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Abstract. We extend an efficient cone beam transform inversion formula, developed earlier
by the authors for smooth curves with positive torsion, to a more general class of helix-like
curves. These curves are allowed to have negative torsion, and they can be non-smooth at
isolated points. The notions of turns and PI segments are extended. The new class is defined
by several geometric conditions which impose a tradeoff between the length of critical PI lines
(which reflect how severely the positivity of torsion is violated) and the extent to which the
curve bends between neighboring turns. The main property of curves from this class is that
critical PI lines are allowed to be arbitrarily close to the set U where reconstruction is possible,
but are not allowed to intersect it. Some of the conditions that define the class turn out to be
common for many known trajectories, so we investigate separately the properties of the Crofton
symbol of PI segments of curves that satisfy these conditions. The results of the investigation
are then used to develop an efficient filtered backprojection algorithm. Numerical experiments
conducted with a clock phantom demonstrate good image quality.

1. Introduction

Inversion of the cone beam transform arises in pure mathematics (as a problem of integral geom-
etry) and in numerous applications, such as computed tomography (CT). The general statement
of the problem is to recover a function f(x), x ∈ R3 from values of integrals of f along lines that
intersect a curve C. In applications C is usually called a source trajectory. The ever-increasing
needs of medical imaging require the development of inversion algorithms for more and more
general source trajectories.

Three major groups of theoretically exact reconstruction algorithms have emerged in the past
several years: filtered backprojection (FBP) algorithms, slow-FBP algorithms, and backpro-
jection filtration (BPF) algorithms. Slow-FBP and BPF algorithms are quite flexible, allow
some transverse data truncation, and can be used for virtually any complete source trajectory
[PN05, ZPXW05, SZP05, YZYW05b, YZYW05a, ZLNC04]. FBP algorithms are less flexible, but
they are by far the fastest and have been developed for a range of source trajectories. They include
constant pitch helix [Kat02, Kat04b, Kat04c, Kat06], dynamic pitch helix [KBH04, KK06], circle-
and-line [Kat04a], circle-and-arc [Kat05, CZLN06], and saddle [YLKK06]. Significant progress
has also been achieved in the development of quasi-exact algorithms [BKP05, KBK06]. A very
nice algorithm has recently been proposed in [PNC05]. The algorithm applies to almost any com-
plete source trajectory and is of the FBP type. However, it sometimes leads to excessive detector
requirements.
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Recently the algorithm of [Kat04b] has been extended to a general class of smooth curves in
[KK07]. It was proved that for any curve C from the class and any point x in the image domain
almost all planes passing through x can have only one or three intersection points (IPs) with the
PI-segment CPI of x. The main condition characterizing this class is the positivity of torsion.
However, since torsion depends on the derivatives of C up to the third order, the condition can
be easily violated in practice. Hence it is desirable to find geometric conditions that relax the
requirement of positive torsion. This is what we do in the present paper. There are two major
new conditions. The first one is based on the notion of a critical chord. A chord H of C is critical
if H and vectors tangent to C at both endpoints of H lie in a plane. We distinguish between local
and global critical chords. Similarly to [KK07], global critical chords determine generalized turns
of C. Local critical chords arise when the torsion of C changes sign. The stronger the violation
of the positive torsion condition, the longer the local critical chords can be. In this paper local
critical chords are allowed to come arbitrarily close to the set U where reconstruction is possible,
but they are not allowed to intersect it. Since local critical chords are related to the torsion of
C, our condition is indeed a relaxation of the one in [KK07]. The second new condition controls
how the curve bends between neighboring turns. The new class of curves is quite general. In
particular, planes through points x in the image domain can have any odd number of IPs with
their PI segments (and not just three as in [KK07]). Moreover, these curves are allowed to have
discontinuous first derivative at isolated points.

It is also useful to compare the algorithm developed here with the one obtained earlier in [KK06].
First of all, the one in [KK06] applies only to variable pitch helices. Even though both of them
apply to helices with non-positive torsion, the new algorithm can handle violations which are
significantly more severe than those in [KK06]. For example, the helices admissible in [KK06]
always have convex projections inside the field of view, whereas this need not be the case for the
new class of curves.

Some of the conditions that define the new class turn out to be common for many known
trajectories, so we investigate separately the properties of the Crofton symbol of PI segments
of curves that satisfy these conditions. On one hand, this study leads to a method of assigning
weights to IPs of planes through x with CPI(x) (cf. the general scheme of [Kat03]). These weights
are then used to develop a reconstruction algorithm for the new class. On the other hand, this
study is interesting in its own right. In particular, it can be used for developing reconstruction
algorithms for classes of curves far different from those described in this paper.

Another important aspect is that the proposed algorithm reduces to that of [Kat04b] when the
curve is the standard helix. This is an interesting observation since the definition of weights given
here depends on a function q(·) defined on a subset of planes through x. In particular, some
filtering planes through x are obtained by solving the equation q(Π) = 0. Surprisingly, although
q(·) depends on the integral of y(s), it turns out that in the case of the standard helix q(Π) = 0 if
and only if Π is the filtering plane through x as defined in [Kat04b], i.e. when Π intersects C at
y(s0), y(s1), y(s2) ∈ CPI(x) with s1 = (s0 + s2)/2.

The paper is organized as follows. In section 2 we introduce the new class of curves, define PI
lines and maximal PI lines as well as discuss some of their properties. One of the properties turns
out to be common for many known trajectories for which 1PI algorithms can be used, so we study
the properties of such PI segments in section 3. In section 4 we propose a scheme for assigning
weights to IPs. Since the scheme depends on a choice of the function q(·), we consider an example
of such function in subsection 4.3 and discuss its properties. The reconstruction algorithm is
derived in section 5. Numerical experiments are presented in 6. The main ideas and results of
the paper are summarized in section 7. Some proofs and additional remarks are collected in the
appendices. For convenience of the reader a list of main symbols is given in appendix D.
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2. Structure of the curve C

In this section we introduce a class of curves for which we can define the notion of PI-lines
similarly to [KK07]. Let C be a continuous piecewise-C∞ curve with finitely many points of non-
smoothness and with no linear segments. We use a non-standard parametrization of C, which is
very convenient for our purposes. We describe C by two functions: y(s) and τ(s):

(2.1) I := ∪K
k=1[ak−1, ak] 3 s → y(s) ∈ R3, τ(s) : I → R3,

with the following properties
(A1) Each interval [ak−1, ak] corresponds to either a section where C is C∞ or to a single point

of C where the tangent direction to C is not smooth;
(A2) If [ak−1, ak] corresponds to a section where C is C∞, then y(s) ∈ C∞([ak−1, ak]) and

ẏ(s) 6= 0, τ(s) = ẏ(s), s ∈ [ak−1, ak];
(A3) If [ak−1, ak] corresponds to a single point of C, then y(s) ≡ const on [ak−1, ak], and

(2.2) τ(s) =
ak − s

ak − ak−1
τ(ak−1) +

s− ak−1

ak − ak−1
τ(ak), s ∈ [ak−1, ak].

Here and below the dot above a variable denotes differentiation with respect to s. Here is some
additional notation that is used in the paper. The superscript ‘−’ denotes the limit from the left,
and ‘+’ - the limit from the right. The mixed product of three vectors is denoted [e1, e2, e3] :=
e1 · (e2 × e3). As is easily seen, (2.2) describes the vector, which rotates from ẏ(a−k−1) = τ(ak−1)
to ẏ(a+

k ) = τ(a+
k ).

A plane is tangent to C at a point s ∈ I if it contains y(s) and is parallel to τ(s). Analogously,
a line is tangent to C at a point s ∈ I if it contains y(s) and is parallel to τ(s). An osculating
plane to C at s ∈ I is the plane Πosc(s), which contains y(s) and is parallel to τ(s) and τ̇(s).
These definitions coincide with the usual ones whenever C is smooth, but they can be applied also
at points where C is not smooth.

Given any s0, s1 ∈ I, H(s0, s1) denotes the line segment with endpoints y(s0), y(s1) ∈ C. In
view of the non-standard parametrization of C, many different pairs s0, s1 may correspond to the
same chord. Generally, when we write H(·, ·), we tacitly retain the knowledge of which values
of the parameter generated that line segment. The only exception to the rule is when we write
H(sb, st). In this case [sb, st] is the shortest parametric interval that generates the same chord.
The same convention applies to curve segments C(s0, s1) and C(sb, st).

Following [KK07], introduce the function

Q(s0, s1) := [y(s0)− y(s1), τ(s1), τ(s0)].

As in [KK07], chords H(s0, s1) such that Q(s0, s1) = 0 are called critical. Let H(s0, s1) be a
critical chord. Two cases are possible. If

(2.3)
τ(s0)× (y(s1)− y(s0))
|τ(s0)× (y(s1)− y(s0))| = − τ(s1)× (y(s1)− y(s0))

|τ(s1)× (y(s1)− y(s0))| ,

we call such zeros of Q (and the corresponding critical chords) local. If

(2.4)
τ(s0)× (y(s1)− y(s0))
|τ(s0)× (y(s1)− y(s0))| =

τ(s1)× (y(s1)− y(s0))
|τ(s1)× (y(s1)− y(s0))| ,

we call such zeros of Q (and the corresponding critical chords) global. Consider the plane deter-
mined by a critical chord H(s0, s1). This plane is tangent to C at s0 and s1. If H(s0, s1) is global,
then τ(s0) and τ(s1) point into the same half-plane relative to H(s0, s1). If H(s0, s1) is local, then
τ(s0) and τ(s1) point into the opposite half-planes relative to H(s0, s1).
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In order to provide intuition behind the two definitions, it is useful to consider the case of a
constant radius/variable pitch helix with torsion that changes sign. Maximal PI lines H(s, s+2π)
are global critical chords. They are vertical and define turns of the helix. However, there are
other local critical chords H(s0, s1) with s1 < s0 + 2π (see, e.g. [KK06]). These chords generally
describe local perturbations of the curve due to, e.g., changes in the sign of torsion.

Remark 2.1. See proposition 2.5, where an important property of global critical chords is estab-
lished.

For s ∈ I we denote the first s′ > s (resp. s′ < s) such that H(s, s′) (resp. H(s′, s)) is a global
critical chord by qmax(s) (resp. qmin(s)). If no such s′ exists, we define qmax(s) := aK (resp.
qmin(s) := a0). As in [KK07], denote

(2.5) Nmin(s) := y(qmin(s))− y(s), Nmax(s) := y(qmax(s))− y(s).

This allows us to introduce the following definitions:

Definition 2.2. A chord H(s0, s1) is a PI line if s1 < qmax(s0).

Definition 2.3. A chord H(s0, s1) is a maximal PI line if s1 = qmax(s0).

Notations (2.5) and Definitions 2.2, 2.3 resemble those for a conventional helix. If [s, qmax(s)]
is a turn of C, then a PI line of C is a chord whose endpoints are separated by less than one
turn of the curve. For a conventional helix, all “maximal” PI lines H(s− 2π, s) and H(s, s + 2π)
are parallel to the rotation axis. In other words, all the turns have the same orientation (as
determined by the line through the endpoints of the turn). This direction is commonly referred
to as “vertical”. In our case the turns of C can be different, so at each point s we introduce two
directions. One, Nmin(s), points down. The other, Nmax(s), points up. In particular, each turn
of C has its own vertical direction.

If x ∈ H(sb, st) and H(sb, st) is a PI line in the sense of Definition 2.2, we say that H(sb, st)
is the PI line of x. As usual, we denote the PI-parametric interval [sb, st] of x by IPI(x), the
PI-segment of C by CPI(x), and the PI line H(sb, st) of x by LPI(x).

We impose the following conditions on the curve C:

P1. For each s ∈ I, s 6= a0, aK , all osculating planes Πosc(t) satisfy: [Nmax(s), τ(t), τ̇(t)] > 0
if t ∈ [s, qmax(s)] and [Nmin(s), τ(t), τ̇(t)] < 0 if t ∈ [qmin(s), s];

P2. For each s ∈ I, s 6= a0, and t ∈ [s, qmax(s)], the tangent line at t does not intersect
C(s, qmax(s)) and the chord H(s, qmax(s));

P3. For each s ∈ I, s 6= a0, the curve segment C(s, qmax(s)) has no self-intersections.

Conditions P1–P3 are quite natural. For example, P1 says that osculating planes are never
vertical. Loosely speaking, P2 implies that, similarly to a helix, C wraps around its ‘interior’.

Proposition 2.4. One has:

(B1) qmax(s) is continuous on [a0, aK). qmax(s) is differentiable at s if τ̇ is continuous both
at s and qmax(s). If qmax(a0) < aK , there exists s∗max ∈ (a0, aK) such that qmax(s) is
strictly increasing and qmax(s) < aK on [a0, s

∗
max), and qmax(s) ≡ aK on [s∗max, aK).

(B2) Properties of qmin(s) are completely analogous. qmin(s) is continuous on (a0, aK ]. qmin(s)
is differentiable at s if τ̇ is continuous both at s and qmin(s). If qmin(aK) > a0, there exists
s∗min ∈ (a0, aK) such that qmin(s) is strictly increasing and qmin(s) > a0 on (s∗min, aK ],
and qmin(s) ≡ a0 on (a0, s

∗
min].

(B3) qmin(qmax(s)) = s if qmax(s) < aK , and qmax(qmin(s)) = s if qmin(s) > a0;
(B4) For each s ∈ I there is no maximal PI line strictly inside (s, qmax(s)).
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Proof. We start with qmax. Pick s0 ∈ (ak−1, ak) and assume qmax(s0) < aK . Recall that aK is
the right end-point of I. Similarly to [KK07], consider the equation

(2.6) [y(q(s))− y(s), τ(q(s)), τ(s)] = 0, q(s0) = qmax(s0).

Formally differentiating (2.6) with respect to s gives

(2.7) q′(s) = − [y(q(s))− y(s), τ(q(s)), τ̇(s)]
[y(q(s))− y(s), τ̇(q(s)), τ(s)]

if q(s) < aK .

