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Abstract— We report on two extensions of exact FBP inversion result is an exact FBP algorithm for a class of generalized
formulas to more general classes of trajectories. The firstlass cijrcle-plus trajectories. They consist of two componerdts:
consists of curvesC that are smooth, have positive curvature andL. The first componen®, which is analogous to a circle in

and torsion, and have some other natural geometric propergs. the traditi | circle-blus traiectori . tial | d
We generalize the notion of Pl-lines, study their propertis and e traditional circle-plus trajectories, is essentialiy close

formulate a 1P| FBP reconstruction algorithm. The second ciss (€.9., not negessarily planar) Colntinuous curve. The secon
of trajectories constists of circle-plus curves, which ha® two componentl is almost any continuous curve, which starts

components:C and L. The first componentC', which is analogous  pelow C' and ends abov€. Our class of curves encompasses
to the circle in the traditional circle-plus trajectories, is essentially practically all circle-plus trajectories that have beeopmsed

any closed (not necessarily planar) continuous curve. Theesond in the literature so far and includes many more new ones. such
component L is almost any continuous curve. The only condition : : u Inclu y w » Su

is that L starts below C' and ends aboveC. The algorithm is s various saddle-plus trajectories, etc.
especially convenient for the traditional circle-plus trgectories,

which are implemented using a gantry and moving table. Inths -, * p e - NSTRUCTION FOR A GENERAL CLASS OF CURVES
case we obtain a universal FBP algorithm, which is completgl '

independent of how the table moves during the scan. The redsl WITH POSITIVE CURVATURE AND TORSION
of testing both algorithms demostrate good image quality. The results presented in this section are based on [10].

Index Terms— cone-beam, efficient inversion, exact inversion
A. Pl lines and their properties

I. INTRODUCTION We start by defining PI lines for a general class of smooth

A number of theoretically exact algorithms have beepUrves and study their properties. L@&tbe a smooth curve:

proposed in the past several years. They can be classified I:=1[a,b] 35— y(s) € R3, [9(s)| # 0. (1)

into three groups: filtered backprojection (FBP) algorithm

slow-FBP algorithms, and backprojection filtration (BPF) aHere and below the dot above a variable denotes differéntiat

gorithms. Slow-FBP and BPF algorithms are quite flexibldVith respect tos. Define the function

allow some transverse data truncation, and can be used for . . .

virtually any complete source trajectory [12], [17], [1815], Q(s:50) = [y(s) = y(s0), ¥(50), y(s)], 2)

[16]. FBP algorithms are less flexible, but they are by faghere [e1,e2,e3] := e - (e2 x es) is the triple product of

the fastest and have been developed for a range of soWggtors. IfC is a helix, thenQ is precisely the function that

trajectories. They include constant pitch helix [6], dymam pas peen introduced under the same name in [9]. Similarly to

pitch helix [9], [3], circle-and-line [5], circle-and-af@], [2], [9], it turns out thatQ is related to the uniqueness of Pl-lines

and saddle [14]. (see below). Given anyy, s, € I, H(sg, s1) denotes the line
As the list presented above shows, until now FBP algorithrgagment with the endpointg sy ), y(s1) € C.

have been proposed only for certain types of well-defined pefinition 2.1: Pick two pointsy(so), y(s1) € C, s < s1.

trajectories: helices, saddles, etc. There was no FBPi#igor The line segmenk (s, s1) is called a Pl-segment@(s, ¢) #

for a general class of curves. Ideally, such a class would fgqr any s, q € [so,s1], s # q.

described only in terms of some basic geometric propertiespefinition 2.2: Pick two pointsy(so), y(s1) € C, so < s1.

(e.g., smoothness, curvature, etc.) rather than spegififie  The line segment (so, s1) is called a maximal Pl-segment if

types of curves (helices, etc.). In this paper we develp s, s,) =0, butQ(s,q) # 0 for any s, q € (so, 1), s # q.

general classes of source trajectories. The first classjstsnsH(& q),0 < ¢— s < 27, and definition 2.2 gives the maximal
of smooth curves”' with positive curvature and torsion thatPI-segmentsH(s,s +2m).
also have some additional natural geometric properties than order to define our class of curves, we need to

are discussed in section II-A. The inversion algorithm fafiscuss how a smooth curve bends. Consider two points:
these curves is a generalization of the formula proposed fqrs ) (s) € €. Assumey(so) is fixed, andy(s) moves

about the instantaneous axi$s, sg) = s) — y(sg)) x
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is the signed distance frog{s)+A(s)Ay(s) toz, i.e.e(s) =0
if and only if the chordH (s, ¢(s)) passes through.
To find a setU wheree’(s) is guaranteed to be positive

for s in a chosen subintervdl, C I, we start by choosing a
vector N (s). Denote the supremum (respectively, infimum) of
b(s) C all ¢ such thatH (s, q) is a Pl line bygnm..(s) (respectively,
Gmin(s)). Define
_ Y(ge(s)) —y(s)
C M) = 1) o) ©
!/(30)

