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Abstract

We consider the problem of computing a k-sparse approximation to the Fourier transform of a length N
signal. Our main result is a randomized algorithm for computing such an approximation (i.e. achieving the
`2/`2 sparse recovery guarantees using Fourier measurements) using Od(k logN log logN) samples of the
signal in time domain that runs in time Od(k logd+3N), where d ≥ 1 is the dimensionality of the Fourier
transform. The sample complexity matches the lower bound of Ω(k log(N/k)) for non-adaptive algorithms
due to [DIPW10] for any k ≤ N1−δ for a constant δ > 0 up to an O(log logN) factor. Prior to our work a
result with comparable sample complexity k logN logO(1) logN and sublinear runtime was known for the
Fourier transform on the line [IKP14], but for any dimension d ≥ 2 previously known techniques either
suffered from a poly(logN) factor loss in sample complexity or required Ω(N) runtime.
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1 Introduction

The Discrete Fourier Transform (DFT) is a fundamental mathematical concept that allows to represent a discrete
signal of length N as a linear combination of N pure harmonics, or frequencies. The development of a fast
algorithm for Discrete Fourier Transform, known as FFT (Fast Fourier Transform) in 1965 revolutionized digital
signal processing, earning FFT a place in the top 10 most important algorithms of the twentieth century [Cip00].
Fast Fourier Transform (FFT) computes the DFT of a length N signal in time O(N logN), and finding a faster
algorithm for DFT is a major open problem in theoretical computer science. While FFT applies to general
signals, many of the applications of FFT (e.g. image and video compression schemes such as JPEG and MPEG)
rely on the fact that the Fourier spectrum of signals that arise in practice can often be approximated very well by
only a few of the top Fourier coefficients, i.e. practical signals are often (approximately) sparse in the Fourier
basis.

Besides applications in signal processing, the Fourier sparsity property of real world signal plays and im-
portant role in medical imaging, where the cost of measuring a signal, i.e. sample complexity, is often a major
bottleneck. For example, an MRI machine effectively measures the Fourier transform of a signal x represent-
ing the object being scanned, and the reconstruction problem is exactly the problem of inverting the Fourier
transform x̂ of x approximately given a set of measurements. Minimizing the sample complexity of acquiring a
signal using Fourier measurements thus translates directly to reduction in the time the patient spends in the MRI
machine [LDSP08] while a scan is being taken. In applications to Computed Tomography (CT) reduction in
measurement cost leads to reduction in the radiation dose that a patient receives [Sid11]. Because of this strong
practical motivation, the problem of computing a good approximation to the FFT of a Fourier sparse signal
fast and using few measurements in time domain has been the subject of much attention several communities.
In the area of compressive sensing [Don06, CT06], where one studies the task of recovering (approximately)
sparse signals from linear measurements, Fourier measurements have been one of the key settings of interest. In
particular, the seminal work of [CT06, RV08] has shown that length N signals with at most k nonzero Fourier
coefficients can be recovered using only k logO(1)N samples in time domain. The recovery algorithms are
based on linear programming and run in time polynomial in N . A different line of research on the Sparse
Fourier Transform (Sparse FFT), initiated in the fields of computational complexity and learning theory, has
been focused on developing algorithms whose sample complexity and running time scale with the sparsity as
opposed to the length of the input signal. Many such algorithms have been proposed in the literature, including
[GL89, KM91, Man92, GGI+02, AGS03, GMS05, Iwe10, Aka10, HIKP12b, HIKP12a, BCG+12, HAKI12,
PR13, HKPV13, IKP14]. These works show that, for a wide range of signals, both the time complexity and the
number of signal samples taken can be significantly sub-linear in N , often of the form k logO(1)N .

In this paper we consider the problem of computing a sparse approximation to a signal x ∈ CN given access
to its Fourier transform x̂ ∈ CN .1 The best known results obtained in both compressive sensing literature and
sparse FFT literature on this problem are summarized in Fig. 1. We focus on algorithms that work for worst-
case signals and recover k-sparse approximations satisfying the so-called `2/`2 approximation guarantee. In
this case, the goal of an algorithm is as follows: given m samples of the Fourier transform x̂ of a signal x, and
the sparsity parameter k, output x′ satisfying

‖x− x′‖2 ≤ C min
k-sparse y

‖x− y‖2, (1)

The algorithms are randomized2 and succeed with at least constant probability.
Higher dimensional Fourier transform. While significant attention in the sublinear Sparse FFT literature

has been devoted to the basic case of Fourier transform on the line (i.e. one-dimensional signals), the spars-
1Note that the problem of reconstructing a signal from Fourier measurements is equivalent to the problem of computing the Fourier

transform of a signal x whose spectrum is approximately sparse, as the DFT and its inverse are only different by a conjugation.
2Some of the algorithms [CT06, RV08, CGV12] can in fact be made deterministic, but at the cost of satisfying a somewhat weaker

`2/`1 guarantee.
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Reference Time Samples C Dimension
d > 1?

[CT06, RV08, CGV12]
[Bou14, HR16] N ×m linear program O(k log2(k) log(N)) O(1) yes

[CP10] N ×m linear program O(k logN) (logN)O(1) yes
[HIKP12a] O(k log(N) log(N/k)) O(k log(N) log(N/k)) any no

[IKP14] k log2(N) logO(1) logN k log(N) logO(1) logN any no
[IK14] N logO(1)N O(k logN) any yes

[DIPW10] Ω(k log(N/k)) O(1) lower bound

Figure 1: Bounds for the algorithms that recover k-sparse Fourier approximations. All algorithms produce an
output satisfying Equation 1 with probability of success that is at least constant. The forth column specifies
constraints on approximation factor C. For example, C = O(1) means that the algorithm can only handle
constant C as opposed to any C > 1. The last column specifies whether the sample complexity bounds are
unchanged, up to factors that depend on dimension d only, for higher dimensional DFT.

est signals often occur in applications involving higher-dimensional DFTs. Although a reduction from DFT
on a two-dimensional grid with relatively prime side lengths p × q to a one-dimensional DFT of length pq
is possible [GMS05, Iwe12]), the reduction does not apply to the most common case when the side lengths
of the grid are equal to the same powers of two. It turns out that most sublinear Sparse FFT techniques de-
veloped for the one-dimensional DFT do not extend well to the higher dimensional setting, suffering from
at least a polylogaritmic loss in sample complexity. Specifically, the only prior sublinear time algorithm that
applies to general m × m grids is due to to [GMS05], has O(k logcN) sample and time complexity for a
rather large value of c. If N is a power of 2, a two-dimensional adaptation of the [HIKP12a] algorithm (out-
lined in [GHI+13]) has roughly O(k log3N) time and sample complexity, and an adaptation of [IKP14] has
O(k log2N(log logN)O(1)) sample complexity. In general dimension d ≥ 1 both of these algorithms have
sample complexity Ω(k logdN).

Thus, none of the results obtained so far was able to guarantee sparse recovery from high dimensional (any
d ≥ 2) Fourier measurements without suffering at least a polylogarithmic loss in sample complexity, while at
the same time achieving sublinear runtime.

Our results. In this paper we give an algorithm that achieves the `2/`2 sparse recovery guarantees (1) with
d-dimensional Fourier measurements that usesOd(k logN log logN) samples of the signal and has the running
time of Od(k logd+3N). This is the first sublinear time algorithm that comes within a poly(log logN) factor
of the sample complexity lower bound of Ω(k log(N/k)) due to [DIPW10] for any dimension higher than one.

Sparse Fourier Transform overview. The overall outline of our algorithm follows the framework of [GMS05,
HIKP12a, IKP14, IK14], which adapt the methods of [CCFC02, GLPS10] from arbitrary linear measurements
to Fourier measurements. The idea is to take, multiple times, a set of B = O(k) linear measurements of the
form

ũj =
∑

i:h(i)=j

sixi

for random hash functions h : [N ] → [B] and random sign changes si with |si| = 1. This corresponds to
hashing to B buckets. With such ideal linear measurements, O(log(N/k)) hashes suffice for sparse recovery,
giving an O(k log(N/k)) sample complexity.

The sparse Fourier transform algorithms approximate ũ using linear combinations of Fourier samples.
Specifically, the coefficients of x are first permuted via a random affine permutation of the input space. Then the
coefficients are partitioned into buckets. This step uses the“filtering” process that approximately partitions the
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range of x into intervals (or, in higher dimension, squares, or `∞ balls) with N/B coefficients each, where each
interval corresponds to one bucket. Overall, this ensures that most of the large coefficients are “isolated”, i.e.,
are hashed to unique buckets, as well as that the contributions from the “tail” of the signal x to those buckets
is not much greater than the average (the tail of the signal defined as Errk(x) = mink−sparse y ||x− y||2). This
allows one to mimic the iterative recovery algorithm described for linear measurements above. However, there
are several difficulties in making this work using an optimal number of samples.

This enables the algorithm to identify the locations of the dominant coefficients and estimate their values,
producing a sparse estimate χ of x. To improve this estimate, we repeat the process on x − χ by subtracting
the influence of χ during hashing, thereby refining the approximation of x constructed. After a few iterations
of this refinement process the algorithm obtains a good sparse approximation χ of x.

A major hurdle in implementing this strategy is that any filter that has been constructed in the literature so far
is imprecise in that coefficients contribute (“leak”’) to buckets other than the one they are technically mapped
into. This contribution, however, is limited and can be controlled by the quality of the filter. The details of
filter choice have played a crucial role in recent developments in Sparse FFT algorithms. For example, the
best known runtime for one-dimensional Sparse FFT, due to [HIKP12b], was obtained by constructing filters
that (almost) precisely mimic the ideal hash process, allowing for a very fast implementation of the process in
dimension one. The price to pay for the precision of the filter, however, is that each hashing becomes a logdN
factor more costly in terms of sample complexity and runtime than in the idealized case. At the other extreme,
the algorithm of [GMS05] uses much less precise filters, which only lead to a Cd loss of sample complexity
in higher dimensions d, for a constant C > 0. Unfortunately, because of the imprecision of the filters the
iterative improvement process becomes quite noisy, requiring Ω(logN) iterations of the refinement process
above. As [GMS05] use fresh randomness for each such iteration, this results in an Ω(logN) factor loss in
sample complexity. The result of [IKP14] uses a hybrid strategy, effectively interpolating between [HIKP12b]
and [GMS05]. This gives the near optimal O(k logN logO(1) logN) sample complexity in dimension one (i.e.
Fourier transform on the line), but still suffers from a logd−1N loss in dimension d.

Techniques of [IK14]. The first algorithm to achieve optimal sample complexity was recently introduced
in [IK14]. The algorithms uses an approach inspired by [GMS05] (and hence uses ‘crude’ filters that do not
lose much in sample complexity), but introduces a key innovation enabling optimal sample complexity: the
algorithm does not use fresh hash functions in every repetition of the refinement process. Instead, O(logN)
hash functions are chosen at the beginning of the process, such that each large coefficient is isolated by most of
those functions with high probability. The same hash functions are then used throughout the execution of the
algorithm. As every hash function required a separate set of samples to construct the buckets, reusing the hash
functions makes sample complexity independent of the number of iterations, leading to the optimal bound.

While a natural idea, reusing hash functions creates a major difficulty: if the algorithm identified a non-
existent large coefficient (i.e. a false positive) by mistake and added it to χ, this coefficient would be present
in the difference vector x − χ (i.e. residual signal) and would need to be corrected later. As the spurious
coefficient depends on the measurements, the ‘isolation’ properties required for recovery need not hold for it
as its position is determined by the hash functions themselves, and the algorithm might not be able to correct
the mistake. This hurdle was overcome in [IK14] by ensuring that no large coefficients are created spuriously
throughout the execution process. This is a nontrivial property to achieve, as the hashing process is quite
noisy due to use of the ‘crude’ filters to reduce the number of samples (because the filters are quite simple,
the bucketing process suffers from substantial leakage). The solution was to recover the large coefficients
in decreasing order of their magnitude. Specifically, in each step, the algorithm recovered coefficients with
magnitude that exceeded a specific threshold (that decreases at an exponential rate). With this approach the
`∞ norm of the residual signal decreases by a constant factor in every round, resulting in the even stronger
`∞/`2 sparse recovery guarantees in the end. The price to pay for this strong guarantee was the need for a very
strong primitive for locating dominant elements in the residual signal: a primitive was needed that would make
mistakes with at most inverse polynomial probability. This was achieved by essentially brute-force decoding
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over all potential elements in [N ]: the algorithm loops over all elements i ∈ [N ] and for each i tests, using the
O(logN) measurements taken, whether i is a dominant element in the residual signal. This resulted in Ω(N)
runtime.

Our techniques. In this paper we show how to make the aforementioned algorithm run in sub-linear
time, at the price of a slightly increased sampling complexity of Od(k logN log logN). To achieve a sub-
linear runtime, we need to replace the loop over all N coefficients by a location primitive (similar to that in
prior works) that identifies the position of any large coefficient that is isolated in a bucket in logO(1)N time
per bucket, i.e. without resorting to brute force enumeration over the domain of size N . Unfortunately, the
identification step alone increases the sampling complexity by O(logN) per hash function, so unlike [IK14],
here we cannot repeat this process usingO(logN) hash functions to ensure that each large coefficient is isolated
by one of those functions. Instead, we can only afford O(log logN) hash functions overall, which means that
1/ logO(1)N fraction of large coefficients will not be isolated in most hashings. This immediately precludes
the possibility of using the initial samples to achieve `∞ norm reduction as in [IK14]. Another problem,
however, is that the weaker location primitive that we use may generate spurious coefficients at every step
of the recovery process. These spurious coefficients, together with the 1/ logO(1)N fraction of non-isolated
elements, contaminate the recovery process and essentially render the original samples useless after a small
number of refinement steps. To overcome these hurdles, instead of the `∞ reduction process of [IK14] we
use a weaker invariant on the reduction of mass in the ‘heavy’ elements of the signal throughout our iterative
process. Specifically, instead of reduction of `∞ norm of the residual as in [IK14] we give a procedure for
reducing the `1 norm of the ‘head’ of the signal. To overcome the contamination coming from non-isolated as
well as spuriously created coefficients, we achieve `1 norm reduction by alternating two procedures. The first
procedure uses the O(log logN) hash functions to reduce the `1 norm of ‘well-hashed’ elements in the signal,
and the second uses a simple sparse recovery primitive to reduce the `∞ norm of offending coefficients when
the first procedure gets stuck. This can be viewed as a signal-to-noise ratio (SNR) reduction step similar in spirit
the one achieved in [IKP14]. The SNR reduction phase is insufficient for achieving the `2/`2 sparse recovery
guarantee, and hence we need to run a cleanup phase at the end, when the signal to noise ratio is constant. It has
been observed before (in [IKP14]) that if the signal to noise ratio is constant, then recovery can be done using
standard techniques with optimal sample complexity. The crucial difference between [IKP14] and our setting
is, however, that we only have bounds on `1-SNR as opposed to `2-SNR In [IKP14]. It turns out, however, that
this is not a problem – we give a stronger analysis of the corresponding primitive from [IKP14], showing that
`1-SNR bound is sufficient.

Related work on continuous Sparse FFT. Recently [BCG+12] and [PS15] gave algorithms for the related
problem of computing Sparse FFT in the continuous setting. These results are not directly comparable to ours,
and suffer from a polylogarithmic inefficiency in sample complexity bounds.

2 Preliminaries

For a positive even integer a we will use the notation [a] = {−a
2 ,−

a
2 + 1, . . . ,−1, 0, 1, . . . , a2 − 1}. We will

consider signals of length N = nd, where n is a power of 2 and d ≥ 1 is the dimension. We use the notation
ω = e2πi/n for the root of unity of order n. The d-dimensional forward and inverse Fourier transforms are
given by

x̂j =
1√
N

∑
i∈[n]d

ω−i
T jxi and xj =

1√
N

∑
i∈[n]d

ωi
T j x̂i (2)

respectively, where j ∈ [n]d. We will denote the forward Fourier transform by F and Note that we use
the orthonormal version of the Fourier transform. We assume that the input signal has entries of polynomial
precision and range. Thus, we have ||x̂||2 = ||x||2 for all x ∈ CN (Parseval’s identity). Given access to samples
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of x̂, we recover a signal z such that

||x− z||2 ≤ (1 + ε) min
k− sparse y

||x− y||2

We will use pseudorandom spectrum permutations, which we now define. We writeMd×d for the set of
d × d matrices over Zn with odd determinant. For Σ ∈ Md×d, q ∈ [n]d and i ∈ [n]d let πΣ,q(i) = Σ(i − q)
mod n. Since Σ ∈Md×d, this is a permutation. Our algorithm will use π to hash heavy hitters into B buckets,
where we will choose B ≈ k. We will often omit the subscript Σ, q and simply write π(i) when Σ, q is fixed
or clear from context. For i, j ∈ [n]d we let oi(j) = π(j) − (n/b)h(i) be the “offset” of j ∈ [n]d relative to
i ∈ [n]d (note that this definition is different from the one in [IK14]). We will always have B = bd, where b is
a power of 2.

Definition 2.1. Suppose that Σ−1 exists mod n. For a, q ∈ [n]d we define the permutationPΣ,a,q by (PΣ,a,qx̂)i =

x̂ΣT (i−a)ω
iT Σq.

Lemma 2.2. F−1(PΣ,a,qx̂)πΣ,q(i) = xiω
aT Σi

The proof is given in [IK14] and we do not repeat it here. Define

Errk(x) = min
k−sparse y

||x− y||2 and µ2 = Err2
k(x)/k. (3)

In this paper, we assume knowledge of µ (a constant factor upper bound on µ suffices). We also assume that
the signal to noise ration is bounded by a polynomial, namely that R∗ := ||x||∞/µ ≤ NO(1). We use the
notation B∞r (x) to denote the `∞ ball of radius r around x: B∞r (x) = {y ∈ [n]d : ||x − y||∞ ≤ r}, where
||x− y||∞ = maxs∈d ||xs − ys||◦, and ||xs − ys||◦ is the circular distance on Zn. We will also use the notation
f . g to denote f = O(g). For a real number a we write |a|+ to denote the positive part of a, i.e. |a|+ = a if
a ≥ 0 and |a|+ = 0 otherwise.

We will use the filter G, Ĝ constructed in [IK14]. The filter is defined by a parameter F ≥ 1 that governs
its decay properties. The filter satisfies supp Ĝ ⊆ [−F · b, F · b]d and

Lemma 2.3 (Lemma 3.1 in [IK14]). One has (1) Gj ∈ [ 1
(2π)F ·d

, 1] for all j ∈ [n]d such that ||j||∞ ≤ n
2b and

(2) |Gj | ≤
(

2
1+(b/n)||j||∞

)F
for all j ∈ [n]d as long as b ≥ 3 and (3) Gj ∈ [0, 1] for all j as long as F is even.

Remark 2.4. Property (3) was not stated explicitly in Lemma 3.1 of [IK14], but follows directly from their
construction.

The properties above imply that most of the mass of the filter is concentrated in a square of side O(n/b),
approximating the “ideal” filter (whose value would be equal to 1 for entries within the square and equal to
0 outside of it). Note that for each i ∈ [n]d one has |Goi(i)| ≥

1
(2π)d·F

. We refer to the parameter F as the
sharpness of the filter. Our hash functions are not pairwise independent, but possess a property that still makes
hashing using our filters efficient:

Lemma 2.5 (Lemma 3.2 in [IK14]). Let i, j ∈ [n]d. Let Σ be uniformly random with odd determinant. Then
for all t ≥ 0 one has Pr[||Σ(i− j)||∞ ≤ t] ≤ 2(2t/n)d.

Pseudorandom spectrum permutations combined with a filter G give us the ability to ‘hash’ the elements
of the input signal into a number of buckets (denoted by B). We formalize this using the notion of a hashing.
A hashing is a tuple consisting of a pseudorandom spectrum permutation π, target number of buckets B and a
sharpness parameter F of our filter, denoted by H = (π,B, F ). Formally, H is a function that maps a signal x
to B signals, each corresponding to a hash bucket, allowing us to solve the k-sparse recovery problem on input
x by reducing it to 1-sparse recovery problems on the bucketed signals. We give the formal definition below.
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Definition 2.6 (Hashing H = (π,B, F )). For a permutation π = (Σ, q), parameters b > 1, B = bd and F ,
a hashing H := (π,B, F ) is a function mapping a signal x ∈ C[n]d to B signals H(x) = (us)s∈[b]d , where

us ∈ C[n]d for each s ∈ [b]d, such that for each i ∈ [n]d

us,i =
∑
j∈[n]d

Gπ(j)−(n/b)·sxjω
iT Σj ∈ C,

where G is a filter with B buckets and sharpness F constructed in Lemma 2.3.

For a hashing H = (π,B, F ), π = (Σ, q) we sometimes write PH,a, a ∈ [n]d to denote PΣ,a,q. We will
consider hashings of the input signal x, as well as the residual signal x− χ, where

Definition 2.7 (Measurement m = m(x,H, a)). For a signal x ∈ C[n]d , a hashing H = (π,B, F ) and a
parameter a ∈ [n]d, a measurement m = m(x,H, a) ∈ C[b]d is the B-dimensional complex valued vector of
evaluations of a hashing H(x) at a ∈ C[n]d , i.e. length B, indexed by [b]d and given by evaluating the hashing
H at a ∈ [n]d, i.e. for s ∈ [b]d

ms =
∑
j∈[n]d

Gπ(j)−(n/b)·sxjω
aT Σj ,

where G is a filter with B buckets and sharpness F constructed in Lemma 2.3.

Definition 2.8. For any x ∈ C[n]d and any hashing H = (π,B,G) define the vector µ2
H,·(x) ∈ R[n]d by letting

for every i ∈ [n]d

µ2
H,i(x) := |G−1

oi(i)
|
∑

j∈[n]d\{i}

|xj |2|Goi(j)|
2.

