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Abstract

Low rank approximation is a fundamental computa-
tional primitive widely used in data analysis. In many
applications the dataset that the algorithm operates on
may contain sensitive information about contributing
individuals (e.g. user/movie ratings in the Netflix chal-
lenge), motivating the need to design low rank approx-
imation algorithms that preserve privacy of individual
entries of the input matrix.

In this paper, we give a polynomial time algorithm
that, given a privacy parameter ε > 0, for a symmetric
matrix A, outputs an ε-differentially approximation to
the principal eigenvector of A, and then show how this
algorithm can be used to obtain a differentially private
rank-k approximation. We also provide lower bounds
showing that our utility/privacy tradeoff is close to best
possible.

While there has been significant progress on this
problem recently for a weaker notion of privacy, namely
(ε, δ)-differential privacy [HR12, BBDS12], our result is
the first to achieve (ε, 0)-differential privacy guarantees
with a near-optimal utility/privacy tradeoff in polyno-
mial time.

1 Introduction

Low-rank approximation is widely used in statistical
analysis and machine learning, where the learner is in-
ferring useful aggregate statistics from a database of
records. In a commonly used scenario users are repre-
sented by vectors in d dimensional space, corresponding,
for example, to their preferences for certain items. A
canonical example is the Netflix challenge, where users
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are present in the database via vectors of their movie
ratings. The task of the learner is to infer the ratings of
the user for movies that she has not seen. Several suc-
cessful solutions to the challenge first computed a “co-
variance” matrix A whose entry aij corresponds to the
correlation between the rankings of movie i and movie
j. Intuitively, a user who likes a movie i is also likely
to like a movie j if aij is large. Since the actual re-
ported rankings are rather sparse, the measured matrix
A is likely to be noisy, and most geometric learning al-
gorithms first find a low dimensional subspace that best
fits the data. This can be done by finding the best rank
k approximation to this covariance matrix A, which can
be done by taking the top k eigenvectors of A.

In a setting such as the Netflix challenge, pri-
vacy may be an important concern. In fact, the de-
anonymized data released by Netflix led to privacy
breaches [15] and led to the cancellation of a planned
Netflix 2 challenge. Similar privacy risks have been
demonstrated in settings like Hunch and Amazon where
no data is directly released (as in the Netflix challenge),
but items similar to a given item are shown to the
users [5]. This was one of the motivations for the work
of McSherry and Mironov [12], who designed a differ-
entially private recommendation system, where the rec-
ommendations given to a particular user did not depend
significantly on the preferences of any other user (it is of
course unavoidable in any useful system that the items
recommended to me depend on my preferences). Indeed
one of the important steps in that work is a differentially
private computation of a low rank approximation of a
covariance like matrix. While their work used input
perturbation to achieve privacy, in this work we sug-
gest alternate ways to compute a differentially private
approximation to this objective.

The simplest version of low rank approximation is
the problem of computing the top eigenvector of a ma-
trix. How well can one do that? A little reflection shows
that in general, it is impossible to output a vector that
is close to the top eigenvector while preserving privacy:
Indeed a small perturbation to the identity matrix can
cause a large change in the top eigenvector, and if the
private mechanism has to hide small perturbations, it



cannot do much better than outputting a random vec-
tor in this case. On the other hand, the reason one
wants the eigenvector v in this setting is that it max-
imized the “energy” in it’s direction, i.e. maximized
vTCv amongst all unit vectors. Can one privately find
a vector v such that vTCv is close to λ1? This is the
first question we address in this work. For the best rank
k approximation, the relevant question then is to find
a rank k matrix Bk such that ‖A − Bk‖ is close to the
best possible.

The privacy guarantee in differential privacy is
usually with respect to an allowable set of perturbations:
those that can be caused by a single user changing her
input. This set depends on the application in question.
In our setting, if we denote the vector of ratings of a user
by xu, the covariance matrix would be sum

∑
u∈D xux

T
u .

Assuming by scaling that ‖xu‖ is bounded by 1, a
single user can change A by at most 1 in the spectral
norm1. Thus we will be seeking mechanisms that are
differentially private with respect to unit spectral norm
perturbations to the matrix A.

Note that one expects the eigenvalues of A to scale
with the number of users in the database. While
one cannot give useful approximation to (say) the top
eigenvector when the corresponding eigenvalue is small,
we would like to give good answers when the number of
users in the database (and hence the top eigenvector) is
large enough.

For rank-1 approximation this motivates the fol-
lowing formulation. We would like to have an ε-
differentially private algorithm that for a symmetric
positive semidefinite d× d matrix A with largest eigen-
value λ1 ≥ 0 outputs a vector v ∈ Sd−1 such that

(1.1) E[vTAv] ≥ (1− δ)λ1,

for some δ > 0 as long as λ1 ≥ λ∗(d, ε, δ). What is
the smallest λ∗(d, ε, δ) that admits such an algorithm?
In this paper, we give an algorithms of this form and
provide nearly matching bounds on λ∗(d, ε, δ). We also
provide similar bounds for the rank-k approximation
problem.

How would one approach this question using known
tools in differential privacy? Adding noise to the true
eigenvector proportional to the global sensitivity [8] is
easily seen to require an unacceptable amount of noise.
Adding noise proportional to the smoothed sensitiv-
ity [16] is a candidate approach. However it is not clear
how to compute a smooth upper bound on the sensitiv-
ity. Moreover, analyzing the quality of this mechanism

1In [12], the “covariance” matrix is calculated in a different
way, giving different weights to different users. Nevertheless, it is

done in a way so that the norm of the effect of any single user on
the matrix is bounded by an absolute constant

seems non-trivial. Input perturbation is another natu-
ral candidate, that was considered in [4]. The approach
we use in this work is to use the exponential mecha-
nism [13], which gives a better utility guarantee. It is
not a priori clear if one can sample efficiently from this
distribution, and showing how to do this is one of the
technical contributions of this work.

Our results. We give algorithms for releasing an ε-
differentially private low-rank approximation to a sym-
metric matrix. Our algorithm for general k relies on
an algorithm for outputting a differentially private vec-
tor most of whose mass is concentrated in the few most
significant eigenvalues. We then use this primitive to it-
eratively subtract rank-1 approximations from the input
matrix, obtaining an approximate differentially private
SVD.

Rank-1 approximation. An algorithm for outputting
a differentially private rank-1 approximation to a sym-
metric matrix A is essentially a distribution on vectors
on the unit sphere Sd together with an efficient algo-
rithm for sampling from this distribution. Our distri-
bution is given by the well-known exponential mech-
anism [13], which outputs x ∈ Sd−1 with probability

proportional to ex
TAx, x ∈ Sd−1. We show

Theorem 1.1. The exponential mechanism, given a
symmetric positive definite d × d matrix A with largest
eigenvalue λ, outputs a vector v ∈ Sd−1 such that

E[vTAv] ≥ (1− δ)λ1

as long as λ1 ≥ (Cd log(1/δ))/(εδ) for an absolute con-
stant C > 0. Furthermore, the exponential mechanism
can be implemented to run in time poly(d, λ1 − λd).

As suggested earlier, the exponential mechanism on
the sphere is non-trivial to implement. The main
hurdle is that the level sets of the Rayleigh quotient
xTAx on the sphere Sd−1 are not convex, making
standard techniques for sampling from convex bodies
inapplicable. A brute force solution would take time
exponential in the dimension d, which we would like
to avoid. Nevertheless, we give a polynomial time
algorithm for sampling from this distribution. The
sampling algorithm and analysis is the main technical
contribution of this part of the paper.

We note that the assumption that A be positive
semidefinite is not constraining for us. In fact, the
distributions that we use for all our results are invariant
under adding a multiple of the identity matrix to A.
Thus, the assumption that A is positive semidefinite is
without loss of generality.



Rank-k approximation. Our algorithms for rank-1
approximation can be applied repeatedly to obtain a dif-
ferentially private rank-k approximation to symmetric
matrices. We state our results for positive semidefinite
matrices only for clarity of presentation. However, our
techniques easily extend to the case of general symmet-
ric matrices. Our main result for rank-k approximation
is

Theorem 1.2. Let A ∈ Rd×d be a symmetric psd
matrix and let λ1 ≥ . . . ≥ λd denote the eigenvalues
of A. There exists an ε-differentially private polynomial
time algorithm for computing a matrix Ak of rank at
most k so that ||A − Ak||2 ≤ λk+1 + δλ1 as long as
λ1 ≥ C1dk

3/(εδ6) for a constant C1 > 0.

Note that this improves upon input perturbation
whenever λ1 < d2/(εδ) (a more detailed discussion of
the guarantees given by input perturbation is given
below).

The main idea of the algorithm is simple. Starting
with A0 = A, at step i = 0, . . . , k − 1 we repeatedly
sample a differentially private vector v that nearly
maximizes vTAv, and subtract an appropriately scaled
rank-1 matrix from Ai and let Ai+1 = Ai−(vTAiv)vvT .
The main technical component of the proof is the
analysis of the change in the spectral norm of Ai during
this ‘approximate SVD’ process.

Lower bounds. Finally, we provide lower bounds
for the problem in section 5. Almost matching lower
bounds for the rank-1 case follow by a packing argument
on Sd. The lower bounds for rank-k approximation
follow by a packing argument on the Grassmannian
manifold, and show that the additive term in the
approximation necessarily has to be at least on the
order of Ω( 1

εdk log(1/δ)), showing that our guarantees
are close to optimal for constant k.

Related work. The problem of constructing differen-
tially private low rank approximation primitives has re-
ceived substantial attention in the literature. To the
best of our knowledge, the first solution, which uses
input perturbation, was given in in [4]. The work of
McSherry and Mironov[12] applied input perturbation
techniques to the Netflix dataset. Since the work of [12]
the problem of improving upon the accuracy/privacy
tradeoff achieved by input perturbation has been an im-
portant open problem. Besides being interesting in its
own right, the question of obtaining better tradeoffs for
differentially private low-rank approximation has been
shown to be important for the closely related problem
of answering cut queries [9].

Comparison to [10]. The recent work of [10] gives the
first algorithm to providing guarantees superior to input

perturbation for low-rank approximation under the ad-
ditional incoherence assumption. Their algorithm, given
a n×m matrix A, outputs an accurate rank-k approx-
imation while satisfying (ε, δ)-differential privacy with
respect to unit l2-norm changes to a single rows of A.
We give a stronger (ε, 0)-differential privacy guarantee
under a more general unit spectral norm change. On the
other hand, in this paper we make the assumption that
the input matrices are symmetric (which is justified for
applications such as the Netflix dataset, where A is the
covariance matrix). Thus, our results are incomparable
to those of [10].

Comparison to [3]. The recent work of [3] gives (ε, δ)-
differentially private algorithms for two related prob-
lems. The first is an algorithm for releasing the Lapla-
cian matrix of a graph that satisifies (ε, δ)-differential
privacy with respect to edge changes (i.e changing one
0-1 entry of the matrix). This setting is different from
ours in two respects. First, we consider a significantly
broader class of inputs, i.e. symmetric matrices, and
give algorithms that are private with respect to spec-
tral norm changes. Second, our notion of privacy is the
more stringent ε-differential privacy. The authors of [3]
also give an algorithm for answering directional vari-
ance queries for a covariance matrix, again under the
(ε, δ)-differential privacy requirements. As the authors
of [3] point out, this estimation procedure is somewhat
weaker than low-rank approximation.

