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Abstract

The problem of computing the Fourier Transform of a signal whose spectrum is dominated by a small
number k of frequencies quickly and using a small number of samples of the signal in time domain (the
Sparse FFT problem) has received significant attention recently. It is known how to approximately compute
the k-sparse Fourier transform in ≈ k log2 n time [Hassanieh et al’STOC’12], or using the optimal number
O(k log n) of samples [Indyk et al’FOCS’14] in time domain, or come within (log log n)O(1) factors of both
these bounds simultaneously, but no algorithm achieving the optimal O(k log n) bound in sublinear time is
known.

At a high level, sublinear time Sparse FFT algorithms operate by ‘hashing’ the spectrum of the input
signal into ≈ k ‘buckets’, identifying frequencies that are ‘isolated’ in their buckets, subtracting them from
the signal and repeating until the entire signal is recovered. The notion of ‘isolation’ in a ‘bucket’, inspired
by applications of hashing in sparse recovery with arbitrary linear measurements, has been the main tool
in the analysis of Fourier hashing schemes in the literature. However, Fourier hashing schemes, which are
implemented via filtering, tend to be ‘noisy’ in the sense that a frequency that hashes into a bucket contributes
a non-negligible amount to neighboring buckets. This leakage to neighboring buckets makes identification and
estimation challenging, and the standard analysis based on isolation becomes difficult to use without losing
ω(1) factors in sample complexity.

In this paper we propose a new technique for analysing noisy hashing schemes that arise in Sparse FFT,
which we refer to as isolation on average. We apply this technique to two problems in Sparse FFT: estimating
the values of a list of frequencies using few samples and computing Sparse FFT itself, achieving sample-
optimal results in k logO(1) n time for both. We feel that our approach will likely be of interest in designing
Fourier sampling schemes for more general settings (e.g. model based Sparse FFT).
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1 Introduction

The Discrete Fourier Transform (DFT) is a fundamental computational primitive with numerous applications
in areas such as digital signal processing, medical imaging and data analysis as a whole. The fastest known
algorithm for computing the Discrete Fourier Transform of a signal of length n is the FFT algorithm, designed
by Cooley and Tukey in 1965. The efficiency of FFT, which runs in time O(n log n) on any signal of length
n, has contributed significantly to its popularity as a computational primitive, making FFT one of the top 10
most important algorithms of the 20th century [Cip00]. However, computational efficiency of FFT is not the
only reason why the Fourier transform emerges in many applications: in signal processing the Fourier basis is
often a convenient way of representing signals since it concentrates their energy on a few components, allowing
compression (which is the rationale behind image and video compression schemes such as JPEG and MPEG),
and in medical imaging applications such as MRI the Fourier transform captures the physics of the measurement
process (the problem of reconstructing an image from MRI data is exactly the problem of reconstructing a signal
x from Fourier measurements of x). While FFT works for worst case signals, signals arising in practice often
exhibit structure that can be exploited to speed up the computation of the Fourier transform. For example, it
is often the case that most of the energy of these signals is concentrated on a small number of components in
Fourier domain. In other words, the signals that arise in applications are often sparse (have a small number of
nonzeros) or approximately sparse (can be well approximated by a small number of dominant coefficients) in
the Fourier domain. This motivates the question of (approximately) computing the Fourier transform of a signal
that is (approximately) sparse in Fourier domain using few samples of the signal in time domain (i.e. with small
sample complexity) and small runtime. We note that while runtime is a natural parameter to optimize, sample
complexity is at least as important in applications such as medical imaging, where sample complexity governs
the measurement complexity of the imaging process.

In this paper we consider the problem of computing a sparse approximation to a signal x ∈ Cn given access to
its Fourier transform x̂ ∈ Cn, which is equivalent to the problem above (since the inverse Fourier transform only
differs from the Fourier transform by a conjugation), but leads to somewhat more compact notation. This problem
has been studied extensively. The seminal work of [CT06, RV08] in compressed sensing first showed that length
n signals with at most k Fourier coefficients can be recovered using only k logO(1) n samples in time domain. The
recovery algorithms are based on linear programming and run in time polynomial in n. A different line of research
on the Sparse Fourier Transform (Sparse FFT), originating from computational complexity and learning theory,
has resulted in algorithms that use k logO(1) n samples and k logO(1) n runtime (i.e. the runtime is sublinear in the
length of the input signal). Many such algorithms have been proposed in the literature, including [GL89, KM91,
Man92, GGI+02, AGS03, GMS05, Iwe10, Aka10, HIKP12b, HIKP12a, LWC12, BCG+12, HAKI12, PR13,
HKPV13, IKP14, IK14, Kap16, PS15, CKPS16]. Nevertheless, despite significant progress that has recently been
achieved, important gaps in our understanding of sample and time efficient recovery from Fourier measurements
remain. We address some of these gaps in this work.

The main contribution of this work is a new technique for designing and analyzing sample efficient sublinear
time Sparse FFT algorithms. We refer to this technique as isolation on average. We apply our technique to two
problems in the area of Sparse Fourier Transform computation, namely estimation and recovery with Fourier
measurements.

Our results: estimation In the first problem we are given a subset S ⊆ [n] of locations in the time domain and
are asked to estimate xS from a few values of x̂. Formally, we would like the algorithm to output a signal x′ with
supp(x′) ⊆ S such that

‖x− x′‖22 ≤ (1 + ε)‖x[n]\S‖22 (1)

In other words, we would like to output an estimate x′ of x that is correct up to the ’noise’, i.e. elements outside
of S (to achieve (1), it suffices to ensure that ‖(x− x′)S‖22 ≤ ε‖x[n]\S‖22). Note that in some of the applications
described above one often has a good prior on which coefficients of x are the dominant ones, and a natural
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question is whether one can recover the values of xS quickly, using few samples, and in a noise robust manner,
i.e. solve (1). Our main result on estimation is Algorithm 2 (presented in Section 4) together with

Theorem 1.1. For every ε ∈ (1/n, 1), δ ∈ (0, 1/2), x ∈ Cn and every integer k ≥ 1, any S ⊆ [n], |S| = k,
if ||x||∞ ≤ R∗ · ||x[n]\S ||2/

√
k,R∗ = nO(1), an invocation of ESTIMATE(x̂, S, k, ε, R∗) (Algorithm 2) returns

χ∗ ∈ Cn such that
||(x− χ∗)S ||22 ≤ ε · ||x[n]\S ||22

using Oδ(1
εk) samples and Oδ(1

εk log3+δ n) time with at least 4/5 success probability.

A linear sketch with O(k) measurements and O(k) recovery time that provides the guarantee in (1) was
presented in [Pri11], but this solution uses general linear measurements as opposed to the more restrictive Fourier
measurements. To the best of our knowledge, the estimation problem with guarantees (1) has not been studied
explicitly in the setting of Fourier measurements. We now describe ‘folklore’ results and give a comparison with
Theorem 1.1.

Estimation from Fourier measurements: least squares Recall that the problem is as follows: given a set
S ⊆ [n], estimate xS from a small number of Fourier measurements of x, i.e. from a small number of accesses
to x̂. A popular approach is to select a subset T ⊆ [n] of frequencies and solve the least squares problem

min
y∈Cn,supp y⊆S

||ŷT − x̂T ||22. (2)

A natural choice is to let T be a (multi)set of frequencies selected uniformly at random with replacement from [n].
The solution to (2) is then provided by the normal equations yOPT = (F ∗T,SFT,S)−1F ∗T,Sx, where Fx ∈ Cn is the
Fourier transform of x, and FT,S is the T×S submatrix of F scaled by

√
n/|T |. Writing x = xS+x[n]\S , so that

x̂T = FT,SxS+FT,[n]\Sx[n]\S , we get yOPT = (F ∗T,SFT,S)−1F ∗T,S x̂T = xS+(F ∗T,SFT,S)−1F ∗T,SFT,[n]\Sx[n]\S ,
where the second term corresponds to the estimation error due to tail noise. Thus, if T is such that 1

2IS �
F ∗T,SFT,S � 2IS , then ||yOPT − x||2 = O(1) · ||x[n]\S ||2 with constant probability. A simple application
of matrix Chernoff bounds shows that the spectral bound 1

2IS � F ∗T,SFT,S � 2IS is satisfied when |T | ≥
C|S| log |S| for an absolute constant C. Note that the analysis above is tight, as for certain choices of S ⊆ [n]
at least Ω(|S| log |S|) samples are needed even to ensure that F ∗S,TFS,T is invertible. For example, suppose that
S = (n/k) · [k], where k divides n, so that the signal x̂ is k-periodic. In this case x only becomes recoverable
from x̂T as long as T contains at least one element of every conjugacy class of Zn modulo k, and by a Coupon
Collection argument Ω(k log k) samples are needed to ensure that this is the case. To summarize, the sample
complexity of least squares with a random T is at least Ω(k log k). Another significant disadvantage of this
approach is that solving the least squares problem requires at least Ω(k2) runtime using current techniques. Of
course, given the knowledge of S one may be able to design a better than random set T , but no such construction
is known for general supports S. As Theorem 1.1 shows, there exists a distribution over sampling patterns T that
is oblivious to S and allows decoding from O(k) samples in k logO(1) n time.

Estimation from Fourier measurements: Fourier hashing Estimation of a subset S of coefficients of x using
Fourier measurements can be performed using the idea of Fourier hashing (via filtering) commonly used in the
Sparse FFT literature. In this approach one round of hashing allows one to compute estimates wi for xi, i ∈ S
such that

|wi − xi| ≤ α||x||22/k
using O(k/α) samples in Fourier domain and O((k/α) log(k/α)) runtime. Here α ∈ (0, 1) is the oversampling
parameter, which is normally set to a small constant, as it directly affects runtime and sample complexity. The
approach is similar to standard hashing techniques such as CountSketch [CCFC02], but the crucial difference
is that the error bound depends on the energy of the entire signal as opposed to energy of the tail1. Indeed,

1One way to improve the error bound is to use strong filters [HIKP12b], but that requires a Ω(k logn) samples – see Lemma E.1
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in general one can have ||x||22 � nΩ(1) · ||x[n]\S ||22, meaning that one round of hashing gives results that are
very far from estimating xS up to the energy of the ‘noise’, i.e. elements outside S. This can be fixed by
iterating the estimation process on the residual signal. A naive implementation and analysis results in Θ(k log n)
measurements (due to log n iterations of refinement) and k logO(1) n time. Recent works on saving samples
by reusing measurements [IK14, Kap16] can lead to improvements over the factor log n blow up in sample
complexity, but all prior approaches inherently lead to ω(1) factor loss in the number of samples, as we argue
below.

Our results: recovery The second version of the problem is the Sparse FFT (recovery) problem with `2/`2
guarantees: we are given access to x̂, a precision parameter ε > 0 and a sparsity parameter k, and would like to
output x′ such that

‖x− x′‖2 ≤ (1 + ε) min
k-sparse y

‖x− y‖2, (3)

Note that here we are not provided with any information about the ‘heavy’ coefficients of x, and the hardest and
most sample intensive part of the problem is to recover the identities of the ‘heavy’ elements.

It is known that any (randomized, non-adaptive) algorithm whose output satisfies (3) with at least constant
probability must use m = Ω(k log(n/k)) samples [DIPW10]. An algorithm that matches this bound for ev-
ery k ≤ n1−δ was recently proposed by [IK14]. The algorithm of [IK14] required Ω(n) runtime, however,
leaving open the problem of achieving sample-optimality in k logO(1) n, or even just sublinear time. Sublinear
time algorithms that come close to the optimal sample complexity (within an O(log log n) factor) have been
proposed [IKP14, Kap16], but no algorithm was able to match the lower bound to within constant factors using
sublinear runtime2. As we argue below, achieving the O(k log n) bound in sublinear time appears to require
a fundamentally different approach to Fourier hashing, which we provide in this work. Our new technique re-
sults in an algorithm that matches the lower bound of [DIPW10] up to constant factors for every k polynomially
bounded away from n (i.e. k ≤ n1−c for a constant c > 0) in sublinear time:

Theorem 1.2. For any ε ∈ (1/n, 1), δ ∈ (0, 1/2), x ∈ Cn and any integer k ≥ 1, ifR∗ ≥ ||x||∞/µ,R∗ = nO(1),
µ2 ≥ ||x[n]\[k]||22/k, µ2 = O(||x[n]\[k]||22/k) andα > 0 is smaller than a function of δ, SPARSEFFT(x̂, k, ε, R∗, µ)

(Algorithm 3) solves the `2/`2 sparse recovery problem usingOδ(k log n)+O(1
εk log n) samples andOδ(1

εk log4+δ n)
time with at least 4/5 success probability.

We now discuss the technical difficulties that our approach overcomes. In this discussion we concentrate
mainly on the estimation problem, as it is easier than sparse recovery, but at the same time exhibits all the
relevant technical challenges. We first describe known sample optimal and efficient solutions that use arbitrary
linear measurements, and then outline the difficulties that one faces when working with Fourier measurements.

Estimation and sparse recovery with arbitrary linear measurements. If arbitrary linear measurements are
allowed, one takes, multiple times, a set of B = O(k) linear measurements of the form ũj =

∑
i:h(i)=j sixi for

a random hash function h : [n] → [B] and random signs si ∈ {−1,+1}. Since we are hashing in a number of
buckets a constant factor (say, 100) larger than the sparsity of the signal, a large fraction (say, ≈ 90%) of the
top k components are likely to be isolated in a bucket, and not have too much noise (i.e. elements other than
the top k) hash into the same bucket. For such isolated elements we can approximate their value up to the noise
that hashes into the same bucket (in the case of sparse recovery, we perform O(log(n/k)) specially crafted linear
measurements using the same hash function h to recover the identity of the isolated element). This lets us estimate
(resp. recover) ≈ 90% of the top k elements of the signal, we subtract them off and recurse on the remaining
≈ 10% of the top k elements, hashing into k/2 buckets this time. In general, for t = 1, 2, . . . , O(log k) we choose

2In this paper we are only interested in algorithms that work for worst case signals. If probabilistic assumptions on the signal are
made, better results are possible in some settings (see, e.g. [GHI+13]).
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a random hash function ht : [n] → [Bt], where Bt = 100k/2t−1, say (in the case of sparse recovery we take
O(log(n/k)) measurements using each of these hash functions). One can show [GLPS10] that after O(log k)
iterations of the hashing, recovery and subtraction process we recover an approximation to x that satisfies (1)
(resp. (3) in case of recovery). The sample complexity of this process is dominated by the sample complexity
of the first iteration, where we use B1 = 100k buckets, resulting in a O(k) (resp. O(k log(n/k))) bound on the
sample complexity overall. Note that the recovery process only uses every hash function ht once, at step t: those
elements that are isolated under this hashing are perfectly recovered and essentially ‘disappear’ from the system,
so ht can be discarded!

A natural approach to estimation and recovery with Fourier measurements and why it fails. In order to
achieve O(k) (resp. O(k log n)) sample complexity using Fourier measurements (i.e. in Sparse FFT) it seems
natural to revisit the original idea used in recovery from arbitrary linear measurements that we outlined above.
More precisely, we could follow the strategy of choosing, for t = 1, 2, . . . , O(log k), a random hash function
ht : [n] → [Bt], where Bt = 100k/2t−1. The problem is that in order to ensure that we hash into B buckets
at the cost of O(B) samples, we need to commit to working with rather low quality buckets implemented using
crude filters (see section 2) and this causes ‘leakage’ between hash buckets. Given this complication, it is not
clear at all if estimation (resp. recovery) can be made to work: while with ‘ideal’ hashing each element isolated
in a hashing was identified and estimated up to amount of noise in its bucket, here due to the leakage of our
simple filters identification of nominally isolated elements can be precluded by interference from other head
elements! This means that the elements that were isolated in the first hashing do not ‘disappear’ from the system
(as they essentially do with ‘ideal’ hashing described above in the context of arbitrary linear measurements), but
are reduced in value by only about a constant factor, and will influence the recovery process using the second
hashing etc. To put this in perspective, note that when for each t > 10, say, we hash into Bt = 100k/2t−1

buckets, we generally get Ω(k) original elements hashing to� k buckets! These elements have of course been
reduced in value somewhat, but not to the extent that their contribution to Bt ≈ k/2t−1 buckets is negligible.

The discussion above implies that two difficulties must be overcome to achieve O(k) (resp. O(k log n))
sample complexity. First, since one round of hashing can at most reduce the ‘isolated’ elements in the residual
by a constant factor, Ω(log n) iterations are necessary. Furthermore, the process must be set up in such a way
that the Ω(log n) iterations operate on the same hash functions, and at the same time no adversarial correlations
arise to hinder the estimation process. The second difficulty is more subtle, but the harder one to deal with – this
is exactly where our main contribution comes in. Note that if several levels of hashing are used, as above there
could be elements whose total contribution to estimation error over all levels t > 1 is ω(1). Indeed, it is easy to
see that some of the top k elements will participate in repeated collisions for many values of t > 1. Such elements
could pose significant difficulties, as they introduce large errors to the identification and estimation process. This
issue arises because we reuse hashings that hash Ω(k) elements into� k buckets. Thus, we cannot hope to rely
on isolation properties that all prior work is based on, since there are more elements to be estimated than buckets.

Our techniques: a new hashing scheme and isolation on average. To overcome the difficulties outlined
above, we use the following approach. As above, we choose a sequence of hash functions ht that hash the
signal into a geometrically decreasing number of buckets. However, a crucial modification is that for each
t we repeat the hashing process independently Rt times for an increasing sequence Rt (we use a geometrically
increasing sequence; our hashings are denoted by ht,s, s = 1, . . . , Rt for each t). As we show below in Section 3,
the independent repetitions ensure, at a high level, that despite the fact that most elements collide in multiple
hashings, the fraction of such collisions is small, ensuring that estimation errors do not propagate – see Lemma 3.1
and Remark 3.2 after the lemma.

We give a formal analysis of our scheme in the rest of the paper, and provide intuition as to why our scheme
fixes the problem outlined above now. Specifically, we would like to see that the head elements do not contribute
a large fraction of their weight as estimation error in hashings ht,s for t > 1. The reason is that, as we show
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below, given the hash functions {ht,s} the set S of head elements can be partitioned into sets S = S1∪S2∪ . . .∪
ST , |S1| � |S2| � . . . � |ST | so that for every t > 1 every element of S collides with at least one element of
St in no more than R1−δ

t out of the Rt hashings ht,s at iteration t, for some constant δ > 0 (choosing δ small
improves runtime, at the expense of sample complexity; any small constant δ > 0 leads to asymptotically sample
optimal results). Thus, even though there are many collisions, on average over s ∈ [1 : Rt] every element in S
collides with at most≈ R−δt elements of St – we refer to this property as ‘isolation on average’. Since we choose
the number of hashings Rt to increase geometrically, the error contributed by an element of S over all hashings
is no more than

∑
t≥1R

−δ
t = Oδ(R

−δ
t )� 1. This fact allows us to argue that iterative decoding converges (see

section 3). Achieving small runtime with such a scheme requires a delicate balance of parameters, which we
exhibit in Section 4.

Our techniques: majorizing sequences for controlling residual signals. Lastly, one should note that the
discussion above rests heavily on our ability to control the sequence of residual signals that arise throughout
the update process (both in estimation and recovery). We achieve this by showing that residual signals arising
during the update process are majorized by short (polylogarithmic length) sequence of signals (referred to as a
majorizing sequence). See Section 4.2 for the application in estimation and Section 5.3 for the application in
recovery.

Significance for future work. We feel that the idea of ‘isolation on average’ may prove useful in further de-
velopments in the area. For example, it would be interesting to see if measurement reuse using our techniques
can improve sample complexity of to sublinear algorithms for model based sparse recovery from Fourier mea-
surements, i.e. to Sparse FFT algorithms that exploit structure of input signals beyond the sparsity assumption
(the a sublinear time algorithm for model based Sparse FFT for the block-sparse model was recently presented
in [CKSZ17]). A strong step in this direction would consist of removing the reliance of our techniques on the `1
norm of the residual signal as the measure of progress, and introducing an approach to measurement reuse while
provably reducing the `2 norm of the residual during the iterative process.

Organization. The proofs of Theorem 1.1 and Theorem 1.2 rely on a shared set of lemmas that enable analysis
via ‘isolation on average’, with the main technical lemma being Lemma 3.1 (see also Remark 3.2 after the
lemma). We present these lemmas first (Sections 2 and 3), then prove Theorem 1.1 (Section 4) as it is less
notationally heavy but still uses all the main technical ideas, and then prove Theorem 1.2 (Section 5). Proofs
omitted from the main body of the paper are given in the Appendices.

2 Preliminaries and basic notation

For a positive even integer a we will use the notation [a] = {−a
2 ,−

a
2 + 1, . . . ,−1, 0, 1, . . . , a2 − 1}. We will

consider signals of length n, where n is a power of 2. We use the notation ω = e2πi/n for the root of unity of
order n. The forward and inverse Fourier transforms are given by

x̂f =
1√
n

∑
i∈[n]

ω−ifxi and xj =
1√
n

∑
f∈[n]

ωjf x̂f (4)

respectively, where f, j ∈ [n]. We will denote the forward Fourier transform by F . Note that we use the
orthonormal version of the Fourier transform. Thus, we have ||x̂||2 = ||x||2 for all x ∈ Cn (Parseval’s identity).
We assume that entries of x are integers bounded by a polynomial in n.
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2.1 Filters, hashing and pseudorandom permutations

We will use pseudorandom spectrum permutations, which we now define. We write Modd for the set of odd
numbers between 1 and n. For σ ∈ Modd, q ∈ [n] and i ∈ [n] let πσ,q(i) = σ(i− q) mod n. Since σ ∈ Modd,
this is a permutation. Our algorithm will use π to hash heavy hitters into B buckets, where we will choose
B ≈ k. We will often omit the subscript σ, q and simply write π(i) when σ, q is fixed or clear from context.
For i ∈ [n] we let h(i) := round((B/n)π(i)) be a hash function that maps [n] to [B], and for i, j ∈ [n] we let
oi(j) = π(j)− (n/B)h(i) be the “offset” of j ∈ [n] relative to i ∈ [n]. We always have B a power of two.

Definition 2.1. Suppose that σ−1 exists mod n. For a, q ∈ [n] we define the permutation Pσ,a,q by (Pσ,a,qx̂)i =
x̂σ(i−a)ω

iσq.

Lemma 2.2. F−1(Pσ,a,qx̂)πσ,q(i) = xiω
aσi

The proof is given in [IK14] and we do not repeat it here. Define

Errk(x) = min
k−sparse y

||x− y||2 and µ2 = Err2
k(x)/k. (5)

In this paper, we assume knowledge of µ (a constant factor upper bound on µ suffices). We also assume that the
signal to noise ratio is bounded by a polynomial in the length n of the signal, namely that R∗ := ||x||∞/µ ≤ nC
for a constant C > 0. It will be convenient to use the notation B∞(x, r) to denote the interval of radius r around
x: B∞(x, r) = {y ∈ [n] : |x− y|◦ ≤ r}, where |x− y|◦ is the circular distance on Zn. For a real number a we
write |a|+ to denote the positive part of a, i.e. |a|+ = a if a ≥ 0 and |a|+ = 0 otherwise.

We will use the following

Definition 2.3 (Flat filter with B buckets and sharpness F ). A sequence G ∈ Rn symmetric about zero with
Fourier transform Ĝ ∈ Rn is called a flat filter with B buckets and sharpness F if (1) Gj ∈ [0, 1] for all j ∈ [n];
(2) Gj ≥ 1 −

(
1
4

)F−1 for all j ∈ [n] such that |j| ≤ n
2B ; and (3) Gf ≤

(
1
4

)F−1( n
B|j|
)F−1 for all j ∈ [n] such

that |j| ≥ n
B .

