vol(VG)
× (1− 30ϕout)

2t.

Consider the NO case, where the vertex set of G contains k + 1 subsets C1, . . . , Ck+1 of volume at
least β

k+1vol(VG) each, such that for each i, φGVG(Ci) ≤ ϕout. We are interested in bounding the quantity

µk+1((D−
1
2M tS)>(D−

1
2M tS)) from below. Let θ be a large enough absolute constant (say θ = 60). Let h

be the largest index such that λh < θϕout.
Recall that (v1, . . . , vn) is an orthonormal basis of eigenvectors of L. V ∈ RVG×[n] is the matrix whose

columns are the orthonormal eigenvectors of L arranged in increasing order of eigenvalues. Let Ph = V1:hV
>
1:h

and P⊥h = Vh+1:nV
>
h+1:n, so that for any vector v ∈ RVG , Phv is the projection of v onto the span of

{v1, . . . , vh}, and P⊥h v is its projection on the span of {vh+1, . . . , vn}, that is, the orthogonal complement of

the span of {v1, . . . , vh}. Also, observe that Ph + P⊥h = I, P 2
h = Ph, and (P⊥h )2 = P⊥h . Let P = D−

1
2Ph

and P⊥ = D−
1
2P⊥h . Let U ∈ RVG×[k+1] be the matrix with orthonormal columns, where for a ∈ VG, and

1 ≤ i ≤ k + 1, the (a, i)-th entry of U has
√

deg(a)
vol(Ci)

if a ∈ Ci, and zero otherwise.

Lemma 11. Let G = (VG, EG) be a graph with minv∈VG deg(v) ≥ 1, and with normalized Laplacian L
(Definition 6), and M be the transition matrix of the random walk associated with G (Definition 7). Let
C1 . . . , Ck+1 be pairwise disjoint subsets of vertices of G. Let U ∈ RVG×[k+1] be the matrix with orthonormal
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columns, where for a ∈ VG, and 1 ≤ i ≤ k + 1, the (a, i)-th entry of U has
√

deg(a)
vol(Ci)

if a ∈ Ci, and zero

otherwise. For θ > 0 and ϕout ≥ 0, let h be the largest index such that λh, the hth smallest eigenvalue of L,
is less than θϕout. Let P = D−

1
2Ph. Let S be any multiset of vertices. (Recall our abuse of notation from

Section 2.) Then

µk+1((D−
1
2M tS)>(D−

1
2M tS)) ≥

(
1− θϕout

2

)2t

· min
z∈Rk+1, ‖z‖2=1

‖S>PUz‖22.

Proof. We can write µk+1((D−
1
2M tS)>(D−

1
2M tS)) as

µk+1((D−
1
2M tS)>(D−

1
2M tS)) = µk+1((M tS)>D−1(M tS))

≥ µk+1((M tS)>D−
1
2V1:hV

>
1:hD

− 1
2 (M tS)) By Lemma 4

= µk+1((M tS)>D−
1
2V1:hV

>
1:hV1:hV

>
1:hD

− 1
2 (M tS)) Since V >1:hV1:h = I

= µk+1(S>M t>PP>M tS).

Recall from Section 2 that v>i D
− 1

2 is a left eigenvector of M , and D−
1
2 vi is a right eigenvector of M> with

eigenvalue 1− λi
2 . Thus we can write V >1:hD

− 1
2M t = Σt1:hV

>
1:hD

− 1
2 and M t>D−

1
2V1:h = D−

1
2V1:hΣt1:h, where

Σt1:h is a h× h diagonal matrix with entries (1− λ1

2 )t, . . . , (1− λh
2 )t. Observe that

(M t)>P = (M t)>D−
1
2V1:hV

>
1:h = D−

1
2V1:hΣt1:hV

>
1:h

Thus we have,

µk+1((D−
1
2M tS)>(D−

1
2M tS)) ≥ µk+1(S>M t>PP>M tS)

= µk+1(S>D−
1
2V1:hΣt1:hV

>
1:hV1:hΣt1:hV

>
1:hD

− 1
2S)

= max
U
{ min

y
{‖V1:hΣt1:hV

>
1:hD

− 1
2Sy‖22 |y ∈ U, ‖y‖2 = 1} |dim(U) = k + 1},

where the last equality follows from Courant-Fischer min-max principle (Lemma 5). Observe that Σt1:h is a
h× h diagonal matrix with entries (1− λ1

2 )t, . . . , (1− λh
2 )t, hence

‖V1:hΣt1:hV
>
1:hD

− 1
2Sy‖22 ≥

(
1− λh

2

)2t

· ‖V1:hV
>
1:hD

− 1
2Sy‖22 =

(
1− λh

2

)2t

· ‖P>Sy‖22

Notice that by Courant-Fischer min-max principle (Lemma 5) we have

µk+1(S>PP>S) = max
U
{ min

y
{‖P>Sy‖22 |y ∈ U, ‖y‖2 = 1} |dim(U) = k + 1}.

Let U∗ be the subspace with dim(U∗) = k + 1 which maximizes miny{‖P>Sy‖22 |y ∈ U, ‖y‖2 = 1}. Thus
we get,

µk+1((D−
1
2M tS)>(D−

1
2M tS)) = max

U
{ min

y
{‖V1:hΣt1:hV

>
1:hD

− 1
2Sy‖22 |y ∈ U, ‖y‖2 = 1} |dim(U) = k + 1}

≥ min
y
{‖V1:hΣt1:hV

>
1:hD

− 1
2Sy‖22 |y ∈ U∗, ‖y‖2 = 1}

≥ min
y

{(
1− λh

2

)2t

· ‖P>Sy‖22 |y ∈ U∗, ‖y‖2 = 1

}

=

(
1− λh

2

)2t

·min
y
{‖P>Sy‖22 |y ∈ U∗, ‖y‖2 = 1}

=

(
1− λh

2

)2t

· µk+1(S>PP>S).
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Therefore we have

µk+1(
(
D−

1
2M tS)>(D−

1
2M tS)

)
≥
(

1− λh
2

)2t

· µk+1(S>PP>S)

≥
(

1− λh
2

)2t

· µk+1(S>PUU>P>S) By Lemma 4

=

(
1− λh

2

)2t

· µk+1(U>P>SS>PU) By Lemma 2

=

(
1− λh

2

)2t

· µmin(U>P>SS>PU) Since U>P>SS>PU is k + 1× k + 1 matrix

≥
(

1− λh
2

)2t

· min
z∈Rk+1, ‖z‖2=1

‖S>PUz‖22

≥
(

1− θϕout

2

)2t

· min
z∈Rk+1, ‖z‖2=1

‖S>PUz‖22.

Our goal is to prove that by selecting a random (multi)set S of vertices of a “reasonable” size, with at

least a constant probability (say 2/3), for all z ∈ Rk+1 with ‖z‖2 = 1, we have
∥∥S>PUz∥∥2

2
is “large”.

Lemma 12. Let G = (VG, EG) be a graph with minv∈VG deg(v) ≥ 1, and with normalized Laplacian L
(Definition 6). Let C1 . . . , Ck+1 be pairwise disjoint subsets of vertices of G such that φGVG(Ci) ≤ ϕout for

all i. Let U ∈ RVG×[k+1] be the matrix with orthonormal columns, where for a ∈ VG, and 1 ≤ i ≤ k + 1, the

(a, i)-th entry of U has
√

deg(a)
vol(Ci)

if a ∈ Ci, and zero otherwise. Then for every z ∈ Rk+1 with ‖z‖22 = 1,

z>U>LUz ≤ 2ϕout

.

Proof. We have, z>U>LUz = z>U>Uz−z>U>AUz = 1−z>U>AUz, where A is the normalized adjacency
matrix of G, since U>U = I. We will prove that every eigenvalue of U>AU lies in [1 − 2ϕout, 1], and this
implies the claim.

Let mij denote the number of edges between Ci and Cj , and m′i denote the number of edges between Ci
and VG \

⋃k+1
j=1 Cj . Then observe that

(U>AU)ij = u>i Auj =
mij√

vol(Ci) · vol(Cj)
.

Thus, U>AU = W−1/2HW−1/2, where W = diag(vol(C1), . . . , vol(Ck+1)), and H is given by Hij = mij .
By Lemma 2, the eigenvalues of W−1/2HW−1/2 are same as the eigenvalues of W−1H. Therefore, it is
sufficient to prove that the eigenvalues of W−1H lie in [1− 2ϕout, 1].

We know that for all i, φGVG(Ci) ≤ ϕout, and thus, for all i, m′i +
∑
j 6=imij ≤ ϕout · vol(Ci), and

mii ≥ (1− ϕout)vol(Ci). Therefore W−1H is the (k + 1)× (k + 1) matrix such that for all i,

(W−1H)ii =
mii

vol(Ci)
≥ 1− ϕout

and ∑
j 6=i

(W−1H)ij =
1

vol(Ci)

∑
j 6=i

mij ≤ ϕout.

Thus, for every i,

(W−1H)ii +
∑
j 6=i

(W−1H)ij =
1

vol(Ci)

k+1∑
j=1

mij ≤ 1, (3)
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and
(W−1H)ii −

∑
j 6=i

(W−1H)ij ≥ 1− 2ϕout. (4)

From (3) and (4), and by using the Gershgorin circle theorem (Lemma 6), we conclude that every eigenvalue
of W−1H lies within [1− 2ϕout, 1], as required.

Lemma 13. Let G = (VG, EG) be a graph with minv∈VG deg(v) ≥ 1, and with normalized Laplacian L
(Definition 6). Let C1 . . . , Ck+1 be pairwise disjoint subsets of vertices of G such that φGVG(Ci) ≤ ϕout for

all i. Let U ∈ RVG×[k+1] be the matrix with orthonormal columns, where for a ∈ VG, and 1 ≤ i ≤ k + 1, the

(a, i)-th entry of U has
√

deg(a)
vol(Ci)

if a ∈ Ci, and zero otherwise. Let z ∈ Rk+1 with ‖z‖22 = 1. For a constant

θ > 0, let h be the largest index such that λh, the h-th smallest eigenvalue of L, is less than θϕout. Then∥∥P⊥h Uz∥∥2

2
≤ 2

θ

.

Proof. Recall that 0 = λ1 ≤ · · · ≤ λn are the eigenvalues of L and v1, . . . , vn are the corresponding orthonor-
mal eigenvectors forming a basis of RVG . Write Uz ∈ RVG in the eignebasis as Uz =

∑n
i=1 αivi. Then we

have,

(Uz)>LUz =

(
n∑
i=1

αiv
>
i

)
L

(
n∑
i=1

αivi

)
=

n∑
i=1

λiα
2
i ≥

n∑
i=h+1

λiα
2
i ≥ θϕout

n∑
i=h+1

α2
i . (5)

On the other hand, by Lemma 12, we have

z>U>LUz ≤ 2ϕout. (6)

Putting (5) and (6) together, we get θϕout

∑n
i=h+1 α

2
i ≤ 2ϕout, and thus

∑n
i=h+1 α

2
i ≤ 2

θ . Recall that

P⊥h = V >h+1:nVh+1:n, and therefore,

∥∥P⊥h Uz∥∥2

2
=

∥∥∥∥∥
n∑
i=1

αiP
⊥
h vi

∥∥∥∥∥
2

2

=

∥∥∥∥∥
n∑

i=h+1

αivi

∥∥∥∥∥
2

2

=

n∑
i=h+1

α2
i ≤

2

θ
.

The next two lemmas concern random samples of vertices S′, and prove, for any fixed z, a lower bound
on
∥∥S′>PUz∥∥

2
as a function of the size of S′.

Lemma 14. Let C1, . . . , Ck+1 be subsets of some universe VG, such that for all j, vol(Cj) ≥ β
k+1vol(VG) for

some β > 0. Let η ∈ (0, 1), and

s′ =
200(k + 1) ln(12(k + 1))

β · (1− η)
.

Let S′ be a multiset of s′ independent random vertices in VG, sampled from distribution P over VG such that

for all v ∈ VG,
∣∣∣P(v)− deg(v)

vol(G)

∣∣∣ ≤ η · deg(v)
vol(G) . Then with probability at least 11

12 , for every 1 ≤ j ≤ k + 1,

|S′ ∩ Cj | ≥
9

10
· vol(Cj)

vol(VG)
s′(1− η).

Proof. For v ∈ VG, and 1 ≤ r ≤ s′, let Xr
v be a random variable which is 1 if the r-th sampled vertex is v,

and 0 otherwise. Thus E[Xr
v ] = P(v) ≥ (1− η) deg(v)

vol(VG) . Observe that |S′ ∩ Cj | is a random variable defined

as
∑s′

r=1

∑
v∈Cj X

r
v , where its expectation is given by

E[|S′ ∩ Cj |] =

s′∑
r=1

∑
v∈Cj

E[Xr
v ] ≥ s′(1− η)

vol(Cj)

vol(VG)
≥ s′(1− η)

β

k + 1
.
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Notice that the random variables Xr
v are negatively associated, since for each r,

∑
v∈VG X

r
v = 1. Therefore,

by Chernoff bound,

Pr

[
|S′ ∩ Cj | <

9s′(1− η)

10
· vol(Cj)

vol(VG)

]
≤ exp

(
−s
′(1− η)

200
· β

k + 1

)
.

By union bound,

Pr

[
∃j: |S′ ∩ Cj | <

9s′(1− η)

10
· vol(Cj)

vol(VG)

]
≤ (k + 1) · exp

(
−s
′(1− η)

200
· β

k + 1

)
≤ 1

12
,

by our choice of s′.

Lemma 15. Let G = (VG, EG) be a graph with minv∈VG deg(v) ≥ 1, and with normalized Laplacian L
(Definition 6). Let C1 . . . , Ck+1 be pairwise disjoint subsets of vertices of G of volume at least β

k+1vol(VG)

each, such that φGVG(Ci) ≤ ϕout for all i. Let U ∈ RVG×[k+1] be the matrix with orthonormal columns, where

for a ∈ VG, and 1 ≤ i ≤ k + 1, the (a, i)-th entry of U has
√

deg(a)
vol(Ci)

if a ∈ Ci, and zero otherwise. Let

z ∈ Rk+1 with ‖z‖22 = 1. For θ = 60, let h be the largest index such that λh, the hth smallest eigenvalue of

L, is less than θϕout. Let P = D−
1
2Ph and P⊥ = D−

1
2P⊥h . Let 0 < η ≤ 1

2 , and

s′ =
200(k + 1) ln(12(k + 1))

β · (1− η)
.

Let S′ be a multiset of s′ independent random vertices in VG, sampled from distribution P over VG such that

for all v ∈ VG,
∣∣∣P(v)− deg(v)

vol(G)

∣∣∣ ≤ η · deg(v)
vol(G) . Then

∥∥S′>PUz∥∥
2
≥ 1

2

√
s′

vol(VG) , with probability at least 7
12 .

Proof. By triangle inequality
∥∥S′>PUz∥∥

2
≥
∥∥∥S′>D− 1

2Uz
∥∥∥

2
−
∥∥S′>P⊥Uz∥∥

2
. Observe that the vector D−

1
2Uz

takes a uniform value µj =
zj√

vol(Cj)
on each set Cj . By Lemma 14, with probability at least 11

12 , we have

|S′ ∩ Cj | ≥ 9s′(1−η)
10 · vol(Cj)

vol(VG) , for all j. In this event, we have,∥∥∥S′>D− 1
2Uz

∥∥∥2

2
≥
k+1∑
j=1

9s′(1− η)

10
· vol(Cj)

vol(VG)
· µ2

j

=
9

10
· s
′(1− η)

vol(VG)

k+1∑
j=1

vol(Cj) ·
z2
j

vol(Cj)

=
9

10
· s
′(1− η)

vol(VG)
· ‖z‖22

=
9

10
· s
′(1− η)

vol(VG)
, (7)

where the last equality follows because z is a unit vector.
Let y = P⊥h Uz. By Lemma 13, we have ‖y‖22 ≤

2
θ . Note that P⊥Uz = D−

1
2P⊥h Uz = D−

1
2 y. Thus we

have

ES′
[∥∥S′>P⊥Uz∥∥2

2

]
= ES′

[∥∥∥S′>D− 1
2P⊥h Uz

∥∥∥2

2

]
= s′ ·

∑
v∈VG

P(v) · y(v)2

deg(v)

≤ s′ ·
∑
v∈VG

(1 + η) · deg(v)

vol(VG)
· y(v)2

deg(v)

=
s′(1 + η)

vol(VG)
‖y‖22

≤ 2

θ
· s
′(1 + η)

vol(VG)
.
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Thus, by Markov’s inequality, with probability at least 2
3 ,

∥∥S′>P⊥Uz∥∥2

2
≤ 3 · E[

∥∥S′>P⊥Uz∥∥2

2
] ≤ 6

θ
· s′

vol(VG)
=

1

10
· s
′(1 + η)

vol(VG)
, (8)

where we get the last equality by recalling that θ = 60. Putting (7) and (8) together, we get with probability
at least 1− 1

3 −
1
12 = 7

12 ,

∥∥S′>PUz∥∥
2
≥
∥∥∥S′>D− 1

2Uz
∥∥∥

2
−
∥∥S′>P⊥Uz∥∥

2
≥

(√
9(1− η)

10
−
√

(1 + η)

10

)√
s′

vol(VG)
≥ 1

4

√
s′

vol(VG)
.

