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Abstract

Learning graph cluster structure using few queries is a classical question in property
testing, with the fundamental special case, namely expansion testing, considered in the
seminal work of Goldreich and Ron[STOC’96]. The most recent results in this line of work
design clustering oracles for (k, ε)-clusterable graphs, which are graphs that can be parti-
tioned into k induced expanders with outer conductance bounded by ε� 1. These oracles,
given a graph whose vertex set can be partitioned into a disjoint union of k clusters (i.e.,
good expanders) with outer conductances bounded by ε � 1, provide query access to an
O(ε log k)-approximation to this ground truth clustering in time ≈ 2poly(k/ε)n1/2+O(ε) per
query.

Motivated by the rising interest in learning hierarchical structures in large networks, in
this paper we introduce (k, γ)-hierarchically clusterable graphs, a natural hierarchical analog
of classical (k, ε)-clusterable graphs; intuitively, these are graphs that exhibit pronounced
hierarchical structure. We give a hierarchical clustering oracle for this model, i.e. a small
space data structure that provides query access to a good hierarchical clustering at cost
≈ poly(k) · n1/2+O(γ) per query; notably, the dependence on k is polynomial, in contrast
to best known flat clustering oracles. The result relies on several structural properties of
hierarchically clusterable graphs that we hope will be of independent interest in sublinear
time spectral graph algorithms.
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1 Introduction

Clustering graph data is an important algorithmic problem. It has applications in a wide va-
riety of scientific disciplines from graph analysis to social science, statistics and more. The
overall objective in these problems is to partition the vertex set of the graph into vertex dis-
joint subgraphs where each of the subsets induce a “well connected” graph and such that the
subgraphs are sparsely connected to each other. A classically motivated measure for evalu-
ating cluster quality uses the notion of conductance. One natural graph clustering objective
motivated by conductance considers problem of partitioning the vertices of the graph into sub-
sets (called clusters) which have large inner conductance and a sparse edge boundary. Many
efficient algorithms [KVV04, NJW02, SM00, VL07] have been discovered for graph clustering
which use this objective, many of them relying on spectral techniques. Motivated by appli-
cations in big data analysis, a lot of recent research has focused on developing sublinear time
algorithms [CS04, MOP01, GKL+21] to cluster graph data. Such algorithms can typically
answer queries about the clustering without computing it explicitly at any point in time.

In this paper, we focus on the popular version of the problem where one assumes the existence
of a planted solution, namely that the input graph G = (V,E) admits a partitioning into a
disjoint union of k induced expanders C1, . . . , Ck with outer conductance bounded by ε � 1.
We refer to such instances as k-clusterable graphs and we (informally) define the flat-clustering
problem as the task of recovering an approximation to C1, . . . , Ck that is correct up to a small
missclassification error on every cluster. This problem has been extensively studied in the
property testing framework as well as local computation models. Its testing version, where one
essentially wants to determine k, the number of clusters in G, in sublinear time, generalizes
the well-studied problem of testing graph expansion, where one wants to distinguish between
an expander (i.e. a good single cluster) and a graph with a sparse cut (i.e. at least two
clusters). Goldreich and Ron [GR11] showed that expansion testing requires Ω(n1/2) queries,
then [CS07, KS08, NS10] developed algorithms to distinguish an expander from a graph that is
far from a graph with conductance ε in time ≈ n1/2+O(ε), which the recent work of [CKK+18]
showed to be tight. The setting of k > 2 has seen a lot of attention recently [CPS15, CKK+18,
Pen20, GKL+21]. The latest result is due to [GKL+21], where the authors design a clustering
oracle, i.e. small space data structure that allows fast query access to the clustering. The
clustering oracle of [GKL+21] recovers every cluster up to O(ε · log k) misclassification error
and only needs ≈ n1/2+O(ε) preprocessing and query time, which is close to optimal due to the
aforementioned lower bound of [CKK+18]. The focus of this paper is to understand the power
of sublinear algorithms in discovering the hierarchical cluster structure of k-clusterable graphs.

The hierarchical clustering problem is the task of partitioning vertices of a graph into nested
clusters, naturally represented by a rooted tree whose leaves correspond to the vertices and
whose internal nodes represent clusters of their descendant leaves (such a tree is referred to as
a hierarchical tree). Dasgupta [Das16] introduced a hierarchical clustering objective function
and thereby initiated a line of work on developing algorithms that optimize the cost of the
hierarchical tree. The main question we address in this work is:

Is it possible to design a clustering oracle that recovers the underlying hierarchical
structure of a k-clusterable graph in sublinear time (i.e., a hierarchical clustering oracle)?

Hierarchically-clusterable graphs: We say that graph G is hierarchically-clusterable if
there exists a nested sequence of partitions into clusters of increasing outer conductance, each
partition refining the previous one.

In particular, for every cluster S that belongs to the partition at level h, we assume that
φin(S) ≥ ϕh and φout(S) ≤ O(ϕh−1). Therefore, ϕh increases as we move from coarse partitions
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towards refined partitions. We say that graph G is (k, γ)-hierarchically-clusterable if the last
partition (i.e the most refined one) consists of k clusters with constant inner conductance and
the conductance of clusters increases by about a factor 1/γ as we go down the tree level by
level, i.e., the conductance of clusters at level h is at least ϕh = ϕ0/γ

h. Moreover, each cluster
gets split into few subclusters of comparable size (see Definition 6 for the formal version).

We show that it is possible to recover the hierarchical structure of well-separated hierar-
chically clusterable graphs sufficiently precisely to obtain a constant factor approximation to
Dasgupta cost:

Theorem 1. [Informal version of Theorem 2] For sufficiently small constant γ ∈ (0, 1) there ex-
ists a hierarchical clustering oracle with ≈ kO(1)n1/2+O(γ) preprocessing time and ≈ kO(1)n1/2+O(γ)

query time that achieves a constant factor approximation to Dasgupta cost on (k, γ)-hierarchically
clusterable graphs.

In what follows we formally define our model and formally state the main result, then give
an overview of the technical contributions, and finally give the detailed proofs.

1.1 Problem Statement and Main Definitions

We start by defining

Definition 1 (Clustering). For a graph G = (V,E) a clustering of G is a collection of disjoint
subsets of the vertex set V of G.

Note that our notion of clustering allows for outliers, i.e. a clustering of G is not necessarily
a partition of V . The main object of study in this paper is

Definition 2 (Hierarchical clustering). A hierarchical clustering of a graph G = (V,E) is
a sequence P = (P0, . . . ,PH) of nested clusterings of V , where P0 = {V }. We say that
the sequence (P0, . . . ,PH) is nested if for every h ∈ [H] and every S ∈ Ph there exists a
unique S∗ ∈ Ph−1 such that S ⊆ S∗. We call such an S∗ the parent of S in P and write
S∗ = ParentP(S), often omitting the subscript when it is clear from context.

We write S ∈ P if S ∈ Ph for some h ∈ [H]. We say that a hierarchical clustering P is
isomorphic to a hierarchical clustering P if there exists a one-to-one mapping σ of sets in P to
sets in P such that if for some S ∈ P and S ∈ P one has σ(S) = S, then σ(ParentP(S)) =
ParentP (S).

Definition 3 (Tree representation of a hierarchical clustering). Note that hierarchical clus-
terings P = (P0, . . . ,PH) are in one-to-one correspondence with rooted trees T whose leaves
are vertices in V and internal nodes are clusters in Ph for some h ∈ [H]. See Fig. 1 for an
illustration.

Dasgupta introduced a natural optimization framework for formulating hierarchical cluster-
ing tasks as an optimization problem [Das16]. We recall this framework now. Let T be any
rooted tree whose leaves are vertices of the graph. For any node u of T , let T [u] be the subtree
rooted at u, and let leaves(T [u]) ⊆ V denote the leaves of this subtree. For leaves x, y ∈ V , let
LCA(x, y) denote the lowest common ancestor of x and y in T . In other words, T [LCA(x, y)]
is the smallest subtree whose leaves contain both x and y.

Definition 4. (Dasgupta’s cost [Das16]) Dasgupta’s cost of the tree T for the graph G = (V,E)
is defined to be COST(T ) =

∑
{x,y}∈E |leaves(T [LCA(x, y)])|.

We will sometimes write COST(P) for a hierarchical clustering P to denote COST(T ) for
the tree T corresponding to P.
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a b c d f g h

hierarchical clustering P tree T representing P

a b c d f g h

a b c d f g h

approximate hierarchical clustering P tree T representing P

a b c d f g h

Figure 1: A hierarchical clustering P of {a, b, c, d, e, f, g, h} and the tree T representing P
together with an approximate clustering P and its tree T .

After its introduction, Dasgupta’s cost received a lot of attention from the research com-
munity [CC17, MW17, CKMM19, CCN19] and a O(

√
log n) algorithm is known for the prob-

lem [CC17]. Furthermore, [CC17] showed that it’s impossible to approximate Dasgupta’s cost
within a constant factor in general graphs under the Small-Set Expansion hypothesis [CNC18].
A very interesting recent line of research started in [CKM17] and continued in [MS21] studies
the approximability of Dasgupta’s cost on the class of random graphs (akin to the stochastic
block model) that exhibit planted hierarchical structure. For example, in [CKM17] the authors
consider the hierarchical stochastic block model and prove that it is possible to obtain better
approximation for it.

In this paper we initiate the study of sublinear time hierarchical clustering algorithms. We
define a notion of hierarchically clusterable graphs, which is essentially a class of graphs with
pronounced hierarchical clustering structure, and give a sublinear time hierarchical clustering
oracle for this model. We consider d-regular graphs throughout the paper1, and parameterize
the cluster structure of the graph using the notions of inner and outer conductance, defined
below and our main object of study is defined after:

Definition 5. (Inner and outer conductance) Let G = (V,E) be a d-regular graph. For a set
C ⊆ V and a set S ⊆ C, let E(S,C \ S) be the set of edges with one endpoint in S and the

other in C \S. The conductance of S within C is φGC(S) = |E(S,C\S)|
d·|S| . The outer conductance of

C is defined to be φGout(C) = φGV (C) = |E(C,V \C)|
d·|C| . The inner conductance of C ⊆ V is defined

to be φGin(C) = min
S⊆C,0<|S|≤ |C|

2

φGC(S) if |C| > 1 and one otherwise.

Definition 6 ((k, γ)-hierarchically clusterable graphs). A graphG = (V,E) is (k, γ)-hierarchically
clusterable if there exists a hierarchical clustering P = (P0, . . . ,PH) such that: (i) every Ph is
a partition of V ; (ii) the bottom level partition PH contains exactly k sets; (iii) for every level
h ∈ [H] and for every S ∈ Ph we have φGin (S) ≥ ϕh and φGout (S) ≤ O(ϕh−1), where ϕh−1 = γ ·ϕh
for 2 ≤ h ≤ H and ϕ0 ≤ γ ·ϕ1. We let ϕ = ϕH denote a lower bound on the inner conductance
of the k base clusters.

We note that settingH = 1, we immediately recover the classical notion of a (k, ε)-clusterable
graph, i.e. a graph that admits a partition into k induced expanders each with outer conductance
upper bounded by ε ∈ (0, 1) (in our case we will have ε = γ). This is a natural worst case
(i.e., robust) analog of the stochastic block model, and has been studied extensively in the
literature [CKM17]. Similarly, our model is a natural robust analog of the hierarchical stochastic
block model. We show in Section A that a natural class of random graphs with hierarchical

1Note that if the input graph is bounded degree, it can be turned into a d-regular graph by adding an
appropriate number of self-loops; this of course changes the notion of conductances somewhat.
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structure akin to the stochastic block model is (k, γ)-clusterable as per our definition. To
simplify notation throughout the paper we assume that the conductance of the base clusters
satisfies ϕ ≥ Ω(γ1/20), and that clusters in the ground truth hierarchical clustering P get
partitioned into constant number of subclusters of comparable size, i.e., for every S∗ ∈ P and
every child S of S∗ we have |S| ≥ β|S∗| for some β ∈ (0, 1). We assume β ≥ Ω(γ1/30) 2.

We now introduce a natural notion of approximation for hierarchical clusterings.

Definition 7. (D-approximation of a hierarchical clustering) A hierarchical clustering P is a D-
approximation of a hierarchical clustering P if (i) P is isomorphic to P (denote the isomorphism
by σ : P → P ) and if (ii) For every every cluster S ∈ P at level h ∈ [H] we have |S4S| ≤
D · ϕh−1 · |S|. where here and below for a cluster S ∈ P we use boldface S to denote its image
under the isomorphism σ, i.e., let S = σ(S).

Before describing our main result it is interesting to describe few interesting properties of
our definition of D-approximation of a hierarchical clustering.

Why the notion of (k, γ)-hierarchically clusterable is natural (i.e., why are in-
stances with planted solutions interesting). The study of graph clustering with planted
solutions has received a lot of attention from the research community on stochastic block model
(see, e.g. [Abb18] and references therein) as well as property-testing literature and sublinear
algorithms. The latter line of work was initiated by Goldreich and Ron [GR11] and has been
extended to various graph clustering algorithms that aim to recover the underlying ground-truth
solution [KPS08, NS10, CPS15, CKK+18, Pen20, GKL+21]. Another prominent example is the
Nibble algorithm of [ST13] (with many follow-up works, e.g. [AGPT16], providing improve-
ments) that guarantees finding sparse cuts in graphs when the sparsity is quite pronounced, yet
works very well and is commonly used in practice, where the sought-after cuts are not nearly as
sparse as the analysis requires. Our (k, γ)-hierarchically clusterable model is a natural extension
of (k, ϕ)-clusterable graphs, and we hope that it will lead to interesting algorithmic insights into
the hierarchical clustering problem.

Regularity assumption. Throughout the paper we consider d-regular graphs, which is a
clean and standard setting that has been considered in the property testing literature [GR11,
CPS15] as well as graph clustering community [GKL+21]. Some of the results in testing cluster
structure generalize to irregular graphs (e.g., [CKK+18]), and ours probably does too. However,
for simplicity in this paper we work with d-regular graphs.

Why the notion of D-approximate hierarchical clustering is natural. Note that
the definition above is a natural extension of what is achievable in flat clustering that has been
studied extensively (e.g. see [KVV04, NJW02]), where if every cluster has outer conductance
ϕout and inner conductance ϕin, one expects to be able to classify all but O(ϕout/ϕ

2
in)) fraction

of vertices per cluster (and the result of [GKL+21] gives an algorithm that misclassifies at
most O(ϕout log k) fraction of vertices). The guarantees of Definition 7 are quite a bit stronger,
however, as we do not divide the outer conductance ϕh−1 by the inner conductance of the
cluster at the same level. Instead, the loss parameter D will be set to a polynomial in the inner
conductance of the base clusters at level H.

Why significantly better approximation cannot be achieved. Note that one cannot
achieve a significantly better reconstruction quality. For example, suppose that H = 2 and
our input graph is a union of two induced expanders C1, C2, as well as a disjoint set Q of
≈ ϕoutn vertices each of which has d/2 random neighbors in C1 and d/2 random neighbors in
C2. Then with high probability the corresponding graph is (k, γ)-hierarchically clusterable, but

2Note that in our definition of (k, γ)-clusterable graphs we assume a lower bound on the conductance of the
base clusters ϕ = ϕH as a function of γ, as well as a lower bound on the worst case ratio β of the size of a child
cluster to the size of the parent cluster, again as a function of γ. This is to alleviate notation in the rest of the

paper. In particular, for a constant c > 0, we use the notation Oβ,ϕ(γc) to suppress factors of
(

1
β·ϕ

)O(1)

.
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the hierarchical clustering is not unique: the set Q of ‘outliers’ can be assigned either to the
first or the second cluster. Thus, one cannot recover the clustering up to a better than O(ϕout)
precision.

Approximate hierarchical clustering vs Dasgupta cost. Our notion of approxima-
tion for hierarchical clusterings is strong enough to imply approximation of Dasgupta cost of
corresponding trees:

Lemma 1. Let G = (V,E) be a (k, γ)-hierarchical clusterable graph and let P be the hierarchical-

clustering. If P is a D-approximation of P, then COST(P ) ≤ O
(
D
β

)
COST(P).

In particular, a D-approximate hierarchical clustering is also a good approximation to the
optimal tree in terms of Dasgupta cost:

Lemma 2. Let G = (V,E) be a (k, γ)-hierarchical clusterable graph and let P be the hierarchical-
clustering. Suppose that φin(G) ≥ ϕ0. Let P∗ be a hierarchical clustering of the graph G that

minimizes Dasgupta cost, then COST(P) ≤ O
(

1
β2

)
· COST(P∗).

The above lemmas are close to best possible: in order to approximate Dasgupta cost to within
a constant factor, a clustering essentially needs to be O(1)-approximate as per Definition 7.
Indeed, suppose that the hierarchical clustering P of G is balanced and b-ary in the sense that
at all levels clusters are partitioned into b ≥ 2 equal size subclusters, and the conductance of the
base clusters ϕ is constant. That way we have H = logb k, and the base clusters are of size n/k.
Suppose further that ϕh = γH−h · ϕ, where γ = 1/b + ε for every h = 1, . . . ,H, for a constant
ε > 0. One can verify that the Dasgupta cost of this instance is dominated by the cost of the
root cut, and that any hierarchical clustering P that yields a constant factor approximation
to Dasgupta cost on this instance must misclassify at most O(ϕ0) fraction of vertices across
the root cut, i.e. be O(1)-approximate in the sense of Definition 7. Similar instances can be
constructed in which Dasgupta cost is dominated by level h cuts for every h ∈ {1, . . . ,H}.3

1.2 Main Result

We are now ready to state our main result.

Definition 8. (Hierarchical clustering oracle) A randomized algorithm O is a D-approximate
(k, γ)-hierarchical clustering oracle if, when given query access to a d-regular graph G = (V,E)
that admits a (k, γ)-hierarchical clustering P, the algorithm O with high probability provides
consistent query access to a D-approximate hierarchical clustering P .

In the definition above the D-approximate clustering P is only a function of G and the
random seed of the oracle. Our main result is such an oracle:

Theorem 2. For every integer k ≥ 2, every H ∈ O(log k), every β, ϕ ∈ (0, 1), every γ ≤
O(min(ϕ20, β30)), every graph G = (V,E) that admits (k, γ)-hierarchical clustering, there exists

a D-approximate hierarchical clustering oracle (Definition 8) with D = O
(

1
β4·ϕ2

)
such that

• has Õ
(
(dk)O(1) · n1/2+Oβ,ϕ(γ)

)
preprocessing time, query time, and space.

• uses Õ
(
kO(1) · nOβ,ϕ(γ)

)
random bits.

The dependency of running time on d is unnecessary and is an artifact of the running time
of Algorithm 13 (from [CKK+18]) that counts the number of clusters at every level. This could
easily be adapted to run in time ≈ n1/2+O(γ) (without any dependency on d) for d-regular
graphs. However, for the simplicity of presentation of Section F we didn’t optimize factors d.

3One must note here that this particular instance does not satisfy our assumption that the ratio of child
cluster size to parent cluster size is lower bounded by β = Ω(γ1/30), and a slight relaxation of our notion of
D-approximate hierarchical clusterings would suffice under this assumption. However, such a relaxation would
not be as clean as our notion of approximation (Definition 7).
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1.3 Related Work

We briefly review developments in the area of algorithms for hierarchical clustering since the
introduction of Dasgupta’s objective function. Dasgupta designed an algorithm based on re-
cursive sparsest-cut that provides O(log3/2 n) approximation for his objective function. This
was improved by Charikar and Chatizafratis who showed that the recursive sparsest-cut algo-
rithm already returns a tree with approximation guarantee O(

√
log n) [CC17]. Furthermore,

they showed that it’s impossible to approximate Dasgupta’s cost withing constant factor in
general graphs under the Small-Set Expansion hypothesis. [CNC18] presents algorithms with
improved approximations to Dasgupta Cost when the underlying hierarchy satisfies some nice
constraints. [MW17, CKMM19, CCN19] give algorithms for hierarchical clustering that consider
maximization variants of Dasgupta Objective.

Relation to work on hierarchical clustering of clusterable graphs. A related hier-
archical version of the stochastic block model was studied in [CKM17]. In [CKM17] the input
graph is generated by including every edge independently with probability that depends on the
least common ancestor of the endpoints in an underlying hierarchical clustering of the vertices
(edges whose least common ancestor is closer to the root have lower probability, corresponding
to our notion of the outer conductance ϕh of level h cuts decreasing with h).

Furthermore for the algorithm of [CKM17] to work, the input graphs has to be very dense
(at least ≈

√
n vertex degrees). Their algorithm also does not recover the underlying tree (in

fact, they do not have a separation assumption on the level conductances), and does not operate
in sublinear time. Thus, the work is related in spirit, but not technically comparable to ours.

In a very recent and concurrent work [MS21] propose a new algorithm that obtains a
O(k22/ϕ10) approximation of the Dasgupta cost assuming that the input graph is k-clusterable.
Our algorithm differs on their work on several aspect. Our algorithm works in sublinear time and
recovers the underlying tree (in fact, also in their case they do not have a separation assumption
on the level conductances), our algorithm also obtains a better approximation factor although
under different assumptions (they assume a larger gap between inner and outer conductance at
the base level but do not have a separation assumption on the level conductances).

Two recent works, [AKLP22, ACL+22] consider the problem of hierarchical clustering un-
der Dasgupta objective in the streaming model. Both papers give a one pass Õ(n) memory
streaming algorithm which finds a tree with Dasgupta cost within an O(

√
log n) factor of the

optimum in polynomial time. Additionally, [AKLP22] also considers this problem in the query
model and presents a O(

√
log n) approximate hierachical clustering using Õ(n) queries without

making any clusterability assumptions of the input graph. On the other hand, our algorithms
assume the graph is hierachically clusterable and run in sublinear time.