We use a construction of such filters from [CKSZ17]:

Lemma 2.4 ( [CKSZ17], Lemma 2.1). (Compactly supported flat filter with B buckets and sharpness F ) Fix the
integers (n,B, F ) with n a power of two, B < n, and F ≥ 2 an even number. There exists an (n,B, F )-flat filter
G ∈ Rn, whose Fourier transform Ĝ is supported on a length-O(FB) window centered at zero in time domain.

Note that most of the mass of the filter is concentrated in an interval of side O(n/B), approximating the
“ideal” filter (whose value would be equal to 1 for entries within the square and equal to 0 outside of it). Note
that for each i ∈ [n] one has G−1

oi(i)
≤ 2. We refer to the parameter F as the sharpness of the filter. Our hash

functions are not pairwise independent, but possess a property that still makes hashing using our filters efficient:

Lemma 2.5 (Lemma 3.2 in [IK14]). Let i, j ∈ [n]. Let σ be uniformly random odd number between 1 and n.
Then for all t ≥ 0 one has Pr[|σ(i− j)|◦ ≤ t] ≤ 2(2t/n).

2.2 Measurements of the signal, notation for estimation error and basic bounds

Pseudorandom spectrum permutations combined with a filter G give us the ability to ‘hash’ the elements of the
input signal into a number of buckets (denoted byB). We formalize this using the notion of a hashing. A hashing
is a tuple consisting of a pseudorandom spectrum permutation π, target number of buckets B and a sharpness
parameter F of our filter, denoted byH = (π,B, F ). Formally, H is a function that maps a signal x toB signals,
each corresponding to a hash bucket, allowing us to solve the k-sparse recovery problem on input x by reducing
it to 1-sparse recovery problems on the bucketed signals. We give the formal definition below.
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Definition 2.6 (Hashing H = (π,B, F )). For a permutation π = (σ, q), parameters B > 1 and F , a hashing
H := (π,B, F ) is a function mapping a signal x ∈ Cn to B signals H(x) = (us)s∈[B], where us ∈ Cn for each
s ∈ [B], such that for each i ∈ [n] us,i =

∑
j∈[n]Gπ(j)−(n/B)·sxjω

iσj ∈ C, where G is a filter with B buckets
and sharpness F constructed in Lemma 2.4.

For a hashing H = (π,B, F ), π = (σ, q) we sometimes write PH,a, a ∈ [n] to denote Pσ,a,q.

Definition 2.7 (Measurementm = m(x,H, a)). For a signal x ∈ Cn, a hashingH = (π,B, F ) and a parameter
a ∈ [n], a measurement m = m(x,H, a) ∈ CB is the B-dimensional complex valued vector of evaluations of a
hashing H(x) at a point a ∈ [n], i.e. for s ∈ [B] ms =

∑
j∈[n]Gπ(j)−(n/B)·sxjω

aσj , where G is a filter with B
buckets and sharpness F constructed in Lemma 2.4.

We access the signal x in Fourier domain via the function HASHTOBINS(x̂, χ, (H, a)), which evaluates the
hashing H of residual signal x−χ at point a ∈ [n], i.e. computes the measurement m(x,H, a) (the computation
is done with polynomial precision). We will use the following lemma, which is rather standard (the proof is given
in Appendix B.1 for completeness):

Lemma 2.8. HASHTOBINS(x̂, χ, (H, a)), where H = (π,B, F ), computes u ∈ CB such that for any i ∈ [n],
uh(i) = ∆h(i) +

∑
j Goi(j)(x−χ)jω

aσj , whereG is the filter defined in section 2, and for all i ∈ [n] we have that
∆2
h(i) ≤ ‖χ‖

2
2 · n−c is a negligible error term (and c > 0 is an absolute constant that governs the precision that

semi-equispaced FFT, i.e. Lemma E.1, is invoked with). It takesO(BF ) samples, andO(F ·B logB+‖χ‖0 log n)
time.

We now introduce relevant notation for bounding the error induced by our measurements in locating or
estimating an element i ∈ [n]. For a hashing H = (π,B, F ) and an evaluation point z ∈ [n], we have by
Definition 2.7

mh(i)(x,H, z) =
∑
j∈[n]

Goi(j)xjω
zσj ,

where the filter Goi(j) is the filter corresponding to hashing H (note that oi(j) implicitly depends on π). In
particular, one has:

G−1
oi(i)

mh(i)ω
−zσi = xi +G−1

oi(i)

∑
j∈[n]\{i}

Goi(j)xjω
zσ(j−i)

︸ ︷︷ ︸
noise term

A common idea underlying our analysis of estimation and recovery is to split the estimation/recovery error
induced on an element i into the contribution from the carefully defined ‘head’ of the signal and the contribution
from the ‘tail’. The ‘head’ of the signal is denoted by a set S ⊆ [n] throughout the paper. For each i ∈ [n] we
write

G−1
oi(i)

mh(i)ω
−zσi = xi +G−1

oi(i)
·
∑

j∈S\{i}

Goi(j)xjω
zσ(j−i)

︸ ︷︷ ︸
noise from ‘heavy’ elements

+G−1
oi(i)
·

∑
j∈[n]\(S∪{i})

Goi(j)xjω
zσ(j−i)

︸ ︷︷ ︸
‘tail’ noise

(6)

We now define special notation for the two noise terms in (6). These two noise terms will be handled very
differently in our analysis.

Noise from heavy hitters. The first term in (6) corresponds to noise from xS\{i}, i.e. noise from ‘head’ of the
signal. For every i ∈ S, hashing H we let

eheadi (H,x) := G−1
oi(i)
·
∑

j∈S\{i}

Goi(j)|xj |. (7)
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Remark 2.9. Note that ehead depends implicitly on the set S. We do not make this dependence explicit to avoid
complicated notation, but state which set S the quantity ehead is defined with respect to whenever this quantity is
used. We also note that ehead provides a bound on the error induced by the tail of the signal that (for a random
hashing) depends on the `1 norm of the head of the signal.

We thus get that eheadi (H,x) upper bounds the absolute value of the first error term in (6) for every value of
evaluation point z (note that ehead(H,x) only depends on the hashing H and x). Note that G ≥ 0 by Lemma 2.4
and Definition 2.3 as long as F is even, which is the setting that we are in. We will often use several hashings to
estimate or locate an element i. It is thus convenient to define, for a sequence of hashings H1, . . . ,Hr

eheadi ({Hr}, x) := quant1/5r eheadi (Hr, x), (8)

where for a list of reals u1, . . . , us and a number f ∈ (0, 1) we let quantf (u1, . . . , us) denote the df ·se-th largest
element of u1, . . . , us.

Tail noise. To capture the second term in (6) (corresponding to tail noise), we define, for any i ∈ [n], z ∈ [n],
permutation π = (σ, q) and hashing H = (π,B, F )

etaili (H, z, x) :=

∣∣∣∣∣∣G−1
oi(i)
·

∑
j∈[n]\(S∪{i})

Goi(j)xjω
zσ(j−i)

∣∣∣∣∣∣ . (9)

Remark 2.10. Note that etail depends implicitly on the set S. We do not make this dependence explicit to avoid
complicated notation, but state which set S the quantity etail is defined with respect to whenever this quantity is
used. We also note that etail provides a bound on the error induced by the tail of the signal that (for a random
hashing and a random evaluation point z) depends on the `2 norm of the tail (as opposed to the `1 norm used by
ehead).

With this definition in place etaili (H, z, x) upper bounds the absolute value of second term in (6). We will
sometimes use several hashings and values z to obtain better estimates. For a sequence {(Hr, zr)}rmaxr=1 for some
rmax ≥ 1 we let

etaili ({Hr, zr}, x) := quant1/5r

∣∣∣∣∣∣G−1
oi(i)
·

∑
j∈[n]\(S∪{i})

Goi(j)xjω
zσ(j−i)

∣∣∣∣∣∣ , (10)

where oi(j) on the rhs implicitly depends on the hashing H .
The definitions above are sufficient for our analysis of the signal estimation procedure in Section 4. The

analysis of the sparse recovery procedure requires several further specialized definitions, which are presented
in Appendix C. With the definitions above we can state the following simple guarantees on the performance of
a basic estimation procedure that is the main building block of our analysis of the more powerful ESTIMATE

primitive in Section 4.

Lemma 2.11 (Bounds on estimation quality for Algorithm 4). For every x, χ ∈ Cn, every L ⊆ [n], every set
S ⊆ [n] the following conditions hold for functions ehead and etail defined with respect to S (see (7) and (9)). If
rmax is larger than an absolute constant, then for every sequence Hr = (πr, B, F ), r = 1, . . . , rmax of hashings
and every sequence a1, . . . , rmax of evaluation points the output w of

ESTIMATEVALUES(χ,L, {(Hr, ar,m(x,Hr, ar))}rmaxr=1 )

satisfies, for each i ∈ L

|wi − (x− χ)i| ≤ 2 · quant1/5r eheadi (Hr, x− χ) + 2 · quant1/5r etaili (Hr, ar, x− χ) + n−Ω(c),
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where c ≥ 2 is an absolute constant that governs the precision of our approximate semi-equispaced FFT com-
putations (see HASHTOBINS, Lemma 2.8). The sample complexity is bounded by O(FBrmax), and the runtime
by O((F ·B · log n+ ||χ||0 log n+ |L|) · rmax).

The proof of the lemma is given in Appendix B. The proof is rather standard modulo our definitions of ehead

and etail, as well as the fact that the statement of the lemma is entirely deterministic. We will later apply this
lemma to random hashings and evaluation points, but the deterministic nature of the claim will be crucial in
analyzing measurement reuse.

As both our ESTIMATE and SPARSEFFT algorithms (Section 4 and Section 5) respectively iteratively update
the signal, we will need to analyse the performance of ESTIMATEVALUES on various residual signals derived
from the original input signal x. The notion of a majorant is central to this part of our analysis:

Definition 2.12 (Majorant). For any S ⊆ [n] and any x, y ∈ Cn we say that y is an majorant for x with respect
to S if |xi| ≤ |yi| for all i ∈ S.

With this definition and definition of ehead above the following crucial lemma follows immediately:

Lemma 2.13. For every hashing H , every set S ⊆ [n] one has for every pair x, y ∈ Cn that if x ≺S y, then for
every i ∈ [n] eheadi (H,x) ≤ eheadi (H, y).

Proof. Recall that by (7) one has eheadi (H,x) = G−1
oi(i)
·
∑

j∈S\{i}Goi(j)|xj |. Since G ≥ 0 by Definition 2.3 and

Lemma 2.4, we have by using x ≺S y that eheadi (H,x) = G−1
oi(i)
·
∑

j∈S\{i}Goi(j)|xj | ≤ G
−1
oi(i)
·
∑

j∈S\{i}Goi(j)|yj | =
eheadi (H, y) as required.

3 Isolating partitions

In this section we prove the main lemmas that allow us to reason about performance of the SNR reduction process
in our algorithms (Algorithm 2 and Algorithm 3). Both algorithms perform SNR reduction (see lines 16 to 22
in Algorithm 2 and lines 25-36 in Algorithm 3) using two loops. The first loop (over r), controls the `1 norm of
the signal, with the (upper bound on the) norm being reduced by a factor of 4 in each iteration. This reduction
is achieved via a sequence of calls to ESTIMATEVALUES (in ESTIMATE, Algorithm 2) or LOCATESIGNAL (in
Section C) using a separate collection of hashings for each t = 1, . . . , T . Our correctness analysis for this process
proceeds by showing that, with high constant probability over the choice of the hashings {{Ht,s}Rts=1}Tt=1 any set
S of size ≈ k the hashings induce a partition of S into at most T sets S1 ∪ . . . ∪ ST such that hashings used
in the t-th round allow the algorithm to make progress on elements in St. The main result of this section is a
formalization of this claim, achieved by Lemma 3.1.

Lemma 3.1. For every integer k ≥ 1, every S ⊆ [n], |S| ≤ k, every δ ∈ (0, 1/2), if the parameters Bt, Rt are
selected to satisfy (p1) Rt = C1 · 2t and (p2) Bt ≥ C2 · k/R2

t for every t ∈ [0 : T ], where C1 is a sufficiently
large constant and C2 is sufficiently large as a function of C1 and δ, then the following conditions hold.

For every collection of hashings {{Ht,s}Rts=1}Tt=1, if the filters used in hashings Ht,s are at F -sharp for even
F ≥ 6 for every t ∈ [1 : T ], and S admits a δ-isolating partition (as per Definition 3.7) S = S1∪. . .∪ST with re-
spect to {Ht,s}, then for every x, χ ∈ Cn, x′ = x−χ, for every t ∈ [1 : T ] one has ||eheadSt

({Ht,s}s∈[1:Rt], x
′)||1 ≤

20R−δt ||x′S ||1.

Remark 3.2. Note that the result of Lemma 3.1 implies that the cumulative error induced by the entire set S of
‘heavy’ coefficients on St is only a ≈ R−δt fraction of the `1 norm of x′S , despite the fact that when estimating St
we hash into Bt � k buckets, and in general each bucket will contain many elements of S. Furthermore, if we
choose Rt to increase fast enough so that

∑
t≥1R

−δ
t � 1, we get that the cumulative contribution of elements in
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S to estimation/location error over all t ≥ 1 is less than 1, meaning that errors do not accumulate much. This is
exactly what we achieve by setting Rt = C12t for a large constant C1 > 1 – see proof of Lemma 4.1 in Section 4.

In the rest of the section we first introduce relevant notation and in particular define the central notion of an
isolating partition of the set S of head elements (in section 3.1), then prove that any fixed set S of size about k
admits an isolating partition with at least high constant probability over the choice of hashings {{Ht,s}Rts=1}Tt=1

(section 3.2), and show how to construct the partition efficiently (Lemma 3.9) if the set S is given explicitly (used
in Algorithm 2, line 13). Using this result we then give a proof of Lemma 3.1.

3.1 Main definitions

Let S be any subset of [n] (we will later instantiate S to the set of ‘large’ elements of x). We now define a
decomposition of the set S into T = 1

1−δ log2 log(k + 1) + O(1) disjoint sets S1, S2, . . . , ST with respect to
a sequence 1 ≤ R0 ≤ R1 ≤ R2 ≤ . . . ≤ RT and hashings {{Ht,s}Rts=1}Tt=1. We start with several auxiliary
definitions.

Definition 3.3 (t-Collision). We say that an element a ∈ [n] participates in a t-collision with another element
b ∈ [n] under hashing H = (π,B, F ) if a hashes within at most t buckets of b under H , i.e. if |π(a) − π(b)| ≤
n
B (t− 1).

Definition 3.4 (δ-bad element). For δ ∈ (0, 1), for each t ∈ [1 : T ], sequence 1 ≤ R0 ≤ R1 ≤ . . . ≤ RT , where
T ≥ 1 is an integer, we say that an element a of S is δ-bad for St with respect to a partition S = S1∪S2∪. . .∪ST
and hashings {{Ht,s}Rts=1}Tt=1 if a participates in an Rt-collision with at least one element of St under more than
a R−δt fraction of hashings Ht,1, . . . ,Ht,Rt .

Definition 3.5 (λ-crowded element). For a hashing H = (π,B, F ) and a real number λ ∈ (0, 1), an element
a ∈ [n] is λ-crowded at scale q ≥ 0 by a set Q ⊆ [n] if

∣∣B (π(a), nB · 2
q
)
∩ π(Q \ {a})

∣∣ ≥ λ22q. We say that an
element a is simply λ-crowded if it is λ-crowded at least at one scale q ≥ 0.

Remark 3.6. The intuition for the definition above is that if the permutation π was pairwise independent, then
for every a ∈ [n] the expectation of

∣∣B (π(a), nB · 2
q
)
∩ π(Q \ {a})

∣∣ would be about 2q if |Q| ≤ B, i.e. about the
number of buckets that fall into the interval. We say that an element is λ-crowded when the number of elements
in its vicinity exceeds λ22q for at least one scale q, i.e. exceeds expectation by a λ2q factor. Our choice of
λ = R−3

t serves the purpose of enforcing that no element of St is hashed too close to another element of St,
and no (large) neighborhood of any element of St it too crowded. These two parameter regimes have somewhat
distinct applications in the proof of Lemma 3.1 – see footnotes 3 and 4 in the proof of the lemma on pages 13
and 14 respectively.

Definition 3.7 (δ-isolating partition). For δ ∈ (0, 1), for any k ≥ 1 and any S ⊆ [n], |S| ≤ k, a partition
S = S1 ∪ S2 ∪ . . . ∪ ST of S ⊆ [n] into disjoint subsets is δ-isolating with respect to a sequence of integers
1 ≤ R0 ≤ R1 ≤ . . . ≤ RT and hashings {Ht,s}Rts=1 for t = [1 : T ] if the following conditions are satisfied for
each t ∈ [1 : T ]:

(1) |St| ≤ k · R0
Rt−1

2−2(1−δ)·(t−1)+1 (the sizes of St’s decay doubly exponentially);

(2) no element of St is R−3
t -crowded by St under any of {Ht,s}Rts=1 (elements of St are rather uniformly spread

under hashings Ht,s);

(3) no element of St Rt-collides with an element of S that is δ-bad for St under any of {Ht,s}Rts=1 (collisions
between S and St are rare).
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Note that the bound on the size of S1 is at most k, which will be trivial for our instantiation of S. Nontrivial
decay of the St starts at t = 2. Also note that property (3) is exactly why we call our approach ‘isolation on
average’: as the proof of Lemma 3.1 below shows, the fact that no element of S that is δ-bad for St collides with
St under any of the hashings implies that every element of S has a limited contribution to estimation error, and
errors do not propagate.

3.2 Existence of isolating partitions of S

In this section we prove that any set S of size at most k admits an isolating partition with respect to a random
set of hashings as in Algorithm 3 with at least high constant probability. We prove this claim by giving an
algorithm that we show constructs such a partition successfully with high constant probability. The algorithm is
Algorithm 1, presented below. We prove that Algorithm 1 terminates correctly in Lemma 3.8 below, assuming
that the number of hashings at each step t and their parameters are chosen appropriately.

If the set S is known explicitly, the partition can be constructed efficiently by running Algorithm 1 – the details
are given in Lemma 3.9. An efficient construction is needed in our sample efficient primitive (see Algorithm 2).
Our sample-optimal Sparse FFT algorithm is oblivious to the actual partition, as its task is to identify the set S.
However, as we show in Section 5, the existence of an isolating partition of S is sufficient for the algorithm to
work.

Algorithm 1 Construction of an isolating partition {Sj}
1: procedure CONSTRUCTPARTITION({{Ht,s}s∈[1:Rt]}Tt=1) . Hashings sampled uniformly
2: S1

1 ← S, t← 1
3: while Stt 6= ∅ do
4: Badt ← {elements of S that are δ-bad wrt Stt under {Ht,s}s∈[1:Rt]}
5: Ut ← {elements a ∈ Stt that Rt-collide with Badt under at least one of {Ht,s}s∈[1:Rt]}
6: Vt ← {elements a ∈ Stt that are R−3

t -crowded by Stt under at least one of {Ht,s}s∈[1:Rt]}
7: Set St+1

t+1 ← Badt ∪ Ut ∪ Vt and St+1
j ← Stj \ S

t+1
t+1 for j = 1, . . . , t

8: t← t+ 1
9: end while

10: return the partition {Stj}tj=1

11: end procedure

We now argue that Algorithm 1 constructs an isolating partition of any set S ⊆ [n] that satisifies |S| ≤ k
with at least high constant probability:

Lemma 3.8. For every integer k ≥ 1, every S ⊆ [n], |S| ≤ k, every δ ∈ (0, 1/2), if the parameters Bt, Rt are
selected to satisfy (p1) Rt = C1 · 2t and (p2) Bt ≥ C2 · k/R2

t for every t ∈ [0 : T ], where C1 is a sufficiently
large constant and C2 is sufficiently large as a function of C1 and δ, then the following conditions hold.

With probability at least 1− 1/25 over the choice of hashings {{Ht,s}s∈[1:Rt]}Tt=1 Algorithm 1 terminates in
T = 1

1−δ log2 log(k+ 1) +O(1) steps. When the algorithm terminates, the output partition {Sj}Tj=1 is isolating
as per Definition 3.7.

PROOF OUTLINE: The proof consists of two parts: showing that once the algorithm terminates, the resulting
partition is δ-isolating, and then showing that the algorithm terminates with large constant probability as long
as parameters are set appropriately (to satisfy p1 and p2). The first part is rather direct from definitions, and is
presented in Appendix A together with the full proof of Lemma 3.8. We now outline the proof of the second part,
i.e. that the algorithm terminates.

The crux of the proof consists of bounding the sizes of the sets Vt, Ut,Badt obtained at time step t = 1, . . . , T .
It is easiest to start with the intuition for Vt, i.e. elements in Stt that are crowded by other elements of Stt . An
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element a is crowded by Stt under permutation π if there are too many elements of Stt in a neighborhood of a
certain size of a. The definition of being crowded (Definition 3.5 above) involves the notion of being crowded at
a given scale, and one can see that an element a is more likely to fail because of small scales as opposed to large
scales. This means that for every a ∈ Stt one has

Pr[a ∈ V t] ≈ poly(Rt) · kt/Bt = poly(Rt) · kt/B, (since Bt = Θ(B/R2
t ))

i.e., up to terms polynomial in Rt, the probability of being crowded is about the probability of O(1)-colliding
with one other element of Stt (see below for a formalization of this claim). Since decay of the size of Stt that we
will exhibit is doubly exponential in t, factors polynomial inRt are negligible, as they are only singly exponential
in t. Given the expression for Pr[a ∈ V t] above, we get that

E[|Vt|] =
∑
a∈Stt

poly(Rt) · kt/B = poly(Rt) · (kt/B)2 ·B.

This means that if Vt were the only contribution to St+1
t+1 , then, discounting the poly(Rt) terms, we would get the

recurrence kt+1/B = (kt/B)2, which implies that kt ≈ B · 2−2t . The poly(Rt) terms do not affect the decay
substantially, and in the actual proof below we get that kt ≤ O(k · 2−2(1−δ)t

) for a small constant δ > 0.
The more interesting term is the contribution from Ut and Badt. We first describe the intuition behind the

asymptotic growth of Badt. For an element a ∈ S we have

Pr[a Rt-collides with an element of Stt ] ≈ kt/Bt = poly(Rt) · kt/B � 1/(10Rt),

since kt ≈ B · 2−2t and Rt are only singly exponential in t. Note that this means that the expected number of
collisions over all Rt hashings Ht,s, s = 1, . . . , Rt, is less than 1/10! At the same time recall that a is δ-bad
(as per Definition 3.4 above) if a collides with at least one element of Stt under at least R1−δ

t hashings {Ht,s}Rts=1.
Since the hashings are independent, we have by Chernoff bounds that the probability of the latter event is bounded
by about e−R

1−δ
t = e−C

1−δ
1 2(1−δ)t

, so we again get doubly exponential decay, but for a different reason this time:
by our choice of parameters Rt to grow singly exponentially, and Chernoff bounds show that the probability of
getting at least R1−δ

t collisions while the expected number of collisions is less than 1/10 decays exponentially
in R1−δ

t . This is exactly the point at which we say that most elements of S are ‘isolated on average’. A formal
version of this argument lets us argue that the size of Badt is about ke−C

1−δ
1 2(1−δ)t

. It remains to bound the size
of Ut, i.e. elements that collide with a bad element in at least one of the hashings. Since the number of bad
elements is doubly exponentially small and the number of hashings Rt is only single exponential, a union bound
essentially shows that this quantity is small as well. Some care is needed in arguing this due to a dependency
issue, but the intuition is the same as the one described for Badt above. The formal proof is given in Appendix A.