The above lemma gives a lower bound on
∥∥S′>PUz∥∥

2
which holds with a constant probability. We next

show how we can trade off the lower bound to get a guarantee that holds with probability arbitrarily close
to one.

Lemma 16. Let G = (VG, EG) be a graph with minv∈VG deg(v) ≥ 1, and with normalized Laplacian L
(Definition 6). Let C1 . . . , Ck+1 be pairwise disjoint subsets of vertices of G of volume at least β

k+1vol(VG)

each, such that φGVG(Ci) ≤ ϕout for all i. Let U ∈ RVG×[k+1] be the matrix with orthonormal columns, where

for a ∈ VG, and 1 ≤ i ≤ k + 1, the (a, i)-th entry of U has
√

deg(a)
vol(Ci)

if a ∈ Ci, and zero otherwise. Let

z ∈ Rk+1 with ‖z‖22 = 1. For θ = 60, let h be the largest index such that λh, the hth smallest eigenvalue of

L, is less than θϕout. Let P = D−
1
2Ph and P⊥ = D−

1
2P⊥h . Let 0 < η ≤ 1

2 , and

s =
1600(k + 1)2 · ln(12(k + 1)) · ln(vol(VG))

β · (1− η)
.

Let S′ be a multiset of s′ independent random vertices in VG, sampled from distribution P over VG such

that for all v ∈ VG,
∣∣∣P(v)− deg(v)

vol(G)

∣∣∣ ≤ η · deg(v)
vol(G) . Then for τ = 8(k + 1) ln vol(VG), we have

∥∥S>PUz∥∥
2
≥

1
4

√
s

τ ·vol(VG) , with probability at least 1−
(

5
12

)τ
.

Proof. We represent S as a multi-union S = S1 ∪ S2 ∪ . . . Sτ of independently drawn sets containing s′ = s
τ

independent samples each, where

s′ =
s

τ
=

200(k + 1) ln(12(k + 1))

β · (1− η)
.

Using Lemma 15, for any i, Pr

[∥∥S>i PUz∥∥2
≥ 1

4

√
s

τ ·vol(VG)

]
≥ 7

12 . Since the Si’s are independent sets of

samples, Pr

[
∃i
∥∥S>i PUz∥∥2

≥ 1
4

√
s

τ ·vol(VG)

]
≥ 1− ( 5

12 )τ . Therefore with probability at least 1−
(

5
12

)τ
, we

have ∥∥S>PUz∥∥2

2
=
∑
i

∥∥S>i PUz∥∥2

2
≥
(

1

4

√
s

τ · vol(VG)

)2

=
s

16τvol(VG)

Thus, Pr

[∥∥S>PUz∥∥
2
≥ 1

4

√
s

τ ·vol(VG)

]
≥ 1− ( 5

12 )τ .

In the next lemma, we switch the order of quantification and prove that with a constant probability,
a random S achieves a large value for

∥∥S>PUz∥∥
2

for all z of unit norm simultaneously, with constant
probability.

Lemma 17. Let G = (VG, EG) be a graph with minv∈VG deg(v) ≥ 1, and with normalized Laplacian L
(Definition 6). Let C1 . . . , Ck+1 be pairwise disjoint subsets of vertices of G of volume at least β

k+1vol(VG)

each, such that φGVG(Ci) ≤ ϕout for all i. Let U ∈ RVG×[k+1] be the matrix with orthonormal columns, where
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for a ∈ VG, and 1 ≤ i ≤ k + 1, the (a, i)-th entry of U has
√

deg(a)
vol(Ci)

if a ∈ Ci, and zero otherwise. Let

z ∈ Rk+1 with ‖z‖22 = 1. For θ = 60, let h be the largest index such that λh, the hth smallest eigenvalue of

L, is less than θϕout. Let P = D−
1
2Ph and P⊥ = D−

1
2P⊥h . Let 0 < η ≤ 1

2 , and

s =
1600(k + 1)2 · ln(12(k + 1)) · ln(vol(VG))

β · (1− η)
.

Let S′ be a multiset of s′ independent random vertices in VG, sampled from distribution P over VG such that

for all v ∈ VG,
∣∣∣P(v)− deg(v)

vol(G)

∣∣∣ ≤ η · deg(v)
vol(G) . Then with probability at least 2

3 , for all z ∈ Rk+1 with ‖z‖22 = 1,

we have
∥∥S>PUz∥∥

2
≥ 1

5

√
s

τ ·vol(VG) , where τ = 8(k + 1) ln vol(VG).

Proof. Let N be a k+ 1 dimensional δ-net of size (4
δ )k+1 on the Euclidean sphere of radius 1, for some small

enough δ. Let us first explain how to construct such δ-net. Pick y1 of unit norm in Rk+1, and then for every
t ≥ 2 pick yt of unit norm such that ‖yt − yj‖2 ≥ δ for all j = 1, . . . , t − 1, until no such y can be picked.

Note that balls of radius δ
2 centered at the yts are disjoint, and their union belongs to the ball of radius 1+ δ

2

centered at zero. Thus |N | ≤ (1+ δ
2 )k+1

( δ2 )k+1 ≤ ( 4
δ )k+1.

For z ∈ Rk+1 with ‖z‖2 = 1, let N (z), be the closest point to z from N . Using Lemma 16, by
union bound over all points in N we have that with probability at least 1 − ( 5

12 )τ ( 4
δ )k+1, for all y ∈ N ,∥∥S>PUy∥∥

2
≥ 1

4

√
s

τ ·vol(VG) . Therefore, with probability at least 1− ( 5
12 )τ ( 4

δ )k+1, we have for every z ∈ Rk+1

with ‖z‖2 = 1,
∥∥S>PUN (z)

∥∥
2
≥ 1

4

√
s

τ ·vol(VG) .

Observe that∥∥S>PU(z −N (z))
∥∥2

2
=
∥∥S>PU∥∥2

2
· ‖(z −N (z))‖22

≤ µmax(U>P>SS>PU) · δ
≤ µmax(UU>) · µmax(PP>) · µmax(SS>) · δ (By Lemma 2, and Lemma 1)

≤ µmax(PP>) · µmax(SS>) · δ (Since UU> = I)

≤ µmax(VhV
>
h ) · µmax(D−1) · µmax(SS>) · δ (Since PP> = D−

1
2VhV

>
h D

− 1
2 )

Next, observe that SS> ∈ N ×N is a diagonal matrix whose (a, a)th entry is the multiplicity of vertex a
in S. Thus, µmax(SS>) is the maximum multiplicity over all vertices, which is at most s. Also notice that
µmax(D−1) = maxv∈VG

1
deg(v) ≤ 1, and µmax(VhV

>
h ) = 1, since Ph is a projection matrix. Thus we get

∥∥S>PU(z −N (z))
∥∥2

2
≤ s · δ

Therefore, with probability at least 1− ( 5
12 )τ ( 4

δ )k+1, for every z ∈ Rh with ‖z‖2 = 1, we have

∥∥S>PUz∥∥
2
≥
∥∥S>PUN (z)

∥∥
2
−
∥∥S>PU(z −N (z))

∥∥
2
≥ 1

4

√
s

τ · vol(VG)
− s · δ.

By setting δ = 1
20s

√
s

τ ·vol(VG) , we get
∥∥S>PUz∥∥

2
≥ 1

5

√
s

τ ·vol(VG) with probability at least

1−
(

5

12

)τ (
4

δ

)k+1

= 1−
(

5

12

)τ (
80
√
s · τ · vol(VG)

)k+1

.

Observe that τ = 8(k + 1) ln vol(VG) is large enough to ensure that the above probability is at least 2
3 .

Proof of Theorem 9. Follows from Lemma 11 and Lemma 17.
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3.2 Lifting the Oracle Assumption

The goal of this section is to show how we can remove the oracle assumption that we made in Section 3.1,
and get an algorithm for the PartitionTesting problem that fits into the query complexity model, defined
in Section 1.1, that only allows (uniformly random) vertex, degree, and neighbor queries. This will then
establish Theorem 7. The algorithm is presented as a main procedure PartitionTestWithoutOracle
(Algorithm 4) that calls the subroutine EstimateWithoutOracle (Algorithm 3). These two procedures
can be seen as a analogs of the procedures PartitionTest (Algorithm 2) and Estimate (Algorithm 1)
respectively, from Section 3.1.

Algorithm 3 EstimateWithoutOracle(G, k, s, t, σ,R, η)

1: procedure EstimateWithoutOracle(G, k, s, t, σ,R, η)
2: Sample s vertices from N independently and with probability proportional to the degree of the

vertices at random with replacement using sampler(G, η). Let S be the multiset of sampled vertices.
3: r = 192s

√
vol(VG).

4: for Each sample a ∈ S do
5: if `22-norm tester(G, a, σ, r) rejects then return ∞. . High collision probability

6: for Each sample a ∈ S do
7: Run R random walks starting from a, and let qa be the distribution of the t-step random walk

started at a.
8: Let Q be the matrix whose columns are {D− 1

2 qa : a ∈ S}.
9: Return µk+1(Q>Q).

Algorithm 4 PartitionTestWithoutOracle(G, k, ϕin, ϕout, β)

1: procedure PartitionTestWithoutOracle(G, k, ϕin, ϕout, β) . Need: ϕ2
in > 480ϕout

2: η := 0.5
3: s := 1600(k + 1)2 · ln(12(k + 1)) · ln(vol(VG)/(β(1− η)).
4: c := 20

ϕ2
in

, t := c ln(vol(VG)) . Observe: c > 0.

5: σ := 192sk(1+η)
vol(VG) .

6: µthres := 1
2 ·

8(k+1) ln(12(k+1))
β·(1−η) × vol(VG)−1−120cϕout .

7: µerr = 1
3 ·

8(k+1) ln(12(k+1))
β·(1−η) × vol(VG)−1−120cϕout

8: R := max
(

100s2σ1/2

µerr
, 200s4σ3/2

µ2
err

)
.

9: if EstimateWithoutOracle(G, k, s, t, σ,R, η) ≤ µthres then
10: Accept G.
11: else
12: Reject G.

Recall from Definition 7 that with the graph G we associated a random walk, and let M be the transition
matrix of that random walk. For a vertex a of G, denote by pta = M t1a the probability distribution of of a
t step random walk starting from a. Recall that Estimate assumed the existence of an oracle that takes a
vertex a of G as input, and returns D−

1
2M t1a. EstimateWithoutOracle simulates the behavior of the

oracle by running several t-step random walks from a. For any vertex b, the fraction of the random walks
ending in b is taken as an estimate of pta(b) = 1>b M

t1a, the probability that the t-step random walk started

from a ends in b. However, for this estimate to have sufficiently small variance, the quantity ‖D− 1
2 pta‖22

needs to be small enough. To check this, EstimateWithoutOracle uses the procedure `22-norm tester,
whose guarantees are formally specified in the following lemma.

Lemma 18. Let G = (VG, EG). Let a ∈ VG, σ > 0, 0 < δ < 1, and R ≥ 16
√

vol(G)

δ . Let t ≥ 1, and
pta be the probability distribution of the endpoints of a t-step random walk starting from a. There exists an

algorithm, denoted by `22-norm tester(G, a, σ,R), that outputs accept if ‖D− 1
2 pta‖22 ≤ σ

4 , and outputs reject

if ‖D− 1
2 pta‖22 > σ, with probability at least 1− δ. The running time of the tester is O(R · t).
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Our `22-norm tester is a modification of `22-norm tester in [CPS15b]. We defer the proof of this lemma

to Appendix B. The running time of `22-norm tester is independent of σ, since ‖D− 1
2 pta‖22 ≥ 1

vol(G) for all

a ∈ VG. We will use the following definition of a (σ, t)-good vertex for the rest of the section.

Definition 8. We say that a vertex a ∈ VG, is (σ, t)-good if ‖D− 1
2 pta‖22 ≤ σ.

We first claim that for all multisets S containing only (σ, t)-good vertices, with a good probability over the

R random walks, the quantityQ>Q that Algorithm 3 returns is a good approximation to (D−
1
2M tS)>(D−

1
2M tS)

in Frobenius norm.

Lemma 19. Let G = (VG, EG) be a graph. Let 0 < σ ≤ 1 t > 0, µerr > 0, k be an integer, and let S be a
multiset of s vertices, all whose elements are (σ, t)-good. Let

R = max

(
100s2σ1/2

µerr
,

200s4σ3/2

µ2
err

)
.

For each a ∈ S and each b ∈ VG, let qa(b) be the random variable which denotes the fraction out of the R

random walks starting from a, which end in b. Let Q be the matrix whose columns are (D−
1
2 qa)a∈S. Then

with probability at least 49/50, |µk+1(Q>Q)− µk+1((D−
1
2M tS)>(D−

1
2M tS))| ≤ µerr.

The proof of the lemma is given in Appendix B. We now prove that Algorithm 4 indeed outputs a YES
with good probability on a YES instance. For this, we need the following lemma which is a modification of
Lemma 4.3 of [CPS15b], and the proof of this lemma is deferred to Appendix B.

Lemma 20. For all 0 < α < 1, and all G = (VG, EG) which is (k, ϕin)-clusterable, there exists V ′G ⊆ VG

with vol(V ′G) ≥ (1− α)vol(VG) such that for any t ≥ 2 ln(vol(VG))
ϕ2

in
, every u ∈ V ′G is

(
2k

α·vol(VG) , t
)

-good.

Theorem 10. Let ϕin > 0, and integer k ≥ 1. Then for every (k, ϕin)-clusterable graph G = (VG, EG) (see
definition 2), with minv∈VG deg(v) ≥ 1, Algorithm 4 accepts G with probability at least 5

6 .

Proof. If Algorithm 4 outputs a NO one of the following events must happen.

• E1: Some vertex in S is not (σ4 , t)-good.

• E2: All vertices in S are (σ4 , t)-good, but `22-norm tester fails on some vertex.

• E3: All vertices in S are (σ4 , t)-good, and `22-norm tester succeeds on all vertices, but |µk+1(Q>Q)−
µk+1((D−

1
2M tS)>(D−

1
2M tS))| > µerr.

If none of the above happen then Algorithm 3 returns

µk+1(Q>Q) ≤ µk+1((D−
1
2M tS)>(D−

1
2M tS)) + µerr ≤ µyes + µerr < µthres,

and Algorithm 4 accepts.
Recall that we use sampler(G, η) to sample vertices, where η = 1

2 . Apply Lemma 20 with α = 1
24s(1+η) .

Then by the union bound, with probability at least 1 − α · (1 + η) = 1 − 1
24 all the vertices in S are(

48sk(1+η)
vol(VG) , t

)
-good, that is, (σ4 , t)-good, where σ = 192sk

vol(VG) , as chosen in Algorithm 3. Thus, Pr[E1] ≤ 1
24 .