Relation to work on k-clusterable graphs. The class of k-clusterable graphs, i.e. graphs
that can be partitioned into k expanders with small outer conductance, has been studied ex-
tensively since the seminal work of Goldreich and Ron on expansion testing [GR11]:

Definition 9. ((k, ϕ, ε)-clustering) A (k, ϕ, ε)-clustering of G is a partition of vertices V into
disjoint subsets C1, . . . , Ck such that for all i ∈ [k], φGin(Ci) ≥ ϕ, φGout(Ci) ≤ ε (Definition 5).
Graph G is called (k, ϕ, ε)-clusterable if there exists a (k, ϕ, ε)-clustering for G.

We note that our notion of a (k, γ)-hierarchically clusterable graphs is a natural extension
of this classical definition. In fact, if the number of layers H is equal to 1, then a (k, γ)-
hierarchically clusterable graph is exactly (k, ϕ, γ)-clusterable as per Definition 9. In particular,
note that our hierarchical clustering oracle achieves preprocessing and query time n1/2+O(γ),
which is the same as the n1/2+O(ε) runtime that is achievable for the classical clustering version
of the problem [GKL+21].

Very recently [KKLM22] studied the problem of hierachical clustering of (k, ϕ, ε)-clusterable
graphs in the query model augmented with cluster id queries. In this stronger model, [KKLM22]
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gives algorithms which on input a (k, ϕ, ε)-clusterable graph G, return a O(
√

log k) approxima-
tion to the Dasgupta cost of G in sublinear time. This work is incomparable to ours, since
the access model is stronger (it allows cluster id queries), but not hierarchical clusterability
assumption is made and no hierarchical clustering oracle is obtained, i.e. only Dasgupta cost
is estimated. The techniques used by [KKLM22] are very different from ours, modulo the fact
that both use the dot product oracle of [GKL+21].

2 Technical Overview

In this section we give an overview of the main ideas that go into the proof of Theorem 2.
We denote the input (k, γ)-hierarchically-clusterable graph by G = (V,E) (Definition 6), the
corresponding hierarchical clustering by P = (Ph)h∈[H] and the corresponding ground truth tree
by T .4 Our goal is to design an efficient local computation algorithm that provides fast query
access to a hierarchical clustering P that D-approximates P. Specifically, for every cluster
S ∈ P at level h and the corresponding cluster S ∈ P must satisfy

|S4S| ≤ |S| ·O(ϕh−1). (1)

In other words, the misclassification error at every level must be on the order of outer conduc-
tance of the corresponding level cuts. Let T be the tree corresponding to P . Since T has n
leaves, we never construct it explicitly, but rather obtain a local computation algorithm for it
with small preprocessing and query time – we describe these phases of the algorithm below,
and then discuss the main challenges in the analysis as well as the main ideas behind their
resolution.

In the preprocessing phase, we construct a sketch T̃ of the tree T by essentially sampling
a few vertices in V (specifically, ≈ nO(γ) · kO(1) vertices) and constructing a good hierarchical
clustering on the sample – see ConstructTree (Algorithm 3 in Section 4.1). The construction
proceeds top down, starting from the root of the tree, which corresponds to a single cluster that
includes all vertices in V , and then iteratively refining the clusters – see RefinePartition
(Algorithm 4 in Section 4.1).

In the query phase the approximate clustering P is then defined by essentially extending
the clustering of the sample to the entire graph. This is done using the procedure Oracle
(Algorithm 5 in Section 4.1). For every h ∈ [H], let P h = (S1, . . . ,Sκh) denote the hierarchical
clustering that we aim to construct, where κh = |Ph| is the number of clusters at level h in the
ground truth clustering P. The procedure Oracle proceeds top down. Having defined P h−1,
it first calculates κh, the number of clusters at level h in the ground truth clustering 5 Ph and
then for every i ∈ [κh] defines the approximate cluster Si ⊆ V by letting

Si =
{
z ∈ V : Oracle(G, z, T̃ ,D) = i

}
,

thereby defining P h. The runtime of Oracle is roughly n1/2+O(γ).
In what follows we outline the obstacles involved in designing ConstructTree and Ora-

cle and how we overcome them. For sake of simplicity in the technical overview we explain how
our techniques can be used to construct the tree T explicitly, even though this would take Ω(n)
time. Then in the next section we will show how our approach leads to a sublinear preprocessing
and query time.

Refining P h: how one could use known techniques and why they fail. Consider
the h-th iteration of RefinePartition, where we would like to construct P h that should

4Theorem 7 shows that the model of (k, γ)-hierarchically-clusterable graphs contains non-trivially interesting
families of graphs. In particular, this theorem shows that an explicit family of graphs, which belong to the
Hierarchical Stochastic Block Model of [CKM17], are (k, γ)-hierarchically clusterable.

5This is done using existing cluster structure testing results, namely [CKK+18] – see line 4 of Algorithm 3
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approximate Ph, the ground truth partition at level h. Let κh = |Ph| denote the number of
clusters at level h in Ph. As per (1) our goal is to recover every cluster S ∈ Ph up to O(ϕh−1)
misclassification error, i.e. we need to solve the flat clustering problem for every level h up to
error O(ϕh−1). The central challenge here is the fact that known techniques (e.g. [GKL+21])
only allow one to recover every cluster with precision ≈ ϕh−1/ϕ

2
h, only ensures that for every

cluster S ∈ Ph and the corresponding cluster S ∈ P satisfy

|S4S| ≤ |S| ·O(ϕh−1/ϕ
2
h).

This is because the partition Ph consists of clusters S ∈ Ph with inner conductance φin(S) ≥
ϕh and outer conductance φout(S) ≤ ϕh−1. Not only is this clearly insufficient, but furthermore
this guarantee becomes meaningless in our setting, since we are thinking of ϕh−1 ≈ γ · ϕh and
ϕh small, so that ϕh−1/ϕ

2
h is quite possibly larger than 1. This means that existing results

on flat clustering are simply not applicable! The squaring of the inner conductance ϕh in the
denominator comes from Cheeger’s inequality and is clearly problematic. Our first step towards
achieving our result is to show that such a loss is unnecessary for (k, γ)-hierarchically-clusterable
graphs – the spectral gap turns out to be linear as opposed to quadratic in the inner conductance
for such graphs:

Lemma 3. [Linearity of the spectral gap] Let G = (V,E) be a (k, γ)-hierarchically-clusterable
graph (Definition 6). Let h ∈ [H], and S ∈ Ph be a cluster at level h. Let χ2(S) be the second
smallest eigenvalue of LS (Definition 13). Then we have

β3 · ϕ2

300
· φGin (S) ≤ χ2 (S) ≤ 2 · φGin (S) .

Note the ϕ2 loss on the left hand side: since the bottom level clusters are arbitrary expanders
with inner conductance lower bounded by ϕ, this loss is unavoidable. However, Lemma 3 shows
that the eigenvalues of the Laplacian whose eigenvectors intuitively encode the partitions Ph
are much closer to the corresponding inner conductance than to its square. Fortunately, these
are the only eigenvalues and eigenvectors that we need to work with to obtain our main result.

In the following subsection we first establish a key property of hierarchically-clusterable
graphs i.e., hierarchically concentration of cluster centers around their ancestor cluster centers,
then using this property we sketch the proof of the linearity of the spectral gap (Lemma 3).

2.1 Linearity of the Spectral Gap

We outline the proof of Lemma 3. Fix a level h of the hierarchical partition, and let κ = |Ph|
denote the number of clusters in Ph. For every x ∈ V let fκx ∈ Rκ denote the κ-dimensional
spectral embedding of x, i.e. the vector whose coordinates are the values of the bottom κ
eigenvectors of the (normalized) Laplacian of G at x6. We then define κ-dimensional cluster
centers as follows:

Definition 10. (κ-dimensional center of a cluster) For any set S ⊆ V and any κ ∈ [n] we
define the κ-dimensional center of S as µS = 1

|S|
∑

x∈S f
κ
x , where fκx ∈ Rκ for vertex x ∈ V is

the κ-dimensional spectral embedding of x.

Using standard techniques in the literature (see Lemma 5 in Section 4.2) one can show that
for every vector α ∈ Rκ with ||α||2 = 1 vertices are concentrated around their respective cluster
centers along direction α:∑

S∈Ph

∑
x∈S
〈fκx − µS , α〉

2 ≤ O
(

λκ
minS∈Ph χ2(S)

)
. (2)

6One notes that fx is only well-defined up to orthogonal transformations, but this is enough – see Definition 11
for a more formal treatment.
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In this subsection first by induction we assume that the spectral gap is linear for clusters at
every level h ≥ h∗, i.e., χ2(S) ≥ Ω(ϕh) for every S ∈ Ph. Then using this inductive assumption
we prove that centers of refined clusters at level h > h∗ are concentrated around the centers of
their ancestor at level h∗, i.e., for every S∗ ∈ Ph∗ , S ∈ Ph where S is a descendent of S∗ we
have

||µS∗ − µS ||22 ≤
γ1/4

|S∗|
, (3)

(see Lemma 10 in Section 4.3). Then using (3) we prove the linearity of the spectral gap for
the next level (i.e., h∗ − 1).

Concentration of cluster centers around their ancestors’ centers (proof sketch):
Using the directional variance bound (2) one can show that the sum of outer products of embed-
dings fx ∈ Rκ (i.e.,

∑
x∈V f

κ
x f

κ
x
T = Ik×k) is well approximated spectrally by

∑
x∈V µxµ

T
x = Ik×k,

where µx is the center of cluster that contains vertex x (see Lemma 6 and Lemma 7):∣∣∣∣∣∣
∣∣∣∣∣∣
∑
S∈Ph

|S|µSµTS − Iκ×κ

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ 2 ·

√
λκ

minS∈Ph χ2(S)
, (4)

We now show that for every S∗ ∈ Ph∗ , S ∈ Ph′ , h∗ < h′, such that S is a descendent of S∗

we have ||µS∗ − µS || ≤ γ1/4

|S∗| , where κ = |Ph∗ | and µS∗ , µS are κ-dimensional center of S∗ and S

respectively. Let S∗ = Sh
∗
, Sh

∗+1, . . . , Sh
′−1, Sh

′
= S denote the path from the cluster S∗ ∈ Ph∗

to the cluster S ∈ Ph in tree T associated with P. For every cluster S, let ∆S = µS−µparent(S)

be the difference of the κ-dimensional center of a cluster to the κ-dimensional center of its
parent. In what follows we show that for every h ≥ h∗ + 1

||∆Sh ||22 ≤
2

|S|
·

√
γh−h∗

γ0.3
, (5)

which implies (3) by the triangle inequality and by summing a geometric series:

||µS∗ − µS ||22 ≤
h′∑

h=h∗+1

||∆Sh ||22 =
2

|S|

h′∑
h=h∗+1

√
γh−h∗

γ0.3
= O

(
γ1/4

|S|

)
.

It remains to establish (5) to complete the proof. (5) essentially follows because the subspace
spanned by the centers of the refined clusters is a close to the subspace spanned by the centers
of the coarse clusters. In particular, for every h ≥ h∗ + 1 we have∣∣∣∣∣∣
∣∣∣∣∣∣
∑
S∈Ph

|S|µSµST −
∑

S∈Ph−1

|S|µSµST
∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
S∈Ph

|S|µSµTS − Iκ×κ

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

S∈Ph−1

|S|µSµTS − Iκ×κ

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ 2 ·

√
λκ

minS∈Ph χ2(S)
+ 2 ·

√
λκ

minS∈Ph−1 χ2(S)
≤ 2 ·

√
γh−h∗

γ0.3
, (6)

where, the second inequality holds by (4) and the last inequality holds by the inductive assump-
tion of the linearity of the spectral gap on every level h ≥ h∗ (i.e., χ2(S) ≥ Ω(ϕh) for S ∈ Ph)
and also by λk ≤ O(ϕh∗−1) according to the multiway Cheeger inequalities. Now we show that∣∣∣∣∑

S∈Ph |S|µSµST −
∑

S∈Ph−1 |S|µSµST
∣∣∣∣

2
=
∣∣∣∣∑

S∈Ph+1 |S|∆S∆S
T
∣∣∣∣

2
as follows:
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∑
S∈Ph

|S|µSµTS =
∑

S′∈Ph−1

∑
S∈children(S′)

|S| (µS′ + ∆S) (µS′ + ∆S)T

=
∑

S′∈Ph−1

∑
S∈children(S′)

|S|∆S∆T
S + |S|µS′µS′T + µS′

 ∑
S∈children(S′)

|S|∆S

+

 ∑
S∈children(S′)

|S|∆S

µTS′

=
∑

S′∈Ph−1

∑
S∈children(S′)

|S|∆S∆T
S + |S|µS′µS′T (7)

where the first equality holds as ∆S = µS −µparent(S) = µS −µS′ and the last equality holds as
µS = ES′∈children(S)[µS′ ], hence,

∑
S∈children(S′) |S|∆S = 0. Therefore, by (6) and (7) we get

|S| · ||∆Sh ||22 ≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
S∈Ph

|S|∆S∆S
T

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ 2 ·

√
γh−h∗

γ0.3
,

as required in (5). The details are presented in Section 4.3 (Lemma 10).
Linearity of the spectral gap (proof sketch): We now outline the proof of Lemma 3.

The proof inductively proceeds from the most refined partition (at level H) to the crudest
partition (at level 0). For simplicity of the argument suppose that S∗ ∈ Ph∗ is a cluster with
two children S, S′ ∈ Ph∗+1. By induction we assume that the spectral gap is linear for all
levels h ≥ h∗ + 1, hence, for S, S′. Let u2 be the second eigenvector of LS (i.e., the normalized
Laplacian of the induced subgraph on S). Let µS , µS′ be the 2-dimentional center of cluster S
and S′ respectively. By linearity of the spectral gap for S, S′ and by (4) applied to the subgraph
G[S∗], one can verify that7

∣∣∣∣|S|µSµTS + |S′|µS′µTS′ − I2×2

∣∣∣∣
2
≤ 2 ·

√
χ2(S∗)

min(χ2(S), χ2(S′))
≤ O

(√
ϕh∗

ϕh∗+1

)
� 1, (8)

i.e. µS and µS′ are almost orthogonal. Now let ν(S) =
∑
x∈S u2(x)

|S| be the mean of second

eigenvector u2 for vertices in cluster S (and similarly for S′). By near orthogonality of µS and
µS′ we have that ν(S) is far from ν(S′) (i.e., |ν(S)− ν(S′)| ≥ 1

2
√
|S|

). Moreover, by (3) we have

that the centers of descendant clusters are concentrated around the center of their ancestor, so
for every cluster C ∈ PH that is descendant of S and every cluster C ′ ∈ PH that is a descendant
of S′ we have |ν(C)− ν(C ′)| ≥ 1

3
√
|S|

.

We say that vertex x is bad if u2(x) is far from the center of base-cluster C ∈ PH containing
vertex x (i.e., (u2(x)− ν(C))2 > 1

100·|S|). By the directional variance bound (2) applied to the

partition PH we have∑
C∈PH
C⊆S∗

∑
x∈C

(u2(x)− νC)2 ≤ χ2 (S∗)

minC∈PH
C⊆S∗

χ2(C)
≤ O(χ2 (S∗)), (9)

where, the second inequality holds as χ2(C) ≥ Ω(1) for C ∈ PH . Therefore, the number of bad
vertices in S∗ is bounded by O(|S∗| · χ2(S∗)). Letting Ebad

S∗ denote the set of bad edges in S∗,
edges with at least one bad endpoint, we get

|Ebad
S∗ | ≤ O(d · |S∗| · χ2(S∗)). (10)

7Note that (8) requires a lower bound of Ω(ϕh∗+1) on χ2(S) and χ2(S′). This lower bound follows by linearity
of spectral gap on level h∗, which we argue by induction in the actual proof – see Section 4.4 for more details.
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On the other hand, as we show now, |Ebad
S∗ | can be lower bounded in terms of the inner conduc-

tance of S∗:
|Ebad

S∗ | = Ω(|S∗| · d · φGin(S∗)). (11)

Combining (10) with (11) yields χ2(S∗) = Ω(φGin(S∗)), as required. Let Egood(S, S′) be the
set of edges with one endpoint in S and the other in S′ such that both endpoints are good
vertices. We have that any edge (x, y) ∈ Egood(S, S′) is long:

|u2(x)− u2(y)| ≥ |ν(C)− ν(C ′)| − |ν(C)− u2(x)| − |ν(C ′)− u2(y)| ≥ 1

3
√
|S|
− 2

10 ·
√
|S|

,

where, C,C ′ ∈ PH are base-clusters containing x and y respectively. Now, given the total length
of edges in ES∗ is bounded

∑
(x,y)∈ES∗ (u2(x)−u2(y))2 = d ·χ2 (S∗), only small fraction of edges

in E(S, S′) could be long. Therefore, most of edges in E(S, S′) are short and connected to at

least one bad vertex. This implies that |Ebad
S∗ | ≥

|E(S,S′)|
2 = Ω(|S∗| ·d ·φGin(S∗)), establishing (11)

and completing the proof. The details are presented in Section 4.4 (Lemma 3).

2.2 Strong Concentration of Vertices Around Their Centers

Once linearity of the spectral gap is established, known flat clustering techniques (e.g., [GKL+21])
give a local computation algorithm with ≈ ϕh−1/ϕh misclassification rate per cluster. While
this is nontrivial, it is very far from useful: since ϕh−1/ϕh = γ, this is not nearly enough to
achieve (1), and in particular not enough to obtain meaningful guarantees for Dasgupta’s cost.
We now explain how the ≈ ϕh−1/ϕh misclassification rate can be achieved, and outline the
main challenges in improving it to ≈ ϕh−1, as well as our resolution of these challenges. Using
standard techniques in the literature (see Lemma 5 in Section 4.2) one can show that for every
α ∈ Rκ, ||α||2 = 1∑

S∈Ph

∑
x∈S
〈fκx − µS , α〉

2 ≤ O
(

λκ
minS∈Ph χ2(S)

)
= O

(
ϕh−1

ϕh

)
= O(γ), (12)

where we used Lemma 3 to lower bound minS∈Ph χ2(S). One can also convert (12) into an
upper bound on the typical Euclidean distance squared from the cluster center, (by summing
over α in an orthonormal basis of Rκ), getting∑

S∈Ph

∑
x∈S
||fκx − µS ||22 ≤ O(κ · γ). (13)

It is then reasonable to define, for every cluster S ∈ Pk a candidate cluster Ŝ to be the set of all
vertices that are close to µS (we assume that we know cluster centers for simplicity of overview)
as follows:

Ŝ =

{
x ∈ V : ||fκx − µS ||22 ≤

1

100 · |S|

}
. (14)

While the above definition is reasonable, it suffers from a major deficiency: given (13), it
is completely possible that Ω(κ) clusters defined by (14) are not even O(γ)-approximations to
their respective clusters S, let alone a O(ϕh−1)! This was resolved by using a recursive subspace
partitioning approach in [GKL+21], where O(γ) per cluster misclassification rate was achieved,
but it’s not clear how that approach can yield our target O(ϕh−1)-misclassification rate. In this
subsection, we outline the main ideas to achieve O(ϕh−1)-approximation to clusters.

One can write ||fκx − µS ||22 as
∑κ

i=1 〈fκx − µS , αi〉
2 where α1, . . . , ακ are orthonormal basis.

We start by showing that for every fixed direction α ∈ Rκ with ||α||2 = 1, at least 1−O(ϕh−1)
fraction of vertices in S are concentrated around the center of cluster S along direction α (i.e.,
〈fκx − µS , α〉

2 ≤ 1
100·|S|).
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Let x ∈ S, and C ∈ PH be the cluster in level H that contains vertex x. Note that cluster C
is the the bottom-most descendant of the cluster S that contains vertex x. We define µx = µC
as the κ-dimensional center of the cluster C. Therefore, we have

〈fκx − µS , α〉 = 〈fκx − µC , α〉+ 〈µC − µS , α〉 (15)

We now show that both terms on rhs of (15) are appropriately small. By (3) for every cluster
C ∈ PH that is a descendent of cluster S we have

〈µC − µS , α〉 ≤ ||µC − µ||2 ≤

√
γ1/4

|S|
. (16)

By a stronger version of the variance bound (12), applied to the κ-dimensional embedding of
vertices at level h and to the bottom level clustering (i.e., PH), we have that the embedding of
vertices at level h are highly concentrated around the center of their clusters at level H � h:∑

C∈PH

∑
x∈C
〈fκx − µx, α〉

2 ≤ O
(

λκ
minC∈PH χ2(C)

)
= O(ϕh−1), (17)

where, the last inequality holds as λk ≤ O(ϕh−1) and χ2(C) ≥ Ω(1). The strong improvement
in (17) is because we consider the concetration of κ-dimensional embedding of vertices (where,
κ = Ph) around their respective cluster centers at level H (as opposed to level h). Thus, the
gap between the conductcance of clusters at level h and level H allows to achieve O(ϕh−1)-
approximation. This is a novel tool comparing to the standard flat clustering techniques where
the dimension of the embeddings is often the same as the number of clusters in the partition.
Therfore, by (17) we have∣∣∣∣{x ∈ S : 〈fκx − µx, α〉

2 >
1

400 · |S|

}∣∣∣∣ ≤ |S| ·O(ϕh−1). (18)

Thus, by (16) and (18) for all but an O(ϕh−1) fraction of vertices in S we have

〈fκx − µS , α〉 = 〈fκx − µC , α〉+ 〈µC − µS , α〉 ≤

√
γ1/4

|S|
+

√
1

400 · |S|
. ≤ 1

10
√
|S|

. (19)

2.3 Putting it Together

So far we showed at least 1 − O(ϕh−1) fraction of vertices in S are concentrated around their
center along direction α as in (19). Turning this fact into an actual hierarchical clustering
oracle is not immediate, and requires another idea. Basically, we would like to turn strong
concentration bounds in any fixed direction that we just proved into concentration of cluster
vertices around corresponding centers in the Euclidean metric. This relation is lossy in high-
dimensional spaces. However, it turns out that the problem of refining a cluster at level h, say,
into its children at level h + 1 is essentially a constant dimensional problem, as the number of
subclusters of a cluster is constant by our assumption. To exploit this observation, we introduce
the notion of subgraph subspaces: theses are constant dimensional subspaces of Rκh that
suffices to perform the refinement operation. We outline the main ideas here next, and then
present our algorithm.

