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Abstract. We extend an efficient cone beam transform inversion formula,
proposed earlier by one of the authors for helices, to a general class of curves.
The conditions that describe the class are very natural. Curves C are smooth,
without self-intersections, have positive curvature and torsion, do not bend
too much, and do not admit lines which are tangent to C at one point and
intersect C at another point. The notions of PI-lines and PI-segments are gen-
eralized, their properties are studied. The domain U is found, where PI-lines
are guaranteed to be unique. Results of numerical experiments demonstrate
very good image quality.

1. Introduction

Image reconstruction from projections is important both in pure mathematics
(as a problem of integral geometry) and in applications (as a problem of computed
tomography (CT)). Cone beam CT is one of the most common medical imaging
modalities. Here one recovers a function f(x), x ∈ R3, knowing the integrals of
f along lines that intersect a curve C. The curve C is usually called a source
trajectory. The ever-increasing needs of medical imaging require the development
of inversion algorithms for more and more general source trajectories.

A number of theoretically exact algorithms have been proposed in the past
several years. They can be classified into three groups: filtered backprojection
(FBP) algorithms, slow-FBP algorithms, and backprojection filtration (BPF) algo-
rithms. Slow-FBP and BPF algorithms are quite flexible, allow some transverse
data truncation, and can be used for virtually any complete source trajectory
[PN05, PNC05, ZPXW05, SZP05, YZYW05b, YZYW05a, ZLNC04]. FBP algo-
rithms are less flexible, but they are by far the fastest and have been developed for
a range of source trajectories. They include constant pitch helix [Kat02, Kat04b,
Kat04c, Kat06], dynamic pitch helix [KBH04, KK06], circle-and-line [Kat04a],
circle-and-arc [Kat05, CZLN06], and saddle [YLKK06]. Significant progress has
also been achieved in the development of quasi-exact algorithms [BKP05, KBK06].

As the list presented above shows, until now FBP algorithms have been pro-
posed only for certain types of well-defined trajectories: helices, saddles, etc. There
was no FBP algorithm for a general class of curves. Ideally, such a class would
be described only in terms of some basic geometric properties (e.g., smoothness,
curvature, etc.) rather than specifying the types of curves (helices, etc.). In this
paper we develop a theoretically exact shift-invariant FBP algorithm for a wide
class of source trajectories. The conditions describing our class are very natural.

The work of the two authors was supported in part by NSF grant DMS-0505494
Department of Mathematics, University of Central Florida, Orlando, FL 32816-1364
E-mail address: mikhail@mail.ucf.edu, akatsevi@pegasus.cc.ucf.edu.

1



2 A. KATSEVICH AND M. KAPRALOV

We consider curves C that are smooth, have no self-intersections, have positive
curvature and torsion, do not bend too much, and do not admit lines which are
tangent to C at one point and intersect C at another point. Our algorithm ap-
plies to any curve with these properties. The inversion algorithm of this paper is
a generalization of the formula proposed for constant- and variable-pitch helices in
[Kat02, Kat04b, KBH04].

The importance of our results is two-fold. First, the algorithm can be used
in a variety of applications. For example, in electron-beam CT/micro-CT there
arise source trajectories that can be described as helices with variable radius and
pitch [YZW04]. No efficient FBP algorithm existed for such curves, but the new
one does apply. Nice first steps towards adapting the inversion formula of [Kat02,
Kat04b, KBH04] to these curves were obtained in [YZW04]. Second, the results
have theoretical value as well. They provide a deeper understanding of the available
algorithms, put them into the context of a more general approach, and demonstrate
which geometrical properties the curve is required to have for the FBP algorithm
to apply.

The paper is organized as follows. In Section 2 we define PI-lines for general
curves, describe precisely the class of curves considered in the paper, and study
properties of their PI-segments. In Section 3 we find the set U where PI-lines
are guaranteed to be unique. The result is based on the notions of maximal and
minimal PI-lines. These critical PI-lines can be viewed as a generalization of the
axial direction for regular helices. Also we find the special planes, such that the
stereographic projection of C onto these planes has very useful properties. In
Section 4 we study more properties of the PI-segments of C. Then the inversion
formula is given. Finally, the results of numerical experiments are presented in
Section 5.

2. PI lines and their properties

The objective of this section is to define PI lines for a general class of smooth
curves and study their properties. Let C be a smooth curve:

(2.1) I := [a, b] 3 s → y(s) ∈ R3, |ẏ(s)| 6= 0.

Here and below the dot above a variable denotes differentiation with respect to s.
Define the functions

(2.2) Φ(s, s0) := [y(s)− y(s0), ẏ(s), ÿ(s)], Q(s, s0) := [y(s)− y(s0), ẏ(s0), ẏ(s)],

where [e1, e2, e3] := e1 · (e2 × e3) denotes the scalar triple product of three vectors.
If C is a helix, then Φ and Q are precisely the functions that have been introduced
under the same names in [KBH04]. Similarly to [KBH04], it turns out later that Φ is
intimately related to the convexity of the projection of C onto a detector plane (cf.
(4.7) below), and Q is related to the uniqueness of PI-lines (cf. Definitions 2.1, 2.2,
equation (3.6), and the proof of Proposition 3.2). Given any s0, s1 ∈ I, H(s0, s1)
denotes the line segment with the endpoints y(s0), y(s1) ∈ C.

Definition 2.1. Pick two points y(s0), y(s1) ∈ C, s0 < s1. The line segment
H(s0, s1) is called the PI-segment if Q(s, q) 6= 0 for any s, q ∈ [s0, s1], s 6= q.

Definition 2.2. Pick two points y(s0), y(s1) ∈ C, s0 < s1. The line segment
H(s0, s1) is called the maximal PI-segment if Q(s0, s1) = 0, but Q(s, q) 6= 0 for any
s, q ∈ (s0, s1), s 6= q.
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If C is a helix, definition 2.1 gives the usual PI-segments H(s, q), 0 < q− s < 2π,
and definition 2.2 gives the maximal PI-segments H(s, s + 2π).