Given that E1 doesn’t happen, by Lemma 8, on any sample, `22-norm tester fails with probability at most
16
√

vol(VG)

r < 1
12s for r = 192s

√
vol(VG), as chosen in Algorithm 3. Thus, with probability at least 1 − 1

12 ,
`22-norm tester succeeds on all the sampled vertices, which implies Pr[E2] ≤ 1

12 . Given that both E1 and
E2 don’t happen, by Lemma 19, with probability at least 49

50 , Algorithm 3 returns a value that is at most

µerr away from µk+1((D−
1
2M tS)>(D−

1
2M tS)). Thus, Pr[E3] ≤ 1

50 . By the union bound, the probability
that Algorithm 4 rejects is at most 1

24 + 1
12 + 1

50 <
1
6 .

Next, we prove that Algorithm 4 indeed returns a NO with good probability on a NO instance.

Theorem 11. Let ϕout > 0, β ∈ (0, 1), and integer k ≥ 1. Then for every (k, ϕout, β)-unclusterable graph
G = (VG, EG) (see definition 2), with minv∈VG deg(v) ≥ 1, Algorithm 4 rejects G with probability at least 4

7 .
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Proof. If the algorithm outputs a YES, then one of the following events must happen.

• E1: Some vertices in S are not (σ, t)-good, but `22-norm tester misses these and passes all vertices.

• E2: All vertices in S are (σ, t)-good, but |µk+1(Q>Q)− µk+1((D−
1
2M tS)>(D−

1
2M tS))| > µerr.

• E3: µk+1((D−
1
2M tS)>(D−

1
2M tS)) < µno = 8(k+1) ln(12(k+1))

β·(1−η) × vol(VG)−1−120cϕout .

If none of the above happen then Algorithm 3 returns

µk+1(Q>Q) ≥ µk+1((D−
1
2M tS)>(D−

1
2M tS))− µerr ≥ µno − µerr > µthres,

and Algorithm 4 rejects.

By Lemma 8, the probability that `22-norm tester passes a bad vertex is at most
16
√

vol(VG)

r < 1
12s

for r = 192s
√

vol(VG), as chosen in Algorithm 3. Thus, Pr[E1] ≤ 1
12 . If all vertices in S are (σ, t)-good,

by Lemma 19, with probability at least 49
50 , Algorithm 3 returns a value that is at most µerr away from

µk+1((D−
1
2M tS)>(D−

1
2M tS)). Thus, Pr[E2] ≤ 1

50 . Finally, by Theorem 9, Pr[E3] ≤ 1
3 . By the union

bound, the probability that Algorithm 4 accepts is at most 1
12 + 1

50 + 1
3 <

3
7

Now we are set to prove Theorem 1.

Proof of Theorem 1. The correctness of the algorithm is guaranteed by Theorems 10 and 11. Since these
theorems give correctness probability that is a constant larger than 1/2, it can be boosted up to 2/3 using
standard techniques (majority of the answers of a sufficiently large constant number of independent runs).
It remains to analyze the query complexity. The running time of the sampler algorithm to sample each

vertex is Õ( |VG|vol(G) ). Hence in total the query complexity of sampling is Õ(s ·
√

vol(G)). For each of the s

sampled vertices, we run `22-norm tester once, followed by R random walks of t steps each. Each call to
the `22-norm tester takes O(rt) = O(st

√
vol(VG)) = O(st

√
m) queries, as guaranteed by Lemma 18. The

random walks from each vertex take O(Rt) time. Thus, the overall query complexity is O(srt+sRt+s
√
m).

Substituting the values of s, r, R, and t as defined in Algorithm 4, and noting that m = vol(VG)/2, we get
the required bound.

4 Lower Bound for the NoisyParities Problem with Applications

Recall the definition of NoisyParities from Section 1, and consider a deterministic algorithm querying T
out of n vertices in an instance. We wish to prove the following lower bound on the number of queries T
needed to get a nontrivial advantage over a random guess.
Theorem 4 (restated). Consider a deterministic algorithm ALG for the NoisyParities problem with
parameters d and ε. Let b = 1/(8 ln d). Suppose ALG makes at most n1/2+δ queries on n vertex graphs,
where δ < min(1/16, bε). Then ALG gives the correct answer with probability at most 1/2 + o(1).

We present the proof of this theorem in Section 4.3, but first we setup some preliminaries here, and then
use this theorem to establish query complexity lower bounds in Section 4.2.

4.1 Preliminaries and notation

4.1.1 Random d-regular Graphs and the Configuration Model

Recall that the NoisyParities problem (Definition 5) has a random d-regular graph generated according to
the configuration model as its underlying graph. The configuration model of Bollobás generates a random
d regular graph G = (V,E) over a set V of n vertices (provided dn is even) as follows. It first generates d
half-edges on each vertex and identifies the set of half-edges with V × [d]. Then in each round, an arbitrary
unpaired half-edge (u, i) of some arbitrary vertex u is picked, and it is paired up with a uniformly random
unpaired half-edge (v, j). This results in the addition of an edge (u, v) to E. This continues until all the
half-edges are paired up. (This might result in self-loops and parallel edges, so G is not necessarily simple.)
The following is known about the expansion of random d-regular graphs generated by the configuration
model [Bol88].
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Fact 1. For d ≥ 3 let η(d) ∈ (0, 1) be such that (1− η(d)) log2(1− η(d)) + (1 + η(d)) log2(1 + η(d)) > 4/d.
Then with probability 1−o(1), a random d-regular graph on n vertices generated from the configuration model
has expansion at least (1− η(d))/2.

Definition 9. Given a graph G = (V,E) and a vertex v ∈ V , BG(v, r) denotes the ball centered at v with
radius r, that is, the set of vertices which are at a distance at most r from v in G.

The following bound on the size of a ball follows from a simple calculation.

Proposition 1. If G is a (subgraph of a) d-regular graph for d ≥ 2, then for any vertex v, |BG(v, 0)| = 1,
|BG(v, 1)| ≤ d+ 1, |BG(v, 2)| ≤ d2 + 1, and for r > 2, |BG(v, r)| ≤ dr.

4.1.2 Fourier Transform of Boolean Functions

Fix a finite set E with |E| = m, and identify each subset S of E with a boolean vector in {0, 1}E in the
natural way. The set of functions f : {0, 1}E −→ R form a 2m dimensional vector space. Define an inner
product 〈·, ·〉 on this vector space as 〈f, g〉 = 2−m

∑
x∈{0,1}E f(x)g(x). For each α ∈ {0, 1}n, define its

characteristic function χα : {0, 1}E −→ R as χα(x) = (−1)α·x. Then the set of functions {χα : α ∈ {0, 1}E}
form an orthonormal basis with respect to the inner product 〈·, ·〉. Thus, any function f : {0, 1}E −→ R can

be resolved in this basis as f =
∑
α∈{0,1}E f̂(α)χα, where

f̂(α) = 〈f, χα〉 = 2−m
∑

x∈{0,1}E
f(x)χα(x).

We will need the following properties of the Fourier transform, whose proofs can be found in [O’D14].

Proposition 2. Let f : {0, 1}E → R be given by f(z) = ε|z|(1 − ε)|E|−|z|, where |z| denotes the number of

ones in the the vector z. Then f̂ is given by f̂(α) = 2−|E|(1− 2ε)|α| for all α ∈ {0, 1}E.

Proposition 3 (Fourier transforms of affine subspaces). Let S be a subspace of {0, 1}E of dimension r, and
b ∈ {0, 1}E. Let f : {0, 1}E → R be given by f(z) = 1 if γ · z = γ · b for all γ ∈ S, and f(z) = 0 otherwise.

Then f̂ is given by f̂(α) = 2−(m−r)(−1)α·b if α ∈ S, and f̂(α) = 0 otherwise.

Proposition 4 (Convolution Theorem). Let f, g : {0, 1}E → R. Then f̂g is given by

f̂g(α) =
∑

β∈{0,1}n
f(β)g(α+ β).

4.1.3 Incidence Matrices, Eulerian Subgraphs, Spanning Forests

Given a graph G = (V,E), its incidence matrix is the binary V × E matrix whose (v, e)-entry is 1 if v
is an endpoint of e, and 0 otherwise. A graph is Eulerian if and only if each of its vertices has even
degree, or equivalently, the mod-2 nullspace of its incidence matrix contains the all ones vector 1E . The
set of subgraphs of G is in the natural one-to-one correspondence with {0, 1}E , where the set of Eulerian
subgraphs of G corresponds to the nullspace of the incidence matrix of G.

We define the rank of a graph to be the cardinality of its spanning forest, which is also equal to the rank
of its incidence matrix. Fix a spanning forest F of a graph G = (V,E). We use this forest to construct a
basis for {0, 1}E , the vector space of subgraphs of G, as follows. For each e ∈ F , let ve(e) = 1 and ve(e

′) = 0
for e′ 6= e. For each e ∈ E \ F , define the vector ve ∈ {0, 1}E as ve(e

′) = 1 if e′ belongs to the unique cycle
in F ∪ {e}, and ve(e

′) = 0 otherwise. Then the collection of vectors {ve : e ∈ F} ∪ {ve : e ∈ E \ F} forms
a basis of {0, 1}E . Here, the set {ve : e ∈ E \ F} spans the subspace of Eulerian subgraphs of G, whereas
{ve : e ∈ F} spans a complementary subspace: the space of sub-forests of F . As a consequence, we have
that every subgraph of G can be written uniquely as a symmetric difference of an Eulerian subgraph of G
and a sub-forest of F .

Lemma 21. Let F be a spanning forest of a graph G = (V,E). Then the Eulerian subgraphs of G are in
one-to-one correspondence with subsets of E \ F , where the bijection is given by E∗ ↔ E∗ \ F . In other
words, for every S ⊆ E \ F , there exists a unique Eulerian subgraph E∗ of G such that E∗ \ F = S.
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Proof. For each e ∈ E \ F , let C(e) denote the unique cycle in F ∪ {e}. First we prove that E∗ → E∗ \ F
is surjective. Let S ⊆ E \ F . Then E∗ =

⊕
e∈S C(e) is Eulerian and E∗ \ F = S. Next, we prove

that E∗ → E∗ \ F is injective. Let S ⊆ E \ F and let E∗ and E′ be Eulerian subgraphs of G such that
E∗ \ F = E′ \ F = S. Then (E∗ ⊕E′) \ F = ∅, which means E∗ ⊕E′ ⊆ F . But F is a forest and E∗ ⊕E′ is
Eulerian. Therefore, E∗ ⊕ E′ = ∅, which means E∗ = E′.

Lemma 22. Let F be a spanning forest of a graph G = (V,E) such that the endpoints of the edges in E \F
are pairwise distance ∆ apart in F . Let G∗ = (V,E∗) be an Eulerian subgraph of G. Then |E∗| ≥ ∆·|E∗\F |.

Proof. Partition the edges of G∗ into cycles, and consider each cycle one by one. Between any two occurrences
of non-forest edges in the cycle, we have a path consisting of edges from F . By the separation condition
on the endpoints of edges not in F , each such path must have length at least ∆. Thus, we have at least ∆
forest edges per non-forest edge in G∗.

4.1.4 Total Variation Distance

Definition 10. Let Ω be a finite set. The Total Variation Distance (TVD) between two probability distri-
butions p and p′ over Ω, denoted by TVD(p, p′) (resp. two random variables X and X ′ taking values from Ω,
denoted by TVD(X,X ′)) is defined as (1/2)·

∑
s∈Ω |p(s)−p′(s)| (resp. (1/2)·

∑
s∈Ω |Pr[X = s]−Pr[X ′ = s]|).

Lemma 23. Let X1, X ′1 be random variables taking values in Ω1, and let X2, X ′2 be random variables taking
values in Ω2. Then

TVD((X1, X2), (X ′1, X
′
2)) ≤ TVD(X1, X

′
1) +

∑
s∈Ω1

Pr[X1 = s] · TVD((X2|X1 = s), (X ′2|X ′1 = s)).

Proof. For s1 ∈ Ω1, let p(s1) = Pr[X1 = s1], and p′(s1) = Pr[X ′1 = s1]. For s1 ∈ Ω1 and s2 ∈ Ω2,
let qs1(s2) = Pr[X2 = s2|X1 = s1], and q′s1(s2) = Pr[X ′2 = s2|X ′1 = s1]. Then we have, Pr[(X1, X2) =
(s1, s2)] = p(s1) · qs1(s2) and Pr[(X ′1, X

′
2) = (s1, s2)] = p′(s1) · q′s1(s2).

TVD((X1, X2), (X ′1, X
′
2)) =

1

2

∑
(s1,s2)∈Ω1×Ω2

∣∣p(s1) · qs1(s2)− p′(s1) · q′s1(s2)
∣∣

≤ 1

2

∑
(s1,s2)∈Ω1×Ω2

[∣∣p(s1) · qs1(s2)− p(s1) · q′s1(s2)
∣∣+
∣∣p(s1) · q′s1(s2)− p′(s1) · q′s1(s2)

∣∣] .

The first term above is

1

2

∑
(s1,s2)∈Ω1×Ω2

∣∣p(s1) · qs1(s2)− p(s1) · q′s1(s2)
∣∣ =

∑
s1∈Ω1

p(s1) · 1

2

∑
s2∈Ω2

∣∣qs1(s2)− q′s1(s2)
∣∣

=
∑
s∈Ω1

Pr[X1 = s] · TVD((X2|X1 = s), (X ′2|X ′1 = x)),

while the second term is

1

2

∑
(s1,s2)∈Ω1×Ω2

∣∣p(s1) · q′s1(s2)− p′(s1) · q′s1(s2)
∣∣ =

1

2

∑
s1∈Ω1

|p(s1)− p′(s1)| ·
∑
s2∈Ω2

q′s1(s2) = TVD(X1, X
′
1),

since
∑
s2∈Ω2

q′s1(s2) =
∑
s2∈Ω2

Pr[X ′2 = s2|X ′1 = s1] = 1 for all s1 ∈ Ω1.

Corollary 1. Let X1, X ′1 be random variables taking values in Ω1, and let X2, X ′2 be random variables
taking values in Ω2. Let E1 ⊆ Ω1. Then

TVD((X1, X2), (X ′1, X
′
2)) ≤ TVD(X1, X

′
1) + Pr[X1 /∈ E ] +

∑
s∈E

Pr[X1 = s] ·TVD((X2|X1 = s), (X ′2|X ′1 = s)).

Proof. Follows since for all s ∈ Ω1 (and in particular, for s /∈ E), TVD((X2|X1 = s), (X ′2|X ′1 = s)) ≤ 1 by
definition.
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Corollary 2. For i = 1 to T , let Xi and X ′i be random variables taking values in Ωi. For i = 1 to T − 1,
let Ei ⊆ Ω1 × · · · × Ωi, such that (s1, . . . , si) ∈ Ei implies (s1, . . . , si−1) ∈ Ei−1. Then

TVD((X1, . . . , XT ), (X ′1, . . . , X
′
T )) ≤ Pr[(X1, . . . , XT ) /∈ ET ]+

T∑
i=1

∑
(s1,...,si−1)∈Ei−1

Pr

i−1∧
j=1

Xj = sj

 · TVD

Xi |
i−1∧
j=1

Xj = sj

 ,

X ′i | i−1∧
j=1

X ′j = sj

 .

Proof. Follows by repeated application of Corollary 1.

4.2 Reductions to PartitionTesting and MAX-CUT

4.2.1 Reduction to PartitionTesting

In this section, we show how the problem NoisyParities reduces to testing PartitionTesting(k, ϕin, ϕout, β),
even for k = 1 and any β ≤ 1. By this reduction, we establish a lower bound of n1/2+Ω(ϕout) on the number
of queries required to test whether a graph is (1, ϕin)-clusterable for some constant ϕin (the YES case), or it
is (2, ϕout, β)-unclusterable for any constant β ≤ 1 (the NO case).
Theorem 5 (restated). There exist positive constants ϕin and b such that for all ϕout ≤ 1, any algo-
rithm that distinguishes between a (1, ϕin)-clusterable graph (that is, a ϕin-expander) and a (2, ϕout, 1)-
unclusterable graph on n vertices with success probability at least 2/3 must make at least (n/2)1/2+bϕout/2

queries, even when the input is restricted to d-regular graphs for a large enough constant d.
The reduction is given by Algorithm 5.