Thus, our results are the first to improve upon
input perturbation for low rank approximation under
the more stringent notion of (ε, 0)-differential privacy.
Furthermore, we use a stronger notion of perturbation,
namely unit spectral norm perturbations.

Independent of our work, Chaudhuri et al. [6] pro-
pose and evaluate the exponential mechanism for PCA.
They use a Markov Chain Monte Carlo method to sam-
ple approximately from the distribution, and show that
it empirically outperforms input perturbation on real
datasets. However, lacking bounds on convergence time,
the authors use heuristic tests to check convergence of
the chain. They leave open the question of how this
impacts the privacy guarantee.

Techniques. A possible approach to try to sample
from the exponential mechanism’s distribution is the
following. The set of points in Rd that have Rayleigh
coefficient at most r is an ellipse. If we considered the
distribution defined by exp(xTAx) in the unit ball, it
can be checked that this gives good utility as well as
privacy. Since the set of point {x ∈ Rd : ‖x‖2 ≤
1, exp(xTAx) ≤ r} is the intersection of an two ellipses,
it is convex and standard techniques may suffice to
sample from it and estimate its volume. However,



to be able to sample from the distribution, we need
to estimate well the volume of the complement sets
L(r) = {x ∈ Rd : ‖x‖2 ≤ 1, exp(xTAx) ≥ r}. Since
the volume of the unit ball Bd(1) is easy to compute,
we can estimate the volume of L(r) as Vol(Bd(1)) −
Vol(Bd(1) \ L(r)), the latter being convex. However,
given a good approximation to the latter volume, we
get a good approximation to the volume of L(r) only
when this volume is large enough. One the other
hand, if we have one eigenvalue much larger than the
others, a constant fraction of the probability mass
of the exponential mechanism comes from a set of
exponentially small Euclidean volume. Thus a naive
approach would require the volume estimation to be
accurate up to an exponentially small error, which is
infeasible. We do not know if such an approach can
lead to an efficient algorithm.

How do we get around this hurdle? We use a more
direct approach to estimating the volume of the set L(r).
We observe that L(r) is an integral of similar volumes
in one lower dimension. We show that these volumes
grow smoothly except possibly in the neighborhood of
eigenvalues. In fact we can control the growth rate and
argue that the integral is well approximated by weighted
sum over a polynomial sized (but very non-uniform)
net. The volumes in this lower dimensional space can
be similarly recursively computed until we are left with
a one dimensional integral that can be computed. This
recursive approach is turned into a dynamic program to
get a polynomial time algorithm.

Open problems. In this paper we present essentially
optimal algorithms for the top eigenvector, and near op-
timal ones for the top k ones. Several open questions
suggest themselves. The implementation of the expo-
nential mechanism, while polynomial time, is fairly com-
plicated and it is natural to look for simpler and more
efficient algorithms for the problem. Analyzing smooth
sensitivity based, or sample-and-aggregate based mech-
anisms may be one approach. For rank k approxima-
tion, our analysis is lossy and it would be natural to get
better dependency on k.

Organization. Preliminaries and basic definitions are
presented in section 2. We present our algorithm for
differentially private rank-1 approximation in section 3.
We then show how to use these rank-1 approximation
primitives to obtain differentially private rank-k approx-
imation in section 4. In section 5 we prove lower bounds
on the utility/privacy tradeoff for rank-k approxima-
tion. Finally, in section 6 we give a polynomial time
implementation of the exponential mechanism from sec-
tion 3.

2 Preliminaries

In this paper we consider symmetric positive definite
matrices A ∈ Rd×d. We will use the standard notation
Sd−1 = {v ∈ Rd : ||v||2 = 1} for the (d− 1)-dimensional
sphere in Rd. For a vector x ∈ Rd we use the notation

||x||2 =
√∑d

i=1 x
2
i for the 2-norm of x. Let ||A||2 denote

the spectral norm of A, i.e. ||A||2 = maxv∈Sd−1 ||Av||2.

Definition 2.1. An algorithm M : Rd×d → R (where
R is the range of M) is ε-differentially private if for all
A,B ∈ Rd×d such that ||A−B|| ≤ 1 and all S ⊆ R one
has Pr[M(A) ∈ S] ≤ eε ·Pr[M(B) ∈ S].

A very useful property of differentially private algo-
rithms is

Lemma 2.1. ([7], Composability) The sequential
application of algorithms {Mi}, each giving {εi}-
differential privacy, gives (

∑
i εi)-differential privacy.

We also need the following well-known result. A
function is said to have sensitivity α if unit perturba-
tions of the input result in the value of the function
changing by at most α.

Lemma 2.2. ([8], Laplacian mechanism) The
Laplacian mechanism with noise of magnitude α/ε
gives ε-differential privacy for queries of sensitivity at
most α.

For our purposes an important example of a function
with sensitivity 1 is the function that maps a d × d
symmetric matrix A to its principal eigenvalue λ1(A).
For two matrices A,B ∈ Rd×d one has |λ1(A)−λ1(B)| ≤
1, i.e. λ1(A) has unit sensitivity. Thus, one can always
release the value of the principal eigenvalue of a matrix
after adding Laplacian noise. This will be useful in our
rank-k approximation algorithm.

Input perturbation. We now specify the bounds
that can be achieved in our setting via input perturba-
tion. It can be readily verified that adding Laplacian
noise of magnitude Θ(d

√
d/ε) to each entry of the ma-

trix is necessary and sufficient to ensure ε-differential
privacy with respect to spectral norm. The largest
eigenvector of such a noise matrix is Θ(d2/ε), i.e. non-
trivial approximation to the principal eigenvector of A
will be achieved whenever ||A|| is larger than Θ(d2/ε).
On the other hand, our techniques will yield nontriv-
ial approximation when ||A|| is larger than only about
Θ(d/ε).

(ε, δ)-differential privacy. In order to point out
the differences between our work and the recent papers
of [10, 3], we give the definition of (ε, δ)-differential
privacy.



Definition 2.2. An algorithm M : Rd×d → R (where
R is the range of M) is (ε, δ)-differentially private if for
any pair A,B ∈ Rd×d, ||A−B|| ≤ 1 and all S ⊆ R one
has Pr[M(A) ∈ S] ≤ eε ·Pr[M(B) ∈ S] + δ.

Note that this guarantee states that for any pair
A,B the distributions M(A) and M(B) are multiplica-
tively close except on a small portion of the space that
may depend on A,B.

3 Rank-1 approximation

In this section we analyze the utility of the well-known
exponential mechanism of [13] applied to the problem of
obtaining differentially private rank-1 approximations.
We will show later in section 5 that this performance
is nearly optimal. We instantiate the exponential
mechanism on the unit sphere in d dimensions with the
scoring function at z ∈ Sd−1 equal to the value of the
quadratic form zTAz:

(3.2) fA(z) =
eεz

TAz∫
Sd−1 eεz

TAzdS

for z ∈ Sd−1. We formalize this mechanism for reference
as

Algorithm 1 SAMPLE-1D-EXP(A, ε, δ)

1: Sample x ∈ Sd−1 from the distribution (3.2)

Note that is not obvious how to sample efficiently
from the distribution given by (3.2), and obtaining a
polynomial time algorithm for this problem is the main
goal of section 6 below. For now, we concentrate on the
utility/privacy tradeoff offered by (3.2). Privacy of the
exponential mechanism was proved in [13], and hence
we concentrate on utility. We will use

Fact 3.1. [2] For 0 < r < 2, a cap of radius r on Sn−1

has measure at least 1
2 (r/2)n−1

We prove

Lemma 3.1. The exponential mechanism, given a sym-
metric positive definite d×d matrix A with largest eigen-
value λ, outputs a vector v ∈ Sd−1 such that

E[vTAv] ≥ (1− δ)λ1

as long as λ1 ≥ Cd/(εδ) log(1/δ) for an absolute con-
stant C > 0.

Proof. Let B = {x ∈ Sd−1 : xTAx ≤ λ1(1−2δ)} denote
the set of bad points and G = {x ∈ Sd−1 : xTAx ≥
λ1(1− δ)} denote the set of good points. Let X denote
the output of Algorithm 1.

Let u denote the principal eigenvector of A. Then

Pr[x ∈ G] ≥ Pr[|xTu| ≥ 1− δ].

Thus, Fact 3.1 implies that for the base measure on the
sphere

µ(G) ≥ (1/2)(cos−1(1− δ)/2)d−1 ≥ e−cd log(1/δ)

for some absolute constant c > 0, when δ is small.
Suppose that λ1 ≥ 2cd log(1/δ)/(εδ).

Then since µ(B) ≤ 1,

Pr[X ∈ B]

Pr[X ∈ G]
≤ maxx∈B fA(x)

µ(G) minx∈G fA(x)

≤
1
Z e
−4cd log(1/δ)

1
Z e
−2cd log(1/δ) · e−cd log(1/δ)

= e−cd log(1/δ)

Hence,

Pr[X ∈ Bc] ≥ 1− e−Ω(d log(1/δ)).

Theorem 1.1 now follows from Lemma 3.1 and the
fact that the exponential mechanism is ε-differentially
private[13].

4 Rank-k approximation

In this section we analyze an ‘approximate SVD’ proce-
dure for obtaining a rank-k approximation of an d × d
matrix A. The intuition behind our algorithm is quite
simple. We use the algorithm for obtaining a differen-
tially private rank-1 approximation given in section 3 to
repeatedly find a (differentially private) vector v ∈ Rd
that nearly maximizes vTAv and subtract (vTAv)vvT

from A (note that in fact we would subtract r · vvT ,
where r is a noisy version of vTAv to ensure that this
step is differentially private). If v was the exact maxi-
mizer of vTAv among unit norm vectors, this would be
exactly SVD, and we would have that the norm of the
residual matrix after k steps of this operation is exactly
λk+1.

Since our vector v is only an approximate maxi-
mizer, it becomes harder to control the decrease of the
spectral norm after we subtract v. Nevertheless, we
show that the spectral norm decreases to λk+1 + δλ1 af-
ter k iterations, as long as λ1 is sufficiently large. While
this may seem weak, we show in the lower bounds sec-
tion below that such behavior is unavoidable.

Aspect ratio. The lower bound on λk of matrices
for which our algorithm obtains a good rank-k approx-
imation depends on the dimension of the matrix, the
utility and privacy desired, and additionally on a pa-
rameter that we refer to aspect ratio. For a matrix A



with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λk+1 ≥ . . . ≥ λd the
aspect ration γ equals λk/λ1. Thus, computing rank-k
approximations to matrices with substantially different
top eigenvalues requires more data with our algorithm.
It would be very interesting to determine if this is nec-
essary for all differentially private algorithms or is an
artifact of our approach.

Algorithm 2 Rank-k approximation (ε– differential
privacy parameter, δ-accuracy, γ-aspect ratio)

1: A0 ← A
2: B0 ← 0
3: for i = 1 to k do
4: λ̂max,i ← λ1(Ai−1) + Lap

(
k
ε

)
5: λ̂min,i ← λd(Ai−1) + Lap

(
k
ε

)
6: λ̂min,i ← max{0,−λ̂min,i}
7: if λ̂max,i > λ̂min,i then

8: vi ← SAMPLE-1D-EXP(Ai−1,
ε
k ,

(δγ)2

k2 )
9: else

10: return FAIL
11: end if
12: ri ← vTi Ai−1vi + Lap

(
k
ε

)
.