Figure 1. Critical case

Next we discuss how a smooth curve bends. Consider two points: y(s0), y(s) ∈ C.
Assume y(s0) is fixed, and y(s) moves along C. The line segment joining y(s0) and
y(s) rotates about the instantaneous axis e(s, s0) = (y(s) − y(s0)) × ẏ(s)/|(y(s) −
y(s0)) × ẏ(s)|. The point y(s) rotates also about the instantaneous axis, which
is obtained by finding the circle of curvature of C at y(s) (also known as the
osculating circle). The corresponding axis of rotation is b(s), i.e. the binormal
vector. If s → s0, then e(s, s0) → b(s). Thus, the difference in directions of the
two vectors can measure how much the curve bends between the two points. The
maximum possible “bent” occurs when the two axes point in the opposite directions:
e(s, s0) = −b(s) (see Figure 1).

Now we can formulate the main assumptions on the curve C.
C1. C is smooth, and the curvature and torsion of C are positive;
C2. C does not self-intersect within any PI-segment (or a maximal PI-segment)

of C;
C3. Given any PI-segment (or a maximal PI-segment) H(s0, s) of C, there is no

line tangent to C at y(s1) and intersecting C at y(s2) with s1, s2 ∈ [s0, s],
s1 6= s2;

C4. C does not bend too much, i.e. given any PI-segment (or a maximal PI-
segment) H(s0, s) of C, one has e(s1, s2) 6= −b(s2) for any s1, s2 ∈ [s0, s],
s1 6= s2.

If a curve satisfies conditions C1–C4, then its PI-segments have a number of nice
properties.

Proposition 2.3. Let C be a curve, which satisfies conditions C1–C4, and let
H(s0, s1) be its (possibly maximal) PI-segment. Then for any s, q ∈ [s0, s1] one
has: Φ(s, q) > 0 if s > q and Φ(s, q) < 0 if s < q.

Proof. By shrinking the PI-line if necessary, the proposition follows if we show that
Φ(s, s0) 6= 0 for any s ∈ (s0, s1] and Φ(s, s1) 6= 0 for any s ∈ [s0, s1). We prove only
the first statement, because the proof of the second one is analogous.
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Figure 2. Projection of y(s0) onto the plane through y(s) with
normal vector ẏ(s)

Let us assume that the parameterization of y(s) is natural, i.e. |ẏ(s)| ≡ 1. For
convenience, recall the Frenet-Serret formulas:
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where t(s),n(s),b(s) are the unit tangent, normal and binormal vectors, respec-
tively, κ(s) is the curvature and τ(s) is the torsion of the source trajectory. Using
(2.3), we get

Φ(s, s0) = [y(s)− y(s0), ẏ(s), ÿ(s)] =κ(s)[y(s)− y(s0), t(s),n(s)]

=κ(s)b(s) · (y(s)− y(s0)).
(2.4)

Since we are interested in the sign of Φ(s, s0) and κ(s) > 0, we determine the sign
of

b(s) · (y(s)− y(s0)) =
∫ s

s0

(b(t) · (y(t)− y(s0)))
′
t dt

=−
∫ s

s0

τ(t)n(t) · (y(t)− y(s0))dt.

(2.5)

Let t⊥(s) denote the plane passing through y(s) and perpendicular to t(s). We
assume that n(s) and b(s) are the coordinate axes on the plane, and y(s) is the
origin (see Figure 2).

Let Πosc(s) denote the osculating plane of C at y(s). Recall that Πosc(s) contains
y(s) and is parallel to ẏ(s) and ÿ(s). If y(s0) projects onto the ray L := y(s) −
λn(s), λ > 0, then y(s0) belongs to Πosc(s). Moreover, the two rotation axes: one,
determined by rotation of y(s) around y(s0), and the other, b(s) - determined by
rotation of y(s) relative to the intrinsic center of rotation, are parallel and point in
the opposite directions. This is prohibited by the assumption that the curve does
not bend too much, so y(s0) never projects onto L.

Let ŷ(s0) denote the projection of y(s0) onto t⊥(s). The Taylor series expansions
shows that τ > 0 and κ > 0 imply

(2.6) n(t) · (y(s)− y(s0)) < 0, b(s) · (y(s)− y(s0)) > 0,
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for s− s0 > 0 small enough. Hence, initially ŷ(s0) is located in the third quadrant
(see Figure 2). Suppose now s increases. If ŷ(s0) appears in the third quadrant,
then n(t) · (y(t) − y(s0)) < 0. So b(s) · (y(s) − y(s0)) increases, ŷ(s0) moves
down and does not cross the n-axis. If ŷ(s0) appears in the fourth quadrant, then
n(t) · (y(t)− y(s0)) > 0 and b(s) · (y(s)− y(s0)) decreases. This implies that in the
fourth quadrant ŷ(s0) moves up. However, our assumption precludes ŷ(s0) from
crossing L. Consequently, ŷ(s0) never crosses the n-axis and Φ(s, s0) > 0 for any
s ∈ (s0, s1]. ¤

Figure 3. Illustration of the containment property: orthogonal
projection onto H⊥(s0, s1)

Let H(s0, s1) be a PI-segment (possibly maximal), and C(s0, s1) the correspond-
ing curve segment. Project C(s0, s1), ẏ(s0), and ẏ(s1) orthogonally onto a plane
perpendicular to H(s0, s1). Such a plane is denoted H⊥(s0, s1). The corresponding
projections are denoted Ĉ(s0, s1), ˆ̇y(s0), and ˆ̇y(s1), respectively (see Figure 3). Let
O be the projection of H(s0, s1). The vectors ˆ̇y(s0) and ˆ̇y(s1) determine two rays:

R+(s0) :={x ∈ H(s0, s1)⊥ : x = O + λˆ̇y(s0), λ ≥ 0},
R−(s0) :={x ∈ H(s0, s1)⊥ : x = O + λ(−ˆ̇y(s1)), λ ≥ 0}.

(2.7)

Proposition 2.4. Let C be a curve, which satisfies conditions C1–C4. If H(s0, s1)
is a (possibly maximal) PI-segment of C, then one has:

(1) Ĉ(s0, s1) is contained inside the wedge with vertex O and formed by the
rays R+(s0) and R−(s1);

(2) Ĉ(s0, s1) is smooth and no line through O is tangent to Ĉ(s0, s1) at an
interior point;

(3) If H(s0, s1) is not maximal, the angle between R+(s0) and R−(s1) is less
than π. If H(s0, s1) is maximal, the angle between the rays equals π;

(4) No line through O intersects the interior of Ĉ(s0, s1) at more than one
point.