Algorithm 5 ReductionToPartitionTesting (G = (V,E), y : E −→ {0, 1})
1: Input: G = (V,E), labeling y : E −→ {0, 1}
2: V ′ := V × {0, 1}. . We denote the vertex (v, b) ∈ V × {0, 1} by vb for readability.
3: E′0 :=

⋃
e=(u,v)∈E: y(e)=0{(u0, v0), (u1, v1)}.

4: E′1 :=
⋃
e=(u,v)∈E: y(e)=1{(u0, v1), (u1, v0)}.

5: E′ = E′0 ∪ E′1.
6: return G′ = (V ′, E′).

Observe that the reduction is “query complexity preserving” in the sense that any query from a Parti-
tionTesting algorithm asking the neighbors of a vertex vb ∈ V ′ can be answered by making (at most) one
query, asking the yet undisclosed edges incident on v in G and their labels. To establish the correctness of
the reduction, it is sufficient to prove:

1. The YES case: If the edges of G are labeled independently and uniformly at random, then G′ is an
expander with high probability.

2. The NO case: If each edge e = (u, v) of G is labeled X(u) + X(v) + Z(u, v), where Z(u, v) is 1 with
probability ε, then with high probability G′ contains a cut with n vertices on each side whose expansion
is O(ε).

Lemma 24. Let G = (V,E) be a d-regular ϕ-expander with |V | = n. Suppose each edge (u, v) ∈ E
independently and uniformly given label Y (u, v) ∈ {0, 1}. Suppose ReductionToPartitionTesting on input
(G, Y ) returns the graph G′ = (V ′, E′). Then G′ is a min(ϕ/4, 1/32)-expander with probability at least
1− 22n · exp(−dn/256).

Proof. We need to prove that every C ⊆ V ′ with |C| ≤ |V ′|/2 = n expands well. Let C0 = {v ∈ V : v0 ∈ C}
and C1 = {v ∈ V : v0 ∈ C} be the “projections” of C on the two halves of V ′ = V × {0, 1}, each half
identified with V , so that |C| = |C0|+ |C1|. Then at least one of the following must hold.

1. |C0 ∪ C1| ≤ n/2.

2. |C0 ∩ C1| ≥ n/4.
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3. |C0 ⊕ C1| ≥ n/4.

In the first case, consider the set of edges which cross the set C0 ∪C1 in G. Since G is a ϕ-expander and
|C0 ∪C1| ≤ n/2, the number of such edges is at least ϕd|C0 ∪C1|. For each such edge, one of its two copies
in G′ must cross the set C. Therefore, the expansion of C is at least

ϕd|C0 ∪ C1|
d|C|

≥ ϕ

2
.

In the second case, we cannot have |C0∩C1| > n/2, otherwise we contradict the assumption that |C| ≤ n.
Therefore, |C0 ∩ C1| ≤ n/2. Consider the set of edges which cross |C0 ∩ C1| in G. Again, since G is a ϕ-
expander and |C0 ∩ C1| ≤ n/2, the number of such edges is at least ϕd|C0 ∩ C1|. As before, for each such
edge e, at least one of its two copies in E′ must cross the set C. Therefore, the expansion of C is at least

ϕd|C0 ∩ C1|
d|C|

≥ ϕn/4

n
=
ϕ

4
.

Finally, consider the third case. Let m be the number of edges in G, both of whose endpoints are in
C0⊕C1. Therefore, the number of edges in G with exactly one endpoint in C0⊕C1 is d|C0⊕C1| − 2m. We
split into two sub-cases depending on whether m ≤ d|C0 ⊕ C1|/4, or m > d|C0 ⊕ C1|/4.

In the first sub-case, consider the d|C0 ⊕C1| − 2m edges of G with exactly one endpoint in C0 ⊕C1. For
each of such edge, (exactly) one of its copies in G′ crosses the set C. Therefore, the expansion of C is at
least

d|C0 ⊕ C1| − 2m

d|C|
≥ d|C0 ⊕ C1| − d|C0 ⊕ C1|/2

d|C|
=
|C0 ⊕ C1|/2
|C|

≥ n/8

n
=

1

8
.

In the second sub-case, consider each edge (u, v) ∈ E with u, v ∈ C0 ⊕C1. Suppose both u and v belong
to the same Ci. If Y (u, v) = 0, none of the copies of the edge (u, v) in E′ crosses the set C, and if Y (u, v) = 1,
then both copies cross. Similarly, suppose one of u and v belongs to C0 and the other belongs to C1. If
Y (u, v) = 1, none of the copies of the edge (u, v) in E′ crosses the set C, and if Y (u, v) = 0, then both copies
cross. Thus for each of the m edges (u, v) ∈ E with u, v ∈ C0⊕C1, both of its copies cross C with probability
1/2, and none crosses with probability 1/2. This happens independently for all the m edges. Therefore, by
Chernoff bound, the number of edges both of whose copies cross the set C is at least m/4 ≥ d|C0 ⊕ C1|/16
with probability at least

1− exp(−m/16) ≥ 1− exp(−d|C0 ⊕ C1|/64) ≥ 1− exp(−dn/256).

Assuming this happens, the expansion of C is at least

2× d|C0 ⊕ C1|/16

d|C|
=
|C0 ⊕ C1|/8
|C|

≥ n/32

n
=

1

32
.

This holds for each set C falling into this sub-case. Applying the union bound over all the at most 22n sets
falling into this sub-case, we have that with probability at least 1− 22n · exp(−dn/256), all sets falling into
this sub-case have expansion at least 1/32.

Lemma 25. Let G = (V,E) be a d-regular graph with |V | = n. For each v ∈ V , let X(v) be an independent
uniformly random bit. For each edge (u, v) ∈ E, let Z(u, v) be an independent random bit which is 1 with
probability ε and 0 otherwise. Suppose each edge (u, v) ∈ E is labeled Y (u, v) = X(u) + X(v) + Z(u, v).
Suppose ReductionToPartitionTesting on input (G, Y ) returns the graph G′ = (V ′, E′). Then with probability
at least 1− exp(−εnd/6), there exists a set V ∗ ⊆ V ′ with |V ∗| = n = |V ′|/2 whose expansion is at most 2ε.

Proof. Define V ∗ as
V ∗ = {v0 : v ∈ V , X(v) = 0} ∪ {v1 : v ∈ V , X(v) = 1},

so that |V ∗| = n. By a case-by-case consideration, it is easy to verify that if for e = (u, v) ∈ E we have
Z(e) = 1, then the two edges between u0, v0, u1, v1 cross the cut (V ∗, V ′ \ V ∗). Conversely, if Z(e) = 0,
then one of the edges between u0, v0, u1, v1 lies within V ∗ and the other lies outside V ∗. Thus, the number
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of edges crossing the cut is twice the size of the set {e ∈ E : Z(e) = 1}. The expectation of the size
of this set is ε · |E| = εnd/2. Since {Z(e)}e∈E are independent and identically distributed, application of
the Chernoff bound gives us that the size of the set {e ∈ E : Z(e) = 1} is at most εnd with probability
at least 1 − exp(−εnd/6). Thus, the number of edges crossing the cut (V ∗, V ′ \ V ∗) is at most 2εnd with
high probability. Dividing by nd, the volume of V ∗, we have that the expansion of V ∗ is at most 2ε with
probability at least 1− exp(−εnd/6).

Proof of Theorem 5. Let d = 512, ϕ = (1 − η(d))/2 ≈ 0.45, and ϕin = min(ϕ/4, 1/32). As before, let
b = 1/(8 ln d) (with d = 512 now). Given ϕout ≤ 1, let ε = ϕout/2 ≤ 1/2. Suppose there is an algorithm
for PartitionTesting which makes (n/2)1/2+δ queries on n vertex graphs and outputs the correct answer
with probability at least 2/3, for some δ < bϕout/2 = bε = min(1/16, bε) (note that bε ≤ 1/(16 ln 512) ≤
1/16). Then for any probability distribution D over n-vertex PartitionTesting instances, there exists a
deterministic algorithm ALG(D) makingO(n1/2+δ) queries which outputs the correct answer with probability
at least 2/3, on a random instance of PartitionTesting drawn from the distribution.

Let (G, y) be a random instance of the NoisyParities problem with parameters d and ε, where G =
(V,E) is a graph and y : E −→ {0, 1} is an edge lebeling. Apply ReductionToPartitionTesting to (G, y), and
thus, get a random instance G′ of PartitionTesting from the appropriate probability distribution D. Run
ALG(D) on this instance and return the answer. Note that to answer one query of ALG(D), we make at
most one query into G. Thus, this reduction gives an algorithm ALG′ for NoisyParities making at most
n1/2+δ queries.

The underlying graph G is a random d-regular graph on n vertices. By Fact 1, with high probability, G
is a ϕ-expander. Hence, by Lemma 24, if (G, y) is a YES instance, then with high probability the reduced
graph G′ is a ϕin-expander for ϕin = min(ϕ/4, 1/32) (we chose d large enough so that the failure probability
22n · exp(−dn/256) in Lemma 24 becomes o(1)). On the other hand, if (G, y) is a NO instance, then by
Lemma 25, the reduced graph G′ is a graph on 2n vertices containing with high probability a subset of n
vertices whose expansion is at most 2ε = ϕout. Thus, G′ is (2, ϕout, 1)-unclusterable. Hence, the reduction
succeeds with probability 1−o(1). Since ALG answers correctly with probability at least 2/3, ALG′ answers
correctly with probability at least 2/3− o(1).

However, by Theorem 4, since ALG′ makes at most n1/2+δ queries, ALG′ can be correct with probability
at most 1/2 + o(1). This is a contradiction.

4.2.2 Reduction to Approximating MAX-CUT Value

In this section, we show how the problem NoisyParities reduces to estimating maxcut. By this reduction,
we establish the following theorem.
Theorem 6 (restated). There exists a constant β such that for any ε′ > 0 and any d ≥ 3, any algorithm that
distinguishes correctly with probability 2/3 between the following two types of n-vertex d-degree bounded
graphs must make at least n1/2+min(1/16,ε′/(24 ln d)) queries.

• The YES instances: Graphs which have a cut of size at least (nd/4) · (1− ε′).

• The NO instances: Graphs which do not have a cut of size more than (1 + βd−1/2) · (nd/8).

The reduction from NoisyParities to MAX-CUT works as follows.

1: procedure ReductionToMAXCUT(Graph G = (V,E), Edge labeling y : E −→ {0, 1})
2: E′ = {e ∈ E : y(e) = 1}.
3: return G′ = (V,E′).

We claim that a YES instance of NoisyParities is reduced with high probability to a NO instance of
MAX-CUT, and vice versa. To prove that the reduction correctly converts a YES instance of NoisyParities
to a NO instance of MAX-CUT, we need the following fact which is implied by Theorem 1.6 of [DMS15].

Fact 2. There exists an absolute constant α such that the following holds for all all d large enough. Let G
be a random d-regular n-vertex graph generated from the configuration model. Then with probability 1−o(1),
the maximum cut in G cuts at most 1/2 + αd−1/2 fraction of the edges.

29



Lemma 26. There exists a constant β such that for all d the following holds. Let G = (V,E) be a d-
regular ϕ-expander with |V | = n. Suppose each edge (u, v) ∈ E independently and uniformly given label
Y (u, v) ∈ {0, 1}. Suppose ReductionToMAXCUT on input (G, Y ) returns the graph G′ = (V,E′). Then with
probability 1− o(1), the maxcut in G′ is at most (1 + βd−1/2) · nd/8.

Proof. By Fact 2, with probability 1−o(1) every cut in G has size at most (1/2 +αd−1/2) ·nd/2. Given that
every cut in G has size at most (1/2+αd−1/2) ·nd/2, we have the following. Consider an arbitrary cut in G′.
The expected number of edges in this cut with label 1 is at most (1/2+αd−1/2) ·nd/4 = (1+2αd−1/2) ·nd/8.
By Chernoff bound, the probability that more than (1 + ε′) · (1 + 2αd−1/2) · nd/8 edges in G′ lie in this cut
is at most

exp

(
−ε
′2 · (1 + 2αd−1/2) · nd

24

)
≤ exp

(
−ε
′2 · nd
24

)
≤ exp(−n),

for ε′ = 24d−1/2. By union bound over all the 2n cuts in G′, we have that the probability that some cut value
exceeds (1 + 24d−1/2) · (1 + 2αd−1/2) · nd/8 ≤ (1 + (24 + 50α)d−1/2) · nd/8 is at most (2/e)n = o(1). Adding
to this the o(1) probability that G itself has a large cut, and setting β = 24 + 50α, we get the claim.

Next, we prove that the reduction correctly converts a NO instance of NoisyParities to a YES instance
of MAX-CUT, we need the following claim.

Lemma 27. Let G = (V,E) be an arbitrary d-regular graph, and let {X(v) : v ∈ V } be a set of independent
binary random variables, each of which is 0 and 1 with probability 1/2. Let V0 = {v ∈ V : X(v) = 0}
V1 = {v ∈ V : X(v) = 1}. Let C be the random variable whose value is the number of edges in the (V0, V1)
cut. Then Var[C] ≤ 2d · E[C].

Proof. For each e ∈ E, let C(e) be the indicator random variable that is 1 if e lies in the (V0, V1) cut, and 0
otherwise. Since X(v)’s are independent, for any two edges e and e′ which do not share an endpoint, C(e)
and C(e′) are independent. C =

∑
e∈E C(e), and therefore,

(E[C])2 =
∑
e,e′∈E

E[C(e)]E[C(e′)] ≥
∑

e,e′∈E:e∩e′=∅

E[C(e)]E[C(e′)] =
∑

e,e′∈E:e∩e′=∅

E[C(e)C(e′)].

Now, we have

E[C2] =
∑
e,e′∈E

E[C(e)C(e′)] =
∑

e,e′∈E:e∩e′=∅

E[C(e)C(e′)] +
∑

e,e′∈E:e∩e′ 6=∅

E[C(e)C(e′)].

Using the lower bound on (E[C])2, we have

E[C2] ≤ (E[C])2 +
∑

e,e′∈E:e∩e′ 6=∅

E[C(e)C(e′)],

which implies,

Var[C] = E[C2]− (E[C])2 ≤
∑

e,e′∈E:e∩e′ 6=∅

E[C(e)C(e′)] ≤
∑
e∈E

E[C(e)] · |{e′ ∈ E : e ∩ e′ 6= ∅}|

where we used in the last inequality that C(e′) ≤ 1 for any e′. Using the fact that the graph is d-regular, we
have that |{e′ ∈ E : e ∩ e′ 6= ∅}| ≤ 2d for any e. Therefore,

Var[C] ≤ 2d ·
∑
e∈E

E[C(e)] = 2d · E[C],

as required.

Lemma 28. Let G = (V,E) be a d-regular graph with |V | = n. For each v ∈ V , let X(v) be an independent
uniformly random bit. For each edge (u, v) ∈ E, let Z(u, v) be an independent random bit which is 1 with
probability ε and 0 otherwise. Suppose each edge (u, v) ∈ E is labeled Y (u, v) = X(u) + X(v) + Z(u, v).
Suppose ReductionToMAXCUT on input (G, Y ) returns the graph G′ = (V,E′). Then with probability at least
1− o(1), there exists a cut (V0, V1) in G′ of value at least (nd/4) · (1− 2ε) · (1− o(1)).
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Proof. Let V0 = {v ∈ V : X(v) = 0} and V1 = {v ∈ V : X(v) = 1}, as in the statement of Lemma 27, and
let C be the random variable whose value is the number of edges of G in the (V0, V1) cut. Then E[C] = nd/4,
since |E| = nd/2 and each edge is cut with probability 1/2. By Chebyshev’s inequality, we have,

Pr

[
|C − E[C]| > E[C]

n1/4

]
≤ Var[C] · n1/2

(E[C])2
≤ 2d · E[C] · n1/2

(E[C])2
=

8dn1/2

nd
=

8

n1/2
,

where the second inequality follows from Lemma 27. Therefore, with probability at least 1−8/n1/2, we have
C ≥ E[C](1− n−1/4) = (nd/4) · (1− n−1/4).