Subgraph subspaces and fast refinement of approximate partitions. Our Re-
finePartition procedure (Algorithm 4 in Section 4.1) is able to construct an approximate
partition P h with misclassification rate O(ϕh−1) per cluster in time polynomial in the size κh
of P h, with an n1/2+O(γ) overhead for estimating various collision probabilities to access the
corresponding spectral embedding. The polynomial dependence on the size of P h is achieved
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by refining every cluster S∗ ∈ P h−1 individually. Our main innovation here is to not work di-
rectly with the κh-dimensional embedding of vertices in S∗, but instead to define an appropriate
constant dimensional subspace Π of a κh dimensional space that is (approximately) spanned by
the cluster means of children of S∗, and perform ball-carving there. Intuitively, this idea lets us
simulate access to the subgraph of G induced by S∗, and perform clustering there efficiently as
a result. The fact that this can be done is somewhat surprising, since (a) we are not given the
ability to run random walks on subgraphs and (b) the outer conductance of the corresponding
cut is merely a small constant, so walks of logarithmic length mostly leave the cluster that they
start with.

Our algorithm. We now give the full description of our hierarchical clustering oracle. First,
linearity of the spectral gap (Lemma 3) allows us to define κh-dimensional spectral embeddings
for h ∈ [H] ∪ {0}. Letting LG = UΛUT denote the eigendecomposition of the normalized
Laplacian of G with 0 = λ1 ≤ λ2 ≤ . . . ≤ λn, for any 1 ≤ κ ≤ n we write U[κ] ∈ Rn×κ for the
matrix whose columns are the first κ columns of U . We now introduce

Definition 11. (κ-dimensional spectral embedding) For every vertex x we let fκx = UT[κ]1x
be the κ-dimensional spectral embedding of vertex x.

This embedding is indeed well defined because of Lemma 3, as we argue now. Indeed, we
have κh clusters at level h such that for every cluster S ∈ Ph we have χ2(S) ≥ Ω(ϕh) and
φout(S) ≤ O(ϕh−1). Thus, by Lemma 4 we have λκh ≤ 2 · ϕh−1 and λκh+1 ≥ minS∈Ph χ2(S) ≥
Ω(ϕh). Hence,

λκh
λκh+1

= O
(
ϕh−1

ϕh

)
= O(γ) � 1, and therefore the subspace spanned by the

bottom κh eigenvectors of LG is well-defined. For simplicity we set κ = κh. Recall that fκx ∈ Rκ
is the κ dimensional spectral embedding of vertex x (Definition 11).

The notion of κ-dimensional spectral embedding above lets us apply the recent result
of [GKL+21] to estimate

〈
fκx , f

κ
y

〉
in sublinear time (see Theorem 8). In other words, our prob-

lem now reduces to designing a hierarchically clustering oracle assuming dot product access to
the spectral embedding above. We now define

Definition 12. (Subgraph projection Π) Let r, κ ∈ [n] and S ⊆ V . Let A ∈ Rκ×|S| be a
matrix whose columns are fκx for all x ∈ S. Let A = Y ΓZT be the SVD of A, where Γ refers
to the diagonal matrix of the singular values in non-increasing order. We define the subgraph
projection matrix Π ∈ Rκ×κ of S with respect to κ and r as the orthogonal projection matrix
onto the left r singular vector of A i.e., Π = Y[r]Y

T
[r].

For intuition, let S∗ ∈ P be a cluster at level h−1 and for S ∈ ChildrenP(S∗) let µS ∈ Rκ
denote the κ-dimensional center of S, where κ = |Ph| is the number of clusters in Ph. Then if r
is the number of children of S∗, as we show below (see Lemma 14 in Section 4.6), the subgraph
projection matrix Π of S∗ with respect to κ and r8 satisfies

Π ≈
∑

S∈ChildrenP (S∗)

|S| · µSµTS . (20)

This is very useful in refining (our approximation to) the level h − 1 partition Ph−1 to Ph.
Indeed, when refining (our approximation to) Ph−1 that x ∈ S∗, to recover the clusters at level
h it suffices to decide which of the children S of S∗ the vertex x belongs to. If we had access
to the subgraph induced by S∗, we would solve this problem by ball-carving in the spectral
embedding of S∗, in particular by checking which of the cluster means µS the vertex x is closest
to. We do not have direct access to the subgraph, but the subgraph projection matrix Π allows
us to simulate this access! In Section 4.9 (Theorem 5) we show that `2-norm distance between

8Note that here we need to know the number of children of S∗ in P. This, however, can be estimated efficiently
by computing the approximate rank of the Gram matrix of a few vertices sampled from S∗ – see Algorithm 11
and its analysis in Section E.
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the embedding of any pair of vertices on the projected subspace (i.e., ||Πfκx − Πfκy ||2) can be
approximated with high accuracy.

We now have all the ingredients necessary to define our RefinePartition primitive. Sup-
pose for some h ≥ 1, that (an approximation of) the level h − 1 partition Ph−1 has been
constructed, and we are now refining it. Let S∗ ∈ P be a cluster at level h−1, and suppose by in-
duction that we can recover a candidate cluster S∗ such that |S∗4S∗| ≤ |S∗|·O(ϕh−2). Then our
goal is to recover approximations S to children S of S∗ in P such that |S4S| ≤ O(ϕh−1)·|S|. Let
Π denote the subgraph projection matrix of S∗. Let ` = 1

103·|S∗| . For the child S ∈ children(S∗)

we define the cylinder around the mean of cluster S as the set of vertices that are close to µS ∈ Rκ
(Definition 10) in the projected subspace:

cyl(µS , `|S∗) =
{
x ∈ S∗ : ||Πfκx −ΠµS ||22 ≤ `

}
. (21)

We show that for children S 6= S′ of S∗ one has cyl(µS , `|S∗) ∩ cyl(µS′ , `|S∗) = ∅. This is
basically because by (20) the matrix Π is close to a projection onto the space spanned by the
means µS of children of S∗, and these means are sufficiently close to orthogonal (see Lemma 12)
so that ΠµS ≈ µS . Therefore, one can verify that cluster centers are quite far from each other
even in the projected space (see Lemma 18 in Section 4.7) and we have ‖Πµ− Πµ′‖22 ≥ 1

|S∗| =

103 · `. Thus every vertex x ∈ S∗ belong to at most one of the candidate clusters cyl(µS , `|S∗).
Showing cyl(µS , `|S∗) approximates S well. Now, to complete the proof we need to show

that cyl(µS , `|S∗) approximates S up to an O(ϕh−1) error. In other words, we have to prove
that for all but an O(ϕh−1) fraction of the vertices x ∈ S we have ||Πfκx −ΠµS ||22 ≤ 1

103·|S∗| = `,

where µS is the κ-dimensional center of cluster S. Let x ∈ S, and C ∈ PH be the bottom-most
descendant of cluster S that contains vertex x. We define µx = µC as the κ-dimensional center
of the cluster C. Therefore, by triangle inequality we have

||Πfκx −ΠµS ||2 ≤ ||Πfκx −ΠµC ||2 + ||ΠµC −ΠµS ||2 ≤ ||Πfκx −ΠµC ||2 + ||µC − µS ||2 (22)

By (3) we have ||µC − µ||22 ≤
γ1/4

|S| ≤
1

4·103·|S∗| . We will now show for all but an O(ϕh−1) fraction

of vertices in S, ||Πfκx −ΠµC ||2 ≤ 1
4·103·|S∗| . Similar to (18) we have∣∣∣∣{x ∈ S : 〈fκx − µx, α〉

2 >
1

4 · 103 · |S∗|

}∣∣∣∣ ≤ |S| ·O(ϕh−1).

Summing over all α in an orthonormal basis for the range of Π, we get∑
x∈S
||Πfκx −Πµx||22 ≤ rank(Π) ·O(ϕh−1) ≤ r ·O(ϕh−1), (23)

where, rank(Π) ≤ r = |children(S∗)| by (20). Thus, we get that∣∣∣∣{x ∈ S : ||Πfκx −Πµx||22 >
1

104 · |S∗|

}∣∣∣∣ ≤ |S∗| · r ·O(ϕh−1) ≤ O(ϕh−1) · |S|, (24)

where, the last inequality holds as S∗ has constant number of children with comparable size,
i.e., r = O(1) and |S∗| = O(|S|). Therefore, we have |S \ cyl(µS , `|S∗)| ≤ O(ϕh−1)|S| (see
Lemma 13 in Section 4.5). Then using S∗ ≈ S∗ and given cyl(µS , `|S∗) ∩ cyl(µS′ , `|S∗) = ∅ for
S 6= S′ ∈ children(S∗) one can show |cyl(µS , `|S∗) \ S| ≤ O(ϕh−1)|S|. Therfore,

|S4cyl(µS , `|S∗)| ≤ O(ϕh−1)|S|.

See Theorem 3 in Section 4.8 for the full argument.
Algorithm. For simplicity of technical overview we assume that we know the κ-dimensional

center of clusters at level h, i.e., µS for all S ∈ Ph. Under this assumption we present algorithms
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for recovering the hierarchy of clusters below. For sake of simplicity we explain how to construct
the tree T explicitly, even though this would take Ω(n) time. In Section 4, we will show the
actual algorithms with sublinear preprocessing and query time.

Algorithm 1 ConstructTree(G)

1: T = ∅
2: for h = 1 to H do
3: κ = # of clusters at level h . can find κ in time ≈ n1/2+O(γ) (see Appendix F)
4: P h−1 ← approximate partition at level h− 1 (Definition 16) . not constructed

explicitly
5: P h ← RefinePartition(G, h, κ,P h−1,T ).
6: generate unique id’s from 1 to κ for any cluster S ∈ P h

return T

Algorithm 2 RefinePartition(G, h, κ,P h−1,T )

1: for S∗ ∈ P h−1 do
2: r ← CountChildren(G, h, κ,S). . Algorithm 11
3: Π← InitializeSubgraphProjMatrix(G, h, κ, r,S)
4: for x ∈ S∗ do
5: for µS ∈ centers(Ph) do

6: cyl(µS , `|S∗) =
{
x ∈ S∗ : ||Πfκx −ΠµS ||22 ≤ 1

103·|S∗|

}
7: S ← cyl(µS , `|S∗)
8: add S as a child of S∗ in T
9: S∗ ← S∗ \ S

10: P h ← P h ∪ {S}
11: return P h

Note that to find cyl(µS , `|S∗) we need to have access to µS , but learning the centers is
not straightforward and might require exponential runtime in k as in [GKL+21]. Therefore, to
tackle this challenge, we develop a ball carving algorithm that instead of the ball around µS ,
finds a larger ball around a vertex in S∗ that contains cyl(µS , `|S∗) but is still disjoint from
cyl(µS′ , `|S∗) for S′ 6= S ∈ children(S∗). We present the details of the ball carving algorithm
in Section 4.
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3 Preliminaries

For i ∈ N we use [i] to denote the set {1, 2, . . . , i}. Our algorithm and analysis use spectral
techniques, and therefore, we setup the following notation. For a symmetric matrix A, we write
νi(A) (resp. νmax(A), νmin(A)) to denote the ith largest (resp. maximum, minimum) eigenvalue
of A.

We also denote with AG the adjacency matrix of G and with LG the normalized Laplacian
of G where LG = I − AG

d . We denote the eigenvalues of LG by 0 ≤ λ1 ≤ . . . ≤ λn ≤ 2 and
we write Λ to refer to the diagonal matrix of these eigenvalues in non-decreasing order. We
also denote by (u1, . . . , un) an orthonormal basis of eigenvectors of LG and with U ∈ Rn×n the
matrix whose columns are the orthonormal eigenvectors of LG arranged in non-decreasing order
of eigenvalues. Therefore the eigendecomposition of LG is LG = UΛUT . For any 1 ≤ κ ≤ n
we write U[κ] ∈ Rn×κ for the matrix whose columns are the first κ columns of U . Now, we
introduce a central definition to this work, which is the notion of a spectral embedding.

Definition 11. (κ-dimensional spectral embedding) For every vertex x we let fκx = UT[κ]1x
be the κ-dimensional spectral embedding of vertex x.

The spectral embeddings of vertices in a graph provide rich geometric information which
has been shown to be useful in graph clustering [LGT14, CPS15, CKK+18, GKL+21].

In this paper, we are interested in (k, γ)-hierarchically-clusterable graphs (Definition 6). Our
algorithms often require to estimate the inner product between spectral embeddings of vertices
x and y denoted fκhx and fκhy (here κh denotes the dimensionality of the embeddings for the
level h partition). The following remark asserts that the inner products between fκhx and fκhy
are well defined even though the choice for these vectors may not be basis free.

Remark 1. We note that for any h ∈ [H] G is κh-clusterable and λκh/λκh+1 is smaller than a
constant. Thus, the space spanned by the bottom κh eigenvectors of the normalized Laplacian of
G is uniquely defined, i.e. the choice of U[κh] is unique up to multiplication by an orthonormal
matrix R ∈ Rκh×κh on the right. Indeed, by Lemma 9 in Section 4 we show λκh ≤ O(ϕh−1) and

by Lemma 3 in Section 4 one has λκh+1 ≥
(
β3·ϕ2

300

)
· ϕh. Thus, since we assume that γ

β30·ϕ20

is smaller than an absolute constant, we have λκh/λκh+1 is smaller than a constant, hence,
the subspace spanned by the bottom κh eigenvectors of the Laplacian, i.e. the space of U[κh], is
uniquely defined, as required. We note that while the choice of fκhx for x ∈ V is not unique, but
the dot product between the spectral embedding of x ∈ V and y ∈ V is well defined, since for
every orthonormal R ∈ Rκh×κh one has

〈Rfκhx , Rfκhy 〉 = (Rfκhx )T (Rfκhy ) = (fκhx )T (RTR)
(
fκhy
)

= (fκhx )T
(
fκhy
)

.

For pairs of vertices x, y ∈ V we use the notation 〈fκx , fκy 〉 := (fκx )T (fκy ) to denote the dot
product in the embedded domain.

For a multiset IS = {x1, . . . , xs} of vertices from V we abuse notation and also denote by
S the n × s matrix whose ith column is 1xi . For a vertex x ∈ V , we say that 1x ∈ Rn is the
indicator of x, that is, the vector which is 1 at index x and 0 elsewhere. For a set S ⊆ V , let
1S we say that 1S ∈ Rn is the indicator of set S, where 1S(x) = 1 if x ∈ S and 1S(x) = 0
otherwise.

We denote the transition matrix of the random walk associated with G by M = 1
2 ·
(
I + AG

d

)
.

From any vertex v, this random walk takes every edge incident on v with probability 1
2d , and

stays on v with the remaining probability which is at least 1
2 . Note that M = I − LG

2 . Observe

that for all i, ui is also an eigenvector of M , with eigenvalue 1 − λi
2 . We denote with Σ the

diagonal matrix of the eigenvalues of M in descending order. Therefore the eigendecomposition
of M is M = UΣUT . We write Σ[k] ∈ Rk×k for the matrix whose columns are the first k rows
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and columns of Σ. Furthermore, for any t, M t is a transition matrix of random walks of length
t. For any vertex x, we denote the probability distribution of a t-step random walk started from
x by mx = M t1x. For a multiset IS = {x1, . . . , xs} of vertices from V , let matrix M tS ∈ Rn×s is
a matrix whose column are probability distribution of t-step random walks started from vertices
in IS . Therefore, the i-th column of M tS is mxi .

We also define the Laplacian of an induced subgraph as follows:

Definition 13. (Laplacian of an induced subgraph) Let G = (V,E) be a d-regular graph and
let S ⊆ V . Let G[S] be the graph obtained by adding d− dS(x) self-loops to each vertex x ∈ S,
where dS(x) = |{y ∈ S : {x, y} ∈ E}. Let LS denote the normalized Laplacian of G[S]. For any
i ∈ [S] we write χi(S) to denote the i-th smallest eigenvalue of LS .

We will use the following standard result on eigenvalues presented in [GKL+21] whose proof
is given in [LGT14] and [CKK+18].

Lemma 4 ([GKL+21]). Let G = (V,E) be a d-regular graph that admits a (k, ϕ, ε)-clustering

C1, . . . , Ck. Then we have λk ≤ 2ε and λk+1 ≥ mini∈[k] χ2(Ci). In particular, λk+1 ≥ ϕ2

2 .

Finally, we define the parent, children and the lowest common ancestor of clusters in a
hierarchical-clustering as follows:

Definition 14. Let G = (V,E) be a graph that admits a (k, γ)-hierarchical-clustering (Defini-
tion 6) and let T be the tree representation of this hierarchical clustering. For h ∈ [H], and any
cluster S ∈ Ph−1, we let children(S) denote the set of children of S in T at level h. If S is not
partitioned at level h − 1 then children(S) = {S}. We let parent(S) denote the parent of
S in T . For any two internal clusters S1 and S2 we define LCA(S1, S2) as the lowest common
ancestor of S1 and S2 in T .

4 Recovering Hierarchically-Clusterable Graphs

In this section we assume that the graph G admits a (k, γ) hierarchical-clustering (P i)Hi=0

(Definition 6). The goal of this Section is to design a local computation algorithm that recovers
a hierarchical clustering (P )Hi=0 that is a D-approximation of (P i)Hi=0 (Definition 7). The main
result of this section is Theorem 2.

Theorem 1. [Informal version of Theorem 2] For sufficiently small constant γ ∈ (0, 1) there ex-
ists a hierarchical clustering oracle with ≈ kO(1)n1/2+O(γ) preprocessing time and ≈ kO(1)n1/2+O(γ)

query time that achieves a constant factor approximation to Dasgupta cost on (k, γ)-hierarchically
clusterable graphs.

4.1 Algorithm

Assume that the graph G admits a (k, γ) hierarchical-clustering (Ph)Hh=0 represented by the tree
T . The goal of the local computation algorithm is to recover (P h)Hh=0 represented by the tree
T which is an D-approximation of (Ph)Hh=0. Our algorithm has two phases: the preprocessing
phase and the query phase. In the preprocessing phase, the algorithm ConstructTree(G)
(Algorithm 3) constructs a sublinear space data structure D and obtains a small tree T̃ which
is a sketch of (P h)Hh=0. For any hierarchical clustering P = (P)Hh=0, and any h ≤ [H], we now
define the corresponding subsampled clustering at level h:

Definition 15. (Subsampled clustering) Let G = (V,E) be a graph and let (P h)Hh=0 be a

hierarchical clustering. Let Ṽ ⊆ V be a set of vertices sampled independently and uniformly
at random from V . For any level h ∈ [H] and any cluster S ∈ P h we define the subsampled
cluster S̃ as S̃ = Ṽ ∩ S. For any level h ∈ [H], we denote the subsampled clustering at level
h by P̃ h which is the collection of all subsampled clusters at level h. Formally, we have P̃ h by
P̃ h = P h ∩ Ṽ .
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In the preprocessing phase, the algorithm ConstructTree(G) (Algorithm 3) computes
{P̃ h}Hh=0. Then in the query phase algorithm Oracle(G, z, T̃ ,D) (Algorithm 5) receives this
information (stored in D) and for any vertex z ∈ V identifies the cluster this vertex belong to
in sublinear time. Therefore, Algorithm 5 determines the path from the root of the tree T to
the last cluster containing vertex z.

4.1.1 Preprocessing Phase: Constructing the Sketch of the Tree

We first start by explaning the algorithm ConstructTree(G). This algorithm hasH iterations
and at iteration h it refines the partition P̃ h−1 to obtain the partition P̃ h. Let P h−1 be the
approximate partition constructed implictly by our local computation algorithm for level h− 1
(Definition 16).

Definition 16. (Approximate clustering) Let G be a graph that admits a (k, γ) hierarchical-
clustering (Ph)Hh=0. Let 0 ≤ h ≤ H, and κh = |Ph| denote the number of clusters at level h.
Then for every i ∈ [κh] we define the approximate cluster Si ⊆ V as follows:

Si =
{
z ∈ V : Oracle(G, z, T̃ ,D) = i

}
We define the approximate clustering P h = {Si}κhi=1 as the collection of all approximate clusters
at level h

Consider the iteration h of algorithm ConstructTree(G). Recall that at iteration h we
want to refine the approximate partition constructed at level h − 1. Note that our algorithm
does not construct P h−1 explicitly. However, using algorithm Oracle we have query access to
P h−1, so for any vertex z ∈ V we can find the index i ∈ [κh] such that z ∈ Si. Therefore, for a
small set of vertices Ṽ we can compute the subsampled partition P̃ h−1 = P h−1 ∩ Ṽ . Then we
use the RefinePartition (Algorithm 4) to obtain P̃ h from P̃ h−1.