We access the signal x in Fourier domain via the function HASHTOBINS(x̂, χ, (H, a)), which evaluates
the hashing H of residual signal x − χ at point a ∈ [n]d, i.e. computes the measurement m(x,H, a) (the
computation is done with polynomial precision). One can view this function as “hashing” x into B bins by
convolving it with the filter G constructed above and subsampling appropriately. The pseudocode for this
function is given in section 9.2. In what follows we will use the following properties of HASHTOBINS:

Lemma 2.9. There exists a constant C > 0 such that for any dimension d ≥ 1, any integer B ≥ 1, any
x, χ ∈ C[n]d , x′ := x−χ, if Σ ∈Md×d, a, q ∈ [n]d are selected uniformly at random, the following conditions
hold.

Let π = (Σ, q), H = (π,B,G), where G is the filter with B buckets and sharpness F constructed in
Lemma 2.3, and let u = HASHTOBINS(x̂, χ, (H, a)). Then if F ≥ 2d, F = Θ(d), for any i ∈ [n]d

(1) For any H one has maxa∈[n]d |G−1
oi(i)

ω−a
T Σiuh(i) − x′i| ≤ G−1

oi(i)
·
∑

j∈S\{i}Goi(j)|x′j |. Furthermore,

EH [G−1
oi(i)
·
∑

j∈S\{i}Goi(j)|x′j |] ≤ (2π)d·F · Cd||x′||1/B +N−Ω(c);

(2) EH [µ2
H,i(x

′)] ≤ (2π)2d·F · Cd‖x′‖22/B,

Furthermore,

(3) for any hashing H , if a is chosen uniformly at random from [n]d, one has

Ea[|G−1
oi(i)

ω−a
T Σiuh(i) − x′i|2] ≤ µ2

H,i(x
′) +N−Ω(c).

Here c > 0 is an absolute constant that can be chosen arbitrarily large at the expense of a factor of cO(d) in
runtime.
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The proof of Lemma 2.9 is given in Appendix A. We will need several definitions and lemmas from [IK14],
which we state here. We sometimes need slight modifications of the corresponding statements from [IK14],
in which case we provide proofs in Appendix A. Throughout this paper the main object of our analysis is a
properly defined set S ⊆ [n]d that contains the ’large’ coefficients of the input vector x. Below we state our
definitions and auxiliary lemmas without specifying the identity of this set, and then use specific instantiations
of S to analyze outer primitives such as REDUCEL1NORM, REDUCEINFNORM and RECOVERATCONST-
SNR. This is convenient because the analysis of all of these primitives can then use the same basic claims
about estimation and location primitives. The definition of S given in (4) above is the one we use for analyzing
REDUCEL1NORM and the SNR reduction loop. Analysis of REDUCEINFNORM (section 8.1) and RECOV-
ERATCONSTANTSNR (section 8.2) use different instantiations of S, but these are local to the corresponding
sections, and hence the definition in (4) is the best one to have in mind for the rest of this section.

First, we need the definition of an element i ∈ [n]d being isolated under a hashing H = (π,B, F ). Intu-
itively, an element i ∈ S is isolated under hashing H with respect to set S if not too many other elements S are
hashed too close to i. Formally, we have

Definition 2.10 (Isolated element). Let H = (π,B, F ), where π = (Σ, q), Σ ∈ Md×d, q ∈ [n]d. We say that
an element i ∈ [n]d is isolated under hashing H at scale t if

|π(S \ {i}) ∩ B∞(n/b)·h(i)((n/b) · 2
t)| ≤ (2π)−d·F · αd/22(t+1)d · 2t.

We say that i is simply isolated under hashing H if it is isolated under H at all scales t ≥ 0.

The following lemma shows that any element i ∈ S is likely to be isolated under a random permutation π:

Lemma 2.11. For any integer k ≥ 1 and any S ⊆ [n]d, |S| ≤ 2k, ifB ≥ (2π)4d·F ·k/αd for α ∈ (0, 1) smaller
than an absolute constant, F ≥ 2d, and a hashingH = (π,B, F ) is chosen randomly (i.e. Σ ∈Md×d, q ∈ [n]d

are chosen uniformly at random, and π = (Σ, q)), then each i ∈ [n]d is isolated under permutation π with
probability at least 1− 1

2

√
α.

The proof of the lemma is very similar to Lemma 5.4 in [IK14] (the only difference is that the `∞ ball is
centered at the point that i hashes to in Lemma 2.11, whereas it was centered at π(i) in Lemma 5.4 of [IK14])
and is given in Appendix A for completeness.

As every element i ∈ S is likely to be isolated under one random hashing, it is very likely to be isolated
under a large fraction of hashings H1, . . . ,Hrmax :

Lemma 2.12. For any integer k ≥ 1, and any S ⊆ [n]d, |S| ≤ 2k, if B ≥ (2π)4d·F · k/αd for α ∈ (0, 1)
smaller than an absolute constant, F ≥ 2d,Hr = (πr, B, F ), r = 1, . . . , rmax a sequence of random hashings,
then every i ∈ [n]d is isolated with respect to S under at least (1 −

√
α)rmax hashings Hr, r = 1, . . . , rmax

with probability at least 1− 2−Ω(
√
αrmax).

Proof. Follows by an application of Chernoff bounds and Lemma 2.11.

It is convenient for our location primitive (LOCATESIGNAL, see Algorithm 1) to sample the signal at pairs
of locations chosen randomly (but in a correlated fashion). The two points are then combined into one in a
linear fashion. We now define notation for this common operation on pairs of numbers in [n]d. Note that we are
viewing pairs in [n]d× [n]d as vectors in dimension 2, and the ? operation below is just the dot product over this
two dimensional space. However, since our input space is already endowed with a dot product (for i, j ∈ [n]d

we denote their dot product by iT j), having special notation here will help avoid confusion.
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Operations on vectors in [n]d. For a pair of vectors (α1, β1), (α2, β2) ∈ [n]d× [n]d we let (α1, β1)?(α2, β2)
denote the vector γ ∈ [n]d such that

γi = (α1)i · (α2)i + (β1)i · (β2)i for all i ∈ [d].

Note that for any a, b, c ∈ [n]d × [n]d one has a ? b + a ? c = a ? (b + c), where addition for elements of
[n]d × [n]d is componentwise. We write 1 ∈ [n]d for the all ones vector in dimension d, and 0 ∈ [n]d for the
zero vector. For a set A ⊆ [n]d × [n]d and a vector (α, β) ∈ [n]d × [n]d we denote

A ? (α, β) := {a ? (α, β) : a ∈ A}.

Definition 2.13 (Balanced set of points). For an integer ∆ ≥ 2 we say that a (multi)set Z ⊆ [n]d is ∆-balanced
in coordinate s ∈ [1 : d] if for every r = 1, . . . ,∆−1 at least 49/100 fraction of elements in the set {ωr·zs∆ }z∈Z
belong to the left halfplane {u ∈ C : Re(u) ≤ 0} in the complex plane, where ω∆ = e2πi/∆ is the ∆-th root of
unity.

Note that if ∆ divides n, then for any fixed value of r the point ωr·zs∆ is uniformly distributed over the
∆′-th roots of unity for some ∆′ between 2 and ∆ for every r = 1, . . . ,∆ − 1 when zs is uniformly random
in [n]. Thus for r 6= 0 we expect at least half the points to lie in the halfplane {u ∈ C : Re(u) ≤ 0}. A set
Z is balanced if it does not deviate from expected behavior too much. The following claim is immediate via
standard concentration bounds:

Claim 2.14. There exists a constant C > 0 such that for any ∆ a power of two, ∆ = logO(1) n, and n a power
of 2 the following holds if ∆ < n. If elements of a (multi)set A ⊆ [n]d × [n]d of size C log logN are chosen
uniformly at random with replacement from [n]d × [n]d, then with probability at least 1 − 1/ log4N one has
that for every s ∈ [1 : d] the set A ? (0, es) is ∆-balanced in coordinate s.

Since we only use one value of ∆ in the paper (see line 8 in Algorithm 1), we will usually say that a set is
simply ‘balanced’ to denote the ∆-balanced property for this value of ∆.

3 The algorithm and proof overview

In this section we state our algorithm and give an outline of the analysis. The formal proofs are then presented
in the rest of the paper (the organization of the rest of the paper is presented in section 4). Our algorithm
(Algorithm 2), at a high level, proceeds as follows.

Measuring x̂. The algorithms starts by taking measurements of the signal in lines 5-16. Note that the
algorithm selects O(log logN) hashings Hr = (πr, B, F ), r = 1, . . . , O(log logN), where πr are selected
uniformly at random, and for each r selects a setAr ⊆ [n]d×[n]d of sizeO(log logN) that determines locations
to access in frequency domain. The signal x̂ is accessed via the function HASHTOBINS (see Lemma 2.9 above
for its properties. The function HASHTOBINS accesses filtered versions of x̂ shifted by elements of a randomly
selected set (the number of shifts is O(logN/ log logN)). These shifts are useful for locating ‘heavy’ elements
from the output of HASHTOBINS. Note that since each hashing takes O(B) = O(k) samples, the total sample
complexity of the measurement step is O(k logN log logN). This is the dominant contribution to sample
complexity, but it is not the only one. The other contribution ofO(k logN log logN) comes from invocations of
ESTIMATEVALUES from our `1-SNR reduction loop (see below). The loop goes over O(logR∗) = O(logN)
iterations, and in each iteration ESTIMATEVALUES uses O(log logN) fresh hash functions to keep the number
of false positives and estimation error small.

The location algorithm is Algorithm 1. Our main tool for bounding performance of LOCATESIGNAL is
Theorem 3.1, stated below. Theorem 3.1 applies to the following setting. Fix a set S ⊆ [n]d and a set of
hashings H1, . . . ,Hrmax that encode signal measurement patterns, and let S∗ ⊆ S denote the set of elements

9



of S that are not isolated with respect to most of these hashings. Theorem 3.1 shows that for any signal x and
partially recovered signal χ, if L denotes the output list of an invocation of LOCATESIGNAL on the pair (x, χ)
with measurements given by H1, . . . ,Hrmax and a set of random shifts, then the `1 norm of elements of the
residual (x − χ)S that are not discovered by LOCATESIGNAL can be bounded by a function of the amount of
`1 mass of the residual that fell outside of the ‘good’ set S \S∗, plus the ‘noise level’ µ ≥ ||x[n]d\S ||∞ times k.

If we think of applying Theorem 3.1 iteratively, we intuitively get that the fixed set of measurements given
by hashings H1, . . . ,Hr allows us to always reduce the `1 norm of the residual x′ = x − χ on the ‘good’
set S \ S∗ to about the amount of mass that is located outside of this good set(this is exactly how we use
LOCATESIGNAL in our signal to noise ratio reduction loop below). In section 6 we prove

Theorem 3.1. For any constant C ′ > 0 there exist absolute constants C1, C2, C3 > 0 such that for any x, χ ∈
CN , x′ = x−χ, any integer k ≥ 1 and any S ⊆ [n]d such that ||x[n]d\S ||∞ ≤ C ′µ, where µ = ||x[n]d\[k]||2/

√
k,

the following conditions hold if ||x′||∞/µ = NO(1).
Let πr = (Σr, qr), r = 1, . . . , rmax denote permutations, and let Hr = (πr, B, F ), F ≥ 2d, F = Θ(d),

where B ≥ (2π)4d·Fk/αd for α ∈ (0, 1) smaller than a constant. Let S∗ ⊆ S denote the set of elements
that are not isolated with respect to at least a

√
α fraction of hashings {Hr}. Then if additionally for every

s ∈ [1 : d] the sets Ar ? (1, es) are balanced in coordinate s (as per Definition 2.13) for all r = 1, . . . , rmax,
and rmax, cmax ≥ (C1/

√
α) log logN , then

L :=

rmax⋃
r=1

LOCATESIGNAL
(
χ, k, {m(x̂, Hr, a ? (1,w))}rmax

r=1,a∈Ar,w∈W

)
satisfies

||x′S\S∗\L||1 ≤ (C2α)d/2||x′S ||1 + Cd
2

3 (||χ[n]d\S ||1 + ||x′S∗ ||1) + 4µ|S|.

Reducing signal to noise ratio. Once the samples have been taken, the algorithm proceeds to the signal to
noise (SNR) reduction loop (lines 17-23). The objective of this loop is to reduce the mass of the top (about k)
elements in the residual signal to roughly the noise level µ · k (once this is done, we run a ‘cleanup’ primitive,
referred to as RECOVERATCONSTANTSNR, to complete the recovery process – see below). Specifically, we
define the set S of ‘head elements’ in the original signal x as

S = {i ∈ [n]d : |xi| > µ}, (4)

where µ2 = Err2
k(x)/k is the average tail noise level. Note that we have |S| ≤ 2k. Indeed, if |S| > 2k, more

than k elements of S belong to the tail, amounting to more than µ2 · k = Err2
k(x) tail mass. Ideally, we would

like this loop to construct and approximation χ(T ) to x supported only on S such that ||(x−χ(T ))S ||1 = O(µk),
i.e. the `1-SNR of the residual signal on the set S of heavy elements is reduced to a constant. As some false
positives will unfortunately occur throughout the execution of our algorithm due to the weaker sublinear time
location and estimation primitives that we use, our SNR reduction loop is to construct an approximation χ(T )

to x with the somewhat weaker properties that

||(x− χ(T ))S ||1 + ||χ(T )||[n]d\S = O(µk) and ||χ(T )||0 � k. (5)

Thus, we reduce the `1-SNR on the set S of ‘head’ elements to a constant, and at the same time not introduce
too many spurious coefficients (i.e. false positives) outside S, and these coefficients do not contribute much
`1 mass. The SNR reduction loop itself consists of repeated alternating invocations of two primitives, namely
REDUCEL1NORM and REDUCEINFNORM. Of these two the former can be viewed as performing most of
the reduction, and REDUCEINFNORM is naturally viewed as performing a ‘cleanup’ phase to fix inefficiencies
of REDUCEL1NORM that are due to the small number of hash functions (only O(log logN) as opposed to
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O(logN) in [IK14]) that we are allowed to use, as well as some mistakes that our sublinear runtime location
and estimation primitives used in REDUCEL1NORM might make.

Algorithm 1 Location primitive: given a set of measurements corresponding to a single hash function, returns
a list of elements in [n]d, one per each hash bucket

1: procedure LOCATESIGNAL(χ,H, {m(x̂, H, a ? (1,w)}a∈A,w∈W ) . H = (π,B, F ), B = bd

2: Let x′ := x− χ. Compute {m(x̂′, H, a ? (1,w)}a∈A,w∈W using Corollary 10.2 and HASHTOBINS.
3: L← ∅
4: for j ∈ [b]d do . Loop over all hash buckets, indexed by j ∈ [b]d

5: f ← 0d

6: for s = 1 to d do . Recovering each of d coordinates separately
7: ∆← 2b

1
2

log2 log2 nc

8: for g = 1 to log∆ n− 1 do
9: w← n∆−g · es . Note that w ∈ W

10: If there exists a unique r ∈ [0 : ∆− 1] such that

11:

∣∣∣∣ω−r·βs∆ · ω−(n·∆−gfs)·βs · mj(x̂′,H,a?(1,w))

mj(x̂′,H,a?(1,0))
− 1

∣∣∣∣ < 1/3 for at least 3/5 fraction of a =

(α, β) ∈ A
12: then f ← f + ∆g−1 · r · es else return FAIL
13: end for
14: end for
15: L← L ∪ {Σ−1f} . Add recovered element to output list
16: end for
17: return L
18: end procedure

REDUCEL1NORM is presented as Algorithm 3 below. The algorithm performs O(log logN) rounds of
the following process: first, run LOCATESIGNAL on the current residual signal, then estimate values of the
elements that belong to the list L output by LOCATESIGNAL, and only keep those that are above a certain
threshold (see threshold 1

100002−tν + 4µ in the call the ESTIMATEVALUES in line 9 of Algorithm 3). This
thresholding operation is crucial, and allows us to control the number of false positives. In fact, this is very
similar to the approach of [IK14] of recovering elements starting from the largest. The only difference is that (a)
our ‘reliability threshold’ is dictated by the `1 norm of the residual rather than the `∞ norm, as in [IK14], and (b)
some false positives can still occur due to our weaker estimation primitives. Our main tool for formally stating
the effect of REDUCEL1NORM is Lemma 3.2 below. Intuitively, the lemma shows that REDUCEL1NORM

reduces the `1 norm of the head elements of the input signal x − χ by a polylogarthmic factor, and does not
introduce too many new spurious elements (false positives) in the process. The introduced spurious elements,
if any, do not contribute much `1 mass to the head of the signal. Formally, we show in section 7.1

Lemma 3.2. For any x ∈ CN , any integer k ≥ 1, B ≥ (2π)4d·F · k/αd for α ∈ (0, 1] smaller than an absolute
constant and F ≥ 2d, F = Θ(d) the following conditions hold for the set S := {i ∈ [n]d : |xi| > µ}, where
µ2 := ||x[n]d\[k]||22/k. Suppose that ||x||∞/µ = NO(1).

For any sequence of hashings Hr = (πr, B, F ), r = 1, . . . , rmax, if S∗ ⊆ S denotes the set of elements of
S that are not isolated with respect to at least a

√
α fraction of the hashings Hr, r = 1, . . . , rmax, then for any

χ ∈ C[n]d , x′ := x− χ, if ν ≥ (log4N)µ is a parameter such that

A ||(x− χ)S ||1 ≤ (ν + 20µ)k;

B ||χ[n]d\S ||0 ≤ 1
log19N

k;
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C ||(x− χ)S∗ ||1 + ||χ[n]d\S ||1 ≤ ν
log4 N

k,

the following conditions hold.
If parameters rmax, cmax are chosen to be at least (C1/

√
α) log logN , where C1 is the constant from

Theorem 3.1 and measurements are taken as in Algorithm 2, then the output χ′ of the call

REDUCEL1NORM(χ, k, {m(x̂, Hr, a ? (1,w))}rmax
r=1,a∈Ar,w∈W , 4µ(log4 n)T−t, µ)

satisfies

1. ||(x′ − χ′)S ||1 ≤ 1
log4 N

νk + 20µk (`1 norm of head elements is reduced by ≈ log4N factor)

2. ||(χ+ χ′)[n]d\S ||0 ≤ ||χ[n]d\S ||0 + 1
log20N

k (few spurious coefficients are introduced)

3. ||(x′ − χ′)S∗ ||1 + ||(χ + χ′)[n]d\S ||1 ≤ ||x′S∗ ||1 + ||χ[n]d\S ||1 + 1
log20 N

νk (`1 norm of spurious
coefficients does not grow fast)

with probability at least 1− 1/ log2N over the randomness used to take measurements m and by calls to ES-
TIMATEVALUES. The number of samples used is bounded by 2O(d2)k(log logN)2, and the runtime is bounded
by 2O(d2)k logd+2N .

Equipped with Lemma 3.2 as well as its counterpart Lemma 8.1 that bounds the performance of REDU-
CEINFNORM (see section 8.1) we are able to prove that the SNR reduction loop indeed achieves its cause,
namely (5). Formally, we prove in section 7.2

Theorem 3.3. For any x ∈ CN , any integer k ≥ 1, if µ2 = Err2
k(x)/k and R∗ ≥ ||x||∞/µ = NO(1), the

following conditions hold for the set S := {i ∈ [n]d : |xi| > µ} ⊆ [n]d.
Then the SNR reduction loop of Algorithm 2 (lines 19-25) returns χ(T ) such that

||(x− χ(T ))S ||1 . µ (`1-SNR on head elements is constant)

||χ(T )

[n]d\S ||1 . µ (spurious elements contribute little in `1 norm)

||χ(T )

[n]d\S ||0 .
1

log19N
k (small number of spurious elements have been introduced)

with probability at least 1 − 1/ logN over the internal randomness used by Algorithm 2. The sample
complexity is 2O(d2)k logN(log logN). The runtime is bounded by 2O(d2)k logd+3N .

Recovery at constant `1-SNR. Once (5) has been achieved, we run the RECOVERATCONSTANTSNR
primitive (Algorithm 5) on the residual signal. Adding the correction χ′ that it outputs to the output χ(T ) of the
SNR reduction loop gives the final output of the algorithm. We prove in section 8.2

Lemma 3.4. For any ε > 0, x̂, χ ∈ CN , x′ = x − χ and any integer k ≥ 1 if ||x′[2k]||1 ≤ O(||x[n]d\[k]||2
√
k)

and ||x′
[n]d\[2k]

||22 ≤ ||x[n]d\[k]||22, the following conditions hold. If ||x||∞/µ = NO(1), then the output χ′ of
RECOVERATCONSTANTSNR(x̂, χ, 2k, ε) satisfies

||x′ − χ′||22 ≤ (1 +O(ε))||x[n]d\[k]||22

with at least 99/100 probability over its internal randomness. The sample complexity is 2O(d2) 1
εk logN , and

the runtime complexity is at most 2O(d2) 1
εk logd+1N.
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We give the intuition behind the proof here, as the argument is somewhat more delicate than the analysis
of RECOVERATCONSTSNR in [IKP14], due to the `1-SNR, rather than `2-SNR assumption. Specifically, if
instead of ||(x − χ)[2k]||1 ≤ O(µk) we had ||(x − χ)[2k]||22 ≤ O(µ2k), then it would be essentially sufficient
to note that after a single hashing into about k/(εα) buckets for a constant α ∈ (0, 1), every element i ∈ [2k]
is recovered with probability at least 1 − O(εα), say, as it is enough to (on average) recover all but about an
ε fraction of coefficients. This would not be sufficient here since we only have a bound on the `1 norm of the
residual, and hence some elements can contribute much more `2 norm than others. However, we are able to
show that the probability that an element of the residual signal x′i is not recovered is bounded byO(αεµ

2

|x′i|2
+ αεµ
|x′i|

),
where the first term corresponds to contribution of tail noise and the second corresponds to the head elements.
This bound implies that the total expected `22 mass in the elements that are not recovered is upper bounded by∑

i∈[2k] |x′i|2 ·O(αεµ
2

|x′i|2
+ αεµ
|x′i|

) ≤ O(εµ2k + εµ
∑

i∈[2k] |x′i|) = O(εµ2k), giving the result.
Finally, putting the results above together, we prove in section 7.3

Theorem 3.5. For any ε > 0, x ∈ C[n]d and any integer k ≥ 1, if R∗ ≥ ||x||∞/µ = NO(1), µ2 =
O(||x[n]d\[k]||22/k) and α > 0 is smaller than an absolute constant, SPARSEFFT(x̂, k, ε, R∗, µ) solves the
`2/`2 sparse recovery problem using 2O(d2)(k logN log logN + 1

εk logN) samples and 2O(d2) 1
εk logd+3N

time with at least 98/100 success probability.