Since q(s0) = qmax(s0) and H(s, q(s)) is a critical chord,

Nmax(s0)× τ(qmax(s0)) = C1Nmax(s0)× τ(s0),

where C1 6= 0 is some constant. Hence, upon using P1,

(2.8) q′(s0) =
C2

1 [Nmax(s0), τ(s0), τ̇(s0)]
[Nmax(s0), τ(qmax(s0)), τ̇(qmax(s0))]

> 0.

By the implicit function theorem there is a unique solution to (2.6) for s close to s0. Applying
now the same argument as in [KK07], we get that locally qmax(s) can be found by (a) finding
qmax(s) at one point, say s0, and (b) extending it to a neighborhood of s0 by solving (2.6). Hence
(2.8) holds not only at s0, but also at all s where the extension works, so qmax(s) is monotone
there. Note that the extension works as long as all the functions involved are smooth.

Consider now two intervals [ak−1, ak] and [ak, ak+1], and suppose τ̇(s) is discontinuous across
ak. Obviously, we do not have to look at discontinuities of higher order derivatives. Find qmax(ak)
directly from the definition. Since y(s) and τ(s) are well-behaved on either side of ak, we can extend
qmax(s) from ak to both intervals (separately) as solutions to (2.6). Using the same argument as
in [KK07], it is easy to see that this procedure gives qmax(s). Thus, qmax(s) is continuous across
the boundaries of the intervals. In a similar fashion, qmax(s) is continuous across s = s0 even if
τ̇(q) is discontinuous at q = qmax(s0).

The properties of the function qmin(s) can be easily obtained from those of qmax(s). Denote
q = qmax(s). Since H(s, q) is a global critical chord, then qmin(q) ≥ s. Suppose there exists
another point s1, s < s1 < q, such that H(s1, q) is a global critical chord. Then qmax(s1) ≤ qmax(s)
even though s1 > s. This contradicts the monotonicity of qmax, i.e. qmin(qmax(s)) = s whenever
qmax(s) < aK . All the remaining assertions of the proposition are now obvious. ¤

The following result is very important. Its proof is quite technical and given in appendix A.

Proposition 2.5. Suppose C satisfies conditions P1-P3. Then for all s ∈ I, s 6= aK , the orthog-
onal projection of C(s, qmax(s)) onto N⊥

max(s) is a closed convex curve without self-intersections.

In the case of a helix, the projection of each turn onto a plane perpendicular to the vertical
direction is a circle, i.e. a closed convex curve without self-intersections. Proposition 2.5 shows
that in our case the projection of each turn of C along its own vertical direction (see the paragraph
following Definition 2.3) has the same property.

Let Πmax(s) be the plane determined by the critical chord H(s, qmax(s)): it contains the chord
and is parallel to τ(s) and τ(qmax(s)). Similarly, Πmin(s) denotes the plane determined by the
critical chord H(s, qmin(s)). As an immediate corollary to proposition 2.5 we get

Corollary 2.6. Fix any s ∈ I, s 6= aK . The curve segment C(s, qmax(s)) stays on one side of
Πmax(s). Similarly, for any s ∈ I, s 6= a0, the curve segment C(qmin(s), s) stays on one side of
Πmin(s).
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As in [KK07], it follows that for each s ∈ I there are two ‘detector planes’ - DP+(s) and DP−(s)
- on which the upper and lower ‘turns’ of C can be projected with only one asymptote. DP+(s)
is any plane not passing through y(s) and parallel to Πmax(s). Similarly, DP−(s) is any plane
not passing through y(s) and parallel to Πmin(s). In principle, the exact location of DP+(s) and
DP−(s) is irrelevant. For simplicity, we assume here and in what follows that DP+(s) ∩DP−(s)
is a line that belongs to Πosc(s) and τ̇(s) points towards that line. It is clear that this line is
parallel to τ(s). We shall denote this line by L0. The stereographic projection of C(qmin(s), s)
from y(s) onto DP−(s) is denoted Γ−, and the stereographic projection of C(s, qmax(s)) from
y(s) onto DP+(s) is denoted Γ+. The following result is proven analogously to proposition 4.4 of
[KK07].

Proposition 2.7. Γ− and Γ+ are continuous and piecewise-C∞. They are nonsmooth at most
at those s′ where C is nonsmooth.

Until now we have been discussing the properties of C within one turn, i.e. C(s, qmax(s)). Next
we discuss the relationship between neighboring turns of C, i.e. the curve segments C(qmin(s), s)
and C(s, qmax(s)). It is convenient to consider the orthogonal projection of C(qmin(s), qmax(s))
onto the plane τ(s)⊥, which we denote by Ĉ (see Fig. 1). By property P1, qmin(s) is always
located below Πosc(s) and qmax(s) is located above it. Here ‘above’ and ‘below’ are determined
relative to the direction of the normal vector τ(s) × τ̇(s), which is used in property P1. By
corollary 2.6, Ĉ is on the side of the lines given by Nmax(s) and Nmin(s) (i.e., Πmax(s) ∩ τ⊥(s)
and Πmin(s) ∩ τ⊥(s)) where τ̇(s) points. Hence only the following two cases are possible:

(C1) the angle between the vectors N̂max(s) and N̂min(s) is less than π (see Fig. 1, left panel);
(C2) the angle between the vectors N̂max(s) and N̂min(s) is greater than π (see Fig. 1, right

panel).

In order to gain insight into the additional conditions proposed below, it is useful to consider
the class of curves with positive torsion from [KK07]. This is a fairly general class of curves, but
their properties with respect to exact and efficient image reconstruction are fairly simple. Here
we propose a much wider class, which is a generalization of the one in [KK07] and allows for a
much more complicated curves.

For the curves from [KK07] we have: C(s, qmax(s)) is above Πosc(s), C(qmin(s), s) is below
Πosc(s), and Πosc(t), t ∈ (qmin(s), qmax(s)) \ {s} never passes through y(s). Hence, if case (C1)
happens (see Fig. 1, left panel), Ĉ(s, qmax(s)) never intersects the line determined by N̂min(s).
However, if the torsion is allowed to be negative, the curve may go below Πosc(s) and even intersect
the line determined N̂min(s). It is also important to note that Ĉ is tangent to ˆ̇τ(s) with a cusp,
so it cannot intersect N̂min(s) close to s. This leads us to the following condition, which is a
relaxation of the conditions imposed on the curve in [KK07]:

P4(1) If case (C1) happens, C(s, qmax(s)) does not intersect Πmin(s), and C(qmin(s), s) does
not intersect Πmax(s).

Define the lines L+
min := DP+(s) ∩ Πmin(s) on DP+(s) and L−max := DP−(s) ∩ Πmax(s) on

DP−(s). If case (C1) happens, L+
min is below L0 on DP+(s), and L−max is above L0 on DP−(s) by

P1 (see Fig. 1, left panel). Property P4(1) asserts that Γ+ stays above L+
min on DP+(s), and Γ−

stays below L−max on DP−(s). This is another way to see that we significantly relaxed conditions
on the curve compared with [KK07]. Indeed, if the curve does not bend too much, then L+

min is
far below L0 on DP+(s), and L−max is far above L0 on DP−(s). At the same time, if C satisfies
the conditions in [KK07], Γ+ is above L0, and Γ− is below L0. Hence a significant perturbation
of the curve is required to bring Γ+ below L+

min or to bring Γ− above L−max.
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Figure 1. Relative position of Nmin(s) and Nmax(s). Case (C1) - left panel,
case (C2) - right panel.

We now consider the behavior of curves from [KK07] when case (C2) happens (see Fig. 1, right
panel). One sees that Ĉ(s, qmax(s)) necessarily intersects the line determined by N̂min(s) at least
once, which leads us to the second condition:
P4(2). Denote the first intersection point (IP) of C(s, qmax(s)) with Πmin(s) by q+(s), and the

first IP of C(qmin(s), s) with Πmax(s) by q−(s). If case (C2) happens, then q+(s) and
q−(s) are the only IPs. Also, y(s) 6∈ Πosc(t) for all t ∈ (qmin(s), q−(s)) ∪ (q+(s), qmax(s)).

If case (C1) happens, then for simplicity we define q+(s) := qmax(s) and q−(s) = qmin(s). It is
important to note here that, in a sense, condition P4(2) complements condition P1. P1 implies
that Πosc(qmax(s)) does not contain y(s). If case (C2) occurs, condition P4(2) requires that all
Πosc(q), q ∈ [q+(s), qmax(s)], do not contain y(s). Of course, a similar remark regarding qmin(s)
is true as well.

Following [KK07], define

(2.9) Φ(t, s) := [y(t)− y(s), τ(t), τ̇(t)].

It is easy to see that Φ(t, s) is proportional to the directed distance from y(s) to Πosc(t). Property
P4(2) implies that Φ(t, s) > 0 for t ∈ (q+(s), qmax(s)), and Φ(t, s) < 0 for t ∈ (qmin(s), q−(s)).
One can show in the same way as in [KK07] (see the proof of proposition 4.4 in [KK07]) that if C
is smooth at t, then up to a positive factor Φ(t, s) gives the curvature of Γ+ on DP+(s) and of Γ−
on DP−(s) at y(t). Thus, by property P4(2), the sections of Γ+ and Γ− located close to qmax(s)
and qmin(s), respectively, are convex. Because of our assumptions, the convexity is maintained
even at points of nonsmoothness.

Let us compare condition P4(2) with conditions in [KK07]. If case (C2) holds, L+
min is above

L0 on DP+(s), and L−max is below L0 on DP−(s) by P1. If C satisfies the conditions in [KK07],
the main of them being positive torsion, then Γ+ is above L0 on DP+(s), Γ− is below L0 on
DP−(s), and both curves are convex. Consequently, L+

min and L−max intersect Γ± only once, so
property P4(2) holds. In contrast with [KK07], here we require that only the portion of Γ+ above
L+

min and the portion of Γ− below L−max are convex. If the curve does not bend too much between
neighboring turns, both L+

min and L−max are far away from L0 and those portions are quite small in
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Figure 2. Illustration of Cylmax(s) and Cyl′max(s) on N⊥
max(s)

the sense of parameter range: q+(s) is close to qmax(s), and q−(s) is close to qmin(s). By condition
P1, Πosc(qmax(s)) and Πosc(qmin(s)) do not contain y(s). It is therefore natural to expect that the
planes Πosc(q) do not contain y(s) for q close to qmax(s) ∪ qmin(s). Similarly, if C does not bend
too much between neighboring turns, the lines determined by N̂max(s) and N̂min(s) (cf. Figure 1)
are close to each other, and only a significant perturbation of the curve can cause these lines to
have more than one IP with Ĉ. So our requirements again significantly relax those in [KK07].

As is seen from the discussion, there are two major ways to make a curve from [KK07] more
complicated. One is to violate the positivity of torsion, and the other is to allow the curve to
bend very rapidly between neighboring turns. Condition P4 combines the two phenomena into a
single geometrical requirement. Thus, we do not need to impose two separate conditions: one on
torsion, and the other on the behavior of neighboring turns. This means, for example, that if the
torsion condition is strongly violated, then, as compensation, the curve should bend very little
between neighboring turns so that overall P4 is still satisfied.

It remains to define a set U ⊂ R3 where reconstruction is possible with an efficient algorithm.
Since our algorithm will be PI line based, it is natural to require that PI lines exist and are unique
for all x ∈ U . In what follows we define U in a way that ensures local uniqueness of PI lines.
Existence can be achieved in a standard fashion by restricting U to the region covered by PI lines
of C (see section 6).

As in [KK07], let Cylmax(s) be the infinite cylinder with base Ĉ(s, qmax(s)) and axis Nmax(s).
We need to shrink Cylmax(s) to get rid of local critical chords. For each s ∈ I consider local
critical chords H(s, s′), s < s′ < qmax(s), and denote the maximal s′ by q+

crit(s). From property
P1, q+

crit(s) < qmax(s). Finally, let Cyl′max(s) be the part of the cylinder Cylmax(s) that is cut
off from it by the plane through y(q+

crit(s)) and y(s) and containing Nmax(s) (see Fig. 2). In a
completely similar fashion we define q−crit(s) and construct the cylinders Cyl′min(s).

We now proceed in exactly the same fashion as in [KK07], i.e. choose an interval I ′ ⊂ I and
define U ′ as

(2.10) U ′ :=
⋂

s∈I′
(Cyl′max(s) ∩ Cyl′min(s)).

If I ′ is sufficiently short, then U ′ 6= ∅ (see the discussion after the proof of Proposition 3.2 in
[KK07]). Definition (2.10) ensures that there is no more than one PI line through x ∈ U ′ with at
least one endpoint in I ′. This can be shown in the same way as in section 3 of [KK07]. We describe
the construction here for convenience of the reader. Due to (2.10), all x ∈ U ′ are projected inside
the closed convex curve Ĉ(s, qmax(s)). Hence, one can find s < q(s) < qmax(s) and 0 < λ(s) < 1
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such that for x(s) := y(s) + λ(s)(y(q(s))− y(s)) one has

x(s)− x ‖ Nmax(s).

Define ε(s) := Nmax(s) · {(y(s) + λ(s)(y(q(s)) − y(s))) − x}. It is shown in [KK07] that the
condition Q(s, q(s)) 6= 0, which is guaranteed for all s ∈ I ′ because x ∈ U , implies that ε(s) = 0
cannot have more than one solution in I ′. This, in turn, implies that there cannot be more than
one PI line through x ∈ U ′ with sb ∈ I ′. To prove that there cannot be more than one PI line
through x ∈ U ′ with st ∈ I ′ we argue analogously using the directions Nmin(s), s ∈ I ′.

We now define the set U where reconstruction will be shown to be possible with an FBP-type
algorithm as the set of x ∈ U ′ with IPI(x) ⊂ [c, d], i.e. we define

(2.11) U := U ′ ∩ {x ∈ H(s0, s1)|c ≤ s0 < s1 ≤ d}
and introduce the condition

P5. The set U defined in (2.11) is nonempty.
Note that U ′ 6= ∅ does not imply U 6= ∅. For example, if I ′ is so short or local critical chords are
so long that d < q+

crit(c), then U can be empty. That is why we use U instead of U ′ in condition
P5.