Algorithm 3 ConstructTree(G)

1: T̃ = ∅ and D̃ = ∅
2: ξ = 10−3

3: for h = 1 to H do
4: κ = # of clusters at level h . can find κ in time ≈ n1/2+O(γ) (see Appendix F)
5: P h−1 ← approximate partition at level h− 1 (Definition 16) . not constructed

explicitly

6: Ṽ ← a set of size
(
k·nγ/ϕ·logn

ξ

)O(1)
sampled independently and uniformly at random

from V
7: P̃ h−1 ← P h−1 ∩ Ṽ
8: P̃ h ← RefinePartition(G, h, κ, P̃ h−1, Ṽ , ξ, T̃ ,D).
9: generate unique id’s from 1 to κ for any sampled approximate cluster S̃ ∈ P̃ h

return D, T̃

Now we explain the RefinePartition algorithm. This algorithm receives P̃ h−1 as input
and the goal of the algorithm is to refine every subsampled cluster S̃∗ to its children. Let
S∗ ∈ Ph−1 be a cluster at level h − 1 that has r children at level h. Let κ = |Ph| denote the
number of clusters at level h. Let Π and Π̃ be the subgraph projection matrix of S∗ and S∗ for
κ and r respectively (Definition 12).

Our goal is to recover set S that approximates cluster S ∈ children(S∗) up to O(ϕh−1)
misclassification error. In the technical overview, we proved that cyl(µS , `|S∗) provides O(ϕh−1)
misclassification error for cluster S, and for every S 6= S′ ∈ children(S∗), cyl(µS , `|S∗) ∩
cyl(µS′ , `|S∗) = ∅
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However, to find cyl(µS , `|S∗) we need to have access to µS , but learning the centers is not
straightforward. Therefore, to tackle this challenge, we develop a ball carving algorithm that
instead of the ball around µS , finds a large ball that contains cyl(µS , `|S∗) that is still disjoint
from cyl(µS′ , `|S∗). To that end, we first find a representative vertex x ∈ cyl(µS , `|S∗), and
then we consider a large enough ball around x denoted by cyl(fκx , 25`|S∗) as follows:

cyl(fκx , 25`|S∗) =
{
y ∈ S∗ : ||Πfκx −Πfκy ||22 ≤ 25`

}
,

Since 25` � ` we have cyl(µS , `|S∗) ⊆ cyl(fκx , 25`|S∗), therefore, cyl(fκx , 25`|S∗) approximates
S up to O(ϕh−1) misclassification error (see Theorem 4 item 1).

After finding a good representative for cluster S, we remove the set cyl(fκx , 25`|S∗) from
S∗ and we proceed to find other children S′ ∈ children(S∗). Since 25` � 103 · ` we have
cyl(fκx , 25`|S∗) ∩ cyl(µS′ , `|S∗) = ∅, hence, even by removing cyl(fκx , 25`|S∗) we don’t touch
cyl(µS′ , `|S∗) of other children (see Theorem 4 item 2).

Finally, we need to explain how one can find a good representative for every S ∈ children(S∗).
Note that any vertex x such that cyl(fκx , 25`|S∗) ⊇ cyl(µS , `|S∗) and is disjoint from cyl(µS′ , `|S∗)
for any S′ 6= S ∈ children(S∗), can be a good representative for cluster S. Therefore, during
the ball-carving algorithm we first need to test if vertex x ∈ S∗ can be a good representative
for some cluster S ∈ children(S∗) and then we recover cyl(fκx , 25`|S∗). To test this fact we
consider a ball cyl(fκx , 6`|S∗) around vertex x.

If cyl(fκx , 6`|S∗) overlaps with cyl(µS , `|S∗), then cyl(fκx , 25`|S∗) ⊇ cyl(µS , `|S∗). So if
cyl(fκx , 6`|S∗) overlaps with one of the cyl(µS , `|S∗) for some S ∈ children(S∗), then x is a
good representative for the corresponding child (see Figure 2).

Now note for every cluster S ∈ children(S∗), cyl(µS , `|S∗) is O(ϕh−1) approximation of
S, therefore, the total number of outliers outside of all the balls is at most O(ϕh−1) · |S∗| (see
Lemma 20). Hence, if |cyl(fκx , 6`|S∗)| is larger than the number of outliers, then it means
that cyl(fκx , 6`|S∗) overlaps with one of the balls (i.e., cyl(µS , `|S∗)) and hence x is a good
representative. In conclusion, to test if vertex x is a good representative it suffices to test if the
size of cyl(fκx , 6`|S∗) is large enough (see line (8) of Algorithm 4).

µ1 µ2
x

cyl(µ1, `|S∗) cyl(µ2, `|S∗)

cyl(µ1, 6`|S∗)cyl(µ1, 25`|S∗)

(a) Carving the first child, S1. If x ∈ S1, then
cyl(µ1, 6`|S∗) contains S1.

xµ1 µ2

cyl(µ1, `|S∗) cyl(µ2, `|S∗)

cyl(µ2, 6`|S∗)cyl(µ2, 25`|S∗)

(b) Carving the second child, S2. If cyl(µ2, 6`|S∗)
overlaps with S2, then cyl(µ2, 25`|S∗) contains
S2.

Figure 2: Ball Carving

Let ` = 1
103·|S∗| . As we explained above, if the size of the ball around vertex x, i.e.,

cyl(fκx , 6`|S∗) is large enough (which means that vertex x passes the test in line (8) of Al-
gorithm 4), then vertex x is a good representative for a unique cluster S ∈ children(S∗).
Therefore, cyl(fκx , 25`|S∗) approximates cluster S very well, and we can recover it (see line (9)
of Algorithm 4).

As S∗ is close to S∗, in our algorithms we can use `apx = 1/103 · |S∗| as the proxy for radius

of the ball i.e., ` = 1/103 · |S∗| . We also estimate
∥∥Πfκx −Πfκy

∥∥2

apx
by ||Π̃fκx − Π̃fκy ||2 with the

help of Algorithm 8, and we define the approximate ball around vertex x as:

cylapx(fκx , `apx|S∗) =

{
y ∈ S∗ :

∥∥∥Π̃fκx − Π̃fκy

∥∥∥2

apx

≤ `apx

}
.
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In section 4.10, we prove cylapx(fκx , `apx|S∗) approximates cluster S very well (see Lemma
23 and Lemma 30).

Algorithm 4 RefinePartition(G, h, κ, P̃ h−1, Ṽ , ξ, T̃ ,D)

1: for S̃∗ ∈ P̃ h−1 do

2: s = |S̃∗|·n
|Ṽ |

3: `apx = 1
1000·s

4: r ← CountChildren(G, h, κ, S̃∗, s). . Algorithm 11
5: D

S̃∗ ← InitializeSubgraphProjMatrix(G, h, κ, r, S̃∗, s, ξ) . Remark 2

6: for x ∈ S̃∗ do

7: B̃x =

{
y ∈ S̃∗ :

∥∥∥Π̃fκx − Π̃fκy

∥∥∥2

apx

≤ 5 · `apx

}
. Remark 2

8: if |B̃x| > 0.9 · β · |S̃∗| then

9: S̃ =

{
y ∈ S̃∗ :

∥∥∥Π̃fκx − Π̃fκy

∥∥∥2

apx

≤ 25 · `apx

}
. Remark 2

10: rep(S̃)← x . x is the representative of S̃
11: add S̃ as a child of S̃∗ in T̃
12: S̃∗ ← S̃∗ \ S̃
13: P̃ h ← P̃ h ∪ {S̃}
14: D ← D ∪ {P̃ h} ∪ {D

S̃∗}S̃∗∈P̃h−1 ∪ {rep(S̃)}
S̃∈P̃h

15: return {P̃ h}

Remark 2. For computing
∥∥∥Π̃fκx − Π̃fκy

∥∥∥2

apx

we use Algorithm 8 (Section 4.9.2) as follows:

∥∥∥Π̃fκx − Π̃fκy

∥∥∥
apx

= ProjectedDistance(G, x, y, ξ,D
S̃∗),

where D
S̃∗ ← InitializeSubgraphProjMatrix(G, h, κ, r, S̃∗, s, ξ) (Algorithm 6).

4.1.2 Query Phase: Hierarchical Clustering Oracle

In the preprocessing phase using algorithm ConstructTree(G) we learn the structure of the
tree T̃ and we find a good representative for every cluster. Furthermore, for every cluster S∗ we
construct a data structure DS∗ that is to access the subgraph projection matrix and computing∥∥∥Π̃fκx − Π̃fκy

∥∥∥2

apx

during refinement of S∗. We store all this information in a small space data

structure D. In the query phase, algorithm Oracle receives the data structure D and a vertex
z ∈ V as input and assigns z to corresponding candidate cluster S. The algorithm proceeds in
at most H iteration. Suppose that at iteration h−1, algorithm Oracle assigns vertex z to the
cluster S∗ where S∗ is the candidate cluster corresponding to S∗ ∈ Ph−1. Recall that for any
cluster S ∈ children(S∗) the representative of cluster S has computed in the preprocessing
phase. Let x denote the representative of one of the children, say S ∈ children(S∗). If∥∥∥Π̃fκx − Π̃fκz

∥∥∥2

apx

≤ 25 · `apx, then by definition of Sx we know that z ∈ Sx, hence the algorithm

assigns vertex z to Sx and recurs on this child (see line 13 of Algorithm 5). Otherwise, if vertex
z does not belong to any of the candidate clusters for children of S∗, then vertex z is an outlier.
In that case, the algorithm assigns z as a direct child of S∗ and stop the algorithm (see line 9
of Algorithm 5).
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Algorithm 5 Oracle(G, z, T̃ ,D)

1: S̃∗ = root(T̃ )
2: for h = 1 to height(T̃ ) do
3: Schild = ∅
4: for S̃ that is a child of S̃∗ in T̃ do
5: x← rep(S̃)

6: if
∥∥∥Π̃fκx − Π̃fκz

∥∥∥2

apx

≤ 25 · `apx then . Remark 2

7: Schild ← S̃
8: break from the inner-loop

9: if Schild = ∅ then
10: add z as the direct child of S = σ(S̃∗) in T .
11: return id of the cluster corresponding to S
12: else
13: S̃∗ ← Schild
14: add z as the direct child of S = σ(S̃∗) in T .
15: return id of the cluster corresponding to S

Finally, we give a roadmap for the rest of Section 4. Section 4.2 develops properties of
hierarchically clusterable graphs and presents concentration results which show that spectral
embeddings of most vertices in a cluster are close to the center of the cluster. Next, Section
4.3 uses the strucutre of hierarchically clusterable graphs to prove a crucial property which
shows that the centers of descendant clusters concentrate around their parent. This property is
then used in Section 4.4 to develop one of the key features of hierarchically clusterable graphs.
Namely, it is used to show that for any cluster at level h, the spectral gap of the normalized
Laplacian induced by the cluster grows only linearly with the inner conductance of the cluster.
Building up on these results, Section 4.5 proves the core bounds which show that for any cluster
S ∈ Ph and for any projection Π onto some space of small dimensionality, at most O(ϕh−1)|S|
vertices end up far from the projection of the cluster center. Thereafter, Section 4.6 uses and
induction argument to show that the subgraph projection matrix of cluster S is close in operator
norm to the subspace spanned by the means of its children. This section also shows that this
closeness in operator norm continues to hold even if we replace the subgraph projection matrix
of S with the subgraph projection matrix of a set Q ⊆ V that is a good approximation of set
S (more formally, Q is D-hierachically close to S as per Definition 19). Section 4.7 uses all of
this machinery to conclude that centers of subclusters of a cluster remain far from each other.
Section 4.8 builds tools which we later use to analyze our algorithms and in particular it uses
an inductive argument to show that if a set Q is D-hierachically close to a cluster S ∈ Ph,
then the children of Q produced by the ball carving procedure remain D-hierarchically close
to corresponding chidren of S at the next level. In Section 4.9 we prove that `2-norm distance
between embedding of any pair of vertices on the projected subspace (i.e., ||Πfκx−Πfκy ||2) can be
approximated accurately with high probability. Finally, Section 4.10 puts all this together and
proves correctness of our procedures RefinePartition (Algorithm 4) and Oracle (Algorithm
5).

4.2 Properties of Hierarchically Clusterable Graphs

In this section, we fundamental important properties of hierarchically-clusterable-graphs which
we use later. We begin with a variant of a variance bound which was shown in [GKL+21]
(Lemma 6): Suppose G = (V,E) admits a partitioning into m subsets of vertices each of
which induce expanders. Then, the sum of squared distances of κ-dimensional embedding of
vertices from their corresponding centers along any direction α ∈ Rκ can be bounded by the
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κ-th eigenvalue of the normalized Laplacian. This is a generalization of the variance bound
from [GKL+21] as the dimension of embeddings (i.e., κ) could be different from the number
of clusters in the partition (i.e., m), which helps us to derive stronger concentration bounds
comparing to standard flat clustering techniques. The proof of the following lemma is given in
Appendix B.

Lemma 5. (Variance bounds) Let κ ∈ [n] and m ≥ 2 be integers. Let G = (V,E) be a d-regular
graph. Suppose that V is partitioned into m disjoint subsets V = S1 ∪ . . . ∪ Sm. Then for any
α ∈ Rκ with ‖α‖ = 1 we have

m∑
i=1

∑
x∈Si

〈fκx − µi, α〉
2 ≤ λκ

mini∈m χ2(Si)
,

where µi ∈ Rκ is the κ-dimensional center of set Si (Definition 10), χ2(Si) is the second smallest
eigenvalue of LSi (Definition 13), and λκ denote the κ-th smallest eigenvalue of LG.

Next, we state Lemma 6 that is a variant of Lemma 9 from [GKL+21]. The lemma notes
the following: Take any partitioning of G into m subsets S1, S2, · · · , Sm each of which induce
expanders. Consider κ-dimensional embeddings for all vertices in V and take any subgraph
Q ⊆ V . Then the sum of outer products

∑
x∈Q f

κ
x f

κ
x
T is well approximated spectrally by

an appropriately weighted sum of µiµ
T
i (where µi is the κ-dimensional center of Si). This

generalizes Lemma 9 from [GKL+21] to subgraphs and is a central tool which is used to
develop several important properties of hierarchically-clusterable graphs (e.g., Lemma 3 and
Lemma 15). The proof of the following lemma is given in Appendix B.

Lemma 6. Let κ ∈ [n] and m ≥ 2 be integers. Let G = (V,E) be a d-regular graph. Suppose
that V is partitioned into m disjoint subsets V = S1 ∪ . . . ∪ Sm. Let Q ⊆ V . Then for any
α ∈ Rκ with ‖α‖ = 1 we have∣∣∣∣∣∣αT

 m∑
i=1

|Q ∩ Si|µiµTi −
∑
x∈Q

fκx f
κ
x
T

α

∣∣∣∣∣∣ ≤ 2 ·

√
λκ

mini∈m χ2(Si)
,

where µi ∈ Rκ is the κ-dimensional center of set Si (Definition 10), χ2(Si) is the second smallest
eigenvalue of LSi (Definition 13), and λκ denote the κ-th smallest eigenvalue of LG.

The next lemma is an immediate corollary.

Lemma 7. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Then for
any h ∈ [H] we have ∣∣∣∣∣∣

∣∣∣∣∣∣
∑
S∈Ph

|S|µSµTS − Iκ×κ

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ 2 ·

√
λκ

minS∈Ph χ2(S)
,

where µS ∈ Rκ is the κ-dimensional center of cluster S (Definition 10), and λκ is the κ-th
smallest eigenvalue of LG.

Proof. Note that
∑

x∈V f
κ
x f

κ
x
T = UT[κ]U[κ] = Iκ×κ. Thus the proof follows by Lemma 6 and by

choice of Q = V .

Next we state the following properties of cluster means developed in [GKL+21]. It states
that the Euclidean length squared of the mean of cluster S is roughly 1/|S|. Also, for any two
different clusters S, S′ ∈ Ph, the cluster means are almost orthogonal.
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Lemma 8. (Cluster means)[GKL+21] Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph
(Definition 6). Let h ∈ [H] and κ = |Ph| denote the number of clusters at level h. Then we
have

1. For all S ∈ Ph,
∣∣∣||µS ||22 − 1

|S|

∣∣∣ ≤ 4 ·
√

λκ
min

S∈Ph χ2(S) ·
1
|S|

2. For all S 6= S′ ∈ Ph, |〈µS , µS′〉| ≤ 8 ·
√

λκ
min

S∈Ph χ2(S) ·
1√
|S|·|S′|

where µi ∈ Rκ is the κ-dimensional center of set Si (Definition 10), χ2(Si) is the second smallest
eigenvalue of LSi (Definition 13), and λκ denote the κ-th smallest eigenvalue of LG.

We also need the following lemma which follows from multiway Cheeger inequalities [LGT14].

Lemma 9. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Let
h ∈ [H] and let Ph be the partition at level h. Let κ = |Ph| denote the number of clusters
at level h. Then, we have

λκ ≤ O(ϕh−1).

Proof. By Lemma 4 we have λκ ≤ 2 ·maxS∈Ph φout (S). By Definition 6 for any cluster S ∈ Ph
we have φout (S) ≤ O(ϕh−1). Thus we have λκ ≤ O(ϕh−1).

4.3 Concentration of descendant’s centers around the ancestor centers

The main result of this section is Lemma 10, in which we prove a fundamental structural
property of (k, γ) hierarchically-clusterable graphs. We show that in such graphs the center of
clusters at every level are concentrated around the center of their ancestors. In Lemma 10 we
prove this property at a given level h∗ assuming the spectral gap is linear (see Definition 17)
for all the clusters in the levels below (i.e, h ≥ h∗). Later in Section 4.4 we show the linearity
of the spectral gap.

Definition 17. (Linearity of the spectral gap) Let G = (V,E) be a (k, γ)-hierarchically-
clusterable graph (Definition 6) and let α ∈ [0, 2]. We say that the spectral gap is α-close
to linear at level h if for every cluster S ∈ Ph

α · φGin (S) ≤ χ2 (S) ≤ 2 · φGin (S)

where χ2(S) is the second smallest eigenvalue of LS (Definition 13).

We outline the major ideas that go inside the proof of Lemma 10 (this was also done in
tech overview). We first show that the κ-dimensional center of a node S ∈ Ph (with κ = |Ph|)
and the κ dimensional center of its parent. We then use triangle inequality to bound the
distance between the κ-dimensional centers of an ancestor/descendant pair. We first recall the
assumption of the model.

Assumption 1. We assume that the conductance of the base at level H clusters satisfies
varphiH = ϕ ≥ Ω(γ1/20), and that clusters in the ground truth hierarchical clustering P get
partitioned into constant number of subclusters of comparable size, i.e., for every S∗ ∈ P and
every child S of S∗ we have |S| ≥ β|S∗| for some β ∈ (0, 1). We assume β ≥ Ω(γ1/30).

We now present the proof of Lemma 10.
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Lemma 10. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). For

every h∗ ∈ [H] such that the spectral gap is β3·ϕ2

300 -close to linear for all h ≥ h∗ the following
condition holds: For every S∗ ∈ Ph∗, every h > h∗ and every cluster S ∈ Ph that is a descendant
of the cluster S∗ (i.e, S ⊆ S∗) we have

||µS − µS∗ ||22 ≤
γ1/4

|S∗|

where, κ = |Ph∗ | is the number of clusters at level h∗ and µS , µS∗ ∈ Rκ are the κ-dimensional
center of the cluster S and cluster S∗ respectively (Definition 10).

Proof. For any h∗ ≤ h ≤ H, and any cluster S ∈ Ph let µS =
∑
x∈S f

κ
x

|S| be the κ-dimensional
center of cluster S. Note that by Lemma 7 for any h and we have∣∣∣∣∣∣

∣∣∣∣∣∣
∑
S∈Ph

|S|µSµTS − Iκ×κ

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ 2 ·

√
λκ

minS∈Ph χ2(S)
(25)

By the assumption of the lemma (linearity of the spectral gap) for any h ≥ h∗ and any cluster

S ∈ Ph we have χ2 (S) ≥ β3·ϕ2

300 · φ
G
in (S). By Assumption 1 we have ϕ ≥ γ1/20 and β ≥ γ1/30.