4 Organization

The rest of the paper is organized as follows. In section 5 we set up notation necessary for the analysis of
LOCATESIGNAL, and specifically for a proof of Theorem 3.1, as well as prove some basic claims. In section 6
we prove Theorem 3.1. In section 7 we prove performance guarantees for REDUCEL1NORM (Lemma 3.2),
then combine them with Lemma 8.1 to prove that the main loop in Algorithm 2 reduces `1 norm of the head
elements. We then conclude with a proof of correctness for Algorithm 2. Section 8.1 is devoted to analyzing
the REDUCEINFNORM procedure, and section 8.2 is devoted to analyzing the RECOVERATCONSTANTSNR
procedure. Some useful lemmas are gathered in section 9, and section 10 describes the algorithm for semieq-
uispaced Fourier transform that we use to update our samples with the residual signal. Appendix A contains
proofs omitted from the main body of the paper.

5 Analysis of LOCATESIGNAL: main definitions and basic claims

In this section we state our main signal location primitive, LOCATESIGNAL (Algorithm 1). Given a sequence of
measurements m(x̂, Hr, a ? (1,w))}a∈Ar,w∈W , r = 1, . . . , rmax a signal x̂ ∈ C[n]d and a partially recovered
signal χ ∈ C[n]d , LOCATESIGNAL outputs a list of locations L ⊆ [n]d that, as we show below in Theorem 3.1
(see section 6), contains the elements of x that contribute most of its `1 mass. An important feature of LO-
CATESIGNAL is that it is an entirely deterministic procedure, giving recovery guarantees for any signal x and
any partially recovered signal χ. As Theorem 3.1 shows, however, these guarantees are strongest when most
of the mass of the residual x − χ resides on elements in [n]d that are isolated with respect to most hashings
H1, . . . ,Hrmax used for measurements. This flexibility is crucial for our analysis, and is exactly what allows
us to reuse measurements and thereby achieve near-optimal sample complexity.

In the rest of this section we first state Algorithm 1, and then derive useful characterization of elements i
of the input signal (x − χ)i that are successfully located by LOCATESIGNAL. The main result of this section
is Corollary 5.2. This comes down to bounding, for a given input signal x and partially recovered signal χ,
the expected `1 norm of the noise contributed to the process of locating heavy hitters in a call to LOCATESIG-
NAL(x̂, χ,H, {m(x̂, H, a ? (1,w))}a∈A,w∈W ) by (a) the tail of the original signal x (tail noise etail) and (b)
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Algorithm 2 SPARSEFFT(x̂, k, ε, R∗, µ)
1: procedure SPARSEFFT(x̂, k, ε, R∗, µ)
2: χ(0) ← 0 . in Cn.
3: T ← log(log4 N)R

∗

4: F ← 2d
5: B ← (2π)4d·F · k/αd, α > 0 sufficiently small constant
6: rmax ← (C/

√
α) log logN, cmax ← (C/

√
α) log logN for a sufficiently large constant C > 0

7: W ← {0d}, ∆← 2b
1
2

log2 log2 nc . 0d is the zero vector in dimension d
8: for g = 1 to dlog∆ ne do
9: W ←W ∪

⋃d
s=1 n∆−g · es . es is the unit vector in direction s

10: end for
11: G← filter with B buckets and sharpness F , as per Lemma 2.3
12: for r = 1 to rmax do . Samples that will be used for location
13: Choose Σr ∈Md×d, qr ∈ [n]d uniformly at random, let πr := (Σr, qr) and let Hr := (πr, B, F )
14: Let Ar ← C log logN elements of [n]d × [n]d sampled uniformly at random with replacement
15: for w ∈ W do
16: m(x̂, Hr, a ? (1,w))← HASHTOBINS(x̂, 0, (Hr, a ? (1,w))) for all a ∈ Ar,w ∈ W
17: end for
18: end for
19: for t = 0, 1, . . . , T − 1 do
20: χ′ ← REDUCEL1NORM

(
χ(t), k, {m(x̂, Hr, a ? (1,w))}rmax

r=1,a∈Ar,w∈W , 4µ(log4 n)T−t, µ
)

21: . Reduce `1 norm of dominant elements in the residual signal
22: ν ′ ← (log4N)(4µ(log4N)T−(t+1) + 20µ) . Threshold
23: χ′′ ← REDUCEINFNORM(x̂, χ(t) + χ′, 4k/(log4N), ν ′, ν ′)
24: . Reduce `∞ norm of spurious elements introduced by REDUCEL1NOM

25: χ(t+1) ← χ(t) + χ′ + χ′′

26: end for
27: χ′ ← RECOVERATCONSTANTSNR(x̂, χ(T ), 2k, ε)
28: return χ(T ) + χ′

29: end procedure

Algorithm 3 REDUCEL1NORM
(
x̂, χ, k, χ(t), k, {m(x̂, Hr, a ? (1,w))}rmax

r=1,a∈Ar,w∈W , ν, µ
)

1: procedure REDUCEL1NORM(x̂, χ, k, χ(t), k, {m(x̂, Hr, a ? (1,w))}rmax
r=1,a∈Ar,w∈W , ν, µ)

2: χ(0) ← 0 . in Cn
3: B ← (2π)4d·F · k/αd
4: for t = 0 to log2(log4N) do
5: for r = 1 to rmax do
6: Lr ← LOCATESIGNAL

(
χ+ χ(t), k, {m(x̂, Hr, a ? (1,w))}rmax

r=1,a∈Ar,w∈W

)
7: end for
8: L←

⋃rmax
r=1 Lr

9: χ′ ← ESTIMATEVALUES(x̂, χ+ χ(t), L, 4k, 1, 1
1000ν2−t + 4µ,C(log logN + d2 + log(B/k)))

10: χ(t+1) ← χ(t) + χ′

11: end for
12: return χ+ χ(T )

13: end procedure
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the heavy hitters and false positives (heavy hitter noise ehead). It is useful to note that unlike in [IK14], we
cannot expect the tail of the signal to not change, but rather need to control this change.

In what follows we derive useful conditions under which an element i ∈ [n]d is identified by LOCATES-
IGNAL. Let S ⊆ [n]d be any set of size at most 2k, and let µ be such that x[n]d\S ≤ µ. Note that this fits the
definition of S given in (4) (but other instantiations are possible, and will be used later in section 8.2).

Consider a call to
LOCATESIGNAL(χ,H, {m(x̂, H, a ? (1,w)}a∈A,w∈W).

For each a ∈ A and fixed w ∈ W we let z := a ? (1,w) ∈ [n]d to simplify notation. The measurement vectors
m := m(x̂′, H, z) computed in LOCATESIGNAL satisfy, for every i ∈ S, (by Lemma 9.2)

mh(i) =
∑
j∈[n]d

Goi(j)x
′
jω

zT Σj + ∆h(i),z,

where ∆ corresponds to polynomially small estimation noise due to approximate computation of the Fourier
transform, and the filter Goi(j) is the filter corresponding to hashing H . In particular, for each hashing H and
parameter a ∈ [n]d one has:

G−1
oi(i)

mh(i)ω
−zT Σi = x′i +G−1

oi(i)

∑
j∈[n]d\{i}

Goi(j)x
′
jω

zT Σ(j−i) +G−1
oi(i)

∆h(i),zω
−zT Σi

It is useful to represent the residual signal x as a sum of three terms: x′ = (x − χ)S − χ[n]d\S + x[n]d\S ,
where the first term is the residual signal coming from the ‘heavy’ elements in S, the second corresponds to
false positives, or spurious elements discovered and erroneously subtracted by the algorithm, and the third
corresponds to the tail of the signal. Similarly, we bound the noise contributed by the first two (head elements
and false positives) and the third (tail noise) parts of the residual signal to the location process separately. For
each i ∈ S we write

G−1
oi(i)

mh(i)ω
−zT Σi = x′i

+G−1
oi(i)
·

 ∑
j∈S\{i}

Goi(j)x
′
jω

zT Σ(j−i) −
∑

j∈[n]d\S

Goi(j)χjω
zT Σ(j−i)

 (head elements and false positives)

+G−1
oi(i)
·
∑

j∈[n]d\S

Goi(j)xjω
zT Σ(j−i) (tail noise)

+G−1
oi(i)
·∆h(i)ω

−zT Σi.

(6)

Noise from heavy hitters. The first term in (6) corresponds to noise from (x − χ)S\{i} − χ[n]d\(S\{i}), i.e.
noise from heavy hitters and false positives. For every i ∈ S, hashing H we let

eheadi (H,x, χ) := G−1
oi(i)
·
∑

j∈S\{i}

Goi(j)|yj |, where y = (x− χ)S − χ[n]d\S . (7)

We thus get that eheadi (H,x, χ) upper bounds the absolute value of the first error term in (6). Note thatG ≥ 0 by
Lemma 2.3 as long as F is even, which is the setting that we are in. If eheadi (H,x, χ) is large, LOCATESIGNAL

may not be able to locate i using measurements of the residual signal x−χ taken with hashingH . However, the
noise in other hashings may be smaller, allowing recovery. In order to reflect this fact we define, for a sequence
of hashings H1, . . . ,Hr and a signal y ∈ C[n]d

eheadi ({Hr}, x, χ) := quant1/5r eheadi (Hr, x, χ), (8)
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where for a list of reals u1, . . . , us and a number f ∈ (0, 1) we let quantf (u1, . . . , us) denote the df · se-th
largest element of u1, . . . , us.

Tail noise. To capture the second term in (6) (corresponding to tail noise), we define, for any i ∈ S, z ∈
[n]d,w ∈ W , permutation π = (Σ, q) and hashing H = (π,B, F )

etaili (H, z, x) :=

∣∣∣∣∣∣G−1
oi(i)
·
∑

j∈[n]d\S

Goi(j)xjω
zT Σ(j−i)

∣∣∣∣∣∣ . (9)

With this definition in place etaili (H, z, x) upper bounds the second term in (6). As our algorithm uses
several values of a ∈ Ar ⊆ [n]d × [n]d to perform location, a more robust version of etaili (H, z) will be useful.
To that effect we let for any Z ⊆ [n]d (we will later use Z = Ar ? (1,w) for various w ∈ W)

etaili (H,Z, x) := quant1/5z∈Z

∣∣∣∣∣∣G−1
oi(i)
·
∑

j∈[n]d\S

Goi(j)xjω
zT Σ(j−i)

∣∣∣∣∣∣ . (10)

Note that the algorithm first selects setsAr ⊆ [n]d×[n]d, and then access the signal at locationsAr?(1,w),w ∈
W .

The definition of etaili (H,A?(1,w), x) for a fixed w ∈ W allows us to capture the amount of noise that our
measurements that use H suffer from for locating a specific set of bits of Σi. Since the algorithm requires all
w ∈ W to be not too noisy in order to succeed (see precondition 2 of Lemma 5.1), it is convenient to introduce
notation that captures this. We define

etaili (H,A, x) := 40µH,i(x) +
∑
w∈W

∣∣∣etaili (H,A ? (1,w), x)− 40µH,i(x)
∣∣∣
+

(11)

where for any η ∈ R one has |η|+ = η if η > 0 and |η|+ = 0 otherwise.
The following definition is useful for bounding the norm of elements i ∈ S that are not discovered by

several calls to LOCATESIGNAL on a sequence of hashings {Hr}. For a sequence of measurement patterns
{Hr,Ar} we let

etaili ({Hr,Ar}, x) := quant1/5r etaili (Hr,Ar, x). (12)

Finally, for any S ⊆ [n]d we let

eheadS (·) :=
∑
i∈S

eheadi (·) and etailS (·) :=
∑
i∈S

etaili (·),

where · stands for any set of parameters as above.
Equipped with the definitions above, we now prove the following lemma, which yields sufficient conditions

for recovery of elements i ∈ S in LOCATESIGNAL in terms of ehead and etail.

Lemma 5.1. Let H = (π,B,R) be a hashing, and let A ⊆ [n]d × [n]d. Then for every S ⊆ [n]d and for every
x, χ ∈ C[n]d and x′ = x− χ, the following conditions hold. Let L denote the output of

LOCATESIGNAL(χ,H, {m(x̂, H, a ? (1,w))}a∈A,w∈W).

Then for any i ∈ S such that |x′i| > N−Ω(c), if there exists r ∈ [1 : rmax] such that

1. eheadi (H,x′) < |x′i|/20;
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2. etaili (H,A ? (1,w), x′) < |x′i|/20 for all w ∈ W;

3. for every s ∈ [1 : d] the set A ? (0, es) is balanced in coordinate s (as per Definition 2.13),

then i ∈ L. The time taken by the invocation of LOCATESIGNAL is O(B · logd+1N).

Proof. We show that each coordinate s = 1, . . . , d of Σi is successfully recovered in LOCATESIGNAL. Let
q = Σi for convenience. Fix s ∈ [1 : d]. We show by induction on g = 0, . . . , log∆ n − 1 that after the
g-th iteration of lines 6-10 of Algorithm 1 we have that fs coincides with qs on the bottom g · log2 ∆ bits, i.e.
fs − qs = 0 mod ∆g (note that we trivially have fs < ∆g after iteration g).

The base of the induction is trivial and is provided by g = 0. We now show the inductive step. Assume
by the inductive hypothesis that fs − qs = 0 mod ∆g−1, so that qs = fs + ∆g−1(r0 + ∆r1 + ∆2r2 + . . .)
for some sequence r0, r1, . . ., 0 ≤ rj < ∆. Thus, (r0, r1, . . .) is the expansion of (qs − fs)/∆

g−1 base ∆, and
r0 is the least significant digit. We now show that r0 is the unique value of r that satisfies the conditions of
lines 8-10 of Algorithm 1.

First, we have by (6) together with (7) and (9) one has for each a ∈ A and w ∈ W∣∣∣mh(i)(x̂′, H, a ? (1,w))−Goi(i)x
′
iω

((a?(1,w))Tq
∣∣∣ ≤ eheadi (H,x, χ) + etaili (H, a ? (1,w), x) +N−Ω(c).

Since 0 ∈ W , we also have for all a ∈ A∣∣∣mh(i)(x̂′, H, a ? (1,0))−Goi(i)x
′
iω

(a?(1,0))Tq
∣∣∣ ≤ eheadi (H,x, χ) + etaili (H, a ? (1,0), x) +N−Ω(c),

where the N−Ω(c) terms correspond to polynomially small error from approximate computation of the Fourier
transform via Lemma 10.2.

Let j := h(i). We will show that i is recovered from bucket j. The bounds above imply that

mj(x̂′, H, a ? (1,w))

mj(x̂′, H, a ? (1,0))
=
x′iω

(a?(1,w))Tq + E′

x′iω
(a?(1,0))Tq + E′′

(13)

for someE′, E′′ satisfying |E′| ≤ eheadi (H,x, χ)+etaili (H, a?(1,w), x)+N−Ω(c) and |E′′| ≤ eheadi (H,x, χ)+
etaili (H, a ? (1,0)) + N−Ω(c). For all but 1/5 fraction of a ∈ A we have by definition of etail (see (10)) that
both

etaili (H, a ? (1,w), x) ≤ etaili (H,A ? (1,w), x) ≤ |x′i|/20 (14)

and
etaili (H, a ? (1,0) ≤ etaili (H,A ? (1,0), x) ≤ |x′i|/20. (15)

In particular, we can rewrite (13) as

mj(x̂′, H, a ? (1,w))

mj(x̂′, H, a ? (1,0))
=
x′iω

(a?(1,w))Tq + E′

x′iω
(a?(1,0))Tq + E′′

=
ω(a?(1,w))Tq

ω(a?(1,0))Tq
· ξ where ξ =

1 + ω−(a?(1,w))TqE′/x′i
1 + ω−(a?(1,0))TqE′′/x′i

= ω(a?(1,w))Tq−(a?(1,0))Tq · ξ

= ω(a?(0,w))Tq · ξ.

(16)

Let A∗ ⊆ A denote the set of values of a ∈ A that satisfy the bounds (14) and (15) above. We thus have
for a ∈ A∗, combining (16) with assumptions 1-2 of the lemma, that

|E′|/x′i ≤ (2/20) + 1/N−Ω(c) ≤ 1/8 and |E′′|/x′i ≤ (2/20) + 1/N−Ω(c) ≤ 1/8 (17)
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for sufficiently large N , where O(c) is the word precision of our semi-equispaced Fourier transform computa-
tion. Note that we used the assumption that |x′i| ≥ N−Ω(c).

Writing a = (α, β) ∈ [n]d × [n]d, we have by (16) that mj(x̂′,H,a?(1,w))

mj(x̂′,H,a?(1,0))
= ω((α,β)?(0,w))Tq · ξ, and since

wTq = n∆−gqs when w = n∆−ges (as in line 8 of Algorithm 1), we get

mj(x̂′, H, a ? (1,w))

mj(x̂′, H, a ? (1,0))
= ω(a?(0,w))Tq · ξ = ωn∆−gβsqs · ξ = ωn∆−gβsqs + ωn∆−gβsqs(ξ − 1).

We analyze the first term now, and will show later that the second term is small. Since qs = fs + ∆g−1(r0 +
∆r1 + ∆2r2 + . . .) by the inductive hypothesis, we have, substituting the first term above into the expression
in line 10 of Algorithm 1,

ω−r·βs∆ · ω−n∆−gfs·βs · ωn∆−gβsqs = ω−r·βs∆ · ωn∆−g(qs−fs)·βs

= ω−r·βs∆ · ωn∆−g(∆g−1(r0+∆r1+∆2r2+...))·βs

= ω−r·βs∆ · ω(n/∆)·(r0+∆r1+∆2r2+...)·βs

= ω−r·βs∆ · ωr0·βs∆

= ω
(−r+r0)·βs
∆ .

We used the fact that ωn/∆ = e2πi(n/∆)/n = e2πi/∆ = ω∆ and (ω∆)∆ = 1. Thus, we have

ω−r·βs∆ ω−(n2−gfs)·βsmj(x̂′, H, a ? (1,w))

mj(x̂′, H, a ? (1,0))
= ω

(−r+r0)·βs
∆ + ω

(−r+r0)·βs
∆ (ξ − 1). (18)

We now consider two cases. First suppose that r = r0. Then ω(−r+r0)·βs
∆ = 1, and it remains to note that

by (17) we have |ξ− 1| ≤ 1+1/8
1−1/8 − 1 ≤ 2/7 < 1/3. Thus every a ∈ A∗ passes the test in line 9 of Algorithm 1.

Since |A∗| ≥ (4/5)|A| > (3/5)|A| by the argument above, we have that r0 passes the test in line 9. It remains
to show that r0 is the unique element in 0, . . . ,∆− 1 that passes this test.

Now suppose that r 6= r0. Then by the assumption thatA? (0, es) is balanced (assumption 3 of the lemma)
at least 49/100 fraction of ω(−r+r0)·βs

∆ have negative real part. This means that for at least 49/100 of a ∈ A we
have using triangle inequality∣∣∣[ω(−r+r0)·βs

∆ + ω
(−r+r0)·βs
∆ (ξ − 1)

]
− 1
∣∣∣ ≥ ∣∣∣ω(−r+r0)·βs

∆ − 1
∣∣∣− ∣∣∣ω(−r+r0)·βs

∆ (ξ − 1)
∣∣∣

≥ |i− 1| − 1/3

≥
√

2− 1/3 > 1/3,

and hence the condition in line 9 of Algorithm 1 is not satisfied for any r 6= r0. This shows that location is
successful and completes the proof of correctness.

Runtime bounds follow by noting that LOCATESIGNAL recovers d coordinates with log n bits per coordi-
nate. Coordinates are recovered in batches of log ∆ bits, and the time taken is bounded by B · d(log∆ n)∆ ≤
B(logN)3/2. Updating the measurements using semi-equispaced FFT takes B logd+1N time.

We also get an immediate corollary of Lemma 5.1. The corollary is crucial to our proof of Theorem 3.1
(the main result about efficiency of LOCATESIGNAL) in the next section.

Corollary 5.2. For any integer rmax ≥ 1, for any sequence of rmax hashings Hr = (πr, B,R), r ∈ [1 : rmax]

and evaluation pointsAr ⊆ [n]d×[n]d, for every S ⊆ [n]d and for every x, χ ∈ C[n]d , x′ := x−χ, the following
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conditions hold. If for each r ∈ [1 : rmax]Lr ⊆ [n]d denotes the output of LOCATESIGNAL(x̂, χ,Hr, {m(x̂, Hr, a?
(1,w))}a∈Ar,w∈W ), L =

⋃rmax
r=1 Lr, and the sets Ar ? (0,w) are balanced for all w ∈ W and r ∈ [1 : rmax],

then
||x′S\L||1 ≤ 20||eheadS ({Hr}, x, χ)||1 + 20||etailS ({Hr,Ar}, x)||1 + |S| ·N−Ω(c). (*)

Furthermore, every element i ∈ S such that

|x′i| > 20(eheadi ({Hr}, x, χ) + etaili ({Hr,Ar}, x)) +N−Ω(c) (**)

belongs to L.

