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Abstract— We report on two extensions of exact FBP inversion
formulas to more general classes of trajectories. The first class
consists of curvesC that are smooth, have positive curvature
and torsion, and have some other natural geometric properties.
We generalize the notion of PI-lines, study their properties and
formulate a 1PI FBP reconstruction algorithm. The second class
of trajectories constists of circle-plus curves, which have two
components:C and L. The first componentC, which is analogous
to the circle in the traditional circle-plus trajectories, is essentially
any closed (not necessarily planar) continuous curve. The second
componentL is almost any continuous curve. The only condition
is that L starts below C and ends aboveC. The algorithm is
especially convenient for the traditional circle-plus trajectories,
which are implemented using a gantry and moving table. In this
case we obtain a universal FBP algorithm, which is completely
independent of how the table moves during the scan. The results
of testing both algorithms demostrate good image quality.

Index Terms— cone-beam, efficient inversion, exact inversion

I. I NTRODUCTION

A number of theoretically exact algorithms have been
proposed in the past several years. They can be classified
into three groups: filtered backprojection (FBP) algorithms,
slow-FBP algorithms, and backprojection filtration (BPF) al-
gorithms. Slow-FBP and BPF algorithms are quite flexible,
allow some transverse data truncation, and can be used for
virtually any complete source trajectory [12], [17], [13],[15],
[16]. FBP algorithms are less flexible, but they are by far
the fastest and have been developed for a range of source
trajectories. They include constant pitch helix [6], dynamic
pitch helix [9], [3], circle-and-line [5], circle-and-arc[7], [2],
and saddle [14].

As the list presented above shows, until now FBP algorithms
have been proposed only for certain types of well-defined
trajectories: helices, saddles, etc. There was no FBP algorithm
for a general class of curves. Ideally, such a class would be
described only in terms of some basic geometric properties
(e.g., smoothness, curvature, etc.) rather than specifying the
types of curves (helices, etc.). In this paper we develop
two theoretically exact shift-invariant FBP algorithms for two
general classes of source trajectories. The first class consists
of smooth curvesC with positive curvature and torsion that
also have some additional natural geometric properties that
are discussed in section II-A. The inversion algorithm for
these curves is a generalization of the formula proposed for
constant- and variable-pitch helices in [6], [9]. The second
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result is an exact FBP algorithm for a class of generalized
circle-plus trajectories. They consist of two components:C
andL. The first componentC, which is analogous to a circle in
the traditional circle-plus trajectories, is essentiallyany closed
(e.g., not necessarily planar) continuous curve. The second
componentL is almost any continuous curve, which starts
belowC and ends aboveC. Our class of curves encompasses
practically all circle-plus trajectories that have been proposed
in the literature so far and includes many more new ones, such
as various saddle-plus trajectories, etc.

II. RECONSTRUCTION FOR A GENERAL CLASS OF CURVES

WITH POSITIVE CURVATURE AND TORSION

The results presented in this section are based on [10].

A. PI lines and their properties

We start by defining PI lines for a general class of smooth
curves and study their properties. LetC be a smooth curve:

I := [a, b] 3 s → y(s) ∈ R
3, |ẏ(s)| 6= 0. (1)

Here and below the dot above a variable denotes differentiation
with respect tos. Define the function

Q(s, s0) := [y(s) − y(s0), ẏ(s0), ẏ(s)], (2)

where [e1, e2, e3] := e1 · (e2 × e3) is the triple product of
vectors. IfC is a helix, thenQ is precisely the function that
has been introduced under the same name in [9]. Similarly to
[9], it turns out thatQ is related to the uniqueness of PI-lines
(see below). Given anys0, s1 ∈ I, H(s0, s1) denotes the line
segment with the endpointsy(s0), y(s1) ∈ C.

Definition 2.1: Pick two pointsy(s0), y(s1) ∈ C, s0 < s1.
The line segmentH(s0, s1) is called a PI-segment ifQ(s, q) 6=
0 for any s, q ∈ [s0, s1], s 6= q.

Definition 2.2: Pick two pointsy(s0), y(s1) ∈ C, s0 < s1.
The line segmentH(s0, s1) is called a maximal PI-segment if
Q(s0, s1) = 0, but Q(s, q) 6= 0 for any s, q ∈ (s0, s1), s 6= q.