Now, let us condition on the values of X(v)’s which ensure C ≥ E[C](1−n−1/4). Then the cut (V0, V1) is
fixed, and the labels on the edges become independent. Each edge (u, v) of G in the (V0, V1) cut has label 0
with probability ε and 1 with probability 1− ε. By the Chernoff bound, with probability 1− exp(−εC/3) ≥
1− exp(−(εnd/4) · (1− n−1/2)), at most 2εC out of the C edges of G in the (V0, V1) cut have label 0, and
therefore, at least (1 − 2ε)C edges have label 1. All these edges with label 1 appear in the (V0, V1) cut of
G′. Thus, with probability at least 1 − 8/n1/2 − exp(−(εnd/4) · (1 − n−1/2)) = 1 − o(1), G′ contains a cut
of size at least (nd/4) · (1− n−1/4) · (1− 2ε) = (nd/4) · (1− 2ε) · (1− o(1)).

Proof of Theorem 6. Consider an algorithm that approximates maxcut within a factor 2−ε′ with probability
at least 2/3, and assume it makes n1/2+δ queries. Then for any distribution over the instances, there exists
a deterministic algorithm ALG making n1/2+δ queries and having the same approximation guarantee on a
random instance drawn from the distribution.

Let (G, y) be a random instance of the NoisyParities problem with parameters ε = ε′/24 and d =
(4β/ε′)2, where β is the constant from Lemma 26. Here, G = (V,E) is a graph and y : E −→ {0, 1} is
an edge lebeling. Apply ReductionToMAXCUT to (G, y), and thus, get a random instance G′ of MAX-CUT
from the appropriate probability distribution. Run ALG on this instance and obtain an estimate z of the
maxcut. Return YES if z > (1+ε′/4)nd/8, otherwise return NO. Note that to answer one query of ALG, we
make one query into G. Thus, this reduction gives an algorithm ALG′ for NoisyParities making at most
n1/2+δ queries.

If (G, y) is a YES instance of the NoisyParities problem, then by Lemma 26, with probability 1− o(1),
G′ has maxcut at most (1 + βd−1/2) · (nd/8) = (1 + ε/4) · (nd/8). Thus, the estimate of maxcut given by
ALG is at most (1 + ε/4) · (nd/8) with probability at least 2/3, and we return YES. On the other hand, if
(G, y) is a NO instance of the NoisyParities problem, then by Lemma 28, with probability 1 − o(1), G′

has maxcut at least
nd

4
· (1− 2ε) · (1− o(1)) ≥ (1− 3ε) · nd

4
=

(
1− ε′

8

)
· nd

4
.

Therefore, the estimate of maxcut given by ALG, with probability at least 2/3, is at least

1− ε′/8
2− ε′

nd

4
=

1− ε′/8
1− ε′/2

nd

8
>

(
1− ε′

8

)(
1 +

ε′

2

)
· nd

8
>

(
1 +

ε′

4

)
· nd

8
,

and we return NO. Thus, ALG’ is correct with probability at least 2/3 − o(1). Therefore, by Theorem 4,
δ ≥ min(1/16, bε), where b = 1/(8 ln d). Thus, δ = Ω(ε′/ log(1/ε′)).

4.3 Query Lower Bound for the NoisyParities Problem

Recall the NoisyParities problem (Definition 5). In this section, we prove Theorem 4, which gives a lower
bound on the query complexity of the NoisyParities problem. We start out by formalizing the the execution
of the algorithm’s query as a process which generates the instance incrementally.

4.3.1 Interaction and Closure

Formally, the interaction that takes place between the algorithm and the adversary is given by the procedure
Interaction. Here NextQuery is the function which simulates the behavior of the algorithm: it takes as input
the uncovered edge-labeled graph and the set of vertices already queried, and returns an unqueried vertex.
It is helpful to make the following observations.
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1. The random graph is generated according to the configuration model. As soon as a vertex q is queried,
the unpaired half-edges on q are paired up one-by-one to random unpaired half-edges incident on the
yet unqueried vertices.

2. In the YES case, the label generated for any edge is uniformly random, as per the problem definition
in Section 1. In the NO case, although the label is generated without referring to the parities X
of the vertices in the problem specification, the parities are built-in in an implicit manner, and the
distribution of the labels is still consistent with the problem specification. Also, this is the only place
where the behavior of Interaction differs depending on whether it is executing the YES case or the NO
case.

1: procedure Interaction(Answer,V ,ε)
2: Q0 := ∅, H0 := ∅, F0 := 0, T = n1/2+δ.
3: for t = 1 to T do
4: . Invariant: All half-edges incident on vertices in Qt−1 are paired.
5: . Invariant: Ft−1 is a spanning forest of Ht−1.
6: . Invariant: If Answer = NO then for any cycle C ⊆ Ht−1,

∑
e∈C(Y (e) + Z(e)) = 0.

7: qt := NextQuery(Qt−1, Ht−1). . Assumption: qt /∈ Qt−1.
8: Qt := Qt−1 ∪ {qt}.
9: Ht := Ht−1, Ft := Ft−1.

10: while q has an unpaired half-edge (q, i) do
11: Pair up (q, i) with a random unpaired half-edge, say (v, j). Call the resulting edge between q

and v as e. . v /∈ Qt−1 unless v = q.
12: if Answer = YES then
13: if Ft ∪ {e} is acyclic then
14: Ft := Ft ∪ {e}.
15: Generate label Y (e) := 0 or 1 with probability 1/2 each.
16: else . Answer = NO.
17: Generate noise Z(e) := 1 with probability ε and 0 with probability 1− ε.
18: if Ft ∪ {e} is acyclic then
19: Ft := Ft ∪ {e}.
20: Generate label Y (e) := 0 or 1 with probability 1/2 each.
21: else . Ft ∪ {e} contains a single cycle.
22: Let P be the unique path from q to v in Ft.
23: Generate label Y (e) := Z(e) +

∑
e′∈P (Y (e′) + Z(e′)).

24: Ht := Ht ∪ {(e, Y (e))}.

Recall that our goal is to prove that the algorithm does not gain sufficient information with n1/2+δ

queries to distinguish between the YES case and the NO case. In order to facilitate our analysis, we give the
following additional information to the algorithm for free, and refer to this modified version of Interaction as
InteractionWithClosure, and then argue that the algorithm fails nonetheless.

1. InteractionWithClosure ensures that the pairwise distance in F between vertices on which a non-forest
edge is incident is at least b lnn, where b = 1/(8 ln d), as defined in Theorem 4. As soon as the algorithm
manages to uncover a new edge resulting in violation of this invariant, InteractionWithClosure throws an
error and conservatively assumes that the algorithm found the correct answer already. (In particular,
this includes the scenarios where self-loops and parallel edges are discovered.) We say that event Errt
happened if InteractionWithClosure throws an error in round t.

2. As soon as a new edge incident on the queried vertex qt that cannot be added to Ft−1 is discovered,
InteractionWithClosure generates the whole ball of radius b lnn around qt. This might already result
in the event Errt as defined above. If not, InteractionWithClosure adds the BFS tree around q to Ft,
labels its edges uniformly at random, samples and records the noise for its edges, adds these labeled
edges to Ht, and gives Ht back to the algorithm.
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4.3.2 Analysis of InteractionWithClosure

Definition 11. After any round t of InteractionWithClosure, we call a vertex v ∈ V discovered if it was
queried (that is, v ∈ Qt) or if one of its neighbors in G was queried (that is, it had degree at least one in
Ht). We denote by Dt the set of vertices discovered after round t.

We now define certain “good” events Et which are sufficient to ensure that our analysis works and gets
us the query lower bound. Moreover, we will also show that these events are extremely likely to happen.

Definition 12. Define Rt = Ht \ Ft to be the set of non-forest edges seen by the end of round t. Then
Rt ⊇ Rt−1 for all t. For any round t, we say that event Et happened if the following conditions hold.

1. InteractionWithClosure completes the tth round without throwing an error, that is, none of the events
Errj for j ≤ t happen.

2. |Dj | ≤ dn1/2+δ lnn for all j ≤ t.

First, let us prove a bound on the probability that a non-forest edge is found in round t.

Lemma 29. If event Et−1 happens then the probability that InteractionWithClosure encounters an edge in
round t which forms a cycle with edges in Ft−1 is at most (2d2 lnn)/n1/2−δ.

Proof. The number of undiscovered vertices is at least n−|Dt−1| ≥ n−dn1/2+δ lnn ≥ n/2+2, and therefore,
there are at least d(n/2 + 2) free half-edges incident on undiscovered vertices. Therefore, the probability
that at least one of the discovered (unqueried) vertices becomes a neighbor of qt, when we pair up the at
most d free half edges incident on qt, is at most

d · |Dt−1 \Qt−1| · d
d(n/2 + 2)− 2d

≤ d · |Dt−1|
n/2

≤ 2d2n1/2+δ lnn

n
=

2d2 lnn

n1/2−δ .

Our next lemma and proves a bound on the probability that the algorithm will throw an error in round
t.

Lemma 30. If event Et−1 happens then the probability that InteractionWithClosure throws an error in round
t, that is, event Errt happens, is at most (16d4 ln2 n)/n7/8−2δ.

Proof. Event Errt happens only in the following two cases.

1. InteractionWithClosure encounters an edge (qt, v) such that the distance between qt and v in Ft−1 is at
most b lnn.

2. InteractionWithClosure encounters an edge (qt, v) which forms a cycle with edges in Ft−1, and while
generating the ball of radius b lnn, it encounters another edge which cannot be added to the forest.

Let us bound the probabilities of the above two events separately. The number of undiscovered vertices is
at least

n− |Dt−1| ≥ n− dn1/2+δ lnn ≥ n

2
+ 2n1/8 + 2 ≥ n

2
+ 2.

First, observe that |BHt−1(qt, b lnn)| ≤ db lnn = nb ln d = n1/8, by Proposition 1. qt has at most d free

half-edges, the vertices BHt−1(qt, b lnn) \ Qt−1 have at most dn1/8 free half-edges, and we have at least
dn/2 free half-edges every time we pair a half-edge incident on qt. Thus, the probability of finding a new
non-forest edge closing a short cycle, which is same as the probability that at least one of the vertices
BHt−1

(qt, b lnn) \Qt−1 gets an edge incident on qt, is at most

2d2n1/8

dn
=

2d

n7/8
.

Suppose that in round t we find a neighbor v of qt such that the edge (qt, v) cannot be added to the forest.
Let us construct the breadth-first search tree around qt of radius b lnn by taking each vertex already added
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to the tree at a time, and pairing up its free half-edges. Consider the processing of some such vertex u, and
let W be the vertices already added to the BFS tree at the time u is processed. Since W ⊆ BG(q, b lnn),
|W | ≤ db lnn = nb ln d = n1/8, and therefore, the number of edges in the BFS tree is at most n1/8. Now, the
probability that u gets a new edge to some vertex in W ∪Dt−1 is at most

d · |W ∪Dt−1| · d
d(n/2 + 2n1/8 + 2)− 2n1/8 − 2d

≤ 2(n1/8 + dn1/2+δ lnn) · d
n

. ≤ 4d2n1/2+δ lnn

n
=

4d2 lnn

n1/2−δ .

Note that this must happen for some u for InteractionWithClosure to find a non-forest edge close to the edge
(q, v) and throw the error. Since the number of such u’s is at most |BG(qt, b lnn)| ≤ nb ln d = n1/8, the
probability that InteractionWithClosure fails is bounded from above by

n1/8 · 4d2 lnn

n1/2−δ =
4d2 lnn

n3/8−δ .

The above holds when conditioned on at least one of the vertices in Dt−1 \ Qt−1 being a neighbor of qt.
Unconditioning and using Lemma 29, we get that the probability that InteractionWithClosure fails due to the
second reason above is bounded by

2d2 lnn

n1/2−δ ·
4d2 lnn

n3/8−δ =
8d4 ln2 n

n7/8−2δ
.

Adding to this the probability of failure due to the first reason specified above, we have that the probability
that event Errt happens is at most

2d

n7/8
+

8d4 ln2 n

n7/8−2δ
≤ 16d4 ln2 n

n7/8−2δ
.

The next two lemmas essentially prove that if the event Et−1 happens, then it is very likely that Et
happens too. We then put together these claims and prove that the event ET happens with high probability,
where T = n1/2+δ is the number of queries.

Lemma 31. For every t the following holds: if Et−1 happens, then Pr
[
|Rt| > (4d2 lnn) · (1 + t/n1/2−δ)

]
≤

n−2d2/3.

Proof. For every j ≤ t, conditioned on Ej−1, we have that |Rj \ Rj−1| is one with probability at most
(2d2 lnn)/n1/2−δ, and zero otherwise, by Lemma 29. Let r1 . . . , rt be independent Bernoulli random vari-
ables, each taking value one with probability (2d2 lnn)/n1/2−δ, and zero otherwise. Then for each j,
|Rj \ Rj−1| = |Rj | − |Rj−1| is stochastically dominated by rj . Let us use the Chernoff bound to up-

per bound Pr[
∑t
j=1 rj > (4d2 lnn) · (1 + t/n1/2−δ)], which will also give an upper bound on Pr[|Rj | >

(4d2 lnn) · (1 + t/n1/2−δ)]. For this, observe that E[
∑t
j=1 rj ] = (2d2t lnn)/n1/2−δ.

First, consider the case where t < n1/2−δ. Using Chernoff bound, we have,

Pr

 t∑
j=1

rj > 4d2 lnn

 ≤ Pr

 t∑
j=1

rj >

(
1 +

n1/2−δ

t

)
· 2d2t lnn

n1/2−δ


≤ exp

(
−n

1−2δ

3t2
· 2d2t lnn

n1/2−δ

)
= exp

(
− (2d2 lnn) · n1/2−δ

3t

)
.

Using the upper bound on t, we have

Pr

 t∑
j=1

rj > (4d2 lnn) ·
(

1 +
t

n1/2−δ

) ≤ Pr

 t∑
j=1

rj > 4d2 lnn

 ≤ n−2d2/3. (9)
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Next, consider the case where t ≥ n1/2−δ. Using the Chernoff bound again, we get,

Pr

 t∑
j=1

rj >
4d2t lnn

n1/2−δ

 ≤ exp

(
−2d2t lnn

3n1/2−δ

)
≤ n−2d2/3.

Thus,

Pr

 t∑
j=1

rj > (4d2 lnn) ·
(

1 +
t

n1/2−δ

) ≤ Pr

 t∑
j=1

rj >
4d2t lnn

n1/2−δ

 ≤ n−2d2/3. (10)

Equations (9) and (10) together imply that Pr
[
|Rt| > (4d2 lnn) · (1 + t/n1/2−δ)

]
≤ n−2d2/3.

Lemma 32. For every t, if Et−1 happens and moreover, if |Rt| ≤ (4d2 lnn) · (1 + t/n1/2−δ), then |Dt| ≤
dn1/2+δ lnn.

Proof. If Et−1 happens then every round j ≤ t which did not discover a non-forest edge (that is, |Rj | = |Rj−1|)
discovered at most d new vertices. On the other hand, every round j ≤ t which discovered a new non-forest
edge (that is, |Rj | = |Rj−1|+1) discovered at most nb ln d = n1/8 new vertices, as it discovered BG(qj , b lnn),
whose size is at most nb ln d, by Proposition 1. Therefore,

|Dt| ≤ dt+ n1/8 · |Rt| ≤ dt+ n1/8 · (4d2 lnn) · (1 + t/n1/2−δ).

Since t ≤ n1/2+δ and δ < 1/16, we have,

|Dt| ≤ dn1/2+δ + 4d2n1/8 ln2 n · (1 + n2δ) ≤ dn1/2+δ lnn.

Lemma 33. The event ET happens with probability 1− o(1).

Proof. Let perr
t be the probability that event Errt happens. Then we prove by induction that there is an

absolute constant c such that for each t, event Et happens with probability at least

1− 32d4 · ln2 n

n7/8−2δ
· t.