13: Bi ← Bi−1 + ri · vivTi
14: Ai ← Ai−1 − ri · vivTi .
15: end for
16: return Bk

In order to analyze the approximate SVD process
implemented in Algorithm 2, we will use the following
expression for the determinant of a rank-1 update of a
matrix A in terms of the determinant of A:

(4.3) det(A+ uvT ) = (1 + vTA−1u) det(A).

In particular, we will use the following form of (4.3)

(4.4) det(A− tvvT ) = (1− tvTA−1v) det(A),

where we set t equal to the Rayleigh quotient vTAv with
Laplacian noise (in line 11 of Algorithm 2).

Denote the eigenvalues of A by λ1 ≥ λ2 ≥ . . . ≥ λd.
Denote the corresponding eigenvectors by u1, . . . , ud. It
follows from (4.3) that the eigenvalues of A′ := A−tvvT
are given by the roots of

(4.5) pA′(x) = pA(x)

(
1− t

d∑
i=1

〈v, ui〉2

x− λi

)
,

where pA(x) is the characteristic polynomial of A.

Define fA(x) = 1 − t
∑d
i=1

〈v,ui〉2
x−λi

. Our main technical
lemma here is

Lemma 4.1. Let A be a symmetric matrix. There exists
a constant C > 0 such that the following holds. Let v be

a vector of unit l2 norm such that vTAv ≥ λ1(1− δ/C),
where δ ∈ (0, 1). Let A′ = A − tvvT , where t ∈
(1 ± δ/C) · vTAv. Denote the eigenvalues of A′ by
λ′1 ≥ λ′2 ≥ . . . ≥ λ′d. Then

1. λk ≤ λ′k−1 ≤ min{λk−1, λk + δλ1} for each k =
1, . . . , d;

2. λ′d ≥ λd −
√
δλ1.

The proof of the lemma relies crucially on the charac-
terization in (4.5), is mostly technical and is deferred to
the full version of the paper due to space constraints.

Remark 4.1. The bounds in Lemma 4.1 are essentially
best possible. For part (1), it is sufficient to consider
a matrix A with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λd
such that λ2 ≥ (1 − δ)λ1, and note that under the
assumptions of the lemma the vector v could coincide
with the eigenvector corresponding to λ2, leading to
spectral norm λ1 ≤ λ2 + δλ1, as predicted.

For part (2), this can be easily seen as follows. Let
A = e1e

T
1 . Let v = (

√
1− x2, x)T . Then vTAv = 1−x2,

so v satisfies the conditions of Lemma 4.1 with δ = x2.
On the other hand, the eigenvalues of A− vvT are ±x.
Thus, the smallest eigenvalue the matrix obtained by
subtracting vvT from A is −

√
δ.

We now prove performance guarantees for Algo-
rithm 2. First, we prove guarantees that depend on
the aspect ratio of the input matrix.

Lemma 4.2. Let A be a symmetric positive semidefinite
matrix with λk ≥ Cdk3/(εγ2δ3), where C is the constant
from Lemma 4.1. Then Algorithm 2 outputs a rank-
k matrix Bk such that ||A − Bk|| ≤ λk+1 + δλk.
Furthermore, Algorithm 2 is 4ε-differentially private
with respect to the spectral norm.

Proof. Denote the eigenvalues of Ai by λi1, . . . , λ
i
d,

i = 0, . . . , k. By choosing constants appropriately by
Lemma 3.1 we have for each i = 1, . . . , k
(4.6)

Pr

[
vTi Ai−1vi ≤ λi1 −

dk3 log(k/δ)

4εδ2

]
< e−Ω(d log(k/δ)),

where v ∈ Sd is the vector sampled in lines 6-10 of
Algorithm 2.

We prove the following claims for all i = 0, . . . , k.

(1) For all j ≤ k + 1 − i one has λ0
j+i ≤ λij ≤

λ0
j+i + (δγ)2i

k2 λ1;

(2) λid ≥ −i ·
δγ
k · λ1;

(3) vTi Ai−1vi ≥ (1− δ/(2C))λi−1
1 for i ≥ 1;



(4) ri ∈ (1± δ/C)λi−1
1 for i ≥ 1.

The proof is by induction on i.

Base: i = 0 (1) and (2) are trivially true and (3) and
(4) are vacuous.

Inductive step: i→ i+ 1 :

(3) and (4) By the inductive hypothesis we have
(a) λi1 ≥ λ0

i+1 ≥ Cdk3/(εδ3), so (4.6) im-
plies vTi+1Aivi+1 ≥ (1 − δ/(2C))λi1. Let Y ∼
Lap(k/ε) denote the Laplacian random vari-
able such that ri+1 = vTi+1Aivi+1 + Y . Since

Pr[|Y | > Cdk3/(εδ)] < e−Ω(dk2/δ),

we get that whp ri+1 ∈ (1± δ/C)vTi+1Aivi+1.

(1) and (2) By the inductive hypothesis we have
for all j ≤ k + 1 − i that (a) λij ≥ λ0

j+i ≥
Cdk3/(εδ3). By (3) and (4) that we just
proved for i + 1 we have (b) vTi+1Aivi+1 ≥
(1 − δ/(2C))λi1 and (c) ri+1 ∈ (1 ± δ/C)λi1.
This together with Lemma 4.1 implies

λij+1 ≤ λi+1
j ≤ λij+1 +

(δγ)2

k2
λ1

for j + 1 ≤ d. Furthermore, since by the
inductive hypothesis λ0

j+i ≤ λij ≤ λ0
j+i +

(δγ)2i
k2 λ1 for all j ≤ k + 1− i, we get that

λ0
j+i+1 ≤ λi+1

j ≤ λ0
j+i+1 + (i+ 1) · (δγ)2

k2
λ1

for all j+1 ≤ k+1− i, i.e. j ≤ k+1− (i+1),
proving the inductive step for (1).

Similarly, by the inductive hypothesis we have
λid ≥ −i ·

δγ
k · λ1, so Lemma 4.1, (2) implies

that λi+1
d ≥ λid −

δγ
k · λ

i
1 ≥ −(i+ 1) · δγk · λ1.

Thus, we have proved that λk1 ≤ λ0
k+1 + (δγ)2λ1 and

|λkd| ≤ (δγ)λ1 ≤ δλk. First, this implies that the
procedure succeeds whp, i.e. line 7 always returns
true. Second, this implies that ||Ak|| ≤ max{λ0

k+1 +
(δγ)2λ1, δγλ1} ≤ λ0

k+1 + δλk as required.
Finally, ε-differential privacy with respect to the

spectral norm follows by observing that SAMPLE-1D-
EXP is run with privacy parameter ε/k, so releasing
the output from k such invocations gives ε-differential
privacy. Furthermore, the addition of Laplacian noise
of magnitude ε/k in lines 4, 5, 11 ensures that (a)

λ̂max,i, λ̂min,i can be released and compared publicly,
yielding 2ε/k-differential privacy for each step, and
(b) ri can be released so that releasing riviv

T
i is ε/k-

differentially private. Summing up the privacy param-
eters for all steps, we conclude that the procedure is
4ε-differentially private.

We now use Lemma 4.2 to obtain guarantees that
only rely on an assumption on λ1. Let A ∈ Rd×d
be a symmetric positive semidefinite matrix and let
λ1 ≥ . . . ≥ λk ≥ . . . ≥ λd denote the eigenvalues of
A. Furthermore, suppose that λ1 ≥ Cdk3/(εδ6). Let
γ = δ and let λk′ be the smallest such that λk′ ≥
max{γλ1, Cdk

3/(εγ2δ3)} = δλ1. If k′ ≥ k, then we are
done by running Algorithm 2. Otherwise by Lemma 4.2
running the algorithm for k′ steps yields spectral norm
at most λk′+1 + δλk′ ≤ λk′+1 + δλ1 ≤ λk+1 + 2δλ1.

Finally, it is easy to see that running the algorithm
for k′ steps, where k′ is as defined above, can be done
in a differentially private manner. Indeed, one can
calculate noisy versions of at most k top eigenvalues
of A as it is done in Algorithm 2 until one finds k′. By
our assumptions on k′ the addition of Laplacian noise
will not introduce significant inaccuracies by the same
argument as in the proof of correctness of Algorithm 2.
We have proved Theorem 1.2, which we also state here
for convenience:
Theorem 18. Let A ∈ Rd×d be a symmetric psd
matrix and let λ1 ≥ . . . ≥ λd denote the eigenvalues
of A. There exists an ε-differentially private polynomial
time algorithm for computing a matrix Ak of rank at
most k so that ||A − Ak||2 ≤ λk+1 + δλ1 as long as
λ1 ≥ C1dk

3/(εδ6) for a constant C1 > 0.

5 Lower bounds

In this section we present lower bounds for the tradeoff
between privacy and approximation quality for rank-1
and rank-k approximation. Since the bounds for rank-1
approximation are somewhat simpler, we present them
first, showing that the rank-1 approximation algorithm
from section 3 is essentially optimal for constant factor
multiplicative approximation. Both bounds follow by
packing arguments on the (d − 1)-dimensional sphere
for rank-1 approximation and on the Grassmannian
manifold for general k.

5.1 Rank-1 approximation It is convenient to in-
troduce the following notation for spherical caps. For a
vector u ∈ Sd−1 and θ ∈ (0, 1) let

(5.7) Cθ(u) := {v ∈ Sd−1 : 〈v, u〉 ≥ 1− θ}.

For the lower bound, we will use

Fact 5.1. For any θ ∈ (0, 1) there exists a family of
vectors u1, . . . , uN of unit norm with N = eΩ(d log(1/θ))

such that Cθ(ui) ∩ Cθ(uj) = ∅ for i 6= j.

Proof. Such a family can be obtained by a simple greedy
packing on the sphere.



Theorem 5.1. Let ε > 0 be a fixed privacy parameter.
Suppose that there exists an ε-differentially private algo-
rithm that, given any a symmetric positive semidefinite
d× d matrix A with maximum eigenvalue λ1, outputs a
vector v ∈ Rd of unit l2 norm such that

vTAv ≥ (1− δ)λ1,

as long as λ1 ≥ λ∗1(d, ε, δ). Then λ∗1(d, ε, δ) =
Ω(d log(1/δ)/ε).

Proof. Let F = {u1, . . . , uN}, N = eΩ(d log(1/δ)) denote
a family of vectors such that for ui, uj ∈ F , i 6= j one
has C1−

√
1−2δ(ui) ∩ C1−

√
1−2δ(uj) = ∅. The existence

of such a family is guaranteed by Fact 5.1 together with
the fact that 1−

√
1− 2δ ≥ δ for all δ ∈ [0, 1/2].

Now let Ai = γ(d/ε) log(1/δ) · uiuTi , where γ > 0 is
a constant that we will choose to be sufficiently small.
Suppose that the algorithm, when given A = Ai as
input, outputs a vector such that

EAi [λ1 − xTAx] ≤ δλ1,

where the subscript Ai means ‘when the algorithm is
given Ai as input’. Then by Markov’s inequality

(5.8) PrAi [λ1 − xTAx ≤ 2δλ1] ≥ 1/2.

However, the set of vectors x that satisfy (5.8) is exactly
the set of vectors x that satisfy 〈x, ui〉 ≥

√
1− 2δ.

Setting θ = 1 −
√

1− 2δ ≤ 2δ, we get that at least
half of the probability mass on input Ai should go into
its spherical cap of radius cos−1(1− 2δ) around ui.