If the set S is known explicitly, Algorithm 1 admits a simple efficient implementation (the proof of the lemma
is given in Appendix A):

Lemma 3.9. For any integer k ≥ 1, any S ⊆ [n], |S| ≤ k, if the hashings {{Ht,s}s∈[1:Rt]}Tt=1 are such that
the partition {Sj}Tj=1 defined by Algorithm 1 is isolating as per Definition 3.7, this partition can be constructed

explicitly in time O
(

(
∑T

t=1Rt) · |S| log |S|
)

.

3.3 Proof of main technical lemma (Lemma 3.1)

We now prove the main result of this section, Lemma 3.1. This lemma then forms the basis of our sample-efficient
estimation primitive, as well as the location primitive. The proof crucially relies on the existence of an isolating
partition of the set S of ‘head elements’ (which is guaranteed by Lemma 3.8 from the previous section with at
least high constant probability).
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Lemma 3.1 (restated) For every integer k ≥ 1, every S ⊆ [n], |S| ≤ k, every δ ∈ (0, 1/2), if the parameters
Bt, Rt are selected to satisfy (p1) Rt = C1 · 2t and (p2) Bt ≥ C2 · k/R2

t for every t ∈ [0 : T ], where C1 is
a sufficiently large constant and C2 is sufficiently large as a function of C1 and δ, then the following conditions
hold.

For every collection of hashings {{Ht,s}Rts=1}Tt=1, if the filters used in hashings Ht,s are at F -sharp for even
F ≥ 6 for every t ∈ [1 : T ], and S admits a δ-isolating partition (as per Definition 3.7) S = S1∪. . .∪ST with re-
spect to {Ht,s}, then for every x, χ ∈ Cn, x′ = x−χ, for every t ∈ [1 : T ] one has ||eheadSt

({Ht,s}s∈[1:Rt], x
′)||1 ≤

20R−δt ||x′S ||1.

Proof. Fix t ∈ [1 : T ]. For every s ∈ [1 : Rt] by (7) for all i ∈ S we have

eheadi (Ht,s, x
′) = G−1

oi(i)
·
∑

j∈S\{i}

Goi(j) · |x
′
j | (11)

where o = oHt,s implicitly depends on the hashingH . We omit the dependence onH whenH is fixed to simplify
notation. By summing (11) over i ∈ St we get

eheadSt (Ht,s) =
∑
i∈St

G−1
oi(i)
·
∑

j∈S\{i}

Goi(j) · |x
′
j | ≤ 2

∑
j∈S
|x′j | ·

∑
i∈St\{j}

Goi(j)

= 2
∑
j∈S
|x′j | ·Ds

j ,
(12)

where for all j ∈ S and s ∈ [1 : Rt] we let Ds
j :=

∑
i∈St\{j}Goi(j), and used the fact that Goi(i) ≥ 1/2 by

Definition 2.3 and assumption that F ≥ 6. Note that Ds
j depends on t, but we omit t to simplify notation. This

will not cause confusion since t is fixed for the entire proof. We now bound Ds
j for j ∈ S. We have for j ∈ S

Ds
j =

∑
i∈St\{j}

Goi(j) ≤
∣∣∣∣{i ∈ St \ {j} : |πs,t(i)− πs,t(j)|◦ <

n

Bt
·Rt

}∣∣∣∣+
∑

i∈St\{j}:
|πs,t(i)−πs,t(j)|◦≥ n

Bt
·Rt

Goi(j)

=: Zsj +Xs
j .

(13)

We used the fact that ||G||∞ ≤ 1 by Definition 2.3, (1) and assumption that F is even, to go from the first line to
the second.

Bounding Zsj . We start by showing that Zsj ∈ {0, 1} for all s, j. We have by property (2) of an isolating
partition (see Definition 3.7) that no element of St is R−3

t -crowded with respect to St3. This in particular means
that no i ∈ St is R−3

t -crowded at scale q = 1 + log2Rt by St, i.e.∣∣∣∣B∞(πs,t(i), nBt · (2Rt)
)
∩ π(St \ {i})

∣∣∣∣ ≤ R−3
t 4 · 22q ≤ 4R−3

t R2
t ≤ 4/Rt < 1

for all i ∈ St, as long as C1 > 4 (recall that Rt = C12t and C1 is larger than an absolute constant). For
every j ∈ S (as opposed to St) and every a, b ∈ St we have by triangle inequality |πs,t(a) − πs,t(b)|◦ ≤
|πs,t(a)− πs,t(j)|◦ + |πs,t(b)− πs,t(j)|◦. This means that if for some j ∈ S

Zsj =

∣∣∣∣{i ∈ St \ {j} : |πs,t(i)− πs,t(j)|◦ <
n

Bt
·Rt

}∣∣∣∣ > 1,

3Note that the assumption that no element of St is λ-crowded with respect to St for λ = R−3
t is used twice in the proof: first to show

that Zsj ∈ {0, 1}, since no two elements of St can hash too close to each other by the choice of λ, and then later to upper bound the
number of neighbors in St an element can have. The specific choice of λ = R−3

t is only used here, however: for the other application
λ = O(1) would have been sufficient.
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we have |πs,t(a) − πs,t(b)|◦ ≤ |πs,t(a) − πs,t(j)|◦ + |πs,t(b) − πs,t(j)|◦ < n
Bt
· 2Rt, a contradiction. Thus,

Zsj ∈ {0, 1} for all j ∈ S, and by property (3) of an isolating partition we now conclude that

Rt∑
s=1

Zsj ≤ R1−δ
t (14)

for all j ∈ S.

Bounding Xs
j . We now turn to bounding Xs

j (i.e. second term on the rhs of (13)). Let

N(j, q) := {i ∈ St \ {j} s.t. |πs,t(j)− πs,t(i)|◦ ≤
n

Bt
(2q+1 − 1) and |πs,t(j)− πs,t(i)|◦ ≥

n

Bt
·Rt} (15)

for convenience. We have

Xs
j =

∑
i∈St\{j}:|πs,t(i)−πs,t(j)|◦≥ n

Bt
Rt

Goi(j) ≤
∑

q≥log2 Rt

∑
i∈S\{j} s.t.

|πs,t(j)−πs,t(i)|◦∈ n
Bt

[2q ,2q+1−1)

Goi(j)

≤
∑

q≥log2Rt

|N(j, q)| · max
|πs,t(j)−πs,t(i)|◦≥ n

Bt
2q
Goi(j).

(16)

We now upper bound both terms in the last line of the equation above.
To bound the second term it suffices to note that for every q ≥ 0 every i, j with |πt,s(j) − πt,s(i)|◦ ≥ n

Bt
2q

satisfy |oi(j)|◦ = |πt,s(j)− n
Bt
· ht,s(i)|◦ ≥ |πt,s(j)− πt,s(i)|◦ − |πt,s(i)− n

Bt
ht,s(i)|◦ ≥ n

Bt
· (2q − 1). Using

this bound together with Definition 2.3, (3), and assumption that the filter G is at least 6-sharp we have for
q ≥ log2Rt ≥ 1

max
|π(j)−π(i)|◦≥ n

Bt
·2q
Goi(j) ≤

(
1

4(2q − 1)

)5

≤ (2q)−5 ≤ 2−5q. (17)

Note that we also used the assumption that q ≥ log2Rt ≥ 1 to lower bound 4(2q − 1) by 2q.
We now upper bound the first term on the last line of (16), i.e. the size of N(j, q) for every j ∈ S. Let

i∗ := argmini∈St |πs,t(j)−πs,t(i)|◦ denote a point in St that is mapped closest to j. Let L∗ := |πs,t(j)−πs,t(i∗)|◦
denote the distance to this point, and let q∗ be the smallest such that (n/Bt)2

q∗ ≥ L∗. By triangle inequality we
have for all i ∈ [n]

|πt,s(i)− πt,s(i∗)|◦ ≤ |πt,s(j)− πt,s(i)|◦ + L∗, (18)

allowing us to upper bound the size of N(j, q) (points not too far from j) using the fact that St is not crowded
(property (2) of an isolating partition; see Definition 3.7). Specifically, for every q ≥ 0 we have, combining (18)
and (15),

N(j, q) ⊆ {i ∈ St \ {j} s.t. |πs,t(i)− πs,t(j)|◦ ≤
n

Bt
(2q+1 − 1)} (by (15))

⊆ {i ∈ St \ {j} s.t. |πs,t(i)− πs,t(i∗)|◦ ≤
n

Bt
(2q+1 + 2q

∗ − 1)} (by (18))

By property (2) of an isolating partition (see Definition 3.7) we have for any q ≥ 0 the number of i ∈ St such that
|πs,t(i)−πs,t(i∗)|◦ ≤ n

Bt
(2q+1 +2q

∗−1) is bounded byR−3
t (2q+1 +2q

∗−1)2 +1, where the +1 accounts for i∗

itself. Since we will only use the bound for q ≥ log2Rt, the R−3
t factor in first term will not be consequential4,

4Note that this is the second time we are using the assumption that no element of St is λ-crowded with respect to St, but in this case
the choice of λ = R−3

t is not important, any constant, even λ > 1, would have sufficed to this particular application.
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and we hence use the simpler form R−3
t (2q+1 + 2q

∗ − 1)2 + 1 ≤ (2q+1 + 2q
∗ − 1)2 + 1 ≤ 2(2q+1 + 2q

∗ − 1)2,
where we used the fact that q ≥ log2Rt ≥ 0. We thus have for all q ≥ 0

|N(j, q)| ≤
{

0 if q < q∗

2(2q+1 + 2q
∗
)2 o.w.

(19)

Substituting (17) and (19) into (16), we get

Xs
j =

∑
i∈St\{j}:|πs,t(i)−πs,t(j)|◦≥ n

Bt
Rt

Goi(j) ≤
∑

q≥log2 Rt

max
|πs,t(j)−πs,t(i)|◦≥ n

Bt
2q
Goi(j) · |N(j, q)|

≤
∑

q≥log2 Rt
q≥q∗

2−5q · (2 · (2q+1 + 2q
∗
)2) ≤

∑
q≥log2 Rt
q≥q∗

2−5q · (32 · 22q)

≤ 32 ·
∑

q≥log2 Rt
q≥q∗

2−3q (summing the geometric sum)

≤ 64 ·R−3
t ≤ R

−2
t

as long as C1 is larger than 64 (sinceRt = C1 ·2t ≥ C1 by assumption p1 of the lemma). Substituting this bound
into (13), we get Ds

j ≤ Zsj +Xs
j ≤ Zsj +R−2

t , which means that

Rt∑
s=1

Ds
j ≤ R1−δ

t +R−1
t . (20)

To complete the argument, recall that by (8) one has eheadi ({Ht,s}, x′) = quant1/5s∈[1:Rt]
eheadi (Ht,s, x

′). This

means that for each i ∈ St there exist at least (1/5)rmax values of s ∈ [1 : Rt] such that eheadi (Ht,s, x
′) > eheadi ,

and hence

||eheadSt ({Ht,s}, x′)||1 ≤
1

(1/5)Rt

Rt∑
s=1

||eheadSt (Ht,s, x
′)||1. (21)

Substituting the bound from (21) into (12), we get

||eheadSt ({Ht,s}, x′)||1 ≤
1

(1/5)Rt

Rt∑
s=1

||eheadSt (Ht,s, x
′)||1 ≤

2

(1/5)Rt

Rt∑
s=1

∑
j∈S
|x′j | ·Ds

j

≤
∑
j∈S
|x′j | ·

(
2

(1/5)Rt

Rt∑
s=1

Ds
j

)
.

Substituting the above into (21), we get

||eheadSt ({Ht,s}, x′)||1 ≤
∑
j∈S
|x′j | ·

(
2

(1/5)Rt

Rt∑
s=1

Ds
j

)
≤
∑
j∈S
|x′j | ·

(
2

(1/5)Rt
(R1−δ

t +R−1
t )

)

≤
∑
j∈S
|x′j | ·

(
20

Rt
R1−δ
t

)
(since R−1

t ≤ R
1−δ
t )

≤ 20R−δt ||x′S ||1.

(22)

Substituting the bound from (22) into (21) we get ||eheadSt
({Ht,s}, x′)||1 ≤ 20 ·R−δt ||x′S ||1, as required.
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4 Sample efficient estimation

In this section we state our sample optimal estimation algorithm (Algorithm 2) and provide its analysis.

4.1 Algorithm and overview of analysis

Our algorithm (Algorithm 2) contains three major components: it starts by taking measurements m of the signal
x (accessing the signal in Fourier domain, i.e. accessing x̂), then uses these measurements to perform a sequence
of `1 norm reduction steps, reducing `1 norm of the residual signal on the target set S of coefficients to about
the noise level. Finally, a simple cleanup procedure is run to convert the `1 norm bounds on the residual to `2/`2
guarantees of (1). In this section we will use the functions ehead, etail (see Section 2) defined with respect to the
set S.
Measuring x̂. All measurements that the algorithm takes are taken in lines 6-12, and then line 31. The measure-
ments in lines 6-12 are taken over T = 1

1−δ log2 log(k+1)+O(1) rounds for small constant δ ∈ (0, 1/2), where
in round t = 1, . . . , T we are hashing the signal into Bt ≈ k/R2

t buckets, where Rt grows exponentially with t.
For each t we perform Rt independent hashing experiments of this type. This matches the setup of Lemma 3.1,
which is our main analysis tool (see proof of Lemma 4.1).
`1 norm reduction loop. Once the samples have been taken, Algorithm 2 proceeds to the `1 norm reduction
loop (lines 16-22). The objective of this loop is to reduce the `1 norm of the residual signal on the target set S
of coefficients that we would like to estimate to about the noise level, namely to O(||x[n]\S ||2

√
k). The formal

guarantees are provided by

Lemma 4.1. For every δ ∈ (0, 1/2), if C1, C2 (parameters in Algorithm 2) are sufficiently large constants, then
the following conditions hold.

For every x ∈ Cn, every integer k ≥ 1, every S ⊆ [n], |S| = k, if ||x||∞ ≤ R∗ · ||x[n]\S ||2/
√
k,R∗ = nO(1),

the vector χ̃ computed in line 23 of an invocation of ESTIMATE(x̂, S, k, ε, R∗) (Algorithm 2) satisfies

||(x− χ̃)S ||1 ≤ O(||x[n]\S ||2 ·
√
k)

conditioned on an event Emaj that occurs with probability at least 1− 2/25.

Cleanup phase and final result. Once the `1 norm of the residual on S has been reduced toO(||x[n]\S ||2
√
k), we

run the ESTIMATEVALUES procedure once to convert `1 norm bounds on the residual into `2/`2 guarantees (1).
This results in a proof of Theorem 1.1, restated below for convenience of the reader. The theorem establishes
correctness of Algorithm 2, as well as its runtime and sample complexity bounds:
Theorem 1.1 (Restated) For every ε ∈ (1/n, 1), δ ∈ (0, 1/2), x ∈ Cn and every integer k ≥ 1, any S ⊆ [n],
|S| = k, if ||x||∞ ≤ R∗ · ||x[n]\S ||2/

√
k,R∗ = nO(1), an invocation of ESTIMATE(x̂, S, k, ε, R∗) (Algorithm 2)

returns χ∗ ∈ Cn such that
||(x− χ∗)S ||22 ≤ ε · ||x[n]\S ||22

using Oδ(1
εk) samples and Oδ(1

εk log3+δ n) time with at least 4/5 success probability.

4.2 Proof of Lemma 4.1

We now give
Proof of Lemma 4.1: Recall that in this section we use the quantities ehead and etail defined with respect to the
set S. We will also use an isolating partition of S, denoted by S = S1 ∪ S2 ∪ . . . ∪ ST . We argue the existence
of such a partition with high probability later.

We prove by induction on the pair (r, t) that conditional on a high probability success event Emaj (defined
below) the residual signals x − χ(r,t) are majorized on S (in the sense of Definition 2.12) by a fixed sequence
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Algorithm 2 ESTIMATE(x̂, S, k, ε, R∗)
1: procedure ESTIMATE(x̂, S, k, ε, R∗) . List S of size k
2: T ← 1

1−δ log2 log(k + 1) +O(1) for a small constant δ ∈ (0, 1/2)
3: Rt ← C1 · 2t for t ∈ [1 : T ] . C1 > 0 sufficiently large absolute constant
4: Bt ← C2 · k/R2

t for t ∈ [1 : T ] . C2 > 0 sufficiently large absolute constant
5: Gt ← filter with Bt buckets and sharpness F = 8.
6: for t = 1 to T do . Take samples
7: for s = 1 to Rt do
8: Choose σ ∈Modd, q ∈ [n] u.a.r., let πt,s ← (σ, q), Ht,s := (πt,s, Bt, F )
9: Let at,s ← an element of [n] u.a.r.

10: m(x,Ht,s, at,s)← HASHTOBINS(x̂, 0, (Ht,s, at,s))
11: end for
12: end for
13: Explicitly construct a δ-isolating partition S = S1 ∪ S2 . . . ∪ ST . As per Lemma 3.9
14: χ(0,0) ← 0
15: r′ ← 0, t′ ← 0
16: for r = 0, 1, . . . , C log4R

∗ do . For any constant C ≥ 1
17: for t = 1 to T do
18: χ′ ← ESTIMATEVALUES(χ(r′,t′), St, {(Ht,s, at,s,m(x,Ht,s, at,s))}Rts=1)
19: χ(r,t) ← χ(r′,t′) + χ′ . (r′, t′) are the previous indices
20: r′ ← r, t′ ← t
21: end for
22: end for
23: χ̃← χ(C log4R

∗,T ) . χ̃ is the final residual computed by the loop
24: B ← C2 · k/ε
25: G← filter with B buckets and sharpness F = 8.
26: rmax ← O(1) . A sufficiently large absolute constant
27: for r = 1 to O(1) do
28: Choose σr ∈Modd, qr, ar ∈ [n] u.a.r., let πr ← (σr, qr), Hr := (πr, B, F )
29: m(x,Hr, ar)← HASHTOBINS(x̂, χ̃,Hr, ar)
30: end for
31: χ′′ ← ESTIMATEVALUES(χ̃, S, {(Hr, ar,m(x,Hr, ar))}rmaxr=1 )
32: χ∗ ← χ̃+ χ′′

33: return χ∗
34: end procedure

y(r,t) whose `1 norm converges to O(||x[n]\S ||2 ·
√
k) after O(logR∗) iterations. Since we only update elements

in S, this gives the result. We now give the details of the argument. In what follows we let µ2 := ||x[n]\S ||22/k
for convenience. Note, however, that Algorithm 2 is oblivious to the value of µ: we only need an upper bound on
logR∗.

We start by defining the majorizing sequence y(r,t). We first let y(0,0)
i = R∗µ for all i ∈ S and y(0,0)

i = xi
otherwise. Note that y(0,0) trivially majorizes x as ||x||∞ ≤ R∗ ·µ by assumption of the lemma. The construction
of y(r,t) proceeds by induction on (t, r). Given y(r′,t′), as per Algorithm 2 the next signal to be defined is y(r,t)

with (r, t) = (r′, t′ + 1) if t < T and (r, t) = (r′ + 1, 1) otherwise (as per lines 15-22 of Algorithm 2). We
now define the signal y(r,t) by letting for each i ∈ [n] (recall that St is the t-th set in an isolating partition
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S = S1 ∪ S2 ∪ . . . ∪ ST )

y
(r,t)
i :=

{
20eheadi ({Ht,s}s∈[1:Rt], y

(r′,t′)) + 20etaili ({Ht,s, at,s}s∈[1:Rt], x) + n−Ω(c) if i ∈ St
y

(r′,t′)
i o.w.

(23)

Here n−Ω(c) corresponds to the (negligible) error term due to polynomial precision of our computations. Note
that there are two contributions to y(r,t): one coming from the previous signal in the majorizing sequence, namely
y(r′,t′), and the other coming from the tail of the signal x.

We now prove by induction on (t, r) that the loop in our estimation primitive reduces the `1 norm of the
residual to O(µ · k) (recall that µ2 = ||x[n]\S ||22/k). Specifically, we prove that there exists an event Emaj with
Pr{{Ht,s}s∈[1:Rt]

}}Tt=1
[Emaj ] ≥ 1 − 2/25 such that conditioned on Emaj the set S admits an isolating partition

S = S1 ∪ S2 ∪ . . . ∪ ST with respect to {{Ht,s}}, and for every (r, t) ∈ ([0 : +∞)× [1 : T ]) ∪ {(0, 0)}

(A) for all q ∈ [1 : t] one has ||y(r,t)
Sq
||1 ≤ (R∗ · (1/4)r+1µ+ 2µ) · k · (R0/Rq−1)δ;

(B) for all q ∈ [t+ 1 : T ] one has ||y(r,t)
Sq
||1 ≤ (R∗ · (1/4)rµ+ 2µ) · k · (R0/Rq−1)δ;

(C) ||y(r,t)
S ||1 ≤ (2/δ) · (R∗(1/4)rµ+ 2µ) · k;

(D) (x− χ(r,t)) ≺S y(r,t) and suppχ(r,t) ⊆ S.

First, note that the set S admits an isolating partition with respect to the hash functions {{Ht,s}} with proba-
bility at least 1− 1/25 by Lemma 3.8. Denote the success event by Epartition. We condition on this event in what
follows. We give the inductive argument, and finally define the event Emaj as the intersection of Epartition with
several other high probability success events.

The base is provided by r = 0 and t = 0. Indeed, by property (1) of an isolating partition (see Definition 3.7)
we have for any q ∈ [1 : T ]

||y||Sq ≤ R∗µ · |Sq| ≤ R∗µ · k ·
R0

Rq−1
2−2(1−δ)(q−1)+1 ≤ R∗µ · k · (R0/Rq−1)δ

since 2−2(1−δ)(q−1)+1 ≤ 1 for all q ≥ 1 and R0
Rq−1

≤ (R0/Rq−1)δ (as δ < 1 by assumption of the lemma).
We now prove the inductive step. Let (r′, t′) := (r, t− 1) if t > 1, else let (r′, t′) := (r− 1, T ) if r > 1 and

t = 1, and (r′, t′) = (0, 0) otherwise. Note that (t′, r′) is the element preceding y(r,t) in the majorizing sequence
(as per lines 15-22 of Algorithm 2).
Proving (C). We start with an upper bound on the `1 norm of y(r′,t′), i.e. prove (C). Using the inductive hypoth-
esis (A) and (B) for (t′, r′), we get

||y(r′,t′)
S ||1 ≤

t′∑
q=1

(R∗(1/4)r
′+1µ+ 2µ) · k · (R0/Rq−1)δ +

∞∑
q=t′+1

(R∗(1/4)rµ+ 2µ) · k · (R0/Rq−1)δ

≤ (R∗(1/4)r
′
µ+ 2µ) · k ·

∞∑
q=1

(R0/Rq−1)δ

= (R∗(1/4)r
′
µ+ 2µ) · k ·

∞∑
q=1

2−(q−1)δ (since Rt = C12t by p1)

≤ 1

2δ − 1
· (R∗k(1/4)r

′
µ+ 2µ)

≤ 1

eδ ln 2 − 1
· (R∗k(1/4)r

′
µ+ 2µ)

≤ (2/δ) · (R∗k(1/4)r
′
µ+ 2µ) (since ex − 1 ≥ x, and ln 2 > 1/2)

(24)
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This establishes (C), and we now turn to (A) and (B). By definition the signal y(r,t) is obtained from y(r′,t′)

by modifying the latter on St. We need to bound the error introduced by head and tail elements of y(r′,t′) to y(r,t)
St

(see (23)). We now bound both terms.
Proving (A) and (B): analyzing contribution from the tail etail. By Lemma B.2, (2), one has for every i ∈ [n],
t = 1, . . . , T and s = 1, . . . , Rt

EHt,s,at,s
[
(etaili (Ht,s, at,s, x))2

]
≤ ν2

for some ν > 0 such that ν2 = O(||x[n]\S ||22/Bt). By Jensen’s inequality we thus have

EHt,s,at,s
[
etaili (Ht,s, at,s, x)

]
≤ ν.