Hence,

χ2 (S) ≥ β3 · ϕ2

300
· φGin (S) ≥ β3 · ϕ2

300
· ϕh ≥

γ1/5

300
· ϕh (26)

Moreover since κ = |Ph∗ | by Lemma 9, we have

λκ ≤ O(ϕh∗−1) (27)

Recall that by Definition 6 for any h′ we have ϕh∗−1 = ϕh · γh−h
∗+1. Thus, by putting (25),

(26) and (27) together, for every h ≥ h∗ we get∣∣∣∣∣∣
∣∣∣∣∣∣
∑
S∈Ph

|S|µSµTS − Iκ×κ

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ 2 ·
√
O(ϕh∗−1)
γ1/5

300 · ϕh
≤

√
γh−h∗+1

γ0.3
, (28)

where the last step follows on choosing a sufficiently small γ to cancel the hidden constant in
O(.). Similarly, for every h ≥ h∗ + 1, we get∣∣∣∣∣∣

∣∣∣∣∣∣
∑

S∈Ph−1

|S|µSµTS − Iκ×κ

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤

√
γh−h∗

γ0.3
(29)

Therefore for every h ≥ h∗ + 1, by (28), (29) and triangle inequality we have∣∣∣∣∣∣
∣∣∣∣∣∣
∑
S∈Ph

|S|µSµTS −
∑

S∈Ph−1

|S|µSµTS

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤

√
γh−h∗+1

γ0.3
+

√
γh−h∗

γ0.3
≤ 2 ·

√
γh−h∗

γ0.3
(30)

For any cluster S ∈ Ph at level h we define ∆S ∈ Rκ as follows:

∆S = µS − µparent(S) (31)

Note that for any cluster S′ we have

µS′ =
1

|S′|
·

∑
S∈children(S′)

|S| · µS (32)
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Thus by (32), (31) and since |S′| =
∑

S∈children(S′) |S| for any S′ ∈ Ph−1 we have∑
S∈children(S′)

|S| ·∆S = 0 (33)

Therefore we can write∑
S∈Ph

|S| (µS) (µS)T

=
∑

S′∈Ph−1

∑
S∈children(S′)

|S| (µS′ + ∆S) (µS′ + ∆S)T By (31)

=
∑

S′∈Ph−1

 ∑
S∈children(S′)

|S|∆S∆T
S + |S|µS′µS′T


+

∑
S′∈Ph−1

µS′
 ∑
S∈children(S′)

|S|∆S

+

 ∑
S∈children(S′)

|S|∆S

µTS′


=

∑
S′∈Ph−1

 ∑
S∈children(S′)

|S|∆S∆T
S + |S|µS′µS′T

 By (33) cross terms are 0

=
∑
S∈Ph

|S|∆S∆T
S +

∑
S∈Ph−1

|S′|µS′µTS′ Since |S′| =
∑

S∈children(S′)

|S|

(34)

Therefore for any h ≥ h∗ + 1 by (30), and (34) we can write∣∣∣∣∣∣
∣∣∣∣∣∣
∑
S∈Ph

|S|µSµTS −
∑

S∈Ph−1

|S|µSµTS

∣∣∣∣∣∣
∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
S∈Ph

|S|∆S∆T
S

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ 2 ·

√
γh−h∗

γ0.3
(35)

Therefore for every h ≥ h∗ + 1 and for any α ∈ Rκ with ||α||2 = 1 we have

∑
S∈Ph

|S| 〈∆S , α〉2 =

∣∣∣∣∣∣αT
∑
S∈Ph

|S|∆S∆T
S

α

∣∣∣∣∣∣ ≤ 2 ·

√
γh−h∗

γ0.3

Thus for any h ≥ h∗ + 1 and for any cluster S ∈ Ph at level h, by choice of α = ∆S
||∆S ||2 we get

||∆S ||22 ≤
2

|S|
·

√
γh−h∗

γ0.1
(36)

Let S∗ ∈ Ph∗ and let S ∈ Ph′ be a cluster at level h′ > h∗ such that S is a descendent of S∗

(i.e., S ⊆ S∗). Let S∗ = Sh
∗
, Sh

∗+1, . . . , Sh
′

denote the path from S∗ to the cluster S in the
underlying tree T . For any h ≥ h∗ + 1 we define ∆Sh = µSh − µSh−1 . Note that since Sh is the
child of Sh−1 we have |Sh| ≥ β · |Sh−1|. Note that β ≥ γ1/30 by Assumption 1, thus for any
h∗ + 1 ≤ h we have

|Sh| ≥ βh−h∗ · |S∗| ≥ γ(h−h∗)/30 · |S∗| (37)

Putting (36) and (37) together for any h ≥ h∗ + 1 we get

||∆Sh ||22 ≤
2

|Sh|
·

√
γh−h∗

γ0.3
≤ 2

|S∗|
· 1

γ(h−h∗)/30
·

√
γh−h∗

γ0.3
≤ 2

|S∗|
· γ

7/15·(h−h∗)

γ3/20
(38)
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Note that

µS − µS∗ =
h′∑

h=h∗+1

µSh − µSh−1 =
h′∑

h=h∗+1

∆Sh

Thus we have

||µS − µS∗ ||2 =

∣∣∣∣∣
∣∣∣∣∣

h′∑
h=h∗+1

∆Sh

∣∣∣∣∣
∣∣∣∣∣
2

≤
h′∑

h=h∗+1

||∆Sh ||2 By triangle inequality

≤

√
2

|S∗|
γ−7/15·h∗

γ3/20

h′∑
h=h∗+1

γ7/30·h By (38)

≤ 2 ·

√
2 · γ19/60

|S∗|

≤

√
γ1/4

|S∗|
for small enough γ

Therefore for any cluster S that is a descendant of the cluster S∗ ∈ Ph∗ we have

||µS − µS∗ ||22 ≤
γ1/4

|S∗|

Using Lemma 10 we prove the following lemma (Lemma 11) that we will use later in Section
4.4 to prove the linearity of the spectral gap. Let u2 denote the second eigenvector of the

Laplacian. For S ⊆ V , let νS =
∑
x∈S u2(x)

|S| . This lemma shows that the second eigenvector

of Laplacian in a (k, γ)-hierarchically-clusterable graph inherits some information about the
hierarchical cluster structure in the following sense. Take S∗ ∈ Ph∗ . Then the children of
S∗ can be partitioned into two collection of sets M,N such that for any cluster C ∈ M and
C ′ ∈ N νC is far from νC′ . The key to this argument is the following: first, we show that
∃S ∈ children(S∗) for which νS ≥

√
1/2|S∗|. One can sort the vector {νS}S∈children(S∗) and

use averaging arguments to find a pair of succesive children S, T ∈ children(S∗) for which
νS − νT ≥ 1

r
√

2|S∗|
≥ β√

2|S∗|
.

Lemma 11. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Let

h∗ ∈ [H] and S∗ ∈ Ph∗. Suppose that the spectral gap is β3·ϕ2

300 -close to linear for all h ≥ h∗. Let

u2 be the second eigenvector of LS∗ (Definition 13). For every set S ⊆ S∗ let νS =
∑
x∈S u2(x)

|S|
be the mean of u2 in set S. Then there exists a partition of clusters in children(S∗) into two
collection of sets M,N such that for all S ∈M and all T ∈ N we have

|νS − νT | ≥
β√
2|S∗|

Also, for any h > h∗ and C,C ′ ∈ Ph such that C ⊆ S and C ′ ⊆ T we have

|νC − νC′ | ≥
β

2 ·
√
|S∗|

.
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Proof. Let G[S∗] be the graph obtained by adding d− dS∗(x) self-loops to each vertex x ∈ S∗,
where dS∗(x) = |{y ∈ S∗ : {x, y} ∈ E}|. Therefore, for any cluster S that is a descendant

of S∗ in G we have φ
G[S∗]
in (S) = φGin(S) and φ

G[S∗]
out (S) ≤ φGout(S). Therefore, G[S∗] is (k∗, γ)

hierarchically-clusterable (Definition 6) where k∗ =
∣∣{C ∈ PH : C ⊆ S∗}

∣∣.
Let r = |children(S∗)|, and for every set S let µS ∈ Rr be the r-dimensional center of S

in graph G[S∗] (Definition 10). By Lemma 7 for any α ∈ Rr with ‖α‖ = 1, we have∣∣∣∣∣∣αT
 ∑
S∈children(S∗)

|S|µSµTS − Ir×r

α

∣∣∣∣∣∣ ≤ 2 ·
√

χr
minS∈children(S∗) (χ2(S))

(39)

Here, χr denotes the r-th smallest eigenvalue of LG[S∗], the normalized Laplacian of G[S∗]. Note
that by assumption of the lemma (linearity of the spectral gap) for any h ≥ h∗ and any cluster

S ∈ Ph we have χ2 (S) ≥ β3·ϕ2

300 · φ
G
in (S) = β3·ϕ2

300 · φ
G[S∗]
in (S). Since β ≥ γ1/30 and ϕ ≥ γ1/20, we

have

min
S∈children(S∗)

(χ2(S)) ≥ β3 · ϕ2

300
· ϕh∗+1 =

γ1/5

300
· ϕh∗+1 (40)

Moreover since |children(S∗)| = r by Lemma 9 we have

χr ≤ O(ϕh∗) (41)

Putting (39), (40) and (41) together we have∣∣∣∣∣∣αT
 ∑
S∈children(S∗)

|S|µSµTS − Ir×r

α

∣∣∣∣∣∣ ≤ 2

√
O(ϕh∗)

γ1/5

300 · ϕh∗+1

≤ γ1/4, (42)

where the last step holds because ϕh∗ = ϕh∗+1 · γ, and by choice of sufficiently small γ.
Let α = (0, 1, 0, 0, . . . , 0) ∈ Rr be a r-dimensional vector whose second coordinate is 1 and

the rest is zero. Thus for every set S we have αTµS = νS . Therefore by (42) we have∣∣∣∣∣∣
∑

S∈children(S∗)

|S| · ν2
S − 1

∣∣∣∣∣∣ ≤ γ1/4 (43)

First we show that maxS∈children(S∗) ν
2
S ≥

1
2|S∗| . Suppose by contradiction that maxS∈children(S∗) ν

2
S <

1
2|S∗| . Thus by (43) we get∣∣∣∣∣∣

∑
S∈children(S∗)

|S| · ν2
S − 1

∣∣∣∣∣∣ ≥
∣∣∣∣|S∗| · 1

2|S∗|
− 1

∣∣∣∣ ≥ 1

2

Thus by (43) we get 1/2 < γ1/4 and given γ is a sufficiently small constant we have the
contradiction. Therefore,

max
S∈children(S∗)

ν2
S ≥

1

2|S∗|

Suppose that we sort the clusters in children(S∗) based on the value of νS . Without loss of
generality suppose that νS1 ≥ νS2 ≥ . . . ≥ νSr and suppose that νS1 = argmax ν

2
S . Also note

that u2 is ortogonal to u1 = 1. Thus we have∑
S∈children(S∗)

|S| · νS =
∑
x∈V

u2(x) = 0 (44)
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Therefore, νS1 > 0 and νSr < 0. Recall that maxS∈children(S∗) νS = νS1 ≥
√

1
2|S∗| . Therefore,

there exists an index 2 ≤ i ≤ r such that

νSi − νSi−1 ≥
1

r ·
√

2|S∗|

By Assumption 1 for every S ∈ children(S∗) we have β · |S∗| ≤ |S| ≤ |S∗|, hence, r ≤ 1
β . Thus

we have

νSi − νSi−1 ≥
β√
2|S∗|

Now define M = {Sj ∈ children(S∗) : j ≥ i} and N = {Sj ∈ children(S∗) : j < i}. Hence,
for any S ∈M and T ∈ N we have

νS − νT ≥
β√
2|S∗|

(45)

By Lemma 10 for any cluster C ∈ PH that is a descendant of a cluster S ∈ children(S∗) we
have

(νC − νS)2 ≤ ||µC − µS ||22 Since νC − νS is second coordinate of µC − µS

≤ γ1/4

|S|
By Lemma 10

≤ γ1/4

β · |S∗|
Since |S| ≥ β · |S∗|

≤ β2

100 · |S∗|
By Assumption 1,

γ1/4

β3
is a sufficiently small constant

(46)

Similarly for any cluster C ′ ∈ PH that is a descendant of a cluster T ∈ children(S∗) we have

(νC′ − νT )2 ≤ β2

100 · |S∗|
(47)

Putting (45), (46) and (47) together for any S ∈M , T ∈ N , C ⊆ S, C ′ ⊆ T we get

|νC − νC′ | ≥ |νS − νT | − |νC − νS | − |νC′ − νT | ≥
β

2
√
|S∗|

4.4 Linearity of the Spectral Gap

The main result of this subsection is Lemma 3 which presents one of the key properties of
(k, γ)-hierarchically-clusterable graphs. Namely, for any cluster S ∈ Ph the spectral gap of the
normalized Laplacian of induced subgraph on S is linear i.e., χ2(S) = Θ(φGin(S)). This is a
strong property on hierarchically-clusterable graphs as opposed to general graphs that might
suffer from a quadratic gap between the second eigenvalue and inner-conductance.

To prove Lemma 3 we use the fact that the center of base-clusters at level H are concentrated
around the center of their ancestor. Using this we show that there exists a small set of bad
vertices that are far from the center of their base-cluster. This implies that the number of edges
connected to the bad vertices is bounded Ebad(S) ≤ O(|S| · d ·χ2(S)). Next, we show that most
of the edges crossing the cut between children of S∗ are connected to the bad vertices. This
implies that Ebad(S) ≥ O(|S| · d · φGin(S)). By putting together the lower bound and the upper
bound on Ebad(S) we obtain χ2(S) = Ω(φGin(S)))
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Lemma 3. [Linearity of the spectral gap] Let G = (V,E) be a (k, γ)-hierarchically-clusterable
graph (Definition 6). Let h ∈ [H], and S ∈ Ph be a cluster at level h. Let χ2(S) be the second
smallest eigenvalue of LS (Definition 13). Then we have

β3 · ϕ2

300
· φGin (S) ≤ χ2 (S) ≤ 2 · φGin (S) .

Proof. The upper bound immediately follows from the easy direction of Cheeger’s inequality.
We prove the lower bound by induction on h.

Base: Let h = H. Note that G is (k, γ)-hierarchically-clusterable. Thus it admits a clustering
C1, . . . , Ck such that for any cluster Ci we have φGin(Ci) ≥ ϕ. Note that h = H, thus by Cheeger’s
inequality we have

χ2 (Ci) ≥
ϕ2

2
≥ β3 · ϕ2

300
· φGin(Ci)

where the last inequality holds since β < 1 and φGin(Ci) < 1.

Inductive step: By induction hypothesis we suppose that for any h′ ≥ h + 1 and for any

S′ ∈ Ph′ we have χ2 (S′) ≥ β3·ϕ2

300 · φ
G
in(S′). Then we want to prove that for any cluster S ∈ Ph

at level h we have χ2 (S) ≥ β3·ϕ2

300 · φ
G
in(S).

Let G[S] be the graph obtained by adding d− dS(x) self-loops to each vertex x ∈ S, where
dS(x) = |{y ∈ S : {x, y} ∈ E}|. Let u2 ∈ R|S| and χ2 (S) ∈ R be the second eigenvector and

the second eigenvalue of LS respectively. For any C ⊆ V let νC =
∑
x∈C u2(x)

|C| . An application

of variance bounds on the graph G[S] (Lemma 5) and the partition defined by clusters C ∈ PH
with the choice of κ = 2 and α = (0, 1) gives∑

C∈PH
C⊆S

∑
x∈C

(u2(x)− νC)2 ≤ χ2 (S)

minC∈PH
C⊆S

χ2(C)
≤ χ2 (S)

ϕ2

2

(48)

where the last inequality holds since for any cluster C ∈ PH we have φGin(C) ≥ ϕ and hence, by

Cheeger’s inequality we have χ2(C) ≥ ϕ2

2 . We define ν(x) = νC if x ∈ C.
We now define set B as the set of bad vertices whose embedding i.e., u2(x) is from the center

of their cluster i.e., ν(x) = νC :

B =

{
x ∈ S : (u2(x)− ν(x))2 ≥ β2

100 · |S|

}
By (48), we have

|B| ≤ 200 · |S| · χ2 (S)

β2 · ϕ2

Let ES denote the set of edges in G[S]. Let Ebad
S denote the set of edges in ES which are

adjacent to at least one bad vertex. We have

|Ebad
S | = |{{x, y} ∈ ES : x ∈ B or y ∈ B}| ≤ 200 · |S| · d · χ2 (S)

β2 · ϕ2
(49)

In the remaining argument, we derive a lower bound on |Ebad
S | which depends on φGin(S) and

we put it together with (49) to complete the proof.
First, we show that the induced subgraph G[S] is hierarchically-clusterable and thus, by the

inductive assumption for any h′ ≥ h+1 the spectral gap is linear. To this end, note that for any

cluster S′ that is a descendant of S in G we have φ
G[S]
in (S′) = φGin(S′) and φ

G[S]
out (S′) ≤ φGout(S

′).
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Therefore, G[S] is (k′, γ) hierarchically-clusterable (Definition 6) with k′ = |{C ∈ PH : C ⊆
S}|. This means the graph G[S] satisfies the assumption of the Lemma 11. Let S1, . . . , Sr
denote the children of cluster S and let M,N denote the partition of these children into two
collections of sets that are constructed as per Lemma 11. Therefore, by Lemma 11 for any
Si, Sj ∈ children(S), Si ∈M,Sj ∈ N and C ⊆ Si, C ′ ⊆ Sj such that C,C ′ ∈ PH we have

|νC − νC′ | ≥
β

2
√
|S|

(50)

Let VM =
⋃
S∈M S and VN =

⋃
T∈N T . Recall that ν(x) = νC if x ∈ C. Thus for any x ∈ VM

and y ∈ VN we have

|ν(x)− ν(y)| ≥ β

2
√
|S|

(51)

Next we prove for any edge e = (x, y) such that x ∈ VM \B, and y ∈ VN \B we have

|u2(x)− u2(y)| ≥ β

10
√
|S|

.

We read this as saying that the edge e = (x, y) is long. Now, we will show that edges e = (x, y)
with x ∈ VM \B and y ∈ VN \B are long. Note that

u2(x)− u2(y) = (u2(x)− ν(x)) + (ν(x)− ν(y)) + (ν(y)− u2(y))

By definition of B we have (u2(x)− ν(x))2 ≤ β2

100·|S| and (u2(y)− ν(y))2 ≤ β2

100·|S| . Thus by
triangle inequality we have

|u2(x)− u2(y)| ≥ |ν(x)− ν(y)| − 2 · β
10
√
|S|

Thus by (51) for any edge e = (x, y) such that x ∈ VM \B, and y ∈ VN \B we have

|u2(x)− u2(y)| ≥ β

2
√
|S|
− 2 · β

10
√
|S|
≥ β

10
√
|S|

(52)

Furthermore we have ∑
(x,y)∈ES

(u2(x)− u2(y))2 = d · uT2 (LS)u2 = d · χ2 (S) (53)

Therefore by (52) and (53) we get an upperbound on the number of long edges as follows.

|{{x, y} ∈ ES : x ∈ VM \B and y ∈ VN \B}| ≤
100 · |S| · d · χ2 (S)

β2
(54)

We lowerbound |Ebad
S | by the number of bad edges which are long. This gives.

|{{x, y} ∈ ES : x ∈ B or y ∈ B}| (55)

≥ |{{x, y} ∈ E(VM , VN ) : x ∈ VM ∩B or y ∈ VN ∩B}|
= |E(VM , VN )| − |{{x, y} ∈ ES : x ∈ VM \B and y ∈ VN \B}|

≥ φGin(S) ·min(|VM |, |VN |) · d−
100 · |S| · d · χ2(S)

β2
By (54)

≥ |S| · d
(
φGin(S) · β − 100 · χ2(S)

β2

)
By Definition 6 and Assumption 1
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By putting (49) and (55) together we get

|S| · d · 200 · χ2(S)

β2 · ϕ2
≥ |{{x, y} ∈ ES : x ∈ B or y ∈ B}| ≥ |S| · d

(
φGin(S) · β − 100 · χ2(S)

β2

)
Hence, we have

χ2(S) ≥ β3 · ϕ2

300
· φGin(S).

The following result extends a lemma from [GKL+21] and shows that for any cluster S ∈ Ph
the Euclidean length squared of the κ-dimensional center of S is roughly 1/|S| where κ = |Ph|.
Also for every S 6= S′ ∈ Ph, the center of S and S′ are almost orthogonal.

Lemma 12. (Cluster means)[[GKL+21]] Let G = (V,E) be a (k, γ)-hierarchically-clusterable
graph (Definition 6). Let h ∈ [H] and κ = |Ph| denote the number of clusters at level h. For
any cluster S ∈ Ph let µS ∈ Rκ be the κ-dimensional center of cluster S (Definition 10). Then
we have

1. For all S ∈ Ph,
∣∣∣||µS ||22 − 1

|S|

∣∣∣ ≤ 4·γ1/4
|S|

2. For all S 6= S′ ∈ Ph, |〈µS , µS′〉| ≤ 8·γ1/4√
|S|·|S′|

Proof. By Assumption 1 we have β ≥ γ1/30 and ϕ ≥ γ1/20 and for any cluster S ∈ Ph we have
φin(S) ≥ ϕh. Thus by Lemma 3 for any cluster S ∈ Ph we have

χ2(S) ≥ β3 · ϕ2

300
· φin(S) ≥ β3 · ϕ2

300
· ϕh ≥

γ1/5

300
· ϕh

Also by Lemma 9 we have λκ ≤ O(ϕh−1). Note that by Definition 6 we have ϕh−1 = γ · ϕh.
Therefore, we have √

λκ
minS∈Ph χ2(S)

≤
√
O(ϕh−1)
γ1/5

300 · ϕh
≤ γ1/4

where the last step follows by taking γ to be sufficiently small. Therefore by Lemma 8 for any
S ∈ Ph we have ∣∣∣∣||µS ||22 − 1

|S|

∣∣∣∣ ≤ 4 ·

√
λκ

minS∈Ph χ2(S)
· 1

|S|
≤ 4 · γ1/4

|S|

and for any S 6= S′ ∈ Ph we have

|〈µS , µS′〉| ≤ 8 ·

√
λκ

minS∈Ph χ2(S)
· 1√
|S| · |S′|

≤ 8 · γ1/4√
|S| · |S′|

4.5 Concentration of Vertices Around the Center of Their Ancestors

The main result of this subsection is Lemma 13. This lemma shows that for every cluster
S ∈ Ph, and any d′-dimensional subspace, at most O(ϕh−1 · d′) fraction of vertices in S are
far from their cluster center µS in the projected subspace. This is a key step in showing that
the ball carving procedure correctly classifies at least 1−O(ϕh−1) fraction of vertices in every
cluster (Theorem 3). To prove this we first show that for at least 1−O(ϕh−1) fraction of vertices
the spectral embedding of vertex x i.e., fκx is is close to the the center of the base cluster C
containing x i.e., µC in the projected subspace. Next, we bound the distance between µC and
µS by Lemma 10.
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Lemma 13. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Let
Π ∈ Rκ×κ be an arbitrary orthogonal projection matrix onto a subspace of dimension d′.Then
for every δ ≥ 4 · γ1/4 and every cluster S ∈ Ph at level h we have∣∣∣∣{x ∈ S : ||Πfκx −Πµ||22 ≥

δ

|S|

}∣∣∣∣ ≤ ( d′

δ · ϕ2

)
·O(ϕh−1) · |S|

where κ = |Ph| is the number of clusters at level h, µ ∈ Rκ is the κ-dimensional center of
cluster S (Definition 10), and ϕ = ϕH .