The property of C described in statement (1) of the proposition is important
for us, so it will be given the name containment property. In other words, state-
ment (1) says that PI-segments of curves, which satisfy conditions C1–C4, have the
containment property.

Proof. To show that Ĉ(s0, s1) is contained inside the wedge, we first consider
Ĉ(s0, s), where s = s0 + ε for some 0 < ε ¿ 1. As is easily seen, containment
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follows from the two inequalities:
[y(t)− y(s0), y(s1)− y(s0), ẏ(s0)] > 0 ∀t ∈ (s0, s1),

[y(t)− y(s0), y(s1)− y(s0), ẏ(s1)] > 0 ∀t ∈ (s0, s1).
(2.8)

To prove the first inequality introduce the function
(2.9)

Ψ(s1, t) :=
[
y(t)− y(s0)− ẏ(s0)(t− s0)

(t− s0)2
,
y(s1)− y(s0)− ẏ(s0)(s1 − s0)

(s1 − s0)2
, ẏ(s0)

]
.

By using the Taylor series expansions we see that Ψ(s1, t) is smooth and bounded
on compact sets. Notice also that

(2.10) Ψ(s1, s1) = 0, Ψ′t(s1, t) < ∞.

Hence Ψ(s1, t)/(s1 − t) is bounded as well, which implies

[y(t)− y(s0), y(s1)− y(s0), ẏ(s0)]

=
(t− s0)2(s1 − s0)2(s1 − t)

12
([ẏ(s0), ÿ(s0),

...
y (s0)] + o(1)) > 0,

(2.11)

where o(1) → 0 as s1 → s0. The second inequality in (2.8) can be proven for small
s1 − s0 > 0 in a similar fashion.

Suppose now s1 − s0 is not necessarily small. Note that Ĉ(s0, s1) is tangent to
the rays R+(s0) and R−(s1) at the point O of order precisely one. Consider, for
example, the ray R+(s0). To determine the order of tangency we need to find the
asymptotics of the first expression in (2.8) as t → s0, with s0 and s1 fixed. We
have:

[y(t)− y(s0), y(s1)− y(s0), ẏ(s0)]

= [ÿ(s0), y(s1)− y(s0), ẏ(s0)]
(t− s0)2

2
+ O

(
(t− s0)3

)

= −Φ(s0, s1)
(t− s0)2

2
+ O

(
(t− s0)3

)
.

(2.12)

Similarly,

[y(t)− y(s0), y(s1)− y(s0), ẏ(s1)] = Φ(s1, s0)
(t− s1)2

2
+ O

(
(t− s1)3

)
, t → s1.

(2.13)

By Proposition 2.3, Φ(s0, s1) < 0, Φ(s1, s0) > 0, and the desired assertion follows.
Suppose C(s0, s1) does not have the containment property. Assume, for example,

that the first inequality in (2.8) is violated. A violation of the other inequality can
be considered analogously. From (2.12) and Proposition 2.3, the inequality holds
for some t > s0, where t − s0 is sufficiently small. Thus there exists t ∈ (s0, s1)
such that

(2.14) [y(t)− y(s0), y(s1)− y(s0), ẏ(s0)] = 0.

Equation (2.14) defines t as a function of s1. Differentiating (2.14) with respect to
s1 gives:

(2.15)
dt

ds1
= − [y(t)− y(s0), ẏ(s1), ẏ(s0)]

[ẏ(t), y(s1)− y(s0), ẏ(s0)]
.

The denominator in (2.15) does not vanish. Otherwise, from the linear inde-
pendence of ẏ(s0) and y(s1) − y(s0) (property C3) and (2.14) we get Q(t, s0) =
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[y(t) − y(s0), ẏ(s0), ẏ(t)] = 0. Since H(s0, s1) is a PI-line, this is a contradiction.
Hence we can consider the function t(s) for some s ≤ s1 using that Q(t, s0) 6= 0 for
t ∈ (s0, s1). As s decreases from s1 towards s0, one of the following must happen:

a) s, t → s∗ 6= s0. Replacing s1 with s, and t - with t(s) in (2.14) gives
Q(s∗, s0) = [y(s∗)− y(s0), ẏ(s0), ẏ(s∗)] = 0, which contradicts the assump-
tion that H(s0, s1) is a PI-line.

b) t → s0, s → s∗ > s0. From (2.14), Φ(s0, s
∗) = [y(s0)−y(s∗), ẏ(s0), ÿ(s0)] =

0, which contradicts Proposition 2.3.
Note that s, t 6→ s0 because of (2.11). Thus the containment property is estab-

lished.
To prove the second statement we argue by contradiction. Suppose there exists

t ∈ (s0, s1), where either Ĉ(s0, s1) is non-smooth or where the line through O and
ŷ(t) is tangent to Ĉ(s0, s1). Here ŷ(t) is the projection of y(t) onto H⊥(s0, s1). In
both cases

(2.16) [y(s1)− y(s0), ẏ(t), y(t)− y(s0)] = 0.

Just as in the proof of statement (1), (2.16) defines t as a function of s1. Differen-
tiating (2.16) with respect to s1 gives:

(2.17)
dt

ds1
= − [ẏ(s1), ẏ(t), y(t)− y(s0)]

[y(s1)− y(s0), ÿ(t), y(t)− y(s0)]
.

The denominator in (2.17) does not vanish. Otherwise, together with (2.16) this
gives Φ(t, s0) = [y(t)−y(s0), ẏ(t), ÿ(t)] = 0, which contradicts Proposition 2.3. Here
we have used the fact that y(s1)−y(s0) and y(t)−y(s0) are not parallel (cf. (2.8)).
Hence we can consider the function t(s) for some s ≤ s1 using that Φ(t, s0) 6= 0 for
t ∈ (s0, s1]. As s decreases from s1 towards s0, one of the following must happen:

a) s, t → s∗ 6= s0. Replacing s1 with s and t with t(s) in (2.16) gives [y(s∗)−
y(s0), ẏ(s∗), ÿ(s∗)] = 0, which contradicts Proposition 2.3.

b) t → s0, s → s∗ > s0. Then (2.16) implies [y(s∗) − y(s0), ẏ(s0), ÿ(s0)] = 0,
which is again a contradiction.

c) s, t → s0. Now (2.16) implies [ẏ(s0), ÿ(s0),
...
y (s0)] = 0, i.e. τ(s0) = 0. This

contradicts the assumption τ(s0) > 0.
Our argument proves that (2.16) does not happen, so statement (2) is established.