The claim is obvious for t = 0. For t > 0, let us upper bound the probability that Et does not happen, given
Et−1 happens. The reasons for Et not happening are the following.

1. Event Errt happens. This happens with probability perr
t .

2. |Rt| > (4d2 lnn) · (1 + t/n1/2−δ). (If |Rt| ≤ (4d2 lnn) · (1 + t/n1/2−δ) then dn1/2+δ lnn is guaranteed
by Lemma 32.)

By Lemma 30, the probability that InteractionWithClosure throws an error in round t is at most

perr
t ≤

16d4 · ln2 n

n7/8−2δ
.

By Lemma 31, the event |Rt| > (4d2 lnn) · (1 + t/n1/2−δ) happens with probability at most n−2d2/3 < n−6,
because we assumed d ≥ 3 in the definition of the NoisyParities problem. By induction hypothesis, Et−1

itself happens with probability at least

1− 32d4 · ln2 n

n7/8−2δ
· (t− 1).

Thus, Et happens with probability at least

1− 32d4 · ln2 n

n7/8−2δ
· (t− 1)− 16d4 · ln2 n

n7/8−2δ
− n−6 ≥ 1− 32d4 · ln2 n

n7/8−2δ
· t,
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as required.
As a consequence, the event ET happens with probability at least

1− 32d4 · ln2 n

n7/8−2δ
· T ≥ 1− 32d4 · ln2 n

n7/8−2δ
· n1/2+δ ≥ 1− 32d4 · ln2 n

n3/8−3δ
.

Using the fact δ < 1/16, we conclude that ET happens with probability 1− o(1).

4.3.3 Bounding TVD in each Round

Recall that our goal is to prove Theorem 4, which states that an algorithm which makes at most n1/2+δ

queries is unable to determine whether InteractionWithClosure is executing the YES or the NO case, assuming
δ is less than some constant times ε. For this, we crucially use Corollary 2 as follows. The random variable
Xt consists of the tth query of the algorithm and its result in a YES instance, whereas the random variable
X ′t consists of the tth query of the algorithm and its result in a NO instance. Thus, the realization of the
random variable (X1, . . . , Xt) (resp. (X ′1, . . . , X

′
t)) captures the snapshot of the run of InteractionWithClosure

until the tth query in the YES (resp. NO) case. The events Et are as defined in Definition 12, and they satisfy
the requirements of Corollary 2.

Our goal is to prove that if T ≤ n1/2+δ, then

TVD((X1, . . . , XT ), (X ′1, . . . , X
′
T )) = o(1). (11)

Since the answer of the algorithm is a function of the realization of (X1, . . . , XT ) (resp. (X ′1, . . . , X
′
T )) in the

YES (resp. NO) case, the above statement implies that the total variation distance between the algorithm’s
answer in the YES case and the algorithm’s answer in the NO case is only o(1). Therefore, the algorithm’s
answer is correct with probability 1/2 + o(1).

In order to establish (11), by Corollary 2, it is sufficient to prove that

T∑
t=1

∑
(s1,...,st−1)∈Et−1

Pr

t−1∧
j=1

Xj = sj

 · TVD

Xt |
t−1∧
j=1

Xj = sj

 ,

X ′t | t−1∧
j=1

X ′j = sj

 +

Pr[(s1, . . . , sT ) /∈ ET ] = o(1).(12)

Here, we already proved in Lemma 33 that Pr[(s1, . . . , sT ) /∈ ET ] = o(1). Therefore, it is sufficient to prove
that

T∑
t=1

∑
(s1,...,st−1)∈Et−1

Pr

t−1∧
j=1

Xj = sj

 · TVD

Xt |
t−1∧
j=1

Xj = sj

 ,

X ′t | t−1∧
j=1

X ′j = sj

 = o(1). (13)

Informally, the above claim states the following. Suppose InteractionWithClosure executes on a YES instance
and a NO instance in parallel, and for the first t−1 rounds of these executions, the queries and the responses
to the queries match. Then the probability distributions of the responses to the query in the tth round are
o(1)-close in total variation distance.

Recall that the executions of InteractionWithClosure on YES and NO instances differ only in the following
situation: the current edge whose label is to be generated forms a cycle with edges in F . Therefore, in
such a situation, if the forced label in the NO case does not match the uniformly random label in the YES
case, then this is responsible for some TVD between Xt and X ′t conditioned on the snapshot of the run of
InteractionWithClosure until round t − 1. Apart from this step, the executions of InteractionWithClosure in
the YES case and the NO case are identical. Moreover, the event ET ensures that the number of rounds in
which an edge closing a cycle is encountered is at most O(d2n2δ lnn). Therefore, it is sufficient to prove that
for all t ≤ T and for all (s1, . . . , st−1) ∈ Et−1, we have

TVD

Xt |
t−1∧
j=1

Xj = sj

 ,

X ′t | t−1∧
j=1

X ′j = sj

 = o(n−2bε), (14)
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where b = 1/(8 ln d), as defined earlier. From this, as long as δ < bε, (13) follows. We devote the rest of this
subsection to prove claim (14).

Let e be an edge such that when e arrives, the forest F maintained by InteractionWithClosure already
contains a path P between the endpoints of e. In the YES case, the label Y (e) of e is 0 or 1 uniformly at
random, whereas in the NO case, the label is Z(e) +

∑
e′∈P (Y (e′) + Z(e′)). We are, therefore, interested

in bounding the TVD between the distribution of Z(e) +
∑
e′∈P (Y (e′) + Z(e′)) conditioned on the labels

of the previous edges, and the uniform distribution on {0, 1}. Since we are conditioning on the labels of all
the previous edges, inclusive of edges e′ ∈ P , this distance is same as the TVD between the distribution of
Z(e) +

∑
e′∈P Z(e′) conditioned on the labels, and the uniform distribution. Furthermore, observe that Ze

itself is independent of the labels of the previous edges, and is 1 with probability ε < 1/2 and 0 otherwise.
Therefore, the TVD between Z(e) +

∑
e′∈P Z(e′) conditioned on the labels and the uniform distribution is

at most the TVD between
∑
e′∈P Z(e′) conditioned on the labels and the uniform distribution.

In order to bound the TVD between
∑
e′∈P Z(e′) conditioned on the labels and the uniform distribution,

we need to determine the distribution of
∑
e′∈P Z(e′) conditioned on the labels in the first place. We use the

Fourier transform to achieve this. We use Bayes’ rule and write the posterior distribution of Z, conditioned
on the labels Y = y, as being proportional to the product of the prior distribution of Z and the probability
of labels Y being y conditioned on Z. Then we use the convolution theorem to get the Fourier transform
of the posterior distribution of Z. An appropriate Fourier coefficient then gives us the bias of

∑
e′∈P Z(e′)

conditioned on the labels.

Definition 13. The bias of a binary random variable X is the TVD between its distribution and the uniform
distribution over {0, 1}. Equivalently, the bias of X is equal to |Pr[X = 0]− 1/2| = |Pr[X = 1]− 1/2|.

Let H = (V,EH) be the graph formed by the edges which arrived before e. Let FH be the forest
maintained by InteractionWithClosure when e arrives (so that FH is a spanning forest of H). Let the random
variable Y and Z, both taking values in {0, 1}EH , denote the random labels and the random noise of the
edges in EH respectively. Fix y ∈ {0, 1}EH . We are interested in the distribution of Y (e), the label on edge
e, conditioned on Y = y. We want to prove that if the graph H and the spanning forest FH satisfy certain
properties, then the distribution of Y (e) conditioned on Y = y is close to uniform.

Theorem 12. Suppose the graph H and the spanning forest FH are such that the endpoints of the edges
in (EH ∪ {e}) \ F are pairwise at least a distance ∆ apart in FH . Then the bias of the distribution of the
NO-case label of the new edge e conditioned on the labels of the previous edges is at most

(1− 2ε)∆−1(1 + (1− 2ε)∆)|EH\FH |

2− (1 + (1− 2ε)∆)|EH\FH |
.

Proof. Let P be the path in FH between the endpoints of e, and let C = P ∪ {e} be the cycle in F ∪ {e}.
Since Y (e) = Z(e)+

∑
e′∈P (Y (e′)+Z(e′)), the distribution of Y (e) conditioned on Y = y, has the same bias

as the distribution of Z(e) +
∑
e′∈P Z(e′) =

∑
e′∈C Z(e) conditioned on Y = y. Here Z(e) is independent

of the previous labels Y , and hence, the bias of
∑
e′∈C Z(e′) conditioned on Y = y is at most the bias of∑

e′∈P Z(e′) conditioned on Y = y. It is, therefore, sufficient to bound from above the bias of
∑
e′∈P Z(e′)

conditioned on Y = y.
The posterior distribution of the random noise Z given the labels Y = y is given by

Pr[Z = z | Y = y] =
Pr[Y = y | Z = z] · Pr[Z = z]

Pr[Y = y]
=

f(z) · gy(z)∑
z′∈{0,1}Et−1 f(z′) · gy(z′)

=
hy(z)∑

z′∈{0,1}Et−1 hy(z′)
,

where the functions f , gy and hy are defined as f(z) = Pr[Z = z], gy(z) = Pr[Y = y | Z = z], and
hy = f · gy. The Fourier transforms of these functions are as follows. Since f(z) = ε|z|(1 − ε)|EH |−|z|, by
Proposition 2, we have for all α ∈ {0, 1}EH ,

f̂(α) = 2−|EH |(1− 2ε)|α|.

Next let us consider the function gy. Let E∗ denote the nullspace of the incidence matrix of Ht−1, that is,
the set of indicator vectors of Eulerian subgraphs of Ht−1. We say that y and z are compatible if for every
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cycle C in Ht−1 we have
∑
e∈C y(e) =

∑
e∈C z(e), that is, γ · y = γ · z for all γ ∈ E∗. Since the dimension

of E∗ is |EH | − |FH |, there are exactly 2|FH | compatible y’s for every z, one for each of the 2|FH | labelings
of edges in F . Moreover, each of the 2|FH | labelings are realized with equal probability, because the edges of
F are labeled independently with a 0 or a 1 with probability 1/2 each. Therefore we have,

gy(z) =

{
2−|FH | if γ · y = γ · z for all γ ∈ E∗

0 otherwise.

Then by Proposition 3, the Fourier transform of gy is given by

ĝy(α) =

{
2−|EH |(−1)α·y if α ∈ E∗

0 otherwise.

Using convolution theorem (Proposition 4), we have,

ĥy(α) =
∑

β∈{0,1}EH

ĝy(β)f̂(α+ β) = 2−2|EH |
∑
β∈E∗

(−1)β·y(1− 2ε)|α+β|.

Recall that our goal was to bound the bias of
∑
e′∈P Z(e′) conditioned on the labels y, where e is the edge

whose label is being generated, and P is the unique path in F between the endpoints of e. Let π ∈ {0, 1}EH
be the indicator vector of P . Then the bias of

∑
e′∈P Z(e′) = π ·Z conditioned on y is expressed as follows.

ĥy(π) = 2−|EH |
∑

z∈{0,1}Et−1

hy(z)(−1)π·z,

ĥy(0) = 2−|EH |
∑

z∈{0,1}Et−1

hy(z).

Therefore,

|ĥy(π)|
ĥy(0)

=
1∑

z′∈{0,1}Et−1 hy(z′)
·

∣∣∣∣∣∣
∑

z∈{0,1}Et−1 , π·z=0

hy(z)−
∑

z∈{0,1}Et−1 , π·z=0

hy(z)

∣∣∣∣∣∣
= |Pr [π · Z = 0 | Y = y]− Pr [π · Z = 1 | Y = y]|
= bias (π · Z | Y = y) .

It is thus sufficient to upper bound |ĥy(π)|/ĥy(0). We now bound |ĥy(π)| and ĥy(0) separately. We have

ĥy(π) = 2−2|EH |
∑
β∈E∗

(−1)β·y(1− 2ε)β+π ≤ 2−2|EH |
∑
β∈E∗

(1− 2ε)β+π.

For β ∈ E∗, the indicator vector of an Eulerian subgraph of H, consider the set P ′ of edges whose
indicator vector is β + π. Then P ′ ∪ {e} is Eulerian. Conversely, if P ′ ∪ {e} is Eulerian for some P ′ ⊆ EH ,
then its indicator vector is β + π for some β ∈ E∗. Since we assumed that the endpoints of the edges in
(EH ∪ {e}) \ FH are pairwise at least a distance ∆ apart in FH , by Lemma 22, we have

|P ′ ∪ {e}| ≥ ∆|(P ′ ∪ {e}) \ FH | = ∆(|P ′ \ FH |+ 1).

For any γ ∈ {0, 1}EH , let γ denote the projection of β onto the span of the indicator vectors of the edges
not in F . Then the above statement can be rewritten as,

|β + π|+ 1 ≥ ∆(|β + π|+ 1) = ∆(|β|+ 1),

where the last equality holds because π, being the indicator vector of a path in FH , has zero projection onto
the span of the indicator vectors of the edges not in F . Therefore,

ĥy(π) ≤ 2−2|EH |
∑
β∈E∗

(1− 2ε)∆(|β|+1)−1 = 2−2|EH |(1− 2ε)∆−1
∑
β∈E∗

(1− 2ε)∆|β|.
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By Lemma 21, as β varies over the indicator vectors of Eulerian subgraphs of H, its projection β varies over
{0, 1}EH\FH . Therefore,

ĥy(π) ≤ 2−2|EH |(1− 2ε)∆−1
∑

β∈{0,1}EH\FH

(1− 2ε)∆|β| = 2−2|EH |(1− 2ε)∆−1(1 + (1− 2ε)∆)|EH\FH |.

We also have,

ĥy(0) = 2−2|EH |
∑
β∈E∗

(−1)β·y(1− 2ε)|β| ≥ 2−2|EH |

2−
∑
β∈E∗

(1− 2ε)|β|

 .

Again, by Lemma 22 we have |β| ≥ ∆ · |β|. Therefore,

ĥy(0) ≥ 2−2|EH |

2−
∑
β∈E∗

(1− 2ε)∆·|β|

 .

As before, as β varies over the indicator vectors of Eulerian subgraphs of H, its projection β varies over
{0, 1}EH\FH . Therefore,

ĥy(0) ≥ 2−2|EH |

2−
∑

β∈{0,1}EH\FH

(1− 2ε)∆·|β|

 = 2−2|EH |
(

2− (1 + (1− 2ε)∆)|EH\FH |
)

.

The upper bound on |ĥy(P )| and the lower bound on ĥy(∅) together imply

bias

(∑
e′∈P

Z(e′) | Y = y

)
=
|ĥy(P )|
ĥy(∅)

≤ (1− 2ε)∆−1(1 + (1− 2ε)∆)|EH\FH |

2− (1 + (1− 2ε)∆)|EH\FH |
.

4.3.4 Wrapping Up

Proof of Theorem 4. As a consequence of Lemma 33 and Lemma 31, at any point of time during the execution
of InteractionWithClosure, with probability 1− o(1) we have that the endpoints of the edges in EH \ FH are
pairwise separated in FH by a distance at least b lnn, and moreover,

|EH \ FH | = |R| ≤ (4d2 lnn) · (1 + t/n1/2−δ) = O(d2n2δ lnn),

because t ≤ n1/2+2δ. At the time of labeling a new edge e which forms a cycle with edges in F , let us apply
Theorem 12, with ∆ = b lnn. This gives that the bias in the label of e in the NO case is at most

(1− 2ε)∆−1(1 + (1− 2ε)∆)|EH\FH |

2− (1 + (1− 2ε)∆)|EH\FH |
=

(1− 2ε)b lnn−1(1 + (1− 2ε)b lnn)|EH\FH |

2− (1 + (1− 2ε)b lnn)|EH\FH |
.

Since |EH \ FH | = O(d2n2δ lnn), we have

(1 + (1− 2ε)b lnn)|EH\FH | ≤ (1 + n−2bε)|EH\FH | ≤ (1 + n−2bε)O(d2n2δ lnn) = 1 + o(1),

because δ < bε. Therefore, the bias in the label of e in the NO case is at most

n−2bε

1− 2ε
· (1 + o(1)) = O(n−2bε).