Proof. For any cluster C ∈ PH let µC ∈ Rκ be the κ-dimensional center of cluster C. For any
x ∈ C, let µx = µC . Note that by triangle inequality we have

||Πfκx −Πµ||2 ≤ ||Πf
κ
x −Πµx||2 + ||Πµx −Πµ||2

We bound the two terms on the Right Hand Side separately.

Bounding ||Πfκx −Πµx||2: By Lemma 5 applied to the partition PH = {C1, . . . , Ck}, for any
α ∈ Rκ with ‖α‖ = 1 we have∑

x∈V
〈fκx − µx, α〉

2 =
∑
C∈PH

∑
x∈C
〈fκx − µC , α〉

2 ≤ λκ
minC∈PH χ2(C)

.

By Cheeger’s inequality for any cluster C ∈ PH we have χ2(C) ≥ ϕ2

2 . Also by Lemma 9 we
have λκ ≤ O(ϕh−1). Thus for any α ∈ Rκ with ‖α‖ = 1 we have∑

x∈V
〈fκx − µx, α〉

2 ≤ λκ
minC∈PH χ2(C)

≤ O(ϕh−1)

ϕ2

Let α1, . . . , αd′ be an orthonormal basis for the columnspace Π. Thus, on applying Lemma 5 to
directions {αi}i∈[d′], we get

∑
x∈V
‖Πfκx −Πµx‖22 =

d′∑
i=1

∑
x∈V
〈fκx − µx, αi〉

2 ≤ d′ · 1

ϕ2
·O(ϕh−1),

and ∣∣∣∣{x ∈ S : ||Πfκx −Πµx||22 ≥
δ

4
· 1

|S|

}∣∣∣∣ ≤ |S| ·O(ϕh−1) ·
(

d′

δ · ϕ2

)
(56)

Bounding ||Πµx −Πµ||2: Fix x ∈ V and let C ∈ PH denote the cluster which contains x.
Write µx = µC as before. By Lemma 3 for any h ∈ [H] and any cluster S ∈ Ph at level h we

have χ2(S) ≥ β3·ϕ2

300 · φ
G
in(S). Therefore by Lemma 10 for any cluster C that is a descendant of

the cluster S we have

||µC − µ||22 ≤
γ1/4

|S|
≤ δ

4
· 1

|S|
.

The last inequality holds since δ ≥ 4γ1/4. Note that ||Π||2 = 1, thus for any C ⊆ S we have

||ΠµC −Πµ||22 ≤ ||µC − µ||
2
2 ≤

δ

4
· 1

|S|
(57)

Thus, by (57), we have

||Πµx −Πµ||22 = ||ΠµC −Πµ||22 ≤
δ

4
· 1

|S|
(58)
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Putting it together: By (56) for at least |S| ·
(

1− d′·O(ϕh−1)
δ·ϕ2

)
vertices in S we have

||Πfκx −Πµ||2 ≤ ||Πf
κ
x −Πµx||2 + ||Πµx −Πµ||2 By triangle inequality

≤

√
δ

4
· 1

|S|
+

√
δ

4
· 1

|S|
By (58) and (56)

≤

√
δ

|S|

Therefore, we have ||Πfκx −Πµ||22 ≤
δ
|S| .

4.6 Span of the Embedding of Vertices in the Parent Is Close to a Matrix of
Small Rank

The main result of this subsection is Lemma 14 which shows that for cluster S∗ ∈ Ph−1, the
subgraph projection matrix of S∗ (with respect to r = children(S∗) and κ = |Ph|) is a good
approximation of the subspace spanned by the means of children of S∗ in the operator norm.
Further, this closeness in operator norm also holds for any set Q that is D-hierarchically-close
to S as defined below:

Definition 18. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph and let T be the
tree corresponding to the nested partitions. For cluster S∗ ∈ Ph∗ at level h∗, and for any level
h < h∗, we define the set of cousins of the cluster S∗ for level h as follows:

Cousinsh(S∗) =
{
S ∈ Ph∗ : LCA(S∗, S) is at level h

}
.

We denote the set of vertices in Cousinsh(S∗) by Bh(S∗):

Bh(S∗) = {x ∈ Cousinsh(S∗)}.

Definition 19. (D-hierarchically-close sets) Let h∗ ∈ [H], S∗ ∈ Ph∗ be a cluster at level h∗

and Q ⊆ V . We say that the set Q is D-hierarchically-close to the cluster S∗ if

1. |S∗ \Q| ≤ D · ϕh∗−1 · |S∗|

2. For any 0 ≤ h ≤ h∗ − 1, |Q ∩Bh(S∗)| ≤ |S∗| ·
(

D·ϕh
βh∗−1−h

)
(Definition 18).

Note that the definition of D-hierarchically-close depends on the level of the cluster S∗, i.e., h∗.

Lemma 14. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Fix
h ∈ [H], and take a cluster S∗ ∈ Ph−1. Let r = |children(S∗)|. Then for every D ≥ r and
every set Q ⊆ V that is D-hierarchically-close to the cluster S∗ (Definition 19) we have∣∣∣∣∣∣

∣∣∣∣∣∣
∑

S∈children(S∗)

|S|µSµTS −Π

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ 30 ·D · γ1/4

where κ = |Ph| and Π ∈ Rκ×κ is the subgraph projection matrix of Q with respect to κ and r
(Definition 12). Also for any cluster S, µS ∈ Rκ is the κ-dimensional center of S (Definition
10).
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Level 0 Partition: P0

Level 1 Partition: P1

Level 2 Partition: P2

cluster S∗

Level 2 cousin of S∗ Level 1 cousins of S∗ Level 0 cousins of S∗

Figure 3: An illustration of cousins of a level 2 cluster S∗ at various levels h, denoted by
Cousinsh(S∗) (Definition 18). Level h cousins contain clusters whose LCA with S∗ is at level
h in the tree.

To prove Lemma 14 we first need to prove Lemma 15. This lemma proves an intuitive
intermediate result and shows that for cluster S∗ ∈ Ph−1 and any set Q that is D-hierarchically-
close to S∗, the projection matrix onto the subspace spanned by the means of S ∈ children(S∗)
is close to the projection matrix onto the subspace spanned by κ-dimensional embeddings of
vertices in Q (where κ = |Ph|). The following simple proposition would be helpful.

Proposition 1. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6) and let
T be the tree representation of the associated ground truth clustering P of G. Let S1 6= S2 ∈ Ph

∗

be two clusters at level h∗. Suppose that LCA(S1, S2) is at level h < h∗. Then we have

β(h∗−h) ≤ |S1|
|S2|
≤
(

1

β

)(h∗−h)

Proof. Let S = LCA(S1, S2). By Assumption 1 we have β(h∗−h) · |S| ≤ |S1| ≤ |S| and β(h∗−h) ·

|S| ≤ |S2| ≤ |S|. Thus we have β(h∗−h) ≤ |S1|
|S2| ≤

(
1
β

)(h∗−h)
.

Lemma 15. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Then
for every level h ∈ [H], every cluster S∗ ∈ Ph−1, every D ≥ 1 and every set Q ⊆ V that is
D-hierarchically-close to the cluster S∗ (Definition 19) we have∣∣∣∣∣∣

∣∣∣∣∣∣
∑

S∈children(S∗)

|S|µSµTS −
∑
x∈Q

fκx f
κ
x
T

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ 5 ·D · γ1/4

where κ = |Ph| is the number of clusters at level h, and for any cluster S, µS ∈ Rκ is the
κ-dimensional center of S (Definition 10).

Proof. By Lemma 6 we have∣∣∣∣∣∣
∣∣∣∣∣∣
∑
S∈Ph

|Q ∩ S|µSµTS −
∑
x∈Q

fκx f
κ
x
T

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ 2 ·

√
λκ

minS∈Ph χ2(S)
.

By Lemma 3 for any cluster S ∈ Ph we have χ2(S) ≥ β3·ϕ2

300 · φ
G
in(S) ≥ β3·ϕ2

300 · ϕh ≥
γ1/5

300 · ϕh. By
Lemma 9 we have λκ ≤ O(ϕh−1). Thus we have∣∣∣∣∣∣

∣∣∣∣∣∣
∑
S∈Ph

|Q ∩ S|µSµTS −
∑
x∈Q

fκx f
κ
x
T

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ 2 ·
√
O(ϕh−1)
γ1/5

300 · ϕh
≤ γ1/4, (59)
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where the last inequality holds as ϕh−1 = γ · ϕh and by choice of γ to be sufficiently small to
cancel hidden constants in O(.). Note that∑

S∈Ph
|Q ∩ S|µSµTS =

∑
S∈children(S∗)

|Q ∩ S|µSµTS +
∑

S∈Ph\children(S∗)

|Q ∩ S|µSµTS

=
∑

S∈children(S∗)

(|S| − |S \Q|)µSµTS +
∑

S∈Ph\children(S∗)

|Q ∩ S|µSµTS

By triangle inequality we have∣∣∣∣∣∣
∣∣∣∣∣∣

∑
S∈children(S∗)

|S|µSµTS −
∑
S∈Ph

|Q ∩ S|µSµTS

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
S∈children(S∗)

(|S \Q|)µSµTS

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
S∈Ph\children(S∗)

|Q ∩ S|µSµTS

∣∣∣∣∣∣
∣∣∣∣∣∣ (60)

Putting (59) and (60) together and by triangle inequality we have∣∣∣∣∣∣
∣∣∣∣∣∣

∑
S∈children(S∗)

|S|µSµTS −
∑
x∈Q

fκx f
κ
x
T

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤

γ1/4 +

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
S∈children(S∗)

|S \Q|µSµTS

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
S∈Ph\children(S∗)

|Q ∩ S|µSµTS

∣∣∣∣∣∣
∣∣∣∣∣∣ (61)

In the rest of the proof, we will upper bound the second and the third term of (61).

Step 1: First we prove an upper bound on
∣∣∣∣∣∣∑S∈children(S∗) |S \Q|µSµTS

∣∣∣∣∣∣
2
. Note that by

triangle inequality∣∣∣∣∣∣
∣∣∣∣∣∣

∑
S∈children(S∗)

|S \Q|µSµST
∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤
∑

S∈children(S∗)

|S \Q| · ||µS ||22 (62)

By Lemma 12 and for small enough γ we have

||µS ||22 ≤
(

1 + 4 · γ1/4
)
· 1

|S|
≤ 2

|S|
(63)

Note that S∗ is a cluster at level h− 1, and Q ⊆ V is D-hierarchically-close to cluster S∗. Thus
by Definition 19 we have

|S∗ \Q| ≤ D · ϕh−2 · |S∗| (64)
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Thus by (62) and (63) we have∣∣∣∣∣∣
∣∣∣∣∣∣

∑
S∈children(S∗)

|S \Q|µSµTS

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤
∑

S∈children(S∗)

2 · |S \Q|
|S|

≤
∑

S∈children(S∗)

2 · |S \Q|
|S∗| · β

By Definition 6, |S| ≥ β · |S∗|

=
2

β · |S∗|
· |S∗ \Q| Since S∗ =

⋃
S∈children(S∗)

≤ 2

β · |S∗|
·D · ϕh−2 · |S∗| By (64)

≤ 2 ·D · γ · ϕh−1

β
Since ϕh−2 = ϕh−1 · γ

≤ 2 ·D · γ1/4 Since γ3/4 < β and ϕh−1 < 1 (65)

Note that γ3/4 < β holds since γ1/30

β is smaller than a sufficiently small constant by Definition
6.

Step 2: Finally, we prove an upper bound on
∣∣∣∣∣∣∑S∈Ph\children(S∗) |Q ∩ S| (µS) (µS)T

∣∣∣∣∣∣. Note

that by Definition 18 we have

h−2⋃
h′=0

Bh′(S
∗) = V \ S∗ =

⋃
S∈Ph\children(S∗)

S

Thus we have ∣∣∣∣∣∣
∣∣∣∣∣∣

∑
S∈Ph\children(S∗)

|Q ∩ S|µSµTS

∣∣∣∣∣∣
∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
h−2∑
h′=0

∑
S∈Phs.t.
S⊆Bh′ (S∗)

|Q ∩ S|µSµTS

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ (66)

Also note that S∗ is a cluster at level h− 1, and Q ⊆ V is D-hierarchically-close to cluster S∗.
Thus by Definition 19 for any 0 ≤ h′ ≤ h− 2 we have

|Q ∩Bh′(S∗)| ≤ |S∗| ·
(
D · ϕh′
βh−2−h′

)
(67)

By triangle inequality we have
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∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
h−2∑
h′=0

∑
S∈Phs.t.
S⊆Bh′ (S∗)

|Q ∩ S|µSµTS

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

≤
h−2∑
h′=0

∑
S∈Phs.t.
S⊆Bh′ (S∗)

|Q ∩ S| · ||µS ||22 By triangle inequality

≤
h−2∑
h′=0

∑
S∈Phs.t.
S⊆Bh′ (S∗)

2 · |Q ∩ S|
|S|

By (63)

≤
h−2∑
h′=0

∑
S∈Phs.t.
S⊆Bh′ (S∗)

2 · |Q ∩ S|
|S∗| · βh−h′

By Proposition (1) and definition of Bh′(S
∗)

=
h−2∑
h′=0

2 · |Q ∩Bh′(S∗)|
|S∗| · βh−h′

Therefore, we have∣∣∣∣∣∣
∣∣∣∣∣∣
h−2∑
h′=0

∑
S∈Cousinsh′ (S

∗)

|Q ∩ S|µSµTS

∣∣∣∣∣∣
∣∣∣∣∣∣

≤
h−2∑
h′=0

2 · |Q ∩Bh′(S∗)|
|S∗| · βh−h′

≤
h−2∑
h′=0

2 ·D · ϕh′ · |S∗|
|S∗| · β(2h−2−2h′)

Since |Q ∩Bh′(S∗)| ≤ |S∗| ·
(

D · ϕh′
β(h−2−h′)

)
by (67)

= 2
h−2∑
h′=0

D · ϕh · γh−h
′

β2h−2−2h′

Since γ
β2 ≤ 1/2, by a geometric sum we get∣∣∣∣∣∣

∣∣∣∣∣∣
h−2∑
h′=0

∑
S∈Cousinsh′ (S

∗)

|Q ∩ S|µSµTS

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ 2D ·ϕh ·β2 ·

h−2∑
h′=0

(
γ

β2

)h−h′
≤ 2D ·ϕh ·β2 · 2 · γ

2

β4
≤ 2·D ·γ1/4

(68)

The last inequality holds since γ1/30

β is smaller than a sufficiently small constant by Definition
6. Putting (61), (65) and (68) together we get

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
S∈children(S∗)

|S|µSµTS −
∑
x∈Q

fκx f
κ
x
T

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤

γ1/4 +

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
S∈children(S∗)

|S \Q|µSµTS

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∣∣∣∣∣∣
h−2∑
h′=0

∑
S∈Cousinsh′ (S

∗)

|Q ∩ S|µSµTS

∣∣∣∣∣∣
∣∣∣∣∣∣ By (61)

≤ γ1/4 + 2 ·D · γ1/4 + 2 ·D · γ1/4 By (65) and (68)

≤ 5 ·D · γ1/4 Since D ≥ 1
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We need the next lemma to prove Lemma 17. Recall that for a symmetric matrix H, we
write νi(H) (resp. νmax(H), νmin(H)) to denote the ith largest (resp. maximum, minimum)
eigenvalue of H.

Lemma 16 (Weyl’s Inequality). Let H,P ∈ Rn×n be two symmetric matrices. Then we have
for all i ∈ {1, . . . , n}:

νi(H) + νmin(P ) ≤ νi(H + P ) ≤ νi(H) + νmax(P ),

where for a symmetric matrix H ∈ Rn×n νi(H) denotes its ith largest eigenvalue and νmin(H)
and νmax(H) refer to the smallest and largest eigenvalues of H.

To prove Lemma 14 we need the following ingredient.

Lemma 17. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Let
h ∈ [H] and take S∗ ∈ Ph−1. Let r = |children(S∗)|. Then, for every D ≥ r and every set
Q ⊆ V that is D-hierarchically-close to the cluster S∗ (Definition 19) the following holds:

1. νr+1

(
AAT

)
≤ 5 ·D · γ1/4

2. νr
(
AAT

)
≥ 1− 13 ·D · γ1/4

where κ = |Ph|, and A ∈ Rκ×|Q| is a matrix whose columns are fκx for all x ∈ Q.

Proof. By the definition ofA above, we haveAAT =
∑

x∈Q f
κ
x f

κ
x
T . LetH =

∑
S∈children(S∗) |S|µSµTS .

We define P as follows:

P = AAT −H =
∑
x∈Q

fκx f
κ
x
T −

∑
S∈children(S∗)

|S|µSµTS ,

by Lemma 15 we have

||P ||2 =

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
S∈children(S∗)

|S|µSµTS −
∑
x∈Q

fκx f
κ
x
T

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ 5 ·D · γ1/4.

Proof of item (1): Weyl’s Inequality (Lemma 16) gives

νr+1(H + P ) ≤ νr+1(H) + νmax(P ),

and since νmax(P ) = ||P ||2 ≤ 5 ·D · γ1/4, and H + P = AAT . Thus we get

νr+1

(
AAT

)
≤ νr+1

 ∑
S∈children(S∗)

|S|µSµTS

+ 5 ·D · γ1/4

Note that S has r children i.e, (|children(S∗)| = r), thus the matrixH =
∑

S∈children(S∗) |S|µSµTS
is of rank at most r. Thus we have νr+1 (H) = 0 and therefore,

νr+1

(
AAT

)
≤ 5 ·D · γ1/4
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Proof of item (2): By Weyl’s Inequality (Lemma 16) we have

νr(H + P ) ≥ νr(H) + νmin(P ) ≥ νr(H)− ||P ||2

Note that νmax(P ) = ||P ||2 ≤ 5 ·D · γ1/4, and H + P = AAT . Therefore, we have

νr
(
AAT

)
≥ νr

 ∑
S∈children(S∗)

|S|µSµTS

− 5 ·D · γ1/4 (69)

Recall that |children(S∗)| = r. Let Y ∈ Rr×r be a matrix whose columns are indexed by
the set children(S∗). In particular, for S ∈ children(S∗), the corresponding column in the
vector

√
|S| · µS . Thus we have

νr

 ∑
S∈children(S∗)

|S|µSµTS

 = νmin

(
Y Y T

)
= νmin(Y TY ) (70)

Note that Y TY ∈ Rr×r is a matrix where Y TY (S, S) equals |S| · ||µS ||22 for every S ∈
children(S∗) and its off-diagonals are

〈√
|S| · µS ,

√
|S′| · µS′

〉
for every S 6= S′ ∈ children(S∗).

Note that by Lemma 12 item (1) we have |S| · ||µS ||22 ≤ 1 + 4 · γ1/4, and by (2) we have〈√
|S| · µS ,

√
|S′| · µS′

〉
≤ 8 · γ1/4. Therefore,

||Y TY − I||2 ≤ ||Y TY − I||F ≤
√
r2 · (8 · γ1/4)2 ≤ 8 · r · γ1/4

Thus by Weyl’s Inequality (Lemma 16) we have

νmin(Y TY ) ≥ νmin(I)− ||Y TY − I||2 ≥ 1− 8 · r · γ1/4 (71)

Thus by (70) we have

νr

 ∑
S∈children(S∗)

|S|µSµTS

 = νmin(Y TY ) ≥ 1− 8 · r · γ1/4

Note that D ≥ r, therefore, we have

νr

 ∑
S∈children(S∗)

|S|µSµTS

 ≥ 1− 8 · r · γ1/4 ≥ 1− 8 ·D · γ1/4 (72)

Therefore by (69), and (72) we have

νr
(
AAT

)
≥ νr

 ∑
S′∈children(S∗)

|S|µSµTS

− 5 ·D · γ1/4

≥ 1− 8 ·D · γ1/4 − 5 ·D · γ1/4

≥ 1− 13 ·D · γ1/4

Now we prove the main lemma of this subsection, Lemma 14 below.
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Lemma 14. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Fix
h ∈ [H], and take a cluster S∗ ∈ Ph−1. Let r = |children(S∗)|. Then for every D ≥ r and
every set Q ⊆ V that is D-hierarchically-close to the cluster S∗ (Definition 19) we have∣∣∣∣∣∣

∣∣∣∣∣∣
∑

S∈children(S∗)

|S|µSµTS −Π

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ 30 ·D · γ1/4

where κ = |Ph| and Π ∈ Rκ×κ is the subgraph projection matrix of Q with respect to κ and r
(Definition 12). Also for any cluster S, µS ∈ Rκ is the κ-dimensional center of S (Definition
10).

Proof. Let A ∈ Rκ×|Q| be a matrix whose columns are fκx for all x ∈ Q. Thus we have
AAT =

∑
x∈Q f

κ
x f

κ
x
T . Note that by Lemma 15 we have∣∣∣∣∣∣

∣∣∣∣∣∣
∑

S∈children(S∗)

|S|µSµTS −AAT
∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ 5 ·D · γ1/4

Thus by triangle inequality we have∣∣∣∣∣∣
∣∣∣∣∣∣

∑
S∈children(S)

|S|µSµTS −Π

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ 5 ·D · γ1/4 + ||AAT −Π||2 (73)

Let AAT = Y ΓY T be the eigendecomposition of AAT . Therefore, by Definition 12 we have
Π = Y[r]Y

T
[r]. Thus we need to upper bound ||AAT − Y[r]Y

T
[r]||2. Note that

AAT = Y ΓY T = Y[r]Γ[r]Y
T

[r] + Y[−r]Γ[−r]Y
T

[−r]

Thus we have

||AAT − Y[r]Y
T

[r]||2 = ||Y[r]Γ[r]Y
T

[r] + Y[−r]Γ[−r]Y
T

[−r] − Y[r]Y
T

[r]||2
≤ ||Y[r]Γ[r]Y

T
[r] − Y[r]Y

T
[r]||2 + ||Y[−r]Γ[−r]Y

T
[−r]||2 By triangle inequality

= ||Y[r](I − Γ[r])Y
T

[r]||2 + ||Y[−r]Γ[−r]Y
T

[−r]||2
=
(
1− νr(AAT )

)
+ νr+1

(
AAT

)
≤ 13 ·D · γ1/4 + 5 ·D · γ1/4 By Lemma 17

≤ 18 ·D · γ1/4

Recall that Π = Y[r]Y
T

[r]. Thus by (73) we have∣∣∣∣∣∣
∣∣∣∣∣∣

∑
S∈children(S∗)

|S|µSµTS −Π

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ 5 ·D · γ1/4 + ||AAT − Y[r]Y
T

[r]||2 ≤ 30 ·D · γ1/4.