To upper bound E{Ht,s,at,s}
[
||etailSt

({Ht,s, at,s}s∈[1:Rt], x)||1
]
, we note that by conditioning on Epartition we

have |St| ≤ k R0
Rt−1

2−2(1−δ)(t−1)+1. Letting U := k R0
Rt−1

2−2(1−δ)(t−1)+1 to simplify notation, we get that

E{Ht,s,at,s}
[
||etailSt ({Ht,s, at,s}s∈[1:Rt], x)||1

]
≤ E{Ht,s,at,s}

[
max

Q⊆S,|Q|≤U
||etailQ ({Ht,s, at,s}s∈[1:Rt], x)||1

]
(25)

We now recall that by (10) one has

etaili ({Ht,s, at,s}, x) := quant1/5s=1,...,Rt
etaili (Ht,s, at,s, x),

and apply Lemma B.6 with γ = 1/5, m = |S|, n = Rt and

Xs
i = etaili (Ht,s, at,s, x) for i ∈ S and s = 1, . . . , Rt,

so that EHt,s,at,s [Xs
i ] ≤ ν for each i ∈ S, s = 1, . . . , Rt. Note that Yi := quant1/5s=1,...,Rt

Xs
i = etaili ({Ht,s, at,s}, x)

is exactly the quantity that we are interested in. We thus have by Lemma B.6

E{Ht,s,at,s}
[

max
Q⊆S,|Q|≤U

||etailQ ({Ht,s, at,s}s∈[1:Rt], x)||1
]

= E{Ht,s,at,s}

 max
Q⊆S,|Q|≤U

∑
i∈Q

Yi


≤ U · (20eν) · (|S|/U)10/Rt

(26)

Since Rt′ = C12t
′

for every t′, |S| = |S0| ≤ k and U = k R0
Rt−1

2−2(1−δ)(t−1)+1 = k2−2(1−δ)(t−1)+1−(t−1), we
have

(|S|/U)10/Rt = 210(2(1−δ)(t−1)−1+(t−1))/(C12t) ≤ 210(1+(t−1)/2t)/C1 ≤ 220/C1 ≤ 2

for all t ≥ 1 as long as C1 > 20. Substituting the above into (26), we get

E{Ht,s,at,s}
[

max
Q⊆S,|Q|≤U

||etailQ ({Ht,s, at,s}s∈[1:Rt], x)||1
]
≤ (40e) · U · ν,

and thus by (25)

E{Ht,s,at,s}
[
||etailSt ({Ht,s, at,s}s∈[1:Rt], x)||1

]
= O(U · ν)

= O(2k
R0

Rt−1
Rt2

−2(1−δ)(t−1)+1 · ||x[n]\S ||2/
√
C2k)

= µk
1

R2
t−1

·O
(
R2
tR02−2(1−δ)(t−1)+1/

√
C2

)
= µk

1

R2
t−1

· ξt, ξt = O
(
R2
tR02−2(1−δ)(t−1)+1/

√
C2

)
.
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Since Rt = C12t increases only exponentially, whereas the second multiplier decreases at a doubly exponential
rate, as long as C2 is larger than a constant, we get that ξt ≤ 1/10000 for all t ≥ 1 (formally, this follows by
Claim A.2). By Markov’s inequality, for each t ≥ 1 we have

||etailSt ({Ht,s, at,s}s∈[1:Rt], x)||1 ≤
1

200
µk

1

Rt−1

with probability at least 1 − 1/(50Rt−1) ≥ 1 − 1/(50 · 2t−1). Thus, by a union bound over all t ≥ 1 we have
with probability at least 1− 1/25

||etailSt ({Ht,s, at,s}s∈[1:Rt], x)||1 ≤
1

200
µk

1

Rt−1
. (27)

Denote the success event above by Esmall−noise.
Proving (A) and (B): analyzing contribution from the head ehead. By Lemma 3.1 we have

||eheadSt ({Ht,s}s∈[1:Rt], y
(r′,t′))||1 ≤ 20R−δt ||y

(r′,t′)
S ||1. (28)

We now define the event Emaj by letting Emaj := Esmall−noise ∩ Epartition. Note that Pr[Emaj ] ≥ 1− 2/25 by a
union bound, as required. We condition on Emaj for the rest of the proof.
Proving (A) and (B): putting it together. We now use the bounds above to prove the result. By definition of y
above we have

y
(r,t)
i := 20eheadi ({Ht,s}s∈[1:Rt], y

(r′,t′)) + 20etaili ({Ht,s, at,s}s∈[1:Rt], x) + n−Ω(c),

so

||y(r,t)
St
||1 ≤

∑
i∈St

(
20eheadi ({Ht,s}s∈[1:Rt], y

(r′,t′)) + 20etaili ({Ht,s, at,s}s∈[1:Rt], x) + n−Ω(c)
)

≤ 400 ·R−δt · ||y
(r′,t′)
S ||1 + 20||etailSt ({Ht,s, at,s}, x)||1 + n−Ω(c)

We now substitute (24) together with (27) and (28) into the last line above, and obtain

||y(r,t)
St
||1 ≤ 400 ·R−δt (2/δ) · (R∗(1/4)r

′
µ+ 2µ)k +

1

10
µk/Rt−1 + n−Ω(c)

≤ 400 · (2/δ) ·R−δ0 · (R
∗(1/4)r

′
µ+ 2µ)k · (R0/Rt−1)δ +

1

10
µk · (R0/Rt−1)δ + n−Ω(c) (since δ ∈ (0, 1))

≤
[
400 · (2/δ) · C−δ1 +

1

10

]
· (R∗(1/4)r

′
µ+ 2µ)k · (R0/Rt−1)δ + n−Ω(c)

where we upper bounded 1
10µk/Rt−1 by 1

10µk · (R0/Rt)
δ (which is justified since R0 ≥ 1 and δ ∈ (0, 1)) and

used the bound R−δt = R−δ0 · (R0/Rt)
δ.

We now conclude that as long as C1 ≥ (40000/δ)1/δ, we have

||y(r,t)
St
||1 ≤

[
400 · (2/δ) · C−δ1 +

1

10

]
· (R∗(1/4)r

′
µ+ 2µ)k · (R0/Rt−1)δ + n−Ω(c)

≤ (R∗(1/4)r
′+1µ+ 2µ)k · (R0/Rt−1)δ + n−Ω(c).

This completes the proof of the inductive step for (A) and (B). It remains to prove (D).
Proving (D). Our main tool in arguing (D) is Lemma 2.11, which we invoke with the set S. By that lemma we
have for every i ∈ S

|xi − χ(r′,t′)
i − χ′i| ≤ 2quant1/5s eheadi (Ht,s, x− χ(r′,t′)) + 2quant1/5etaili (Ht,s, at,s, x) + n−Ω(c),
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since supp χ(r′,t′) ⊆ S by the inductive hypothesis. This implies by definition of y(r,t) that for every i ∈ St

|xi − χ(r′,t′)
i − χ′i| ≤ 2quant1/5r eheadi (Ht,s, x− χ(r′,t′)) + 2quant1/5s etaili (Ht,s, at,s, x) + n−Ω(c)

≤ 20quant1/5s eheadi (Ht,s, x− χ(r′,t′)) + 20quant1/5s etaili (Ht,s, at,s, x) + n−Ω(c).
(29)

By part (D) of the inductive hypothesis we have x − χ(r′,t′) ≺S y(r′,t′), and thus by Lemma 2.13 together
with (29) for every i ∈ St

|xi − χ(r′,t′)
i − χ′i| ≤ 20quant1/5s eheadi (Ht,s, x− χ(r′,t′)) + 20quant1/5s etaili (Ht,s, at,s, x) + n−Ω(c)

≤ 20quant1/5s eheadi (Ht,s, y
(r′,t′)) + 20quant1/5s etaili (Ht,s, at,s, x) + n−Ω(c)

= y
(r,t)
i .

We thus have for every i ∈ St
|xi − χ(r′,t′)

i − χ′i| ≤ y
(r,t)
i .

Since y(r,t)
i = y

(r′,t′)
i for i 6∈ St, χ(r,t)

i = χ
(r′,t′)
i for i 6∈ St and x−χ(r′,t′) ≺S y(r′,t′) by the inductive hypothesis,

we get
x− χ(r′,t′) − χ′ ≺S y(r,t)

as required. Since we only update elements of S, we have supp χ(r,t) ⊆ supp χ(r′,t′) ∪ supp χ′ ⊆ S. This
completes the proof of (D), and the proof of the induction.

To obtain the final result of the lemma, we note that by part (C) of the inductive claim for every r ≥ C log4R
∗

(for any C ≥ 1) one has

||y(r,T )
S ||1 ≤ (2/δ) · (R∗(1/4)rµ+ 2µ) · k ≤ (6/δ) · µk.

Now recall that by line 23 of Algorithm 2 we have χ̃ = χ(C log4R
∗,T ), which implies by part (D) of the inductive

claim, since (x− χ(C log4R
∗,T )) ≺S y(C log4R

∗,T ), that

||(x− χ̃)S ||1 = ||(x− χ(C log4R
∗,T ))S ||1 ≤ ||y

(C log4R
∗,T )

S ||1 ≤ (6/δ) · µk = O(µk),

as required.

4.3 Proof of Theorem 1.1

We now give
Proof of Theorem 1.1: Recall that in this section we use the quantities ehead and etail defined with respect to the
set S. By Lemma 4.1 we have that conditioned on a high probability event Emaj (which occurs with probability
at least 1− 2/25) the vector χ̃ computed in line 23 satisfies

||(x− χ̃)S ||1 = O(||x[n]\S ||2
√
k) (30)

To complete the proof, we show that the output χ′′ of the invocation of ESTIMATEVALUES in line 31, when
added to χ̃, yields guarantee claimed by the lemma. First, by Lemma 2.11 with S one has for each i ∈ S

|χ′′i − (x− χ̃)i| ≤ 2 · quant1/5r eheadi (Hr, x− χ̃) + 2 · quant1/5r etaili (Hr, ar, x) + n−Ω(c), (31)

since supp χ̃ ⊆ S.
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Squaring both sides of (31), using the bound (a + b)2 ≤ 2a2 + 2b2 and taking expectations over the
randomness in measurements taken in lines 27-30, we get

E[|χ′′i − (x− χ̃)i|2] ≤ 8 ·E
[
(quant1/5r eheadi (Hr, x− χ̃)2

]
+ 8 ·E

[
(quant1/5r etaili (Hr, ar, x))2

]
+n−Ω(c). (32)

We now upper bound the expectation of (32). By Lemma B.5, (1) one has, lettingZhead := quant1/5r eheadi (Hr, x−
χ̃) to simplify notation,

E
[
(Zhead)2

]
= O

((
1

B
||(x− χ̃)S ||1

)2
)

= O

((
1

C2k/ε
||(x− χ̃)S ||1

)2
)

= O(ε2||x[n]\S ||22/(C2k)),

where we used that by conditioning on Emaj one has ||(x− χ̃)S ||1 = O(||x[n]\S ||2
√
k) (by (30)).

By Lemma B.5, (2) with S one has, letting Ztail := quant1/5r etaili (Hr, ar, x) to simplify notation,

E
[
(Ztail)2

]
= O(||(x− χ̃)[n]\S ||22/B) = O(ε||x[n]\S ||22/(C2k)),

where we used the fact that supp χ̃ ⊆ S.
Substituting these bounds into (32) and summing over all i ∈ S, we get

E[||(x− χ̃− χ′′)S ||2] ≤ O(ε2||x[n]\S ||22/C2) +O(ε||x[n]\S ||22/C2) ≤ (ε/1000)||x[n]\S ||22
as long as C2 is sufficiently large.

An application of Markov’s inequality then gives ||(x − χ̃ − χ′′)S ||2 ≤ ε||x[n]\S ||22 with probability at least
1 − 1/1000. By a union bound over this failure event and Ēmaj , we conclude that the algorithm outputs the
correct answer with probability at least 1− 3/25 ≥ 4/5.

We now upper bound the sample complexity and runtime.
Sample complexity. The sample complexity of lines 6-11 is bounded by

∑T
t=1

∑Rt
s=1O(F ·Bt) =

∑T
t=1Rt ·

O(F · k/R2
t ) = O(k) ·

∑T
t=1 1/Rt = O(k) by the choice of Rt as geometrically increasing. The sample

complexity of lines 27-30 is upper bounded by O(F ·B) = O(k/ε) by Lemma 2.11 and choice of F = O(1).
Runtime. The runtime of HASHTOBINS in line 10 of Algorithm 2 is O(F · Bt logBt) = O(Bt logBt) by

Lemma 2.8, the setting of F = O(1) and the fact that the residual signal passed to the call is zero. Since this line
is executed for t = 1, . . . , T and s = 1, . . . , Rt, the total runtime of the loop is

T∑
t=1

Rt∑
s=1

O(Bt logBt) = O

(
T∑
t=1

Rt · (C2k/R
2
t ) log(C2k)

)
= O(k log k) ·

T∑
t=1

1/Rt = O(k log k).

The runtime for construction of the partition S1 ∪ S2 ∪ . . . ∪ ST in line 13 is O((
∑T

t=1Rt)|S| log |S|) =

O(RTk log k) by Lemma 3.9 and the fact that
∑T

t=1Rt = O(RT ). We now note that since T = 1
1−δ log2 log(k+

1) +O(1), then

RT = C12T = C12
1

1−δ log2 log k+O(1) = O(log
1/(1−δ)
2 (k + 1)) = O(log1+2δ

2 (k + 1)), (33)

where we used the fact that 1/(1 − δ) ≤ 1 + 2δ for δ ∈ (0, 1/2). Thus, the runtime for construction of the
partition S1 ∪ S2 ∪ . . . ∪ ST in line 13 is O(k log2+2δ k).

By Lemma 2.11 each invocation of ESTIMATEVALUES takes time O((||χ(r,t)||0 log n + FBt log n) · Rt) =
O(Rtk log n + RtBt log n), as F = O(1) by choice of parameters in line 25 of Algorithm 2. The total runtime
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per iteration in lines 16-22 is thus

T∑
t=1

O(Rtk log n+RtBt log n)

= O

(
kRT log n+

T∑
t=1

BtRt log n

)
(since

T∑
t=1

Rt = O(RT ), as Rt grow geometrically)

= O(kRT log n) +O

(
T∑
t=1

k/Rt

)
log n (since Bt = C2k/R

2
t )

We now note that
∑T

t=1 k/Rt = O(k) sinceRt grow geometrically, and thus the expression on the last line above
is O(kRT log n) = k log2+2δ n by (33). Since the loop in lines 16-22 proceeds over O(log n) iterations, the final
runtime bound is k log3+2δ n, as required (after rescaling δ).

Finally, lines 27-31 takeO(1
εk log n) time for the invocation of HASHTOBINS by Lemma 2.8 andO(1

εk log n)
time for ESTIMATEVALUES by Lemma 2.11. Putting the bounds above together, we obtain the runtime of
k log3+2δ n+O(1

εk log n), as required.

5 Sample efficient recovery

In this section we state our algorithm for sparse recovery from Fourier measurements that achieves O(k log n)
sample complexity in k logO(1) n runtime, give an outline of the analysis, and then present the formal proof. The
proof reuses the core primitives developed in Section 3 together with the idea of majorizing sequences used in
Section 4 to argue about correctness of our estimation primitive to analyze the performance of a natural iterative
recovery scheme.

5.1 Algorithm and outline of the analysis

Our algorithm (Algorithm 3) contains three major components: it starts by taking measurementsm of the signal x
(accessing the signal in Fourier domain, i.e. accessing x̂), then uses these measurements to perform a sequence of
recovery steps that reduce the `1 norm of the ‘heavy’ elements of x down to (essentially) noise level µ. Finally, a
simple cleanup procedure (RECOVERATCONSTANTSNR) is run to achieve the `2/`2 sparse recovery guarantees
(see (3)). We reuse the location primitive from [Kap16] (LOCATESIGNAL, Algorithm 6).
Measuring x̂. All measurements that the algorithm takes are taken in lines 6-22. Two sets of measurements
are taken: one for location (LOCATESIGNAL), another for estimation purposes (calls to ESTIMATEVALUES in
line 32 of Algorithm 3). Location relies on a very structured set of measurements: the measurements are taken
over T = 1

1−δ log2 log(k + 1) + O(1) rounds for small constant δ ∈ (0, 1/2), where in round t we are hashing
the signal into Bt ≈ k/R2

t buckets, where Rt grows exponentially with t. For each t we perform Rt independent
hashing experiments of this type. For each hashing Ht,s, t = 1, . . . , T, s = 1, . . . , Rt we select a random set
At,s ⊆ [n] × [n] that encodes the locations that our measurements access. Besides measurements used for
location we take a separate set of measurements to use in the call to ESTIMATEVALUES. These measurements
are quite unstructured: we simply make measurements using C log n random hashings and evaluation points for
sufficiently large constantC > 0. It is crucial that these measurements are independent of the measurements used
for location. Intuitively, the first set of measurements allows us to decode dominant coefficients of the residual
signal in sublinear time, whereas the second (unstructured) set of measurements allows us to prune false positives,
ensuring that no erroneous coefficients are introduced throughout the update process. The latter idea is similar
to the approach used in [IK14], but is harder to implement in our setting as the number of possible trajectories
along which the decoding process can evolve is larger. We handle this issue by using the notion of majorizing
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sequences introduced in Section 2 (see Definition 2.12 and Lemma 2.13) and used to analyze Algorithm 2 in
Section 4.
Signal to noise ratio (SNR) reduction loop. Once the samples have been taken, Algorithm 3 proceeds to the
signal to noise (SNR) reduction loop (lines 25-36). The objective of this loop is to reduce the mass of the top
(about k) elements in the residual signal to roughly the noise level µ ·k, where µ ≥ ||x[n]\[k]||2/

√
k. Specifically,

we define the set S of ‘head elements’ in the original signal x as

S = {i ∈ [n] : |xi| > µ}. (34)

Note that we have |S| ≤ 2k. Indeed, if |S| > 2k, more than k elements of S belong to the tail, amounting to
more than µ2 · k = Err2

k(x) tail mass. The quantities ehead and etail (see (8) and (9) in Section 2) used in this
section are defined with respect to this set S.

The SNR reduction loop of Algorithm 3 constructs a vector χ̃ supported only on S such that

||(x− χ̃)S ||1 = O(µk) and supp χ̃ ⊆ S, (35)

i.e. the `1-SNR of the residual signal on the set S of heavy elements is reduced to a constant.
The main technical contribution lies in our SNR reduction loop, and our main technical result in this section

is

Theorem 5.1. For any δ ∈ (0, 1/2), for any x ∈ Cn, any integer k ≥ 1, if µ2 ≥ Err2
k(x)/k and R∗ ≥

||x||∞/µ,R∗ = nO(1), the following conditions hold for the set S := {i ∈ [n] : |xi| > µ} ⊆ [n].
Then the SNR reduction loop of Algorithm 3 (lines 25-36) returns χ̃ such that

||(x− χ̃)S ||1 = Oδ(µk)

supp χ̃ ⊆ S

with probability at least 1 − 3/25 over the internal randomness used by Algorithm 3. The sample complexity is
Oδ(k log n). The runtime is bounded by Oδ(k log4+2δ n).

Recovery at constant `1-SNR and final result. Once (35) has been achieved, we run the RECOVERATCON-
STANTSNR primitive from [Kap16] on the residual signal. Adding the correction that it outputs to the output of
the SNR reduction loop gives the final output of the algorithm. Given Theorem 5.1, the proof of the main result
is simple using

Lemma 5.2 (Lemma 3.4 of [Kap16]). For any ε > 0, x̂, χ ∈ Cn, x′ = x−χ and any integer k ≥ 1 if ||x′[2k]||1 ≤
O(||x[n]\[k]||2

√
k) and ||x′[n]\[2k]||

2
2 ≤ ||x[n]\[k]||22, the following conditions hold. If ||x||∞/µ = nO(1), then

the output χ′ of RECOVERATCONSTANTSNR(x̂, χ, 2k, ε) satisfies ||x′ − χ′||22 ≤ (1 + O(ε))||x[n]\[k]||22 with at
least 99/100 probability over its internal randomness. The sample complexity is O(1

εk log n), and the runtime
complexity is at most O(1

εk log2 n).

Theorem 1.2 (Restated) For any ε ∈ (1/n, 1), δ ∈ (0, 1/2), x ∈ Cn and any integer k ≥ 1, if R∗ ≥
||x||∞/µ,R∗ = nO(1), µ2 ≥ ||x[n]\[k]||22/k, µ2 = O(||x[n]\[k]||22/k) and α > 0 is smaller than a function
of δ, SPARSEFFT(x̂, k, ε, R∗, µ) (Algorithm 3) solves the `2/`2 sparse recovery problem using Oδ(k log n) +
O(1

εk log n) samples and Oδ(1
εk log4+δ n) time with at least 4/5 success probability.

Proof. Let the set S ⊆ [n] be defined as in Theorem 5.1. By Theorem 5.1 one has that ||(x − χ̃)S ||1 = Oδ(µ)
and supp χ̃ ⊆ S with probability at least 1− 3/25. Thus, the signal x− χ̃ satisfies preconditions of Lemma 5.2,
and we get ||x− χ̃−χ′||2 ≤ (1+O(ε)) Errk(x) with probability at least 99/100, resulting in success probability
at least 1− 3/25− 1/100 ≥ 4/5 overall.

The sample complexity of the SNR reduction loop is O(k log n) by Theorem 5.1. The sample complexity of
RECOVERATCONSTANTSNR isO(1

εk log n). The runtime of the SNR reduction loop is bounded by k log4+2δ n
by Theorem 5.1, and the runtime of RECOVERATCONSTANTSNR is at mostO(1

εk log2 n) by Lemma 5.2, so the
final runtime bound follows (after rescaling δ).
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Algorithm 3 SPARSEFFT(x̂, k, ε, R∗, µ)
1: procedure SPARSEFFT(x̂, k, ε, R∗, µ)
2: W ← {0}, ∆← 2b

1
2

log2 log2 nc, N ← ∆dlog∆ ne

3: for g = 1 to log∆N do
4: W ←W ∪ {N∆−g}
5: end for
6: T ← 1

1−δ log2 log(k + 1) +O(1)
7: Rt ← C1 · 2t for t ∈ [1 : T ] . C1 > 0 an absolute constant, δ ∈ (0, 1/2) small constant
8: Bt ← C2 · k/R2

t for t ∈ [1 : T ] . C2 sufficiently large
9: Gt ← filter with Bt buckets and sharpness F = 8.