To prove statement (3), first consider H(s0, q) for q−s0 > 0 sufficiently small. As
follows from statements (1) and (2), Ĉ(s0, q) is contained between the rays R+(s0)
and R−(q), which are close to each other. As q increases towards s1, the two rays
cannot collapse into one. Because of the containment, Ĉ(s0, q) is always located
between the rays. So if the two rays collapse into one for some q > s0, then C(s0, q)
is a planar curve, which contradicts the assumption τ > 0. Hence Q(s0, s1) = 0 if
and only if R+(s0) and R−(s1) point in the opposite directions (see Figure 5).

Statements (1)–(3) imply that (i) whenever a line through O intersects Ĉ(s0, s1),
then all the intersection points (IPs) are on one side of O; and (ii) neither R+(s0)
nor R−(s1) intersects the interior of Ĉ(s0, s1). By (i) we can replace “line” with
“ray” in statement (4). Suppose there is a ray γ with vertex at O, which intersects
Ĉ(s0, s1) at two interior points. Clearly, by rotating γ around O towards either
R+(s0) or R−(s1) we can make the two IPs collide. As soon as the IPs collide,
we get a ray tangent to Ĉ(s0, s1) at an interior point, which contradicts statement
(2). ¤
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Corollary 2.5. No plane intersects C(s0, s1) at more than three points.

Proof. Suppose there is a plane Π that has at least four IPs with C(s0, s1): s0 ≤
t1 < t2 < t3 < t4 ≤ s1. Consider C(t1, t4) and project it onto the plane perpen-
dicular to H(t1, t4) (as was done in the proof of Proposition 2.4). As before, let O
denote the projection of H(t1, t4). The projection of Π gives the line through O,
which intersects Ĉ(t1, t4) at least at two points, which contradicts statement (3) of
Proposition 2.4. ¤

Corollary 2.6. Pick any x ∈ H(s0, s1) and s ∈ (s0, s1). Consider a plane Π
rotating around the axis β(s, x). The number of IPs of Π and C(s0, s1) changes
from one to three when Π passes through H(s0, s1).

Proof. Consider the critical case when Π contains H(s0, s1). As follows from Propo-
sition 2.4, the vectors ẏ(s0) and −ẏ(s1) point into the opposite half-planes relative
to Π. Hence, a small rotation of Π around β(s, x) in one direction gives 1IP, and
in the opposite direction - 3IPs. See Section 4 in [Kat06] for more details. ¤

3. Establishing uniqueness of PI lines

To establish uniqueness of PI lines, we generalize the standard argument from
helices [KND00, KL03, KBH04] to general curves.

Fix x ∈ U . For each s ∈ I, fix a vector N(s), |N(s)| ≡ 1 (a specific N(s) will be
chosen later). Define the functions q(s) and λ(s) so that q(s) > s, H(s, q(s)) is a
PI-segment, 0 < λ(s) < 1, and the point

(3.1) x(s) := y(s) + λ(s)(y(q(s))− y(s)) ∈ H(s, q(s))

has the property

(3.2) x(s)− x ‖ N(s).

We assume that the functions q(s) and λ(s) with the required properties exist.
Later (see (3.10) and the proof of Proposition 3.2) we find U such that for any
x ∈ U the functions q(s) and λ(s) do exist.

Condition (3.2) means that the parallel projection of x(s) onto the plane through
x with normal vector N(s) coincides with x. Note that the vector-valued function
N(s) is determined independently of q(s) and λ(s). A similar idea is used in proving
the uniqueness of PI lines for the standard helix, the difference being that the vector
N(s) is constant and directed along the axis of the helix.

Figure 4 illustrates the setup: the functions q(s) and λ(s) are defined in such a
way as to ensure that the parallel projection of x(s) onto the plane through x with
normal N(s) always coincides with x. Denote ∆y(s) := y(q(s))− y(s). Thus,

(3.3) ε(s) := N(s) · {(y(s) + λ(s)∆y(s))− x}
is the signed distance from y(s) + λ(s)∆y(s) to x, i.e. ε(s) = 0 if and only if the
chord H(s, q(s)) passes through x. We are interested in calculating ε′(s).

Combining (3.1)–(3.3) gives

(3.4) y(s) + λ(s)(y(q(s))− y(s)) = x + ε(s)N(s).

Differentiate (3.4) with respect to s:

(3.5) ẏ(s) + λ′(s)∆y(s) + λ(ẏ(q(s))q′(s)− ẏ(s)) = ε′(s)N(s) + ε(s)Ṅ(s).
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Figure 4. Parallel projection onto the plane N⊥(s) through x

Computing the dot product of (3.5) with ∆y(s) × ẏ(q) on both sides gives the
expression:

ε′(s) = A(s) + ε(s)B(s),

A(s) := −(1− λ(s))
Q(s, q(s))

[N(s), ∆y(s), ẏ(q(s))]
, B(s) := − [Ṅ(s), ∆y(s), ẏ(q(s))]

[N(s), ∆y(s), ẏ(q(s))]
,

(3.6)

where we have used (2.2).
The goal is to obtain the uniqueness of PI lines. We start by choosing a vector

N(s) in such a way as to ensure that the denominator in (3.6) is never zero as long
as H(s, q(s)) is a PI line. Denote the supremum (respectively, infimum) of all q
such that H(s, q) is a PI line by qmax(s) (respectively, qmin(s)). Since I = [a, b] is
a compact interval, qmax(s) and qmin(s) are well-defined.

Our assumptions imply that the function qmax(s) is continuous on (a, b). If
qmax(s) = b for some s ∈ (a, b), then qmax(t) ≡ b for all t ∈ (s, b). If qmax(s) < b
for some s ∈ (a, b), then

(3.7) Q(qmax(s), s) = [y(qmax(s))− y(s), ẏ(s), ẏ(qmax(s))] = 0.

Differentiating (3.7) with respect to s gives

(3.8) q′max(s) = − [y(qmax(s))− y(s), ÿ(s), ẏ(qmax(s))]
[y(qmax(s))− y(s), ẏ(s), ÿ(qmax(s))]

.