Proof. Suppose that i ∈ S fails to be located in any of the R calls, and |x′i| ≥ N−Ω(c). By Lemma 5.1 and the
assumption that Ar ? (0,w) is balanced for all w ∈ W and r ∈ [1 : rmax] this means that for at least one half
of values r ∈ [1 : rmax] either (A) eheadi (Hr, x, χ) ≥ |xi|/20 or (B) etaili (Hr,Ar ? (1,w), x) > |xi|/20 for at
least one w ∈ W . We consider these two cases separately.

Case (A). In this case we have eheadi (Hs, x, χ) ≥ |xi|/20 for at least one half of r ∈ [1 : rmax], so in
particular eheadi ({Hr}, x, χ) ≥ quant1/5r eheadi (Hr, x, χ) ≥ |x′i|/20.

Case (B). Suppose that etaili (Hr,Ar ? (1,w), x) > |x′i|/20 for some w = w(r) ∈ W for at least one half of
r ∈ [1 : rmax] (denote this set by Q ⊆ [1 : rmax]). We then have

etaili ({Hr,Ar}, x) = quant1/5r∈[1:rmax]e
tail
i (Hr,Ar, x)

= quant1/5r∈[1:rmax]

[
40µHr,i(x) +

∑
w∈W

∣∣∣etaili (Hr,Ar ? (1,w), x)− 40µHr,i(x)
∣∣∣
+

]

≥ min
r∈Q

[
40µHr,i(x) +

∣∣∣etaili (Hr,Ar ? (1,w(r)), x)− 40µHr,i(x)
∣∣∣
+

]
≥ min

r∈Q
etaili (Hr,Ar ? (1,w(r)), x)

≥ |x′i|/20

as required. This completes the proof of (*) as well as (**).

6 Analysis of LOCATESIGNAL: bounding `1 norm of undiscovered elements

The main result of this section is Theorem 3.1, which is our main tool for showing efficiency of LOCATESIG-
NAL. Theorem 3.1 applies to the following setting. Fix a set S ⊆ [n]d and a set of hashings H1, . . . ,Hrmax ,
and let S∗ ⊆ S denote the set of elements of S that are not isolated with respect to most of these hashings
H1, . . . ,Hrmax . Theorem 3.1 shows that for any signal x and partially recovered signal χ, if L denotes the
output list of an invocation of LOCATESIGNAL on the pair (x, χ) with hashings H1, . . . ,Hrmax , then the `1
norm of elements of the residual (x − χ)S that are not discovered by LOCATESIGNAL can be bounded by a
function of the amount of `1 mass of the residual that fell outside of the ‘good’ set S \S∗, plus the ‘noise level’
µ ≥ ||x[n]d\S ||∞ times k.

If we think of applying Theorem 3.1 iteratively, we intuitively get that the fixed set of measurements with
hashings {Hr} allows us to always reduce the `1 norm of the residual x′ = x − χ on the ‘good’ set S \ S∗ to
about the amount of mass that is located outside of this good set.
Theorem 3.1 There exist absolute constants C1, C2, C3 > 0 such that for any x, χ ∈ CN and residual signal
x′ = x− χ the following conditions hold. Let S ⊆ [n]d, |S| ≤ 2k, be such that ||x[n]d\S ||∞ ≤ µ. Suppose that
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||x||∞/µ ≤ NO(1). Let B ≥ (2π)4d·F · k/αd. Let S∗ ⊆ S denote the set of elements that are not isolated with
respect to at least a

√
α fraction of hashings {Hr}rmax

r=1 . Suppose that for every s ∈ [1 : d] the sets Ar ? (0, es)
are balanced (as per Definition 2.13), r = 1, . . . , rmax, and the exponent F of the filter G is even and satisfies
F ≥ 2d. Let

L =

rmax⋃
r=1

LOCATESIGNAL(χ,Hr, {m(x̂, Hr, a ? (1,w)}a∈Ar,w∈Wr).

Then if rmax, cmax ≥ (C1/
√
α) log logN , one has

||x′S\S∗\L||1 ≤ (C2α)d/2||x′S ||1 + Cd
2

3 (||χ[n]d\S ||1 + ||x′S∗ ||1) + 4µ|S|.

As we will show later, Theorem 3.1 can be used to show that (assuming perfect estimation) invoking LO-
CATESIGNAL repeatedly allows one to reduce to `1 norm of the head elements down to essentially

||x′S∗ ||1 + ||χ[n]d\S ||1,

i.e. the `1 norm of the elements that are not well isolated and the set of new elements created by the process
due to false positives in location. In what follows we derive bounds on ||ehead||1 (in section 6.1) and ||etail||1
(in section 6.2) that lead to a proof of Theorem 3.1.

6.1 Bounding noise from heavy hitters

We first derive bounds on noise from heavy hitters that a single hashing H results in, i.e. ehead(H,x), (see
Lemma 6.1), and then use these bounds to bound ehead({H}, x) (see Lemma 6.3). These bounds, together with
upper bounds on contribution of tail noise from the next section, then lead to a proof of Theorem 3.1.

Lemma 6.1. Let x, χ ∈ CN , x′ = x− χ. Let S ⊆ [n]d, |S| ≤ 2k, be such that ||x[n]d\S ||∞ ≤ µ. Suppose that
||x||∞/µ ≤ NO(1). Let B ≥ (2π)4d·F · k/αd. Let π = (Σ, q) be a permutation, let H = (π,B, F ), F ≥ 2d be
a hashing into B buckets and filter G with sharpness F . Let S∗H ⊆ S denote the set of elements i ∈ S that are
not isolated under H . Then one has, for ehead defined with respect to S,

||eheadS\S∗H
(H,x, χ)||1 ≤ 2O(d)αd/2||x′S\S∗H ||1 + (2π)d·F · 2O(d)(||x′S∗ ||1 + ||χ[n]d\S ||1).

Furthermore, if χ[n]d\S = 0 and S∗H = ∅, then one has ||eheadS (H,x, χ)||∞ ≤ 2O(d)αd/2||x′S ||∞.

Proof. By (7) for i ∈ S \ S∗H

eheadi (H,x′) = |G−1
oi(i)
| ·

∑
j∈S\S∗H\{i}

|Goi(j)|x
′
j | (isolated head elements)

+ |G−1
oi(i)
| ·

∑
j∈S∗H

|Goi(j)|x
′
j |+

∑
j∈[n]d\S

|Goi(j)||χj |

 (non-isolated head elements and false positives)

= |G−1
oi(i)
| · (A1(i) +A2(i)).

(19)

Let A1 :=
∑

i∈S\S∗H
A1(i), A2 :=

∑
i∈S\S∗H

A2(i).
We bound A1 and A2 separately.

20



Bounding A1. We start with a convenient upper bound on A1:

A1 =
∑

i∈S\S∗H

∑
j∈S\S∗H\{i}

|Goi(j)||x
′
j | (recall that oi(j) = π(j)− (n/b)h(i))

=
∑
t≥0

∑
i∈S\S∗H

∑
j∈S\S∗H\{i} s.t.

||π(j)−π(i)||∞∈(n/b)·[2t−1,2t+1−1)

|Goi(j)||x
′
j |, (consider all scales t ≥ 0)

≤
∑
t≥0

∑
i∈S\S∗H

max
||π(j)−π(i)||∞≥(n/b)·(2t−1)

Goi(j) ·
∑

j∈S\S∗H\{i} s.t.
||π(j)−π(i)||∞≤(n/b)·(2t+1−1)

|x′j |

=
∑

j∈S\S∗H

|x′j | ·
∑
t≥0

max
||π(j)−π(i)||∞≥

(n/b)·(2t−1)

Goi(j) ·
∣∣{i ∈ S \ S∗H \ {j} s.t. ||π(j)− π(i)||∞ ≤ (n/b) · (2t+1 − 1)

}∣∣ .
(20)

Note that in the first line we summed, over all i ∈ S \S∗H (i.e. all isolated i), the contributions of all other i ∈ S
to the noise in their buckets. We need to bound the first line in terms of ||x′S\S∗H ||1. For that, we first classified
all j ∈ S \ S∗H according to the `∞ distance from i to j (in the second line), then upper bounded the value of
the filter Goi(j) based on the distance ||π(i) − π(j)||∞, and finally changed order of summation to ensure that
the outer summation is a weighted sum of absolute values of x′j over all j ∈ S \ S∗H3. In order to upper bound
A1 it now suffices to upper bound all factors multiplying x′j in the last line of the equation above. As we now
show, a strong bound follows from isolation properties of i.

We start by upper bounding G using Lemma 2.3, (2). We first note that by triangle inequality

||π(j)−(n/b)h(i)||∞ ≥ ||π(j)−π(i)||∞−||π(i)−(n/b)h(i)||∞ ≥ (n/b)(2t−1)−(n/b) = (n/b)(2t−1−2).

The rhs is positive for all t ≥ 3 and for such t satisfies 2t−1 − 2 ≤ 2t−2. We hence get for all t ≥ 3

max
||π(j)−π(i)||∞≥(n/b)·(2t−1−1)

Goi(j) ≤
(

2

1 + ||π(j)− (n/b)h(i)||∞

)F
≤
(

2

1 + 2t−2

)F
≤ 2−(t−3)F . (21)

We also have the bound ||G||∞ ≤ 1 from Lemma 2.3, (3). It remains to bound the last term on the rhs of the
last line in (20). We need the fact that for a pair i, j such that ||π(j)− π(i)||∞ ≤ 2t+1 − 1 we have by triangle
inequality

||π(j)− (n/b)h(i)||∞ ≤ ||π(j)− π(i)||∞ + ||π(i)− (n/b)h(i)||∞ ≤ (n/b)(2t+1 − 1) + (n/b) = (n/b)2t+1.

Equipped with this bound, we now conclude that∣∣{i ∈ S \ S∗H \ {j} s.t. ||π(j)− π(i)||∞ ≤ (n/b) · (2t+1 − 1)
}∣∣

= |π(S \ {i}) ∩ B∞(n/b)h(i)((n/b) · 2
t+1)| ≤ (2π)−d·F · αd/22(t+2)d+1 · 2t,

(22)

where we used the assumption that i ∈ S\S∗H are isolated (see Definition 2.10). We thus get for any j ∈ S\S∗H
ηj :=

∑
t≥0

max
||π(j)−π(i)||∞≥

(n/b)·(2t−1)

Goi(j) ·
∣∣{i ∈ S \ S∗H \ {j} s.t. ||π(j)− π(i)||∞ ≤ (n/b) · (2t+1 − 1)

}∣∣
≤
∑
t≥0

((2π)−d·F · αd/22(t+2)d+1 · 2t) min{1, 2−(t−3)F }

≤ (2π)−d·F · αd/222d+1
∑
t≥0

2t(d+1) ·min{1, 2−(t−3)F }

3We note here that we started by summing over i first and then over j, but switched the order of summation to the opposite in the
last line. This is because the quantity Goi(j), which determines contribution of j ∈ S to the estimation error of i ∈ S is not symmetric
in i and j. Indeed, even though G itself is symmetric around the origin, we have oi(j) = π(j)− (n/b)h(i) 6= oj(i).
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We now note that∑
t≥0

2t(d+1) ·min{1, 2−(t−3)F } = 1 + 22(d+1) + 23(d+1)
∑
t≥3

2(t−3)(d+1) ·min{1, 2−(t−3)F }

= 1 + 22(d+1) + 23(d+1)
∑
t≥3

2(t−3)(d+1−F ) ≤ 1 + 22(d+1) + 23(d+1)+1 ≤ 24(d+1)+1,

since F ≥ 2d by assumption of the lemma, and hence for all j ∈ S \ S∗H one has ηj ≤ (2π)−d·F · 2O(d)αd/2.
Combining the estimates above, we now get

A1 ≤
∑

j∈S\S∗H

|x′j | · ηj ≤ ||x′S ||1(2π)−d·F · 2O(d)αd/2,

as required. The `∞ bound for the case when χ[n]d\S = 0 follows in a similar manner and is hence omitted.
We now turn to bounding A2. The bound that we get here is weaker since χ[n]d\S is an adversarially placed

signal and we do not have isolation properties with respect to it, resulting in a weaker bound on (the equivalent
of) ηj for j ∈ S∗H than we had for j ∈ S \ S∗H . We let y := x′S∗ − χ[n]d\S to simplify notation. We have, as
in (20),

A2 ≤
∑

j∈S\S∗H

|x′j | · κj ,

where

κj =
∑
t≥0

max
||π(j)−π(i)||∞≥

(n/b)·(2t−1)

Goi(j) ·
∣∣{i ∈ S \ S∗H \ {j} s.t. ||π(j)− π(i)||∞ ≤ (n/b) · (2t+1 − 1)

}∣∣ .
The first term can be upper bounded as before. For the second term, we note that every pair of points i1, i2 ∈
S \ S∗H by triangle inequality satisfy

(n/b)||π(i1)− π(i2)||∞ ≤ (n/b)||π(i1)− π(j)||∞ + ||π(j)− π(i2)||∞ ≤ (n/b) · (2t+2 − 2) ≤ (n/b) · 2t+2

Since both i1 and i2 are isolated under π, this means that∣∣{i ∈ S \ S∗H \ {j} s.t. ||π(j)− π(i)||∞ ≤ (n/b) · (2t+1 − 1)
}∣∣ ≤ (2π)−d·F · αd/22(t+3)d · 2t+2 + 1,

where we used the bound from Definition 2.10 for i, but counted the point i itself (this is what makes the bound
on κj weaker than the bound on ηj). A similar calculation to the one above for A1 now gives

κj :=
∑
t≥0

max
||π(j)−π(i)||∞≥

(n/b)·(2t−1)

Goi(j) ·
∣∣{i ∈ S \ S∗H \ {j} s.t. ||π(j)− π(i)||∞ ≤ (n/b) · (2t+1 − 1)

}∣∣
≤
∑
t≥0

((2π)−d·F · αd/22(t+3)d · 2t+2 + 1) min{1, 2−(t−3)F }

≤ 2O(d)((2π)−d·F · αd/2 + 1) = 2O(d).

We thus have

A2 ≤
∑
j∈[n]d

|yj |κj ≤ 2O(d)||y||1.

Plugging our bounds on A1 and A2 into (19), we get

eheadi (H,x, χ) ≤ |G−1
oi(i)
| · (A1 +A2) ≤ |G−1

oi(i)
|(2O(d)(2π)−d·F · αd/2||x′S ||1 + 2O(d)||y||1)

≤ 2O(d)αd/2||x′S ||1 + (2π)d·F · 2O(d)||y||1
as required.
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Remark 6.2. The second bound of this lemma will be useful later in section 8.1 for analyzing REDUCE-
INFNORM.

We now bound the final error induced by head elements, i.e. ehead({Hr}, x, χ):

Lemma 6.3. Let x, χ ∈ [n]d, x′ = x− χ. Let S ⊆ [n]d, |S| ≤ 2k, be such that ||x[n]d\S ||∞ ≤ µ. Suppose that
||x||∞/µ ≤ NO(1). Let B ≥ (2π)4d·F ·k/αd. Let {πr}rmax

r=1 be a set of permutations, let Hr = (πr, B, F ), F ≥
2d be a hashing into B buckets and filter G with sharpness F . Let S∗ denote the set of elements i ∈ S that are
not isolated under at least

√
α fraction of Hr. Then, one has for ehead defined with respect to S,

||eheadS\S∗({Hr}, x, χ)||1 ≤ 2O(d)αd/2||x′S ||1 + (2π)d·F · 2O(d)||χ[n]d\S ||1.

Furthermore, if χ[n]d\S = 0, then ||eheadS\S∗({Hr}, x, χ)||∞ ≤ 2d/2αd/2||x′S ||∞.

Proof. Recall that by (8) one has for each i ∈ [n]d eheadi ({Hr}, x, χ) = quant1/5r∈[1:rmax]e
head
i (Hr, x, χ). This

means that for each i ∈ S \ S∗ there exist at least (1/5 −
√
α)rmax values of r such that eheadi (Hr, x, χ) >

eheadi ({Hr}, x, χ), and hence

||eheadS\S∗({Hr}, x, χ)||1 ≤
1

(1/5−
√
α)rmax

rmax∑
r=1

||eheadS\S∗r (Hr, x, χ)||1.

By Lemma 6.1 one has

||eheadS\S∗Hr
(Hr, x, χ)||1 ≤ 2O(d)αd/2||x′S ||1 + (2π)d·F · 2O(d)||χ[n]d\S ||1

for all r, implying that

||eheadS\S∗({Hr}, x, χ)||1 ≤
1

(1/5−
√
α)

(2O(d)αd/2||x′S ||1 + (2π)d·F · 2O(d)||χ[n]d\S ||1)

≤ 2O(d)αd/2||x′S ||1 + (2π)d·F · 2O(d)||χ[n]d\S ||1

as required.
The proof of the second bound follows analogously using the `∞ bound from Lemma 6.1.

Remark 6.4. The second bound of this lemma will be useful later in section 8.1 for analyzing REDUCE-
INFNORM.

6.2 Bounding effect of tail noise

Lemma 6.5. For any constant C ′ > 0 there exists an absolute constant C > 0 such that for any x ∈ C[n]d ,
any integer k ≥ 1 and S ⊆ [n]d such that ||x[n]d\S ||∞ ≤ C ′||x[n]d\[k]||2/

√
k, for any integer B ≥ 1 a power

of 2d the following conditions hold. If (H,A) are random measurements as in Algorithm 2, H = (π,B, F )
satisfies F ≥ 2d and ||x[n]d\[k]||2 ≥ N−Ω(c), where O(c) is the word precision of our semi-equispaced Fourier
transform computation, then for any i ∈ [n]d one has, for etail defined with respect to S,

EH,A
[
etaili (H,A, x)

]
≤ (2π)d·F · Cd(40 + |W|2−Ω(|A|))||x[n]d\[k]||2/

√
B.

Proof. Recall that for any H = (π,B,G), a,w one has (etail(H, a ? (1,w), x[n]d\[k]))
2 = |ui|2, where

u = HASHTOBINS(x̂[n]d\S , 0, (H, a ? (1,w))).
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Since the elements of A are selected uniformly at random, we have for any H and w by Lemma 2.9, (3),
since a ? (1,w) is uniformly random in [n]d, that

Ea[(etaili (H, a ? (1,w), x))2] = Ea[|G−1
oi(i)

ω−(a?(1,w))T Σiuh(i) − xi|2] ≤ µ2
H,i(x) +N−Ω(c), (23)

where c > 0 is the large constant that governs the precision of our Fourier transform computations. By
Lemma 2.9, (2) applied to the pair (x̂[n]d\S , 0) there exists a constant C > 0 such that

EH [µ2
H,i] ≤ (2π)2d·F · Cd||x[n]d\S ||22/B

We would like to upper bound the rhs in terms of ||x[n]d\[k]||22 (the tail energy), but this requires an argument
since S is not exactly the set of top k elements of x. However, since S contains the large coefficients of x, a
bound is easy to obtain. Indeed, denoting the set of top k coefficients of x by [k] ⊆ [n]d as usual, we get

||x[n]d\S ||22 ≤ ||x[n]d\(S∪[k])||22 + ||x[k]\S ||22 ≤ ||x[n]d\[k]||22 + k · ||x[k]\S ||2∞ ≤ (C ′ + 1)||x[n]d\[k]||2.

Thus, we have
EH [µ2

H,i(x) +N−Ω(c)] ≤ (2π)2d·F · (C ′ + 2)Cd||x[n]d\[k]||22/B,

where we used the assumption that ||x[n]d\k||2 ≥ N−Ω(c). We now get by Jensen’s inequality

EH [µH,i(x)] ≤ (2π)d·F · (C ′′)d||x[n]d\k||2/
√
B (24)

for a constant C ′′ > 0. Note that
By (23) for each i ∈ [n]d, hashing H , evaluation point a ∈ [n]d × [n]d and direction w we have

Ea[(etaili (H, a? (1,w), x))2] = (µH,i(x))2. Applying Jensen’s inequality, we hence get for any H and w ∈ W

Ea[etaili (H, a ? (1,w), x)] ≤ µH,i(x). (25)

Applying Lemma 9.5 with Y = etaili (H, a ? (1,w), x) and γ = 1/5 (recall that the definition of etaili (H, z, x)
involves a 1/5-quantile over A) and using the previous bound, we get, for any fixed H and w ∈ W

EA
[∣∣∣etaili (H,A ? (1,w), x)− 40 · µH,i(x)

∣∣∣
+

]
≤ µH,i(x) · 2−Ω(|A|), (26)

and hence by a union bound over all w ∈ W we have

EA

[∑
w∈W

∣∣∣etaili (H,A ? (1,w), x)− 40 · µH,i(x)
∣∣∣
+

]
≤ µH,i(x) · |W|2−Ω(|A|).