Here and belows can be replaced witlin or max. Thus,
Fig. 1. Critical case No(s) is the unit vector alongH (s, q.(s)). We prove that

C(s,¢e(s)) lies on one side of the plane througlis) with

normal N,(s) x ¢(s), so it can be stereographically projected
of curvature ofC' aty(s) (also known as the osculating circle) onto a plane not containing(s) with the same normal (this
The corresponding axis of rotation Ig(s), i.e. the binormal generalizes the projection onto the detector plane). dt iss
vector. Ifs — so, thene(s, so) — b(s). Thus, the difference in oyt that the projected curves will be convex, as in the helica
directions of the two vectors can measure how much the curygse. The parallel projection 6f(s, ga(s)) onto H- (s, qe(s)),
bends between the two points. The maximum possible “beRfhich we denote by (s, ¢a (s)), is a closed convex curve that
occurs when the two axes point in the opposite directiongiays an important role in the definition of the gétwhere
e(s,s0) = —b(s) (see Fig. 1). Pl-lines are unique.

We now formulate the main assumptions on the cutVe  Eyen though the curvé is well-behaved locally, very little

Cl1. C is smooth, and the curvature and torsion @fare can be said about the global behavior @f So we choose

positive; a “local” piece of C: Iy := [ag,bo] C (a,b). The word
C2. C does not self-intersect within any Pl-segment (or cal is made precise later. For eashe I, consider the
maximal Pl-segment) of’; curve C(s, gmaz) in the planeNt (s). Let Cyliyax(s) be

C3. Given any Pl-segment (or a maximal Pl-segmertje infinite open cylinder with axisV,,..(s), whose base is
H (s, s) of C, there is no line tangent t6' aty(s;) and the interior of C(s, gmae). IN the same fashion we define the
intersectingC' at y(s2) With s1,s2 € [s0, 5], 51 # S2; cylinders Cyloin(s) using C(gmin,s) and Ny, (s). Define

C4. C does not bend too much, i.e. given any Pl-segment (oaas the intersection of all such open cylinders:
maximal Pl-segment}{ (s, s) of C, one has:(s1, s2) #

—b(s2) for any sy, sz € [so,5] 51 # 52. U = Nseto (CYlmin(s) N Cylimax(s)) . ©)
If a curve satisfies conditions C1-C4, then its Pl-segments

have a number of nice properties. One of them is that no plakiéhe curve turns too much/ can be empty. We assume that

intersectsC/(so, s1) at more than three points. a sufficiently “local” piece ofC' is taken, sd/ # @. Note that

in the case of helix all cylinder€yl,,:»(s) and Cylax(s)

are identical, so (7) gives the usual domain inside the helix

Uniqueness of Pl lines far € U is given by the following

Proposition 2.3:Pick z € U. If x admits a Pl-line, it is
unigue in the sense that there is no other Pl-line with an
endpoint insidel;.

Combining all the results we obtain that the 1Pl algorithm

z(s) == y(s) + Xs)(y(q(s)) —y(s)) € H(s,q(s)) (3) of [6] generalizes to curves that satisfy conditions C1-C4.

B. Establishing uniqueness of PI lines

Fix © € U. For eachs € I, fix a vectorN(s), |[N(s)| =1
(a specificN(s) will be chosen later). Define functiongs)
and A(s) so thatH(s,q(s)) is a Pl-segment) < \(s) < 1,
and the point

has the property
z(s) —z || N(s). (4) C. Numerical experiments

We assume that the functiopés) and A(s) with the required Numerical experiments have be_en _conducted us_ing flat

properties exist. Later (see (7)) we fiid such that for any detector geometry. The detector size 1201 x 161, pixel

z € U the functionsg(s) and A(s) do exist. size: 0.5 X 0.5mn? at |§0cer)ter,1000 views are co]lected
Condition (4) means that the parallel projection:¢f) onto P&l rotation. The algorithm is |mplemented in native coor-

the plane througt with normal vectorN (s) coincides withy. ~ dinates following [11]. We use the virtual detector, which

Note that the vector-valued functia¥(s) is determined inde- @ways contains thes-axis. The clock phantom is chosen for

pendently ofg(s) and A(s). A similar idea is used in proving reconstruction. The trajectory is a variable pitch/radiesx:

the uniqueness of PI lines for the standard helix (where the . h(s)

vector N(s) is constant and directed along the axis of the y(s) = (R(S)COS&R(S)SmS, Fs) :

helix). DenoteAy(s) := y(q(s)) — y(s). Thus, /o) @®
()= Ns) () £ A Au(s) — 2} () o) = o (14 22020,



where R = 600mm and hy = 35mm. The projection of
this trajectory onto the plane; = 0 for s € [—2m,27]
is shown in Fig. 2 (left panel). The boundary of the set