The last assumption we need to make is that the curve C does not oscillate too much.
P6. For each x ∈ U and s ∈ IPI(x) the number of planes that contain x and y(s) and are

tangent to C(qmin(s), qmax(s)) is uniformly bounded.
We conclude the section by noting the following property of PI lines of curves from the class

that we have introduced. For each x ∈ U with PI line H(sb, st) the line segment joining x̂ and
ŷ(t), t ∈ [sb, st], on the projection onto N⊥

max(sb) rotates monotonically and sweeps π radians (as
follows from proposition 2.5 and corollary 2.6). In the next section we focus specifically on curve
segments C(sb, st) possessing the property that for a chosen x ∈ H(sb, st) there exists a vector D
such that the line segment joining x̂ with ŷ(t) in the plane D⊥ rotates monotonically and sweeps
π radians as t goes from sb to st.

3. Properties of 1PI curve segments

The objective of this section is to define a general class of curves along the lines of the property
noted at the end of the previous section and study some of its properties. We start from scratch
by ignoring properties P1–P6 (in particular, we allow linear segments). We do this because the
condition by itself is quite important and leads to interesting observations, so we felt the need
to single it out and conduct an investigation independent of all the other conditions stated in
Section 2.

According to the Radon transform theory, it is important to know how many IPs there are
between any plane Π through x and CPI(x). This number is known as the Crofton symbol.
Here we develop a geometric construction, which allows us to capture the entire dynamics of the
Crofton symbol. Clearly, every plane Π through x can be described by a unit vector. When Π
changes, i.e. the corresponding point on the unit sphere moves, the number of IPs in Π ∩CPI(x)
may change only when Π contains LPI(x) or when Π is tangent to CPI(x). These critical planes
correspond to some curves on the unit sphere. We establish that the existence of a PI line puts
some restrictions on the shape of those curves. Additionally, the construction allows us to classify
(almost all) planes through x as proper or improper. Such classification is then used in Section 4
for developing a reconstruction algorithm.

Let C be a continuous piecewise C∞ curve given by (2.1).

Definition 3.1. Fix a chord H(sb, st) and point x ∈ H(sb, st). The chord H(sb, st) is called a PI
line of x if a vector D(x) ∈ S2 can be chosen so that
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Figure 3. Projection of the PI line along D

(D1) [y(s)− x, τ(s), D(x)] > 0 for all s ∈ [sb, st], and
(D2) any plane through x that is parallel to D(x) and does not contain H(sb, st), intersects

C(sb, st) at precisely one point.

This definition is quite natural and matches precisely the property mentioned at the end of last
section. Consider a plane which contains x and rotates around the vector D(x) (see Fig. 3). Then
H(sb, st) is a PI line of x ∈ H(sb, st) if the point of intersection of the plane and C(sb, st) moves
in one direction from y(sb) to y(st).

Note that this coincides with the standard definitions of PI lines for known trajectories, such
as constant- and dynamic-pitch helices (choose D(x) ≡ (0, 0, 1) for all x), circle and line (choose
a slightly tilted (0, 0, 1)), as well as the general class of curves described in [KK07] (here one can
choose Nmax(sb(x)), where sb(x) is the lower endpoint of the PI line through x).

Our first assumption on the source trajectory is as follows.
P1′. There exists an open set U ⊂ R3 with the property that all x ∈ U possess locally unique

PI lines and the vector D(x) depends continuously on x.
Proposition 2.5 and Corollary 2.6 imply that curves from the class introduced in section 2 satisfy
property P1′.

Let Ωcrit(x) be the set of planes through x that are tangent to CPI(x), or contain LPI(x), or
contain a point where CPI(x) is not smooth. As is well-known, Ωcrit(x) is a set of measure zero.
Let Π∗(x) denote the set of planes through x which are not in Ωcrit(x) and have three or more
IPs with CPI(x).

Corollary 3.2. For all x ∈ U one can choose normals N(x, Π) ∈ S2 of planes Π ∈ Π∗(x) so that
N(x, Π) is continuous and D(x) ·N(x, Π) > 0.

Proof. By Definition 3.1, all planes passing through x, containing D(x), and not containing
LPI(x), have only one IP with CPI(x). Hence, Π∗(x) corresponds to two sets in S2 – one in
the hemisphere {ξ ∈ S2|D(x) · ξ > 0}, and the other in the hemisphere {ξ ∈ S2|D(x) · ξ < 0}.
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Figure 4. Construction of the T -curve in the plane x3 = 1

Hence, one can choose the normals N(x, Π) for Π ∈ Π∗(x) so that N(x, Π) is continuous in both
x (by the continuity of D(x)) and Π ∈ Π∗(x). ¤

In the remainder of this section a point x ∈ U is fixed, so the endpoints of IPI(x) are denoted
by sb and st. In subsequent derivations we use a number of geometric constructions that have
been introduced in [Kat06]. For convenience of the reader they are repeated here.

The T -curve of x is defined in [Kat06] as

(3.1) u(s) :=
(y(s)− x)× τ(s)
|(y(s)− x)× τ(s)| , s ∈ IPI(x).

Choose the coordinate system (x1, x2, x3) so that x is the origin, D(x) points along the x3-axis,
and the vector (y(st)−y(sb))×D(x) points along the x1-axis. Clearly, all curves y1(s) := κ(s)y(s),
where κ(s) > 0 is an arbitrary continuous piecewise C∞ function, have the same T -curve. Hence,
for simplicity, we can assume that C belongs to the unit sphere, i.e. |y(s)| = 1. By construction,
CPI(x) lies in the halfspace x1 ≥ 0. Therefore, using the stereographic projection from the origin,
CPI(x) can be associated with a curve in the plane x1 = 1 going from negative infinity to positive
infinity along the x2-axis. We denote this curve by ŷ(s) (see Fig. 4). Definition 3.1 implies
that lines tangent to ŷ(s) are never vertical. Thus the T -curve is traced by u(s) on the upper
hemisphere and, hence, can be associated with a curve û(s) in the plane x3 = 1 using stereographic
projection. Our construction identifies lines tangent to the curve ŷ(s) with directions u(s) ∈ S2

or with points û(s) in the plane x3 = 1 (see Fig. 4). It is easy to see using (A3) and (2.2) that a
point where C is not smooth corresponds to a line segment in û(s) (see Fig. 5).

Here is a summary of the construction. Given a point y(s) ∈ C, consider a plane through the
origin, y(s), and parallel to τ(s). The same plane is defined by ŷ(s) and τ̂(s). Then u(s) is the
normal vector to the plane.

On the other hand, we can start with the curve u(s) ∈ S2 defined by (3.1). If u(s) is smooth,

(3.2) u(s)× u̇(s) = c(s)[y(s), τ(s), τ̇(s)]y(s),

where c(s) > 0. Hence we can identify lines tangent to the curve û(s) with directions y(s) ∈ S2

or with points ŷ(s) in the plane x1 = 1. This is how it works. For each s0 where û(s) is smooth
consider the plane passing through the origin and tangent to the curve at û(s0). The unit vector
N = (N1, N2, N3), which is perpendicular to the plane and satisfies N1 > 0, coincides with y(s0).
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Figure 5. A discontinuity of τ̂(s) corresponds to a linear segment of û(s)

Figure 6. A linear segment of the projected curve corresponds to a discontinuity
of u̇(s)

In other words, the T -curve of u(s) is the original curve y(s). Such a duality is not surprising in
view of the involutivity of the Legendre transform.

Suppose û(s) is not smooth at some s0, but the limiting tangent vectors ˙̂u(s−0 ) and ˙̂u(s+
0 ) are

parallel. For example, û may have a cusp at s0. Then the two vectors determine the same plane,
and y(s0) coincides with the normal vector to that plane. Suppose next that u0 ∈ u(s) is a
corner, i.e. the limiting tangents from the left and from the right at u0 are not parallel (see
Fig. 6). Equation (3.2) implies that the only time this can happen is when [y(s), τ(s), τ̇(s)] ≡ 0
over some interval, say [s1, s2]. Equivalently, this means that x ∈ Πosc(s) for all s ∈ [s1, s2], or
y(s), s ∈ [s1, s2], is an arc of a great circle in the hemisphere x1 > 0, or ŷ(s), s ∈ [s1, s2], is a line
segment (see Fig. 6). Hence the missing part of y(s) can be recovered by connecting points y(s1)
and y(s2), which are determined using ˙̂u(s−1 ) and ˙̂u(s+

2 ), by an arc of a great circle.
In summary, y(s) can be found using the following steps:
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(E1) Find y(s) using (3.2) and the constraints y(s) ∈ S2, y1(s) > 0, at all the points where
u(s) is smooth;

(E2) Fill in all the single-point gaps by continuity; and
(E3) Fill in the remaining gaps by connecting the corresponding endpoints by an arc of the

great circle.
If û(s) is nonsmooth at û0, the two limiting tangents determine two wedges with vertex û0

in the plane x3 = 1. Choose the wedge with an opening less than π and assume that the line
tangent to û(s) at û0 rotates from the limiting left position to the limiting right position within the
smaller wedge. In other words, we augment the set of lines tangent to û(s) by lines located within
the smaller wedge at every point where û(s) is not smooth, thereby extending the conventional
definition of a tangent line. It is easy to see that this extended definition achieves two goals: (a)
lines tangent to û(s) form a continuous family, and (b) using (E1)–(E3) this family is continuously
mapped into the curve ŷ(s) (see Proposition 3.4 below).

We need two more definitions from [Kat06]. The great circle in S2 that corresponds to planes
through x containing H(sb, st), i.e. (y(st) − y(sb))⊥ ⊂ S2 is called the A-curve of x. In the
coordinate system that we chose the A-curve corresponds to the A-line in the plane x3 = 1, which
is parallel to the x1-axis. Given s ∈ IPI(x), the set of planes through x and y(s), i.e. the great
circle (y(s) − x)⊥ ⊂ S2, is called the Bs-curve. Hence, the Bs-curve corresponds to a line in the
plane x3 = 1. We call it a Bs-line. It was shown in [Kat06] for the standard helix and will be
shown below for more general curves that the Bs-lines constitute the set of all tangent lines to
the T -curve û(s). In the same fashion, Π∗(x) can also be viewed as a subset of the plane x3 = 1.
Property P1 ensures that Π∗ is bounded there.

Next we characterize T -curves of PI segments of curves that satisfy our assumptions. As before,
we choose a coordinate system so that x is the origin and assume |y(s)| ≡ 1. Recall that we use
the extended definition of a family of lines tangent to û(s).

Proposition 3.3. A curve T ⊂ S2 is the T -curve for CPI(x) if and only if T is a continuous
piecewise C∞ curve satisfying the following conditions:

(F1) there exists a unit vector D ∈ S2 such that u ·D > 0 for all u ∈ T ;
(F2) there exists a great circle CA such that u starts and ends on CA and is tangent to it at

the endpoints;
(F3) the tangent line to the projection of T onto D⊥ rotates counterclockwise and sweeps π

radians as the point of tangency moves from one endpoint to the other.

The proof of the proposition is given in appendix B. The following result describes the main
properties of Bs-curves (Bs-lines). Its proof is also given in appendix B.

Proposition 3.4. One has:
(G1) The set of Bs-lines is precisely the set of all tangent lines to the T -curve;
(G2) Lines tangent to the T -curve cover the whole plane x3 = 1; and
(G3) If Π is a plane through x and Π 6∈ Ωcrit(x), then the number of IPs in Π∩CPI(x) is equal

to the number of tangents to the T -curve that pass through the point corresponding to Π
in the plane x3 = 1.

Note that proposition 3.4 describes properties of the Crofton symbol of x, which is defined as

(3.3) Cr(x, ξ) = #{y ∈ CPI(x)|(y − x) · ξ = 0}.
For example, (G2) is another way of stating that the set {ξ ∈ S2|Cr(x, ξ) = 0} is empty, i.e.
CPI(x) is complete. (G3) states that the boundary of sets {ξ ∈ S2|Cr(x, ξ) ≥ 2k+1} has negative
curvature, and exactly 2k + 1 tangents to the T -curve (the latter is the boundary between the
regions with different k) intersect at each point ξ ∈ S2 such that Cr(x, ξ) = 2k + 1.
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Figure 7. Discontinuity of τ̂(s)

Let Π(q) be a smooth one-parametric family of planes through x. We need to study how the
number of IPs in Π(q) ∩ CPI(x) changes with q. It is clear that the number of IPs can change at
some q = q0 only when Π(q0) contains LPI(x), or Π(q0) is tangent to CPI(x) at a point where
ẏ(s) is continuous, or Π(q0) contains a point y(s) where ẏ(s) is discontinuous. Identify Π(q) with
a curve on the unit sphere (via its normal vector) and, consequently, with a curve in the plane
x3 = 1. Thus the first event occurs when Π(q) intersects the A-line, the second – when Π(q)
intersects the T -curve, and the third – when Π(q) intersects the line spanned by a linear segment
of the T -curve (cf. the discussion following Corollary 3.2).

Suppose y0 ≡ y(s) for all s ∈ [ak−1, ak] and y0 ∈ Π(q0) for some q0. Then the lines through ŷ0

and parallel to τ̂(ak−1) and τ̂(ak) form two wedges in the plane x1 = 1 (see Fig. 7). One of the
two wedges contains the line LD through ŷ0 and parallel to D(x). It is clear that the number of
IPs in Π(q) ∩ CPI(x) does not change across q0 if the line Π(q0) ∩ {x1 = 1} belongs to the wedge
where LD is located. Otherwise, the number of IPs changes by two. From the discussion preceding
Proposition 3.3, this implies that the number of IPs changes only if the curve intersects the linear
segment of the T -curve corresponding to ŷ(s0). This argument implies that the number of IPs
may change only if Π(q) intersects the A-line or the T -curve (as defined prior to Proposition 3.3).
Hence the T -curve and the A-line divide the plane x3 = 1 into regions Dj , j ≥ 1, such that all
planes inside each Dj have the same number of IPs with CPI(x). When a plane moves from one
Dj into another across the T -curve, it either gains or loses two IPs through tangency. However,
the behavior can be different when the plane moves from one Dj into another across the A-line.