Putting this together with (24), we get

EH,A
[
etaili (H,A, x)

]
= EH

[
EA

[
40µH,i(x) +

∑
w∈W

∣∣∣etaili (H,A ? (1,w), x)− 40 · µH,i(x)
∣∣∣
+

]]
≤ EH

[
µH,i(x)(40 + |W|2−Ω(|A|))

]
≤ (2π)d·F (C ′′)d(40 + |W|2−Ω(|A|))||x[n]d\k||2/

√
B

as required.
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Lemma 6.6. For any constant C ′ > 0 there exists an absolute constant C > 0 such that for any x ∈ C[n]d , any
integer k ≥ 1 and S ⊆ [n]d such that ||x[n]d\S ||∞ ≤ C ′||x[n]d\[k]||/

√
k, ifB ≥ 1, then the following conditions

hold , for etail defined with respect to S.
If hashingsHr = (πr, B, F ), F ≥ 2d and setsAr, |Ar| ≥ cmax for r = 1, . . . , rmax are chosen at random,

then

(1) for every i ∈ [n]d one has

E{(Hr,Ar)}

[
etaili ({Hr,Ar}, x)

]
≤ (2π)d·FCd(40 + |W|2−Ω(cmax))||x[n]d\[k]||2/

√
B.

(2) for every i ∈ [n]d one has

Pr{(Hr,Ar)}

[
etaili ({Hr,Ar}, x) > (2π)d·FCd(40 + |W|2−Ω(cmax))||x[n]d\[k]||2/

√
B
]

= 2−Ω(rmax)

and

E{(Hr,Ar)}

[∣∣∣etaili ({Hr,Ar}, x)− (2π)d·FCd(40 + |W|2−Ω(cmax))||x[n]d\[k]||2/
√
B
∣∣∣
+

]
= 2−Ω(rmax) · (2π)d·FCd(40 + |W|2−Ω(cmax))||x[n]d\[k]||2/

√
B.

Proof. Follows by applying Lemma 9.5 with Y = etaili (Hr,Ar, x).

6.3 Putting it together

The bounds from the previous two sections yield a proof of Theorem 3.1, which we restate here for convenience
of the reader:

Theorem 3.1 For any constant C ′ > 0 there exist absolute constants C1, C2, C3 > 0 such that for any
x ∈ C[n]d , any integer k ≥ 1 and any S ⊆ [n]d such that ||x[n]d\S ||∞ ≤ C ′µ, where µ = ||x[n]d\[k]||2/

√
k, the

following conditions hold.
Let πr = (Σr, qr), r = 1, . . . , rmax denote permutations, and let Hr = (πr, B, F ), F ≥ 2d, where

B ≥ (2π)4d·Fk/αd for α ∈ (0, 1) smaller than a constant. Let S∗ ⊆ S denote the set of elements that are not
isolated with respect to at least a

√
α fraction of hashings {Hr}. Then if rmax, cmax ≥ (C1/

√
α) log logN ,

then with probability at least 1 − 1/ log2N over the randomness of the measurements for all χ ∈ C[n]d such
that x′ := x− χ satisifies ||x′||∞/µ ≤ NO(1) one has

L :=

rmax⋃
r=1

LOCATESIGNAL
(
χ, k, {m(x̂, Hr, a ? (1,w))}rmax

r=1,a∈Ar,w∈W

)
satisfies

||x′S\S∗\L||1 ≤ (C2α)d/2||x′S ||1 + Cd
2

3 (||χ[n]d\S ||1 + ||x′S∗ ||1) + 4µ|S|.

Proof. First note that with probability at least 1− 1/(10 log2N) for every s ∈ [1 : d] the sets Ar ? (0, es) are
balanced (as per Definition 2.13) for all r = 1, . . . , rmax and all w ∈ W by Claim 2.14.

By Corollary 5.2 applied with S′ = S \ S∗ one has

||(x− χ)(S\S∗)\L||1 ≤ 20 · (||eheadS\S∗({Hr}, x′)||1 + ||etail({Hr,Ar}, x)||1) + ||x′||∞|S| ·N−Ω(c).

We also have

||eheadS\S∗({Hr}, x′)||1 ≤ 2O(d)αd/2||x′S ||1 + (2π)d·F · 2O(d)||χ[n]d\S ||1
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by Lemma 6.3 and with probability at least 1− 1/(10 log2N)

||etailS\S∗({Hr,Ar}, x)||1 ≤ (2π)d·FCd(40 + |W|2−Ω(cmax))||x[n]d\[k]||2|S|/
√
B

by Lemma 6.6. The rhs of the previous equation is bounded by |S|µ by the choice of B as long as α is smaller
than a absolute constant, as required. Putting these bounds together and using the fact that |W| ≤ logN (so that
|W| · (2−Ω(rmax) + 2−Ω(cmax)) ≤ 1), and taking a union bound over the failure events, we get the result.

7 Analysis of REDUCEL1NORM and SPARSEFFT

In this section we first give a correctness proof and runtime analysis for REDUCEL1NORM (section 7.1), then
analyze the SNR reduction loop in SPARSEFFT(section 7.2) and finally prove correctness of SPARSEFFT and
provide runtime bounds in section 7.3.

7.1 Analysis of REDUCEL1NORM

The main result of this section is Lemma 3.2 (restated below). Intuitively, the lemma shows that REDU-
CEL1NORM reduces the `1 norm of the head elements of the input signal x−χ by a polylogarthmic factor, and
does not introduce too many new spurious elements (false positives) in the process. The introduced spurious
elements, if any, do not contribute much `1 mass to the head of the signal. Formally, we show
Lemma 3.2(Restated) For any x ∈ CN , any integer k ≥ 1, B ≥ (2π)4d·F · k/αd for α ∈ (0, 1] smaller than an
absolute constant and F ≥ 2d, F = Θ(d) the following conditions hold for the set S := {i ∈ [n]d : |xi| > µ},
where µ2 ≥ ||x[n]d\[k]||22/k. Suppose that ||x||∞/µ = NO(1).

For any sequence of hashings Hr = (πr, B, F ), r = 1, . . . , rmax, if S∗ ⊆ S denotes the set of elements of
S that are not isolated with respect to at least a

√
α fraction of the hashings Hr, r = 1, . . . , rmax, then for any

χ ∈ C[n]d , x′ := x− χ, if ν ≥ (log4N)µ is a parameter such that

A ||(x− χ)S ||1 ≤ (ν + 20µ)k;

B ||χ[n]d\S ||0 ≤ 1
log19N

k;

C ||(x− χ)S∗ ||1 + ||χ[n]d\S ||1 ≤ ν
log4 N

k,

the following conditions hold.
If parameters rmax, cmax are chosen to be at least (C1/

√
α) log logN , where C1 is the constant from

Theorem 3.1 and measurements are taken as in Algorithm 2, then the output χ′ of the call

REDUCEL1NORM(χ, k, {m(x̂, Hr, a ? (1,w))}rmax
r=1,a∈Ar,w∈W , 4µ(log4 n)T−t, µ)

satisfies

1. ||(x′ − χ′)S ||1 ≤ 1
log4 N

νk + 20µk (`1 norm of head elements is reduced by ≈ log4N factor)

2. ||(χ+ χ′)[n]d\S ||0 ≤ ||χ[n]d\S ||0 + 1
log20N

k (few spurious coefficients are introduced)

3. ||(x′ − χ′)S∗ ||1 + ||(χ + χ′)[n]d\S ||1 ≤ ||x′S∗ ||1 + ||χ[n]d\S ||1 + 1
log20 N

νk (`1 norm of spurious
coefficients does not grow fast)

with probability at least 1− 1/ log2N over the randomness used to take measurements m and by calls to ES-
TIMATEVALUES. The number of samples used is bounded by 2O(d2)k(log logN)2, and the runtime is bounded
by 2O(d2)k logd+2N .

Before giving the proof of Lemma 3.2, we prove two simple supporting lemmas.
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Lemma 7.1 (Few spurious elements are introduced in REDUCEL1NORM). For any x ∈ CN , any integer k ≥ 1,
B ≥ (2π)4d·F · k/αd for α ∈ (0, 1] smaller than an absolute constant and F ≥ 2d, F = Θ(d) the following
conditions hold for the set S := {i ∈ [n]d : |xi| > µ}, where µ2 ≥ ||x[n]d\[k]||22/k.

For any sequence of hashings Hr = (πr, B, F ), r = 1, . . . , rmax, if S∗ ⊆ S denotes the set of elements of
S that are not isolated with respect to at least a

√
α fraction of the hashings Hr, r = 1, . . . , rmax, then for any

χ ∈ C[n]d , x′ := x− χ the following conditions hold.
Consider the call

REDUCEL1NORM(χ, k, {m(x̂, Hr, a ? (1,w))}rmax
r=1,a∈Ar,w∈W , 4µ(log4 n)T−t, µ),

where we assume that measurements of x are taken as in Algorithm 2. Denote, for each t = 0, . . . , log2(log4N),
the signal recovered by step t in this call by χ(t) (see Algorithm 3). There exists an absolute constant C > 0
such that if for a parameter ν ≥ 2tµ at step t

A ||(x′ − χ(t))S ||1 ≤ (2−tν + 20µ)k;

B ||(χ+ χ(t))[n]d\S ||0 ≤ 2
log19 N

k,

C ||(x′ − χ(t))S∗ ||1 + ||(χ+ χ(t))[n]d\S ||1 ≤ 2ν
log4N

k,

then with probability at least 1− (logN)−3 over the randomness used in ESTIMATEVALUES at step t one has

||(χ+ χ(t+1))[n]d\S ||0 − ||(χ+ χ(t))[n]d\S ||0 ≤
1

log21N
k.

Proof. Recall that L′ ⊆ L is the list output by ESTIMATEVALUES. We let

L′′ =
{
i ∈ L : |χ′i − x′i| > α1/2

(
2−tν + 20µ

)}
denote the set of elements in L′ that failed to be estimated to within an additive α1/2

(
2−tν + 20µ

)
error term.

For any element i ∈ L we consider two cases, depending on whether i ∈ L′ \ L′′ or i ∈ L′′.

Case 1: First suppose that i ∈ L′ \ L′′, i.e. |x′i − χ′i| < α1/2(2−tν + 20µ). Then if α is smaller than an
absolute constant, we have

|x′i| >
1

1000
ν2−t + 4µ− (α1/2(2−tν + 20µ)) ≥ 2µ,

because only elements i with |χ′i| > 1
1000ν2−t + 4µ are included in the set L′ in the call

χ′ ← ESTIMATEVALUES(x, χ(t), L, k, ε, C(log logN + d2 +O(log(B/k))),
1

1000
ν2−t + 4µ)

due to the pruning threshold of 1
1000ν2−t + 4µ passed to ESTIMATEVALUES in the last argument.

Since ||x[n]d\S ||∞ ≤ µ by definition of S, this means that either i ∈ S, or i ∈ suppχ(t). In both cases i
contributes at most 0 to ||(χ+ χ(t+1))[n]d\S ||0 − ||(χ+ χ(t))[n]d\S ||0.
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Case 2: Now suppose that i ∈ L′′, i.e. |(x′ − χ′)i| ≥ α1/2(2−tν + 20µ). In this case i may contribute 1
to ||(χ + χ(t+1))[n]d\S ||0 − ||(χ + χ(t))[n]d\S ||0. However, the number of elements in L′′ is small. To show
this, we invoke Lemma 9.1 to obtain precision guarantees for the call to ESTIMATEVALUES on the pair x, χ
and set of ‘head elements’ S ∪ suppχ. Note that |S| ≤ 2k, as otherwise we would have ||x[n]d\[k]||22 > µ · k,
a contradiction. Further, by assumption B of the lemma we have ||(χ + χ(t))[n]d\S ||0 ≤ k, so |S ∪ supp(χ +

χ(t))| ≤ 4k. The `1 norm of x′ − χ(t) on S ∪ supp(χ+ χ(t)) can be bounded as

||(x′ − χ(t))S ||1 + ||(x′ − χ(t))supp(χ+χ(t))\S ||1
4k

≤
||(x′ − χ(t))S ||1 + ||χ(t)

[n]d\S ||1 + ||x′
[n]d\S ||∞ · | supp(χ+ χ(t))|

4k

≤
(2−tν + 20µ)k + 2ν

log4 N
k + µ · (4k)

2k
≤ 2−tν + 20µ,

For the `2 bound on the tail of the signal we have

||(x′ − χ(t))[n]d\(S∪supp(χ+χ(t)))||22
4k

≤
||x[n]d\S ||22

4k
≤ µ2.

We thus have by Lemma 9.1, (1) for every i ∈ L′ that the estimate wi returned by ESTIMATEVALUES

satisfies
Pr[|wi − x′i| > α1/2(2−tν + 20µ)] < 2−Ω(rmax).

Since rmax is chosen as rmax = C(log logN + d2 + log(B/k)) for a sufficiently large absolute constant
C > 0, we have

Pr[|wi − x′i| > α1/2(2−tν + 20µ)] < 2−Ω(rmax) ≤ (k/B) · (logN)−25.

This means that

E[|L′′|] ≤ |L| · (k/B) · (logN)−25 ≤ (B · rmax)(k/B) · (logN)−25 ≤ (logN)−23,

where the expectation is over the randomness used in ESTIMATEVALUES. We used the fact that |L′| ≤ |L| ≤
B · rmax and that rmax to derive the upper bound above. An application of Markov’s inequality completes the
proof.

Lemma 7.2 (Spurious elements do not introduce significant `1 error). For any x ∈ CN , any integer k ≥ 1,
B ≥ (2π)4d·F · k/αd for α ∈ (0, 1] smaller than an absolute constant and F ≥ 2d, F = Θ(d) the following
conditions hold for the set S := {i ∈ [n]d : |xi| > µ}, where µ2 ≥ ||x[n]d\[k]||22/k.

For any sequence of hashings Hr = (πr, B, F ), r = 1, . . . , rmax, if S∗ ⊆ S denotes the set of elements of
S that are not isolated with respect to at least a

√
α fraction of the hashings Hr, r = 1, . . . , rmax, then for any

χ ∈ C[n]d , x′ := x− χ the following conditions hold.
Consider the call

REDUCEL1NORM(χ, k, {m(x̂, Hr, a ? (1,w))}rmax
r=1,a∈Ar,w∈W , 4µ(log4 n)T−t, µ),

where we assume that measurements of x are taken as in Algorithm 2. Denote, for each t = 0, . . . , log2(log4N),
the signal recovered by step t in this call by χ(t) (see Algorithm 3). There exists an absolute constant C > 0
such that if for a parameter ν ≥ 2tµ at step t

A ||(x′ − χ(t))S ||1 ≤ (2−tν + 20µ)k;

B ||(χ+ χ(t))[n]d\S ||0 ≤ 2
log19 N

k;
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C ||(x′ − χ(t))S∗ ||1 + ||(χ+ χ(t))[n]d\S ||1 ≤ 2ν
log4N

k,

then with probability at least 1− (logN)−3 over the randomness used in ESTIMATEVALUES at step t one has

||(x′ − χ(t+1))([n]d\S)∪S∗ ||1 − ||(x′ − χ(t))([n]d\S)∪S∗ ||1 ≤
1

log21N
k(ν + µ)

Proof. We let Q := ([n]d \ S) ∪ S∗ to simplify notation, and recall that L′ ⊆ L is the list output by ESTIMAT-
EVALUES. We let

L′′ =
{
i ∈ L : |χ′i − x′i| > α1/2

(
2−tν + 20µ

)}
denote the set of elements in L′ that failed to be estimated to within an additive α1/2

(
2−tν + 20µ

)
error term.

We write

||(x− χ(t+1))Q||1 = ||(x− χ(t+1))Q\L′ ||1 + ||(x− χ(t+1))(Q∩L′)\L′′ ||1 + ||(x− χ(t+1))Q∩L′′ ||1 (27)

We first note that χ(t+1)
i = χ

(t)
i for all i 6∈ L′, and hence ||(x′ − χ(t+1))Q\L||1 = ||(x′ − χ(t))Q\L||1.

Second, for i ∈ (Q∩L′) \L′′ (second term) one has |x′i−χ
(t+1)
i | ≤

√
α(ν2−t + 4µ). Since only elements

i ∈ L with |χ′i| > 1
1000ν2−t + 4µ are reported by the threshold setting in ESTIMATEVALUES, so |x′i − χ′| ≤√

α(2−tν + 20µ) ≤ x′i as long as α is smaller than a constant. We thus get that ||(x − χ(t+1))(Q∩L′)\L′′ ||1 ≤
||(x− χ(t))(Q∩L′)\L′′ ||1.

For the third term, we note that for each i ∈ L the estimate wi computed in the call to ESTIMATEVALUES

satisfies
E
[∣∣|wi − x′i| − √α(2−tν + 20µ)

∣∣
+

]
≤
√
α(2−tν + µ)k2−Ω(rmax) (28)

by Lemma 9.1, (2). Verification of the preconditions of the lemma is identical to Lemma 7.1 (note that the
assumptions of this lemma and Lemma 7.1 are identical) and is hence omitted. Since rmax = C(log logN +
log(B/k)), the rhs of (28) is bounded by (logN)−25√α(2−tν+µ)k as long asC > 0 is larger than an absolute
constant. We thus have

||(x′ − χ(t+1))S∩L′′ ||1 ≤
∑

i∈S∩L′′

(√
α(2−tν + 20µ) +

∣∣|wi − x′i| − √α(2−tν + 20µ)
∣∣
+

)
.

Combining (28) with the fact that by by Lemma 9.1, (1), we have for every i ∈ L

Pr
[
|wi − x′i| >

√
α(2−tν + 20µ)

]
≤ 2−Ω(rmax) ≤ (k/B) · (logN)−25

by our choice of rmax, we get that

||(x′ − χ(t+1))S∩L′′ ||1 ≤ 2
√
α(2−tν + 20µ) · |L| · (k/B) · (logN)−25.

An application of Markov’s inequality then implies, if α is smaller than an absolute constant, that

Pr[||(x′ − χ(t+1))S∩L′′ ||1 >
1

log21N
(ν + µ)k] < 1/ log3N.

Substituting the bounds we just derived into (27), we get

||(x− χ(t+1))Q||1 ≤ ||(x− χ(t))Q||1 +
1

log21N
(ν + µ)k

as required.
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Equipped with the two lemmas above, we can now give a proof of Lemma 3.2:
Proof of Lemma 3.2: We prove the result by strong induction on t = 0, . . . , log2(log4N). Specifically, we
prove that there exist events Et, t = 0, . . . , log2(log4N) such that (a) Et depends on the randomness used in the
call to ESTIMATEVALUES at step t, Et satisfies Pr[Et|E0∧ . . . Et−1] ≥ 1−3/ log2N and (b) for all t conditional
on E0 ∧ E1 ∧ . . . ∧ Et one has

(1) ||(x′ − χ(t))S\S∗ ||1 ≤ (2−tν + 20µ)k;

(2) ||(χ+ χ(t))[n]d\S ||0 ≤ ||χ[n]d\S ||0 + t
log21N

k;

(3) ||(x′ − χ(t))S∗ ||1 + ||(χ+ χ(t))[n]d\S ||1 ≤ ||x′S∗ ||1 + ||χ[n]d\S ||1 + t
log21N

νk

The base is provided by t = 0 and is trivial since χ(0) = 0. We now give the inductive step.
We start by proving the inductive step for (2) and (3). We will use Lemma 7.1 and Lemma 7.2, and hence we

start by verifying that their preconditions (which are identical for the two lemmas) are satisfied. Precondition
A is satisfied directly by inductive hypothesis (1). Precondition B is satisfied since

||(χ+ χ(t))[n]d\S ||0 ≤ ||χ[n]d\S ||0 +
t

log21N
k ≤ 1

log19N
k +

log 2(log4N)

log21N
≤ 2

log19N
k,

where we used assumption B of this lemma and inductive hypothesis (2). Precondition C is satisfied since

||(x′−χ(t))S∗ ||1+||(χ+χ(t))[n]d\S ||1 ≤ ||x′S∗ ||1+||χ[n]d\S ||1+
t

log21N
νk ≤ ν

log4N
k+

t

log21N
νk ≤ 2ν

log4N
k,

where we used assumption 3 of this lemma, inductive assumption (3) and the fact that t ≤ log2(log4N) ≤
logN for sufficiently large N .

Proving (2). To prove the inductive step for (2), we use Lemma 7.1. Lemma 7.1 shows that with probability
at least 1 − (logN)−2 over the randomness used in ESTIMATEVALUES (denote the success event by E1

t ) we
have

||(χ+ χ(t+1))[n]d\S ||0 − ||(χ+ χ(t))[n]d\S ||0 ≤
1

log21N
k,

so ||(χ+ χ(t+1))[n]d\S ||0 ≤ ||(χ+ χ(t))[n]d\S ||0 + 1
log21N

k ≤ ||χ[n]d\S ||0 + t+1
log21N

k as required.