If C is a helix, definition 2.1 gives the usual PI-segments
H(s, q), 0 < q−s < 2π, and definition 2.2 gives the maximal
PI-segmentsH(s, s + 2π).

In order to define our class of curves, we need to
discuss how a smooth curve bends. Consider two points:
y(s0), y(s) ∈ C. Assumey(s0) is fixed, andy(s) moves
along C. The line segment joiningy(s0) and y(s) rotates
about the instantaneous axise(s, s0) = (y(s) − y(s0)) ×
ẏ(s)/|(y(s)−y(s0))× ẏ(s)|. The pointy(s) rotates also about
the instantaneous axis which is obtained by finding the circle



Fig. 1. Critical case

of curvature ofC aty(s) (also known as the osculating circle).
The corresponding axis of rotation isb(s), i.e. the binormal
vector. Ifs → s0, thene(s, s0) → b(s). Thus, the difference in
directions of the two vectors can measure how much the curve
bends between the two points. The maximum possible “bent”
occurs when the two axes point in the opposite directions:
e(s, s0) = −b(s) (see Fig. 1).

We now formulate the main assumptions on the curveC:
C1. C is smooth, and the curvature and torsion ofC are

positive;
C2. C does not self-intersect within any PI-segment (or a

maximal PI-segment) ofC;
C3. Given any PI-segment (or a maximal PI-segment)

H(s0, s) of C, there is no line tangent toC at y(s1) and
intersectingC at y(s2) with s1, s2 ∈ [s0, s], s1 6= s2;

C4. C does not bend too much, i.e. given any PI-segment (or a
maximal PI-segment)H(s0, s) of C, one hase(s1, s2) 6=
−b(s2) for any s1, s2 ∈ [s0, s], s1 6= s2.

If a curve satisfies conditions C1–C4, then its PI-segments
have a number of nice properties. One of them is that no plane
intersectsC(s0, s1) at more than three points.

B. Establishing uniqueness of PI lines

Fix x ∈ U . For eachs ∈ I, fix a vectorN(s), |N(s)| ≡ 1
(a specificN(s) will be chosen later). Define functionsq(s)
and λ(s) so thatH(s, q(s)) is a PI-segment,0 < λ(s) < 1,
and the point

x(s) := y(s) + λ(s)(y(q(s)) − y(s)) ∈ H(s, q(s)) (3)

has the property
x(s) − x ‖ N(s). (4)

We assume that the functionsq(s) andλ(s) with the required
properties exist. Later (see (7)) we findU such that for any
x ∈ U the functionsq(s) andλ(s) do exist.

Condition (4) means that the parallel projection ofx(s) onto
the plane throughx with normal vectorN(s) coincides withx.
Note that the vector-valued functionN(s) is determined inde-
pendently ofq(s) andλ(s). A similar idea is used in proving
the uniqueness of PI lines for the standard helix (where the
vector N(s) is constant and directed along the axis of the
helix). Denote∆y(s) := y(q(s)) − y(s). Thus,

ε(s) := N(s) · {(y(s) + λ(s)∆y(s)) − x} (5)

is the signed distance fromy(s)+λ(s)∆y(s) to x, i.e.ε(s) = 0
if and only if the chordH(s, q(s)) passes throughx.

To find a setU where ε′(s) is guaranteed to be positive
for s in a chosen subintervalI0 ⊆ I, we start by choosing a
vectorN(s). Denote the supremum (respectively, infimum) of
all q such thatH(s, q) is a PI line byqmax(s) (respectively,
qmin(s)). Define

N•(s) :=
y(q•(s)) − y(s)

|y(q•(s)) − y(s)|
. (6)

Here and below• can be replaced withmin or max. Thus,
N•(s) is the unit vector alongH(s, q•(s)). We prove that
C(s, q•(s)) lies on one side of the plane throughy(s) with
normalN•(s)× ẏ(s), so it can be stereographically projected
onto a plane not containingy(s) with the same normal (this
generalizes the projection onto the detector plane). It also turns
out that the projected curves will be convex, as in the helical
case. The parallel projection ofC(s, q•(s)) ontoH⊥(s, q•(s)),
which we denote bŷC(s, q•(s)), is a closed convex curve that
plays an important role in the definition of the setU where
PI-lines are unique.