We now consider how the number of IPs changes across the A-line. Introduce a coordinate t
along the A-line and denote the coordinates of the two points where the T -curve is tangent to
the A-line by t0 and t1 (see Fig. 8). In this figure θ is a parameter along Bs, which is used in
section 4 below (see the paragraph preceeding (4.1)). The two points t0 and t1 correspond to the
planes containing LPI(x) and tangent to CPI(x) at sb and st respectively. We need to make sure
that t0 6= t1, i.e. that the two planes are distinct. This leads us to the condition that the PI line
of x should not be critical (see [KK06, KK07]), i.e.

P2′. [y(st)− y(sb), τ(sb), τ(st)] 6= 0 for all x ∈ U ,
where U ⊂ R3 \ C is an open set. Again, definition 2.2 and (B4) imply that if the set U defined
in (2.11) is non-empty, then it satisfies property P2′.



INVERSION OF THE CONE BEAM TRANSFORM 15

Figure 8. Number of IPs near the A-line

By proposition 3.4, the number of IPs of a given plane with CPI(x) is equal to the number
of tangents to the T -curve passing through the corresponding point in the plane x3 = 1. Hence
the change in the number of IPs from one side of the A-line to the other side depends on the
location of points t0 and t1, since this is where new lines tangent to the T -curve emerge (see Fig.
8). By proposition 3.3, the T -curve is tangent to the A-line at û(sb) and û(st) (which correspond
to coordinates t0 and t1). By the same proposition, the tangent line to û(s) sweeps an angle of
π radians as s increases from sb to st. Thus the T -curve cannot be tangent to the A-line at any
point except for û(sb) and û(st). Hence we need to consider only the behavior of the T -curve near
û(sb) and û(st). One sees that the number of IPs depends on the side of the A-line on which the
T -curve stays after tangency as well as on the direction of the tangent vectors ˙̂u(sb) and ˙̂u(st).

Examining the possibilities and taking into account property P1′ shows that (a) the number of
IPs does not change across the A-line if the point of crossing is outside the interval [t0, t1], and
(b) the number of IPs changes by two when the A-line is crossed inside the interval [t0, t1]. Two
top panels of Fig. 8 show the only two possible configurations of tangency at sb and st (up to
a reflection). Two bottom panels of Fig. 8 show impossible configurations. They are impossible
because they contradict the fact that the tangent line to the T -curve sweeps an angle of π as s
goes from sb to st (the angle would have to be greater in this case). In the two upper diagrams of
Fig. 8 the arrows crossing the A-line with numbers near them denote the change in the number
of IPs.

Let Πp denote the halfplane the transition into which across the interval [t0, t1] of the A-line
increases the number of IPs. The following definition is important.

Definition 3.5. All planes in Πpr(x) := Πp(x) ∩ Π∗(x) are called proper, and all planes in
Πim(x) := Π(x) \ (Πpr(x) ∪ Ωcrit(x)) are called improper.
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4. Assigning weights

According to the general scheme of [Kat03], we have to assign weights to all IPs in Π ∩CPI(x)
given any plane Π 3 x. In the first subsection we state a method of assigning weights to the
IPs that ensures that the resulting reconstruction algorithm is exact and of the FBP type. The
method of assigning weights depends not only on the IPs of Π with C inside IPI(x), but also on
some extra IPs that are located outside IPI(x). This is the price we have to pay for considering
a rather general class of curves. Additionally, the method depends on a function q(Π). The way
of choosing extra IPs is described in the second subsection, and the function q(Π) is described in
the third subsection.

Given a proper plane Π ∈ Πpr(x), IP (x, Π) denotes a subset of C ∩ Π that includes all IPs
located inside IPI(x) and, possibly, some extra IPs that are located outside of IPI(x). We assume
that if IP (x, Π) contains those extra IPs, then all of them are either below sb or above st. Later
we show that properties P1–P6 guarantee that the set IP (x, Π) with the required properties can
be chosen in an efficient manner.

4.1. General scheme. Consider a plane Π through x, which is transversal to CPI(x). The
weights are assigned according to the diagrams below. We use the convention that ‘+’ represents
weight 1, ‘-’ represents weight -1, and the i-th element in the diagram gives the weight of the i-th
IP inside IPI(x).

W1. If Π is improper:

+ − + . . . + − +

W2. If Π is proper and there are no IPs in IP (x, Π) outside IPI(x):

± + − . . . − + ∓

W3. If Π is proper and some IPs in IP (x, Π) are greater than st(x):

+ + − . . . − + −

W4. If Π is proper and some IPs in IP (x, Π) are smaller than sb(x):

− + − . . . − + +

An addition to the rule W2, which explains how to assign ‘+’ and ‘-’ to the first and last IPs,
is given below. Here we note only that whenever the first IP has weight ‘+’, then the last IP has
weight ‘-’, and vice versa.

Fix some s ∈ IPI(x). As in [Kat03], define β(s, x) = x−y(s)
|x−y(s)| . Let θ be a polar angle in the

plane β⊥(s, x). Then α(θ) ∈ β⊥(s, x) denotes the corresponding unit vector. The plane through x
and y(s) and perpendicular to α(θ) is denoted by Π(θ). Without loss of generality we may assume
that (a) Π(θ = 0) contains LPI(x), (b) sufficiently small θ < 0 correspond to proper planes, and
(c) sufficiently small θ > 0 correspond to improper planes (see Fig. 8).

According to [Kat03], filtering planes are found by locating discontinuities of the function

(4.1) φ(s, x, θ) = sgn(α · τ(s))n(s, x, α), α = α(θ) ∈ β⊥(s, x),

where n(s, x, α) is the weight of y(s) as an IP in Π(θ) ∩ CPI(x). The following result is the first
step towards establishing the FBP structure of the resulting algorithm.
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Figure 9. Case I (left panel) and case II (right panel) from the proof of propo-
sition 4.1

Proposition 4.1. Fix any x ∈ U and s ∈ IPI(x), y(s) 6= y(sb), y(st). Then n(s, x, α(θ)) is
continuous across θ = 0.

Proof. We write Π(0−) to denote (proper) planes Π(θ) for θ < 0 sufficiently small, and Π(0+) to
denote (improper) planes Π(θ) for θ > 0 sufficiently small.

As it was mentioned in [Kat06] for the standard helix (see [Kat06], section 4), two cases are
possible:

I. Locally, the sections of CPI(x) attached to y(sb) and y(st), respectively, are on different
sides of Π(0) (see Fig. 9, left panel).

II. Locally, the sections of CPI(x) attached to y(sb) and y(st), respectively, are on the same
side of Π(0) (see Fig. 9, right panel).

Case I corresponds to planes on the A-line that are located between t0 and t1, whereas case II
corresponds to all other planes in the intersection of the A-line with Π∗(x) (see the discussion after
proposition 3.4 and definition 3.5). In the first case as θ increases through 0, two IPs disappear
at the endpoints of the PI line (see Figure 10). In the second case, when θ increases through 0,
an IP disappears at one endpoint of IPI(x), and another IP appears at the other endpoint (see
Fig. 12). As is known, only case I happens when the curve is a standard helix.

It now follows that we need to consider three cases:
I. Both IPs disappear as θ increases through 0 (see Fig. 10). In this case s cannot be the

first or the last IP of Π(0−). Since Π(0−) is a proper plane and Π(0+) is an improper
plane, using rules W1 and W2-W4 gives that n(s, x, α(θ)) is continuous (see Fig. 11).

Figure 10. Projection onto the plane (x− y(s))⊥. The case when two IPs disappear.

II.1. The left-most IP disappears, while another IP emerges on the right (see Fig. 12, left
panel). If s is neither the first nor the last IP of Π(0−), then, similarly to the preceding
case, its weight does not change across θ = 0 (cf. rules W1 and W3, W4 and Fig. 13).
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Figure 11. Change of weights when the first and last IPs disappear.

Figure 12. Projection onto the plane (x− y(s))⊥. Left panel: an IP disappears
on the left, right panel: an IP disappears on the right.

   

  

   

  

Figure 13. Change of weights when an IP disappears at one end and appears on
the other end. Left panel - disappearance on the left, right panel - disappearance
on the right.

Now consider the first and last IPs. Since the first IP disappears as θ increases, y(s) can
only be the last IP. Hence we need to show that the weight of the last IP does not change
across θ = 0, i.e. when y(s) ceases to be the last IP. One sees that there are necessarily
extra IPs of Π(0−) with C to the right of st (cf. Fig. 12, left panel). Also, due to the
property that IP (x, Π) contains IPs only on one side of IPI(x), there are no IPs to the
left of sb. According to rule W3, the weight of the last IP of Π(0−) with CPI(x) equals
−1. It now follows from Fig. 13, left panel, that the weight of the last IP is continuous as
well.

II.2. The right-most IP disappears, while another IP emerges on the left (see Fig. 12, right
panel). The proof is analogous to the previous case. See Fig. 13, right panel.

¤

Remark 4.2. The preceding argument demonstrates the importance of the property that IP (x, Π)
contain IPs only on one side of IPI(x). If Π(0−) is such that an IP disappears at one end and
appears on the other end across θ = 0, then this property allows us to determine at which end
the disappearance takes place. This, in turn, allows us to fix the weights so that n(s, x, α(θ)) is
continuous across θ = 0. If the extra IPs were allowed on both sides of IPI(x), there would be no
easy way of finding out what is happening to IPs across LPI(x).
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4.2. The set IP (x, Π). In order to define IP (x, Π), we need to use some results from section 3.
We can use these results, because the PI lines introduced in section 2 satisfy the more general
definition of PI lines given in section 3. We formally state this result as follows.

Proposition 4.3. Let H(sb, st) be a chord of C, which is a PI line in the sense of definition 2.2.
Then H(sb, st) is also a PI line in the sense of definition 3.1 for any x ∈ H(sb, st), where one can
take D = Nmax(t) for any t ∈ [qmin(st), sb] or D = Nmin(t) for any t ∈ [st, qmax(sb)].

Proof. Follows immediately from proposition 2.5. ¤

We now introduce a convention for choosing normals to proper planes. Given Π ∈ Πpr(x),
denote the IPs of Π with CPI(x) by s1 < s2 < . . . < s2k+1. If C is non-smooth at one of the
IPs, there can be infinitely many values of the parameter that correspond to the same IP. In the
remainder of the paper for the most part we talk about points y ∈ C, so it is irrelevant which
particular s is chosen to represent any y ∈ C as long as y(s) = y. Whenever a statement does
depend on which parameter value is chosen, it is understood that the statement holds for all
equivalent values of the parameter. Recall that for any proper plane there are at least three IPs
inside IPI(x). Choosing the normal as N̄ := (y(s3)− y(s1))× (y(s2)− y(s1)), we have

(4.2) N̄ ·Nmax(t) > 0 for any t ∈ [qmin(s2k+1), s1], N̄ ·Nmin(t) < 0 for any t ∈ [s2k+1, qmax(s1)].

This follows from (a) the convexity of the projections of C(s, qmax(s)) and C(qmin(s), s) onto
N⊥

max(s) and N⊥
min(s), respectively, and (b) the observation that by letting y(s1), y(s2), and

y(s3) approach each other while keeping s1 < s2 < s3, we can get any osculating plane Πosc(q),
q ∈ [s1, s2k+1], by noting that in the process the dot product N̄ ·Nmax(t) is never zero and using
P1. In what follows we always assume that normals N̄ to proper planes are chosen according to
this convention.

For a generic Π ∈ Πpr(x) we denote the IPs of Π with the interior of C(qmin(s2k+1), sb) by
l1 < . . . < lm, and the IPs of Π with the interior of C(st, qmax(s1)) – by r1 < . . . < rn. It is easy
to see that this definition is unambiguous, i.e. it does not depend on the specific values of s1 and
s2k+1 (recall that we are using the non-standard parameterization). Indeed, pick any IP r > st.
Suppose there are two equivalent values s

(1)
1 and s

(2)
1 such that qmax(s(1)

1 ) < r < qmax(s(2)
1 ).

Using the monotonicity of qmax there is another equivalent value s∗1 such that qmax(s∗1) = r, which
contradicts (4.2). Using (4.2) again we immediately get

Proposition 4.4. Pick x ∈ U and a plane Π ∈ Πpr(x). Then N̄ · Nmax(lp) > 0, p = 1 . . . m, if
m > 0, and N̄ ·Nmin(rp) < 0, p = 1 . . . n, if n > 0.

Consider x ∈ U and s ∈ IPI(x), y(s) 6= y(sb), y(st). Suppose case II.1 happens (see the proof of
proposition 4.1), i.e. an IP emerges across st and another IP disappears across sb as one rotates
the plane Π(θ) around β(s, x). As we have already seen, Π(0−) has IPs with C above st. Moreover,
there are necessarily IPs that are located to the right of x̂ on DP+(s). In the same way, if a new
IP emerges on the left, then for small θ < 0 there are necessarily IPs below sb to the left of x̂ on
DP−(s).

It was shown in section 3 that case II happens when the plane Π(0), which corresponds to a
point on the A-line in the plane x3 = 1, is located either to the left of t0 or to the right of t1. Next
consider a proper plane Π close to Π(0). Thus, on the plane x3 = 1, Π corresponds to a point
located close to the A-line. Suppose, for example, that the point is to the left of t0 (see Fig. 14).
In this case all Bs-curves through Π intersect the A-line to the left of t0 except for the Bs-curve
that corresponds to the last IP of Π with CPI(x). Indeed, in order to intersect the A-line to the
right of t0, the Bs would need to have a slope arbitrarily close to 0, but only Bs with s close to sb

or st has this property. Hence, if Π is close to the A-line to the left of t0, then case II.2 necessarily



20 M. KAPRALOV AND A. KATSEVICH

Figure 14. Bs-curves of a plane close to the A-line to the left of t0

happens for all Bsj -curves, 1 ≤ j < 2k + 1. In other words, all proper planes that are sufficiently
close to the A-line to the left of t0 have IPs below sb that are located to the left of x̂ on DP−(sj)
for all 1 ≤ j < 2k + 1. Similarly, if a proper plane is close to the A-line to the right of t1, then
case II.1 happens for all Bsj -curves, 1 < j ≤ 2k + 1, i.e. there are IPs above st that are located
to the right of x̂ on DP+(sj) for all 1 < j ≤ 2k + 1.