Proving (3). At the same time we have by Lemma 7.2 that with probability at least 1 − (logN)−2 (denote
the success event by E2

t )

||(x′ − χ(t+1))([n]d\S)∪S∗ ||1 − ||(x′ − χ(t))([n]d\S)∪S∗ ||1 ≤
1

log21N
kν,

so by combing this with assumption (3) of the lemma we get

||(x′ − χ(t+1))([n]d\S)∪S∗ ||1 ≤
1

log20N
νk +

t+ 1

log21N
νk

as required.
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Proving (1). We let L′′ ⊆ L denote the set of elements in L that fail to be estimated to within a small additive
error. Specifically, we let

L′′ =
{
i ∈ L : |χ′i − x′i| > α1/2

(
2−tν + 20µ

)}
,

where χ′ is the output of ESTIMATEVALUES in iteration t. We bound ||(x′ − χ(t+1))S\S∗ ||1 by splitting this
`1 norm into three terms, depending on whether the corresponding elements were updated in iteration t and
whether they were well estimated. We have

||(x′ − χ(t+1))S\S∗ ||1 = ||(x′ − (χ(t) + χ′))S\S∗ ||1
≤ ||(x′ − (χ(t) + χ′))S\(S∗∪L)||1 + ||(x′ − (χ(t) + χ′))(S∩L)\L′\L′′ ||1 + ||(x′ − (χ(t) + χ′))(S∩L′)\L′′ ||1
+ ||(x′ − (χ(t) + χ′))L′′ ||1
= ||(x′ − χ(t))S\(S∗∪L)||1 + ||(x′ − (χ(t) + χ′))(S∩L)\L′\L′′ ||1 + ||(x′ − (χ(t) + χ′))(S∩L′)\L′′ ||1
+ ||(x′ − (χ(t) + χ′))(L∩S)∩L′′ ||1
=: S1 + S2 + S3 + S4,

(29)

where we used the fact that χ′S\L ≡ 0 to go from the second line to the third. We now bound the four terms.
The second term (i.e. S2) captures elements of S that were estimated precisely (and hence they are not

in L′′), but were not included into L′ as they did not pass the threshold test (being estimated as larger than
1

10002−tν + 4µ) in ESTIMATEVALUES. One thus has

||(x− (χ(t) + χ′))(S∩L)\L′\L′′ ||1 ≤ α1/2(2−tν + 20µ) · |(S ∩ L′) \ L′′|+ (
1

1000
2−tν + 4µ) · |(S ∩ L′) \ L′′|

≤ ((
1

1000
+ α1/2)2−tν + (4 + 20α1/2)µ)2k

(30)

since |S| ≤ 2k by assumption of the lemma.
The third term (i.e. S3) captures elements of S that were reported by ESTIMATEVALUES (hence do not

belong to L′) and were approximated well (hence belong to L′′). One has, by definition of the set L′′,

||(x− (χ(t) + χ′))(S∩L′)\L′′ ||1 = α1/2(2−tν + 20µ) · |(S ∩ L′) \ L′′|

≤ 2α1/2(2−tν + 20µ)k
(31)

since |S| ≤ 2k by assumption of the lemma.
For the forth term (i.e. S4) we have

||(x′ − (χ(t) + χ′))L′′ ||1 ≤ α1/2
(
2−tν + 20µ

)
· |L′′|+

∑
i∈S

∣∣∣|χ′i − x′i| − α1/2
(
2−tν + 20µ

)∣∣∣
+
.

By Lemma 9.1, (1) (invoked on the set S ∪ supp(χ + χ(t) + χ′)) we have E[|L′′|] ≤ B · 2−Ω(rmax) and by
Lemma 9.1, (2) for any i one has

E
[∣∣∣|χ′i − x′i| − α1/2

(
2−tν + 20µ

)∣∣∣
+

]
≤ |L| · α1/2

(
2−tν + 20µ

)
2−Ω(rmax).

Since the parameter rmax in ESTIMATEVALUES is chosen to be at least C(log logN + d2 + log(B/k)) for a
sufficiently large constant C, and |L| = O(logN)B, we have

E
[
||(x′ − (χ(t) + χ′))L′′ ||1

]
≤ α1/2

(
2−tν + 20µ

)
|L|2−Ω(rmax) ≤ 1

log25N

(
2−tν + 20µ

)
k
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By Markov’s inequality we thus have

||(x′ − (χ(t) + χ′))L′′ ||1 ≤ α1/2
(
2−tν + 20µ

)
|L|2−Ω(rmax) ≤ 1

log22N

(
2−tν + 20µ

)
k (32)

with probability at least 1− 1/ log3N . Denote the success event by E0
t .

Finally, in order to bound the first term (i.e. S1), we invoke Theorem 3.1 to analyze the call to LOCATESIG-
NAL in the t-th iteration. We note that since rmax, cmax ≥ (C1/

√
α) log logN (where C1 is the constant from

Theorem 3.1) by assumption of the lemma, the preconditions of Theorem 3.1 are satisfied. By Theorem 3.1
together with (1) and (3) of the inductive hypothesis we have

||(x′ − χ(t))S\(S∗∪L)||1 ≤ (4C2α)d/2||(x′ − χ(t))S\S∗ ||1 + (4C)d
2
(||(χ+ χ(t))[n]d\S ||1 + ||(x′ − χ(t))S∗ ||1) + 4µ|S|

≤ O((4C2α)d/2)(2−tν + 20µ)k + (4C)d
2
(

2

log20N
νk) + 8µk

≤ 1

1000
(2−tν + 20µ)k + 8µk

(33)

if α is smaller than an absolute constant and N is sufficiently large.
Now substituting bounds on S1, S2, S3, S4 provided by (33), (30), (31) and (32) into (29) we get

||(x′ − χ(t+1))S\S∗ ||1 ≤ (
2

1000
+O(α1/2))2−tν + (16 +O(α1/2))µk

≤ 2−tν + 20µk

when α is a sufficiently small constant, as required. This proves the inductive step for (1) and completes the
proof of the induction.

Let Et = E0
t ∧E1

t ∧E2
t denote the success event for step t. We have by a union bound Pr[Et] ≥ 1−3t/ log2N

as required.

Sample complexity and runtime It remains to bound the sampling complexity and runtime. First note that
REDUCEL1NORM only takes fresh samples in the calls to ESTIMATEVALUES that it issues. By Lemma 9.1
each such call uses 2O(d2)k(log logN) samples, amounting to 2O(d2)k(log logN)2 samples over O(log logN)
iterations.

By Lemma 5.1 each call to LOCATESIGNAL takes O(B(logN)3/2) time. Updating the measurements
m(x̂, Hr, a ? (1,w)),w ∈ W takes

|W|cmaxrmax · FO(d) ·B logd+1N log logN = 2O(d2) · k logd+2N

time overall. The runtime complexity of the calls to ESTIMATEVALUES is 2O(d2) ·k logd+1N(log logN)2 time
overall. Thus, the runtime is bounded by 2O(d2)k logd+2N .

7.2 Analysis of SNR reduction loop in SPARSEFFT

In this section we prove
Theorem 3.3 For any x ∈ CN , any integer k ≥ 1, if µ2 ≥ Err2

k(x)/k and R∗ ≥ ||x||∞/µ = NO(1), the
following conditions hold for the set S := {i ∈ [n]d : |xi| > µ} ⊆ [n]d.

Then the SNR reduction loop of Algorithm 2 (lines 19-25) returns χ(T ) such that

||(x− χ(T ))S ||1 . µ (`1-SNR on head elements is constant)

||χ(T )

[n]d\S ||1 . µ (spurious elements contribute little in `1 norm)

||χ(T )

[n]d\S ||0 .
1

log19N
k (small number of spurious elements have been introduced)
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with probability at least 1 − 1/ logN over the internal randomness used by Algorithm 2. The sample
complexity is 2O(d2)k logN(log logN). The runtime is bounded by 2O(d2)k logd+3N .

Proof. We start with correctness. We prove by induction that after the t-th iteration one has

(1) ||(x− χ(t))S ||1 ≤ 4(log4N)T−tµk + 20µk;

(2) ||x− χ(t)||∞ = O((log4N)T−(t−1)µ);

(3) ||χ(t)

[n]d\S ||0 ≤
t

log20 N
k.

The base is provided by t = 0, where all claims are trivially true by definition of R∗. We now prove the
inductive step. The main tool here is Lemma 3.2, so we start by verifying that its preconditions are satisfied.
First note that

First, since |S∗| ≤ 2−Ω(rmax)|S| ≤ 2−Ω(rmax)k ≤ 1
log19N

k with probability at least 1 − 2−Ω(rmax) ≥
1− 1/ logN by Lemma 2.12 and choice of rmax ≥ (C/

√
α) log logN for a sufficiently large constant C > 0.

Also, by Claim 2.14 we have that with probability at least 1−1/ log2N for every s ∈ [1 : d] the setsAr?(0, es)

are balanced (as per Definition 2.13 with ∆ = 2b
1
2

log2 log2 nc, as needed for Algorithm 1). Also note that by (2)
of the inductive hypothesis one has ||x− χ(t)||∞/µ = R∗ ·O(logN) = NO(1).

First, assuming the inductive hypothesis (1)-(3), we verify that the preconditions of Lemma 3.2 are sat-
isfied with ν = 4(log4N)T−tµk. First, for (A) one has ||(x − χ(t))S ||1 ≤ 4(log4N)T−tµk. This satisfies
precondition A of Lemma 3.2. We have

||(x− χ(t))S∗ ||1 + ||χ(t)

[n]d\S ||1 ≤ ||x− χ
(t)||∞ · (||(x− χ(t))S∗ ||0 + ||χ(t)

[n]d\S ||0)

≤ O(log4N) · ν ·
(

1

log19N
k +

t

log20N
k

)
≤ 16

log14N
νk

(34)

for sufficiently large N . Since the rhs is less than 1
log4N

νk, precondition (C) of Lemma 3.2 is also sat-
isfied. Precondition (B) of Lemma 3.2 is satisfied by inductive hypothesis, (3) together with the fact that
T = o(logR∗) = o(logN).

Thus, all preconditions of Lemma 3.2 are satisfied. Then by Lemma 3.2 with ν = 4(log4N)T−tµ one has
with probability at least 1− 1/ log2N

1. ||(x′ − χ(t) − χ′)S ||1 ≤ 1
log4N

νk + 20µk;

2. ||(χ(t) + χ′)[n]d\S ||0 − ||χ
(t)

[n]d\S ||0 ≤
1

log20 N
k;

3. ||(x′ − (χ(t) + χ′))S∗ ||1 + ||(χ(t) + χ′)[n]d\S ||1 ≤ ||(x′ − χ(t))S∗ ||1 + ||χ(t)

[n]d\S ||1 + 1
log20N

νk.

Combining 1 above with (34) proves (1) of the inductive step:

||(x− χ(t+1))S ||1 = ||(x− χ(t) − χ′)S ||1 ≤
1

log4N
νk + 20µk =

1

log4N
4(log4N)T−tµk + 20µk

= 4(log4N)T−(t+1)µk + 20µk.

Also, combining 2 above with the fact that ||χ(t)

[n]d\S ||0 ≤
t

log20N
k yields ||χ(t+1)

[n]d\S ||0 ≤
t+1

log20 N
k as required.

In order to prove the inductive step is remains to analyze the call to REDUCEINFNORM, for which we use
Lemma 8.1 with parameter k̃ = 4k/ log4N . We first verify that preconditions of the lemma are satisfied. Let
y := x− (χ+ χ(t) + χ′) to simplify notation. For that we need to verify that

||y[k̃]||1/k̃ ≤ 4(log4N)T−(t+1)µ = (log4N) · ( 1

log4N
ν + 20µ) (35)
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and
||y[n]d\[k̃]||2/

√
k̃ ≤ (log4N) · ( 1

log4N
ν + 20µ), (36)

where we denote k̃ := 4k/ log4N for convenience. The first condition is easy to verify, as we now show.
Indeed, we have

||yk̃||1 ≤ ||yS ||1 + ||ysupp(χ(t)+χ′)\S ||1 + ||x[n]d\S ||∞ · k̃

≤ ||yS ||1 + ||(χ(t) + χ′)[n]d\S ||1 + ||xsupp(χ(t)+χ′)\S ||∞ · k̃ + ||x[n]d\S ||∞ · k̃

≤ 1

log4N
νk + 20µk +

1

log4N
νk + 2µk̃ ≤ 2

log4N
νk + 40µk,

where we used the triangle inequality to upper bound ||ysupp(χ(t)+χ′)\S ||1 by ||(χ(t)+χ′)[n]d\S ||1+||xsupp(χ(t)+χ′)\S ||∞·
k̃ to go from the first line to the second. We thus have

||y[k̃]||1/k̃ ≤ (
2

log4N
νk + 40µk)/(4k/ log4N) ≤ (log4N) · ( 1

log4N
ν + 20µ)

as required. This establishes (35).
To verify the second condition, we first let S̃ := S ∪ supp(χ+ χ(t) + χ′) to simplify notation. We have

||y[n]d\[k̃]||
2
2 = ||yS̃\[k̃]||

2
2 + ||y([n]d\S̃)\[k̃]||

2
2 ≤ ||yS̃\[k̃]||

2
2 + µ2k, (37)

where we used the fact that y[n]d\S̃ = x[n]d\S̃ and hence ||y([n]d\S̃)\[k̃]||
2
2 ≤ µ2k. We now note that ||yS̃\[k̃]||1 ≤

||yS̃ ||1 ≤ 2( 1
log4 N

νk+ 20µk), and so it must be that ||yS\[k̃]||∞ ≤ 2( 1
log4 N

νk+ 20µk)(k/k̃), as otherwise the

top k̃ elements of y[k̃] would contribute more than 2( 1
log4 N

νk + 20µk) to ||yS̃ ||1, a contradiction. With these

constraints ||yS̃\[k̃]||
2
2 is maximized when there are k̃ elements in yS̃\[k̃], all equal to the maximum possible

value, i.e. ||yS̃\[k̃]||
2
2 ≤ 4( 1

log4N
νk+20µk)2(k/k̃)2k̃. Plugging this into (37), we get ||y[n]d\[k̃]||

2
2 ≤ ||yS̃\[k̃]||

2
2+

µ2k ≤ 4( 1
log4 N

νk + 20µk)2(k/k̃)2k̃ + µ2k. This implies that

||y[n]d\[k̃]||2/
√
k̃ ≤

√
4(

1

log4N
νk + 20µk)2(k/k̃)2 + µ2(k/k̃) ≤ 2(k/k̃)

√
(

1

log4N
νk + 20µk)2 + µ2

≤ 2((
1

log4N
νk + 20µk) + µ)(k/k̃) ≤ (log4N)(

1

log4N
νk + 20µk),

establishing (36).
Finally, also recall that ||yS\[k̃]||∞ ≤ 2( 1

log4N
νk + 20µk)(k/k̃) ≤ (log4N) · ( 1

log4N
νk + 20µk) and

||y[n]d\S̃ ||∞ = ||x[n]d\S ||∞ ≤ µ.

We thus have that all preconditions of Lemma 8.1 are satisfied for the set of top k̃ elements of y, and hence
its output satisfies

||x− (χ(t) − χ′ − χ′′)||∞ = O(log4N) · ( 1

log4N
νk + 20µk).

Putting these bounds together establishes (2), and completes the inductive step and the proof of correctness.
Finally, taking a union bound over all failure events (each call to ESTIMATEVALUES succeeds with prob-

ability at least 1 − 1
log2N

, and with probability at least 1 − 1/ log2N for all s ∈ [1 : d] the set Ar ? (0, es)

is balanced in coordinate s) and using the fact that log T = o(logN) and each call to LOCATESIGNAL is
deterministic, we get that success probability of the SNR reduction look is lower bounded by 1− 1/ logN .
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Sample complexity and runtime The sample complexity is bounded by the the sample complexity of the
calls to REDUCEL1NORM and REDUCEINFNORM inside the loop times O(logN/ log logN) for the num-
ber of iterations. The former is bounded by 2O(d2)k(log logN)2 by Lemma 3.2, and the latter is bounded by
2O(d2)k/ logN by Lemma 8.1, amounting to at most 2O(d2)k logN(log logN) samples overall. The run-
time complexity is at most 2O(d2)k logd+3N overall for the calls to REDUCEL1NORM and no more than
2O(d2)k logd+3N overall for the calls to REDUCEINFNORM.

7.3 Analysis of SPARSEFFT

Theorem 3.5 For any ε > 0, x ∈ C[n]d and any integer k ≥ 1, if R∗ ≥ ||x||∞/µ = poly(N), µ2 ≥
||x[n]d\[k]||22/k, µ2 = O(||x[n]d\[k]||22/k) andα > 0 is smaller than an absolute constant, SPARSEFFT(x̂, k, ε, R∗, µ)

solves the `2/`2 sparse recovery problem using 2O(d2)(k logN log logN+1
εk logN) samples and 2O(d2) 1

εk logd+3N
time with at least 98/100 success probability.

Proof. By Theorem 3.3 the set S := {i ∈ [n]d : |xi| > µ} satisfies

||(x− χ(T ))S ||1 . µk

and

||χ(T )

[n]d\S ||1 . µk

||χ(T )

[n]d\S ||0 .
1

log19N
k

with probability at least 1− 1/ logN .
We now show that the signal x′ := x−χ(T ) satisfies preconditions of Lemma 3.4 with parameter k. Indeed,

letting Q ⊆ [n]d denote the top 2k coefficients of x′, we have

||x′Q||1 ≤ ||x′Q∩S ||1 + ||χ(T )

(Q\S)∩suppχ(T ) ||1 + |Q| · ||x[n]d\S ||1 ≤ O(µk)

Furthermore, since Q is the set of top 2k elements of x′, we have

||x′[n]d\Q||
2
2 ≤ ||x′[n]d\(S∪suppχ(T ))

||22 ≤ ||x[n]d\(S∪suppχ(T ))||
2
2 ≤ ||x[n]d\S ||22

≤ µ2|S|+ ||x[n]d\[k]||22 = O(µ2k)

as required.
Thus, with at least 99/100 probability we have by Lemma 3.4 that

||x− χ(T ) − χ′||2 ≤ (1 +O(ε)) Errk(x).

By a union bound over the 1/ logN failure probability of the SNR reduction loop we have that SPARSEFFT is
correct with probability at least 98/100, as required.

It remains to bound the sample and runtime complexity. The number of samples needed to compute

m(x̂, Hr, a ? (1,w))← HASHTOBINS(x̂, 0, (Hr, a ? (1,w)))

for all a ∈ Ar, w ∈ W is bounded by 2O(d2)k logN(log logN) by our choice of B = 2O(d2)k, rmax =
O(log logN), |W| = O(logN/ log logN) and |Ar| = O(log logN), together with Lemma 9.2. This is
asymptotically the same as the 2O(d2)k logN(log logN) sample complexity of the `1 norm reduction loop by
Theorem 3.3. The sampling complexity of the call to RECOVERATCONSTANTSNR is at most 2O(d2) 1

εk logN
by Lemma 3.4, yielding the claimed bound.

The runtime of the SNR reduction loop is bounded by 2O(d2)k logd+3N by Theorem 3.3, and the runtime
of RECOVERATCONSTANTSNR is at most 2O(d2) 1

εk logd+2N by Lemma 3.4.
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8 `∞/`2 guarantees and constant SNR case

In this section we state and analyze our algorithm for obtaining `∞/`2 guarantees in Õ(k) time, as well as a
procedure for recovery under the assumption of bounded `1 norm of heavy hitters (which is very similar to the
RECOVERATCONSTSNR procedure used in [IKP14]).

8.1 `∞/`2 guarantees

The algorithm is given as Algorithm 4.

Algorithm 4 REDUCEINFNORM(x̂, χ, k, ν,R∗, µ)
1: procedure REDUCEINFNORM(x̂, χ, k, ν,R∗, µ)
2: χ(0) ← 0 . in Cn
3: B ← (2π)4d·F · k/αd for a small constant α > 0
4: T ← log2R

∗

5: rmax ← (C/
√
α) logN for sufficiently large constant C > 0

6: W ← {0d}, ∆← 2b
1
2

log2 log2 nc . 0d is the zero vector in dimension d
7: for g = 1 to dlog∆ ne do
8: W ←W ∪

⋃d
s=1{n∆−g · es} . es is the unit vector in direction s

9: end for
10: G← filter with B buckets and sharpness F , as per Lemma 2.3
11: for r = 1 to rmax do . Samples that will be used for location
12: Choose Σr ∈Md×d, qr ∈ [n]d uniformly at random, let πr := (Σr, qr) and let Hr := (πr, B, F )
13: Let Ar ← C log logN elements of [n]d × [n]d sampled uniformly at random with replacement
14: for w ∈ W do
15: m(x̂, Hr, a ? (1,w))← HASHTOBINS(x̂, 0, (Hr, a ? (1,w))) for all a ∈ Ar,w ∈ W
16: end for
17: end for
18: for t = 0 to T − 1 do . Locating elements of the residual that pass a threshold test
19: for r = 1 to rmax do
20: Lr ← LOCATESIGNAL

(
χ(t), k, {m(x̂, Hr, a ? (1,w))}rmax

r=1,a∈Ar,w∈W

)
21: end for
22: L←

⋃rmax
r=1 Lr

23: χ′ ← ESTIMATEVALUES(x̂, χ(t), L, k, 1, O(log n), 5(ν2T−(t+1) + µ),∞)
24: χ(t+1) ← χ(t) + χ′

25: end for
26: return χ(T )

27: end procedure

Lemma 8.1. For any x, χ ∈ Cn, x′ = x − χ, any integer k ≥ 1, if parameters ν and µ satisfy ν ≥
||x′[k]||1/k, µ2 ≥ ||x′

[n]d\[k]
||22/k, then the following conditions hold. If S ⊆ [n]d is the set of top k el-

ements of x′ in terms of absolute value, and ||x′
[n]d\S ||∞ ≤ ν, then the output χ ∈ C[n]d of a call to

REDUCEINFNORM(x̂, χ, k, ν, R∗, µ) with probability at least 1 − N−10 over the randomness used in the call
satisfies

||x′ − χ||∞ ≤ 8(ν + µ) +O(1/N c), (all elements in S have been reduced to about ν + µ),
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where the O(||x′||∞/N c) term corresponds to polynomially small error in our computation of the semiequi-
spaced Fourier transform. Furthermore, we have χ[n]d\S ≡ 0. The number of samples used is bounded by
2O(d2)k log3N . The runtime is bounded by 2O(d2)k logd+3N .

Proof. We prove by induction on t that with probability at least 1−N−10 one has for each t = 0, . . . , T − 1

(1) ||(x′ − χ(t))S ||∞ ≤ 8(ν2T−t + µ)

(2) χ(t)

[n]d\S ≡ 0

(3) |(x′i − χ(t))i| ≤ |x′i| for all i ∈ [n]d

for all such t.
The base t = 0 holds trivially. We now prove the inductive step. First, since r = C logN for a constant

C > 0, we have by Lemma 2.12 that each i ∈ S is isolated under at least a 1 −
√
α fraction of hashings

H1, . . . ,Hrmax with probability at least 1 − 2−Ω(
√
αrmax) ≥ 1 − N−10 as long as C > 0 is sufficiently large.