Even though the curveC is well-behaved locally, very little
can be said about the global behavior ofC. So we choose
a “local” piece of C: I0 := [a0, b0] ⊂ (a, b). The word
local is made precise later. For eachs ∈ I0 consider the
curve Ĉ(s, qmax) in the planeN⊥

max(s). Let Cylmax(s) be
the infinite open cylinder with axisNmax(s), whose base is
the interior ofĈ(s, qmax). In the same fashion we define the
cylindersCylmin(s) using Ĉ(qmin, s) and Nmin(s). Define
U as the intersection of all such open cylinders:

U := ∩s∈I0 (Cylmin(s) ∩ Cylmax(s)) . (7)

If the curve turns too much,U can be empty. We assume that
a sufficiently “local” piece ofC is taken, soU 6= ∅. Note that
in the case of helix all cylindersCylmin(s) and Cylmax(s)
are identical, so (7) gives the usual domain inside the helix.
Uniqueness of PI lines forx ∈ U is given by the following

Proposition 2.3:Pick x ∈ U . If x admits a PI-line, it is
unique in the sense that there is no other PI-line with an
endpoint insideI0.

Combining all the results we obtain that the 1PI algorithm
of [6] generalizes to curves that satisfy conditions C1–C4.

C. Numerical experiments

Numerical experiments have been conducted using flat
detector geometry. The detector size is1201 × 161, pixel
size: 0.5 × 0.5mm2 at isocenter,1000 views are collected
per rotation. The algorithm is implemented in native coor-
dinates following [11]. We use the virtual detector, which
always contains thex3-axis. The clock phantom is chosen for
reconstruction. The trajectory is a variable pitch/radiushelix:

y(s) =

(

R(s) cos s, R(s) sin s,
h(s)

2π
s

)

,

h(s) = h0

(

1 +
sin(s/2)

s

)

.

(8)



where R = 600mm and h0 = 35mm. The projection of
this trajectory onto the planex3 = 0 for s ∈ [−2π, 2π]
is shown in Fig. 2 (left panel). The boundary of the set

Fig. 2. Left panel: projection of the source trajectory in (8) onto the plane
x3 = 0. Right panel: the cross-section of the boundaries ofCylmin(s) and
Cylmax(s) by the planex3 = 0.

U is calculated according to (7). The cross-section of the
boundaries of cylindersCylmin(s) and Cylmax(s) with the
plane x3 = 0 is shown in Fig. 2 (right panel). The solid
circle of radiusr = 240mm shows the boundary of the clock
phantom, and the dashed circle is of the maximum radius
r ≈ 348mm that fits inside the cross-section ofU . The result
of reconstruction is shown in Fig. 3.

Fig. 3. Reconstruction of the clock phantom from trajectory(8): slicex3 = 0,
WL=0 HU, WW=100 HU.

III. R ECONSTRUCTION FOR CIRCLE-PLUS TRAJECTORIES

The results in this section are based on [8].

A. Algorithm

Let C be a piece-wise smooth closed curve, andL - an
additional piece-wise smooth curve. Givenx 6∈ C ∪ L, let
ΞC(x) denote the set of planes throughx which do not
intersectC. DefineU as the set of allx such that

L1. ΞC(x) 6= ∅, and
L2. for almost all Π ∈ ΞC(x) the number of intersection

points (IPs) inΠ ∩ L is odd.
The main assumption aboutC and L is that U contains an
open set. The first condition above is not restrictive. IfΞC(x)
is empty, then any plane throughx intersectsC, andL is not
required for image reconstruction atx.

Fig. 4. Illustration of the conesK±

C
(x)

We now discuss the meaning of the second condition. For
x ∈ U define the cones (see Fig. 4):

K+

C (x) := {z ∈ R
3 : z = λ1(y1 − x) + λ2(y2 − x),

y1, y2 ∈ C, λ1, λ2 > 0},

K−

C (x) := {z ∈ R
3 : z = λ1(y1 − x) + λ2(y2 − x),

y1, y2 ∈ C, λ1, λ2 < 0}.