Hence, to fix the weights of the IPs inside IPI(x) according to rules W3, W4, we do not have to
pay attention to all the IPs Π ∩ C located close to IPI(x), but only to those IPs that are located
on the appropriate side of Π relative to the line through x and y(sj) for some j, 1 < j < 2k + 1.
More precisely, if an IP is above st, it must be to the right of the line in order to be used in rule
W3. Similarly, if an IP is below sb, it must be to the left of the line in order to be used in rule W4.
Choosing different j affects the algorithm. The simplest case occurs if we choose the middle IP
inside IPI(x): j = k + 1. In particular, the set IP (x, Π) can be defined in a simple way: IP (x, Π)
consists of the following IPs:

(H1) All IPs lp, 1 ≤ p ≤ m;
(H2) All IPs that belong to IPI(x);
(H3) All IPs rp, 1 ≤ p ≤ n.
The following proposition says that if the set IP (x, Π) is defined according to (H1)-(H3), then

the extra IPs are indeed located in the appropriate halfplanes.

Proposition 4.5. For all x ∈ U and planes Π ∈ Π∗(x) with the canonically chosen normal N̄ (i.e.
with the normal chosen so that it satisfies (4.2)) the set IP (x, Π) satisfies the following properties:

(I1) For all p, 1 ≤ p ≤ m one has [x − y(sk+1), y(lp) − y(sk+1), N̄ ] > 0, i.e. all IPs y(lp) are
located to the left of the line through x and y(sk+1) on Π;

(I2) For all p, 1 ≤ p ≤ n, one has [x− y(sk+1), y(rp)− y(sk+1), N̄ ] < 0, i.e. all IPs y(rp) are
located to the right of the line through x and y(sk+1) on Π.

The proof of the proposition is given in appendix C. The statement of proposition 4.5 is
illustrated in Fig. 15. It shows two IPs r1, r2, which are located to the right of the line through
x and y(sk+1).

To summarize, the definition of IP (x, Π) is very simple: we use those IPs outside IPI(x) that
belong to C(qmin(s2k+1), qmax(s1)). Now we can formulate the main result of this section.

Proposition 4.6. Fix any x ∈ U and Π ∈ Πpr(x). Then IP (x, Π) contains IPs either to the left
or to the right of IPI(x).
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Figure 15. Illustration of the properties of IP (x, Π) (see proposition 4.5)

Proposition 4.6 says that the set IP (x, Π) can indeed be used to assign weights according to
rules W3, W4 in an unambiguous fashion. The proof is quite complicated and given in appendix C.

4.3. The function q(Π). Now we discuss a way of choosing signs in the definition of weights of
the first and last IPs in rule W2. Consider a function

(4.3) q : Πpr(x) → R.

Recall that Πpr(x) does not include planes through x that are tangent to CPI(x). Although q(Π)
is defined only for planes intersecting CPI(x) transversely, the function q(Π) that we suggest below
is actually rather well-behaved. In particular, for the most part q(Π) is continuous across planes
tangent to CPI(x). Define

(4.4) q(Π) :=
∫ s2k+1

s1

N̄ · (y(t)− y(s1)) |ẏ(t)|dt, Π ∈ Πpr,

where N̄ is the normal to Π chosen according to property P1. The reason why |ẏ(t)| is inserted
in (4.4) is to make q independent of the parametrization. In particular, if y(t) ≡ const over an
interval, i.e. |ẏ(t)| ≡ 0, then the contribution of this interval into q equals zero. For the same
reason, q does not depend on which particular values of the parameter are chosen for s1 and s2k+1.
If C is the usual helix, then Π has only three IPs with CPI(x) and q(Π) gives exactly the same
filtering plane as the one determined by the function ψ ≡ 1 in [Kat04b]. Using (4.4), append rule
W2 as follows:

W2′. If the plane Π is proper and IP (x, Π) ⊂ IPI(x), then the first (resp. last) IP gets weight
1 (resp. −1) if q(Π) > 0 and −1 (resp. 1) otherwise.

The function q(Π) has some useful properties. From (4.4), q(Π) is discontinuous only when Π
touches CPI(x) below the first IP or above the last IP, because in this case s1 or s2k+1 may jump.
Additionally, q(Π(θ)) is monotone on each interval where it is continuous.

Proposition 4.7. Pick x ∈ U and s ∈ IPI(x). Assume that either s = s1 is the first IP or
s = s2k+1 is the last IP. Then when Π(θ) ∈ Πpr(x) (i.e., θ < 0), q(Π(θ)) is continuous and
monotonically decreasing as long as no new IPs appear below s1 or above s2k+1 inside IPI(x).

Proof. Similarly to section 3, project CPI(x) onto a plane parallel to D = Nmax(sb) and LPI(x)
and not containing x (see Fig. 16). We can still denote this plane x1 = 1. Then the projected
curve ĈPI(x) approaches the asymptote Lb (resp., Lt) as s → s+

b (resp., s → s−t ). Both Lb and
Lt are parallel to LPI(x). Assume, for example, that Lb is above Lt. The other case is completely
analogous. Lb cannot coincide with Lt, because property P3 implies [τ(sb), τ(st), y(st)−y(sb)] 6= 0.
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Figure 16. Monotonicity of q(Π(θ)) when Π(θ) rotates around β(s1, x)

Any plane through x and y(s), s ∈ (sb, st), corresponds to a line through ŷ(s) on the plane
x1 = 1. As is easily seen from Fig. 16, if ŷ(s) is located between Lb and Lt, then the rotation of
Π(θ) across θ = 0 leads to a disappearance of two IPs. This shows that the direction of increasing
θ corresponds to the counter-clockwise rotation in the plane.

Suppose we rotate Π(θ) around the first IP y(s1). The case of rotation about the last IP is
analogous. It is clear that s1(θ) = const and s2k+1(θ) is a continuous function of θ as long as
no new IPs appear below s1 or above s2k+1. By (4.4), q(Π(θ)) is continuous under the same
conditions.

Assuming that Π = Π(θ) in (4.4) and differentiating with respect to θ gives

q(Π(θ))′θ =
∫ s2k+1

s1

N̄ ′
θ · (y(t)− y(s1))|ẏ(t)|dt,(4.5)

where we have used that N̄ ·(y(s2k+1)−y(s1)) = 0. Note that N̄ ′
θ ·(y(t)−y(s1)) ≤ 0, s1 ≤ t ≤ s2k+1.

See Fig. 16, which shows the projections of N̄(θ) and N̄ ′
θ onto the plane x1 = 1. Hence the right

side of (4.5) is negative, and q(Π(θ))′θ < 0. ¤

Since the planes Π ∈ Πpr satisfying q(Π) = 0 form a boundary between the set of planes with
different weights, we need to make sure that this boundary is a set of measure zero in S2. This
question is addressed by the following proposition.

Proposition 4.8. Denote the set of planes Π ∈ Πpr such that q(Π(θ)) = 0 by Ω. Then Ω is a set
of measure zero in S2.

Proof. By Proposition 4.7, q(Π) is smooth away from the T -curve and A-line and has nonzero
gradient due to monotonicity. Hence, Ω has measure zero. ¤

A major advantage of the function q(Π) is a simple algorithm for finding the family of solutions
to q(Π) = 0 that contain y(s). Denote for simplicity s = s1 and s′ = s2k+1. Introduce the vector

(4.6) Y :=
∫ s′

s

(y(t)− y(s)) |ẏ(t)|dt.

Then define N̄ := Y × (y(s′)− y(s)). Clearly, one has
∫ s′

s

N̄ · (y(t)− y(s)) |ẏ(t)|dt = N̄ · Y = [Y, Y, y(s′)− y(s)] = 0.
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Fix x ∈ U and s ∈ IPI(x). As follows from (4.1) and rule W2′, a plane Π through x and
y(s) is a filtering plane if (a) q(Π) = 0, (b) s and s′ are the first and last or the last and first
IPs in Π ∩ CPI(x), and (c) the set IP (x,Π) contains no IPs outside IPI(x). Suppose we found
s′ ∈ (smin(s), smax(s)) such that the plane Π with normal N̄ constructed as above contains x.
We call this Π a ‘potential’ filtering plane, because it does not necessarily satisfy requirements
(b) and (c) stated above. For a fixed s ∈ I0, all such potential filtering planes can be found by
varying s′ ∈ (smin(s), smax(s)) and using the discussion above.

5. The algorithm

In the first subsection we formulate the reconstruction algorithm that results from the weight
function described in section 4. Then we prove the main result of the paper, which says that the
algorithm is of the FBP type.

5.1. Inversion formula. Let Df (s,Θ) =
∫∞
0

f(y(s) + tΘ)dt, |Θ| = 1, denote the cone beam
transform of f .

Theorem 5.1. Let C be a curve (2.1), which satisfies conditions P1–P6. Let I0 ⊂ I be an
interval, such that the set U defined by (2.11) is non-empty. For any f ∈ C∞0 (U) and x ∈ U
which admits a PI line with IPI(x) ⊂ I0 one has

(5.1) f(x) = − 1
4π2

∫

IP I(x)

1
|x− y(s)|

N(s,x)∑

k=1

ck

∫ 2π

0

∂

∂q
Df (q, Θk(s, x, γ))

∣∣∣∣
q=s

dγ

sin γ
ds.

Here
β(s, x) := (x− y(s))/|x− y(s)|, ek(s, x) := β(s, x)× uk(s, x),

Θk(s, x, γ) := cos γβ(s, x) + sin γek(s, x),

θ1, . . . , θN(s,x) are the points where φ(s, x, θ) is discontinuous, ck := φ(s, x, θ+
k ) − φ(s, x, θ−k ) are

the values of the jumps, and uk(s, x) are the normal vectors to the planes Π(θk) chosen according
to our convention (cf. Property P1 and (4.2)).

Proof. At the end of section 5.2 we show that for all x ∈ U and s ∈ IPI(x) the number of
discontinuities of φ(s, x, θ) is finite. The rest follows from inversion formula (2.28) in [Kat03]. ¤

Note that the nonstandard parametrization (2.1), (A1)–(A3) of C does not affect the validity
of (5.1). Indeed, if y(s) ≡ const over an interval, then ∂

∂q Df (q, ·)
∣∣∣
q=s

≡ 0 for all s in the interval.

5.2. FBP structure of the algorithm. We now show that the resulting algorithm is of the FBP
type and uses three one-dimensional families of filtering lines. To do that, we need to consider the
discontinuities of

(5.2) φ(s, x, θ) = sgn(α · τ(s))n(s, x, α), α = α(θ) ∈ β⊥(s, x),

where n(s, x, α) is the weight of y(s) as an IP in Π(θ) ∩ CPI(x). The function φ(s, x, θ) can be
discontinuous when either sgn(α · τ(s)) or n(s, x, α) is discontinuous.

Discontinuities caused by the first factor in (5.2) may cause planes tangent to C at y(s) to be
filtering planes. These planes pass through y(s) and are parallel to ẏ(s), so the family, which we
denote L1, is one-parametric.

By proposition 4.1, n(s, x, α(θ)) is continuous across the PI line of x. Assuming Π(θ) does not
intersect LPI(x), n(s, x, α(θ)) can be discontinuous at some θ0 only for the following reasons:

(J1) y(s) ceases to be the first/last IP with CPI(x); or
(J2) q(Π(θ−0 )) ≤ 0 ≤ q(Π(θ+

0 )); or
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(J3) an IP outside of IPI(x) enters/leaves the set IP (x, Π).
Case (J1) corresponds to a filtering plane that passes through y(s) and touches CPI(x), i.e. (J1)
leads to a one-dimensional family of filtering planes, denoted L2. (J2) actually describes two cases.
If q(Π(θ)) is discontinuous at θ0, then Π(θ0) is tangent to CPI(x), which gives the same family
as in (J1). If q(Π(θ)) is continuous at θ0 and q(Π(θ0)) = 0, then Π(θ0) belongs to the family
of potential filtering planes through y(s), which is one-dimensional (cf. section 4.3). Denote it
L3. Finally, we need to show that (J3) leads to a one-dimensional family of filtering planes. This
statement is contained in the following proposition.

Proposition 5.2. If the number of IPs in IP (x, Π(θ)) on either side of IPI(x) changes across
θ = θ0, then Π(θ0) is tangent to C(qmin(s), qmax(s)).

Proof. Denote the IP that is leaving IP (x, Π(θ)) by r(θ). Suppose r(θ) is above IPI(x) (the other
case can be handled analogously). Denote the IPs of Π(θ) with CPI(x) for θ sufficiently close to θ0

by s1(θ) < . . . < s2k+1(θ). By definition, a point can leave IP (x, Π(θ)) either when r disappears
through tangency or when r = qmax(s1) when θ = θ0. The latter possibility contradicts (4.2) with
t = s1(θ0). ¤

Hence, IPs outside IPI(x) can leave IP (x, Π) only through tangency, so (J3) also leads to the
family L2.

Fix any y(s) ∈ C and x ∈ U such that y(s) ∈ IPI(x). Even though there are only three families
of filtering planes, there can be more than one plane from the same family passing through x. We
show that this number is finite. It is clear that there can be at most one plane through x from
L1. Condition P6 gives that the number of planes through x from L2 is uniformly bounded. From
Proposition 4.7, q(Π(θ)) can be discontinuous only when Π(θ) is tangent to C(qmin(s), qmax(s)).
Because of the monotonicity of q(Π(θ)), there can be at most one root to q(Π(θ)) = 0 inside each
interval where q is continuous. Hence the number of filtering planes from L3 is uniformly bounded
as well.

6. Numerical experiments

Two numerical experiments were conducted to validate our results. In both of them the detector
was flat.