This lets us invoke Lemma 6.3 with S∗ = ∅. We now use Lemma 6.3 to obtain bounds on functions ehead and
etail applied to our hashings {Hr} and vector x′. Note that ehead and etail are defined in terms of a set S ⊆ [n]d

(this dependence is not made explicit to alleviate notation). We use S = [k̃], i.e. S is the top k elements of x′.
The inductive hypothesis together with the second part of Lemma 6.3 gives for each i ∈ S

||eheadS ({Hr}, x′, χ(t))||∞ ≤ (Cα)d/2||(x′ − χ(t))S ||∞.
To bound the effect of tail noise, we invoke the second part of Lemma 6.6, which states that if rmax = C logN
for a sufficiently large constant C > 0 , we have ||etailS ({Hr,Ar}, x′)||∞ = O(

√
αµ).

These two facts together imply by the second claim of Corollary 5.2 that each i ∈ S such that

|(x′ − χ(t))i| ≥ 20
√
α||(x′ − χ(t))S ||∞ + 20

√
αµ

is located. In particular, by the inductive hypothesis this means that every i ∈ S such that

|(x′ − χ(t))i| ≥ 20
√
α(ν2T−t + 2µ) + (4µ)

is located and reported in the list L . This means that

||(x′ − χ(t))[n]d\L||∞ ≤ 20
√
α(ν2T−t + 2µ) + (4µ),

and hence it remains to show that each such element inL is properly estimated in the call to ESTIMATEVALUES,
and that no elements outside of S are updated.

We first bound estimation quality. First note that by part (3) of the inductive hypothesis together with
Lemma 9.1, (1) one has for each i ∈ L

Pr[|χ′ − (x′ − χ(t))i| >
√
α · (ν + µ)] < 2−Ω(rmax) < N−10,

as long as rmax ≥ C logN for a sufficiently large constant C > 0. This means that all elements in the list L
are estimated up to an additive (ν + µ)/10 ≤ (ν2T−t + µ)/10 term as long as α is smaller than an absolute
constant. Putting the bounds above together proves part (1) of the inductive step.

To prove parts (2) and (3) of the inductive step, we recall that the only elements i ∈ [n]d that are updated are
the ones that satisfy |χ′| ≥ 5(ν2T−(t+1) + µ). By the triangle inequality and the bound on additive estimation
error above that

|(x′ − χ(t))i| ≥ 5(ν2T−(t+1) + µ)− (ν + µ)/10 > 4(ν2T−(t+1) + µ) ≥ 4(ν + µ).

Since |(x′ − χ(t))i| ≤ |xi| by part (2) of the inductive hypothesis, we have that only elements i ∈ [n]d with
|x′i| ≥ 4(ν + µ) are updated, but those belong to S since ||x′

[n]d\S ||∞ ≤ ν by assumption of the lemma. This

proves part (3) of the inductive step. Part (2) of the inductive step follows since |(x′−χ(t)−χ′)i| ≤ (ν+µ)/10
by the additive error bounds above, and the fact that |(x′ − χ(t))i| > 4(ν + µ). This completes the proof of the
inductive step and the proof of correctness.
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Sample complexity and runtime Since HASHTOBINS uses B · F d samples by Lemma 9.2, the sample
complexity of location is bounded by

B · F d · rmax · cmax · |W| = 2O(d2)k log3N.

Each call to ESTIMATEVALUES uses B · F d · k · rmax samples, and there are O(logN) such calls overall,
resulting in sample complexity of

B · F d · rmax · logN = 2O(d2)k log2N.

Thus, the sample complexity is bounded by 2O(d2)k log3N . The runtime bound follows analogously.

8.2 Recovery at constant SNR

The algorithm is given by

Algorithm 5 RECOVERATCONSTANTSNR(x̂, χ, k, ε)
1: procedure RECOVERATCONSTANTSNR(x̂, χ, k, ε)
2: B ← (2π)4d·F · k/(εαd)
3: Choose Σ ∈Md×d, q ∈ [n]d uniformly at random, let π := (Σ, q) and let Hr := (πr, B, F )
4: Let A ← C log logN elements of [n]d × [n]d sampled uniformly at random with replacement
5: W ← {0d}, ∆← 2b

1
2

log2 log2 nc . 0d is the zero vector in dimension d
6: for g = 1 to dlog∆ ne do
7: W ←W ∪

⋃d
s=1 n∆−g · es . es is the unit vector in direction s

8: end for
9: for w ∈ W do

10: m(x̂, H, a ? (1,w))← HASHTOBINS(x̂, 0, (H, a ? (1,w))) for all a ∈ A,w ∈ W
11: end for
12: L← LOCATESIGNAL

(
χ(t), k, {m(x̂, H, a ? (1,w))}a∈A,w∈W

)
13: χ′ ← ESTIMATEVALUES(x̂, χ, 2k, ε, O(logN), 0)
14: L′ ←top 4k elements of χ′

15: return χ+ χ′L′
16: end procedure

Our analysis will use

Lemma 8.2 (Lemma 9.1 from [IKP14]). Let x, z ∈ Cn and k ≤ n. Let S contain the largest k terms of x, and
T contain the largest 2k terms of z. Then ||x− zT ||22 ≤ ||x− xS ||22 + 4||(x− z)S∪T ||22.

Lemma 3.4 For any ε > 0, x̂, χ ∈ CN , x′ = x − χ and any integer k ≥ 1 if ||x′[2k]||1 ≤ O(||x[n]d\[k]||2
√
k)

and ||x′
[n]d\[2k]

||22 ≤ ||x[n]d\[k]||22, the following conditions hold. If ||x||∞/µ = NO(1), then the output χ′ of
RECOVERATCONSTANTSNR(x̂, χ, 2k, ε) satisfies

||x′ − χ′||22 ≤ (1 +O(ε))||x[n]d\[k]||22

with at least 99/100 probability over its internal randomness. The sample complexity is 2O(d2) 1
εk logN , and

the runtime complexity is at most 2O(d2) 1
εk logd+1N.

Remark 8.3. We note that the error bound is in terms of the k-term approximation error of x as opposed to the
2k-term approximation error of x′ = x− χ.
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Proof. Let S denote the top 2k coefficients of x′. We first derive bounds on the probability that an element
i ∈ S is not located. Recall that by Lemma 5.1 for any i ∈ S if

1. eheadi (H,x′, 0) < |x′i|/20;

2. etaili (H,A ? (1,w), x′) < |x′i|/20 for all w ∈ W;

3. for every s ∈ [1 : d] the set A ? (0, es) is balanced (as per Definition 2.13),

then i ∈ L, i.e. i is successfully located in LOCATESIGNAL.
We now upper bound the probability that an element i ∈ S is not located. We let µ2 := ||x[n]d\k||22/k to

simplify notation.

Contribution from head elements. We need to bound, for i ∈ S, the quantity

eheadi (H,x′, 0) = G−1
oi(i)
·
∑

j∈S\{i}

Goi(j)|x
′
j |.

Recall that m(x̂, H, a ? (1,w)) = HASHTOBINS(x̂, 0, (H, a ? (1,w))), and let m := m(x̂, H, a ? (1,w)) to
simplify notation. By Lemma 2.9, (1) one has

EH [ max
a∈[n]d

|G−1
oi(i)

ω−a
T Σimh(i) − (x′S)i|] ≤ (2π)d·F · Cd||x′S ||1/B + µ/N2 (38)

for a constant C > 0. This yields

EH [eheadi (H,x′, 0)] ≤ (2π)d·F · Cd||x′S ||1/B . (2π)d·F · Cdµk/B . αdCdεµ.

by the choice of B in RECOVERATCONSTANTSNR. Now by Markov’s inequality we have for each i ∈ [n]d

PrH [eheadi (H,x′, 0) > |x′i|/20] . αdCdεµ/|x′i| . αεµ/|x′i| (39)

as long as α is smaller than a constant.

Contribution of tail elements We restate the definitions of etail variables here for convenience of the reader
(see (9), (10), (11) and (12)).

We have

etaili (H, z, x) :=

∣∣∣∣∣∣G−1
oi(i)
·
∑

j∈[n]d\S

Goi(j)xjω
zT Σ(j−i)

∣∣∣∣∣∣ .
For any Z ⊆ [n]d we have

etaili (H,Z, x) := quant1/5z∈Z

∣∣∣∣∣∣G−1
oi(i)
·
∑

j∈[n]d\S

Goi(j)xjω
zT Σ(j−i)

∣∣∣∣∣∣ .
Note that the algorithm first selects sets Ar ⊆ [n]d × [n]d, and then accesses the signal at locations given by
Ar ? (1,w),w ∈ W (after permuting input space).

The definition of etaili (H,Ar, x′) for permutation π = (Σ, q) allows us to capture the amount of noise that
our measurements for locating a specific set of bits of Σi suffer from. Since the algorithm requires all w ∈ W
to be not too noisy in order to succeed (see preconditions 2 and 3 of Lemma 5.1), we have

etaili (H,A, x′) = 40µH,i(x) +
∑
w∈W

∣∣∣etaili (H,A ? (1,w), x′)− 40µH,i(x
′)
∣∣∣
+
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where for any η ∈ R one has |η|+ = η if η > 0 and |η|+ = 0 otherwise.
For each i ∈ S we now define an error event E∗i whose non-occurrence implies location of element i, and

then show that for each i ∈ S one has

PrH,A[E∗i ] .
αεµ2

|x′i|2
. (40)

Once we have (40), together with (39) it allows us to prove the main result of the lemma. In what follows we
concentrate on proving (40). Specifically, for each i ∈ S define

E∗i = {(H,A) : ∃w ∈ W s.t. etaili (H,A ? (1,w), x′) > |x′i|/20}.

Recall that etaili (H, z, x′) = HASHTOBINS(x̂[n]d\S , χ[n]d\S , (H, z)) by definition of the measurements m.
By Lemma 2.9, (3) one has, for a uniformly random z ∈ [n]d, that Ez[|etaili (H, z, x′)|2|] = µ2

H,i(x
′). By

Lemma 2.9, (2), we have that

EH [µ2
H,i(x

′)] ≤ (2π)2d·F · Cd‖(x− χ)[n]d\S‖22/B + µ2/N2 ≤ αεµ2. (41)

Thus by Markov’s inequality

Prz[etaili (H, z, x′)2 > (|x′i|/20)2] ≤ αε(µH,i(x′))2/(|x′i|/20)2.

Combining this with Lemma 9.5, we get for all τ ≤ (1/20)(|x′i|/20) and all w ∈ W

PrA[quant1/5z∈A?(1,w)e
tail
i (H, z, x′) > |x′i|/20|µ2

H,i(x
′) = τ ] < (4τ/(|x′i|/20))Ω(|A|). (42)

Equipped with the bounds above, we now bound Pr[E∗i ]. To that effect, for each τ > 0 let the event Ei(τ)
be defined as Ei(τ) = {µH,i(x′) = τ}. Note that since we assume that we operate on O(log n) bit integers,
µH,i(x

′) takes on a finite number of values, and hence Ei(τ) is well-defined. It is convenient to bound Pr[E∗i ]
as a sum of three terms:

PrH,A[E∗i ] ≤ PrH,A

etaili (H,A, x′) > |x′i|/20
∣∣∣ ⋃
τ≤
√
αεµ

Ei(τ)


+

∫ (1/8)(|x′i|/20)

√
αεµ

PrH,A
[
etaili (H,A, x′) > |x′i|/20 |Ei(τ)

]
Pr[Ei(τ)]dτ

+

∫ ∞
(1/8)(|x′i|/20)

Pr[Ei(τ)]dτ

We now bound each of the three terms separately for i such that |x′i|/20 ≥ 2
√
αεµH,i(x

′). This is sufficient
for our purposes, as other elements only contribute a small amount of `22 mass.

1. By (42) and a union bound overW the first term is bounded by

|W| · (
√
αεµ/(|x′i|/20))Ω(|A|) ≤ αεµ2/|x′i|2 · |W| · 2−Ω(|A|) ≤ αεµ2/|x′i|2. (43)

since |A| ≥ C log logN for a sufficiently large constant C > 0 in RECOVERATCONSTANTSNR.

2. The second term, again by a union bound overW and using (42), is bounded by∫ (1/8)(|x′i|/20)

√
αεµ

|W| · (4τ/(|x′i|/20))Ω(|A|)Pr[Ei(τ)]dτ

≤
∫ (1/8)(|x′i|/20)

√
αεµ

|W| · (4τ/(|x′i|/20))Ω(|A|)(4τ/(|x′i|/20))2Pr[Ei(τ)]dτ

(44)
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Since |A| ≥ C log logN for a sufficiently large constant C > 0 and (4τ/(|x′i|/20)) ≤ 1/2 over the
whole range of τ by our assumption that |x′i|/20 ≥ 2

√
αεµH,i(x

′), we have

|W| · (4τ/(|x′i|/20))Ω(|A|) ≤ |W| · (1/2)Ω(|A|) = o(1)

for each τ ∈ [
√
αεµ, (1/8)(|x′i|/20)]. Thus, (44) is upper bounded by∫ (1/8)(|x′i|/20)

√
αεµ

(4τ/(|x′i|/20))2Pr[Ei(τ)]dτ

.
1

(|x′i|/20)2

∫ (1/8)(|x′i|/20)

√
αεµ

τ2Pr[Ei(τ)]dτ

≤ αεµ2

(|x′i|/20)2

since ∫ (1/8)(|x′i|/20)

√
αεµ

τ2Pr[Ei(τ)]dτ ≤
∫ ∞

0
τ2Pr[Ei(τ)]dτ = EH [µ2

H,i(x
′)] = O(α)εµ2

by (41).

3. For the third term we have∫ ∞
(1/8)(|x′i|/20)

Pr[Ei(τ)]dτ = Pr[µH,i(x
′) > (1/8)(|x′i|/20)] .

αεµ2

|x′i|2

by Markov’s inequality applied to (41).

Putting the three estimates together, we get Pr[E∗i ] = O(α)εµ2

|x′i|2
. Together with (39) this yields for i ∈ S

Pr[i 6∈ L] .
αεµ2

|x′i|2
+
αεµ

|x′i|
.

In particular,

E

[∑
i∈S
|x′i|2 · 1i∈S\L

]
≤
∑
i∈S
|x′i|2Pr[i 6∈ L]

.
∑
i∈S
|x′i|2

(
αεµ

|x′i|
+
αεµ2

|x′i|2

)
. αεµ2k,

where we used the assumption of the lemma that ||x′[2k]||1 ≤ O(||x[n]d\[k]||2
√
k) and ||x′

[n]d\[2k]
||22 ≤ ||x[n]d\[k]||22

in the last line. By Markov’s inequality we thus have Pr[||x′S\L||
2
2 > εµ2k] < 1/10 as long as α is smaller than

a constant.
We now upper bound ||x′−χ′||22. We apply Lemma 8.2 to vectors x′ and χ′ with sets S and L′ respectively,

getting

||x′ − χ′L′ ||22 ≤ ||x′ − x′S ||22 + 4||(x′ − χ′)S∪L′ ||22
≤ ||x[n]d\[k]||22 + 4||(x′ − χ′)S\L||22 + 4||(x′ − χ′)S∩L||22
≤ ||x[n]d\[k]||22 + 4εµ2k + 4εµ2|S|
≤ ||x[n]d\[k]||22 +O(εµ2k),

where we used the fact that ||(x′ − χ′)S∩L||∞ ≤
√
εµ with probability at least 1 − 1/N over the randomness

used in ESTIMATEVALUES by Lemma 9.1, (3). This completes the proof of correctness.
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Sample complexity and runtime The number of samples taken is bounded by 2O(d2) 1
εk logN by Lemma 9.2,

the choice of B. The sampling complexity of the call to ESTIMATEVALUES is at most 2O(d2) 1
εk logN . The

runtime is bounded by 2O(d2) 1
εk logd+1N log logN for computing the measurements m(x̂, H, a ? (1,w)) and

2O(d2) 1
εk logd+1N for estimation.

9 Utilities

9.1 Properties of ESTIMATEVALUES

In this section we describe the procedure ESTIMATEVALUES (see Algorithm 6), which, given access to a signal
x in frequency domain (i.e. given x̂), a partially recovered signal χ and a target list of locations L ⊆ [n]d,
estimates values of the elements in L, and outputs the elements that are above a threshold ν in absolute value.
The SNR reduction loop uses the thresholding function of ESTIMATEVALUES and passes a nonzero threshold,
while RECOVERATCONSTANTSNR uses ν = 0.

Algorithm 6 ESTIMATEVALUES(x, χ, L, k, ε, ν, rmax)
1: procedure ESTIMATEVALUES(x, χ, L, k, ε, ν, rmax) . rmax controls estimate confidence
2: B ← (2π)4d·F · k/(εα2d)
3: for r = 0 to rmax do
4: Choose Σr ∈Md×d, qr, zr ∈ [n]d uniformly at random
5: Let πr := (Σr, qr), Hr := (πr, B, F ), F = 2d
6: ur ← HASHTOBINS(x̂, χ, χ, (Hr, zr))
7: . Using semi-equispaced Fourier transform (Corollary 10.2)
8: end for
9: L′ ← ∅ . Initialize output list to empty

10: for f ∈ L do
11: for r = 0 to rmax do
12: j ← hr(f)

13: wrf ← vr,jG
−1
of (f)ω

−zTr Σrf . Estimate x′f from each measurement
14: end for
15: wf ← median{wrf}

rmax
r=1 . Median is taken coordinatewise

16: If |wf | > ν then L′ ← L′ ∪ {f}
17: end for
18: return wL′
19: end procedure

Lemma 9.1 (`1/`2 bounds on estimation quality). For any ε ∈ (0, 1], any x, χ ∈ Cn, x′ = x − χ, any
L ⊆ [n]d, any integer k and any set S ⊆ [n]d, |S| ≤ 2k the following conditions hold. If ν ≥ ||(x − χ)S ||1/k
and µ2 ≥ ||(x − χ)[n]d\S ||22/k, then the output w of ESTIMATEVALUES(x̂, χ, L, k, ε, ν, rmax) satisfies the
following bounds if rmax is larger than an absolute constant.

For each i ∈ L

(1) Pr[|wi − x′i| >
√
εα(ν + µ)] < 2−Ω(rmax);

(2) E
[
||wi − x′i| −

√
εα(ν + µ)|+

]
≤
√
εα(ν + µ)2−Ω(rmax);

(3) E
[∣∣|wi − x′i|2 − εα(ν + µ)2

∣∣
+

]
≤ 2−Ω(rmax)ε(ν2 + µ2).
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The sample complexity is bounded by 1
ε2
O(d2)krmax. The runtime is bounded by 2O(d2) 1

εk logd+1Nrmax.

Proof. We analyze the vector ur ← HASHTOBINS(x̂, χ, (Hr, zr)) using the approximate linearity of HASH-
TOBINS given by Lemma A.1 (see Appendix A). Writing x′ = x′S + x′

[n]d\S , we let

uheadr := HASHTOBINS(x̂S , χS , (Hr, zr)) and utailr := HASHTOBINS(x̂[n]d\S , χ[n]d\S , (Hr, zr))

we apply Lemma 2.9, (1) to the first vector, obtaining

EHr,zr [|G−1
oi(i)

ω−z
T
r Σiuheadh(i) − (x′S)i|] ≤ (2π)d·F · Cd||xS ||1/B + µ/N2 (45)

Similarly applying Lemma 2.9, (2) and (3) to the utail, we get

EHr,zr [|G−1
oi(i)

ω−z
T
r Σiutailhr(i) − (x′[n]d\S)i|2] ≤ (2π)2d·F · Cd‖x′[n]d\S‖

2
2/B,

which by Jensen’s inequality implies

EHr,zr [|G−1
oi(i)

ω−a
T
r Σiutailh(i) − ((x− χ)[n]d\S)i|] ≤ (2π)d·F · Cd

√
‖x[n]d\S‖22/B

≤ (2π)d·F · Cdµ ·
√
k/B.

(46)

Putting (45) and (46) together and using Lemma A.1, we get

EHr,zr [|G−1
oi(i)

ω−z
T
r Σiuh(i) − (x− χ)i|] ≤ (2π)d·F · Cd(||xS ||1/B + µ ·

√
k/B). (47)

We hence get by Markov’s inequality together with the choice B = (2π)4d·F · k/(εα2d) in ESTIMATEVALUES

(see Algorithm 6)

PrHr,zr [|G−1
oi(i)

ω−z
T
r Σiuh(i) − (x− χ)i| >

1

2

√
εα(ν + µ)] ≤ (Cα)d/2. (48)

The rhs is smaller than 1/10 as long as α is smaller than an absolute constant.
Since wi is obtained by taking the median in real and imaginary components, we get by Lemma 9.4

|wi − x′i| ≤ 2median(|w1
i − x′i|, . . . , |wrmax

i − x′i|).

By (48) combined with Lemma 9.5 with γ = 1/10 we thus have

Pr{Hr,zr}[|wi − x
′
i| >
√
εα(ν + µ)] < 2−Ω(rmax).

This establishes (1). (2) follows similarly by applying the first bound from Lemma 9.5 with γ = 1/2 to
random variables Xr = |wri − xi|, r = 1, . . . , rmax and Y = |wi − xi|. The third claim of the lemma follows
analogously.

The sample and runtime bounds follow by Lemma 9.2 and Lemma 10.1 by the choice of parameters.