On the other hand, since ||Ai − Aj ||2 ≤
2γ(d/ε) log(1/δ), we have by the differential pri-
vacy guarantee that each Ai should put at least
e−2γ(d log(1/δ)) mass into C1−

√
1−2δ(ui) for each ui ∈ F .

Hence, one necessarily has

e−2γd log(1/δ) · eΩ(d log(1/δ)) ≤ 1,

a contradiction for sufficiently small constant γ > 0.

5.2 Rank-k approximation In this section we give
lower bounds on the privacy/accuracy tradeoff for rank-
k approximation. The bounds follow by a careful pack-
ing argument on the Grassmannian manifold, which
we now outline. As before, we assume that an ε-
differentially private algorithm outputs a rank-k matrix
Â such that

||A− Â||2 ≤ λk+1 + δλ1

for some δ > 0 as long as λ1 ≥ λ∗(d, k, ε, δ), and derive
a lower bound on λ∗(d, k, ε, δ).

The lower bound will follow by considering matrices
A = αY Y T , where Y is a d× k matrix with orthogonal
columns of unit l2 norm and α is a scaling to be chosen
later. Our first step is to show that the approximating
matrix Â can essentially be assumed to be a projection
matrix onto a k-dimensional subspace.

Lemma 5.1. [Projection matrices suffice] Let A =
Y Y T and let Â = ZΣZT , where Y and Z are d×k ma-
trices with orthonormal columns such that ||A−Â|| ≤ δ.
Then ||A− ZZT || ≤ 2δ.

Proof. We first show that Σii ≥ 1 − δ for i = 1, . . . , k.
Consider

(5.9) Y T (Y Y T − ZΣZT )Y = I − (ZTY )TΣ(ZTY )

Suppose that Σii < 1− δ. We consider two cases.

(1) Suppose that ZTY is singular, i.e. there exists
v ∈ Rk such that ZTY v = 0. Multiplying (5.9)
by v and vT then yields

(5.10) vTY T (Y Y T − ZΣZT )Y v = I > δ,

a contradiction since ||Y T (Y Y T − ZΣZT )Y ||2 ≤
||Y T || · ||Y Y T − ZΣZT || · ||Y ||2 ≤ δ.

(2) Now suppose that ZTY is non-singular. Let v be
a unit norm vector such that ZTY v = λZi for a
constant i, where i is the i-th column of Z, where
|λ| ≤ ||ZTY || ≤ 1. Plugging this into (5.9), we get

(5.11) vTY T (Y Y T −ZΣZT )Y v > 1− (1−δ) = δ,

a contradiction as before.

We now show that Σii < 1 + δ for all i. Indeed,
otherwise letting vi denote the i-th columns of Z, we
have

vTi (A− Â)vi < vTi Avi − (1 + δ) < −δ.

Thus, we have that 1− δ ≤ Σii ≤ 1 + δ, which now
implies that ||Y Y T −ZZT || ≤ 2δ. Indeed, suppose that
there exists a vector x ∈ Rd such that ||x||2 = 1 and
|(Y Y T − ZZT )x| > 2δ. Then

|(Y Y T − ZΣZT )x| > |(Y Y T − ZΣZT )x| − δ = δ,

contradicting our assumption.

Thus, a rank-k matrix Â = ZΣZT is a good
approximation to A = Y Y T , then ZZT is also a good
approximation to A. We use this fact now to derive
utility/privacy tradeoffs for our problem.

Packing on the Grassmannian manifold. Re-
call that the Grassmannian manifold Gk,d is the set of



k-dimensional subspaces in Rd. We will represent points
in Gk,d by d × k matrices with orthonormal columns
Y ∈ Rd×k, with the understanding that Y represents
the k-dimensional space that it spans and thus is de-
fined up to an element of the orthogonal group in the
subspace. Since we will only use Y to construct the pro-
jection matrix Y Y T , this will not matter. For Y ∈ Gk,d

define

(5.12) Ckδ (Y ) = {S ∈ Gk,d : ||Y Y T − SST ||2 ≤ δ}.

We would like to find a large family F =
{Y 1, . . . , Y N}, N = 2Ω(k(d−k) log(1/δ)) such that
Ckδ (Y i) ∩ Ckδ (Y j) = ∅ for i 6= j. To prove the exis-
tence of such a family we need upper bounds on the
volume of Ckδ (Y ) for Y ∈ Gk,d.

Volume of Ckδ (Y ). Let Y, S ∈ Gk,d be two uni-
formly random subspaces. The quantity ||Y Y T−SST ||2
is the cosine of the largest canonical angle between Y
and S, and is given by the largest singular value of Y TS.
The canonical angle between two subspace is a metric
[17]. The distribution of the canonical angle between
two uniformly random subspaces is given by [1]

Pr(θk < θ̂k) = γn,k · (sin θ̂k)k(d−k)−1

· 2F1

(
d− k

2
,

1

2
;
d+ 1

2
; sin2 θ̂kIk−1

)
,

(5.13)

where ([14])

2F1(a, b; c;X) =
Γk(c)

Γk(a)Γk(c− a)∫
0<Y<Ik

det(I −XY )−b(detY )a−(k+1)/2

det(I − Y )c−a−(k+1)/2dY,

(5.14)

Γk(a) = πk(k−1)/4
∏k
i=1 Γ[a − 1

2 (i − 1)] and cn,k =

k(n−k)
Γ( k+1

2 )Γ( d−k+1
2 )

Γ( 1
2 )Γ( d+1

2 )
. We will use the following crude

estimate on (5.13):

Claim 5.2. Let sin θ̂k = δ, so that θ̂k = Θ(δ). Then

Pr[θk < θ̂k] = e−O(k(d−k) log(1/δ)).

Proof. By inspection of (5.14) we have that

2F1

(
d−k

2 , 1
2 ; d+1

2 ; z · Ik−1

)
≤ 2F1

(
d−k

2 , 1
2 ; d+1

2 ; Ik−1

)
.

Thus, it follows from (5.13) that

Pr(θk < θ̂k) ≤ (sin θ̂k)k(d−k)−1Pr(θk < π/2)

= e−O(k(d−k) log(1/δ)).

It now follows that

Corollary 5.1. For each δ > 0 there exists family
F = {Y 1, . . . , Y N}, N = 2Ω(k(d−k) log(1/δ)), where Y i ∈
Gk,d, such that Ckδ (Y i) ∩ Ckδ (Y j) = ∅ for i 6= j.

Proof. We obtain such a family by a simple greedy
packing. Let Y 1 be an arbitrary element of Gk,d. For
each i = 1, . . . , N we have by Claim 5.2 that

Gk,d \
i⋃

j=1

Ck2δ(Y
j) 6= ∅

unless N ≥ 2ck(d−k) log(1/δ) for a constant c > 0.
Thus, we have found N elements Y i ∈ Gk,d such that
||Y i(Y i)T − Y j(Y j)T ||2 > 2δ for i 6= j. It now follows
by triangle inequality that Cδ(Y

i) ∩ Cδ(Y j) = ∅, as
required.

We now obtain

Theorem 5.3. Any ε-differentially private algorithm
that given a symmetric positive definite matrix A with
eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λd outputs a rank-k
approximation Âk to A such that

||A− Âk||2 ≥ λk+1 + δλ1

for some δ > 0, as long as λ1 ≥ λ∗(d, k, ε, δ). Then
λ∗(d, k, ε, δ) = Ω

(
1
εk(d− k) log(1/δ)

)
.

Proof. Let F = {Y1, . . . , YN}, N = 2Ω(k(d−k) log(1/δ)

denote the family of subspaces guaranteed by Corol-
lary 5.1, so that for each i 6= j one has

Ck4δ(Y
i) ∩ Ck4δ(Y j) = ∅.

Consider matrices Ai = γYiY
T
i , i = 1, . . . , N , so

that ||Ai|| = γ. By assumption of the lemma the
algorithm outputs a matrix Âk such that

EAi

[
||Ai − Âik||2

]
≤ δγ,

where as before the subscript Ai refers to the fact the
expectation is over the distribution of the algorithm
when the input is Ai.

Let Âik = Ŷ iΣ̂(Ŷ i)T , where Y is a d × k matrix

with orthonormal columns. Let Ãik := Ŷ i(Ŷ i)T . By
Lemma 5.1 we have

EAi

[
||Ai − Ãik||2

]
≤ 2δγ.

Now by Markov’s inequality one has

PrAi

[
||Ai − Ãik||2 ≤ 4δγ

]
> 1/2,



i.e. the algorithm necessarily places at least half the
probability mass into Ck4δ(Y

i). However, since the
algorithm ε-differential privacy, we also get that the
algorithm necessarily puts at least e−2ε||Ai|| = e−2εγ

mass into each of Ck4δ(Y
i), implying that

e−2εγ · 2Ω(k(d−k) log(1/δ)) ≤ 1.

This means that γ = Ω
(

1
εk(d− k) log(1/δ)

)
, a contra-

diction with our assumption on γ.

6 Implementing the exponential mechanism

In this section we give a polynomial time implementa-
tion of the exponential mechanism for outputting a dif-
ferentially private rank-1 approximation to a symmet-
ric matrix from section 3. Recall that the exponential
mechanism simply samples x ∈ Sd−1 from the distribu-
tion

(6.15) fA(x) =
eεx

TAx∫
Sd−1 eεs

TAsdS
.

Standard approaches to sampling. The main diffi-
culty in sampling from (6.15) stems from the fact that
the function xTAx is in general non-convex on Sd−1,
making standard techniques for sampling from expo-
nential size spaces inapplicable. It is also easy to see
that acceptance/rejection from the Gaussian distribu-
tion would take exponential time. Another natural ap-
proach would be to map the set SA(r) via stereographic
projection to Rd−1 and use techniques for sampling from
log-concave distributions[11]. However, the density ob-
tain via this transformation is unfortunately not log-
concave. We now present our approach to sampling
from (6.15) in polynomial time. In the some parts of
this section we abuse notation somewhat and use the
variable ε with a different meaning (in particular, in the
definition of an (ε, δ)-mesh).

In what follows we will be interested in estimating
volumes of sets of the form

SA(r) =
{
x ∈ Sd−1 : xT (λ1I −A)x ≤ r2

}
.

for r > 0, where A is a d × d symmetric matrix. We
will use the notation VA(r) = µd−1(SA(r)), where µd−1

is the (d − 1)-dimensional uniform measure on Sd−1.
When the matrix A is fixed, we will drop the subscript
for brevity and simply write V (r). Note that V (r) is
increasing in r and V (0) = 0, V (

√
λ1 − λd) = 1. We

first define a modified version of the Γ distribution:

(6.16) ΓA(t, ε) = Z−1
A · e

−εtVA(
√
t),

where ZA =
∫∞
t=0

e−εtVA(
√
t)dt is a normalizing con-

stant. Note that ΓA(t, ε) is indeed a version of the Γ

distribution, where the volume of a ball of radius t is
replaced by the volume of the set SA(

√
t).

If we have access to estimates of VA(r) as well as
a procedure for sampling uniformly from SA(r), then
sampling from (6.15) can be done as follows:

Algorithm 3 SAMPLE-1D-EXP(A, ε, δ)

1: Sample t ∼ ΓA(ε)
2: Sample X uniformly from SA(

√
t).