In the first experiment we used the standard clock phantom, and the source trajectory was the
variable radius/variable pitch helix given by

y(s) =
(

R(s) cos(s), R(s) sin(s),
h0

2π
(s + 1.95 sin(1.2s))

)
,

where R(s) = R0(1 + 0.15 sin(s/3)), R0 = 600 mm and h0 = 35 mm. The horizontal slice x3 = 0
was reconstructed inside the disk

D = {(x1, x2, 0)|x2
1 + x2

2 ≤ (0.4R0)2}.
It was numerically verified that the trajectory satisfies properties P1–P6. In particular, in order
to show that reconstruction is possible inside D, we verified numerically that

D ⊂
⋂

s∈[qmin(0),qmax(0)]

Cyl′min(s) ∩ Cyl′max(s).

Since y(s) is below the plane x3 = 0 for all s < 0 and above the plane x3 = 0 for all s > 0,
this ensures that each x ∈ D has a unique PI line with both endpoints inside [qmin(0), qmax(0)].
Hence, x ∈ Cyl′min(s) ∩ Cyl′max(s) for all s ∈ IPI(x), and condition P5 is satisfied (where U is a
sufficiently small neighborhood of D).
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Parameter Value Units
Number of detector columns 1351
Detector pixel size at isocenter 0.5 × 0.5 mm2

Number of detector rows 151
Views per rotation 1000

Table 1. Simulation parameters for the first experiment

Parameters of the reconstruction are summarized in Table 1. The results of the reconstruction
are shown in Figure 17.

In the second experiment we used a variable-pitch helix, which violates the convexity condi-
tion. The goal was to demonstrate that artifacts do appear if the algorithm of [KBH04] is used
for reconstruction, and that the proposed algorithm reconstructs exactly in this case. Since the
artifacts are expected to appear close to sharp x3-transitions in the phantom, we flattened the
clock phantom by a factor of three in the x3-direction and decreased the vertical displacement
between adjacent ellipsoids (unfortunately, this also led to more pronounced discretization arti-
facts). Since the convexity condition is violated, the algorithm of [KBH04] is not applicable for
exact reconstruction. In order to apply it inexactly, we made the decision to use the filtering line
of the smallest slope when more than one filtering line exists for a given pixel on the detector.

Parameters of our reconstructions are summarized in Table 2. The curve used is a variable-pitch
helix that violates the convexity condition in the same way as in [KK06], although the perturbation
is considerably more severe in this case. We have

y(s) = (R0 cos(s), R0 sin(s), ψ(s)),

where the x3-displacement ψ(s) satisfies ψ̇(s) +
...
ψ(s) = µ(s). The following sample µ(s) was

chosen for the simulations:

(6.1) µ(s) =





8.333, s < −0.7
37.5, −0.7 < s ≤ −0.4

−10.750, −0.4 ≤ s ≤ 0.4
37.5, 0.4 ≤ s < 0.7

8.333, s ≥ 0.7

The numbers in the definition of µ are not round, because the perturbation of a constant speed helix
had to be compactly supported. Since some of the conditions P1–P6 can be easily checked analyti-
cally for this trajectory, we discuss them separately. First, we have Nmax(s) = (0, 0, l1(s)), l1(s) >
0 and Nmin(s) = (0, 0, l2(s)), l2(s) < 0 for all s. It can be easily verified that the osculating
plane never becomes vertical for the constant radius variable pitch helix, so P1 holds. Since the
projection of C(s, qmax(s)) along Nmax(s) is always a circle, we have that the tangent line to C

at y(s) never intersects Ĉ(qmin(s), qmax(s)), so P2 follows. It was checked numerically that C has
no self-intersections, which verifies P3. Since the planes Πmin(s) and Πmax(s) are identical for
all s, P4 is trivial. In order to verify P5, we verified numerically that there are no critical chords
greater in angular length than 2 arccos 0.4 ≈ 2.31856. Hence, reconstruction is possible inside

(6.2) U := {(x1, x2, x3)|x2
1 + x2

2 < (0.4R0)2}.
This also implies that PI lines exist for all x ∈ U and are unique. Finally, since the torsion becomes
negative over a single interval [−0.4, 0.4] (see the definition (6.1)), we conclude that planes through
x ∈ U can have at most five IPs with CPI(x), so P6 also holds.

We need to note here that the violation of the convexity condition is such that for some s
the projection of C onto the detector plane DP (s) is not convex inside the field of view. The
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Parameter Value Units
Source to rotation axis distance 600 mm
Number of detector columns 1351
Detector pixel size at isocenter 0.5 × 0.5 mm2

Number of detector rows 271
Views per rotation 1000

Table 2. Simulation parameters for the second experiment

Figure 17. Reconstruction results for the first experiment

Figure 18. Reconstruction results for the second experiment: standard algo-
rithm (left panel) and exact algorithm (right panel)

reconstruction results are shown in Figure 18. One sees that low-frequency artifacts appear in the
reconstructed image when the original algorithm is used. No such artifacts appear in the image
obtained with the proposed algorithm.
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7. A short summary

Here we summarize the main ideas and results of the paper.
(K1) Introduced is a class of curves, which is an extension of the class of smooth curves with

positive torsion proposed in [KK07]. Since torsion depends on the third derivative of the
curve, violations of the positive torsion condition are likely to occur in practice. Points
of non-smoothness are allowed on C, and torsion may become negative over some local
intervals;

(K2) A geometric condition is found, which controls how strongly the positivity of torsion is
violated. The strength of a violation is measured by lengths of local critical chords and
how close they come to the domain where reconstruction is performed;

(K3) A geometric condition is found, which controls how the curve bends between neighboring
turns. Loosely speaking, we assume that given any point y(s) ∈ C, all osculating planes
Πosc(t) for t sufficiently far from s do not contain y(s);

(K4) Developed is a geometric construction that captures the entire dynamics of the Crofton
symbol on the unit sphere. Originally this construction was proposed in [Kat06], but
here it is developed to a greater extent. In the case when a curve segment admits a PI
line, obtained are some geometric restrictions on the behavior of the boundaries across
which the Crofton symbol is discontinuous. This leads to explicit necessary and sufficient
conditions that describe those boundaries;

(K5) The geometric construction mentioned above is used to develop a novel scheme for assign-
ing weights to IPs between the Radon planes through x and CPI(x) (see [Kat06] for the
first application of the construction to finding a weight function). The scheme uses IPs
not only inside IPI(x), but also outside IPI(x). This appears to be a necessary condi-
tion if one wants to develop an efficient FBP inversion formula that works for sufficiently
complicated curves C. Also a useful classification of the Radon planes into proper and
improper is made;

(K6) A deeper insight into the nature and role of the ψ function of [Kat04b, Kat02] is obtained,
and its efficient generalization to other curves is proposed;

(K7) Finally, the above items are combined to create an efficient cone beam transform inversion
formula of the FBP type that applies to a general class of curves.

Let us elaborate on item (K6). In order to reduce detector requirements and make filtering lines
as close to horizontal as possible, the weights of the first and last IPs in Π ∩CPI(x) must change
across some curve γ on the unit sphere. More precisely, one is interested only in the section of γ
located inside the domain of proper planes. The change, i.e. a discontinuity of the weight, results
in a filtering plane. Since points on the unit sphere are identified with planes through x, the curve
γ actually describes a family of filtering planes through x. Hence γ should be independent of x
(in order to maintain the FBP structure), and depend only on the Radon plane. The equation
of γ is therefore of the type q(Π) = 0, where q is a function defined on the set of proper planes.
Given a reconstruction point x and a source position y(s) ∈ CPI(x), finding a filtering plane is
equivalent to solving the equation

(7.1) q(Π) = 0, x, y(s) ∈ Π.

The function q of [Kat04b, Kat02] (where it is expressed in terms of the ψ function, cf. (5) in
[Kat02] and (2.6) in [Kat04b]) explicitly uses all IPs in Π∩CPI(x). For simple curves (e.g. helices),
there can be at most three IPs, so solving (7.1) is fairly easy. When C is complicated and there
can be more than three IPs, using all of them to construct q leads to equations (7.1) that are
impractical to solve. The function q proposed here uses a different principle and solutions to (7.1)
can be found very efficiently even when C is complicated.
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The summary presented above shows that the results obtained in this paper contribute to a
better understanding of the principles on which efficient cone beam inversion formulas are based.
They can be used for the development of new inversion formulas for other classes of curves and
also for the theoretical analysis of other aspects of the cone beam transform inversion.

Appendix A. Proof of proposition 2.5

Project C(s, qmax(s)) along Nmax(s) onto the plane N⊥
max(s). Denote the projected curve by

Ĉ(s, qmax(s)). To show that Ĉ(s, qmax(s)) is convex, it suffices to notice that up to a positive
factor the curvature of Ĉ(s, qmax(s)) at ŷ(t) is given by [Nmax(s), τ(t), τ̇(t)], which is positive by
property P1 for all t ∈ (s, qmax(s)) where C is smooth. When C is not smooth, the convexity is
guaranteed by the extended definition of the osculating plane (see the paragraph following (A3)).

Figure 19. Projection onto the plane Nmax(s)⊥ in the case qmax(s) < b

The key step is to show that Ĉ(s, qmax(s)) has no self-intersections. As in [KK07], we denote
the projections of y(s) and y(qmax(s)) by O. Even though C(s, qmax(s)) does not have self-
intersections by property P3, Ĉ(s, qmax(s)) may still self-intersect. For each such self-intersection
we can mark which section of the curve lies above and which one lies below. This is illustrated
by Fig. 19, where the lower section is denoted by a dashed curve. For a given t ∈ [s, qmax(s)], let
L(t) denote the line tangent to C at y(t). The projection of L(t) onto N⊥

max(s) is denoted L̂(t).
Thus L̂(t) is tangent to Ĉ(s, qmax(s)) at ŷ(t). If L̂(t) intersects Ĉ at a point ŷ(q), q 6= t, we can
mark whether L(t) is above (+) or below (-) y(q), because L(t) does not intersect C(s, qmax(s)) by
condition P2. By the same condition, L(t) does not intersect the maximal chord H(s, qmax(s)).
This ensures that the ‘±’ signs do not change when the IP of L̂ and Ĉ passes through O. In
this derivation, as usual, we follow the convention that at the points where C is not smooth the
tangent line rotates according to (2.2) sweeping an angle less than π by P1 and without intersecting
C(s, qmax(s)) and H(s, qmax(s)) by P2. By condition P2, we can move the point of tangency y(t)
along C and the ‘±’ signs at the intersection points ŷ(q) (if there are several of them) will not
change (see Fig. 19). Hence, we can move the point of tangency along Ĉ as long as y(t) does not
pass through O. Clearly, if two IPs ŷ(qk) and ŷ(qk+1) approach each other at a point of tangency
q∗, q∗ 6= t, they should have the same signs. Hence, ‘±’ signs at the IPs of L̂(t) with Ĉ(s, qmax(s))
propagate from one side of a tangency to the other (see Fig. 19, where the ‘+’ sign at q1 can be
propagated to q2 via the point of tangency q∗).
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Figure 20. Projection onto the plane Nmax(s)⊥ in the case qmax(s) < b

Figure 21. The critical chord H(A,B) in the plane containing Nmax

At first we assume that all self-intersections of Ĉ are transversal. Consider the basic case that
will be used throughout the rest of the proof. Pick a self-intersection of Ĉ. Suppose that the lower
point is y(sl), and the upper point is y(su), i.e. ŷ(sl) = ŷ(su) and (y(su) − y(sl)) · Nmax(s) > 0
(see Fig. 20). The idea is to associate a critical chord H(A,B) with each self-intersection.
By construction, L̂(sl) intersects Ĉ at su. As L̂(t) moves away from the self-intersection, the
corresponding IP ŷ(q), q = q(t), moves away too because of the convexity of Ĉ. We move t in
the direction, which guarantees that the angle between τ̂(t) and τ̂(q(t)) decreases (see Fig. 20).
Because of the convexity there exists a point t = A, which is the closest to sl, such that τ̂(A)
and τ̂(B), B = q(A), have the same direction. Then the chord H(A,B) is tangent to Ĉ at two
points. This gives Q(A, B) = 0, i.e. the chord is critical. In a similar fashion, moving L(t) from
su towards B we recover the same critical chord H(A,B). By construction, L(sl) is below su, so
we put a ‘-’ next to su and keep track of the ‘-’ sign as t moves from sl to A and q(t) moves from
su towards B (see Fig. 20). Assuming that y(t) does not pass through O, the ‘-’ sign arrives at B
when t = A, i.e. L(A) passes below y(B). In a similar fashion, L(su) is above sl, so we put a ‘+’
next to sl and keep track of the ‘+’ sign as it moves towards A. Thus L(B) passes above y(A),
assuming y(t) does not pass through O on the way from su towards B. Our argument implies
that the tangent vectors at A and B both point into the same half-plane relative to H(A,B) in
the plane containing Nmax(s) and passing through H(A,B) (see Fig. 21). Hence H(A,B) is a
global critical chord, which contradicts proposition 2.4, because [A,B] is inside (s, qmax).
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In the preceding argument it was essential that the point of tangency y(t) does not pass through
O as it moves from y(sl) towards y(A) and from y(su) towards y(B). If this is not the case, we still
get the same critical chord H(A,B), but there is no guarantee that it is global. To describe this
situation we say informally that O is between A and B. Hence, if we can find a self-intersection
of Ĉ such that O is not between A and B, then we obtain a global critical chord and, therefore,
a contradiction. We now start with a self-intersection of Ĉ such that O is between A and B,
and consider possible behaviors of Ĉ beyond B. More precisely, we consider possible locations of
subsequent self-intersections.