10: for t = 1 to T do . Take samples to be used for location
11: for s = 1 to Rt do
12: Choose σ ∈Modd u.a.r., let πt,s ← (σ, 0), Ht,s := (πt,s, Bt, F )
13: Let At,s ← C log logn elements of [n]× [n] u.a.r.
14: m(x,Ht,s, α+ w · β)← HASHTOBINS(x̂, 0, (Ht,s, α+ w · β)) for (α, β) ∈ At,s,w ∈ W
15: end for
16: end for
17: B ← k/α2, α ∈ (0, 1) smaller than a constant
18: for t = 1 to C log n do
19: Choose σ ∈Modd, q, zt ∈ [n] u.a.r., let πestt ← (σ, q), Hest

t := (πestt , B, F )
20: m(x,Hest

t , zt)← HASHTOBINS(x̂, 0, (Hest
t , zt))

21: end for
22: Mest ← {(Hest

t , zt,m(x,Hest
t , zt))}C logn

t=1

23: χ(0,0) ← 0, χ′ ← 0
24: r′ ← 0, t′ ← 0
25: for r = 0, 1, . . . , blog4R

∗c − 3 do
26: for t = 1 to T do
27: χ(r,t) ← χ(r′,t′) + χ′

28: for s = 1 to Rt do . Invocation of LOCATESIGNAL below does not take any fresh samples
29: Ls ← LOCATESIGNAL(χ(r′,t′), Ht,s, {m(x,Ht,s, α+ w · β)}(α,β)∈At,s,w∈W)
30: end for
31: L←

⋃Rt
s=1 Ls . Invocation of ESTIMATEVALUES below does not take any fresh samples

32: χ← ESTIMATEVALUES(χ(r′,t′), L,Mest)
33: For all j ∈ suppχ let χ′j ← χj if |χj | ≥ 1

16R
∗µ(1/4)r and χ′j ← 0 otherwise

34: r′ ← r, t′ ← t
35: end for
36: end for
37: χ̃← χ(r′,t′) + χ′

38: χ′′ ← RECOVERATCONSTANTSNR(x̂, χ̃, 2k, ε)
39: χ∗ ← χ̃+ χ′′

40: return χ∗
41: end procedure

In the rest of this section we prove performance guarantees for the SNR reduction loop in Algorithm 3
(lines 23-35). These guarantees are formally stated in Theorem 5.1, our main result in the rest of the section. The
main tool in our analysis is the notion of a majorizing sequence for the intermediate residual signals that arise
in the SNR reduction loop: we show that with high probability over the measurements taken, the intermediate
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residual signals that arise during the execution of the algorithm are (assuming perfect estimation) majorized by a
fixed sequence of signals y(r,t), constructed in section 5.3.

To prove that the residual signal is indeed with high probability majorized by this sequence y(r,t), we use
the fact that our estimation primitive uses C log n random measurements and hence yields precise bounds for all
signals y(r,t) in the majorizing sequence. This means that estimates provided by ESTIMATEVALUES essentially
provide perfect estimation for our algorithm, and a simple inductive argument shows that y(r,t) majorizes x−χ(r,t)

at each iteration indeed, and no false positives are created. This argument crucially relies on the definition of a
majorant (see Definition 2.12) and a monotonicity property of ehead (Lemma 2.13). We first state notation
relevant to bounding the effect of tail noise on location in section 5.2. Then the construction of the majorizing
sequence is given in section 5.3, and then section 5.4 proves Theorem 5.1.

5.2 Notation for bounding tail noise in location

Our location algorithm (presented in Appendix C) uses several values of (α, β) ∈ Ar ⊆ [n] × [n] to perform
location, a more robust version of etaili (H, z) will be useful. To that effect we let for any Z ⊆ [n]

etaili (H,Z, x) := quant1/5z∈Z

∣∣∣∣∣∣G−1
oi(i)
·
∑

j∈[n]\S

Goi(j)xjω
zσ(j−i)

∣∣∣∣∣∣ . (36)

Note that our Sparse FFT algorithm (Algorithm 3) at various iterations r, first selects sets Ar ⊆ [n] × [n], and
then accesses the signal at locations Z = {α+ w · β}(α,β)∈Ar for various w ∈ W . It should also be noted here
that in the definition above the quantile is taken over all values of z ∈ Z for a fixed hashing H .

The definition of etaili (H, {α+ w · β}, x) for a fixed w ∈ W above allows us to capture the amount of noise
that our measurements that useH suffer from for locating a specific set of bits of σi. Since the algorithm requires
all w ∈ W to be not too noisy in order to succeed, the following quantity will be useful in analysis. We define

etail,Wi (H,A, x) := 40µH,i(x) +
∑
w∈W

∣∣∣etaili (H, {α+ w · β}(α,β)∈A, x)− 40µH,i(x)
∣∣∣
+

(37)

where for any η ∈ R one has |η|+ = η if η > 0 and |η|+ = 0 otherwise.
The following definition is useful for bounding the norm of elements i ∈ S that are not discovered by several

calls to LOCATESIGNAL on a sequence of hashings {Hr}. For a sequence of measurement patterns {Hr,Ar}
we let

etail,W({Hr,Ar}, x) := quant1/5r etail,Wi (Hr,Ar, x). (38)

We will use the following lemma, whose proof is given in Appendix C:

Lemma 5.3. For any integer rmax ≥ 1, for any sequence of rmax hashings Hr = (πr, B,R), r ∈ [1 : rmax] and
evaluation pointsAr ⊆ [n]×[n], for every S ⊆ [n] and for every x, χ ∈ Cn, x′ := x−χ, the following conditions
hold. If for each r ∈ [1 : rmax] Lr ⊆ [n] denotes the output of LOCATESIGNAL(x̂, χ,Hr, {m(x,Hr, α + w ·
β)}(α,β)∈Ar,w∈W ), L =

⋃rmax
r=1 Lr, and the sets {β}(α,β)∈Ar are balanced r ∈ [1 : rmax], then

||x′S\L||1 ≤ 20||eheadS ({Hr}, x′)||1 + 20||etail,WS ({Hr,Ar}, x)||1 + |S| · n−Ω(c). (*)

Furthermore, every element i ∈ S such that

|x′i| > 20(eheadi ({Hr}, x′) + etail,Wi ({Hr,Ar}, x)) + n−Ω(c) (**)

belongs to L.

We will also use the following lemma, whose proof is given in Appendix D:
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Lemma 5.4. For every C1 larger than an absolute constant, every integer k ≥ 1 and every x ∈ Cn, if the
parameter µ satisfies µ ≥ ||x[n]\[k]||2/

√
k, the following conditions hold. If hashings {{Ht,s}Rts=1}Tt=1 and

locations {{At,s}Rts=1}Tt=1 are selected as in Algorithm 3, lines 6-16, the sequence R1, . . . , RT satisfies

q1 Rt = C12t for all t ≥ 0;

q2 Bt = C2(2k)/R2
t ,

wheret C2 > 0 is sufficiently large (as a function of C1), then there exists an event Esmall−noise (that depends on
Ht,s and At,s) with Pr[Ēsmall−noise ∧ Epartition] ≤ 1/1000 (where Epartition is the success event for Lemma 3.8)
such that the following conditions hold conditioned on Esmall−noise ∩ Epartition. For etail,W defined with respect
to S := {i ∈ [n] : |xi| > µ} one has for all t ∈ [1 : T ] simultaneously ||etail,WSt

({Ht,s,At,s}s∈[1:Rt], x)||1 ≤
1

200 ||x[n]\k||2
√
k/Rt−1.

5.3 Construction of a majorizing sequence

We now construct a sequence of vectors yt,r ∈ R[n]
+ , where t = 1, . . . , T and r = 0, 1, . . . , blog2R

∗c − 3,
which, as we show later, will majorize the actual sequence of residual signals that arise in the execution of our
algorithm on the set of head elements S assuming expected behaviour of our estimation primitive. These two
properties together will later ensure that the update vectors χ(r′,t′) that the SNR reduction loop computes are
always supported on S.

To define the majorizing sequence, we first let y(0,0)
i = R∗µ for all i ∈ S and y(0,0)

i = 0 otherwise. Note that
y(0,0) trivially majorizes every x with the property that ||x||∞ ≤ R∗ · µ on S. The construction of y(r,t) proceeds
by induction on (r, t). Given y(r′,t′), the next signal to be defined is y(r,t), where (r, t) = (r′, t′ + 1) if t′ < T
and (r, t) = (r′+ 1, 1) otherwise (note that this notation matches the notation in lines 23-35) of Algorithm 3, i.e.
the SNR reduction loop. We now define the signal y(r,t) by letting for each i ∈ St

y
(r,t)
i := max

{
20eheadi ({Ht,s}s∈[1:Rt], y

(r′,t′)) + 20etail,Wi ({Ht,s,At,s}s∈[1:Rt], x) + n−Ω(c),
1

8
· (1/4)rR∗µ

}
(39)

and letting y(r,t)
i := y

(r′,t′)
i otherwise. Here n−Ω(c) corresponds to the (negligible) error term due to polynomial

precision of our computations. Note that there are two contributions to y(r,t): one coming from the previous
signal in the majorizing sequence, namely y(r′,t′), and the other coming from the tail of the signal x. Also, recall
that the quantities ehead and etail (see (8) and (9) in Section 2) used in this section are defined with respect to the
set S given by (34).

The `1 norm of the majorizing sequence satisfies useful decay properties:

Lemma 5.5. For every δ ∈ (0, 1/2), every even F ≥ 6, every x ∈ Cn, every integer k ≥ 1, if µ ≥
||x[n]\[k]||2/

√
k, R∗ ≥ ||x||∞/µ,R∗ = nO(1), and S = {i ∈ [n] : |xi| ≥ µ}, then the following conditions

hold.
If ehead, etail,W are defined with respect to S, hashings {Ht,s}, sets {At,s} are defined as in Algorithm 3,

parameters Rt, Bt satisfy

q1 Rt = C12t for all t ≥ 0, C1 larger than a function of δ;

q2 Bt = C2(2k)/R2
t , where C2 is larger than a function of C1 and δ,

and the sequence y(r,t) is defined as in (39), then there exists an event Emaj with Pr{{Ht,s}s∈[1:Rt]
}}Tt=1

[Emaj ] ≥
1 − 2/25 such that conditioned on Emaj the set S admits an isolating partition (as per Definition 3.7) S =
S1 ∪ S2 ∪ . . . ∪ ST , and the following hold.

For every (r, t) ∈ [1 : T ]× [0 : blog4R
∗c] ∪ {(0, 0)}
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(A) for all q ∈ [1 : t] one has ||y(r,t)
Sq
||1 ≤ R∗µ · (1/4)r+1 · (2k) · (R0/Rq−1)δ;

(B) for all q ∈ [t+ 1 : T ] one has ||y(r,t)
Sq
||1 ≤ R∗µ · (1/4)r · (2k) · (R0/Rq−1)δ;

(C) ||y(r,t)
S ||1 ≤ (2/δ) ·R∗µ(1/4)r · (2k)

Proof. By Lemma 3.8 applied to the set S (recall that |S| ≤ 2k) we get that conditioned on an event Epartition
that occurs with probability at least 1− 1/25 there exists an isolating partition S = S1 ∪ . . .∪ ST . We condition
on Epartition in what follows, and the event Emaj that we construct later will be a subset of Epartition.

We prove the claims by induction on (r, t). The base is provided by r = 0 and t = 0. Indeed, by property
(1) of an isolating partition (see Definition 3.7) and the fact that |S| ≤ 2k we have for any q ∈ [1 : T ]

||y||Sq ≤ R∗µ · |Sq| ≤ R∗µ · (2k) · R0

Rq−1
2−2(1−δ)(q−1)+1 ≤ R∗µ(2k) · (R0/Rq−1)δ

since δ ∈ (0, 1) by assumption of the lemma and 2−2(1−δ)(q−1)+1 ≤ 1 for all q ≥ 1.
We now prove the inductive step. There are two cases, depending on whether t ∈ [1 : T − 1] or t = T . Let

t′ = t − 1, r = r′ if t > 1 and t′ = T, r′ = r − 1 otherwise. If t = 1, r = 0, then let t′ = 0, r′ = 0. Note that
(r′, t′) is the element preceding y(r,t) in the majorizing sequence.

We start with an upper bound on the `1 norm of y(r′,t′). Using the inductive hypothesis for (r′, t′), we get

||y(r′,t′)
S ||1 ≤

t′∑
q=1

R∗µ · (2k) · (1/4)r
′+1 · (R0/Rq−1)δ +

∞∑
q=t′+1

R∗µ · (2k) · (1/4)r · (Rq−1/R0)−δ

≤ R∗µ · (2k) · (1/4)r
′
∞∑
q=1

(Rq−1/R0)−δ

= R∗µ · (2k) · (1/4)r
′
∞∑
q=1

2−(q−1)δ (since Rt = C12t by p1)

≤ 1

2δ − 1
·R∗µ · (2k) · (1/4)r

′

≤ 1

eδ ln 2 − 1
·R∗µ(1/4)r

′ · (2k)

≤ (2/δ) ·R∗µ(1/4)r
′ · (2k) (since ex − 1 ≥ x when x ≤ 1 and ln 2 > 1/2)

(40)

By definition of the majorizing sequence (39) the signal y(r,t) is obtained from y(r′,t′) by modifying the latter
on St. We need to bound the error introduced by head and tail elements of y(r′,t′) to y(r,t)

St
(see (39)). We now

bound both terms. By Lemma 5.4 conditioned on Esmall−noise ∩ Epartition (defined in the lemma) we have

||etail,WSt
({Ht,s,At,s}s∈[1:Rt], x)||1 ≤

1

200
µk/Rt−1. (41)

By Lemma 3.1 we have
||eheadSt ({Ht,s}s∈[1:Rt], y

(r′,t′))||1 ≤ 40R−δt ||y
(r′,t′)
S ||1 (42)

as long as S admits an isolating partition with respect to the hash functions {{Ht,s}}, which it does with proba-
bility at least 1− 1/25 by Lemma 3.8 (the success event is denoted by Epartition). We now define the event Emaj
by letting Emaj := Esmall−noise ∩ Epartition. Note that Pr[Emaj ] ≥ 1− 2/25, as required. We condition on Emaj
for the rest of the proof.
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We now use the bounds above to prove the result. By definition of the majorizing sequence (39) we have

y
(r,t)
i := max

{
20eheadi ({Ht,s}s∈[1:Rt], y

(r′,t′)) + 20etail,Wi ({Ht,s,At,s}s∈[1:Rt], x) + n−Ω(c),
1

8
· (1/4)rR∗µ

}
.

so using the bound from (42) we get

||y(r,t)
St
||1 ≤

∑
i∈St

(
20eheadi ({Ht,s}s∈[1:Rt], y

(r′,t′)) + 20etail,Wi ({Ht,s,At,s}s∈[1:Rt], x) + n−Ω(c)

+
1

8
· (1/4)rR∗µ

)
≤ 400 ·R−δt · ||y

(r′,t′)
S ||1 +

1

8
((1/4)rR∗µ) · |St|+ 20||etail,WSt

({Ht,s,At,s}, x)||1 + n−Ω(c)

We now substitute (40) together with (41) into the last line above, and use the bound |St| ≤ 2k· R0
Rt−1

2−2(1−δ)(t−1)+1 ≤
2k R0

Rt−1
(from the definition of an isolating partition, Definition 3.7) to obtain

||y(r,t)
St
||1 ≤ 400 ·R−δt ((2/δ) ·R∗µ · k(1/4)r

′
) +

1

8
R∗µk(1/4)r

′ · R0

Rt−1
+

1

10
µk/Rt−1 + n−Ω(c)

≤
(

(2000/δ) · (Rt/Rt−1)−δ ·R−δ0 +
1

8
+

1

10

)
·R∗µ · k(1/4)r

′ · (R0/Rt−1)δ + n−Ω(c),

≤
(

(2000/δ) ·R−δ0 +
1

8
+

1

10

)
·R∗µ · k(1/4)r

′ · (R0/Rt−1)δ + n−Ω(c),

(43)

where we used the assumption that r ≤ blog4R
∗c, so that R∗µ(1/4)r ≥ µ.

We now note that for every t ≥ 1, since Rt = C12t by assumption of the lemma, we have

(2000/δ) ·R−δ0 = (2000/δ) · C−δ1 .

Thus, as long as C1 ≥ (2000 · 100 · δ)1/δ, the rhs is upper bounded by 1/100. Substituting this into (43), we get

||y(r,t)
St
||1 ≤

(
1

100
+

1

8
+

1

10

)
R∗µ ·k(1/4)r

′ · (R0/Rt−1)δ +n−Ω(c) ≤ R∗µk(1/4)r
′+1 · (R0/Rt−1)δ +n−Ω(c).

This completes the proof of the inductive step.

5.4 Proof of Theorem 5.1

We now prove the following lemma, which captures the correctness part of Theorem 5.1. We then put it together
with runtime and sample complexity estimates to obtain a proof of Theorem 5.1.

Lemma 5.6. For every δ ∈ (0, 1/2), every even F ≥ 6, every x ∈ Cn if the parameter µ satisfies µ ≥
||x[n]\[k]||2/

√
k, R∗ = ||x||∞/µ,R∗ = nO(1), the following conditions hold for the SNR reduction loop in

Algorithm 3. If the hashings {Ht,s} and locations {At,s} are chosen as in Algorithm 3, and parameters satisfy

q1 Rt = C12t for all t ≥ 0, C1 larger than a function of δ;

q2 Bt = C2(2k)/R2
t , where C2 larger than a function of C1 and δ,

then the following conditions hold. If S := {i ∈ [n] : |xi| > µ}, then the output χ̃ of the `1-SNR reduction loop
in Algorithm 3 satisfies

||(x− χ)S ||1 = Oδ(||x[n]\[k]||2 ·
√
k),

and all intermediate χr
′,t′ satisfy

suppχr
′,t′ ⊆ S

with probability at least 1− 3/25 over the randomness used in the measurements.
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Proof. We start with an outline of the proof. Throughout the proof we rely on the quantities ehead and etail

defined with respect to the set S = {i ∈ [n] : |xi| > µ} defined in the lemma. The proof is by induction on
the number of iterations of the SNR reduction loop. We will show that with high probability over the initial
measurements the residual signals x− χ(r,t) are majorized on S by the sequence y(r,t) defined in (39). This lets
us argue that (1) with high probability over the measurements used for ESTIMATEVALUES estimation error on the
signals y(r,t) is small, and then (2) conclude that since x−χ(r,t) are majorized by y(r,t) on S, ESTIMATEVALUES

gives precise estimates for all such residuals. This lets us argue that updates of the residual are always confined to
the set S, and the residual is still majorized appropriately at the next iteration, giving the inductive proof. In what
follows we condition on the event Emaj defined in Lemma 5.5, which occurs with probability at least 1− 2/25.

Precision bounds for ESTIMATEVALUES. We first prove bounds on the precision of the estimates provided
by calls to ESTIMATEVALUES in the SNR reduction loop of Algorithm 3 (line 32). We have by Lemma 2.11,
(1a) applied to the signals y(r,t) + x[n]\S and the set S, that with probability 1 − n−2 over the choice of
measurements Mest (lines 17-21) of Algorithm 3 for any χ(r,t) ∈ Cn such that suppχ(r,t) ⊆ S and x −
χ(r,t) is majorized by y(r,t) on S (as per Definition 2.12), one has that the estimates wi computed in the call
ESTIMATEVALUES(χ(r,t), L,Mest) in line 32 satisfy

|wi − (x− χ(r,t))i| ≤ 2quant1/5r ehead({Hr}, x− χ(r,t)) + 2quant1/5r etail({Hr, ar}, x)

So in particular by Lemma 2.13 if x− χ(r,t) ≺S y(r,t) and suppχ(r,t) ⊆ S, we get

|wi − (x− χ(r,t))i| ≤ 2quant1/5r ehead({Hr}, x− χ(r,t)) + 2quant1/5r etail({Hr, ar}, x)

≤ 2quant1/5r ehead({Hr}, y(r,t)) + 2quant1/5r etail({Hr, ar}, x).

By Lemma B.5, (3) and (4) one has quant1/5r ehead(Hr, y) = O(||yS ||1/B) and quant1/5r etail(Hr, ar, x) =
O(||x[n]\S ||2/

√
B) with probability 1−2−Ω(C logn) ≥ 1−n−C/2 as long as the constant C is sufficiently large.5

Since B = k/α2 by our setting of parameters (line 17 of Algorithm 3), we have

O(||yS ||1/B) ≤ O(α) · 1

5
α||yS ||1/k ≤

1

5
α||yS ||1/k

and
O(||x[n]\S ||2/

√
B) ≤ O(

√
α) · 1

2

√
α||x[n]\S ||2/

√
k ≤ 1

2

√
α||x[n]\S ||2/

√
k

as long as α is smaller than a constant, and in particular smaller than δ2 (we will need to set α smaller than δ2

below to offset the 2/δ factor in the upper bound on the `1 norm of y(r,t) in Lemma 5.5, (C)). We thus get that
the estimates computed in ESTIMATEVALUES(χ,L,Mest) in line 32 satisify

|wi − (x− χ(r,t))i| ≤
1

5
α||y(r,t)

S ||1/k +
1

2

√
α||x[n]\S ||2/

√
k. (44)

We have by Lemma 5.5, (C), that ||y(r,t)
S ||1 ≤ (2/δ)R∗µ · (2k)(1/4)r, and we have by definition of S that

||x[n]\S ||22 ≤ k · ||x[n]\S ||2∞ + ||x[n]\[k]||22 ≤ kµ2 + ||x[n]\[k]||22 ≤ 2µ2k. Substituting these bounds into (44), we
get by a union bound over all i ∈ [n] and all sequences y(r,t) that if x − χ(r,t) ≺S y(r,t), then for all i ∈ [n] and
all (r, t) one has

|wi − (x− χ(r,t))i| ≤
1

5
α||y(r,t)

S ||1/k +
1

2
||x[n]\S ||2/

√
k

≤ 1

5
α(4/δ)R∗µ · (1/4)r +

1

2

√
α
√

2µ

≤
√
α (R∗µ(1/4)r + µ) ,

(45)

5Note that this is the place where we crucially use the notion of majorizing sequences: even though the actual residual signals that
arise throughout the update process depend on the measurements Mest, it suffices to invoke Lemma B.5 on the majorizing sequence y,
which is fixed and independent of Mest.
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where we used the assumption that α ≤ δ2 to obtain the last inequality.
Equipped with the bounds on estimation quality in (45), we now give the proof of the theorem. The proof is

by induction on (r, t). We prove that for every (r, t) ∈ [1 : T ]× [0 : blog4R
∗c] ∪ {(0, 0)}

(A) y(r,t) majorizes x− χ(r,t) on S;

(B) χ(r,t)
[n]\S ≡ 0.

The base is provided by (r, t) = (0, 0), where y(0,0)
i = R∗µ for i ∈ S and y(0,0)

i = 0 otherwise. Since
||x||∞ ≤ R∗µ by assumption of the lemma and χ(0,0) = 0 in Algorithm 3, the base of the induction holds. We
now prove the inductive step. Let t′ = t− 1, r = r′ if t > 1 and t′ = T, r′ = r − 1 otherwise. If t = 1, r = 0,
then let t′ = 0, r′ = 0. Note that (r′, t′) is the element preceding y(r,t) in the majorizing sequence.