This is the required bound on the TVD between the snapshots of the executions of InteractionWithClosure in
the YES and the NO case, in a generic round, given that the snapshots until the end of the previous round
were the same. This proves claim (14), and hence, Theorem 4.
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5 Clusterability in Bounded Degree Graphs

In this section we solve the Clusterability problem for bounded degree graphs using our PartitionTesting
algorithm. We first start by stating the definitions. Notice that we change our notion of conductance and
ε-closeness to be same as [CPS15b] to ensure that we can apply lemmas from that paper. In particular,
these definitions are different from the ones given in Section 1.1, which our PartitionTesting primitive
uses. However, given a graph G with vertex degrees bounded by d, one can easily convert G implicitly into
a graph G′ such that volumes and conductances in G′ under our definition from Section 1.1 are identical to
volumes and conductances under the definition of [CPS15b]. This transformation is simply the operation of
adding an appropriate number of self-loops to every node, and can hence be done implicitly, allowing us to
use our algorithm for PartitionTesting on G′ to test clusterability in G. We now give the definitions.

We are given a degree d-bounded graph G = (VG, EG) on n vertices with m edges. For any vertex v ∈ VG,
we denote its degree in G by deg(v). For any vertex set V ′ ⊆ VG, we denote by G[V ′] the subgraph of G
induced by V ′. Given a pair of disjoint sets A,B ⊆ VG, we define EG(A,B) = EG ∩ (A× B). The internal
and external conductance parameters of (subsets of vertices of) G are defined as follows.

Definition 14. For a set S ⊆ C ⊆ VG, the conductance of S within C, denoted by ΦGC(S), is EG[S,C\S]
d·|S| .

Definition 15. The internal conductance of C ⊆ VG, denoted by ΦG(C), is defined to be min
S⊆C,0<|S|≤ |C|2

ΦGC(S)

if |C| > 1 and one otherwise. The conductance of G is Φ(G) = ΦG(VG). We say that C has conductance at
least ϕ, or equivalently that it is a ϕ-expander if ΦG(C) ≥ ϕ. The external conductance of C is defined to
be ΦGVG(C).

Based on the conductance parameters, clusterability and far from clusterability is defined as follows.

Definition 16. (Bounded degree graph clusterability) For a degree d-bounded graph G = (VG, EG) with n
vertices, we say that G is (k, ϕ)-bounded-degree-clusterable if there exists a partition of VG into 1 ≤ h ≤ k
sets C1, · · · , Ch such that for each i = 1, . . . , h, ΦG(Ci) ≥ ϕ.

Definition 17. A degree d-bounded graph G = (VG, EG) with n vertices is ε-far from (k, ϕ′)-bounded-degree-
clusterable if we need to add or delete more than εdn edges to obtain any (k, ϕ′)-bounded-degree-clusterable
graph of maximum degree at most d. We say that G is ε-close to (k, ϕ′)-bounded-degree-clusterable, if G is
not ε-far from (k, ϕ′)-bounded-degree-clusterable. We say that G is ε-far from ϕ′-expander if G is ε-far from
(1, ϕ′)-bounded-degree-clusterable.

The goal of this section is to establish Theorem 3, and Theorem 2, restated here for convenience of the
reader. Theorem 3 follows as a consequence of our Theorem 1, Lemma 5.9, and Lemma 5.10 of [CPS15b].
Theorem 3 (Restated) Let 0 ≤ ε ≤ 1

2 . Suppose ϕ′ ≤ α, (for α = min{ cexp150d ,
cexp·ε

1400 log( 16k
ε )
}, where d

denotes the maximum degree), and ϕ′ ≤ c · ε2ϕ2/ log( 32k
ε ) for some small constant c. Then there exists a

randomized algorithm for Clusterability(k, ϕ, 2k, ϕ′, ε) problem on degree d-bounded graphs that gives the
correct answer with probability at least 2/3, and which makes poly(1/ϕ)·poly(k)·poly(1/ε)·poly(d)·poly log(n)·
n1/2+O(ε−2 log( 32k

ε )·ϕ′/ϕ2) queries on graphs with n vertices.
Theorem 3 follows as a consequence of our Theorem 1, and Lemma 4.5 of [CPS15b].

Theorem 2 (Restated) Suppose ϕ′ ≤ α4.5ε, (for the constant α4.5 = Θ(min(d−1, k−1)) from Lemma 4.5
of [CPS15b], where d denotes the maximum degree), and ϕ′ ≤ c′ε2ϕ2/k2 for some small constant c′. Then
there exists a randomized algorithm for Clusterability(k, ϕ, k, ϕ′, ε) problem on degree d-bounded graphs
that gives the correct answer with probability at least 2/3, and which makes poly(1/ϕ) · poly(k) · poly(1/ε) ·
poly(d) · poly log(n) · n1/2+O(ε−2k2·ϕ′/ϕ2) queries on graphs with n vertices.

We will need the following results from [CPS15b] to show that the property of being far from being
clusterable implies a decomposition into many large sets with small outer conductance.

Lemma 34 (Lemma 5.9 of [CPS15b]). Let 0 < ϕ ≤ cexp
150d , and 0 < ε ≤ 1

2 for some constant cexp. If
G = (V,E) is ε-far from any graph H with Φ(H) ≥ ϕ, then there is a subset of vertices A ⊆ V with
ε
18 |V | ≤ |A| ≤

1
2 |V | such that ΦG(A) ≤ 700

cexp
· ϕ. In particular, EG(A, V \A) ≤ 700

cexp
· ϕ · d · |A|.
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Lemma 35 (Lemma 5.10 of [CPS15b]). Let G = (V,E) be ε-far from (k, ϕ)-bounded-degree-clusterable, and
ϕ ≤ cexp

d for some constant cexp. If there is a partition of V into h sets C1, . . . , Ch with 1 ≤ h ≤ k, such that

E[C1, . . . , Ch] = 0, then there is an index i, 1 ≤ i ≤ h, with |Ci| ≥ ε
8 ·
|V |
k such that G[Ci] is ε

2 -far from any
H on vertex set Ci with maximum degree d and Φ(H) ≥ ϕ.

We first prove the following lemma and then use it in the proof of Theorem 3.

Lemma 36. Let 0 ≤ ε ≤ 1
2 , α = min{ cexp150d ,

cexp·ε
1400 log( 16k

ε )
}, and ϕ ≤ α. If G = (V,E) is ε-far from

(k, ϕ)-bounded-degree-clusterable, then there exist a partition of V into k + 1 subsets C1, . . . , Ck+1 such that

E[C1, · · · , Ck+1] ≤ 700
cexp

ϕ · d · |V | log( 16k
ε ), and for each 1 ≤ i ≤ k + 1, |Ci| ≥ ε2

1152 ·
|V |
k .

Proof. Let n = |V |. By induction we construct a sequence of partitions {C1
1}, {C2

1 , C
2
2}, · · · , {Ck+1

1 , · · ·Ck+1
k+1}

of V such that each partition {Ch1 , · · · , Chh} satisfies the following properties:

1. |Chi | ≥ ε2

1152 ·
|V |
k for every i, 1 ≤ i ≤ h,

2. E[Ch1 , · · · , Chh ] ≤ 700
cexp

ϕ · d · n · log( 16k
ε )

The first partition is {C1
1} = {V }, which satisfies properties (1) and (2). Given a partition {Ch1 , · · · , Chh}

which satisfies the properties, we construct the partition {Ch+1
1 , · · · , Ch+1

h+1} as follows.

Let G′ be the graph obtained by removing all edges between different subsets Chi and Chj , 1 ≤ i < j ≤ h,

from G. Observe that ϕ ≤ 1
2

ε
700
cexp

log( 16k
ε )

, hence,

E[Ch1 , · · · , Chh ] ≤ 700

cexp
ϕ · d · n · log

(
16k

ε

)
≤ 1

2
ε · d · n.

Therefore G′ is ε
2 -far from (k, ϕ)-bounded-degree-clusterable, and thus we can apply Lemma 35. Therefore,

there is an index ih, 1 ≤ ih ≤ h, such that |Chih | ≥
ε
2

8 ·
|V |
k and G′[Chih ] is ε

4 -far from any H on vertex

set Cih with maximum degree d and Φ(H) ≥ ϕ. Thus, by Lemma 34 there is a set Ah+1 ⊆ Chih with
ε
4

18 |C
h
ih
| ≤ |Ah+1| ≤ 1

2 |C
h
ih
| such that E[Ah+1, C

h
ih
\ Ah+1] ≤ 700

cexp
· ϕ · d · |Ah+1|. Our new partition is

{Ch1 , · · · , Ah+1, C
h
ih
\Ah+1, · · · , Chh}. Now we prove that the new partition satisfies properties (1) and (2).

Recall that |Chih | ≥
ε
16 ·

|V |
k . Thus, we have |Ah+1| ≥ ε

4×18 · |C
h
ih
| ≥ ε2

1152 ·
|V |
k and |Chih \Ah+1| ≥ 1

2 |C
h
ih
| ≥

ε
32 ·

|V |
k . Therefore our new partition satisfies property (1).

In order to prove (2), imagine constructing a rooted decomposition tree T whose vertices corresponds to
subsets of vertices in V as follows. The root is the set of all vertices. Whenever a set of vertices C is split
into A and C \A, we add A and C \A as the left and right child of C respectively. The construction ensures
the following.

• (P1) The non-leaf nodes of the tree correspond to sets of vertices of size at least εn
16k .

• (P2) The size of the set corresponding to the left child is |A| = δ|C| and the size of the right child is
|C \A| = (1− δ)|C| for some ε

72 ≤ δ ≤
1
2 .

Whenever a set of vertices C is split into A and C \A, we will charge the edges cut in this decomposition
step to vertices in A by placing a charge of 700

cexp
ϕ · d at each vertex v ∈ A. Clearly, the total charge placed in

the vertices in A is an upper bound on the number of edges cut at this step. We now observe that the total
number of times any vertex v gets charged in the decomposition process is bounded by log( 16k

ε ). This follows
from the fact that each time a vertex gets charged, the size of its set decreases by at least a factor 2, and
by (P1), the non-leaf nodes has size at least εn

16k . Thus the total number of edges cut in the decomposition

process is bounded by 700
cexp

ϕ · d · n · log( 16k
ε ).

Now we are able to prove Theorem 3:
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Proof of Theorem 3. Let G = (V,E) be a degree d-bounded graph with n vertices. We prove that there
exists a randomized algorithm for Clusterability(k, ϕ, 2k, ϕ′, ε) problem on degree d-bounded graphs that
gives the correct answer with probability at least 2

3 .
Let G′ be a graph obtained from G = (V,E) by increasing the degree of every v ∈ VG by d− deg(v), by

adding self-loops. Observe that for any set S ⊆ C ⊆ V , we have volG′(S) = d·|S|. Hence, volG′(S) ≤ volG′ (V )
2

if and only if |S| ≤ n
2 . Moreover note that,

φG
′

C (S) =
EG′ [S,C \ S]

volG′(S)
=
EG[S,C \ S]

d · |S|
= ΦGC(S). (15)

Thus for any C ⊆ V we have,

ΦG(C) = min
S⊆C,0<|S|≤ |C|2

ΦGC(S) = min
S⊆C,0<vol(S)≤ vol(C)

2

φG
′

C (S) = φG
′
(C). (16)

Now we apply our PartitionTesting algorithm to G′, and prove that it can distinguish between graphs
that are (k, ϕ)-bounded-degree-clusterable, and those are ε-far from (2k, ϕ′)-bounded-degree-clusterable with
high probability.

Let G be (k, ϕ)-bounded-degree-clusterable. then there exists a partition of V into sets C1, · · · , Ch, for
h ≤ k such that for each i = 1, . . . , h, ΦG(Ci) ≥ ϕ. Thus by equation (16), we have φG

′
(Ci) ≥ ϕ for all

i = 1, . . . , h. Therefore G′ is (k, ϕ)-clusterable. Hence, by Theorem 1, PartitionTesting algorithm accepts
G′ with probability at least 2

3 .
Now suppose that G is ε-far from (2k, ϕ′)-bounded-degree-clusterable. Since ϕ′ < α, by Lemma 36, there

exists a partition of V into 2k+ 1 subsets C1, . . . , C2k+1 such that E[C1, · · · , C2k+1] ≤ 700
cexp

ϕ ·d · |V | log( 32k
ε ),

and for each 1 ≤ i ≤ 2k + 1, |Ci| ≥ ε2

1152 ·
|V |
2k .

We say that cluster Ci is bad if E[Ci, V \ Ci] ≥ 700
cexp

ϕ′ · d · log( 32k
ε ) · |Ci|. Define set B as the set of bad

clusters i.e., B = {Ci : E[Ci, V \ Ci] ≥ 4×1152
ε2 · 700

cexp
ϕ′ · d · log( 32k

ε ) · |Ci|}. Thus we have,

700

cexp
ϕ · d · log

(
32k

ε

)
· |V | ≥ E[C1, · · · , C2k+1]

≥
2k+1∑
i=1

E[Ci, V \ Ci]

≥
∑
Ci∈B

E[Ci, V \ Ci]

≥
∑
Ci∈B

4× 1152

ε2
· 700

cexp
ϕ′ · d · log

(
32k

ε

)
· |Ci|

≥ |B| ·
(

4× 1152

ε2
· 700

cexp
ϕ′ · d · log

(
32k

ε

))
·
(

ε2

1152
· |V |

2k

)

Thus |B| ≤ k
2 . Hence there exist at least k + 1 disjoint sets of vertices C1, C2, . . . , Ck+1, in G such that for

i ∈ [1..(k + 1)], |Ci| ≥ ε2

1152 ·
|V |
2k , and |E(Ci, V \ Ci)| ≤ 4×1152

ε2 · 700
cexp

ϕ′ · d · log
(

32k
ε

)
· |Ci|. Thus by equation

(15), for each i, 1 ≤ i ≤ k + 1 we have volG′(Ci) ≥ ε2

1152·kvolG′(V ), and φG
′

V (C) ≤ 4×1152
ε2 · 700

cexp
ϕ′ · log( 32k

ε ).

Hence, by Definition 2, G′ is (k, ϕout, β)-unclusterable for β = ε2

1152 , and ϕout = 4×1152
ε2 · 700

cexp
ϕ′ · log( 32k

ε ). We

set c =
cexp

480×700×4×1152 . Since ϕ′ ≤ c · ε2ϕ2

log( 32k
ε )

, we have ϕout <
1

480ϕ
2, and hence, we can apply Theorem

1. Therefore, PartitionTesting algorithm rejects G′ with probability at least 2
3 . The running time follows

easily from the fact that m ≤ d · n.

For the proof of Theorem 2 we will need the following result from [CPS15b] which establish connection
between the properties of far from being clusterable, and being unclusterable.
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Lemma 37. (Lemma 4.5 of [CPS15b]) Let α4.5 = Θ(min(d−1, k−1)) be a certain constant that depends on
d and k. If G = (V,E) is ε-far from (k, ϕ′)-degree-bounded-clusterable with ϕ′ ≤ α4.5ε, then there exist

a partition of V into subsets C1, . . . , Ck+1 such that for each i, 1 ≤ i ≤ k + 1, |Ci| ≥ ε2

1152·k |V |, and

ΦGVG(C) ≤ ck2ϕ′

ε2 , for some constant c.

Now we are able to prove Theorem 2:

Proof of Theorem 2. We wish to prove that there exists a randomized algorithm for Clusterability(k, ϕ, k, ϕ′, ε)
problem on degree d-bounded graphs that gives the correct answer with probability at least 2

3 . Let G = (V,E)
be a degree d-bounded graph with n vertices. Let G′ be a graph obtained from G = (V,E) by increasing the
degree of every v ∈ VG by d− deg(v), by adding self-loops. Now we apply our PartitionTesting algorithm
to G′, and prove that it can distinguish between graphs that are (k, ϕ)-bounded-degree-clusterable and those
are ε-far from (k, ϕ′)-bounded-degree-clusterable, with high probability.