Figure 22. Projection onto the plane Nmax(s)⊥ in the case qmax(s) < b

Case 1. Suppose there are no more self-intersections, i.e. the curve closes at A after the only
self-intersection (see Fig. 22). Suppose that O is located on the segment C(su, B) (the other case
can be handled similarly). We can no longer apply the same logic as before, since when L(t) moves
past O, some ‘±’ signs at the IPs can change. However, the following construction shows that this
situation is impossible under our assumptions. Indeed, consider L(su). Recall that there is a ‘+’
sign next to y(sl). Now we move the point of tangency from t = su towards t = A via the inner
loop. Since ŷ(t) does not pass O, the ‘+’ sign does not change (see Fig. 22). When the tangent
is at A, the ‘+’ sign arrives at B, i.e. L(A) is above y(B). Starting now with L(sl) and moving
the point of tangency towards A as in the basic case, we get that L(A) is below y(B). Thus L(A)
intersects C(s, qmax(s)), which contradicts P2.

Case 2. Suppose there is another self-intersection. Let H(A′, B′) be the critical chord associ-
ated with it. Obviously, O must be between A′ and B′. Otherwise we get a contradiction using
the basic case. It is easy to see that the only way to avoid the basic case is to have m ≥ 1 loops
that wrap around the innermost loop to the right of O and n ≥ 1 loops that wrap around the
innermost loop to the left of O. See Fig. 23, which illustrates the case of m = 3 loops to the
right of O and n = 2 loops to the left of O. Moreover, the line tangent to C at O must intersect
all the loops (except the two innermost ones) in order to avoid the basic case. To establish a
contradiction, we start with the innermost self-intersection to the right of O. Denote the lower
point by q1

l and the upper point by q1
u. Suppose, for example, that q1

l is located on the segment
of C that connects directly to O. The other case can be considered analogously. First, consider
L(t), t = q1

u. Since y(q1
u) is above y(q1

l ), we put a ‘+’ sign near ŷ(q1
l ). Next, move the point of

tangency t in the direction away from the innermost loop. The ‘+’ sign moves away from the first
self-intersection toward the second one. Let t∗ be the point such that L̂(t∗) passes through the
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Figure 23. Multiple loops

second self-intersection (see Fig. 23). Because of the ‘+’ sign we get that the section of C located
between O and q1

l in a neighborhood of the second self-intersection is located below L̂(t∗). Now
consider L(t), t = q1

l . Since y(q1
l ) is below y(q1

u), we put a ‘-’ sign there. This time we move the
point of tangency t in the direction away from O through the innermost loop. When t reaches
t∗, the ‘-’ sign reaches the second self-intersection. This way we get that the other section of C
in a neighborhood of the second self-intersection is located above L̂(t∗). Hence the section of C
directly connecting O to q1

l is located below the other section of C in a neighborhood of the second
self-intersection. By continuing in the same fashion we get that at all the self-intersections to the
right of O, the section of C connecting O to q1

l is located below the other sections of C.
Pick now the outermost self-intersection, which is to the right of O. Let H(Am, Bm) be the

associated critical chord. Consider L(t), t = qm
u . Since y(qm

u ) is above y(qm
l ), we put a ‘+’ sign

near ŷ(qm
l ). Move the point of tangency t in the direction towards Bm (see Fig. 23). This ensures

that the ‘+’ sign moves towards the left set of loops. When t reaches Bm, we get that L(Bm) is
located above y(Am). Next, consider the innermost self-intersection and L(t), t = q1

l . Since y(q1
l )

is below y(q1
u), we put a ‘-’ sign near ŷ(q1

u). By moving t towards Bm and going through all the
loops to the right of O, we move the ‘-’ sign to the left loops. As was mentioned above, the ± signs
propagate through the points of tangency. So, if we move t back and forth over the outermost
loop, we can obtain the ‘-’ sign at the point Am when t = Bm. Since we cannot have the ‘+’ and
‘-’ signs at the same point, the proof is finished.

Suppose now that there can be tangential self-intersections. They can be of two types. If
ŷ(sl) = ŷ(su) and ˆ̇τ(sl) · ˆ̇τ(su) < 0, then we deal with this case in the same way as with transversal
self-intersections. If ŷ(sl) = ŷ(su) and ˆ̇τ(sl) · ˆ̇τ(su) > 0, then H(sl, su) is a global critical chord
inside (s, qmax(s)).

We have shown that Ĉ(s, qmax(s)) has no self-intersections. Thus the only remaining way for
Ĉ(s, qmax(s)) to be non-convex is to have an indentation with vertex at O. The shape of Ĉ would
be analogous to the one shown in Figure 20 with the point O located at the self-intersection and
the inner loop removed. Then the basic case immediately gives a contradiction.
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Appendix B. Proofs of propositions 3.3 and 3.4

Proof of Proposition 3.3. We first prove the necessity. Suppose C(sb, st) is the PI segment of x,
which is at the origin. We need to verify properties (F1)-(F3) for u(s) := y(s)× τ(s)/|y(s)× τ(s)|.
Clearly, u(s) is a continuous piecewise C∞ curve. Property (F1) follows immediately from (D1).
To verify (F2), note that the great circle CA is given by y(sb)⊥ = y(st)⊥. Indeed, y(sb) · u(sb) =
[y(sb), y(sb), τ(sb)] = y(st) · u(st) = [y(st), y(st), τ(st)] = 0, so u(s) starts and ends on CA.
Moreover,

y(sb) · u̇(s+
b ) = [y(sb), y(sb), ÿ(s+

b )] = 0, y(st) · u̇(s−t ) = [y(st), y(st), ÿ(s−t )] = 0,

which implies that u(s) is tangent to CA at s = sb and s = st. As was discussed prior to propo-
sition 3.3, intersection of the plane x3 = 1 with the plane through x and û(s) and perpendicular
to y(s) gives the tangent line to û(s) (even at points of nonsmoothness). By assumption, y(s) is
never parallel to D, and the projection of y(s) onto x3 = 1 given by y(s)−D(y(s) ·D) rotates in
the counterclockwise direction and sweeps π radians from s = sb to s = st. As is easily checked,
the tangent line at û(s) and the projection of y(s) are perpendicular, so the tangent line also
rotates in the counterclockwise direction and sweeps π radians. This completes the proof of the
necessity.

It is left to show the sufficiency. Suppose u(s), s ∈ [a, b], is some parametrization of the curve
T . Using steps (E1)–(E3), find some curve ỹ(s) ∈ S2, ỹ1(s) ≥ 0. From the involutivity of the
Legendre transform, u(s) is the T -curve of ỹ(s) at every point where both are smooth. Augment
the set of tangent lines to ỹ(s) at points of nonsmoothness following (A3) and (2.2). Recall that
the set of tangent lines to û(s) at points of nonsmoothness is augmented using the convention
stated after (E3). Then u(s) is the T -curve of ỹ(s). Since (a) u(s) is tangent to CA at s = a and
s = b, and (b) the tangent lines to û(s) rotates monotonically and sweeps π radians, we get that
y(a) = −y(b) and the projection of y(s) onto the plane x3 = 1 rotates monotonically and sweeps
π radians. ¤

Proof of Proposition 3.4. From the proof of proposition 3.3 it follows that any line tangent to the
T -curve of x corresponds to some y(s) ∈ C(sb, st). Similarly, any y(s) ∈ C(sb, st) gives a line
tangent to the T -curve at s. Indeed, if u smooth at s, this follows directly from (3.2). At a point
where u is not smooth, this follows from our extended definition of a tangent line. This proves
(G1).

To prove (G2) observe that every point in the plane x3 = 1 corresponds to a plane through x.
Since the trajectory is complete, each plane through x intersects CPI(x) at least at one point, say
y(s0). Then the Bs0-line is tangent to the T -curve and passes through the chosen point in the
plane x3 = 1. The proof of (G3) is analogous to the proof of (G2). ¤

Appendix C. Proof of propositions 4.5 and 4.6

The proofs of propositions 4.5 and 4.6 are based on a number of auxiliary results. As usual, the
IPs of Π with CPI(x) are denoted by s1 < s2 < . . . < s2k+1.

Proposition C.1. Consider x ∈ U and Π ∈ Πpr(x). Then
(L1) N̄ · Nmax(sk+1) > 0 if there is an IP in IP (x, Π) to the right of IPI(x), and N̄ ·

Nmin(sk+1) < 0 if there is an IP in IP (x, Π) to the left of IPI(x);
(L2) x̂ is below Γ+ on DP+(s) and above Γ− on DP−(s) for all s ∈ IPI(x);
(L3) τ(l) ·N̄ > 0 and τ(r) ·N̄ > 0, where l and r are the smallest and largest IPs from IP (x, Π),

respectively;
(L4) IP (x, Π) contains an even number of IPs above IPI(x) and below IPI(x).
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Figure 24. Location of x̂ on DP+(sk+1)

Proof. Recall that the normal N̄ to Π is chosen canonically (cf. (4.2)), so we shall refer to a point
P as being above Π if (P − y(s1)) · N̄ > 0 and below Π if (P − y(s1)) · N̄ < 0.

We start by proving (L1). Suppose there is an IP r ∈ IP (x, Π), which is located to the right
of IPI(x), i.e. r > st. By construction, r < qmax(sk+1). Thus N̄ · Nmax(sk+1) > 0, because
the points sk+1, s2k+1, r belong to C(sk+1, s2k+1, r) and r < qmax(sk+1). The argument here is
exactly the same as the one used in establishing (4.2). So y(qmax(sk+1)) is above Π. In the same
way one shows that if there are IPs to the left of IP (x, Π), then y(qmin(sk+1)) is below Π.

We now prove (L2). To show that x̂ is below Γ+ on DP+(s) when s = sb + ε, 0 < ε ¿ 1 and x̂ is
above Γ− on DP−(s) when s = st − ε, we note the following. Since x belongs to the line segment
H(sb, st), x̂ always belongs to the projection of H(sb, st) onto DP±(s). When s = sb + ε (resp.
s = st − ε), Ĥ(sb, st) is a line segment on DP±(s), but when s → sb (resp. s → st), Ĥ(sb, st)
becomes a ray parallel to L0 emanating from ŷ(st) (resp. ŷ(sb)) in the direction opposite to τ(sb)
(resp. τ(st)). Since st > q+

crit(sb) due to the assumption x ∈ U , this ray does not intersect Γ+.
Otherwise we get a (local) critical chord H(sb, q), where sb < st < q.

Let us discuss the last assertion in more detail. If there are additional IPs, let q1 be the first IP
above st. Suppose, for example, that the segment of Γ+ located between st and q1 is below the
ray. Moving the ray down parallel to itself (and, of course, parallel to L0), we find a line parallel
to L0 and tangent to Γ+ at some point q, st ≤ q ≤ q1. By construction, H(sb, q) is a critical
chord, which gives the contradiction at the end of the previous paragraph. If the segment of Γ+

is above the ray between st and q1, we get an analogous contradiction by moving the ray up.
Since x̂ on DP±(s) changes continuously, we conclude that when s = sb + ε, x̂ is below Γ+.

In the same way one shows that x̂ is above Γ− on DP (s) when s = st − ε. Next, we note
that if x̂ belongs to Γ± for some s ∈ (sb, st), then y(s) is an endpoint of another PI line of x,
which is impossible by the definition of U . Hence, x̂ is always below Γ+ on DP+(s) and above
Γ− on DP−(s) for s ∈ (sb, st). It is necessary to define what below and above means when
applied to Γ± and x̂ on DP±(s). It follows from proposition 2.5 that for each s and for each
x ∈ Cylmax(s) (resp. Cylmin(s)) there exists a unique t ∈ (s, qmax(s)) (resp. t ∈ (qmin(s), s))
such that [x− y(s), y(t)− y(s), Nmax(s)] = 0 (resp. [x− y(s), y(t)− y(s), Nmin(s)] = 0), i.e. the
corresponding line on DP+(s) (resp. DP−(s)) intersects Γ+ (resp. Γ−) only once. This allows
us to use the term above Γ+ on DP+(s) (resp. below Γ− on DP−(s)) in the sense of using the
direction Nmax(s) (resp. −Nmin(s)) as the vertical axis.

Now, taking into account (L1), the locations of x̂ on DP±(sk+1), and the fact that y(qmax(sk+1))
is above Π (due to (L1)), one sees that τ(l) · N̄ > 0 and τ(r) · N̄ > 0, which proves (L3).
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We finally prove (L4). Π is a proper plane, so y(st) is above Π. By (4.2), Nmax(s1) · N̄ > 0.
Since y(s1) ∈ Π, y(qmax(s1)) is also above Π. Hence, there is an even number of IPs of Π with
C(st, qmax(s1)). Similarly, one shows that there is an even number of IPs with C(qmin(s2k+1), sb).
Using that ŷ(st) and ŷ(qmax(sk+1)) are above L and x̂ ∈ L is below Γ+ on DP+(sk+1), we
immediately get that there can only be an even number of IPs in Π ∩ C(st, qmax(s1)) to the left
of x̂1. Since the total number of IP in Π ∩ C(st, qmax(s1)) is also even, the assertion is proven.
The assertions about the IPs below IPI(x) is proven analogously. ¤

Proof of proposition 4.5. We will only prove the statement about rp’s, the statement about lp’s
follows analogously. We will show that for all p, 1 ≤ p ≤ n, [x− y(sk+1), y(rp)− y(sk+1), N̄ ] < 0,
i.e. all IPs y(rp) are located on the right of the line through x and y(sk+1) on Π (the orientation
of Π is defined by the canonical choice of a normal vector). In other words, we need to show
that all IPs r1, . . . , rn are located to the right of x̂ on DP+(sk+1). We denote the PI line of x by
H(sb, st).