Since x− χ(r′,t′) ≺S y(r′,t′) and suppχ(r′,t′) ⊆ S by the inductive hypothesis, we have by (45),

|wi − (x− χ(r′,t′))i| ≤
√
α
(
R∗(1/4)r

′
µ+ µ

)
, (46)

where α is smaller than an absolute constant (see line 17 of Algorithm 3).
We first prove part (B) of the inductive step. Since only elements with |wi| ≥ (1/16)R∗µ(1/4)r are updated

(by the pruning step in line 33 of Algorithm 3), for all such i we have by triangle inequality using (46) that

|(x− χ(r′,t′))i| ≥ (1/16)R∗µ(1/4)r −
√
α (R∗(1/4)rµ+ µ) ≥ (1/32)R∗µ(1/4)r, (47)

where we used the assumption that α is smaller than a sufficiently small absolute constant. Since the upper bound
for r in the SNR reduction loop is blog4R

∗c−3 in the SNR reduction loop, we have (1/32)R∗µ(1/4)r ≥ 2µ > µ
for all such r. Since suppχ(r′,t′) ⊆ S by the inductive hypothesis, this means that the output χ′ of the call to
ESTIMATEVALUES is such that any i ∈ [n] with χ′i 6= 0 belongs to S. We have shown that suppχ(r,t) ⊆
suppχ(r′,t′) ∪ suppχ′ ⊆ S, proving part (B) of the inductive step.

We now prove part (A) of the inductive step, i.e. prove that x − χ(r,t) = x − χ(r′,t′) − χ′ is majorized by
y(r,t) (defined by (39)).

Bounding elements reported in L. We first consider i ∈ L ∩ suppχ′, i.e. elements that were reported in L
and estimated as being above the threshold. For such i ∈ L ∩ suppχ′ we have by (46)

|(x− χ(r,t))i| = |(x− χ(r′,t′) − χ′)i| ≤
√
α (R∗(1/4)rµ+ µ) < (1/32)R∗µ(1/4)r.

At the same time for such elements (i ∈ L∩ suppχ′) we have by (47) |(x−χ(r′,t′))i| ≥ (1/32)R∗µ(1/4)r. This
means that for all i ∈ L ∩ suppχ′ one has

|(x− χ(r,t))i| ≤ |(x− χ(r′,t′))i|, (48)

as well as
|(x− χ(r′,t′))i| ≤ (1/32)R∗µ(1/4)r. (49)

At the same time for i ∈ [n] such that χ′i = 0 we have

|(x− χ(r′,t′))i| = |(x− χ(r,t))i| ≤ (1/16)R∗µ(1/4)r +
√
α(R∗(1/4)rµ+ µ) ≤ (1/8)R∗µ(1/4)r (50)

as long as α is smaller than an absolute constant.
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Bounding elements not reported in L. Let x′ := x− χ(r′,t′) to simplify notation. If an element i ∈ St is not
reported in any of the calls to LOCATESIGNAL (i.e. does not belong to L), then by Corollary 5.3 it satisfies

|x′i| ≤ 20eheadi ({Ht,s}s∈[1:Rt], x
′) + 20etail,Wi ({Ht,s,At,s}s∈[1:Rt], x) + n−Ω(c)

≤ 20eheadi ({Ht,s}s∈[1:Rt], y
(r,t)) + 20etail,Wi ({Ht,s,At,s}s∈[1:Rt], x) + n−Ω(c),

(51)

where we used Lemma 2.13 to upper bound error induced by head elements of x′ by error induced by head
elements of y(r,t), which majorizes x′ on S by the inductive hypothesis.

Putting it together. Recall that by (39) the signal y(r,t) is defined by letting for each i ∈ St

y
(r,t)
i := max

{
20eheadi ({Ht,s}s∈[1:Rt], y

(r′,t′)) + 20etaili ({Ht,s,At,s}s∈[1:Rt], x) + n−Ω(c),
1

8
· (1/4)rR∗µ

}
(52)

and letting y(r,t)
i := y

(r′,t′)
i otherwise.

We now have that any element i ∈ St that is not reported in any of the calls to LOCATESIGNAL x′i sat-
isfies (51), which is upper bounded by the first argument in the maximum above. By (50) together with (49)
we have |(x′ − χ′)i| ≤ (1/8)R∗µ(1/4)r for all i ∈ St, which is upper bounded by the second term in the
maximum above. Finally, for any i ∈ [n] (not necessarily in St) by (48) we have |(x′ − χ′)i| ≤ |x′i|, so
|(x′ − χ′)i| ≤ |x′i| ≤ y

(r′,t′)
i = y

(r,t)
i for such i as well (note that we are also using the fact that i ∈ S necessarily

for all i with χ′i 6= 0, by part (B) of the inductive step, which we proved already). This completes the proof of
part (A) of the inductive step, and the proof of the lemma.

Note that we conditioned on the event Emaj defined in Lemma 5.5, which occurs with probability at least
1 − 2/25, as well as a high probability (1 − 1/poly(n)) success event for ESTIMATEVALUES. Thus, success
probability is at least 1− 3/25 by a union bound, as required.

We can now give a proof of Theorem 5.1, the main technical result of this section. We restate the theorem
here for convenience of the reader:
Theorem 5.1 (Restated) For any δ ∈ (0, 1/2), for any x ∈ Cn, any integer k ≥ 1, if µ2 = Err2

k(x)/k and
R∗ ≥ ||x||∞/µ,R∗ = nO(1), the following conditions hold for the set S := {i ∈ [n] : |xi| > µ} ⊆ [n].

Then the SNR reduction loop of Algorithm 3 (lines 25-36) returns χ̃ such that

||(x− χ̃)S ||1 = Oδ(µk)

supp χ̃ ⊆ S

with probability at least 1 − 3/25 over the internal randomness used by Algorithm 3. The sample complexity is
Oδ(k log n). The runtime is bounded by Oδ(k log4+2δ n).

Proof. Correctness follows by Lemma 5.6 and setting of parameters in Algorithm 3. It remains to bound the
sample and runtime complexity. For each t = 1, . . . , T we take Bt measurements using a filter of sharpness
F = O(1), so the total sample complexity is

T∑
t=1

O(Bt)|W| · |At,s| ·Rt =
T∑
t=1

O(Bt)(log n/ log log n)(log log n) ·Rt

≤ O(C2)((2k log n)/R2
t ) ·Rt

= O(C2k) log n ·
T∑
t=1

Rt = O(k log n),
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where we used the fact that C1 is an absolute constant and C2 as prescribed by Lemma 3.8, as well as the setting
|At,s| = O(log log n) andW = O(log∆ n) = O(log n/ log log n)) Algorithm 3.

Runtime. We start by bounding the runtime for the SNR reduction loop

• Each call to LOCATESIGNAL costs O(FBt log2 n+ ||χ||0 log2 n) by Lemma C.3.

The total cost for calls to LOCATESIGNAL in a single iteration (i.e. one value of r) is hence bounded by

O

(
T∑
t=1

Rt∑
s=1

Bt log2 n+ (max
r′,t′
||χr′,t′ ||0) log2 n

)

= O

(
T∑
t=1

RtBt

)
log2 n+O(

T∑
t=1

Rtk log2 n) (since suppχr
′,t′ ⊆ S for all r′, t′ by Lemma 5.6)

=
T∑
t=1

O(k/Rt) log2 n+O(RT )||χ||0 log2 n (since Rt increase geometrically by setting of parameters in line 7)

= O(k log2 n) + ||χ||0 log3+2δ n

= k log3+2δ n,

where we used the fact that

RT = C12T = C12
1

1−δ log2 log k+O(1) = O(log
1/(1−δ)
2 k) = O(log1+2δ

2 k)

by setting of parameters in Algorithm 3 and the fact that 1/(1 − δ) ≤ 1 + 2δ for δ ∈ (0, 1/2). Finally,
accounting for O(log n) iterations of the SNR reduction loop over r, we obtain a bound of k log4+2δ n, as
claimed.

• Each call to ESTIMATEVALUES costs O(FB · log n · C log n + (maxr′,t′ ||χr
′,t′ ||0) · log n · C log n) by

Lemma 2.11. The total runtime over O(log n) iterations of the SNR reduction loop is hence O(k log3 n).

Summing the contributions, we get runtime k log4+2δ n, as required. Success probability follows from the
success probability of Lemma 5.6.

A Proof of Lemma 3.8

We restate the lemma for convenience of the reader:
Lemma 3.8 (Restated) For every integer k ≥ 1, every S ⊆ [n], |S| ≤ k, every δ ∈ (0, 1/2), if the parameters
Bt, Rt are selected to satisfy (p1) Rt = C1 · 2t and (p2) Bt ≥ C2 · k/R2

t for every t ∈ [0 : T ], where C1 is
a sufficiently large constant and C2 is sufficiently large as a function of C1 and δ, then the following conditions
hold.

With probability at least 1− 1/25 over the choice of hashings {{Ht,s}s∈[1:Rt]}Tt=1 Algorithm 1 terminates in
T = 1

1−δ log2 log(k+ 1) +O(1) steps. When the algorithm terminates, the output partition {Sj}Tj=1 is isolating
as per Definition 3.8.

We will use

Theorem A.1 (Chernoff bound). LetX1, . . . , Xn be independent Bernoulli random variables, let µ := E[
∑n

i=1Xi].
Then for any η > 1 one has Pr[

∑n
i=1Xi > (1 + η)µ] ≤ e−µη/3.

The following basic technical claim is crucial to our analysis (the short proof is given in Appendix F):
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Claim A.2. For every C1, C2 > 0, δ ∈ (0, 1) there exists C3 such that for every C4 ≥ C3 one has 1
C4

2C1t ·
2−C22(1−δ)t+1 ≤ 1 all t ≥ 0.

Equipped with the technical claim above, we can now argue that Algorithm 1 constructs an isolating partition
of any set S ⊆ [n] that satisfies |S| ≤ k with at least high constant probability and prove Lemma 3.8.
Proof of Lemma 3.8: The proof proceeds in four steps. In Step (1) we state a set of inductive claims that we will
prove, then in Step (2) argue that the inductive claims imply that Algorithm 1 terminates in T = 1

1−δ log2 log(k+
1) + O(1) iterations, then in Step (3) argue that the inductive claims imply that output partition is isolating and
finally in Step (4) prove the inductive claims (this step corresponds to the bulk of the proof).

Step (1) Our argument proceeds inductively for t = 1, 2, . . ., and we think of sampling the hashings
{Ht,s}Rts=1 independently at each step t.

For each t ≥ 1 let kt := |Stt |. We show by induction on t ≥ 1 that there exists a sequence of nested events
E1 ⊇ E2 ⊇ . . . such that for all t ≥ 1

(1) event Et depends only on the randomness up to time t;

(2) Pr[Et] ≥ 1− 3
100

∑t−1
t′=1

1
Rt′

;

(3) conditioned on Et one has kt ≤ k · R0
Rt−1

2−2(1−δ)(t−1)+1.

Step (2) We now show that (3) implies that the algorithm terminates in T = 1
1−δ log2 log(k + 1) + O(1)

steps. Indeed, by (3) we have

|STT | ≤ k ·
R0

RT−1
2−2(1−δ)(T−1)+1.

Substituting T = 1
1−δ (log2 log2(k + 1) + C), we get

|STT | ≤ k · 2−2(1−δ)(T−1)+1 ≤ k · 2−
1
2

2(1−δ)T+1 ≤ k · 2−
1
2

2C ·log2(k+1)+1 ≤ 4(k + 1)1−2C−1
< 1

as long as C ≥ 3.
Also, (2) implies that the algorithm terminates with probability at least

Pr[ET ] ≥ 1− 3

100

T−1∑
t=1

1

Rt

≥ 1− 3

100

∞∑
t=1

1

C12t

≥ 1− 1

25

where we used the assumption that {Sj}Tj=1 satisfies property (1) of an isolating partition (see Definition 3.8) as
well as Rt = C1 · 2t and C1 is larger than an absolute constant.

Step (3) We now that given the inductive claims from Step (1), the returned partition ST1 ∪ . . .∪ STT satisfies
the definition of a δ-isolating partition (Definition 3.8). We need to prove that

1. |STt | ≤ k · R0
Rt−1

2−2(1−δ)·(t−1)+1;

2. no element of STt is R−3
t -crowded by STt under any of {Ht,s}Rts=1;

3. no element of STt Rt-collides with a δ-bad element for STt under any of {Ht,s}Rts=1.

34



To prove the first property, we note that the sizes of sets St
′
t are non-increasing in t′ ≥ t for every t, as

St
′
t ⊇ Stt (by line 7 of Algorithm 1). Conditional on ET we thus have

|STt | ≤ |Stt | ≤ k ·
R0

Rt−1
2−2(1−δ)(t−1)+1

for all t ≥ 1, as required.
For the second property, note that no element of St+1

t is R−3
t -crowded by Stt under any {Ht,s}Rts=1 by con-

struction of St+1
t (line 7 of Algorithm 1). Since St+1

t ⊆ Stt , this means that no element of St+1
t is R−3

t -crowded
by St+1

t under any {Ht,s}Rts=1, and since STt ⊆ St+1
t this also means that no element of STt is R−3

t -crowded by
STt under any {Ht,s}Rts=1, so property 2 is satisfied.

For the third property, note that no element of St+1
t Rt-collides with a δ-bad element for Stt under any

{Ht,s}Rts=1 by construction of St+1
t (line 7 of Algorithm 1). Since STt ⊆ St+1

t , this means that no element of STt
Rt-collides with a δ-bad element for Stt under any {Ht,s}Rts=1. Finally, note that since STt ⊆ Stt , any element
that is δ-bad for STt is also δ-bad for Stt by Definition 3.4. This shows that no element of STt Rt-collides with a
δ-bad element for STt under any {Ht,s}Rts=1 and establishes property 3 above. This completes the proof that the
constructed partition {STt } is isolating.

Step (4) In what follows we construct the events Et, t = 1, . . . , T and prove properties (1)-(3) above by
induction on t = 1, . . . , T . The proof is by induction on t.

Base:t = 1 We let S1
1 := S, so that the base is trivial (we let E1 be the trivial event that occurs with probability

1).

Inductive step: t→ t+ 1 Suppose that |Stt | = kt ≤ k · R0
Rt−1

2−2(1−δ)(t−1)+1. We first bound the expected size
of Ut and Vt conditional on Et, and then put these bounds together to obtain a proof of the inductive step.

Bounding the number of crowded elements in Stt (size of Vt) For each element i ∈ [n] and every scale q ≥ 0
we have, letting H := Ht,s, π := πt,s and h := ht,s to simplify notation (recall that h(i) = round((B/n)π(i));
see section 2.1),

EH
[∣∣∣∣π(Stt \ {i}) ∩ B(π(i),

n

Bt
2q)

∣∣∣∣] ≤ 4 · 2q|Stt |/Bt ≤ 4 · 2qkt/Bt, (53)

where we used the fact that |Stt | ≤ kt by the inductive hypothesis, as well as Lemma 2.5. Thus by Markov’s
inequality for every λ > 0

PrH
[∣∣∣∣π(Stt \ {i}) ∩ B

(
π(i),

n

Bt
2q
)∣∣∣∣ > λ · 22q

]
≤ 4λ−12−qkt/Bt.

By a union bound over all scales q ≥ 0 (i.e. summing the rhs of the bound above over all scales q ≥ 0) we
conclude that

PrH [i is λ-crowded under hashing H] ≤
∑
q≥0

4λ−12−qkt/Bt = 8λ−1kt/Bt. (54)

We thus have for every i ∈ [n] and a random hashing hashing H = (π,Bt, G)

PrH [i is R−3
t -crowded] ≤ 8(R3

t ) · kt/Bt (by (54) with λ = R−3
t )

≤ 8

C2
(R5

t ) ·
R0

Rt−1
2−2(1−δ)(t−1)+1,

(55)
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where we used the bound kt ≤ k · R0
Rt−1

2−2(1−δ)(t−1)+1 provided by the inductive hypothesis and the assumption
that Bt ≥ C2 · k/R2

t by assumption p2 of the lemma to go from the first line to the second.
We thus have by a union bound over Rt hashings {Ht,s}s∈[1:Rt], for every i ∈ Stt

Pr{Ht,s}s∈[1:Rt]
[i ∈ Vt] = Pr{Ht,s}s∈[1:Rt]

[i is R−3
t -crowded under at least one Ht,s]

≤ 8

C2
(R6

t ) ·
R0

Rt−1
2−2(1−δ)(t−1)+1 (by a union bound applied to (55))

≤ 16C1

C2
(R5

t ) · 2−2(1−δ)(t−1)+1 (since Rt = C1 · 2t by p1)

(56)

Using the upper bound on the size of Stt given by the inductive hypothesis again, we obtain

E{Ht,s}s∈[1:Rt]
[|Vt|] ≤

∑
i∈Stt

Pr{Ht,s}s∈[1:Rt]
[i ∈ Vt]

≤ |Stt | · Pr{Ht,s}s∈[1:Rt]
[i ∈ Vt] (for any i ∈ Stt )

≤
(
k · R0

Rt−1
2−2(1−δ)(t−1)+1

)
· Pr{Ht,s}s∈[1:Rt]

[i ∈ Vt] (by the inductive hypothesis)

≤
(
k · R0

Rt−1
2−2(1−δ)(t−1)+1

)
· 16C1

C2
·R5

t 2
−2(1−δ)(t−1)+1 (by (56))

≤ k · 32C1R0R
5
t

C2 ·Rt−1
· 2−2(1−δ)(t−1)+1+1

≤ k · 64C1R0R
4
t

C2
· 2−2(1−δ)t+δ+1

≤ k · 64C1R0R
4
t

C2
· 2−2(1−δ)t+1 · 2−(2δ−1)2(1−δ)t

≤
(
k

1

100R2
t

2−2(1−δ)t+1

)
· ξt

(57)

where

ξt =
6400C1R0R

6
t

C2
· 2−(2δ−1)2(1−δ)t ≤ 6400C8

1

C2
26t · 2−δ2(1−δ)t

,

where we used the assumption that Rt = C12t for a constant C1 > 0, and the bound ex − 1 ≥ x for all x ≥ 0.
It remains to note that for every δ > 0, if C2 is sufficiently large (depending on C1 and δ), we get that ξt < 1

for all t ≥ 1. Formally this follows by Claim A.2.

Bounding the number of bad elements (Badt). Recall (Definition 3.4) that an element a of S is bad for St
with respect to a partition S = S1∪S2∪. . .∪ST and hashings {{Ht,s}Rts=1}Tt=1 if a participates in anRt-collision
with at least one element of St under more than aR−δt fraction of hashingsHt,1, . . . ,Ht,Rt . We now upper bound
the probability that a given i is bad.

For any i ∈ [n] the probability that i Rt-collides with a given element j ∈ Stt under a random hashing H is
upper bounded as follows. First recall that that π(i) = σ(i− q) for all i ∈ [n], so

Prπ[i and j participate in an Rt-collision] = Prπ[|π(i)− π(j)|◦ ≤ (n/Bt)Rt]

= Prσ[|σ(i− j)|◦ ≤ (n/Bt)Rt] ≤ 4Rt/Bt,

where we used Lemma 2.5 to obtain the last bound.
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A union bound over all j ∈ Stt then gives that for every i ∈ S

PrH [i Rt-collides with at least one element of Stt under H] ≤ 4Rt(kt/Bt). (58)

For each s = 1, . . . , Rt let Xs = 1 if i Rt-collides with an element of Stt under hashing Ht,s and Xs = 0

otherwise. We first bound E[Xs], and then apply Chernoff bounds to X :=
∑Rt

s=1Xs to bound the number
of bad elements in S with respect to Stt at step t. In order to bound the expected number of bad elements, it
would be sufficient to bound Pr[X > R1−δ

t ]. Instead, we will upper bound a slightly larger quantity that will
be useful for upper bounding the expected number of elements that collide with a bad element (which is what
we need to bound ultimately). Specifically, for any s∗ ∈ [1 : Rt] we let X−s∗ :=

∑Rt
s=1,s 6=s∗ Xs. Note that

Pr[X > R1−δ
t ] ≤ Pr[X−s∗ ≥ R1−δ

t ] for any s∗, and it is the latter quantity that we bound now. We now have for
every s∗ ∈ [1 : Rt]

EHt,s [X−s∗ ] ≤
Rt∑

s=1,s 6=s∗
EHt,s [Xs]

≤
Rt∑
s=1

4Rt · (kt/Bt) (by (58) and definition of Xs)

≤ 4R2
t · (kt/Bt)

By the inductive hypothesis we have kt ≤ k · R0
Rt−1

2−2(1−δ)(t−1)+1 and Bt ≥ C2 · k/R2
t by assumption p2 of

the lemma. Substituting these bounds on the last line of the equation above, we obtain

4R2
t ·
[
k · R0

Rt−1
2−2(1−δ)(t−1)+1

]
·
[
C2 · k/R2

t

]−1

=
1

10Rt

[
40

C2
R5
t ·

R0

Rt−1
· 2−2(1−δ)(t−1)+1

]
≤ 1

10Rt

[
40

C2
R5
t · 2−2(1−δ)(t−1)+1

]
(since R0/Rt−1 = 2−(t−1) ≤ 1 for all t ≥ 1)

≤ 1

10Rt
(by Claim A.2, as long as C2 is larger than a constant that may depend on C1 and δ).

Let µ−s∗ := E
[∑Rt

s=1,s 6=s∗ Xs

]
, and note that by the bound on E[Xs] above we have µ−s∗ ≤ 1/10 (we

omit the subscript in µ−s∗ in what follows). Since the permutations Ht,s were chosen independently, we have

by Chernoff bounds (Theorem A.1) for any η > 1 Pr
[
X−s∗ ≥ R1−δ

t

]
= Pr [X−s∗ ≥ (1 + η)µ] with η =

R1−δ
t /µ− 1. Since R1−δ

t > 1 by assumption of the lemma and µ ≤ 1/10, we have R1−δ
t /µ− 1 ≥ R1−δ

t /(2µ).
We thus have

Pr
[
X−s∗ ≥ R1−δ

t

]
≤ e−R

1−δ
t /6, (59)

and by linearity of expectation
EHt,1,...,Ht,Rt [|Badt|] ≤ k · e−R

1−δ
t /6. (60)

Bounding the number of elements i ∈ Stt that Rt-collide with Badt. Consider i ∈ Stt . For fixed s ∈ [1 :
Rt] let Qs(i) ⊆ S denote the set of elements that i Rt-collides with under hashing Ht,s. We have by (53)

EHt,s [|Qs(i)|] ≤ EHt,s

[∣∣∣∣π(S \ {i}) ∩ B(π(i),
n

Bt
·Rt)

∣∣∣∣] ≤ 4 ·Rt(k/Bt) ≤ (4R3
t /C2)

using assumption p2 of the lemma.
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For every j ∈ Qs(i) one has that j is bad only if j collides with Stt under Ht,s′ for at least R1−δ
t values of

s′ ∈ [1 : Rt] \ {s}. This probability is bounded by Pr[X−s ≥ R1−δ
t ], where X−s are as defined above. We thus

have using (59) that Pr[j is bad|i collides with j under Ht,s] ≤ e−R
1−δ
t /6. Note that this is where we crucially

use the fact that X−s does not depend on hashing Ht,s. By a union bound over all j ∈ Qs(i) and all s ∈ [1 : Rt]
that the probability that i collides with a bad element is at most

Rt∑
s=1

EHt,s [|Qs(i)|] · e−R
1−δ
t /6 ≤ 1

C2
Rt · (4 ·R3

t ) · e−R
1−δ
t /6

≤ 1

C2
4R4

t · e−R
1−δ
t /6

= e−R
1−δ
t /12,

(61)

where we used the fact that the last inequality holds for all t ≥ 1 simultaneously as long as C2 is larger than a
constant that may depend on C1 and δ. Summing over all elements in Stt , we get

EHt,1,...,Ht,Rt [|Ut|] ≤ kte
−R1−δ

t /12 ≤ ke−R
1−δ
t /12. (62)

Putting it together. Gathering bounds from (57), (60) and (62), we get, using the fact that St+1
t+1 = Badt∪Ut∪Vt

by Algorithm 1 (line 7),

EHt,1,...,Ht,Rt
[
|St+1
t+1 |

]
= k ·

(
1

100

1

R2
t

2−2(1−δ)t+1 + e−R
1−δ
t /6 + e−R

1−δ
t /12

)
= k ·

(
1

100

1

R2
t

2−2(1−δ)t+1 + e−C
1−δ
1 2(1−δ)t/6 + e−C

1−δ
1 2(1−δ)t/12

)
.