By assumption C2, y(qmax(s)) − y(s) and ẏ(s) are never parallel. Hence, if the
denominator in (3.8) is zero, together with (3.7) this implies

[y(qmax(s))− y(s), ẏ(qmax(s)), ÿ(qmax(s))] = 0,

which contradicts Proposition 2.3. Our argument implies that q′max(s) can have at
most one point of discontinuity. If the discontinuity exists, then q′max(s) = 0 to the
right of it, and q′max(s) is given by (3.8) to the left of it.
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In a similar fashion we obtain that qmin(s) is continuous, and q′min(s) is piece-
wise continuous on (a, b). Define

(3.9) Nmax(s) :=
y(qmax(s))− y(s)
|y(qmax(s))− y(s)| , Nmin(s) :=

y(qmin(s))− y(s)
|y(qmin(s))− y(s)| , s ∈ (a, b).

Thus, Nmax(s) (resp., Nmin(s)) is the unit vector along H(s, qmax(s)) (resp.,
H(qmin(s), s)).

Proposition 3.1. Pick any t ∈ (s, qmax(s)). One has [y(t)−y(s), ẏ(t), Nmax(s)] 6=
0, and the curve segments C(s, t) and C(t, qmax(s)) are located on the opposite
sides of the plane containing H(s, qmax(s)) and y(t). Similarly, pick any t ∈
(qmin(s), s). One has [y(t) − y(s), ẏ(t), Nmin(s)] 6= 0, and the curve segments
C(t, s) and C(qmin(s), t) are located on the opposite sides of the plane containing
H(qmin(s), s) and y(t).

Proof. We only prove the statements concerning qmax(s). The other half of the
proposition is completely analogous.

Figure 5. Projection onto the plane Nmax(s)⊥

The assertion [y(t)−y(s), ẏ(t), Nmax(s)] 6= 0 follows immediately from statement
(2) of Proposition 2.4 (see also its proof). This proposition also implies that any
line, which contains O and passes between the rays R+(s0) and R−(s1), divides
Ĉ(s, qmax) into two segments located in the opposite half-planes (see Figure 5).
This means that the curve segments C(s, t) and C(t, qmax(s)) are located on the
opposite sides of the plane containing H(s, qmax(s)) and y(t). ¤

Next we determine the region where PI-lines, if exist, are unique. Even though
the curve C is well-behaved locally, very little can be said about the global behavior
of C. So we choose a “local” piece of C: I0 := [a0, b0] ⊂ (a, b). The word local
is made precise later. For each s ∈ I0 consider the curve Ĉ(s, qmax) in the plane
N⊥

max(s). By construction, Ĉ(s, qmax) is closed. Let Cylmax(s) be the infinite open
cylinder with axis Nmax(s), whose base is the interior of Ĉ(s, qmax). In the same
fashion we define the cylinders Cylmin(s) using Ĉ(qmin, s) and Nmin(s). Define U
as the intersection of all such open cylinders:

(3.10) U := ∩s∈I0 (Cylmin(s) ∩ Cylmax(s)) .

If the curve turns too much, U can be empty. As an example, imagine a “slinky”
toy. Locally it looks like a section of a helix. However if the slinky twists too much
and the interval I0 is sufficiently large, there can be no x that belongs to all the
cylinders. We assume that a sufficiently “local” piece of C is taken, so U 6= ∅.
Note that in the case of helix all cylinders Cylmin(s) and Cylmax(s) are identical,
so (3.10) gives the usual domain inside the helix.
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Proposition 3.2. Pick x ∈ U . If x admits a PI-line, it is unique in the sense that
there is no other PI-line with an endpoint inside I0.

Proof. Choose N(s) := Nmax(s) in (3.2). Since x ∈ U , x projects along N(s)
into the interior of Ĉ(s, qmax) for any s ∈ I0. Hence the functions q(s), λ(s),
and the map s → x(s) (cf. (3.1), (3.2)) are well-defined on I0. By Proposition 3.1,
[∆y(s), ẏ(q(s)), N(s)] 6= 0 for any s ∈ I0, i.e. ε′(s) is smooth on I0. By construction,
H(s, q(s)) are PI-segments, so Q(s, q(s)) 6= 0 on I0. Similarly, λ(s) < 1 on I0.

Our argument implies that A(s) (cf. (3.6)) is bounded away from zero and of
constant sign on I0. Consider now B(s) (cf. (3.6)). As we already know, the
denominator is bounded away from zero. Differentiating (3.9) gives

Ṅmax(s) =
1

|y(qmax(s))− y(s)|
× {[ẏ(qmax(s))q′max(s)− ẏ(s)]−N (N · [ẏ(qmax(s))q′max(s)− ẏ(s)])} .

(3.11)

By assumption C1, C has no self-intersections, so |y(qmax)−y(s)| is bounded away
from zero. From (3.8) and the subsequent discussion, it follows that q′max(s) is
bounded away from zero. Hence, Ṅmax(s) is bounded, and B(s) is bounded as
well.

From the properties of A(s) and B(s) we get that ε(s) cannot have more than
one root on I0. This follows immediately from the fact that the signs of ε′(s) and
A(s) in a neighborhood of any s where ε(s) = 0 are the same. Hence x cannot have
more than one PI-segment with sb(x) ∈ I0.

Choosing N(s) := Nmin(s) in (3.2) and repeating the same argument gives that
x cannot have more than one PI-segment with st(x) ∈ I0. ¤

4. Reconstruction algorithm

In order to derive an inversion formula we need to study the curve C some more.

Proposition 4.1. Let H(s0, s1) be a (possibly maximal) PI-segment of C. Then
Ĉ(s0, s1) has everywhere non-vanishing curvature.

Proof. Recall that Ĉ(s0, s1) is smooth by Proposition 2.4. Pick any t ∈ (s0, s1) and
suppose the curvature vanishes there. This implies

(4.1) [y(s1)− y(s0), ẏ(t), ÿ(t)] = 0,

which means that y(s1)−y(s0) is parallel to Πosc(t). Since τ(t) 6= 0, C(t− ε, t) and
C(t, t + ε) are on the opposite sides of Πosc(t) for some ε > 0. By Proposition 2.3,
Πosc(t) does not intersect C(s0, s1) at any point other than y(t). Hence C(s0, t)
and C(t, s1) are on the opposite sides of Πosc(t). In particular, the line segment
H(s0, s1) intersects Πosc(t), which contradicts (4.1). If t = s0 or t = s1, the desired
assertion follows immediately from Proposition 2.3. ¤

Corollary 4.2. Let H(s0, s1) be a (possibly maximal) PI-segment of C. For any
x ∈ H(s0, s1) and t ∈ (s0, s1), the vectors ẏ(t) and x− y(t) are not collinear.