We now verify that Algorithm 3 indeed gives (6.15).
Fix x ∈ Sd−1. Then

Pr[X = x] = Z−1
A ·

∫ ∞
xT (λ1I−A)x

εe−εsds

= Z−1
A · e

−εxT (λ1I−A)x ∼ eεx
TAx.

Note that while it appears that (6.16) requires using
arithmetic with at least a polynomial in d number of
bits, we will show below how to obtain estimates of
VA(t) and sample from this distribution in polynomial
time with only O(log d) bit arithmetic. We will then
give a polynomial-time procedure for sampling from an
approximately uniform distribution on SA(

√
t).

Eigenvalue separation. In the rest of the paper we
will assume eigenvalue separation for the matrix A. This
is without loss of generality for the following reason. Let
A =

∑d
i=1 λiuiu

T
i . Let E :=

∑d
i=1(i/d)uiu

T
i , so that

||E||2 ≤ 1. Then one has A+E =
∑d
i=1(λi + i/d)uiu

T
i ,

i.e. λi − λi+1 ≥ 1/d. On the other hand, since our
mechanism is ε-differentially private with respect to the
spectral norm, privacy is preserved since ||E||2 ≤ 1. We
will let ∆ = 1/d denote a lower bound on eigenvalue
separation of A.

Overview of techniques. Before going into the
details of our implementation, we give a brief overview
of our techniques. Our main goal in this section is to
be able to approximate volumes of sets SA(r) for r ∈
[0,
√
λ1 − λd]. The main complication that arises is that

these sets are in general not convex, making standard
techniques inapplicable. In order to overcome this, we
design a scheme that approximates volumes of these sets
recursively by evaluating appropriate integrals.

The main technical contribution here consists of
estimates of the growth rate of the volume of the sets
SA(r) as a function of r. In particular, we show that
one can construct a polynomial size mesh over the
set of possible values of r such that the multiplicative
change in the volume of SA(r) is bounded by eO(ε)

over each interval in the mesh. We show that a mesh
with Õ(d/(∆ε)) points is sufficient for approximating
volumes to precision that is sufficient for our purposes.



Here d is the dimension of the input matrix and ∆ is a
lower bound on eigenvalue separation.

Another important issue that we need to overcome
is ensuring that the recursive estimation of volumes pro-
duces small error even though we are estimating expo-
nentially small volumes using O(log d) bit arithmetic.
This is nontrivial since the estimation procedure will
in general blow up estimation errors made in the re-
cursive calls. However, we will show that a certain
multiplicative-additive error remains properly bounded.
Our main tool here will be estimating the error in terms
of the volume of the intersection of SA(r) with thin slices
of Sd−1. Analysis of this intersection will also be helpful
in proving growth bounds on the volume of SA(r).

Thin slices of Sd−1. Here and below we work
in the eigenbasis of the matrix A. Furthermore, wlog
we restrict our attention to x ∈ Sd−1 with all non-
negative coordinates since the quadratic form of interest
is insensitive to flipping the sign of any coordinate. For
z > 0 let

H(z) =
{
x ∈ Sd−1 : ∃i, |xi| < z

}
,

i.e. the union of slices of Sd−1 sandwiched between
coordinate hyperplanes ±z away from the origin. Also,
let H̄(z) := Sd−1 \ H(z). We will chose a parameter
z∗ = 1/poly(d, λ1 − λd) and use H(z∗) in our estimates
throughout this section. Our procedure for estimating
the volume of SA(r) will have error bounded by the
volume of SA(r) ∩ H(z∗) for all r, where z will be
related to the precision of our arithmetic. This will
allow us to get good estimates of sets SA(r) for value of
r sufficiently larger than z∗. Note that the runtime of
our algorithm will depend on log(1/z∗), which will be
O(log poly(d, λ1 − λd)).

We now show that the volume of SA(r) ∩ H̄(z∗)
is multiplicatively close to the volume of SA(r) ex-
cept when r is tiny. Consider the mapping f(x) =
x+∆
||x+∆||2 , where ∆ = (Z · δ1, δ2

1 , . . . , δ
2
1)T . We will

choose the parameter Z = poly(d, λ1 − λd) and δ1 =

Θ
(

1
(λ1−λd)poly(d)

)
(we will have Z · δ1 = 1/poly(d, λ1−

λd)). Note that the mapping increases all coordinates
by a small amount δ2

1 , moves an appropriate amount of
mass to the first coordinate and normalizes the resulting
vector.

Lemma 6.1. Fix r∗ = 1/poly(d, λ1 − λd). Then for
a sufficiently large Z = poly(d, 1/ε, λ1 − λd) and suf-
ficiently small δ1 = 1/poly(d, 1/ε, λ1−λd) The mapping
f(·) satisfies

(Inclusion) f(SA(r)) ⊆ SA(r) for all r ≥ r∗;

(Small compression) for all W ⊂ Sd−1 one has
vol (f(W )) ≥ (1− ε/d3)vol (W ).

The proof follows by lower bounding the Jacobian of the
transformation f and is deferred to the full version of
the paper due to space constraints. We can now show
that one can restrict attention to SA(r) ∩ H̄(z) if z is
sufficiently small in comparison to r, with only a small
multiplicative loss in volume:

Corollary 6.1. Fix r∗ = 1/poly(d, λ1 − λd). There
exists a choice of z∗ = 1/poly(d, λ1 − λd) and δ1 =
1/poly(d, λ1 − λ2) such that f(Sd−1) ⊆ Sd−1 ∩ H̄(z∗)
and for any r ≥ r∗ one has

µ(SA(r) ∩ H̄(z∗)) ≥ (1− ε/d3)µ(SA(r)).

Proof. By the first property of Lemma 6.1, the function
f maps SA(r) into SA(r)∩ H̄(z∗). By the second prop-
erty we have vol (f(SA(r))) ≥ (1 − ε/d3)vol (SA(r)),
which yields the result since f(SA(r)) ⊆ SA(r)∩H(z∗).

From now on we consider the values of r∗ and z∗ fixed so
that discarding thin slices H(z∗) from the sphere yields
a 1−ε/d3 approximation to the volume of SA(r), r ≥ r∗.

A list of thresholds. Our estimates below will
use several important thresholds for the radius r of the
set SA(r), which dictate the precision of our arithmetic.
We gather these thresholds here in the order in which
they are set and state the relations between them:

A: (rconv) For all r ≤ rconv the set SA(r) is convex
on Sd−1 and is essentially flat, i.e. sampling from
SA(r) can be done easily by sampling from an
appropriate ellipse (see section 6.5)

B: (∆r) Change in the radius that we introduce during
sampling to avoid radii close to eigenvalues of A,
chosen so that V (r + d ·∆r) ∈ (1 ± 1/d2)V (r) for
all r ≥ rconv.

C: (r∗) We will use recursive estimates for the volume
VA(r) for all r ≥ r∗ in the main sampling loop
in Algorithm 5. Furthermore, we need r∗ <
ε∆r/(4d

2
√
λ1 − λd).

D: (z∗) Choose z∗ small enough so that for all r ≥
r∗ one has that µ(SA(r) ∩ H̄(z∗)) ≥ (1 −
ε/d3)µ(SA(r)).

E: (rmin) We will compute recursive estimates of vol-
umes for all r ≥ rmin. Choose rmin so that the vol-
ume of any spherical cap around (1, 0, . . . , 0) that
fits inside H(z∗) is at most rk−1

min.

F: (∆∗) Choose ∆∗ so that for all r ≥ rmin one has
VA(r+ ∆∗) ≤ eεVA(r). This will be used as a weak
estimate on the growth of VA(r) close to eigenvalues
of A to construct an (ε, δ)-mesh for VA(r) (defined
below).



In general, we have ∆∗ < rmin < z∗ < r∗ < ∆r < rconv.
All quantities will be on the order of 1/poly(d, λ1−λd),
contributing a log poly(d, λ1 − λd) term to the runtime.

6.1 Estimating volume growth We now bound
the growth of V (r) as a function of r. We prove
our bounds in two regimes. First, we prove bounds
that depend on the distance between r and the closest
eigenvalues of the matrix A (we prove two inequalities
that depend on the distance to the closest eigenvalue on
the left and right respectively). The third bound works
independently of the distance to eigenvalues, but gives
worse parameters than the first two.

We will need the following simple

Lemma 6.2. Fix an interval I := [λi, λi−1] and assume
that λi−1 − λi ≥ ∆. For each r2 ∈ [λi, λi−1] and for all
δ < 3∆

(λ1−λd)εd one has

1. If r2 > (λi + λi−1)/2, then

V (r) ≤ eεV (
√
r2 + δ(λi−1 − r2)).

2. If (rmin)2 < r2 < (λi + λi−1)/2, then

V (r) ≤ eεV (
√
r2 + δ(r2 − λi)).

Furthermore, one has for all r ∈ [rmin, λ1 − λd]

V (r) ≤ eεV (
√
r2 + ∆∗),

where ∆∗ = 1/poly(d, λ1 − λd).
The proof is deferred to the full version of the paper due
to space constraints.

6.2 Approximating VA(r) In what follows we will
approximate volumes V (r) by expressing them as in-
tegrals of lower dimensional volumes. In order to es-
timate the integrals to a multiplicative factor in poly-
nomial time, we will use the concept of an (ε, δ)-mesh.
An (ε, δ)-mesh is simply a partitioning of the interval
that we will need to integrate over into subintervals such
that the variation of the integrand inside each subinter-
val is small in a multiplicative sense. The bounds from
Lemma 6.2 will be helpful in constructing such meshes
for the functions V (r). Formally,

Definition 6.1. Let I = [a, b] ⊂ R+ be an interval. A
subset M = {m1,m2, . . . ,mn} ⊂ I with a = m0 ≤
m1 ≤ m2 ≤ . . . ≤ mn = b is an (ε, δ)-mesh for a
function f : I → R+ if

1. for all 1 < i+1 ∈ [n] one has for all x ∈ [mi,mi+1]

f(x) ≥ e−ε min{f(mi), f(mi+1)}
and

f(x) ≤ eε max{f(mi), f(mi+1)},

2. m1 −m0 ≤ δ.

We refer to the interval [m0,m1] as the special interval.

It follows from volume estimates that

Lemma 6.3. For any ε > 0 and δ > 0 there ex-
ists an (ε, δ)-mesh for Vk(η) with |M| = Õ(d(λ1 −
λd)/(ε∆ log(1/δ)), where ∆ > 0 is a lower bound on
eigenvalue separation.

Proof. For each i = 1, . . . , d let ηik =√
λi + (1 + 3ε∆

(λ1−λd)·d )k, k = 0, . . . , O( (λ1−λd)·d log(1/δ)
ε∆ ).

Here ∆ is the lower bound on eigenvalue separation. It
follows from Lemma 6.2 that this set of points yields
an (ε, δ)-mesh.

Later we will use the concept of an (ε, δ)-mesh in the
following situation. Suppose that we need to evaluate∫ b

a

f(g(x))h(x)dx

for a function f(x) that is expensive to evaluate (this
will be the volume of an appropriate set SA(r)) an
increasing function g(x) and a ‘well-behaved’ function
h(x). In order to evaluate this integral to a 1 ± ε
multiplicative factor, it is sufficient to have access to
values of f(x) for x belonging to an (ε, δ)-mesh of the
range of g(x), i.e. g([a, b]), as well as a sufficiently fine
mesh for h(x).