(63)

We now show that for every δ ∈ (0, 1/2) if C1 is larger than an absolute constant, the first term in parentheses
on the last line above is at least as large as the other two for all t ≥ 1. We first note that e−C

1−δ
1 2(1−δ)t/6 ≤

e−C
1−δ
1 2(1−δ)t/12 for all C1 > 0, δ ∈ (0, 1/2), t ≥ 1, so it suffices to prove that

1

100

1

R2
t

2−2(1−δ)t+1 ≥ e−C
1−δ
1 2(1−δ)t/12 (64)

for all t ≥ 1 if C1 is larger than an absolute constant. Intuitively, this is true because the rhs decays exponentially
in C1 for all t ≥ 0, while the lhs decays only polynomially in C1. More formally, taking the ratio of the two
quantities, we get, assuming that C1 ≥ 122,

e−C
1−δ
1 2(1−δ)t/12 ·

(
1

100

1

R2
t

2−2(1−δ)t+1

)−1

≤ e−
√
C12(1−δ)t/12+(ln 2)2(1−δ)t · 100 ·R2

t

≤ e−(
√
C1/12−ln 2)·2(1−δ)t · 100 · C2

14t

≤ exp
(
−(
√
C1/12− ln 2) · 2(1−δ)t + (ln 4)t+ 2 ln(100C1)

)
We now show that the exponent above is non-positive for all t ≥ 1 as long as C1 is larger than a constant. Indeed,
taking the derivative of the exponent with respect to t, we get(

−(
√
C1/12− ln 2)2(1−δ)t + (ln 2)t+ ln(100C1)

)′
= −(

√
C1/12− ln 2)(1− δ) ln 2 · 2(1−δ)t + ln 2,

which is nonpositive for all t ≥ 1 as long as C1 is larger than an absolute constant. This means that

max
t≥1

[
−(
√
C1/12− ln 2)2(1−δ)t + (ln 2)t+ ln(100C1)

]
≤ −(

√
C1/12− ln 2)21−δ + ln 2 + ln(100C1) ≤ 0
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as long as C1 is larger than an absolute constant (since
√
C1 asympotitcally dominates lnC1). This estab-

lishes (64).
Substituting this upper bound into (63), we get

EHt,1,...,Ht,Rt
[
|St+1
t+1 |

]
≤ k · 3

100

1

R2
t

2−2(1−δ)t+1

By Markov’s inequality applied to the last expression above we have

PrHt,1,...,Ht,Rt

[
|St+1
t+1 | > k · 1

Rt
2−2(1−δ)t+1

]
≤ 3

100

1

Rt
. (65)

Let Et denote the intersection of Et−1 with the failure event in (65), we get, conditioned on Et

|St+1
t+1 | ≤ k ·

1

Rt
2−2(1−δ)t+1.

This completes the inductive step and the proof of the lemma.
Proof of Lemma 3.9: First note that there exists a (simple) efficient data structure for answering queries of the
form ‘how many elements of a set T hash within circular distance ∆ of a point x under hash function π?’. Indeed,
it suffices to cut the circle into two halves and for each of the halves construct a binary search tree on T , with
each node annotated with the number of nodes in its subtree. Then each query about neighbors in the circular
distance can be answered by answering at most two queries for the two data structure on the half-circles, for a
total time of O(log |T |). We now show how to use this data structure to implement Algorithm 1.

For each t at the beginning of the t-th iteration of Algorithm 1 for each s = 1, . . . , Rt one constructs two
binary search trees on the permuted elements πt,s(Stt) as described above. This takes time O(Rt|Stt | log |Stt |).
Equipped with this data structure, we can construct the set Badt and the set Vt in time O(Rt · S log |Stt |). Then
construct a similar pair of augmented binary search trees for the set Badt in time O(|S| log |S|). Using this data
structure the set Ut can be constructed in time O(Rt|S| log |S|). Summing over t gives the final result.

B Properties of ESTIMATEVALUES

In this section we describe the procedure ESTIMATEVALUES from [Kap16] (see Algorithm 4), which, given
access to a signal x in frequency domain (i.e. given x̂), a partially recovered signal χ and a target list of locations
L ⊆ [n], estimates values of the elements in L, and outputs the elements that are above a threshold ν in absolute
value. We need a slight strengthening of Lemma 9.1 from [Kap16], which we state here.

We will use

Definition B.1. For any x ∈ C[n] and any hashing H = (π,B, F ) define the vector µ2
H,·(x) ∈ R[n] by letting for

every i ∈ [n] µ2
H,i(x) := |G−2

oi(i)
|
∑

j∈[n]\{i} |xj |2|Goi(j)|2.

The following properties of HASHTOBINS will be using in the analysis of ESTIMATEVALUES:

Lemma B.2 (Lemma 2.9 of [Kap16]). There exists a constant C > 0 such that for any integer B ≥ 1, any
x, χ ∈ C[n], x′ := x − χ, if σ, a ∈ [n], σ odd, are selected uniformly at random, the following conditions hold
for every q ∈ [n].

Let π = (σ, q), H = (π,B, F ), where G is the filter with B buckets and sharpness F as per Definition 2.3,
and let u = HASHTOBINS(x̂, χ, (H, a)). Then if F ≥ 2, for any i ∈ [n]

(1) For anyH one has maxa∈[n] |G−1
oi(i)

ω−aσiuh(i)−x′i| ≤ G
−1
oi(i)
·
∑

j∈S\{i}Goi(j)|x′j |. Furthermore, EH [G−1
oi(i)
·∑

j∈S\{i}Goi(j)|x′j |] ≤ C||x′||1/B + n−Ω(c);
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Algorithm 4 ESTIMATEVALUES(χ,L, {(Hr, ar,m(x,Hr, ar)))}rmaxr=1 )
1: procedure ESTIMATEVALUES(χ,L, {(Hr, ar,m(x,Hr, ar)))}rmaxr=1 ) . Hr are (πr, B, F )-hashings
2: for r = 1 to rmax do . πr = (σr, qr) for r = 1, . . . , rmax
3: Compute mj(x− χ,Hr, ar) for j ∈ [B] . Computation is done with polynomial precision,
4: . using HASHTOBINS as per Lemma 2.8
5: end for
6: for i ∈ L do
7: for r = 1 to rmax do . Note that oi(i) implicitly depends on Hr

8: wri ← G−1
oi(i)

mhr(i)(x− χ,Hr, ar)ω
−arσri . Estimate (x− χ)i from each measurement

9: end for
10: wi ← median{wri }

rmax
r=1 . Median is taken coordinatewise

11: end for
12: return wL
13: end procedure

(2) EH [µ2
H,i(x

′)] ≤ C‖x′‖22/B,

Furthermore,

(3) for any hashing H , if a is chosen uniformly at random from [n], one has

Ea[|G−1
oi(i)

ω−aσiuh(i) − x′i|2] ≤ µ2
H,i(x

′) + n−Ω(c).

Here c > 0 is an absolute constant that can be chosen arbitrarily large at the expense of increasing runtime by a
factor of c.

We note that Lemma B.2 was proved in [Kap16] for a slightly different choice of filter G and for a uniformly
random q, but the proof carries over directly to our setting.
Lemma 2.11 (Restated; bounds on estimation quality for Algorithm 4) For every x, χ ∈ Cn, every L ⊆ [n],
every set S ⊆ [n] the following conditions hold for functions ehead and etail are defined with respect to S
(see (7) and (9)). If rmax is larger than an absolute constant, then for every sequence Hr, r = 1, . . . , rmax of
(πr, B, F ) hashings the output w of

ESTIMATEVALUES(χ,L, {(Hr, ar,m(x,Hr, ar)))}rmaxr=1 )

satisfies, for each i ∈ L

|wi − (x− χ)i| ≤ 2 · quant1/5r eheadi (Hr, x− χ) + 2 · quant1/5r etaili (Hr, ar, x− χ) + n−Ω(c).

The sample complexity is bounded by O(FBrmax). The runtime is bounded by O((F ·B · log n+ ||χ||0 log n+
|L|) · rmax).

Proof. We have by definition of the measurements mj (see Definition 2.7) for every hashing H and a ∈ [n]

mh(i) =
∑
j∈[n]

Goi(j)(x− χ)jω
aσj ,

so

G−1
oi(i)

mh(i)ω
−aσi = (x− χ)i +G−1

oi(i)

∑
j∈[n]\{i}

Goi(j)(x− χ)jω
aσ(j−i).
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We thus have by triangle inequality, splitting the rhs into the contribution of the ‘head’ elements (i.e., elements
in S) and ‘tail’ elements (i.e. elements in [n] \ S), that

|G−1
oi(i)

mh(i)ω
−aσi − (x− χ)i| ≤

∣∣∣∣∣∣G−1
oi(i)

∑
j∈[n]\{i}

Goi(j)(x− χ)jω
aσ(j−i)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣G−1
oi(i)

∑
j∈S\{i}

Goi(j)(x− χ)jω
aσ(j−i)

∣∣∣∣∣∣
+

∣∣∣∣∣∣G−1
oi(i)

∑
j∈[n]\(S∪{i})

Goi(j)(x− χ)jω
aσ(j−i)

∣∣∣∣∣∣
≤ G−1

oi(i)

∑
j∈S\{i}

Goi(j)|(x− χ)j |+G−1
oi(i)

∣∣∣∣∣∣
∑

j∈[n]\(S∪{i})

Goi(j)(x− χ)jω
aσ(j−i)

∣∣∣∣∣∣
+ |∆(n/B)·h(i)|
= eheadi (x− χ,H) + etaili (x− χ,H, a) + |∆(n/B)·h(i)|

We now use the bound above to obtain the conclusion of the lemma. Recall that for each i ∈ L the final
estimate wi is computed as a median of wri ’s along real and imaginary axes in line 9 of Algorithm 4. Let
r′ ∈ [1 : rmax] and r′′ ∈ [1 : rmax] be such that

wi = Re(wr
′
i ) + Im(wr

′′
i ) · i.

We have

|Re(wr
′
i − (x− χ)i)| ≤ |wr

′
i − (x− χ)i| ≤ eheadi (Hr′ , x− χ) + etaili (Hr′ , ar′ , x− χ), (66)

and since r′ is the result of taking the median of the list {Re(wr
′
i )}, we have

|Re(wr
′
i − (x− χ)i)| ≤ quant1/5r eheadi (Hr, x− χ) + quant1/5r etaili (Hr, ar, x− χ).

Indeed, at most a 2/5 fraction of the error terms on the rhs of (66), namely eheadi (Hr′ , x−χ)+etaili (Hr′ , ar′ , x−
χ), are larger than quant1/5r eheadi (Hr, x − χ) + quant1/5r etaili (Hr, ar, x − χ). These error terms correspond to
either the bottom or the top of the list {Re(wr

′
i )}, and since 2/5 < 1/2, the median estimate satisfies the upper

bound above.
A similar argument for the imaginary part shows that

|Im(wr
′
i − (x− χ)i)| ≤ quant1/5r eheadi (Hr, x− χ) + quant1/5etaili (Hr, ar, x− χ).

Putting the two estimates together and using the bound |a+ b · i| ≤ |a|+ |b|, we get for each i ∈ L

|wi − (x− χ)i| ≤ 2 · quant1/5r eheadi (Hr, x− χ) + 2 · quant1/5r etaili (Hr, ar, x− χ) + n−Ω(c)

as required.
The sample complexity follows by Lemma 2.8.
The runtime analysis is as follows:

• Computing mj(x − χ,Hr, ar) for j ∈ [B] and r = 1, . . . , rmax takes O((FB logB + ||χ||0 log n)rmax)
time Lemma 2.8.
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• Computing estimates for each i ∈ L. This takes time |L| · rmax since median can be found in linear time.

Theorem B.3 (Chernoff bound). LetX1, . . . , Xn be independent 0/1 Bernoulli random variables with
∑n

i=1 E[Xi] =
µ. Then for any δ > 0 one has Pr[

∑n
i=1Xi > (1 + δ)µ] < e(δ−(1+δ) ln(1+δ))µ.

We will use

Lemma B.4. Let X1, . . . , Xn ≥ 0 be independent random variables with E[Xi] ≤ µ for each i = 1, . . . , n.
Then for any γ ∈ (0, 1) if Y ≤ quantγ(X1, . . . , Xn), then

(1) E[|Y − 4µ/γ|+] ≤ (µ/γ) · 2−Ω(γn);

(2) E[|Y − 4µ/γ|2+] ≤ (µ/γ)2 · 2−Ω(γn);

(3) Pr[Y ≥ 4µ/γ] ≤ 2−Ω(γn);

(4) For every t ≥ 1 one has
Pr[Y ≥ tµ/γ] ≤ (0.99t/e)−0.99γn.

Proof. For any t ≥ 1 by Markov’s inequality Pr[Xi > tµ/γ] ≤ γ/t. Define indicator random variables Zi by
letting Zi = 1 if Xi > tµ/γ and Zi = 0 otherwise. Note that

E[Zi] ≤ γ/t

for each i. Then since Y is bounded above by the γn-th largest of {Xi}ni=1, we have Pr[Y > tµ/γ] ≤
Pr[
∑n

i=1 Zi ≥ γn]. Let ν :=
∑n

i=1 E[Zi]. We now apply the Chernoff bound (Theorem B.3) with δ = γ′n/ν−1,
γ′ = 0.99γ, to the sequence Zi, i = 1, . . . , n. Note that by our setting of δ we have (1 + δ)ν = γ′n, so

Pr

[
n∑
i=1

Zi > γ′n

]
≤ exp

(
(γ′n/ν − 1− (γ′n/ν) ln(γ′n/ν))ν

)
= exp

(
γ′n− ν − γ′n ln(γ′n/ν)

)
≤ exp

(
γ′n(1− ln(γ′n/ν))

)
≤ exp

(
γ′n(1− ln((γ′/γ)t))

)
(since ν ≤ nγ/t)

= eγ
′n((γ′/γ)t)−γ

′n.

We thus get

Pr

[
n∑
i=1

Zi ≥ γn

]
≤ Pr

[
n∑
i=1

Zi > γ′n

]
≤ (0.99t/e)−0.99γn. (67)

This proves (4). Letting t = 4 in the bound above proves (3).
For (1) we have, as long as n is sufficiently large (depending on γ),

E[Y · 1Y≥4·µ/γ ] ≤
∫ ∞

4
tµ · Pr[Y ≥ t · µ/γ]dt

≤
∫ ∞

4
tµ(0.99t/e)−0.99γndt (by (67))

≤ e−γn/4
∫ ∞

4
tµ(0.99t/e)−γn/4dt

= O(µ · e−γn/4).
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For (2) we have, as long as n is sufficiently large (depending on γ),

E[Y · 1Y≥4·µ/γ ] ≤
∫ ∞

4
t2µ2 · Pr[Y ≥ t · µ/γ]dt

≤
∫ ∞

4
t2µ2(0.99t/e)−0.99γndt (by (67))

≤ e−γn/4
∫ ∞

4
t2µ(0.99t/e)−γn/4dt

= O(µ2 · e−γn/4).

as required.

We also have

Lemma B.5. For every x ∈ Cn, every S ⊆ [n], every i ∈ [n], every integer rmax larger than an absolute
constant, integers B,F with B a power of two and F ≥ 2, the following conditions are satisfied for a sequence
of random hashings Hr = (πr, B, F ), and random evaluation points ar, r = 1, 2, . . . , rmax.

If Zhead := eheadi ({Hr}, x) = quant1/5r eheadi (Hr, x) (as per (8)) and Ztail := etaili ({Hr, ar}, x) =

quant1/5r etaili (Hr, ar, x) (as per (10)), where ehead and etail are defined with respect to the set S, one has

(1) E{Hr}
[
(Zhead)2

]
= O

((
1
B ||xS ||1

)2);

(2) E{Hr,ar}
[
(Ztail)2

]
= O(||x[n]\S ||22/B);

(3) Pr{Hr}
[
Zhead > O

(
1
B ||xS ||1

)]
= 2−Ω(rmax);

(4) Pr{Hr}
[
Ztail > O(||x[n]\S ||2/

√
B)
]

= 2−Ω(rmax).

Proof. We have Zhead ≤ |Zhead − 40E[Zhead]|+ + 40E[Zhead], so, since (a+ b)2 ≤ 2a2 + 2b2 for all a, b ∈ R,

E
[
(Zhead)2

]
≤ 2E

[
(|Zhead − 40E[Zhead]|+)2

]
+ 2(40E[Zhead])2.

By Lemma B.4, (2) we have E
[
(|Zhead − 40E[Zhead]|+)2

]
= O((E[Zhead])2) as long as rmax is larger than an

absolute constant, as assumed by the lemma. An application of Lemma B.2, (1) now gives the first bound. The
proof of the second claim is analogous using Lemma B.2, (2).

Claims (3) and (4) follow similarly using Lemma B.4.

B.1 Properties of HASHTOBINS

Algorithm 5 Hashing using Fourier samples (analyzed in Lemma 2.8)
1: procedure HASHTOBINS(x̂, χ, (H, a)) . Hashing H = (π,B, F ), a ∈ [n]
2: Compute y′ = Ĝ · Pσ,a,q(x̂− χ̂′), for some χ′ with ‖χ̂− χ̂′‖∞ < ‖χ‖2 · n−c . Using Lemma E.1 with
δ = n−2c, c ≥ 2

3: Compute uj =
√
nF−1(y′)(n/B)·j for j ∈ [B]

4: return u
5: end procedure
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The main lemma about the performance of HASHTOBINS is
Lemma 2.8 (Restated) HASHTOBINS(x̂, χ, (H, a)), where H = (π,B, F ), computes u ∈ CB such that for
any i ∈ [n], uh(i) = ∆h(i) +

∑
j Goi(j)(x − χ)jω

aσj , where G is the filter defined in section 2, and for all
i ∈ [n] we have that ∆2

h(i) ≤ ‖χ‖
2
2 · n−c is a negligible error term (and c > 0 is an absolute constant that

governs the precision that semi-equispaced FFT, i.e. Lemma E.1, is invoked with). It takes O(BF ) samples, and
O(F ·B logB + ‖χ‖0 log n) time.

Proof. The first step (line 2) in HASHTOBINS is to compute

y′ = Ĝ · Pσ,a,qx̂− χ′ = Ĝ · Pσ,a,qx̂− χ+ Ĝ · Pσ,a,qχ̂− χ′,

for an approximation χ̂′ to χ̂ obtained using Lemma E.1, (b). We now verify the runtime and precision guarantees.
Recall that supp Ĝ ⊆ [−O(FB), O(FB)] by Lemma 2.4. This means that it is sufficient to compute χ̂i on the
set S ⊆ [n] defined as S = {i ∈ [n] : σ(i − a) ∈ [−O(FB), O(FB)]}. By Lemma E.1, (b), an approximation
χ̂′ to χ̂ can be computed in O(F ·B log n) time such that

|χ̂i − χ̂′i| < ‖χ‖2 · n−2c

for all such i. Since ‖Ĝ‖1 ≤
√
n‖Ĝ‖2 =

√
n‖G‖2 ≤ n‖G‖∞ ≤ n and Ĝ is 0 outside S, this implies that

‖Ĝ · Pσ,a,q(χ̂− χ′)‖2 ≤ ‖Ĝ‖1 max
j∈S
|χ̂− χ′i| ≤ ‖χ‖2 · n1−2c. (68)

Define ∆ by ∆̂ =
√
nĜ · Pσ,a,q(χ̂− χ′).

The second step (line 3) in HASHTOBINS is to compute u ∈ CB such that for all i,

uh(i) =
√
nF−1(y′)(n/B)·h(i) =

√
nF−1(y)(n/B)·h(i) + ∆(n/B)·h(i),

for y = Ĝ · Pσ,a,qx̂− χ. This computation takes O(‖y′‖0 +B logB) = O(FB log n) time (alias y′ to length B
and compute a length B FFT). We have by the convolution theorem (see (81)) that

uh(i) =
√
nF−1(Ĝ · Pσ,a,q ̂(x− χ))(n/B)·h(i) + ∆(n/B)·h(i)

= (G ∗ F−1(Pσ,a,q ̂(x− χ)))(n/B)·h(i) + ∆(n/B)·h(i)

=
∑

π(j)∈[n]

G(n/B)·h(i)−π(j)F−1(Pσ,a,q ̂(x− χ))π(j) + ∆(n/B)·h(i)

=
∑
j∈[n]

Goi(j)(x− χ)jω
aσj + ∆(n/B)·h(i)

where the last step is the definition of oi(j) and Lemma 2.2.
Finally, we note that

|∆(n/B)·h(i)| ≤ ‖∆‖2 = ‖∆̂‖2 =
√
n‖Ĝ · Pσ,a,q(χ̂− χ′)‖2 ≤ ‖χ‖2n3/2−2c ≤ ‖χ‖2n−c,

where we used (68) and the assumption that c ≥ 2 in the last step. This completes the proof.

The following lemma is analogous to Lemma 9.4 of [IKP14], but does not make the assumption that the
number of repetitions involved in the quantile operation is a constant. The proof is essentially the same, but is
given below for completeness.
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Lemma B.6. For every γ ∈ (0, 1), integers m,n ≥ 1 such that n > 4/γ, every sequence X1, . . . , Xn ∈ Rm+
of random variables with non-negative entries such that Xj ∈ Rn+ are independent, E[Xj

i ] ≤ ν for every
i = 1, . . . ,m, j = 1, . . . , n and ν > 0, the following conditions hold. If for every i = 1, . . . ,m

Yi = quantγ(X1, . . . , Xn),

then for every U between 1 and m

E

 max
Q⊆[m],|Q|≤U

∑
i∈Q

Yi

 ≤ U · (4eν/γ) · (m/U)2/(γn)

Note that the lemma assumes that Xj ∈ Rn+ are independent, but allows for the coordinates of each Xj to be
arbitrarily correlated.

Proof. First fix i ∈ {1, 2, . . . ,m}. By Lemma B.4, (4) we have for every t ≥ 1

Pr[Y ≥ tν/γ] ≤ (0.99t/e)−0.99γn ≤ (t/(2e))−γn/2.