4.7 Centers of Subclusters Remain Far in the Projected Subspace

The main result of this subsection is Lemma 18. This lemma uses the properties of (k, γ)-
hierarchically clusterable instances developed in Section 4.4 and Section 4.6 to understand the
geometric structure of spectral embeddings in such instances better. In particular, the lemma
below shows that for any node S∗ ∈ Ph−1, it holds that the κ-dimensional means of its children
are pairwise far from each other.
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Lemma 18. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). For
every level h ≥ 1, every cluster S∗ ∈ Ph−1 with r = |children(S∗)|, and every D such
that r ≤ D and D · γ1/4 is less than a sufficiently small constant, the following holds: For
every set Q∗ ⊆ V that is D-hierarchically-close to the cluster S∗ (Definition 19) and for every
S1 6= S2 ∈ children(S∗) we have that

‖Πµ1 −Πµ2‖22 ≥
1

|S∗|

where κ = |Ph|, µ1, µ2 ∈ Rκ is the κ-dimensional center of clusters S1 and S2 respectively
(Definition 10), and Π ∈ Rκ×κ is the subgraph projection matrix of Q∗ with respect to κ and r
(Definition 12).

Proof. Note that
||Πµ1 −Πµ2‖22 = ||Πµ1||22 + ||Πµ2||22 − 2 〈Πµ1,Πµ2〉 (74)

In the rest of the proof we will upper bound ||Πµ1||22, ||Πµ2||22 and lower bound 〈Πµ1,Πµ2〉.

Step 1: We first prove the upper bound for ||Πµ1||22 and ||Πµ2||22. Let

Π∗ =
∑

S∈children(S∗)

|S|µSµTS (75)

Note that Π is a projection matrix, thus we have ΠTΠ = Π. Therefore, we have

‖Πµ1‖22 = µT1 Πµ1

= µT1

 ∑
S∈children(S∗)

|S|µSµTS + Π−Π∗

µ1 By (75)

= µT1

|S1|µ1µ
T
1 +

 ∑
S∈children(S∗)

S 6=S1

|S|µSµTS

+ Π−Π∗

µ1

≥ |S1| · ‖µ1‖42 −

 ∑
S∈children(S∗)

S 6=S1

|S| 〈µS , µ1〉2

− ‖Π−Π∗‖2‖µ1‖22 (76)

Consider the three terms above separately. For the first term, we get

|S1| · ‖µ1‖42 ≥ |S1| ·

(
1

|S1|
− 4 · γ1/4

|S1|

)2

By Lemma 12 item (1)

≥ 0.9

|S1|
As γ is sufficiently small (77)
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Now consider the second term on the rhs of (76). We have∑
S 6=S1∈children(S∗)

|S| 〈µS , µ1〉2

≤
∑

S 6=S1∈children(S∗)

|S|

(
8 · γ1/4√
|S| ·

√
|S1|

)2

By Lemma 12 item (2)

≤
∑

S 6=S1∈children(S∗)

64 · √γ
|S1|

≤
64 · (r − 1) · √γ

|S1|
Since |children(S∗)| = r

≤
64 · √γ
β · |S1|

By Definition 6, r = |children(S∗)| ≤ 1

β

≤ 0.1

|S1|
By Definition 6,

√
γ

β
is sufficiently smalls (78)

Now consider the last term on the rhs of (76). Note that by Lemma 14 we have

||Π∗ −Π||2 =

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
S∈children(S∗)

|S|µSµTS −Π

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ 30 ·D · γ1/4 (79)

Thus by (79) we have

‖Π−Π∗‖2‖µ‖22 ≤
(

30 ·D · γ1/4
)
· 1

|S1|
·
(

1 + 4 · γ1/4
)

By Lemma 12 item (1)

≤ 0.1

|S1|
As D · γ1/4 is sufficiently small (80)

Putting together (76), (77),(78) and (80) we have

||Πµ1‖22 ≥ |S1| · ‖µ1‖42 −

 ∑
S 6=S1∈children(S∗)

|S| 〈µS , µ1〉2
− ‖Π−Π∗‖2‖µ1‖22 ≥

0.7

|S1|
(81)

Similarly we have

||Πµ2‖22 ≥
0.7

|S2|
(82)

Step 2: It remains to upper bound 〈Πµ1,Πµ2〉. Recall that Π∗ =
∑

S∈children(S∗) |S| (µS) (µS)T .
Thus we have

〈Πµ1,Πµ2〉 = µT1 (Π)µ2

= µT1 (Π∗ + Π−Π∗)µ2

= µT1

|S1|µ1µ
T
1 + |S2|µ2µ

T
2 +

 ∑
S∈children(S∗),S 6=S1,S2

|S|µSµTS

+ (Π−Π∗)

µ2

≤ |S1| · ‖µ1‖22〈µ1, µ2〉+ |S2| · ‖µ2‖22〈µ1, µ2〉

+

 ∑
S∈children(S∗),S 6=S1,S2

|S| 〈µ1, µS〉 · 〈µ2, µS〉

+ ‖Π−Π∗‖2〈µ1, µ2〉 (83)
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We consider the four terms on rhs of(83). For the first term we have

|S1| · ‖µ1‖22〈µ1, µ2〉≤|S1| ·

(
1

|S1|
+

4 · γ1/4

|S1|

)(
8 · γ1/4√
|S1| · |S2|

)
By Lemma 12

≤ 2 ·

(
8 · γ1/4√
|S1| · |S2|

)
As 4 · γ1/4 < 1

≤ 1

|S∗|
· 16

β
· γ1/4 As min(|S1|, |S2|) ≥ β · |S∗|

≤ 0.05

|S∗|
As

√
γ

β
is sufficiently small by Definition 6

(84)

And similarly, we upper bound the second term in (83) by 0.05
|S∗| . For the third term we have∑

S∈children(S∗),S 6=S1,S2

|S| 〈µ1, µS〉 · 〈µ2, µS〉

≤
∑

S∈children(S∗),S 6=S1,S2

|S|

(
8 · γ1/4√
|S1| · |S|

)
·

(
8 · γ1/4√
|S2| · |S|

)
By Lemma 12, item 1

≤
∑

S∈children(S∗),S 6=S1,S2

64 · √γ√
|S1| · |S2|

≤ (r − 2) ·
64 · √γ√
|S1| · |S2|

Since |children(S∗)| = r

≤ 1

β2
·

64 · √γ
|S∗|

By Definition 6, r ≤ 1

β
and min(|S1|, |S2|) ≥ β · |S∗|

≤ 0.05

|S∗|
As

γ

β
is sufficiently small by Definition 6

(85)

For the last term on the rhs of (83) by (79) and by Lemma 12 item 1 we have

‖Π−Π∗‖2〈µ1, µ2〉 ≤
(

30 ·D · γ1/4
)
·

(
8 · γ1/4√
|S1| · |S2|

)

≤ 8 · γ1/4√
|S1| · |S2|

As D · γ1/4 is sufficiently small

≤
(

8 · √γ
β · |S∗|

)
By Definition 6, min(|S1|, |S2|) ≥ β · |S∗|

≤ 0.05

|S∗|
As

√
γ

β
is sufficiently small by Definition 6

(86)

Thus by (83), (84),(85),(86) we have

43



〈Πµ1,Πµ2〉 ≤ |S| · ‖µ1‖22〈µ1, µ2〉+ |S2| · ‖µ2‖22〈µ1, µ2〉

+

 ∑
S∈children(S∗),S 6=S1,S2

|S| 〈µ1, µS〉 · 〈µ2, µS〉

+ ‖Π−Π∗‖2〈µ1, µ2〉

≤ 0.05

|S∗|
+

0.05

|S∗|
+

0.05

|S∗|
+

0.05

|S∗|
(87)

≤ 0.2

|S∗|
(88)

Putting it together Thus by (74), (81), (82) and (87) we have

||Πµ1 −Πµ2‖22 = ||Πµ1||22 + ||Πµ2||22 − 2 〈Πµ1,Πµ2〉

≥ 0.7

|S1|
+

0.7

|S2|
− 2 · 0.2

|S∗|

≥ 1

|S∗|
. Since |S1| ≤ |S∗| and |S2| ≤ |S∗|

4.8 Bounding the Intersection of Candidate Clusters with True Clusters

The main result of this subsection is Theorem 3 that shows the inductive step for the proof of
Ball-Carving. First we state the definition of the cylinder of clusters:

Definition 20. (Cylinder) Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Defini-
tion 6). Let h ∈ [H] and Q∗ ⊆ V be a set that is D-hierarchically-close to cluster S∗ ∈ Ph−1.
For any center α ∈ Rκ and any radius ` ∈ R we define the cylinder of radius ` around the center
α as follows:

cyl(α, `|Q∗) =
{
y ∈ Q∗ : ||Πα−Πfκy ||22 ≤ `

}
where, κ = |Ph|, r = |children(S∗)|, and Π is the subgraph projection matrix of Q∗ with
respect to κ and r (Definition 12).

Theorem 3. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Let
h ∈ [H], S∗ ∈ Ph−1, ` = 1

103·|S∗| , and D = D0
β4·ϕ2 where D0 is a sufficiently large constant. For

every set Q∗ that is D-hierarchically-close to S∗ (Definition 19) the following holds:

1. For every S1 6= S2 ∈ children(S∗), cyl(µS1 , `|Q∗)
⋂

cyl(µS2 , `|Q∗) = ∅

2. For every S ∈ children(S∗),
∣∣S4cyl(µS , `|Q∗)

∣∣ ≤ D·β
10 · ϕh−1 · |S|

3. For every S ∈ children(S∗), cyl(µS , `|Q∗) is D-hierarchically-close to S

Proof. Proof of (1) : Let r = |children(S∗)|, κ = |Ph| and Π ∈ Rκ×κ be the subgraph
projection matrix of Q∗ with respect to κ and r (Definition 12). Suppose that r ≥ 2 and
let S1 6= S2 ∈ children(S∗) be two of the children of S∗. For simplicity of notation we let
µ1 = µS1 , µ2 = µS1 . We now define

S′1 =

{
x ∈ V : ||Πfκx −Πµ1||22 ≤

1

103 · |S∗|

}
, and S′2 =

{
x ∈ V : ||Πfκx −Πµ2||22 ≤

1

103 · |S∗|

}
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We first show that S′1 ∩ S′2 = ∅. By contradiction suppose that S′1 ∩ S′2 6= ∅. Therefore, there
exists a vertex x ∈ V such that ||Πfκx − Πµ1‖22 ≤ 1

103·|S∗| and ||Πfκx − Πµ2‖22 ≤ 1
103·|S∗| . Thus

we have

||Πµ1 −Πµ2‖2 ≤ ||Πµ1 −Πfκx ||2 + ||Πfκx −Πµ2||2 By triangle inequality

≤ 1

30 ·
√
|S∗|

+
1

30 ·
√
|S∗|

By definition of S′1 and S′2

≤ 1

15 ·
√
|S∗|

(89)

Note that by Definition 6, for every S ∈ children(S∗) we have |S| ≥ β · |S∗|, hence,

|children(S∗)| = r ≤ 1

β
(90)

Also note that max( γ
β30 ,

γ
ϕ20 ) is smaller than a sufficiently small constant by Definition 6. There-

fore, by choice of D = D0
β4·ϕ2 we have r ≤ D � 1

γ1/4
. Thus by Lemma 18 we have

‖Πµ1 −Πµ2‖22 ≥
1

|S∗|

and this contradicts with (89). Therefore, we have

S′1 ∩ S′2 = ∅ (91)

Note that ` = 1
103·|S∗| , hence, cyl(µ1, `|Q∗) = Q∗ ∩S′1 and cyl(µ2, `|Q∗) = Q∗ ∩S′2. Therefore by

(91) we have
cyl(µ1, `|Q∗) ∩ cyl(µ2, `|Q∗) = Q∗ ∩ S′1 ∩ S′2 = ∅

Proof of (2): We now prove
∣∣cyl(µS , `|Q∗)4S

∣∣ ≤ D·β
10 ·ϕh−1 · |S| for every S ∈ children(S∗).

Let δ = β
103

. We now define

S′ =

{
x ∈ V : ||Πfκx −ΠµS ||22 ≤

1

103 · |S∗|

}
, and S′′ =

{
x ∈ S : ||Πfκx −ΠµS ||22 ≤

δ

|S|

}
For any S ∈ children(S∗) we have |S| ≥ β · |S∗|, thus for any x ∈ S′′ we get

||Πfκx −ΠµS ||22 ≤
δ

|S|
≤ δ

β · |S∗|
=

β

103 · β · |S∗|
≤ 1

103 · |S∗|
,

Therefore, we have S′′ ⊆ S′, also by definition of S′′ we have S′′ ⊆ S. Therefore, we have
S′′ ⊂ S′ ∩ S, hence, we get

|S′ ∩ S| ≥ |S′′| (92)

By Definition 6, γ
β30 is a sufficiently small constant, hence, δ = β

103
≥ 4 ·γ1/4, thus we can apply

Lemma 13, and we get

|S′′| ≥ |S|
(

1− rank(Π) ·O(ϕh−1)

δ · ϕ2

)
≥ |S|

(
1− O(ϕh−1)

β2 · ϕ2

)
, (93)

where the last inequality holds since rank(Π) = r ≤ 1
β by (90), and δ = β

103
. Putting (93) and

(92) together for every S ∈ children(S∗) we get

|S′ ∩ S| ≥ |S′′| ≥ |S| ·
(

1− O(ϕh−1)

β2 · ϕ2

)
(94)

Note that
|cyl(µS , `|Q∗)4S| = |S \ cyl(µS , `|Q∗)|+ |cyl(µS , `|Q∗) \ S| (95)

Therefore, we need to upper bound |S \ cyl(µS , `|Q∗)| and |cyl(µS , `|Q∗) \ S|.
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Step 1: First we upper bound |S \ cyl(µS , `|Q∗)|.

|S \ cyl(µS , `|Q∗)|
= |S \ (Q∗ ∩ S′)| By definition of cyl(µS , `|Q∗) and S′

≤ |S \Q∗|+ |S \ S′|

≤ |S∗ \Q∗|+ |S| ·
(
O(ϕh−1)

β2 · ϕ2

)
As S ⊆ S∗ and by (94)

≤ D · ϕh−2 · |S∗|+ |S| ·
(
O(ϕh−1)

β2 · ϕ2

)
As S∗ ∈ Ph−1 is D-hierarchically-close to Q∗, so |S∗ \Q∗| ≤ D · ϕh−2 · |S∗|

≤ D · ϕh−2 ·
|S|
β

+ |S| ·
(
O(ϕh−1)

β2 · ϕ2

)
As |S| ≥ β · |S∗|

≤ |S| · ϕh−1

(
D · γ
β

+
D1

β2 · ϕ2

)
As ϕh−2 = ϕh−1 · γ (96)

In the last step, D1 is the constant hidden in O(.) above.

Step 2: Next we upper bound |cyl(µS , `|Q∗) \ S|.

|cyl(µS , `|Q∗) \ S| = |(Q∗ ∩ S′) \ S| By definition of cyl(µS , `|Q∗) and S′

= |((Q∗ ∩ S∗) ∩ S′) \ S|+ |((Q∗ \ S∗) ∩ S′) \ S|
≤ |S′ ∩ (S∗ \ S)|+ |Q∗ \ S∗|

=

 ∑
S2∈children(S∗)

s.t.S2 6=S

|S′ ∩ S2|

+ |Q∗ \ S∗| (97)

Thus we need to upper bound |Q∗ \ S∗| and |S′ ∩ S2| for S2 6= S ∈ children(S∗). Note that

|S′ ∩ S2| = |S′ ∩
((
S2 ∩ S′2

)
∪ (S2 \ S′2))

)
|

= |S′ ∩ S2 ∩ S′2|+ |S′ ∩ (S2 \ S′2)|
= |S′ ∩ (S2 \ S′2)| By (91), S′ ∩ S′2 = ∅
≤ |S2 \ S′2|

≤ |S2| ·
(
O(ϕh−1)

β2 · ϕ2

)
By (94)

Therefore, we have∑
S2∈children(S∗)

s.t.S2 6=S

|S′ ∩ S2| ≤
∑

S2∈children(S∗)
s.t.S2 6=S

|S2| ·
(
O(ϕh−1)

β2 · ϕ2

)

≤ |S∗| ·
(
O(ϕh−1)

β2 · ϕ2

)
≤ |S| ·

(
O(ϕh−1)

β3 · ϕ2

)
As |S| ≥ β · |S∗| (98)

Next we will bound |Q∗ \ S∗|. Note that since Q∗ is D-hierarchically-close to S∗ by Lemme 19
we have |Q∗ \ S∗| ≤ 2 ·D · ϕh−2 · |S∗|. Since |S| ≥ β · |S∗| and ϕh−2 = γ · ϕh−1 we get

|Q∗ \ S∗| ≤ 2 ·D · ϕh−2 · |S∗| ≤ 2 ·D · ϕh−1 · γ ·
|S|
β

(99)
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By putting (97), (98) and (99) together we get

|cyl(µS , `|Q∗) \ S| ≤

 ∑
S2∈children(S∗)

s.t.S2 6=S

|S′ ∩ S2|

+ |Q∗ \ S∗|

≤ |S| ·
(
O(ϕh−1)

β3 · ϕ2

)
+ |S| · 2 ·D · γ

β
· ϕh−1 By (98) and (99)

≤ |S| · ϕh−1

(
D2

β3 · ϕ2
+

2 ·D · γ
β

)
where D2 is the constant hidden in big-Oh above

(100)

Putting it together: By (95), (96) and (100) we have

|cyl(µS , `|Q∗)4S| = |S \ cyl(µS , `|Q∗)|+ |cyl(µS , `|Q∗) \ S|

≤ |S| · ϕh−1

(
D · γ
β

+
D1

β2 · ϕ2
+

D2

β3 · ϕ2
+

2 ·D · γ
β

)
≤ |S| · ϕh−1

(
3 ·D · γ

β
+
D1 +D2

β3 · ϕ2

)
≤ D · β

10
· ϕh−1 · |S|

The last inequality holds since γ
β2 <

1
60 and on choosing D = D0

β4·ϕ2 , where D0 = 20(D1 +D2).

Proof of (3): So far we proved property (1) of definition D-hierarchically-close. To complete
the proof, we need to show that cyl(µS , `|Q∗) is D-hierarchically-close to S by verifying property
(2) of Definition 19. Thus we need to show that for any h′ ∈ [h− 1], |cyl(µS , `|Q∗) ∩Bh′(S)| ≤
|S| ·

(
D·ϕh′

β(h−1−h′)

)
. Since S is a child of S∗ thus for for any h′ ≤ h− 2 we have Bh′(S) = Bh′(S

∗).

Therefore, we have

|cyl(µS , `|Q∗) ∩Bh′(S)| ≤ |Q∗ ∩Bh′(S∗)| Since Bh′(S) = Bh′(S
∗), and cyl(µS , `|Q∗) ⊆ Q∗

≤ |S∗| ·
(
D · ϕh′
βh−2−h′

)
Since Q∗ is D-hierarchically-close to S∗ ∈ Ph−1

≤ |S| ·
(
D · ϕh′
βh−1−h′

)
Since |S| ≥ β · |S∗| (101)

Note that Bh−1(S) = S∗ \ S. Thus we have

|cyl(µS , `|Q∗) ∩Bh−1(S)| = |cyl(µS , `|Q∗) ∩ (S∗ \ S)|
≤ |cyl(µS , `|Q∗) \ S|

≤ D · ϕh−1 · |S| As |cyl(µS , `|Q∗)4S| ≤
D · β

10
· ϕh−1 · |S|

Therfore, for any 0 ≤ h′ ≤ h− 1 we have

|cyl(µS , `|Q∗) ∩Bh′(S)| ≤ |S| ·
(
D · ϕh′
βh−1−h′

)
.
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Lemma 19. Let h∗ ∈ [H], S ∈ Ph∗ be a cluster at level h∗ and let Q ⊆ V be a set that is
D-hierarchically-close to S∗. Then we have

|Q \ S∗| ≤ 2 ·D · ϕh∗−1 · |S∗|

Proof. Note that since Q is D-hierarchically-close to S∗ we have

|Q \ S∗| =
h∗−1∑
h=0

|Bh(S∗) ∩ S∗|

≤
h∗−1∑
h=0

|S∗| ·
(

D · ϕh
β(h∗−1−h)

)
By item 2 of Definition 19

= D · |S∗| ·
h∗−1∑
h=0

(
ϕh∗−1 · γh

∗−1−h

βh∗−1−h

)
As ϕh = ϕh∗−1 · γh

∗−1−h

= D · |S∗| · ϕh∗−1 ·
h∗−1∑
h=0

(
γ

β

)h∗−1−h

≤ 2 ·D · ϕh∗−1 · |S∗| It is a geometric sum where γ/β < 1/2

Lemma 20. (Bounded outliers) Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph
(Definition 6). Let h ∈ [H], |Ph| = κ, S∗ ∈ Ph−1, ` = 1

103·|S∗| , and D = D0
β4·ϕ2 where D0 is a

sufficiently large constant. Let Q∗ be a set that is D-hierarchically-close to S∗ (Definition 19).
Let O = Q∗ \

⋃
S∈children(S∗) cyl(µS , `|Q∗) where µS ∈ Rκ is the κ-dimensional center of cluster

S (Definition 10). Then we have

|O| ≤ D · β
5
· ϕh−1 · |S∗|.