Refining a mesh. Let Mf denote an (ε, δ)-mesh
for the function f on [g(a), g(b)], and let Mh denote an
(ε, δ)-mesh for h on [a, b]. We refer to the mesh M :=
g−1(Mf )∪Mh as the refinement of g−1(Mf ) by Mh. It
can be readily verified that M is a (2ε,max{g−1(δ), δ})
mesh for f(g(x))h(x).

6.3 Recursive expression for volumes We now
show how to calculate a sufficiently good approximation
to V (r). For each k = 1, . . . , d let Ak denote the
restriction of A to the k-dimensional subspace spanned
by the first k eigenvectors. For k = 1, . . . , d let

Sk(r) =

{
x ∈ Sk−1 :

k∑
i=2

(λ1 − λi)x2
i ≤ r2

}
,

Vk(r) = µk−1(Sk(r)).

Thus, the sets Sk(r) are the level sets of the Rayleigh
quotient for matrices Ak. For a radius R > 0 we will
also use the notation

Sk(R, r) =

{
x ∈ R · Sk−1 :

k∑
i=2

(λ1 − λi)x2
i ≤ r2

}
,

Vk(R, r) = µk−1(Sk(R, r)),



i.e. the same sets on a sphere of radius R. Note that
Vk(R, r) = Rk−1 ·Vk(1, r/R). Then for each k the value
of Vk(r) is given by

∫ A(r)

−A(r)

Vk−1

(√
1− x2,

√
r2 − (λ1 − λk)x2

) 1√
1− x2

dx

=

∫ A(r)

−A(r)

Vk−1

(√
r2 − (λ1 − λk)x2

1− x2

)(
1− x2

)k−5/2
dx

= 2

∫ A(r)

0

Vk−1 (gr,k(x)) pk−1(x)dx,

(6.17)

where gr,k(x) :=
√

r2−(λ1−λk)x2

1−x2 , pk(x) := (1−x2)k−3/2

and A(r) = r/
√
λ1 − λk. In what follows we will

often omit the second subscript k in gr,k(x) when k is
clear from context. We will be interested in the case
r2 − (λ1 − λk) < 0 since otherwise Vk(r) = vol (Sk−1).

We will need the following simple

Claim 6.2. gr(x) is a decreasing function.

Proof.√
r2 − (λ1 − λk)x2

1− x2
= r

√
1− (x

√
λ1 − λk/r)2

1− x2

= r

√
1− z2

1− γz2
,

where γ ∈ (0, 1] and z ∈ [0, 1]. Thus,√
1− z2

1− γz2
=

√
1− γ−1 + γ−1 − z2

1− γz2

=

√
γ−1 +

1− γ−1

1− γz2
,

which is a decreasing function of z.

The proof of the following claim is immediate

Claim 6.3. There exists an (ε, δ)-mesh for pk(x) on
O((k/ε) log(1/δ)) points.

Proof. Let mi = (1 − ε/k)i for i = 0, . . . , O
(
k
ε log( 1

δ )
)
.

6.4 Estimating volumes We start by introducing
notation. Let rmin < rconv = 1/poly(d, λ1 − λd) denote
a lower bound on the radius of the sets SA(r) that we
will handle recursively. We will handle sets SA(r) for
r ≥ rmin in a recursive fashion, and sample directly
from the appropriate distribution if r < rmin. The

latter will be possible since SA(r) will be convex for
r < rconv = 1/poly(d, λ1 − λd) (see Section 6.5 below).

For each k let M(k) denote an (ε, δ)-mesh for Vk (r),
where r ∈ [0,

√
λ1 − λd], whose existence is guaranteed

by Lemma 6.3. We will calculate estimates V̂k(r) for
r ∈ M(k) recursively. The calculation in dimension k
will rely on the calculation for the smaller dimension.
We will use the relation (6.17)

Vk(r) = 2

∫ r/
√
λ1−λd

0

Vk−1 (gr(x)) pk−1(x)dx.(6.18)

For each k = 2, . . . , d and each rj ∈ M(k) we find

(using binary search) R̂ such that

e−εkVk(rj)− 2k · vol (Sk(rj) ∩Hk(z∗))

≤ R̂k−1

≤ eεkVk(rj) + 2k · vol (Sk(rj) ∩Hk(z∗))

(6.19)

if such R̂ ≥ rmin exists and will approximate Vk(rj) by
0 otherwise.

Definition 6.4. We write R̂(j, k) to denote the esti-
mated radius R̂ in (6.19) for point rj in the mesh M(k).

Also, we abuse notation somewhat by writing R̂(m, k) to
denote R̂(j, k) for m ∈ [mj−1,mj ].

Estimation procedure. We will approximate
(6.18) as follows. For each r ∈M(k) let Mr be a refine-
ment of the mesh for pk−1(x) guaranteed by Claim 6.3
by g−1

r (M(k)). We then let R∗ be the largest R ≥ rmin
such that

q(R) :=
2

R
·
|Mr|∑
i=1

(mi −mi−1)

(
R̂(gr(mi), k − 1)

R

)k−2

· pk−1(mi) ≤ 1.

(6.20)

If R∗ > rmin, we set R̂(j, k) := R∗, Otherwise if q(R∗) <
1/2, we set R̂(j, k) := 0, else R̂(j, k) := R∗(q(R∗))1/k.

Note that this estimation procedure can be used
directly to obtain a polynomial time algorithm for
approximating Vk(r) via a dynamic program, i.e. by
first computing and storing the value of Vk(r) for small
k and r belonging to the appropriate mesh.

Before giving the error analysis we prove some
useful lemmas.

Claim 6.5. For all r ≥ rmin one has∫ 2∆∗

0

Vk−1 (gr(x)) pk−1(x)dx ≥ Vk−1(r)/poly(d, λ1−λd).



Proof. By Lemma 6.2 one has for all r ≥ rmin
that V (r + ∆∗) ≤ eεV (r). Also, we have

gr(x) =
√

r2−(λ1−λk)x2

1−x2 ≥
√
r2 − (λ1 − λk)x2 =

r
√

1− (λ1 − λk)x2/r2 ≈ r − (λ1 − λk)x2/2r.

Thus, for all x ≤
√

2r∆∗/(λ1 − λk) and in partic-
ular for all x ≤ ∆∗ one has V (gr(x)) ≥ eεV (r), which
yields the result.

Choosing rmin. We now choose the value of
rmin. For ε ∈ (0, 1) and a vector v ∈ Sd−1 we refer
to the set {u ∈ Sd−1 : |〈u, v〉| ≥ ε} as the ε-cap
around v, denoted by Cε(v). By Fact 3.1 one has
that vol (C√

1−(z∗)2
(e1)) ≥ 1

2 (z∗/2)d−1, where e1 =

(1, 0, . . . , 0). We now let rmin = z∗/4 and obtain

Claim 6.6. If Vk(r) ≤ (rmin)k−1, then Sk(r) ⊂ H(z∗).

Finally, the following claim is immediate from
Claim 6.2

Claim 6.7. The function vol (Sk−1(gr(x)) ∩
H(z∗))pk−1(x) is non-increasing in x.

Proof. By Claim 6.2 we have Sk−1(gr(x)) ∩ H(z∗) ⊆
Sk−1(gr(y)) ∩ H(z∗) if x ≥ y. Since pk−1(x) is non-
increasing, this completes the proof.

Our model of roundoff errors is fixed precision
arithmetic with O(log poly(d, λ1 − λd)) bits, i.e. lower
order bits are lost in arithmetic operations. Since all
arithmetic operations are performed on non-negative
numbers, we only obtain underestimates of volumes due
to loss of bits in the arithmetic2. We prove

Lemma 6.4. Suppose that the estimation procedure in
(6.20) uses (ε, δ)-meshes with sufficiently small δ =
1/poly(d, λ1 − λd) < z∗. Then the procedure outputs
an approximation V̂k(r) to Vk(r) such that

e−εkVk(r)−2k ·vol (Sk(r)∩Hk(z∗)) ≤ V̂k(r) ≤ eεkVk(r)

for all r ≥ 0. In particular, we have e−2εkV (r) ≤
V̂ (r) ≤ e2εkV (r) for r ≥ rmin.

Proof. It will be convenient to use the notation ∆m
i =

mi −mi−1. The proof is by induction on k.
Base:k = 2 Since the values of Vk(r) are calculated

analytically, the conclusion of the lemma follows with ε
approximately equal to machine precision.

2While we prefer to state Lemma 6.4 in this form, it can be
easily seen that similar bounds with vol (Sk(r)∩H(z∗)) appearing

in both upper and lower bounds follow by the same argument
when rounding up can also occur.

Inductive step:(k− 1)→ k Consider the approx-
imation for Vk(r) for some r ≥ 0. First note that one
has (R̂(i, k)/R)k−1 ≤ poly(d, λ1−λd) by Claim 6.5. Let
Mr denote a mesh for pk−1(·) refined by g−1

r (M(k−1)).
Recall that the algorithm uses the approximation

(6.20)

q̂(R) :=
2

R

|Mr|∑
i=1

∆m
i

(
R̂(gr(mi), k − 1)

R

)k−2

· pk−1(mi),

(6.21)

Fix i = 1, . . . , |Mr| and let I := [α, β] denote the
interval that [mi−1,mi] belongs to in the mesh M(k−1).
We consider two cases, depending on whether I is the
special interval in M(k − 1).

Case 1. Suppose that I is the special interval.
Then R̂(gr(mi), k − 1) = 0. On the other hand,
(6.22)∫
⋃
I is special I

Vk−1(gr(s))pk−1(s)ds ≤ vol (Sk(r)∩H(z∗)).

since δ < z∗ by assumption of the lemma (recall that δ
is the parameter of the meshes that we use).

Case 2. Suppose that I is not a special interval.
By the inductive hypothesis

(R̂(gr(mi), k))k−2 ≥ e−ε(k−1)Vk−1(gr(mi))

− 2(k − 1) · vol (Sk−1(gr(mi)) ∩H(z∗))

and

(R̂(gr(mi), k))k−2 ≤ eε(k−1)Vk−1(gr(mi)).

(6.23)

By definition of an (ε, δ)-mesh we have for all s ∈
[mi−1,mi]

e−εVk−1(gr(mi−1))pk−1(mi−1)

≤ Vk−1(gr(s))pk−1(s) ≤
eεVk−1(gr(mi))pk−1(mi).

(6.24)

Hence,

e−ε∆m
i Vk−1(gr(mi−1))pk−1(mi−1)

≤
∫ mi

mi−1

Vk−1(gr(s))pk−1(s)ds

≤ eε∆m
i Vk−1(gr(mi−1))pk−1(mi−1).



We have

|Mr|∑
i=1

∆m
i (R̂(gr(mi), k − 1))k−2pk−1(mi)

≥
|Mr|∑
i=1

∆m
i (e−εkVk−1(gr(mi))

− 2(k − 1)vol (Sk−1(gr(mi)) ∩H(z∗)))pk−1(mi)

≥ e−εk
(∫ r/

√
λ1−λk

0

Vk−1(gr(x))pk−1(x)dx

)
− L,

(6.25)

where the value of L is given by

2(k − 1)

|Mr|∑
i=1

∆m
i vol (Sk−1(gr(mi)) ∩H(z∗)))pk−1(mi).