=

-300

-600

Fig. 4. lllustration of the cones 2 (x)

Fig. 2. Left panel: projection of the source trajectory in ¢(®to the plane ) ) .
x3 = 0. Right panel: the cross-section of the boundarie€gt.;, (s) and We now discuss the meaning of the second condition. For

Cylmaz(s) by the planers = 0. z € U define the cones (see Fig. 4):

U is calculated according to (7). The cross-section of the K¢ (2) = {z € R® 1z = Mi(y1 — ) + da(y2 — 2),
boundaries of cylinder€'yl, i, (s) and Cyly,q.(s) with the y1,Y2 € C, A1, A2 > 0},

p]ane T3 = '0 is shown in Fig. 2 (right panel). The solid K;(x) = {z € R3:2 = A\ (y1 — @) + \a(y2 — ), 9)
circle of radiusr = 240mm shows the boundary of the clock

phantom, and the dashed circle is of the maximum radius Y1,z € O, A, Az < 0.
r /~ 348mm that fits inside the cross-section@f The result Let y; andy; be the first and last endpoints @f, respec-
of reconstruction is shown in Fig. 3. tively. The order of endpoints is determined according ® th
parametrization ofL. SinceU contains an open set, we can
chooser not on the line througly; andy;. We show that only
two cases are possible:

yr € Kf(2),y1 € K5 (z) oryp € Ko (2),y1 € Kl ().
(10)

Defining two sets
Up ={zeU: yse KEE(SU), v € Kg(2)},
U_ = {J) cU: Yf S KE(J?), y € Kg(l‘)},

we show thaty = U_ U U,..
If the direction fromy; to y; is called “upward”, then we
say that the points i/_ are belowC, while the points inJ/
Fig. 3. Reconstruction of the clock phantom from traject@} slicexs = 0, ar.e abo_ve_ﬁ_' (See Fig. 4). For the c_Iassma‘I‘ circle+line t.raje(,:tory
WL=0 HU. WW=100 HU. this definition gives the usual notions of “above the cirded
“below the circle”. Summarizing, condition L2 above ensure
that the endpoints of. be on opposite sides @f.

[Il. RECONSTRUCTION FOR CIRCLEPLUS TRAJECTORIES Following the general scheme proposed in [4], we define a
normalized weight function. Let.(I1) denote the number of
IPs inII N C, wherell is a plane through:.

) 1) If n.(II) > 0, each IP inlI N C gets weightl /n., and
A. Algorithm each IP inII N L (if they exist) gets weight zero.
Let C be a piece-wise smooth closed curve, and an 2) If n.(II) = 0, then the IPs inll N L get weights

additional piece-wise smooth curve. Giveng C U L, let +1,—1,+1,—1,...,+1, respectively.
Ec(x) denote the set of planes throughwhich do not pere we use the assumption thatlif does not interseat’,
intersectC’. DefineU as the set of alk: such that then the number of IPs iiN L is odd. The second rule above

(11)

The results in this section are based on [8].

L1. E¢(z) # 2, and _ ~can be formulated as follows: odd-indexed IPsIim L get
L2. for almost allll € Zc(z) the number of intersection weight +1, and even-indexed IPs ihn L get weight -1.
points (IPs) inlIN L is odd. The main difference between the new algorithm and the

The main assumption abodt and L is thatU contains an one in [1] is the definition of the weight function in the case
open set The first condition above is not restrictive.3¢-(x) n.(II) = 0, i.e. when all the IPs are ah. In [1], the IP closest

is empty, then any plane throughintersects”, and L is not to C' gets weight 1, while all other IPs get weight zero. It turns
required for image reconstruction at out that by assigning alternating weights +1 and -1 to the IPs



on L we get a much more flexible and simple algorithm, in
which there is no need to filter along directions tangenk to

The corresponding reconstruction algorithm is developed
according to the general scheme in [4].

It turns out that the algorithm is essentially independent
of the curve L. For eachy(s) € L the only thing one
needs to know is howC projects onto the detector. This
projection depends only on the location of the detector and
the coordinates ofj(s), but does not depend on the global
properties of.. This property makes the algorithm especially
convenient for circle-plus trajectories, which are impénted
using a gantry and moving table. Regardless of how the table
moves during the scan, in this case the cufvéies on the Fig 5. Cross-sections = 40mm through the reconstructed clock phantom.
surface of the cylinder with bas€. The projection ofC'  The region|z1], |z2| < 255.5 is shown. WL=0HU, WW=100HU
onto the detector depends only on the axial distance between
y(s) € L and the plane of the circle. Consequently, the
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