Suppose, on the contrary, that some of the rp’s are to the left of x̂ on DP+(sk+1). Since
y(qmax(sk+1)) is above Π by (L1) and x̂ is below Γ+ on DP+(sk+1) by (L2), there is an even number
of such rp’s (see Fig. 24, left panel). Denote the plane through x and touching C at y(s) by Π0(s)
and define L0(s) := Π0(s)∩DP+(s) (note that s is variable). Define also L := Π∩DP+(sk+1) and
note that L has a greater slope than L0(sk+1) since sk+1 is an odd-indexed IP of Π with CPI(x).
Hence, Π0(sk+1) also has at least two IPs with C(sk+1, qmax(sk+1)) to the left of x̂ on DP+(sk+1)
(see Fig. 24, left panel). Indeed, Π0(sk+1) is obtained by rotating Π around x − y(sk+1) in the
clockwise direction, and since intermediate planes have at least two IPs with C(sk+1, qmax(sk+1)),
we conclude that Π0(sk+1) has at least two IPs with C(sk+1, qmax(sk+1)) to the left of x̂ on
DP+(sk+1) (this follows immediately from the shape of Ĉ(sk+1, qmax(sk+1)), see proposition 2.5).
Having established this property of Π0(s) for s = sk+1, we consider Π0(s) and L0(s) on DP+(s)
and decrease s from sk+1 towards sb. First note that st > q+

crit(sb) due to the fact that x ∈ U .
This implies that Π0(sb) has no IPs with C(sb, qmax(sb)) located to the left of x̂ on DP+(sb) (cf.
the proof of (L2) in proposition C.1). Hence, the last two IPs of Π0(s) with C(s, qmax(s)) to the
left of x̂ on DP+(s) will collide at q+

crit(s) for some s = s∗ ∈ [sb, st] (see Fig. 24, right panel).
However, x ∈ U implies that x ∈ Cyl′max(t), t ∈ [sb, st]. This gives the desired contradiction since
x̂ is to the right of y(q+

crit(s
∗)) on DP+(s∗) and hence x does not belong to Cyl′max(s∗). ¤

Next we show that properties P1-P4 guarantee that IPs from the set IP (x, Π) are not too far
apart, i.e. they all belong to a turn of C. The first step towards this goal is to show that the
‘complicated’ part of C(qmin(s), qmax(s)) can always be projected onto a ‘detector plane’ tangent
to C at y(s) (see the discussion around properties P4(1) and P4(2) in section 2). The following
proposition makes this statement precise:

Corollary C.2. Consider x ∈ U and Π ∈ Πpr(x). If IP (x, Π) contains IPs both below sb(x) and
above st(x), then all IPs from IP (x, Π) belong to the interval (q−(s), q+(s)).

Proof. By (L1), y(qmax(sk+1)) is above Π. Consider DP+(sk+1). If q−(s) = qmax(s), then also
q−(s) = qmin(s) and the desired assertion follows from the definition of IP (x, Π). Consider now
the other case. We argue by contradiction. Suppose there is an IP r ∈ IP (x, Π) above q−, i.e.
r ∈ [q−(s), qmax(s)). By construction, ŷ(r) is to the right of x̂. The assumption x ∈ U implies
that x̂ is below L+

max. Thus the slope of DP+(s) ∩ Π is greater than the slope of L0, and there
are no other IPs with C(s, qmax(s)) due to property P4(2) and the convexity of Ĉ(q−(s), qmax(s)).
Consequently, r is the only one IP in IP (x, Π) above st, which contradicts (L3). The case of IPs
below sb is analogous. ¤

We now prove that IPs from IP (x, Π) always belong to one turn of the curve.
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Figure 25. Illustration of the planes Πl and Πr

Proposition C.3. Choose x ∈ U and a plane Π ∈ Πpr(x). Denote the smallest IP from IP (x, Π)
by l and the largest IP by r. Then r < qmax(l).

Proof. Suppose r and l are separated by at least one turn of C. If qmax(l) = r, then Nmax(l) is
parallel to Π, which contradicts (4.2) because l ∈ (qmin(s2k+1), s1). Thus we assume r > qmax(l).
Consider the plane Πl through y(sk+1) and y(l) and parallel to Nmax(l). Since qmax(l) < r, Πl

intersects C(sk+1, r) at least at one point y(qmax(l)), which is necessarily above Π by (4.2). It
also follows from proposition 2.5 that Πl does not intersect C(l, sk+1).

Introduce the plane Πr through y(sk+1) and y(r) and parallel to Nmin(r). Performing a similar
analysis as above, we conclude that Πr intersects C(l, sk+1) at y(qmin(r)), y(qmin(r)) is below Π,
and Πr does not intersect C(sk+1, r).

Now one notes that by corollary C.2, r < q−(sk+1) and l > q−(sk+1). Since our proof will use
only the curve segment C(q−(sk+1), q−(sk+1)), we can find a convenient detector plane onto which
the segment projects well. It follows from properties P4(1) and P4(2) that C(q−(sk+1), q−(sk+1))
stays on one side of any plane, which contains y(sk+1) and is parallel to τ(sk+1) and (1 −
α)Nmax(sk+1) − αNmin(sk+1), 0 ≤ α ≤ 1. Hence we define DP (sk+1) as a plane which is
parallel to τ(sk+1) and (1 − α)Nmax(sk+1) − αNmin(sk+1) for some 0 ≤ α ≤ 1 and does not
contain y(sk+1). For convenience, we assume that U is between DP (sk+1) and y(sk+1).

In the following proof we project C(q−(sk+1), q−(sk+1)) from y(sk+1) onto DP (sk+1). Define
Π̂l := DP (sk+1) ∩ Πl, Π̂r := DP (sk+1) ∩ Πr. One sees that the lines Π̂l and Π̂r need to satisfy
the following properties:

(M1) Π̂l contains l, does not intersect Ĉ(l, sk+1), and intersects Ĉ(sk+1, r) above Π̂;
(M2) Π̂r contains r, does not intersect Ĉ(sk+1, r), and intersects Ĉ(l, sk+1) below Π̂.

Additionally, s1 ∈ Ĉ(l, sk+1) ∩ Π̂ and s2k+1 ∈ Ĉ(sk+1, r) ∩ Π̂. One sees that these properties
cannot be satisfied simultaneously (see Fig. 25) unless Πl, Πr and Π are identical, which would
contradict (4.2). ¤

Proof of proposition 4.6. We prove this proposition by contradiction. Suppose for some x ∈ U
there exists a plane Π ∈ Πpr(x) such that IP (x, Π) contains IPs both to the left and to the right
of IPI(x). Using (L3), denote the two smallest IPs from IP (x,Π) by l1 < l2, and the two greatest
– by r1 < r2. By the assumption of the proposition, sb(x) > l2 and st(x) < r1.

We first rotate Π around β(sk+1, x), i.e. around the line joining the middle IP sk+1 with x. By
the definition of IP (x,Π), l1, l2 are in the left halfplane of Π relative to this line, while r1, r2 are
in the right halfplane. By (L2), the direction of rotation can be chosen so that l1 increases and r2

decreases. Consequently, l2 decreases (and stays smaller than sb), r1 increases (and stays greater
than st), and both l2−l1, r2−r1 decrease. We can continue to rotate until one of the pairs collapses
into a single point (i.e. a tangency is achieved there) or a tangency occurs earlier at one of the
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Figure 26. Rotation around τ(l∗)

four IPs. Suppose, for example, that l∗ is the point where the tangency is achieved, and r∗1 , r∗2 are
the corresponding positions of r1, r2 after the rotation. Thus the plane Π∗ through l∗, r∗1 , and r∗2
is tangent to C at l∗. By construction, l∗ < r∗1 < r∗2 < qmax(l∗). Now rotate Π∗ around τ(l∗).
Because of the convexity of Ĉ(l∗, qmax(l∗)) (see Fig. 26), the direction of rotation can be chosen
to make r∗1 increase and r∗2 decrease. Again, we either get a tangency when r∗1 and r∗2 collapse
into a single point or earlier at one of the two IPs. Let r∗ be the resulting point of tangency. We
have obtained a critical chord H(l∗, r∗) with l∗ < sb < st < r∗. Hence, x /∈ Cyl′max(l∗), which
contradicts the definition of U . ¤

Appendix D. List of main symbols

Symbol Definition
τ(s) The tangent vector to the curve C. It is defined by linear inter-

polation at points where the first derivative is discontinuous (see
(A1)–(A3)).

Πosc(s) The osculating plane of C at y(s), i.e. the plane through y(s)
containing τ(s) and τ̇(s).

H(s0, s1) The line segment with endpoints y(s0) and y(s1) (s0 < s1).
C(s0, s1) The section of C with endpoints y(s0) and y(s1) (s0 < s1).
Q(s0, s1) The function Q(s0, s1) := [y(s0)−y(s1), τ(s1), τ(s0)] that is related

to local uniqueness of PI lines.
qmax(s) (resp. qmin(s)) Smallest s′ > s (resp. largest s′ < s) such that H(s, s′) is a global

critical chord.
Nmax(s) (resp. Nmin(s)) Vector along the corresponding maximal PI line: Nmax(s) =

y(qmax(s))− y(s) (resp. Nmin(s) = y(qmin(s))− y(s))
IPI(x) = [sb, st] The PI-parametric interval of x, i.e. the interval [sb, st], where

H(sb, st) is the PI-line of x.
CPI(x) The PI-parametric segment of C, i.e. C(sb, st).
LPI(x) The PI line of x, i.e. H(sb, st).
Πmax(s) (resp. Πmin(s)) The plane determined by the critical chord H(s, qmax(s)) (resp.

H(qmin(s), s)), i.e. the plane containing H(s, qmax(s)) (resp.
H(qmin(s), s)) and tangent to C at both endpoints of the chord.
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Symbol Definition
DP+(s) (resp. DP−(s)) Upper (resp. lower) ‘detector plane’, i.e. a plane parallel to

Πmax(s) (resp. Πmin(s)) and not passing through y(s). The planes
are chosen so that L0 = DP+(s) ∩DP−(s) ⊆ Πosc(s).

Γ+ (resp. Γ−) Stereographic projection of C(s, qmax(s)) on DP+(s) (resp.
C(qmin(s), s) on DP−(s)) from y(s).

Ĉ
• Orthogonal projection of C(qmin(s), qmax(s)) onto the

plane τ⊥(s) in the main sections of the paper;
• Orthogonal projection of C(s, qmax(s)) (resp.

C(qmin(s), s)) onto the plane N⊥
max(s) (resp. N⊥

min(s)) in
appendix A.

N̂max(s) (resp. N̂min(s)) Projection of Nmax(s) (resp. Nmin(s)) onto the plane τ⊥(s).
L+

min, L−max Lines L+
min = DP+(s) ∩ Πmin(s) and L−max = DP−(s) ∩ Πmax(s)

on the ‘detector planes’.
L0 The intersection of Πosc(s) and DP+(s) or, equivalently, DP−(s)
q+(s) The smallest s < s′ < qmax(s) such that y(s′) ∈ Πmin(s). Equal

to qmax(s) if there is no such s′.
q−(s) The largest qmin(s) < s′ < s such that y(s′) ∈ Πmax(s). Equal to

qmin(s) if there is no such s′.
Cylmax(s) (resp. Cylmin(s)) Infinite cylinder with base Ĉ(s, qmax(s)) and axis Nmax(s) (resp.

with base Ĉ(qmin(s), s) and axis Nmin(s)).
q+
crit(s) The largest s′, s < s′ < qmax(s) such that H(s, s′) is a local critical

chord; equal to s if there is no such s′.
q−crit(s) The smallest s′, qmin(s) < s′ < s such that H(s′, s) is a local critical

chord; equal to s if there is no such s′.
Cyl′max(s)(resp. Cyl′min(s)) The part of the cylinder Cylmax(s) (resp. Cylmin(s)) that is cut

off from it by the plane containing Nmax(s) (resp. Nmin(s)) and
passing through y(q+

crit(s)) (resp. y(q−crit(s))) and y(s).
Ωcrit(x) The set of planes through x that are tangent to CPI(x), or contain

LPI(x), or contain a point where CPI(x) is not smooth.
Π∗(x) The set of planes through x which are not in Ωcrit(x) and have

three or more IPs with CPI(x).
T -curve of x The curve on S2 defined by u(s) = (y(s)−x)×τ(s)

|(y(s)−x)×τ(s)| , s ∈ IPI(x).
A-curve of x The great circle defined by (y(st)− y(sb))⊥.
Bs-curve The great circle defined by (y(s)− x)⊥.
Πpr(x) The set of proper planes (see definition 3.5).
Πim(x) The set of improper planes (see definition 3.5).
IP (x, Π) The subset of C ∩Π that includes all IPs located inside IPI(x) and

possibly some extra IPs located outside IPI(x) (see section 4.2).
β(s, x) Unit vector pointing from the current source position y(s) to x.
α(θ) Unit vector in the plane β(s, x)⊥, parameterized by polar angle θ;

θ = 0 corresponds to the plane containing the PI line, small θ < 0
correspond to proper planes, small θ > 0 correspond to improper
planes.

Π(θ) Plane through y(s) and parallel to β(s, x) and α(θ).
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Symbol Definition
n(s, x, α) Weight assigned to the IP y(s) ∈ Π∩CPI(x), where Π is the plane

through x parallel to β(s, x) and α.
q(Π) Function defined on the set of proper planes that controls the as-

signment of weights to IPs.
L1 Family of planes through y(s) that contain τ(s).
L2 Family of planes through y(s) that are tangent to CPI(x) for some

x ∈ U .
L3 Family of planes through y(s) that satisfy q(Π) = 0 for some x ∈ U

(the dependence of the definition of q on x is implicit, see sec-
tion 4.3; note that the dependence preserves the FBP structure of
the algorithm).

L(t) Line tangent to C at y(t).
L̂(t) Orthogonal projection of L(t) onto the plane Nmax(s)⊥. It is used

when t ∈ (s, qmax(s)).
s1 < s2 < . . . < s2k+1 IPs of a plane Π ∈ Πpr(x) with CPI(x).
l1 < . . . < lm IPs of Π ∈ Πpr(x) with the interior of C(qmin(s2k+1), sb(x)).
r1 < . . . < rn IPs of Π ∈ Πpr(x) with the interior of C(st, qmax(s1)).
DP (s) A plane which is parallel to τ(s) and (1− α)Nmax(s)− αNmin(s)

for some 0 ≤ α ≤ 1 and does not contain y(s). Note that only
the stereographic projection of C(q−(s), q+(s)) on DP (s) is guar-
anteed to be a piecewise smooth continuous curve. For example,
the projection of C(s, qmax(s)) or C(qmin(s), s) on DP (s) need not
be a continuous curve.
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