Proof. By Proposition 2.3, Ĉ(s0, qmax(s0)) is strictly convex. x ∈ H(s0, s1) implies
that x projects into the domain bounded by Ĉ(s0, qmax(s0)). Thus ẏ(t) and x−y(t)
are not collinear. ¤
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Proposition 4.3. Let H(s0, s1) be a (possibly maximal) PI-segment of C. For any
x ∈ H(s0, s1) there exists the unique s∗(x) such that x ∈ Πosc(s∗(x)).

Proof. As follows from the proof of Proposition 4.1, Πosc(t) intersects H(s0, s1) for
any t ∈ [s0, s1]. Hence we can write

(4.2) y(s0) + λ(t)(y(s1)− y(s0)) = y(t) + a(t)ẏ(t) + b(t)ÿ(t)

for some scalar functions λ, a, and b. Differentiate (4.2) with respect to t, multiply
the resulting equation by ẏ(t)× ÿ(t) and solve for λ′:

(4.3) λ′(t) = b(t)
[ẏ(t), ÿ(t),

...
y (t)]

[y(s1)− y(s0), ẏ(t), ÿ(t)]
.

Since the torsion of C is non-zero, the numerator in (4.3) does not vanish. From the
proof of Proposition 4.1, the denominator in (4.3) is non-zero. By Corollary 4.2,
b(t) 6= 0, t ∈ (s0, s1). Hence λ(t) is a smooth monotone function on [s0, s1]. Obvi-
ously, Πosc(s0) (resp., Πosc(s1)) intersects H(s0, s1) at y(s0) (resp., y(s1)). Thus
λ(s0) = 0, λ(s1) = 1, and the proposition is proven. ¤

Due to the containment property (statement (1) of Proposition 2.4), the curve
C(s, qmax(s)) (resp., C(s, qmin(s))) is on one side of the plane passing through y(s)
and parallel to ẏ(s) and Nmax(s) (resp., Nmin(s)). This makes it very convenient
to project C(s, qmax(s)) (resp., C(s, qmin(s))) onto a plane parallel to ẏ(s) and
Nmax(s) (resp., Nmin(s)). The corresponding projections turn out to be smooth.
Let DP+(s) (resp., DP−(s)) denote a plane not passing through y(s) and parallel to
ẏ(s) and Nmax(s) (resp., Nmin(s)). The stereographic projection of C(s, qmax(s))
onto DP+(s) is denoted Γ+, while the stereographic projection of C(qmin(s), s)
onto DP−(s) is denoted Γ−.

Proposition 4.4. Γ+ and Γ− are smooth and have nonvanishing curvature at every
point.

Proof. We only consider Γ+. The statement about Γ− is proven analogously. Sup-
pose, for simplicity, that the origin is at y(s), and the equation of DP+(s) is x3 = 1.
Thus, x1 and x2 are the coordinates on DP+(s). Let x1(t) and x2(t) be the coor-
dinates of the projection of y(t), t ∈ (s, qmax(s)), onto DP+(s). Then

(4.4) x1(t) =
y1(t)
y3(t)

, x2(t) =
y2(t)
y3(t)

.

As is well-known,

(4.5) κ(t) =
ẋ2

1

(ẋ2
1 + ẋ2

2)
3/2

(
ẋ2

ẋ1

)′
.

Differentiating (4.4) gives
(

ẋ2

ẋ1

)′
=

(
ẏ2y3 − ẏ3y2

ẏ1y3 − ẏ3y1

)′

=
(ÿ2y3 − ÿ3y2)(ẏ1y3 − ẏ3y1)− (ẏ2y3 − ẏ3y2)(ÿ1y3 − ÿ3y1)

(ẋ1y2
3)2

=
1

(ẋ1y2
3)2

∣∣∣∣∣∣

y1 y2 y3

ẏ1 ẏ2 ẏ3

ÿ1 ÿ2 ÿ3

∣∣∣∣∣∣
.

(4.6)
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Substituting (4.6) into (4.5) and using (4.4) (recall that y(s) = 0 is the origin) gives
the curvature of Γ+:

(4.7) κ(t) =
Φ(t, s)

y4
3(t) (ẋ2

1(t) + ẋ2
2(t))

3/2
.

By the properties of C(s, qmax(s)) mentioned prior to this proposition, y3(t) 6= 0, t ∈
(s, qmax(s)). Also, y3(s) = 0 and, if H(s, qmax(s)) is maximal, y3(qmax(s)) = 0.
It remains to show that ẋ2

1(t) + ẋ2
2(t) 6= 0. This would also imply that Γ+ is

smooth. We argue by contradiction. Suppose ẋ1(t) = ẋ2(t) = 0. Then ẏ2y3 = ẏ3y2,
ẏ1y3 = ẏ3y1. Consequently, y(t)× ẏ(t) is parallel to the x3-axis. Thus, either both
y(t) and ẏ(t) are parallel to DP+(s) or y(t) and ẏ(t) are parallel to each other. Both
cases are impossible because of the convexity of Ĉ(s, qmax(s)) (cf. Proposition 4.1).
Since Φ(t, s) 6= 0 for t ∈ [s, qmax(s)] (cf. Proposition 2.3), the desired assertion is
proven. ¤

Denote L+
0 := DP+(s) ∩ Πosc(s). It is clear that L+

0 is an asymptote of Γ+:
dist(ŷ(t), L+

0 ) → 0 as t → s+. Similarly, L−0 := DP−(s) ∩ Πosc(s) is an asymptote
of Γ−: dist(ŷ(t), L−0 ) → 0 as t → s−.