9.2 Properties of HASHTOBINS

Lemma 9.2. HASHTOBINS(x̂, χ, (H, a)) computes u such that for any i ∈ [n],

uh(i) = ∆h(i) +
∑
j

Goi(j)(x− χ)jω
aT Σj

where G is the filter defined in section 2, and ∆2
h(i) ≤ ‖χ‖

2
2/((R

∗)2N11) is a negligible error term. It takes

O(BF d) samples, and if ‖χ‖0 . B, it takes O(2O(d) ·B logdN) time.
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Algorithm 7 Hashing using Fourier samples (analyzed in Lemma 9.2)
1: procedure HASHTOBINS(x̂, χ, (H, a))
2: G← filter with B buckets, F = 2d . H = (π,B, F ), π = (Σq)
3: Compute y′ = Ĝ · PΣ,a,q(x̂− χ̂′), for some χ′ with ‖χ̂− χ̂′‖∞ < N−Ω(c) . c is a large constant
4: Compute uj =

√
NF−1(y′)(n/b)·j for j ∈ [b]d

5: return u
6: end procedure

Proof. Let S = supp(Ĝ), so |S| . (2F )d ·B and in fact S ⊂ B∞
F ·B1/d(0).

First, HASHTOBINS computes

y′ = Ĝ · PΣ,a,qx̂− χ′ = Ĝ · PΣ,a,qx̂− χ+ Ĝ · PΣ,a,qχ̂− χ′,

for an approximation χ̂′ to χ̂. This is efficient because one can compute (PΣ,a,qx̂)S with O(|S|) time and
samples, and PΣ,a,qχ̂

′
S is easily computed from χ̂′T for T = {Σ(j − b) : j ∈ S}. Since T is an image of an

`∞ ball under a linear transformation and χ is B-sparse, by Corollary 10.2, an approximation χ̂′ to χ̂ can be
computed in O(2O(d) ·B logdN) time such that |χ̂i − χ̂′i| < N−Ω(c) for all i ∈ T . Since ‖Ĝ‖1 ≤

√
N‖Ĝ‖2 =√

N‖G‖2 ≤ N‖G‖∞ ≤ N and Ĝ is 0 outside S, this implies that

‖Ĝ · PΣ,a,q(χ̂− χ′)‖2 ≤ ‖Ĝ‖1 max
i∈S
|(PΣ,a,q(χ̂− χ′))i| = ‖Ĝ‖1 max

i∈T
|(χ̂− χ′)i| ≤ N−Ω(c) (49)

as long as c is larger than an absolute constant. Define ∆ by ∆̂ =
√
NĜ ·PΣ,a,q(χ̂− χ′). Then HASHTOBINS

computes u ∈ CB such that for all i,

uh(i) =
√
NF−1(y′)(n/b)·h(i) =

√
NF−1(y)(n/b)·h(i) + ∆(n/b)·h(i),

for y = Ĝ · PΣ,a,qx̂− χ. This computation takes O(‖y′‖0 + B logB) . B log(N) time. We have by the
convolution theorem that

uh(i) =
√
NF−1(Ĝ · PΣ,a,q

̂(x− χ))(n/b)·h(i) + ∆(n/b)·h(i)

= (G ∗ F(PΣ,a,q
̂(x− χ)))(n/b)·h(i) + ∆(n/b)·h(i)

=
∑

π(j)∈[N ]

G(n/b)·h(i)−π(j)F(PΣ,a,q
̂(x− χ))π(j) + ∆(n/b)·h(i)

=
∑
i∈[N ]

Goi(j)(x− χ)jω
aT Σj + ∆(n/b)·h(i)

where the last step is the definition of oi(j) and Lemma 2.2.
Finally, we note that

|∆(n/b)·h(i)| ≤ ‖∆‖2 = ‖∆̂‖2 =
√
N‖Ĝ · PΣ,a,q(χ̂− χ′)‖2 ≤ N−Ω(c),

where we used (49) in the last step. This completes the proof.

9.3 Lemmas on quantiles and the median estimator

In this section we prove several lemmas useful for analyzing the concentration properties of the median estimate.
We will use
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Theorem 9.3 (Chernoff bound). LetX1, . . . , Xn be independent 0/1 Bernoulli random variables with
∑n

i=1 E[Xi] =
µ. Then for any δ > 1 one has Pr[

∑n
i=1Xi > (1 + δ)µ] < e−δµ/3.

Lemma 9.4 (Error bounds for the median estimator). Let X1, . . . , Xn ∈ C be independent random variables.
Let Y := median(X1, . . . , Xn), where the median is applied coordinatewise. Then for any a ∈ C one has

|Y − a| ≤2median(|X1 − a|, . . . , |Xn − a|)

=2
√

median(|X1 − a|2, . . . , |Xn − a|2).

Proof. Let i, j ∈ [n] be such that Y = re(Xi) + i · im(Xj). Suppose that re(Xi) ≥ re(a) (the other case is
analogous). Then since re(Xi) is the median in the list (re(X1), . . . , re(Xn)) by definition of Y , we have that
at least half of Xs, s = 1, . . . , n satisfy |re(Xs)− re(a)| > |re(Xi)− re(a)|, and hence

|re(Xi)− re(a)| ≤ median(|re(X1)− re(a)|, . . . , |re(Xn)− re(a)|). (50)

Since squaring a list of numbers preserves the order, we also have

(re(Xi)− re(a))2 ≤ median((re(X1)− re(a))2, . . . , (re(Xn)− re(a))2). (51)

A similar argument holds for the imaginary part. Combining

|Y − a|2 = (re(a)− re(Xi))
2 + (im(a)− im(Xi))

2

with (50) gives

|Y − a|2 ≤median((re(X1)− re(a))2, . . . , (re(Xn)− re(a))2)

+ median((im(X1)− im(a))2, . . . , (im(Xn)− im(a))2)

Noting that

|Y − a| = ((re(a)− re(Xi))
2 + (im(a)− im(Xi))

2)1/2 ≤ |re(a)− re(Xi)|+ |im(a)− im(Xi)|

and using (51), we also get

|Y − a| ≤median(|re(X1)− re(a)|, . . . , |re(Xn)− re(a)|)
+ median(|im(X1)− im(a)|, . . . , |im(Xn)− im(a)|).

The results of the lemma follow by noting that |re(X)− re(a)| ≤ |X−a| and |im(X)− im(a)| ≤ |X−a|.

Lemma 9.5. Let X1, . . . , Xn ≥ 0 be independent random variables with E[Xi] ≤ µ for each i = 1, . . . , n.
Then for any γ ∈ (0, 1) if Y ≤ quantγ(X1, . . . , Xn), then

E[|Y − 4µ/γ|+] ≤ (µ/γ) · 2−Ω(n)

and
Pr[Y ≥ 4µ/γ] ≤ 2−Ω(n).

Proof. For any t ≥ 1 by Markov’s inequality Pr[Xi > tµ/γ] ≤ γ/t. Define indicator random variables Zi by
letting Zi = 1 if Xi > tµ/γ and Zi = 0 otherwise. Note that E[Zi] ≤ γ/t for each i. Then since Y is bounded
above by the γn-th largest of {Xi}ni=1, we have Pr[Y > tµ/γ] ≤ Pr[

∑n
i=1 Zi ≥ γn]. As E[Zi] ≤ γ/t, this
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can only happen if the sum
∑n

i=1 Zi exceeds expectation by a factor of at least t. We now apply Theorem 9.3
to the sequence Zi, i = 1, . . . , n. We have

Pr

[
n∑
i=1

Zi ≥ γn

]
≤ e−(t−1)γn/3 (52)

by Theorem 9.3 invoked with δ = t − 1. The assumptions of Theorem 9.3 are satisfied as long as t > 2. This
proves the second claim we have t = 4 in that case.

For the first claim we have

E[Y · 1Y≥4·µ/γ ] ≤
∫ ∞

4
tµ · Pr[Y ≥ t · µ/γ]dt

≤
∫ ∞

4
tµe−(t−1)n/3dt (by (52))

≤ e−n/3
∫ ∞

4
tµe−(t−2)n/3dt

= O(µ · e−n/3)

as required.

10 Semi-equispaced Fourier Transform

In this section we give an algorithm for computing the semi-equispaced Fourier transform, prove its correctness
and give runtime bounds.

Algorithm 8 Semi-equispaced Fourier Transform in 2O(d)k logdN time

1: procedure SEMIEQUISPACEDFFT(x, c) . x ∈ C[n]d is k-sparse
2: Let B ≥ 2dk, be a power of 2d, b = B1/d

3: G, Ĝ′ ← d-th tensor powers of the flat window functions of [HIKP12a], see below
4: yi ← 1√

N
(x ∗G)i· n

2b
for i ∈ [2b]d.

5: ŷ ← FFT(y) . FFT on [2b]d

6: x̂′i ← ŷi for ||i||∞ ≤ b/2.
7: return x̂′
8: end procedure

We define filters G, Ĝ′ as d-th tensor powers of the flat window functions of [HIKP12a], so that Gi = 0 for
all ||i||∞ & c(n/b) logN , ‖G−G′‖2 ≤ N−c,

Ĝ′i =

{
1 if ||i||∞ ≤ b/2
0 if ||i||∞ > b

,

and Ĝ′i ∈ [0, 1] everywhere.
The following is similar to results of [DR93, IKP14].

Lemma 10.1. Let n be a power of two, N = nd, c ≥ 2 a constant. Let integer B ≥ 1, be a power of 2d,
b = B1/d. For any x ∈ C[n]d Algorithm 8 computes x̂′i for all ||i||∞ ≤ b/2 such that

|x̂′i − x̂i| ≤ ‖x‖2/N c

in cO(d)||x||0 logdN + 2O(d)B logB time.
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Proof. Define

z =
1√
N
x ∗G.

We have that ẑi = x̂iĜi for all i ∈ [n]d. Furthermore, because subsampling and aliasing are dual under the
Fourier transform, since yi = zi·(n/2b), i ∈ [2b]d is a subsampling of z we have for i such that ||i||∞ ≤ b/2 that

x̂′i = ŷi =
∑

j∈[n/(2b)]d

ẑi+2b·j

=
∑

j∈[n/(2b)]d

x̂i+2b·jĜi+2b·j

=
∑

j∈[n/(2b)]d

x̂i+2b·jĜ′i+2b·j +
∑

j∈[n/(2b)]d

x̂i+2b·j(Ĝi+2b·j − Ĝ′i+2b·j)

=
∑

j∈[n/(2b)]d

x̂i+2b·jĜ′i+2b·j +
∑

j∈[n/(2b)]d

x̂i+2b·j(Ĝi+2b·j − Ĝ′i+2b·j).

For the second term we have using Cauchy-Schwarz∑
j∈[n/(2b)]d

x̂i+2b·j(Ĝi+2b·j − Ĝ′i+2b·j) ≤ ||x||2||Ĝ− Ĝ′||2 ≤ ||x||2/N c.

For the first term we have ∑
j∈[n/(2b)]d

x̂i+2b·jĜ′i+2b·j = x̂i · Ĝ′i+2b·0 = x̂i

for all i ∈ [2b]d such that ||i||∞ ≤ b, since for any j 6= 0 the argument of Ĝ′i+2b·j is larger than b in `∞ norm,
and hence Ĝ′i+2b·j = 0 for all j 6= 0.

Putting these bounds together we get that

|x̂′i − x̂i| ≤ ‖x̂‖2‖Ĝ− Ĝ′‖2 ≤ ‖x‖2N−c

as desired.
The time complexity of computing the FFT of y is 2O(d)B logB. The vector y can be constructed in time

cO(d)||x||0 logdN . This is because the support of Gi is localized so that each nonzero coordinate i of x only
contributes to cO(d) logdN entries of y.

We will need the following simple generalization:

Corollary 10.2. Let n be a power of two, N = nd, c ≥ 2 a constant, and Σ ∈ Md×d, q ∈ [n]d. Let integer
B ≥ 1 be a power of 2d, b = B1/d. Let S = {Σ(i− q) : i ∈ Z, ||i||∞ ≤ b/2}. Then for any x ∈ C[n]d we can
compute x̂′i for all i ∈ S time such that

|x̂′i − x̂i| ≤ ‖x‖2/N c

in cO(d)||x||0 logdN + 2O(d)B logB time.
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Proof. Define x∗j = ωqjxΣ−T j . Then for all i ∈ [n],

x̂Σ(i−q) =
1√
N

∑
j∈[n]d

ω−j
T Σ(i−q)xj

=
1√
N

∑
j∈[n]d

ω−j
T Σiωj

T Σqxj

=
1√
N

∑
j′=ΣT j∈[n]d

ω−(j′)T iω(j′)T qxΣ−T j′

=
1√
N

∑
j′=ΣT j∈[n]d

ω−(j′)T ix∗j′

= x̂∗i .

We can access x̂∗i with O(d2) overhead, so by Lemma 10.1 we can approximate x̂Σ(i−q) = x̂∗i for ||i||∞ ≤ k in
cO(d)k logdN time.
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A Omitted proofs

Proof of Lemma 2.11: We start with

EΣ,q[|π(S \ {i}) ∩ B∞(n/b)·h(i)((n/b) · 2
t)|] =

∑
j∈S\{i}

PrΣ,q[π(j) ∈ B∞(n/b)·h(i)((n/b) · 2
t)] (53)

Recall that by definition of h(i) one has ||(n/b) · h(i)− π(i)||∞ ≤ (n/b), so by triangle inequality

||π(j)− π(i)||∞ ≤ ||π(j)− (n/b)h(i)||∞ + ||π(i)− (n/b)h(i)||∞,

so

EΣ,q[|π(S \ {i}) ∩ B∞(n/b)·h(i)((n/b) · 2
t)|] ≤

∑
j∈S\{i}

PrΣ,q[π(j) ∈ B∞π(i)((n/b) · (2
t + 1))]

≤
∑

j∈S\{i}

PrΣ,q[π(j) ∈ B∞π(i)((n/b) · 2
t+1)]

(54)

Since πΣ,q(i) = Σ(i− q) for all i ∈ [n]d, we have

PrΣ,q[π(j) ∈ B∞π(i)((n/b) · 2
t+1)] = PrΣ,q[||Σ(j − i)||∞ ≤ (n/b) · 2t+1] ≤ 2(2t+2/b)d,

where we used the fact that by Lemma 2.5, for any fixed i, j 6= i and any radius r ≥ 0,

PrΣ[‖Σ(i− j)‖∞ ≤ r] ≤ 2(2r/n)d (55)

with r = (n/b) · 2t+1.
Putting this together with (54), we get

EΣ,q[|π(S \ {i}) ∩ B∞(n/b)·h(i)((n/b) · 2
t)|] ≤ |S| · 2(2t+2/b)d ≤ (|S|/B) · 2(t+2)d+1

≤ 1

4
(2π)−d·F · 64−(d+F )αd2(t+2)d+1.

Now by Markov’s inequality we have that i fails to be isolated at scale t with probability at most

PrΣ,q

[
|π(S \ {i}) ∩ B∞π(i)((n/b) · 2

t)| > (2π)−d·F · 64−(d+F )αd/22(t+2)d+t+1
]
≤ 1

4
2−tαd/2.

Taking the union bound over all t ≥ 0, we get

PrΣ,q[i is not isolated] ≤
∑
t≥0

1

4
2−tαd/2 ≤ 1

2
αd/2 ≤ 1

2
α1/2

as required.

Before giving a proof of Lemma 2.9, we state the following lemma, which is immediate from Lemma 9.2:
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Lemma A.1. Let x, x1, x2, χ, χ1, χ2 ∈ CN , x = x1 + x2, χ = χ1 + χ2. Let Σ ∈ Md×d, q, a ∈ [n]d,
B = bd, b ≥ 2 an integer. Let

u = HASHTOBINS(x̂, χ, (H, a))

u1 = HASHTOBINS(x̂1, χ1, (H, a))

u2 = HASHTOBINS(x̂2, χ2, (H, a)).

Then for each j ∈ [b]d one has

|G−1
oi(i)

ujω
−aT Σi − (x− χ)i|p . |G−1

oi(i)
u1
jω
−aT Σi − (x1 − χ1)i|p + |G−1

oi(i)
u2
jω
−aT Σi − (x2 − χ2)i|p

+N−Ω(c)

for p ∈ {1, 2}, where O(c) is the word precision of our semi-equispaced Fourier transform computations.

Proof of Lemma 2.9: By Lemma 2.5, for any fixed i and j and any t ≥ 0,

PrΣ[‖Σ(i− j)‖∞ ≤ t] ≤ 2(2t/n)d.

Per Lemma 9.2, HASHTOBINS computes the vector u ∈ CB given by

uh(i) −∆h(i) =
∑
j∈[n]d

Goi(j)x
′
jω

aT Σj (56)

for some ∆ with ‖∆‖2∞ ≤ N−Ω(c). We define the vector v ∈ Cn by vΣj = x′jGoi(j), so that

uh(i) −∆h(i) =
∑
j∈[n]d

ωa
T jvj =

√
Nv̂a

so
uh(i) − ωa

T ΣiGoi(i)x
′
i −∆h(i) =

√
N(v̂{Σi})a.

We have by (56) and the fact that (X + Y )2 ≤ 2X2 + 2Y 2

|G−1
oi(i)

ω−a
T Σiuh(i) − x′i|2 = G−2

oi(i)
|uh(i) − ωa

T ΣiGoi(i)x
′
i|2

≤ 2G−2
oi(i)
|uh(i) − ωa

T ΣiGoi(i)x
′
i −∆h(i)|2 + 2G−2

oi(i)
∆2
h(i)

= 2G−2
oi(i)
|
∑
j∈[n]d

Goi(j)x
′
jω

aT Σj |2 + 2G−2
oi(i)

∆2
h(i)

By Parseval’s theorem, therefore, we have

Ea[|G−1
oi(i)

ω−a
T Σiuh(i) − x′i|2] ≤ 2G−2

oi(i)
Ea[|

∑
j∈[n]d

Goi(j)x
′
jω

aT Σj |2] + 2Ea[∆2
h(i)]

= 2G−2
oi(i)

(‖v{Σi}‖
2
2 + ∆2

h(i))

. N−Ω(c) +
∑

j∈[n]d\{i}

|x′jGoi(j)|
2

. N−Ω(c) +
∑

j∈[n]d\{i}

|x′jGoi(j)|
2

. N−Ω(c) + µ2
Σ,q(i).

(57)
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We now prove (2). Recall that the filter G approximates an ideal filter, which would be 1 inside B∞0 (n/b)
and 0 everywhere else. We use the bound onGoi(j) = Gπ(i)−π(j) in terms of ||π(i)−π(j)||∞ from Lemma 2.3,
(2). In order to leverage the bound, we partition [n]d = B∞(n/b)·h(i)(n/2) as

B∞(n/b)·h(i)(n/2) = B∞(n/b)·h(i)(n/b) ∪
log2(b/2)⋃
t=1

(
B∞(n/b)·h(i)((n/b)2

t) \ B∞(n/b)·h(i)((n/b)2
t−1)

)
.

For simplicity of notation, let X0 = B∞(n/b)·h(i)(n/b) and Xt = B∞(n/b)·h(i)((n/b) · 2
t) \B∞(n/b)·h(i)((n/b) · 2

t−1)
for t ≥ 1. For each t ≥ 1 we have by Lemma 2.3, (2)

max
π(l)∈Xt

|Goi(l)| ≤ max
π(l)6∈B∞

(n/b)·h(i)
((n/b)2t−1)

|Goi(l)| ≤
(

2

1 + 2t−1

)F
.

Since the rhs is greater than 1 for t ≤ 0, we can use this bound for all t ≤ log2(b/2). Further, by Lemma 2.5
we have for each j 6= i and t ≥ 0

PrΣ,q[π(j) ∈ Xt] ≤ PrΣ,q[π(j) ∈ B∞(n/b)·h(i)((n/b) · 2
t)] ≤ 2(2t+1/b)d.

Putting these bounds together, we get

EΣ,q[µ
2
Σ,q(i)] = EΣ,q[

∑
j∈[n]d\{i}

|x′jGoi(j)|
2]

≤
∑

j∈[n]d\{i}

|x′j |2 ·
log2(b/2)∑
t=0

PrΣ,q[π(j) ∈ Xt] · max
π(l)∈Xt

|Goi(l)|

≤
∑

j∈[n]d\{i}

|x′j |2 ·
log2(b/2)∑
t=0

(2t+1/b)d ·
(

2

1 + 2t−1

)F

≤ 2F

B

∑
j∈[n]d\{i}

|x′j |2
+∞∑
t=0

2(t+1)d−F (t−1)

≤ 2O(d) ‖x′‖22
B

as long as F ≥ 2d and F = Θ(d). Recalling that G−1
oi(i)
≤ (2π)d·F completes the proof of (2).

The proof of (1) is similar. We have

EΣ,q[ max
a∈[n]d

|
∑

j∈[n]d\{i}

x′jGoi(j)ω
aT Σj |] ≤ EΣ,q[

∑
j∈[n]d\{i}

|x′jGoi(j)|] + |∆h(i)|

≤ |∆h(i)|+
∑

j∈[n]d\{i}

|x′j | ·
log2(b/2)∑
t=0

PrΣ,q[π(j) ∈ Xt] · max
π(l)∈Xt

|Goi(l)|

≤ |∆h(i)|+
∑

j∈[n]d\{i}

|x′j | ·
log2(b/2)∑
t=0

(2t+1/b)d ·
(

2

1 + 2t−1

)F

≤ |∆h(i)|+
2F

B

∑
j∈[n]d\{i}

|x′j |
+∞∑
t=0

2(t+1)d−F (t−1)

≤ |∆h(i)|+ 2O(d) ‖x′‖1
B

,

(58)
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where
∆h(i) . N−Ω(c).

Recalling that G−1
oi(i)
≤ (2π)d·F and R∗ ≤ ||x||∞/µ completes the proof of (1).
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