(9)

Let yf and yl be the first and last endpoints ofL, respec-
tively. The order of endpoints is determined according to the
parametrization ofL. SinceU contains an open set, we can
choosex not on the line throughyf andyl. We show that only
two cases are possible:

yf ∈ K+

C (x), yl ∈ K−

C (x) or yf ∈ K−

C (x), yl ∈ K+

C (x).
(10)

Defining two sets

U+ := {x ∈ U : yf ∈ K+

C (x), yl ∈ K−

C (x)},

U− := {x ∈ U : yf ∈ K−

C (x), yl ∈ K+

C (x)},
(11)

we show thatU = U− ∪ U+.
If the direction fromyf to yl is called “upward”, then we

say that the points inU− are belowC, while the points inU+

are aboveC (see Fig. 4). For the classical circle+line trajectory
this definition gives the usual notions of “above the circle”and
“below the circle”. Summarizing, condition L2 above ensures
that the endpoints ofL be on opposite sides ofC.

Following the general scheme proposed in [4], we define a
normalized weight function. Letnc(Π) denote the number of
IPs in Π ∩ C, whereΠ is a plane throughx.

1) If nc(Π) > 0, each IP inΠ ∩ C gets weight1/nc, and
each IP inΠ ∩ L (if they exist) gets weight zero.

2) If nc(Π) = 0, then the IPs inΠ ∩ L get weights
+1,−1, +1,−1, . . . , +1, respectively.

Here we use the assumption that ifΠ does not intersectC,
then the number of IPs inΠ∩L is odd. The second rule above
can be formulated as follows: odd-indexed IPs inΠ ∩ L get
weight +1, and even-indexed IPs inΠ ∩ L get weight -1.

The main difference between the new algorithm and the
one in [1] is the definition of the weight function in the case
nc(Π) = 0, i.e. when all the IPs are onL. In [1], the IP closest
to C gets weight 1, while all other IPs get weight zero. It turns
out that by assigning alternating weights +1 and -1 to the IPs



on L we get a much more flexible and simple algorithm, in
which there is no need to filter along directions tangent toL.

The corresponding reconstruction algorithm is developed
according to the general scheme in [4].

It turns out that the algorithm is essentially independent
of the curve L. For eachy(s) ∈ L the only thing one
needs to know is howC projects onto the detector. This
projection depends only on the location of the detector and
the coordinates ofy(s), but does not depend on the global
properties ofL. This property makes the algorithm especially
convenient for circle-plus trajectories, which are implemented
using a gantry and moving table. Regardless of how the table
moves during the scan, in this case the curveL lies on the
surface of the cylinder with baseC. The projection ofC
onto the detector depends only on the axial distance between
y(s) ∈ L and the plane of the circle. Consequently, the
algorithm is completely independent of the shape ofL (as
long as condition L2 is satisfied). This means, in particular,
that the complete circle+line algorithm of [4] works for many
other trajectories, e.g. circle+helix, circle+variable pitch helix,
etc., without any modifications! Another implication is that in
all these cases both the detector requirements and the axial
extent of the additional scanL are exactly the same as in the
circle+line case (cf. [4]).

B. Numerical experiments

To test our results, we conduct a numerical experiment
with the clock phantom and circle+helix trajectory. The radius
of the circle and the helix:600mm, detector pixel size at
isocenter:0.910−3rad× 0.5mm, detector size:1024 × 325
pixels, number of views per turn (circle and helix):1000.

The curveC is a circle of radiusR in the planex3 = 0
and centered at the origin. The clock phantom is shifted by
∆x3 = 40mm up. This is done in order to better illustrate
how the algorithm reconstructs cross-sections away from the
plane of the circle. The curveL is a variable-pitch helix

y1(s) = R cos s, y2(s) = R sin s, y3(s) = bs2, (12)

whereb = 0.4. We reconstruct the region wherey3 > 0, so
only the portion of the helix corresponding tos ≥ 0 is used.

For reconstructions we use the circle+line algorithm of [4].
As was already mentioned, the detector requirements and the
axial extent of the helix are the same as in [4]. The only
difference from [4] is that now we use the cylindrical detector
geometry. According to the theory, the algorithm should work
without any modifications and provide good image quality. It
turned out to be the case. The results are shown in Fig. 5. As
one sees, the image quality is consistent with a theoretically
exact algorithm.
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Fig. 5. Cross-sectionx3 = 40mm through the reconstructed clock phantom.
The region|x1|, |x2| ≤ 255.5 is shown. WL=0HU, WW=100HU
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