We now bound L. By Claim 6.2 the function
vol (Sk−1(gr(x)) ∩ H(z∗))pk−1(x) in non-increasing in
x, and hence

|M(k)|∑
i=1

∆m
i vol (Sk−1(gr(mi)) ∩H(z∗))pk−1(mi)

≤
∫ z/

√
λ1−λd

0

vol (Sk−1(gr(x)) ∩H(z∗))pk−1(x)dx

≤ vol (Sk(r) ∩H(z∗))

(6.26)

since the lhs uses the value of the function at the right
endpoint of each interval. Thus,

L ≤ 2(k − 1)vol (Sk(r) ∩H(z∗)),

showing that

|Mr|∑
i=1

∆m
i (R̂(gr(mi), k − 1))k−2pk−1(mi)

≥ e−εk
(∫ r/

√
λ1−λk

0

Vk−1(gr(x))pk−1(x)dx

)
− 2(k − 1)vol (Sk(r) ∩H(z∗)).

A similar calculation shows that

|Mr|∑
i=1

∆m
i (R̂(gr(mi), k − 1))k−2pk−1(mi)

≤ eεk
(∫ r/

√
λ1−λk

0

Vk−1(gr(x))pk−1(x)dx

)
.

Finally, we bound roundoff errors that arise from
a O(log poly(d, λ1 − λd))-precision evaluation of (6.21).

There are |Mr| intervals of total length 1, and the
maximum value of the integrand in each interval is
at most Vk(r). Thus, O(δ|Mr|)Vk(r) volume could
have been lost to roundoff errors. Choosing δ =
1/poly(d, λ1 − λd) small enough ensures that this lost
volume is at most vol (Sk(r) ∩H(z∗))/2 by Claim 6.5.

Let R∗ denote the smallest R ≥ rmin such that
q̂(R) ≤ 1. We now consider two cases:

(A) Suppose that q̂(R∗) < 1/2, and in particular
R∗ ≤ rmin. Putting (6.22) and (6.26) together with
Claim 6.5, we get

Vk(r) ≤ eεk(q̂(R∗)(R∗)k−1

+ 2(k − 1)vol (Sk−1(r) ∩H(z∗))))

+ vol (Sk(r) ∩H(z∗)) + Vk(r)δ|M(k)|
< 2keεkvol (Sk(r) ∩H(z∗))),

(6.27)

which proves the inductive step since the estimation
procedure approximates Vk(r) by 0 in this case.

(B) Suppose that q̂(R∗) ≥ 1/2. In this case we have
that

δ|M|poly(d, λ1 − λd) ≤ εq̂(R∗),

for a sufficiently small δ = O(1/poly(d, λ1 − λd)),
and hence setting R̂(i, k) to R · (q̂(R∗))1/(k−1)

satisfies

(R̂(i, k))k ≥ e−εkVk(r)− 2k · vol (Sk(r) ∩H(z∗))

(R̂(i, k))k ≤ eεkVk(r)

as required.

We will later show how this recursive estimation pro-
cedure allows us to sample almost uniformly from the
sets SA(r). However, before we do that, we need to re-
move the restriction of sufficiently large radius that is
imposed in Lemma 6.4. This turns out to be quite sim-
ple, since for sufficiently small radius r the sets SA(r)
are well approximated by ellipses under an appropriate
projection, which we show in the next section.

6.5 Sampling for small volumes In this section we
show how to sample nearly uniformly from the set Sk(r)
for sufficiently small r < rconv = 1/poly(d, λ1−λd). We
start by showing that the sets Sk(r) are convex (with
respect to geodesics on Sd−1) for sufficiently small r.
For all r <

√
λ1 − λ2 define f : SA(r)→ Rd−1 by

f(x1,x) :=
x

x1
.



Note that this is well-defined for (x1,x) ∈ SA(r), r <√
λ1 − λ2 since one necessarily has x1 > 0. Let z =

f((x1,x)). One has

||z|| =
√

1− x2
1

x1
=
√

1/x2
1 − 1,

so

x1 =
1√

1 + ||z||2
.

Thus,

f−1(z) =
1√

1 + ||z||2
(1, z).

Thus, z ∈ f(SA(r)) iff

(6.28)
d∑
i=2

(λ1 − λi)z2
i ≤ r2(1 + ||z||2),

i.e.

(6.29) zT
(
diag(λ1 − λ2, . . . , λ1 − λd)− I · r2

)
z ≤ r2,

which is a convex set whenever r2 ≤ λ1 − λ2. Indeed,
consider the 3-dimensional plane spanned by 0, z1, z2.
The line segment connecting z1 and z2 can be projected
onto the sphere to form a geodesic, implying convexity
of f−1(SA(η)). For future reference we let

E(r) = {z ∈ Rd−1 :

zT
(
diag(λ1 − λ2, . . . , λ1 − λd)− I · r2

)
z ≤ r2}

(6.30)

We have proved

Lemma 6.5. For a symmetric matrix A for all r ≤√
λ1 − λ2 the sets SA(r) are convex.

It will be convenient to use

Definition 6.8. A distribution with pdf p(x),x ∈ Sk
on a measurable subset A ⊆ Sk is eε-uniform if p(x) ∈
e±ε/vol (A) for all x ∈ A.

A more careful analysis of the mapping that we
just defined reveals that the sets SA(r) are also quite
flat, which yields a simple algorithm for sampling and
volume estimation:

Lemma 6.6. For sufficiently small η > 0

1. A eO(η)-uniform distribution on SA(r) for r ≤
rconv = 1/poly(d, λ1 − λd) :=

√
(λ1 − λ2)η/d can

be obtained by sampling uniformly from an ellipse.

2. for r < rconv one has vol d−1E(r)
vol (SA(r)) ∈ e

±O(η).

Proof. We only give an outline of the proof, defer-
ring the details to the full version. Let rconv =√

(λ1 − λ2)η/d, where η > 0 is a precision parame-

ter. For each x ∈ SA(r) one has
∑d
i=2(λ1 − λi)x

2
i ≤

(λ1 − λ2)η/d. Thus, one has
∑d
i=2 x

2
i ≤ η/d, i.e.

x1 ≥
√

1− η/d ≥ 1− 2η/d for sufficiently small η < 1.
Parameterizing the surface of the sphere using co-

ordinates (x2, x3, . . . , xd), we get that the projection
(x1,x) → x/x1 changes volumes by at most a e±O(η)

factor, implying that the obtained distribution is within
this multiplicative factor of uniform. The approxima-
tion for volume follows immediately.

6.6 Sampling from Vk−1(gr(x))pk−1(x) for small
x In this section we show how to sample xk from the
distribution

q(x) ∼ Vk−1(gr(x))pk−1(x), xk ∈ [L, r/
√
λ1 − λk]

when r <
√
λ1 − λk − ∆r and gr(L) ≤ r∗. Here

∆r ≥ 1/poly(d, λ1 − λd) is the parameter using to
shift the radius r away from eigenvalues in Algorithm 5
below. Intuitively, this is the regime where Vk−1

behaves essentially like a (k−2)-dimensional ball, which
we exploit to get a simple sampling algorithm. We will
crucially use the assumption r∗ < ε∆r

4d2
√
λ1−λd

.

Recall that gr(x) =
√

r2−(λ1−λk)x2

1−x2 . We first get

a convenient and sufficiently accurate approximation to
the function gr(x). Let

(6.31) x∗ := r/
√
λ1 − λk < 1−∆r/

√
λ1 − λd.

Write x =
√

(x∗)2 − ξ2, so that

gr(x) =

√
r2 − (λ1 − λk)x2

1− x2

= (λ1 − λk)1/2 ·

√
ξ2

1− (x∗)2 + ξ2

(6.32)

Since gr(L) ≤ r∗, we have ξ ≤ r∗/
√
λ1 − λd ≤ ε(1−

(x∗)2)/d2 by (6.32) together with (6.31). Furthermore,
we have by (6.32) that

gr(x) = (λ1 − λk)1/2 ·

√
ξ2

1− (x∗)2 + ξ2

∈

√
(1± ε/d2)

λ1 − λk
1− (x∗)2

· ξ.

On the other hand, since gr(x) ≤ r ≤ rconv, we have by
Lemma 6.6

(6.33) Vk−1(gr(x)) ∈ (1± ε/d) · ck(gr(x))k−2,



where ck is a constant that depends only on the dimen-
sion k.

Since ξ =
√

(x∗)2 − x2,

Vk−1(gr(x))pk−1(x) ∼ ξk−2 · (1− (x∗)2 − ξ2)(k−3)/2

∈ (1± ε/d) · ξk−2.

(6.34)

We need to sample ξ from distribution (6.34) subject
to
√

(x∗)2 − ξ2 ≥ L, i.e. ξ ≤
√
L2 − (x∗)2. Sampling

from the distribution with pdf

f(ξ) =
ξk−2∫√L2−(x∗)2

0
sk−2ds

can be easily done in O(k) time using accep-
tance/rejection from the uniform distribution. We refer
to this sampling procedure as

Algorithm 4 SAMPLE-CORNER(k, r, L)

1: Sample xk ≥ L from the distribution in (6.34).
2: Sample a uniformly random point (x1, . . . , xk−1)

from E(gr(xk)).

6.7 Uniform sampling We now turn to the problem
of uniform sampling for general r. As before, let M(k)
denote the ε-mesh for Vk(r). As before, for fixed k let
Mr denote a mesh for the function Vk−1(gr(x))pk−1(x).

Outline of the sampling process. We now give
the algorithm for sampling from SA(r) using our volume
estimates. The procedure is very simple: in order to
sample x = (x1, . . . , xd) uniformly from SA(r) it is
sufficient to sample the xd ∼ Vd−1(gr(xd))pd−1(xd),
and then recursively sample x̄ = (x1, . . . , xd−1) from
Sd−1(gr(xd)). Since we have obtained multiplicative
approximations of the respective volumes above, the
multiplicative error in the distribution that we obtain
will be at most raised to power d, i.e. the number of
steps in the recursion, which we can handle by choosing
our precision appropriately. One issue that arises is that
this procedure may require sampling from Sk(r) with r
smaller than rmin, but we do not have estimates for
such small volumes. However, the convexity of the sets
Sk(r) for such small r enables us to use the procedure
SAMPLE-CORNER described in the previous section.

Thus, our sampling procedure consists of two steps.
First, we invoke a recursive sampling procedure that
uses volume estimates (6.20) to produce (possibly all)
coordinates of the output point. This procedure will ter-
minate without producing all coordinates only if sam-
pling from a set of very small radius is required. If that
happens, we sample the remaining coordinates using the

procedure SAMPLE-CORNER that we described in the
previous section. The procedure SAMPLE-REC (Algo-
rithm 5) does exactly that, and outputs two vectors x
and z, which correspond to the part of the input sam-
pled by the first and last method respectively (note that
z may be empty). We then convert x and z into a
point in Sd−1 in the procedure SAMPLE-OUTER (Al-
gorithm 6).

This high level overview overlooks two prob-
lems. First, we would like to use arithmetic with
log poly(d, λ1 − λd) bits, which is not entirely straight-
forward since volumes are in general exponentially small
in d. However, we show that this can be easily over-
come by splitting the set of possible values for x into
a nested collection of intervals so that each next inter-
vals contains half of the probability mass of its enclosing
interval. A more delicate problem is the problem of nu-
merical stability. Note that roundoff errors in the radius
r invariably either avoid certain points in the set SA(r)
or output points from outside of SA(r) with positive
probability, which is clearly not differentially private.
However, we will show later that the distribution that
we obtain, although not strictly uniform, is still suffi-
ciently good for sampling.