We thus have for t ≥ 1
E[|{i : Yi ≥ tν/γ}|] ≤ m · (t/(2e))−γn/2, (69)

and hence for every threshold θ > 0 one has

E

 max
Q⊆[m],|Q|≤U

∑
i∈Q

Yi

 ≤ E

 max
Q⊆[m],|Q|=U

∑
i∈Q

Yi

 (since Yi ≥ 0 for all i)

= E
[∫ ∞

0
min(U, |{i : Yi > η}|)dη

]
≤
∫ ∞

0
min(U,E [|{i : Yi > η}|])dη (by convexity of min(U, x) as a function of x)

≤ U · θ +

∫ ∞
θ

min(U,E [|{i : Yi > η}|])dη

≤ U · θ +

∫ ∞
θ

min(U,m · (ηγ/(2eν))−γn/2)dη (by (69), as long as θ ≥ ν/γ)

≤ U · θ +

∫ ∞
θ

m · (ηγ/(2eν))−γn/2dη

≤ U · θ +m · (γ/(2eν))−γn/2
∫ ∞
θ

η−γn/2dη

≤ U · θ +m · (γ/(2eν))−γn/2
1

γn/2− 1
θ−γn/2+1

≤ U · θ +m · (θ · γ/(2eν))−γn/2 · θ (since γn/2 > 2 by assumption)
(70)

We now let θ = (2eν/γ) · (m/U)2/(γn) > ν/γ, so that

m · (θ · γ/(2eν))−γn/2 = k,

and substituting into (70), we get

E

 max
Q⊆[m],|Q|≤U

∑
i∈Q

Yi

 ≤ 2U · θ = U · (4eν/γ) · (m/U)2/(γn),

as required.
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C Signal location primitive and its analysis

We reuse the location primitive from [Kap16] (LOCATESIGNAL, see Algorithm 6), but present it here with
simplified notation adapted to the 1d setting (thus obviating the need for the ? operation). As in [Kap16], we will
use

Definition C.1 (Balanced set of points). For an integer ∆ ≥ 2 we say that a (multi)set Z ⊆ [n] is ∆-balanced if
for every r = 1, . . . ,∆− 1 at least 49/100 fraction of elements in the set {ωr·z∆ }z∈Z belong to the left halfplane
{u ∈ C : Re(u) ≤ 0} in the complex plane, where ω∆ = e2πi/∆ is the ∆-th root of unity.

We will also need

Claim C.2 (Claim 2.14 of [Kap16]). There exists a constant C > 0 such that for any ∆ a power of two,
∆ = logO(1) n, and n a power of 2 the following holds if ∆ < n. If elements of a (multi)set A ⊆ [n] × [n] of
size C log logn are chosen uniformly at random with replacement from [n] × [n], then with probability at least
1− 1/ log4 n one has that the set {β}(α,β)∈A is ∆-balanced.

Since we only use one value of ∆ in the paper (see line 4 in Algorithm 6), we will usually say that a set is
simply ‘balanced’ to denote the ∆-balanced property for this value of ∆. Before we state the algorithm and give
the analysis, we need to introduce notation for bounding the influence of tail noise on the location process. We
do this in the next section.

C.1 Analysis of LOCATESIGNAL

Algorithm 6 Location primitive: given a set of measurements corresponding to a single hash function, returns a
list of elements in [n], one per each hash bucket

1: procedure LOCATESIGNAL(χ,H, {m(x,H, α+ w · β}(α,β)∈A,w∈W ) . H = (π,B, F )
2: Let x′ := x− χ. Compute {m(x′, H, α+w · β)}(α,β)∈A,w∈W using HASHTOBINS, as per Lemma 2.8.
3: L← ∅
4: ∆← 2b

1
2

log2 log2 nc

5: N ← ∆dlog∆ ne . Extend x̂ implicitly to CN periodically
6: for j ∈ [B] do . Loop over all hash buckets, indexed by j ∈ [B]
7: f ← 0
8: for g = 1 to log∆N do
9: w← N∆−g . Note that w ∈ W

10: If there exists a unique r ∈ [0 : ∆− 1] such that
11:

∣∣∣ω−r·β∆ · ω−(N ·∆−gf ·β · mj(x
′,H,α+w·β)

mj(x′,H,α) − 1
∣∣∣ < 1/3 for at least 3/5 fraction of (α, β) ∈ A

12: then f ← f + ∆g−1 · r
13: end for
14: L← L ∪

{
σ−1f · nN

}
. Add recovered element to output list

15: end for
16: return L
17: end procedure

Equipped with the definitions above, we now prove the following lemma, which yields sufficient conditions for
recovery of elements i ∈ S in LOCATESIGNAL in terms of ehead and etail.
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Lemma C.3. Let H = (π,B, F ) be a hashing, and let A ⊆ [n] × [n]. Then for every S ⊆ [n] and for every
x, χ ∈ C[n] and x′ = x− χ, the following conditions hold. Let L denote the output of

LOCATESIGNAL(χ,H, {m(x,H, α+ w · β)}(α,β)∈A,w∈W).

Then for any i ∈ S such that |x′i| > n−Ω(c), if there exists r ∈ [1 : rmax] such that

1. eheadi (H,x′) < |x′i|/20;

2. etaili (H, {α+ w · β}, x′) < |x′i|/20 for all w ∈ W;

3. the set {β}(α,β)∈A is balanced (as per Definition C.1),

then i ∈ L. The time taken by the invocation of LOCATESIGNAL is O(FB log2 n+ ||χ||0 log2 n).

Proof. Let q = σi for convenience. We show by induction on g = 1, . . . , log∆N that after the g-th iteration of
lines 9-12 of Algorithm 6 we have that f coincides with q on the bottom g · log2 ∆ bits, i.e. f − q = 0 mod ∆g

(note that we trivially have f < ∆g after iteration g).
The base of the induction is trivial and is provided by g = 1. We now show the inductive step. Assume by

the inductive hypothesis that f − q = 0 mod ∆g−1, so that q = f + ∆g−1(r0 + ∆r1 + ∆2r2 + . . .) for some
sequence r0, r1, . . ., 0 ≤ rj < ∆. Thus, (r0, r1, . . .) is the expansion of (q − f)/∆g−1 base ∆, and r0 is the
least significant digit. We now show that r0 is the unique value of r that satisfies the conditions of lines 10-11 of
Algorithm 6.

First, we have by (6) together with (7) and (9) one has for each (α, β) ∈ A and w ∈ W∣∣∣G−1
oi(i)

mh(i)(x
′, H, α+ w · β)− x′iω(α+w·β)q

∣∣∣ ≤ eheadi (H,x′) + etaili (H,α+ w · β, x) + n−Ω(c).

Let j := h(i). We will show that i is recovered from bucket j. The bounds above imply that

mj(x
′, H, α+ w · β)

mj(x′, H, α)
=
x′iω

(α+w·β)q + E′

x′iω
αq + E′′

(71)

for some E′, E′′ satisfying |E′| ≤ eheadi (H,x′) + etaili (H,α + w · β, x) + n−Ω(c) and |E′′| ≤ eheadi (H,x′) +
etaili (H,α) + n−Ω(c). For all but 1/5 fraction of (α, β) ∈ A we have by definition of etail (see (36)) that both

etaili (H,α+ w · β, x) ≤ etaili (H, {α+ w · β}, x) ≤ |x′i|/20 (72)

and
etaili (H,α, x) ≤ etaili (H, {α}, x) ≤ |x′i|/20. (73)

In particular, we can rewrite (71) as

mj(x
′, H, α+ w · β)

mj(x′, H, α)
=
x′iω

(α+w·β)q + E′

x′iω
αq + E′′

=
ω(α+w·β)q

ωαq
· ξ where ξ =

1 + ω−(α+w·β)qE′/x′i
1 + ω−(α)qE′′/x′i

= ω(α+w·β)q−αq · ξ
= ω(w·β)q · ξ.

(74)

LetA∗ ⊆ A denote the set of values of (α, β) ∈ A that satisfy the bounds (72) and (73) above. We thus have
for (α, β) ∈ A∗, combining (74) with assumptions 1-2 of the lemma, that

|E′|/x′i ≤ (2/20) + n−Ω(c) ≤ 1/8 and |E′′|/x′i ≤ (2/20) + n−Ω(c) ≤ 1/8 (75)
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for sufficiently large n, where O(c) is the word precision of our semi-equispaced Fourier transform computation.
Note that we used the assumption that |x′i| ≥ n−Ω(c).

Writing (α, β) ∈ [n]× [n], we have by (74) that mj(x
′,H,α+w·β)

mj(x′,H,α) = ωw·βq · ξ, and since wq = n∆−gq when
w = N∆−g (as in line 8 of Algorithm 6), we get

mj(x
′, H, α+ w · β)

mj(x′, H, α)
= ωw·βq · ξ = ωn∆−gβq · ξ = ωn∆−gβq + ωn∆−gβq(ξ − 1).

We analyze the first term now, and will show later that the second term is small. Since q = f +∆g−1(r0 +∆r1 +
∆2r2 + . . .) by the inductive hypothesis, we have, substituting the first term above into the expression in line 10
of Algorithm 6,

ω−r·β∆ · ω−n∆−gf ·β · ωn∆−gβq = ω−r·β∆ · ωn∆−g(q−f)·β

= ω−r·β∆ · ωn∆−g(∆g−1(r0+∆r1+∆2r2+...))·β

= ω−r·β∆ · ω(n/∆)·(r0+∆r1+∆2r2+...)·β

= ω−r·β∆ · ωr0·β∆

= ω
(−r+r0)·β
∆ .

We used the fact that ωn/∆ = e2πi(n/∆)/n = e2πi/∆ = ω∆ and (ω∆)∆ = 1. Thus, we have

ω−r·β∆ ω−(n2−gf)·βmj(x
′, H, α+ w · β)

mj(x′, H, α)
= ω

(−r+r0)·β
∆ + ω

(−r+r0)·β
∆ (ξ − 1). (76)

We now consider two cases. First suppose that r = r0. Then ω(−r+r0)·β
∆ = 1, and it remains to note that

by (75) we have |ξ − 1| ≤ 1+1/8
1−1/8 − 1 ≤ 2/7 < 1/3. Thus every (α, β) ∈ A∗ passes the test in line 11 of

Algorithm 6. Since |A∗| > (3/5)|A| by the argument above, we have that r0 passes the test in line 11. It remains
to show that r0 is the unique element in 0, . . . ,∆− 1 that passes this test.

Now suppose that r 6= r0. Then by the assumption that {β}(α,β)∈A is balanced (assumption 3 of the lemma)

at least 49/100 fraction of ω(−r+r0)·β
∆ have negative real part. This means that for at least 49/100 of (α, β) ∈ A

we have using triangle inequality∣∣∣[ω(−r+r0)·β
∆ + ω

(−r+r0)·β
∆ (ξ − 1)

]
− 1
∣∣∣ ≥ ∣∣∣ω(−r+r0)·β

∆ − 1
∣∣∣− ∣∣∣ω(−r+r0)·β

∆ (ξ − 1)
∣∣∣

≥ |i− 1| − 1/3

≥
√

2− 1/3 > 1/3,

and hence the condition in line 11 of Algorithm 6 is not satisfied for any r 6= r0. This shows that location is
successful and completes the proof of correctness.

Runtime. We perform |A| · |W| = O(log n) invocations of HASHTOBINS in line 1 of the algorithm.
Each invocation costs O(FB logB + ||χ||0 log n) by Lemma 2.8, for a total runtime of O(FB logB log n +
||χ||0 log2 n) for line 1.

After this for each of B buckets the algorithm performs decoding in blocks of log ∆ bits, amounting to
O(log∆ n) iterations. The decoding of each block requires looping over ∆ possibilities, and testing each against
the evaluation points in A. Since |A| = O(log log n). Thus the total runtime is O(log∆ n · |A| · ∆) =
O(∆ log n) = O(log2 n), as log ∆ = Θ(log log n) and ∆ = O(log n). The total runtime is thus O(FB log2 n+
||χ||0 log2 n), as claimed.
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We also get an immediate corollary of Lemma C.3.
Lemma 5.3 (Restated from section 5.2 For any integer rmax ≥ 1, for any sequence of rmax hashings Hr =
(πr, B,R), r ∈ [1 : rmax] and evaluation points Ar ⊆ [n] × [n], for every S ⊆ [n] and for every x, χ ∈
C[n], x′ := x − χ, the following conditions hold. If for each r ∈ [1 : rmax] Lr ⊆ [n] denotes the output of
LOCATESIGNAL(x̂, χ,Hr, {m(x,Hr, α + w · β)}(α,β)∈Ar,w∈W ), L =

⋃rmax
r=1 Lr, and the sets {β}(α,β)∈Ar are

balanced r ∈ [1 : rmax], then

||x′S\L||1 ≤ 20||eheadS ({Hr}, x′)||1 + 20||etail,WS ({Hr,Ar}, x)||1 + |S| · n−Ω(c). (*)

Furthermore, every element i ∈ S such that

|x′i| > 20(eheadi ({Hr}, x′) + etail,Wi ({Hr,Ar}, x)) + n−Ω(c) (**)

belongs to L.

Proof. Suppose that i ∈ S fails to be located in any of the R calls, and |x′i| ≥ n−Ω(c). By Lemma C.3 and the
assumption that the sets {β}(α,β)∈Ar are balanced for all r ∈ [1 : rmax] this means that for at least one half of
values r ∈ [1 : rmax] either (A) eheadi (Hr, x

′) ≥ |x′i|/20 or (B) etaili (Hr, {α+ w · β}(α,β)∈Ar , x) > |x′i|/20 for
at least one w ∈ W . We consider these two cases separately.

Case (A). In this case we have eheadi (Hs, x
′) ≥ |x′i|/20 for at least one half of r ∈ [1 : rmax], so in particular

eheadi ({Hr}, x′) ≥ quant1/5r eheadi (Hr, x
′) ≥ |x′i|/20.

Case (B). Suppose that etaili (Hr, {α+ w · β}(α,β)∈Ar , x) > |x′i|/20 for some w = w(r) ∈ W for at least one
half of r ∈ [1 : rmax] (denote this set by Q ⊆ [1 : rmax]). We then have

etail,Wi ({Hr,Ar}, x) = quant1/5r∈[1:rmax]e
tail
i (Hr,Ar, x)

= quant1/5r∈[1:rmax]

[
40µHr,i(x) +

∑
w∈W

∣∣∣etaili (Hr, {α+ w · β}(α,β)∈Ar , x)− 40µHr,i(x)
∣∣∣
+

]

≥ min
r∈Q

[
40µHr,i(x) +

∣∣∣etaili (Hr, {α+ w(r) · β}(α,β)∈Ar , x)− 40µHr,i(x)
∣∣∣
+

]
≥ min

r∈Q
etaili (Hr, {α+ w(r) · β}(α,β)∈Ar , x)

≥ |x′i|/20

as required. This completes the proof of (*) as well as (**).

D Proof of Lemma 5.4 (tail noise error bounds)

We will use

Lemma D.1 (Lemma 6.6 of [Kap16]). For any constant C ′ > 0 there exists an absolute constant C > 0 such
that for any x ∈ Cn, any integer k ≥ 1 and S ⊆ [n] such that ||x[n]\S ||∞ ≤ C ′||x[n]\[k]||/

√
k, if B ≥ 1, then the

following conditions hold for etail,W defined with respect to S.
If hashings Hr = (πr, B, F ), F ≥ 2 and sets Ar, |Ar| ≥ cmax for r = 1, . . . , rmax are chosen at random,

then for every i ∈ [n] one has E{(Hr,Ar)}
[
etail,Wi ({Hr,Ar}, x)

]
≤ C(40 + |W|2−Ω(cmax))||x[n]\[k]||2/

√
B.
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Note that this lemma was stated in [Kap16] with slightly different notation (etail instead of etail,W ).
Proof of Lemma 5.4: First recall that by Lemma D.1 for every t ∈ [1 : T ], s ∈ [1 : Rt] and i ∈ S one has

EHt,s,At,s
[
etail,Wi (Ht,s,At,s, x)

]
= ν2,

where ν2 ≤ C ′||x[n]\S ||2/
√
Bt for an absolute constant C ′ > 0 (we used the fact that |W| = O(logN) and

|A| = C ′′ log logN for a sufficiently large absolute constant C ′′).
To upper bound E{Ht,s,At,s}

[
||etail,WSt

({Ht,s,At,s}, x)||1
]
, we note that by conditioning on Epartition we have

|St| ≤ 2k R0
Rt−1

2−2(1−δ)(t−1)+1. Letting U := 2k R0
Rt−1

2−2(1−δ)(t−1)+1 to simplify notation, we get that

E{Ht,s,At,s}
[
||etail,WSt

(Ht,s,At,s, x)||1
]
≤ E

[
max

Q⊆S,|Q|≤U
||etail,WQ (Ht,s,At,s, x)||1

]
(77)

We now recall that by (38)

etail,Wi ({Ht,s,At,s}, x) := quant1/5s=1,...,Rt
etail,Wi (Ht,sAt,s, x),

and apply Lemma B.6 with γ = 1/5, m = |S|, n = Rt and

Xs
i = etail,Wi (Ht,sAt,s, x) for i ∈ S and s = 1, . . . , Rt,

so that EHt,s,At,s [Xs
i ] ≤ ν for each i ∈ S, s = 1, . . . , Rt. Note that Yi := quant1/5s=1,...,Rt

Xs
i = etaili ({Ht,s, zt,s}, x)

is exactly the quantity that we are interested in. We thus have by Lemma B.6

E{Ht,s,At,s}
[

max
Q⊆S,|Q|≤U

||etail,WQ (Ht,s,At,s, x)||1
]

= E{Ht,s,At,s}

 max
Q⊆S,|Q|≤U

∑
i∈Q

Yi


≤ U · (20eν) · (|S|/U)10/Rt

(78)

Since Rt′ = C12t
′

for every t′, |S| = |S0| ≤ 2k and U = 2k R0
Rt−1

2−2(1−δ)(t−1)+1 = 2k2−2(1−δ)(t−1)+1−(t−1),
we have

(|S|/U)10/Rt = 210(2(1−δ)(t−1)−1+(t−1))/(C12t) ≤ 210(1+(t−1)/2t)/C1 ≤ 220/C1 ≤ 2

for all t ≥ 0 as long as C1 > 20. Substituting the above into (78), we get

E
[

max
Q⊆S,|Q|≤U

||etailQ ({Ht,s, at,s}s∈[1:Rt], x)||1
]
≤ (40e) · U · ν.

We thus get by combining the above with (77)

EHt,s,At,s
[
||etail,WSt

(Ht,s,At,s, x)||1
]

= (40eC ′)U ||x[n]\[k]||2/
√
Bt.

We now use assumption q2 of the lemma to upper bound

(40eC ′)U/
√
Bt ≤ (40eC ′)

(
2k

R0

Rt−1
· 2−2(1−δ)(t−1)+1

)
/
√
C22k/R2

t

≤
√
k

Rt−1
· 1

Rt
·
(

(80eC ′)C1√
2C2

R2
t · 2−2(1−δ)(t−1)+1

)
=

√
k

Rt−1
· 1

Rt
·
(

(80eC ′)C2
1√

2C2
22t · 2−2(1−δ)(t−1)+1

)
≤ 1

2

√
k

Rt−1
· 1

Rt

(79)
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as long as C2 is sufficiently large as a function of C ′ and C1 (to ensure that (80eC′)C′C2
1√

2C2
22t2−2(1−δ)(t−1) ≤ 1

for all t ≥ 1; see Claim A.2). Substituting this bound into the upper bound on the expectation above yields
E{Ht,s,At,s}

[
||etail,WSt

({Ht,s,At,s}, x)||1
]
≤ 1

Rt
· ||x[n]\[k]||2

√
k/Rt−1 for every t ≥ 1. It now follows by

Markov’s inequality that for every t ≥ 1

Pr{Ht,s}s∈[1:Rt]

[
||etail,WSt

({Ht,s,At,s}, x)||1 >
1

200
||x[n]\[k]||2

√
k/Rt−1

]
≤ 200/Rt.

By a union bound over t = 1, . . . , T we have

Pr{{Ht,s}s∈[1:Rt]
}Tt=1

[
||etail,WSt

({Ht,s,At,s}, x)||1 ≤
1

200
||x[n]\[k]||2

√
k/Rt−1 for all t = 1, . . . , T

]
≥ 1−

T∑
t=1

200/Rt ≥ 1−
T∑
t=1

200/(C12t) ≥ 1−O(1/C1),

which gives the result as long as C1 is larger than a constant, as required. Letting Esmall−noise denote the
intersection of the success events above completes the proof.

E Semi-equispaced Fourier transform

One of the steps of our algorithm is to take the Fourier transform of our current estimate of x, so that it can
be subtracted off in frequency domain and we can work with the residual. The semi-equispaced FFT provides
an efficient method for doing this, and is based on the application of the standard inverse FFT to a filtered and
downsampled signal. The following guarantee, which we rely on, was given in [IKP14, Sec. 12]:

Lemma E.1. [IKP14, Lemma 12.1, Cor. 12.2] (a) Fix a power of two n and a constant δ > 0. For every x ∈ Cn
the procedure SEMIEQUIFFT(x, k, δ) returns a set of values {ŷj}|j|≤k/2 in time O(‖x‖0 log(1/δ) + k log k),
satisfying

|ŷj − x̂j | ≤ δ‖x‖2
for every j, |j| ≤ k/2.

(b) Given two additional parameters σ,∆ ∈ [n] with σ odd, it is possible to compute a set of values {ŷj} for
all j equaling σj′ + ∆ for some j′ with |j′| ≤ k/2, with the same running time and approximation guarantee.

Remark E.2. We note that Corollary 12.2 is not stated in this form, but rather for the special case when the
sparsity of the signal that we are working with is comparable with the length of the interval. The more general
bounds stated above follow immediately from their proof.

We will also use

Lemma E.3. [IKP14, Lemma 12.3] Fix a power of two n and a constant δ > 0. For every integer k > 1, every
S ⊆ [n], |S| = k, every x̂ ∈ Cn such that supp(x̂) ⊆ [−k, k] it is possible to compute a set of values {yj}j∈S in
time O(k log(n/δ)) satisfying

|yj − xj | ≤ δ‖x‖2.

F Basic theorems

F.1 Basic identities involving the Fourier transform

Recall that we use the following normalization of the Fourier transform (as per (4)):

x̂f =
1√
n

∑
i∈[n]

ω−ifxi and xj =
1√
n

∑
f∈[n]

ωjf x̂f (80)
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We also use F and F−1 to denote the forward and inverse Fourier transforms respectively. Covolution is denoted
by (x ∗ y)i =

∑
j∈[n] xi−jyj . With this normalization of the Fourier transform the convolution theorem takes

form

(F−1(x̂ · ŷ))i =
1√
n

∑
f∈[n]

ωif x̂f · ŷf

=
1√
n

∑
f∈[n]

ωif
1

n

∑
i′,i′′∈[n]

xi′yi′′ω
−f(i′+i′′)

=
1√
n

∑
i′,i′′∈[n]

xi′yi′′ ·
1

n

∑
f∈[n]

ωf(i′+i′′−i)

=
1√
n

∑
f ′∈[n]

xf ′yi−i′

(81)

F.2 Proof of Claim A.2

We restate the claim here for convenience of the reader:
Claim A.2 For every C1, C2 > 0, δ ∈ (0, 1) there exists C3 such that for every C4 ≥ C3 one has 1

C4
2C1t ·

2−C22(1−δ)t+1 ≤ 1 all t ≥ 0.

Proof. One has 2C1t · 2−C22(1−δ)t+1
= 2C1t−C22(1−δ)t+1, so it suffices to note that since δ < 1 by assumption of

the claim,
max
t≥0

(2C1t− C(1−δ)t
2 )

is a constant(that may depend on C1, C2 and δ. Thus, the claim follows for sufficiently large C3 (as a function of
C1, C2, δ).
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