Fix x ∈ U , which admits a PI-line. Let IPI(x) = [sb(x), st(x)] be the PI-interval
of x. Let x̂ denote the projection of x onto a detector plane. Frequently it is
convenient to identify detector planes by introducing systems of coordinates that
depend smoothly on s. This allows to identify all DP+(s) and, separately, all
DP−(s). Since x ∈ U , x does not belong to any plane passing through y(s) and
parallel to DP+(s) or DP−(s), where s ∈ IPI(x). Hence propositions 4.3 and 3.2
immediately imply the following statement.

Corollary 4.5. As s moves along IPI(x), the point x̂ traces smooth curves on
DP+(s) and DP−(s). x̂ is between Γ+(s) and L+

0 on DP+(s) if and only if
s ∈ (sb(x), s∗(x)), and x̂ is between L−0 and Γ−(s) on DP−(s) if and only if
s ∈ (s∗(x), st(x)).

Loosely speaking, Corollary 4.5 can be stated as follows: x̂ is between Γ+(s) and
Γ−(s) if and only if s ∈ IPI(x).

Following [Kat02, Kat04b], choose any ψ ∈ C∞(R+) with the properties

ψ(0) = 0; 0 < ψ′(t) < 1, t ≥ 0,

ψ′(0) = 0.5; ψ(2k+1)(0) = 0, k ≥ 1.
(4.8)

Suppose s, s1, and s2 are related by

(4.9) s1 =

{
ψ(s2 − s) + s, s2 ≥ s,

ψ(s− s2) + s2, s2 < s.

¿From (4.8), s1 = s1(s, s2) is a C∞ function of s and s2. Conditions (4.8) are easy
to satisfy. One can take, for example, ψ(t) = t/2, and this leads to

(4.10) s1 = (s + s2)/2.
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Denote also

u(s, s2) =
(y(s1)− y(s))× (y(s2)− y(s))
|(y(s1)− y(s))× (y(s2)− y(s))| sgn(s2 − s),

qmin(s) < s2 < qmax(s), s2 6= s,

u(s, s2) =
ẏ(s)× ÿ(s)
|ẏ(s)× ÿ(s)| , s2 = s.

(4.11)

In the same way as in [Kat04b], we prove that u(s, s2) is a C∞ vector function of its
arguments. Let Π(s, s2) be the plane through y(s), y(s2), and y(s1(s, s2)). Intersec-
tion of Π(s, s2) with DP+(s) if s < s2 < qmax(s) or with DP−(s) if qmin(s) < s2 < s
is called a filtering line and denoted L(s, s2).

Fix x ∈ U , which admits a PI-line, and s ∈ IPI(x). Find s2 ∈ IPI(x) such that
Π(s, s2) contains x. More precisely, we have to solve for s2 the following equation

(4.12) (x− y(s)) · u(s, s2) = 0, s2 ∈ IPI(x).

Figure 6. Detector planes DP+(s) (left panel) and DP−(s) (right panel).

Recall that ẏ(s) is parallel to DP+(s) and DP−(s). For convenience, we choose
the x1- and x2-axes so that

(1) ẏ(s) and the x1-axis are parallel and point in the same direction;
(2) The equation of Πosc(s) is x2 = 0;
(3) On DP+(s), Γ+ is located in the half-plane x2 > 0;
(4) On DP−(s), Γ− is located in the half-plane x2 < 0.

Figure 6 illustrates the two detector planes.
The advantage of planes DP+(s) and DP−(s) is that the segments C(s, qmax(s))

and C(qmin(s), s) are projected onto them as continuous curves with positive cur-
vature. If C is a helix, the two segments become the usual 2π-segments C(s, s+2π)
and C(s − 2π, s). This makes it very convenient when describing how to choose
filtering lines in a shift-invariant FBP algorithm. On the other hand, the disadvan-
tage is that the two segments are projected onto two different planes. This makes
it difficult to adapt the proofs from [Kat04b, Kat02] to the present more general
situation. Fortunately, the difficulty can be resolved. Given x ∈ U with the PI-
interval IPI(x) = [sb(x), st(x)], we can find a family of “detector planes” such that
for any s ∈ IPI(x) the entire PI-segment of x, C(sb(x), st(x)), projects onto them
in exactly the same way as in the case of a regular constant pitch helix. There is
no guarantee that the larger segment C(qmin(s), qmax(s)) (which is equivalent to
two adjacent turns of a helix) projects well onto the planes, but this is not needed.
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Let DP (s), s ∈ IPI(x), be a plane not passing through y(s) and parallel to ẏ(s)
and Nmax(sb(x)). Using the convexity of C(sb(x), st(x)) ⊂ C(sb(x), qmax(sb(x)))
(cf. proposition 4.1 and Figure 5) and repeating the proof of proposition 4.4, we
establish that the stereographic projection of C(sb(x), st(x)) onto DP (s) has all the
usual properties as in the constant-pitch helix case. More precisely, the projections
of C(sb(x), s) and C(s, st(x)) are concave down and up, respectively, they share the
usual asymptote DP (s) ∩ Πosc(s), are located on the opposite sides of the latter,
etc. Thus, using the same argument as in [Kat04b, KBH04], we immediately obtain
the following result.

Proposition 4.6. The solution s2 to (4.12) exists, is unique, and depends smoothly
on s.

The following result shows that filtering lines are shared by sufficiently many
points x ∈ U . The planes DP (s) used for the proof of proposition 4.6 are selected
separately for each x, so they do necessarily work for all x in a large subset of U .
Thus we have to go back to the planes DP+(s) and DP−(s).

Proposition 4.7. All x ∈ U that project onto any line L(s, s2), s < s2 < qmax(s),
on DP+(s) to the left of s2 or onto L(s, s2), qmin(s) < s2 < s, on DP−(s) to the
right of s2, share L(s, s2) as their filtering line.