Let G be (k, ϕ)-bounded-degree-clusterable. Then there exists a partition of V into sets C1, · · · , Ch, for
h ≤ k such that for each i = 1, . . . , h, ΦG(Ci) ≥ ϕ. Thus by equation (16), we have φG

′
(Ci) ≥ ϕ for all

i = 1, . . . , h. Therefore G′ is (k, ϕ)-clusterable. Hence, by Theorem 1, PartitionTesting algorithm accepts
G′ with probability at least 2

3 .
Now suppose that G is ε-far from (k, ϕ′)-bounded-degree-clusterable. Since ϕ′ ≤ α4.5ε, by Lemma 37,

there exist a partition of V into subsets C1, . . . , Ck+1 such that for each i, 1 ≤ i ≤ k + 1, |Ci| ≥ ε2

1152·k |V |,
and ΦGV (C) ≤ ck2ϕ′

ε2 for some constant c. Thus by equation (15), for each i, 1 ≤ i ≤ k + 1 we have

volG′(Ci) ≥ ε2

1152·kvolG′(V ), and φG
′

V (C) ≤ ck2ϕ′

ε2 . Thus by Definition 2, G′ is (k, ϕout, β)-unclusterable for

β = ε2

1152 and ϕout = ck2ϕ′

ε2 . We set c′ = 1
480·c . Since ϕ′ ≤ c′ε2ϕ2/k2, we have ϕout <

1
480ϕ

2, hence, we
can apply Theorem 1. Therefore, PartitionTesting algorithm rejects G′ with probability at least 2

3 . The
running time follows easily from the fact that m ≤ d · n.
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A Proof Lemma 4

Proof of Lemma 4. For the first part, let V ⊥ matrix whose columns complete the columns of V to an
orthonormal basis. Then V V > projects a vector onto the column space of V , and (V ⊥)(V ⊥)> projects onto
the columns space of V ⊥, which is also the orthogonal complement of the column space of V . Therefore,
V V > + (V ⊥)(V ⊥)> = Im×m. Thus,

µh(A>A) ≥ µh(A>V V >A) + µmin(A>V ⊥(V ⊥)>A) ≥ µh(A>V V >A)

where the first inequality follows from Weyl’s inequality, and the second one holds because A>V ⊥(V ⊥)>A
is positive semidefinite.

The second part follows from the first part by observing that µh(U>A>AU) = µh(AUU>A>) and
µh(A>A) = µh(AA>).

B Proof of Lemmas from Section 3.2

Lemma 19 (restated). Let G = (VG, EG) be a graph. Let 0 < σ ≤ 1 t > 0, µerr > 0, k be an integer, and
let S be a multiset of s vertices, all whose elements are (σ, t)-good. Let

R = max

(
100s2σ1/2

µerr
,

200s4σ3/2

µ2
err

)
.

For each a ∈ S and each b ∈ VG, let qa(b) be the random variable which denotes the fraction out of the R

random walks starting from a, which end in b. Let Q be the matrix whose columns are (D−
1
2 qa)a∈S . Then

with probability at least 49/50, |µk+1(Q>Q)− µk+1((D−
1
2M tS)>(D−

1
2M tS))| ≤ µerr.

Proof. Let Xi
a,r be a random variable which is 1√

deg(i)
if the rth random walk starting from a, ends at vertex

i, and 0 otherwise. Thus, E[Xi
a,r] =

pta(i)√
deg(i)

. Let Z = Q>Q. For any two vertices a, b ∈ S, observe that the

entry Za,b is a random variable given by

Za,b =
1

R2

∑
i∈VG

(

R∑
r1=1

Xi
a,r1)(

R∑
r2=1

Xi
b,r2).

Thus,

E[Za,b] =
1

R2

∑
i∈VG

(

R∑
r1=1

E[Xi
a,r1 ])(

R∑
r2=1

E[Xi
b,r2 ])

=
∑
i∈VG

pta(i)√
deg(i)

· ptb(i)√
deg(i)

= (D−
1
2M t1a)>(D−

1
2M t1b). (17)

We know that Var(Za,b) = E[Z2
a,b]− E[Za,b]

2. Let us first compute E[Z2
a,b].

E[Z2
a,b] = E

 1

R4

∑
i∈VG

∑
j∈VG

R∑
r1=1

R∑
r2=1

R∑
r′1=1

R∑
r′2=1

Xi
a,r1X

i
b,r2X

j
a,r′1

Xj
b,r′2


=

1

R4

∑
i∈VG

∑
j∈VG

R∑
r1=1

R∑
r2=1

R∑
r′1=1

R∑
r′2=1

E[Xi
a,r1X

i
b,r2X

j
a,r′1

Xj
b,r′2

]

To compute E[Xi
a,r1X

i
b,r2

Xj
a,r′1

Xj
b,r′2

], we need to consider the following cases.
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1. i 6= j: E[Xi
a,r1X

i
b,r2

Xj
a,r′1

Xj
b,r′2

] ≤ pta(i)√
deg(i)

· ptb(i)√
deg(i)

· pta(j)√
deg(j)

· ptb(j)√
deg(j)

. (This is an equality if r1 6= r′1 and

r2 6= r′2. Otherwise, the expectation is zero.)

2. i = j, r1 = r′1, r2 = r′2: E[Xi
a,r1X

i
b,r2

Xj
a,r′1

Xj
b,r′2

] =
pta(i)√
deg(i)

· ptb(i)√
deg(i)

· 1√
deg(i)

· 1√
deg(i)

.

3. i = j, r1 = r′1, r2 6= r′2: E[Xi
a,r1X

i
b,r2

Xj
a,r′1

Xj
b,r′2

] =
pta(i)√
deg(i)

· ptb(i)√
deg(i)

· 1√
deg(i)

· ptb(i)√
deg(i)

.

4. i = j, r1 6= r′1, r2 = r′2: E[Xi
a,r1X

i
b,r2

Xj
a,r′1

Xj
b,r′2

] =
pta(i)√
deg(i)

· ptb(i)√
deg(i)

· pta(i)√
deg(i)

· 1√
deg(i)

.

5. i = j, r1 6= r′1, r2 6= r′2: E[Xi
a,r1X

i
b,r2

Xj
a,r′1

Xj
b,r′2

] =
pta(i)√
deg(i)

· ptb(i)√
deg(i)

· pta(i)√
deg(i)

· ptb(i)√
deg(i)

.

Thus we have,

E[Z2
a,b] =

1

R4

∑
i∈VG

∑
j∈VG

R∑
r1=1

R∑
r2=1

R∑
r′1=1

R∑
r′2=1

E[Xi
a,r1X

i
b,r2X

j
a,r′1

Xj
b,r′2

]

≤
∑
i∈VG

∑
j∈VG\{i}

pta(i) · pta(j) · ptb(i) · ptb(j)
deg(i) · deg(j)

+
∑
i∈VG

pta(i)
2 · ptb(i)

2

deg(i)2

+
1

R2

∑
i∈VG

pta(i) · ptb(i)
deg(i)2

+
1

R

∑
i∈VG

pta(i) · ptb(i)
2

deg(i)2
+

1

R

∑
i∈VG

pta(i)2 · ptb(i)
deg(i)2

=
∑
i,j∈VG

pta(i) · pta(j) · ptb(i) · ptb(j)
deg(i) · deg(j)

+
1

R2

∑
i∈VG

pta(i) · ptb(i)
deg(i)2

+
1

R

∑
i∈VG

pta(i) · ptb(i) · (pta(i) + ptb(i))

deg(i)2
.

Therefore we get,

Var(Za,b) = E[Z2
a,b]− E[Za,b]

2

≤
∑
i,j∈VG

pta(i) · pta(j) · ptb(i) · ptb(j)
deg(i) · deg(j)

+
1

R2

∑
i∈VG

pta(i) · ptb(i)
deg(i)2

+
1

R

∑
i∈VG

pta(i) · ptb(i) · (pta(i) + ptb(i))

deg(i)2
−

(∑
i∈VG

pta(i) · ptb(i)
deg(i)

)2

=
1

R2

∑
i∈VG

pta(i) · ptb(i)
deg(i)2

+
1

R

∑
i∈VG

pta(i)2 · ptb(i)
deg(i)2

+
1

R

∑
i∈VG

pta(i) · ptb(i)2

deg(i)2

≤ 1

R2

∑
i∈VG

pta(i)√
deg(i)

· ptb(i)√
deg(i)

+
1

R

∑
i∈VG

(
pta(i)√
deg(i)

)2

· ptb(i)√
deg(i)

+
1

R

∑
i∈VG

pta(i)√
deg(i)

·

(
ptb(i)√
deg(i)

)2

≤ 1

R2
||D− 1

2 pta||2 · ||D−
1
2 ptb||2 +

1

R
||D− 1

2 pta||24 · ||D−
1
2 ptb||2 +

1

R
||D− 1

2 pta||2 · ||D−
1
2 ptb||24

≤ 1

R2
||D− 1

2 pta||2 · ||D−
1
2 ptb||2 +

1

R
||D− 1

2 pta||22 · ||D−
1
2 ptb||2 +

1

R
||D− 1

2 pta||2 · ||D−
1
2 ptb||22 (18)

Notice that all vertices in S are (σ, t)-good, therefore we get,

Var(Za,b) ≤
σ

R2
+

2σ3/2

R
.

Then by Chebyshev’s inequality, we get,

Pr
[
|Za,b − E[Za,b]| >

µerr

s

]
<

Var[Za,b]

(µerr

s )2
≤ s2

µ2
err

(
σ

R2
+

2σ3/2

R

)
≤ 1

50s2
,
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where the last inequality follows by our choice of R. By the union bound, with probability at least 49/50,
we have for all a, b ∈ S,

|(Q>Q)a,b − ((D−
1
2M t)>(D−

1
2M t))a,b| = |Za,b − E[Za,b]| ≤

µerr

s
,

which implies ‖Q>Q− (D−
1
2M tS)>(D−

1
2M tS)‖F ≤ µerr. This, in turn, implies

|µk+1(Q>Q)− µk+1((D−
1
2M tS)>(D−

1
2M tS))| ≤ µerr,

due to Weyl’s inequality and the fact that the Frobenius norm of a matrix bounds its maximum eigenvalue
from above.

Lemma 20 (restated). For all 0 < α < 1, and all G = (VG, EG) which is (k, ϕin)-clusterable, there exists

V ′G ⊆ VG with vol(V ′G) ≥ (1−α)vol(VG) such that for any t ≥ 2 ln(vol(VG))
ϕ2

in
, every u ∈ V ′G is

(
2k

α·vol(VG) , t
)

-good.

Proof. Recall that we say that vertex u is (σ, t)-good if ‖D− 1
2 ptu‖22 ≤ σ. We can write D−

1
2 ptu as

D−
1
2 ptu = D−

1
2M t1u = D−

1
2 (D

1
2M

t
D−

1
2 )1u = M

t
D−

1
21u

Recall from section 2 that 1− λ1

2 ≥ · · · ≥ 1− λn
2 , are eigenvalues of M , and v1, . . . , vn are the corresponding

orthonormal eigenvectors. We write D−
1
21u in the eigenbasis of M as D−

1
21u =

∑n
i=1 αi(u) · vi where

αi(u) = (D−
1
21u)>vi = vi(u)√

deg(u)
. Therefore we get,

||D− 1
2 ptu||22 = ||M t

D−
1
21u||22

=

n∑
i=1

αi(u)2

(
1− λi

2

)2t

=

k∑
i=1

αi(u)2

(
1− λi

2

)2t

+

n∑
i=k+1

αi(u)2

(
1− λi

2

)2t

≤
k∑
i=1

αi(u)2 +

(
1− λk+1

2

)2t n∑
i=k+1

αi(u)2

≤
k∑
i=1

αi(u)2 +

(
1− ϕ2

in

4

)2t

.

The last inequality follows from Lemma 10, and the fact that
∑n
i=k+1 αi(u)2 ≤ ||vi||22 ≤ 1. We now bound

h(u) :=
∑k
i=1 αi(u)2. Let D denote the degree distribution of G (i.e., D(v) = deg(v)

vol(G) ). Observe that

ED [h(u)] =
∑
u∈VG

deg(u)

vol(VG)
·

(
k∑
i=1

αi(u)
2

)
=
∑
u∈VG

deg(u)

vol(VG)
·

(
k∑
i=1

vi(u)2

deg(u)

)

=
1

vol(VG)

k∑
i=1

∑
u∈VG

vi(u)
2

=
1

vol(VG)

k∑
i=1

||vi||22 =
k

vol(VG)

Thus by Markov’s inequality there exists a set V ′G ⊆ VG with vol(V ′G) ≥ (1−α)vol(VG) such that for any
u ∈ V ′G,

h(u) ≤ 1

α
· k

vol(VG)
.

Thus if t ≥ 2 ln(vol(VG))
ϕ2

in
for any u ∈ V ′G we have

||D− 1
2 ptu||22 ≤

k

α · vol(VG)
+ (1− ϕ2

in

4
)2t ≤ 2k

α · vol(VG)
,

therefore every u ∈ V ′G is
(

2k
α·vol(VG) , t

)
-good.
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Lemma 18 (restated). Let G = (VG, EG). Let a ∈ VG, σ > 0, 0 < δ < 1, and R ≥ 16
√

vol(G)

δ . Let t ≥ 1,
and pta be the probability distribution of the endpoints of a t-step random walk starting from a. There exists

an algorithm, denoted by `22-norm tester(G, a, σ,R), that outputs accept if ‖D− 1
2 pta‖22 ≤ σ

4 , and outputs

reject if ‖D− 1
2 pta‖22 > σ, with probability at least 1− δ. The running time of the tester is O(R · t).

Proof. The description of the algorithm `22-norm tester(G, a, σ, r) is simple:

1. Run 2R random walks of length t starting from a.

2. Let Xi
a,r be a random variable which is 1√

deg(i)
if the rth random walk starting from a, ends at vertex

i, and 0 otherwise.

3. Let Z be a random variable given by Z = 1
R2

∑
i∈VG(

∑R
r1=1X

i
a,r1)(

∑2R
r2=R+1X

i
a,r2).

4. Reject if and only if ‖D− 1
2 pta‖22 > σ

2 .

By equation 17, and inequality 18, in the proof of Lemma 19, we have E[Z] = ‖D− 1
2 pta‖22, and

Var(Z) ≤ 1

R2
||D− 1

2 pta||2 · ||D−
1
2 pta||2 +

1

R
||D− 1

2 pta||22 · ||D−
1
2 pta||2 +

1

R
||D− 1

2 pta||2 · ||D−
1
2 pta||22

≤ 1

R2
||D− 1

2 pta||22 +
2

R
||D− 1

2 pta||32

=
1

R2
E[Z] +

2

R
E[Z]

3
2 .

Then by Chebyshev’s inequality, we get,

Pr

[
|Z − E[Z]| > E[Z]

2

]
<

Var[Z]

(E[Z]
2 )2

≤
4
R2E[Z] + 8

RE[Z]
3
2

E[Z]2
=

4

R2 · E[Z]
+

8

R · E[Z]
1
2

.

Now Observe that E[Z] =
∑n
i=1

(pta(i))
2

deg(i) , is a convex funtion which is minimized when for all 1 ≤ i 6=

j ≤ n,
pta(i)
deg(i) =

pta(j)
deg(i) = 1

vol(VG) . Thus we have

E[Z] ≥
n∑
i=1

(pta(i))
2

deg(i)
≥

n∑
i=1

(
deg(i)

vol(VG)

)2

deg(i)
=

1

vol(VG)
.

Hence, we get,

Pr

[
|Z − E[Z]| > E[Z]

2

]
≤ 4 · vol(VG)

R2
+

8 · vol(VG)
1
2

R
≤ δ.

The last inequality holds since R ≥ 16
√

vol(G)

δ .

Thus if ‖D− 1
2 pta‖22 ≤ σ

4 , then E[Z] ≤ σ
4 , and hence, with probability at least 1 − δ, we have Z ≤

σ
4 + σ

8 < σ
2 . And if ‖D− 1

2 pta‖22 ≥ σ, then with probability at least 1 − δ, we have Z ≥ E[Z]
2 ≥ σ

2 .
Therefore, the tester outputs the correct anwer with probability at least 1− δ.
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