Geometric decomposition. Suppose that we
need to sample uniformly from Vk(r). As before, let
Mr is a refinement of the mesh for pk−1(x) guaranteed
by Claim 6.3 by g−1

r (M(k)). For all i = 1, . . . , |Mr| let

Σi(R) :=

2

R

|Mr|∑
s=i

(ms −ms−1)

(
R̂(g(ms), k − 1)

R

)k−2

pk−1(ms)

for R ≥ rmin.
We now partition intervals of the mesh Mr into

groups containing a geometrically decaying fraction of
mass. Let R1 be the smallest such that R1 ≥ rconv
and Σ1(R1) ≥ 1, and let i1 be the largest such that
Σi1(R1) ≥ 1/2. Similarly, for each j = 2, . . . , s let Rj
be the smallest such that Rj ≥ rconv and Σij−1(Rj) ≤ 1,
and let ij be the largest such that Σij (Rj) ≥ 1/2. If no
Rj ≥ rconv satisfies this condition, we stop the process
and let s = j − 1.

Note that s = O(d log poly(d, λ1 − λd)) since only
a constant fraction of probability mass remains at each

step, and the volume of a sphere of radius rconv is r
Ω(d)
conv.

For convenience we let i0 = |Mr|. For each j = 1, . . . , s
let Ij = [mij−1 ,mij ]. The algorithm is specified more
formally as Algorithm 5.

Precision in Algorithm 6. Note that multiplica-
tion in lines 3 and 5 can be done with O(log(d)) size
arithmetic. Indeed, let uk, uk−1, . . . , uj denote the co-



ordinates sampled in the first k − j + 1 steps. Then

k∑
i=j

x2
i =

k∑
i=j

u2
i

k∏
l=i+1

(1− u2
l ) ≥ 1−

k∏
l=j

(1− u2
l ).

Thus, for any u1, . . . , uj−1 one has

d∑
i=1

(λ1 − λi)x2
i ≥

1−
k∏
l=j

(1− u2
l )

 (λ1 − λj).

Hence, if
∏k
l=j(1 − u2

l ) < ∆/(λ1 − λj), where ∆ =
Ω(1/poly(d)) is a lower bound on eigenvalue separation,
then one necessarily has r2 ≥ λ1 − λj−1, and hence
the next step in Algorithm 5 samples uniformly from a
sphere, i.e. j is the last index that belongs to x.

Remark 6.9. Note that in Algorithm 5, we always en-
sure that the desired radius r is away from any eigen-
value by at least ∆r = 1/poly(d, λ1−λd)3. Thus, we can
assume that gr(x) = 0 for x = x∗ < 1 − 1/poly(d, λ1 −
λd), which we use in the procedure SAMPLE-CORNER.

Note that at this point we do not prove that Al-
gorithm 5 produces an ε-approximation to the uniform
distribution over the set SA(r). In fact, this is not the
case due to the change in the radius in line 2. However,
we show next that using this algorithm as a subroutine
in sampling from the exponential distribution yields a
ε-approximation, as required.

Since Algorithm 5 does not output a point on a
sphere, we now specify an outer sampling procedure
that corrects that. This procedure is given by Algo-
rithm 6.

6.8 Sampling from the modified Γ distribution
Recall that in order to sample from the exponential
distribution, it is sufficient to sample t ∝ e−εtVA(

√
t),

and then sample uniformly from SA(t).
Equipped with multiplicative approximations of

VA(
√
t), this sampling can be implemented similarly to

the sampling of coordinates in Algorithm 5. One differ-
ence is that the function e−εtVA(

√
t) is no longer mono-

tone in t, but this can be easily handled by bucketing
intervals of the mesh by the values of the function. Al-
ternatively, a simple calculation reveals that evaluating
VA(
√
t) over a regular grid with step size O(ε/d) will not

introduce more than a eO(ε) multiplicative distortion to
the output probability distribution over x ∈ Sd−1.

3Note that this perturbation not only makes the sampling

non-uniform, but in fact makes the produced density function
0 at points where it should be positive under uniform sampling.
While this seems to contradict ε-differential privacy, we will show

that the resulting distribution is still ε-close to exponential in the
numerical stability section below.

Algorithm 5 Uniform sampling from Vk(r):SAMPLE-
REC(k, r)

1: If r < rconv then z← SAMPLE-CORNER(k, r, 0),
return (z, x).

2: i← k + 1
3: for k = d downto 2 do
4: If |r −

√
λ1 − λj | < ∆r for some j, set r ←√

λ1 − λj + ∆r.

5: If r >
√
λ1 − λk return a random vector in Sk−1.

6: for j = 1 to s do
7: if Ber(0/1,Σij (Rj)/Σij−1

(Rj)) = 0 then

8: Pick xk ∼ V̂k−1(gr(x))pk−1(x) from Ij .
9: r ← gr(xk)

10: i← i− 1
11: break
12: else
13: if j = s then
14: z← SAMPLE-CORNER(k, r, xk).
15: end if
16: break
17: end if
18: end for
19: end for
20: return (z,x)

6.9 Numerical stability In this section we show
that our approximation to the exponential distribution
produces a ε-differentially private distribution even in
the presence of roundoff errors. As mentioned before,
the procedure in Algorithm 5 does not produce the
uniform distribution over the appropriate level set due
to the shift in the value of r around eigenvalues of
the matrix. We now quantify the distribution that
is produced, and then show that this approximate
distribution is sufficient to ensure ε-differential privacy.
We assume that ∆r is chosen to be small enough so that

(6.35) Vk(r + d ·∆r) ∈ (1± ε/d)Vk(r)

for all r ≥ rconv and k = 2, . . . , d, which is possible by
the bounds in Lemma 6.2.

Algorithm 6 Outer sampling step: SAMPLE-
OUTER(k, r)

1: (z,u)← SAMPLE-REC(k, r)
2: for j = 1 to length(u) do

3: xj ← uj ·
∏k
l=j+1

√
1− u2

l .
4: end for
5: z← z ·

∏k
l=1

√
1− u2

l . return (z,x)

We will use the notation dµk−1(r) to denote the
uniform k − 1 dimensional measure on r · Sk, a sphere



of radius r in Rk. We will denote µk := µk(1).

Lemma 6.7. Let p(x, r), x ∈ Sd−1 denote the probability
density function produced by Algorithm 5 when invoked
to sample uniformly from SA(r). Then

1. p(x, r) = 0 for all x 6∈ SA(r + ∆r);

2. p(x, r) ≥ e−O(εd2 log(1/rmin)) dµk−1/VA(r) for all
x ∈ SA(r);

3. p(x, r) ≤ eO(εd2 log(1/rmin)) dµk−1/VA(r) for all x ∈
Sd−1.

Proof. The proof is by induction on the variable k in
Algorithm 5. We prove that for any k = 2, . . . , d the k
last iterations of the main loop in Algorithm 5 output
a point x ∈ Sk−1 with distribution pk(x, r) such that

1. pk(x, r) = 0 for all x 6∈ Sk(r + k ·∆r);

2. pk(x, r) ≥ e−O(εkd log(1/rmin)) dµk−1/Vk(r) for all
x ∈ Sk(r);

3. pk(x, r) ≤ eO(εkd log(1/rmin)) dµk−1/Vk(r) for all x ∈
Sd−1,

The first property follows immediately, since at most
∆r is added to r at each iteration.

Base:k = 2 The conditions are satisfied with ∆r equal
to machine precision.

Inductive step: k → k + 1 Write a point x ∈ Sk as
x = (x0, xk), where x0 ∈

√
1− x2

k · Sk−2. By
the inductive hypothesis pk−1(x, r) = 0 if x0 6∈
Sk−1(gr(xk)+(k−1)∆r) and belongs to the interval[

e−O(ε(k−1)d log(1/rmin))

Vk−1(gr(xk))
,
eO(ε(k−1)d log(1/rmin))

Vk−1(gr(xk))

]
otherwise.

Thus, the probability that xk ∈ [a, a + da]
is output in Algorithm 5 is between
e−O(εd log(1/rmin)) · V̂k−1(gr(a))pk−1(a)da and
eO(εd log(1/rmin)) · V̂k−1(gr+∆r

(a))pk−1(a)da. The
bound of eO(εd log(1/rmin)) on the multiplicative
error follows from the fact that the loop in line 6
can only be executed O(d log(1/rmin)) times, each
of which accumulates a multiplicative error of at
most eε.

Let r′ ∈ (r, r+ ∆r) denote the modified radius. By
the inductive hypothesis we have that

1. pk−1(x|xk = a) = 0 when x0 6∈ Sk−1(gr′+(k−
1)∆r);

2.

pk−1(x|xk = a) ≥ e−O(ε(k−1)d log(1/rmin))

vol (
√

1− a2 · Sk−1(gr′))

for x0 ∈ Sk−1(gr′);

3.

pk−1(x|xk = a) ≤ eO(ε(k−1)d log(1/rmin))

vol (
√

1− a2 · Sk−1(gr′))

for all x0.

Integrating over all a, we get that pk(x) =
1

Vk(r′)

∫ 1

0
pk−1(x|xk = a)V̂k−1(gr′(a))pk−1(a)da be-

longs to the interval

[
e−O(εkd log(1/rmin)), eO(εkd log(1/rmin))

]
·

dµk−2(
√

1− x2
k)dxk

Vk(r′)
√

1− x2
k

= dµk−1/Vk(r)

as required.

It now follows easily that the distribution produced
by our algorithm is ε-differentially private:

Lemma 6.8. Let p̂(x),x ∈ Sd−1 denote the distribu-
tion produced by using Algorithm 5 to sample from
the exponential distribution. Then p̂(x) is within a

e±O(εd2 log(1/rmin)) factor of the distribution achieved by
the exponential mechanism.

Proof. By Lemma 6.7 we have that x is output with
probability at least∫ ∞

xT (λ1I−A)x

e−εse−O(εd2 log(1/rmin))ds

≥ e−O(εd2 log(1/rmin)) · e−εx
T (λ1I−A)x.

and at most∫ ∞
xT (λ1I−A)x−∆∗

e−εseO(εd2 log(1/rmin))ds

= e−O(d∆∗+εd2 log(1/rmin))e−εx
T (λ1I−A)x

= e−O(εd2 log(1/rmin))e−εx
T (λ1I−A)x.

We have proved

Theorem 6.10. There exists a polynomial time al-
gorithm for sampling from the distribution given by
the exponential mechanism. The algorithm takes time
Õ(d6/ε) when invoked on a d× d matrix.



Proof. We set ε′ = Θ(ε/(d2 log(1/rmin))) to bring the
multiplicative approximation error in Lemma 6.7 to at
most eε. This yields a mesh of size Õ((λ1−λd)d5/ε) by
Lemma 6.3. Thus, the estimation procedure (6.20) and
Algorithm 5 take Õ((λ1 − λd)d6/ε) time.

Remark 6.11. It is interesting to note that due to the
strong notions of privacy that we use in this work,
namely spectral privacy, the following preprocessing step
is feasible. Let A denote the input matrix and denote
the eigenvalues by λ1 ≥ λ2 ≥ . . . ≥ λd ≥ 0. Suppose
further that most eigenvalues are close to zero, e.g.
λj ≤ δ for j > deff , where deff is the effective
dimension. Then modifying A be making all eigenvalues
λj , j > deff zero only loses δ in the privacy guarantees
and simplifies geometry of A, making Algorithm 5 run
in time poly(deff ).
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