Proof. We only consider the case when s2 > s, i.e. x̂ ∈ DP+(s). The other
case can be considered analogously. We have st(x) ∈ Γ+. By corollary 4.5, x̂
appears between L+

0 and Γ+. From the proof of proposition 4.1, Πosc(s) intersects
the PI-segment of x, H(sb(x), st(x)). Let zosc(x) denote the point of intersection.
Let Πmax(s) be the plane through y(s) and parallel to ẏ(s) and Nmax(s). The
intersection of the line through LPI(x) and Πmax(s) is denoted zmax(s). Clearly,
zosc(s) = zmax(s) when s = sb(x). From the proof of proposition 4.3, zosc(s)
moves toward y(st(x)) along LPI(x) as s increases from sb(x) to st(x). From the
convexity of Ĉ(s, qmax(s)) (cf. Figure 5), it is easy to obtain that in a neighborhood
of s = sb(x) the point zmax(s) moves away from H(sb(x), st(x)) as s increases. If
for some s ∈ (sb(x), st(x)) the points zosc(x) and y(st(x)) are on the opposite sides
of Πmax(s), then the point zmax(s) enters the line segment [zosc(x), y(st(x))] for
some s = s0 ∈ (sb(x), st(x)). Hence, either (i) zosc(s0) = zmax(s0) or (ii) y(st(x)) =
zmax(s0). From proposition 2.3, [y(qmax(s0))−y(s0), ẏ(s0), ÿ(s0)] 6= 0, so (i) implies
that zosc(s0)−y(s0) and ẏ(s0) are collinear, which contradicts corollary 4.2. In case
(ii), y(st(x)) ∈ Πmax(s0), which contradicts the containment property.

Hence L̂PI(x), the projection of H(sb(x), st(x)) onto DP+(s), intersects L+
0 .

More precisely, the projection of the line segment [zosc(x), y(st(x))] ⊂ LPI(x) is
a continuous line segment that connects Γ+ and L+

0 (see Figure 6). Note that
proposition 4.3 implies z ∈ [zosc(x), y(st(x))] if s < s∗(x). It turns out that L̂PI(x)
does not intersect Γ+ at any point other than st(x). Suppose there is an additional
intersection point t. Thus the plane through y(s) and H(sb(x), st(x)) intersects
CPI(x) at four points: sb(x), t, s, and st(x), and this contradicts corollary 2.5.

If x projects onto L(s, s2) to the left of s2, we make two observations: (i) x̂
is between L+

0 and Γ+ on DP+(s); and (ii) s2 < st (due to the properties of
L̂PI(x) that we just established). From (i) and corollary 4.5, s ∈ IPI(x). From
(ii), s2 ∈ (s, st(x)), so by (i) s2 ∈ IPI(x). By construction, s2 was chosen to satisfy
(4.8), (4.9) and (x − y(s)) · u(s, s2) = 0. We have just shown that s, s2 ∈ IPI(x).
This proves that L(s, s2) is the filtering line for x. ¤
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By proposition 4.7, our construction defines s2 := s2(s, x) and, consequently,
u(s, x) := u(s, s2(s, x)). Let Df (s,Θ) =

∫∞
0

f(y(s) + tΘ)dt, |Θ| = 1, denote the
cone beam transform of f . The main result of the paper is the following theorem.

Theorem 4.8. Let C be a curve (2.1), which satisfies conditions C1–C4. Let
I0 ⊂ I be an interval, such that the set U defined by (3.10) is non-empty. For any
f ∈ C∞0 (U) and x ∈ U which admits a PI line one has

(4.13) f(x) = − 1
2π2

∫

IP I(x)

1
|x− y(s)|

∫ 2π

0

∂

∂q
Df (q, Θ(s, x, γ))

∣∣∣∣
q=s

dγ

sin γ
ds,

where e(s, x) := β(s, x)× u(s, x) and Θ(s, x, γ) := cos γβ(s, x) + sin γe(s, x).

Proof. Corollaries 2.5, 2.6, 4.5, and Propositions 4.1, 4.3, 4.4, and 4.6 imply that
locally, i.e. in a neighborhood of IPI(x), the curve C behaves in essentially the
same way as the usual helix. Hence the same argument as in [Kat04b, KBH04] can
be used to prove that (4.13) holds. ¤

Proposition 4.7 implies that (4.13) is of the efficient shift-invariant FBP form.

5. Numerical experiments

Numerical experiments are conducted using flat detector geometry. The simula-
tion parameters are summarized in Table 1. The algorithm is implemented in the
native coordinates following [NPH03]. We use the virtual detector, which always
contains the x3-axis. The clock phantom (see, e.g., [KBH04]) is chosen for recon-
struction. The background cylinder is at 0 HU, the spheres are at 1000 HU, and
the air is at -1000 HU.

Parameter Value Units
Views per rotation 1000
Number of detector columns 1201
Number of detector rows 161
Detector pixel size 0.5 × 0.5 mm2

Table 1. Simulation parameters

Two source trajectories have been used. The first one is a variable radius helix
given by the formula:

(5.1) y(s) =
(

R(s) cos s,R(s) sin s,
h0

2π
s

)
, R(s) = R(1 + 0.3 sin(s/3)),

where R = 600mm, and table feed per turn is h0 = 35mm. The projection of
this trajectory onto the plane x3 = 0 for s ∈ [−2π, 2π] is shown in Fig. 7. The
boundary of the set U is calculated according to (3.10). The cross-section of the
boundaries of cylinders Cylmin(s) and Cylmax(s) with the plane x3 = 0 is shown in
Fig. 9 (left panel). The solid circle of radius r = 240mm shows the boundary of the
clock phantom, and the dashed circle is of the maximum radius r ≈ 374mm that
fits inside the cross-section of U . The result of reconstruction is shown in Fig. 8.

The second experiment is carried out using the variable radius and variable pitch
helix given by:

(5.2) y(s) =
(

R(s) cos s,R(s) sin s,
h(s)
2π

s

)
, h(s) = h0

(
1 +

sin(s/2)
s

)
.
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Figure 7. Projection of the source trajectory in (5.1) onto the xy-plane.

Figure 8. Reconstruction of the clock phantom from trajectory
(5.1): slice x3 = 0, WL=0 HU, WW=100 HU.

Here R(s) and h0 are the same as in (5.1). The cross-section of the boundaries of
cylinders Cylmin(s) and Cylmax(s) with the plane x3 = 0 is shown in Fig. 9 (right
panel). Again, the solid circle of radius r = 240mm shows the boundary of the
clock phantom, and the dashed circle is of the maximum radius r ≈ 348mm that
fits inside the cross-section of U . The results of the reconstruction are shown in
Fig. 10.
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Figure 9. Cross-section of boundaries of cylinders Cyl(s) from
(3.10) for trajectory (5.1) (left panel) and trajectory (5.2) (right
panel).

Figure 10. Reconstruction of the clock phantom from trajectory
(5.2): slice z = 0, WL=0 HU, WW=100 HU.
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