Proof. By Theorem 3, for every S1 6= S2 ∈ children(S∗) we have cyl(µS1 , `|Q∗)∩cyl(µS2 , `|Q∗) =
∅. We now define

O = Q∗ \
⋃

S∈children(S∗)

cyl(µS , `|Q∗) (102)

Therefore, we have

|O| = |O \ S∗|+ |O ∩ S∗|

= |O \ S∗|+
∑

S∈children(S∗)

|S ∩O| As S∗ =
⋃

S∈children(S∗)

S

≤ |Q∗ \ S∗|+
∑

S∈children(S∗)

∣∣∣∣∣∣S ∩
Q∗ \ ⋃

S∈children(S∗)

cyl(µS , `|Q∗)

∣∣∣∣∣∣ Since O ⊆ Q∗ and by (102)

≤ |Q∗ \ S∗|+
∑

S∈children(S∗)

|S \ cyl(µS , `|Q∗)| (103)

Note that Q∗ is D-hierarchically-close to S∗ ∈ Ph−1. Thus by Lemma 19 we have

|Q∗ \ S∗| ≤ 2 ·D · ϕh−2 · |S∗| (104)
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Also by Theorem 3, item (2) for every S ∈ children(S∗) we have

|cyl(µS , `|Q∗)4S| ≤
D · β

10
· ϕh−1 · |S| (105)

Putting (103), (104) and (105) together we get

|O| ≤ |Q∗ \ S∗|+
∑

S∈children(S∗)

|S \ cyl(µS , `|Q∗)| By (103)

≤ 2 ·D · ϕh−2 · |S∗|+
∑

Si∈children(S∗)

D · β
10
· ϕh−1 · |S| By (104) and (105)

≤ |S∗|
(

2 ·D · ϕh−2 +
D · β

10
· ϕh−1

)
As S∗ =

∑
S∈children(S∗)

|S|

= D · ϕh−1 · |S∗| ·
(

2 · γ +
β

10

)
As ϕh−2 = γ · ϕh−1

≤ D · β
5
· ϕh−1 · |S∗| As

γ

β
is sufficiently small (106)

Theorem 4. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Let
h ∈ [H], |Ph| = κ, S∗ ∈ Ph−1, ` = 1

103·|S∗| , and D = D0
β4·ϕ2 where D0 is a sufficiently large

constant. Let Q∗ be a set that is D-hierarchically-close to S∗ (Definition 19). Let x ∈ Q∗ be a
vertex such that |cyl (fκx , 6`|Q∗)| ≥ 0.85 · β · |S∗|. Then for every set Q satisfying

cyl (fκx , 20`|Q∗) ⊆ Q ⊆ cyl (fκx , 30`|Q∗) ,

there exists a unique cluster S ∈ children(S∗) such that:

1. Q is D-hierarchically-close to S

2. for every S′ 6= S ∈ children(S∗), cyl (µS′ , `|Q∗) ∩Q = ∅

where µS′ ∈ Rκ is the κ-dimensional center of set S′ (Definition 10).

Proof. We first prove that there exists a cluster S ∈ children(S∗) such that cyl (fκx , 6`|Q∗) ∩
cyl (µS , `|Q∗) 6= ∅ and cyl (µS , `|Q∗) ⊆ Q. Then we use these two facts to show items (1) and
(2). By Theorem 3, for every S1 6= S2 ∈ children(S∗) we have

cyl(µS1 , `|Q∗) ∩ cyl(µS2 , `|Q∗) = ∅

We now define
O = Q∗ \

⋃
S∈children(S∗)

cyl(µS , `|Q∗) (107)

Note that by the assumptions of the lemma we have |cyl (fκx , 6`|Q∗)| ≥ 0.85 ·β · |S∗|. Therefore,
we get

|cyl (fκx , 6`|Q∗)| ≥ 0.85 · β · |S∗|

>
β

5
· D0

β4 · ϕ2
· γ · |S∗| Since

γ

β4 · ϕ2
is sufficiently small by Definition 6

≥ D · β
5
· ϕh−1 · |S∗| Since ϕh−1 ≤ ϕH−1 ≤ γ and D =

D0

β4 · ϕ2

≥ |O| By Lemma 20
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Recall thatQ∗ = O∪
(⋃

S∈children(S∗) cyl(µS , `|Q∗)
)

and cyl (fκx , 6`|Q∗) ⊆ Q∗. Since |cyl (fκx , 6`|Q∗) | >
|O|, therefore, there exists a cluster S such that

cyl (fκx , 6`|Q∗) ∩ cyl (µS , `|Q∗) 6= ∅ (108)

Since cyl (fκx , 6`|Q∗)∩cyl (µS , `|Q∗) 6= ∅, there exists a vertex z ∈ cyl (fκx , 6`|Q∗)∩cyl (µS , `|Q∗).
Let r = |children(S∗)|, κ = |Ph| and Π ∈ Rκ×κ be the subgraph projection matrix of Q∗ with
respect to κ and r (Definition 12). Since z ∈ cyl (fκx , 6`|Q∗), by Definition 20 we have

||Πfκx −Πfκz ||22 ≤ 6` (109)

Since z ∈ cyl (µS , `|Q∗), we have ||Πfκz − ΠµS‖22 ≤ `. Also for every y ∈ (µS , `|Q∗), we have
||Πfκy −ΠµS‖22 ≤ `. Thus by triangle inequality for every y ∈ Qi we get

||Πfκz −Πfκy ‖22 ≤ 4` (110)

Putting (109) and (110) together and by triangle inequality for every y ∈ cyl (µS , `|Q∗) we have

||Πfκx −Πfκy ||22 ≤ 20` (111)

Therfore, we have
cyl (µS , `|Q∗) ⊆ cyl (fκx , 20`|Q∗) ⊆ Q (112)

Proof of (2): We want to show that for every S′ 6= S ∈ children(S∗), cyl (µS′ , `|Q∗)∩Q = ∅.
Since Q ⊆ cyl (fκx , 30`|Q∗), it suffices to show that cyl (µS′ , `|Q∗) ∩ cyl (fκx , 30`|Q∗) = ∅, or
equivalently, for every w ∈ cyl (µS′ , `|Q∗) we need to show that

||Πfκx −Πfκw||2 > 30`.

Let y ∈ cyl (µS , `|Q∗). By triangle inequality we have

||Πfκx −Πfκw||2 ≥ ||Πfκy −Πfκw||2 − ||Πfκx −Πfκy ||2 (113)

and

||Πfκy −Πfκw||2
≥ ||ΠµS −ΠµS′ ||2 − ||ΠµS −Πfκy ||2 − ||ΠµS′ −Πfκw||2 By triangle inequality

≥ ||ΠµS −ΠµS′ ||2 − 2
√
` As y ∈ cyl (µS , `|Q∗) and w ∈ cyl (µS′ , `|Q∗)

(114)

Note that by Definition 6, for every S ∈ children(S∗) we have |S| ≥ β·|S∗|, hence, |children(S∗)| =
r ≤ 1

β . Also recall that γ
β30 and γ

ϕ20 are sufficiently small. Therefore, by choice of D = D0
β4·ϕ2 we

have r ≤ D ≤ 1
γ1/4

. Thus we can apply Lemma 18 and we get

||ΠµS −ΠµS′ ||2 ≥
1√
|S∗|

=
√

103 · ` (115)

Putting (114) and (115) together we get

||Πfκy −Πfκw||2 ≥ 29 ·
√
` (116)

Recall that y ∈ cyl (µS , `|Q∗) and by (112) we have cyl (µS , `|Q∗) ⊆ cyl (fκx , 20`|Q∗). Thus,
y ∈ cyl (fκx , 20`|Q∗). Therefore, we have

||Πfκx −Πfκy ||22 ≤ 20 · ` (117)

Putting (113), (116), and (117) together we get

||Πfκx −Πfκw||2 ≥ ||Πfκy −Πfκw||2 − ||Πfκx −Πfκy ||2 ≥ 29
√
`−
√

20 · ` ≥ 24 ·
√
`

Thus, for every w ∈ cyl (µS′ , `|Q∗) we have ||Πfκx − Πfκw||2 > 30 · `. Thus, cyl (fκx , 30`|Q∗) ∩
cyl (µS′ , `|Q∗) = ∅. Since Q ⊆ cyl (fκx , 30`|Q∗), for every S′ 6= S ∈ children(S∗) we have

Q ∩ cyl (µS′ , `|Q∗) = ∅ (118)
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Proof of (1): Let Q be a set such that cyl (fκx , 20`|Q∗) ⊆ Q ⊆ cyl (fκx , 30`|Q∗). To show that
Q is D-hierarchically-close to S we need to verify property (1) and property (2) of Definition
19. So we need to prove that |S \Q| ≤ D ·ϕh−1 · |S| and for any 0 ≤ h′ ≤ h− 1, |Q∩Bh′(S)| ≤
|S| ·

(
D·ϕh′
βh−1−h′

)
. We first bound |S \Q|. For property (1) we have

|S \Q| ≤ |S \ cyl(µS , `|Q∗)| By (112) cyl(µS , `|Q∗) ⊆ cyl (fκx , 20`|Q∗) ⊆ Q

≤ D · β
10
· ϕh−1 · |S| By Theorem 3

≤ D · ϕh−1 · |S| (119)

Now, we verify property (2) of Definition 19 by proving that for any 0 ≤ h′ ≤ h−1, |Q∩Bh′(S)| ≤
|S| ·

(
D·ϕh′

β(h−1−h′)

)
. For h′ = h− 1, since Bh−1(S) = S∗ \ S we have

|Q ∩Bh−1(S)| ≤ |Q ∩ (S∗ \ S)| ≤ |Q \ S|

By (118) for every S′ 6= S ∈ children(S∗) we have Q ∩ cyl (µS′ , `|Q∗) = ∅. By (107) we have
O = Q∗ \

⋃
S∈children(S∗) cyl(µS , `|Q∗). Therefore we have

Q ⊆ O ∪ cyl (µS , `|Q∗)

Hence,
|Q ∩Bh−1(S)| ≤ |Q \ S| ≤ |O|+ |cyl (µS , `|Q∗) \ S|

By Lemma (20) we have |O| ≤ D·β
5 · ϕh−1 · |S∗|, also we know |S| ≥ β · |S∗|. Therefore, we get

|O| ≤ D · β
5
· ϕh−1 · |S∗| ≤

D · β
5
· ϕh−1 ·

|S|
β
≤ D

5
· ϕh−1 · |S| (120)

Moreover, by Theorem 3, item (2) we have |cyl (µS , `|Q∗)4S| ≤ D·β
10 · ϕh−1 · |S|. Therefore, we

get

|Q ∩Bh−1(S)| ≤ |cyl (µS , `|Q∗) \ S|+ |O|

≤ D · β
10
· ϕh−1 · |S|+

D

5
· ϕh−1 · |S|

≤ D · ϕh−1 · |S| (121)

Also note that for any h′ ≤ h− 2 we have

|Q ∩Bh′(S)| ≤ |Q∗ ∩Bh′(S∗)| Since Bh′(S) = Bh′(S
∗) and Q ⊆ Q∗

≤ |S∗| ·
(
D · ϕh′
βh−2−h′

)
Since Q∗ is D-hierarchically-close to S∗ ∈ Ph−1

≤ |S| ·
(
D · ϕh′
βh−1−h′

)
Since |S| ≥ β · |S∗| (122)

Putting (119), (121) and (122) together we get that Q is D-hierarchically-close to S.

4.9 Dot Product Oracle on the Projected Subspace

The main result of this Section is Theorem 5.

Theorem 5. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Let
ξ ∈ ( 1

n5 ,
1

1000), D = D0
β4·ϕ2 where D0 is some large constant. Let h ∈ [H], κ = |Ph|, S∗ ∈ Ph−1

and r = |children(S∗)|. Let S∗ ⊆ V be a set that is D-hierarchically-close to S∗ (Definition
19). Let Π ∈ Rκ×κ denote the subgraph projection matrix of S∗ for κ and r. Let A0, c > 1
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be large constants and let S̃∗ be a set of size s̃ ≥ kc·n560A0·γ/ϕ

ξ6
sampled independently and uni-

formly at random from Q. Let s∗ be an estimation of |S∗| such that |s∗ − |S∗|| ≤ |S∗|·ξ3
kc·n280A0·γ/ϕ

.

Then InitializeSubgraphProjMatrix(G, h, κ, r, S̃∗, s∗, ξ) (Algorithm 6) computes a sublin-
ear space data structure D such that with probability at least 1− n−96 the following property is
satisfied:

1. For every pair of vertices x, y ∈ V , ProjectedDotProduct(G, x, y, ξ,D) (Algorithm

7) runs in time n1/2+O(γ/ϕ) ·
(
k·logn
γ·ξ·ϕh

)O(1)
and computes an output value

〈
fκx , Π̃f

κ
y

〉
apx

such

that with probability at least 1− n−96,∣∣∣∣〈fκx , Π̃fκy 〉
apx

−
〈
fκx ,Πf

κ
y

〉∣∣∣∣ ≤ ξ

n

2. For every pair of vertices x, y ∈ V , ProjectedDistance(G, x, y, ξ,D) (Algorithm 8)

runs in time n1/2+O(γ/ϕ) ·
(
k·logn
γ·ξ·ϕh

)O(1)
and computes an output value

∥∥∥Π̃fκx − Π̃fκy

∥∥∥2

apx

such that with probability at least 1− n−96,∣∣∣∣∥∥∥Π̃fκx − Π̃fκy

∥∥∥2

apx

− ||Πfκx −Πfκy ||22
∣∣∣∣ ≤ ξ

n

Notice that by Remark 3 we can achieve a tradeoff in the preprocessing/ query runtime.

Remark 3. For any ω ∈ [0, 1/2], one can obtain the following trade-offs between preprocessing
time and query time: Algorithm ProjectedDotProduct(G, x, y, ξ,D) requires nω+O(γ/ϕ) ·(
k·logn
γ·ξ·ϕh

)O(1)
per query when the prepressing time of Algorithm InitializeSubgraphProjMatrix(G, h, κ, r, Q̃, s, ξ)

is increased to n1−ω+O(γ/ϕ) ·
(
k·logn
γ·ξ·ϕh

)O(1)
.

We first set up notations and then state the algorithms below.
Let m ≤ n be integers. For any matrix A ∈ Rn×m with singular value decomposition (SVD)

A = Y ΓZT we assume Y ∈ Rn×n and Z ∈ Rm×n are orthogonal matrices and Γ ∈ Rn×n is a
diagonal matrix of singular values. Since Y and Z are orthogonal matrices, their columns form
an orthonormal basis. For any integer q ∈ [m] we denote Y[q] ∈ Rn×q as the first q columns of

Y and Y−[q] to denote the matrix of the remaining columns of Y . We also denote ZT[q] ∈ Rq×n

as the first q rows of ZT and ZT−[q] to denote the matrix of the remaining rows of Z. Finally

we denote ΓT[q] ∈ Rq×q as the first q rows and columns of Γ and we use Γ−[q] as the last n − q
rows and columns of Γ. So for any q ∈ [m] the span of Y−[q] is the orthogonal complement of
the span of Y[q], also the span of Z−[q] is the orthogonal complement of the span of Z[q]. Thus

we can write A = Y[q]Γ[q]Z
T
[q] + Y−[q]Γ−[q]Z

T
−[q].

Algorithm 6 InitializeSubgraphProjMatrix(G, h, κ, r, Q̃, s, ξ)

1: Dh = InitializeDotProductOracle(G,ω, ξ, h, κ) . Remark 5
2: s̃← |Q̃|
3: Υ̂ ∈ Rs̃×s̃ ← gram-matrix of

〈
fκz1 , f

κ
z2

〉
apx

for z1, z2 ∈ Q̃, . Remark 5

4: Let
(
s
s̃ · Υ̂

)
= ẐΓ̂ẐT be the eigendecomposition of

(
s
s̃ · Υ̂

)
5: Ψ̂ = s

s̃ · Ẑ[r]Γ̂
−1
[r] Ẑ

T
[r]

6: return D = {Dh, Ψ̂, Q̃}
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Algorithm 7 ProjectedDotProduct(G, x, y, ξ,D) . D = {Dh, Ψ̂, Q̃}

1: Let αx ∈ R|Q̃| be a vector such that for any z ∈ Q̃ we have αx(z) = 〈fκx , fκz 〉apx . Remark 5

2: Let αy ∈ R|Q̃| be a vector such that for any z ∈ Q̃, we have αy(z) =
〈
fκy , f

κ
z

〉
apx

. Remark
5

3: return
〈
fκx , Π̃f

κ
y

〉
apx

= αTx Ψ̂αy

Remark 4. Note that as per line 3 of Algorithm 7 we have
〈
fκx , Π̃f

κ
y

〉
apx

is symmetric:〈
fκx , Π̃f

κ
y

〉
apx

=
〈

Π̃fκx , f
κ
y

〉
apx

Remark 5. For computing 〈fκa , fκb 〉apx we use Algorithm 10 given in Appendix C:

〈fκa , fκb 〉apx = SpectralDotProductOracle(G, a, b, ω, ξ,Dh)

where Dh = InitializeDotProductOracle(G,ω, ξ, h, κ) (see Algorithm 9).

Algorithm 8 ProjectedDistance(G, x, y, ξ,D) . D = {Dh, Ψ̂, Q̃}
1: ξ′ = ξ

4

2:

〈
fκx , Π̃f

κ
x

〉
apx

= ProjectedDotProduct(G, x, x, ξ′,D) . Algorithm 7

3:

〈
fκy , Π̃f

κ
y

〉
apx

= ProjectedDotProduct(G, y, y, ξ′,D) . Algorithm 7

4:

〈
fκx , Π̃f

κ
y

〉
apx

= ProjectedDotProduct(G, x, y, ξ′,D) . Algorithm 7

5:

∥∥∥Π̃fκx − Π̃fκy

∥∥∥2

apx

=
〈
fκx , Π̃f

κ
x

〉
apx

+
〈
fκy , Π̃f

κ
y

〉
apx

− 2 ·
〈
fκx , Π̃f

κ
y

〉
apx

6: return
∥∥∥Π̃fκx − Π̃fκy

∥∥∥2

apx

4.9.1 Proof of Theorem 6 (Correctness of Algorithm 7)

To prove Theorem 5 we first present a more general result (Theorem 6) with the help of Defi-
nition 21.

Definition 21. (δ-close to r-clusterable) LetG = (V,E) be a (k, γ)-hierarchically-clusterable
graph (Definition 6) and let Q ⊆ V . We say that set Q is δ-close to be r-clusterable if there
exists κ ∈ [k], r ∈ [κ] such that νr+1(AAT ) ≤ δ and νr(AA

T ) ≥ 1 − δ, where A ∈ Rκ×|Q| is a
matrix whose columns are fκx for all x ∈ Q.

Theorem 6. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Let
κ ∈ [k], r ∈ [κ], δ ∈ [0, 1

1000), ξ ∈ ( 1
n5 ,

1
1000) and A0, c > 1 be large enough constants. Let

Q ⊆ V be a set that is δ-close to r-clusterable (Definition 21) and let Π ∈ Rκ×κ be the subgraph

projection matrix of Q for κ and r (Definition 12). Let Q̃ be a set of size s̃ ≥ kc·n560A0·γ/ϕ

ξ6

sampled independently and uniformly at random from Q. Let s be an estimation of |Q| such that

|s− |Q|| ≤ |Q|·ξ3
kc·n280A0·γ/ϕ

. Then InitializeSubgraphProjMatrix(G, ., κ, r, Q̃, s, ξ) (Algorithm

6) computes a sublinear space data structure D such that with probability at least 1− n−96 the
following property is satisfied:

For every pair of vertices x, y ∈ V , ProjectedDotProduct(G, x, y, ξ,D) (Algorithm 7)

computes an output value
〈
fκx , Π̃f

κ
y

〉
apx

such that with probability at least 1− n−96

∣∣∣∣〈fκx , Π̃fκy 〉
apx

−
〈
fκx ,Πf

κ
y

〉∣∣∣∣ ≤ ξ

n
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The running time of InitializeSubgraphProjMatrix(G, h, κ, r, Q̃, s, ξ) is n1/2+O(γ/ϕ)·
(
k·logn
γ·ξ·ϕh

)O(1)
.

The running time of ProjectedDotProduct(G, x, y, ξ,D) is n1/2+O(γ/ϕ)·
(
k·logn
γ·ξ·ϕh

)O(1)
. More-

over, the size of the data structure D is n1/2+O(γ/ϕ) ·
(
k·logn
γ·ξ

)O(1)
.

To prove Theorem 6 we need the following two lemmas whose proofs are deferred to Ap-
pendix D. Lemma 21 shows that if set S is almost r-clusterable (Definition 21), then the
projection subgraph matrix Π̃ of a subsampled set S̃ can be used as a proxy to the projection
subgraph matrix Π of the set S.

Lemma 21. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Let
Q ⊆ V be a set that is δ-close to r-clusterable (Definition 21) and let Q̃ be a set of size s̃ that is
sampled independently and uniformly at random from Q. Let Π, Π̃ ∈ Rκ×κ denote the subgraph
projection matrix of Q and Q̃ for κ and r respectively (Definition 12). Then with probabaility
at least 1− n−100 for every x, y ∈ V we have∣∣∣〈fκx , Π̃fκy 〉− 〈fκx ,Πfκy 〉∣∣∣ ≤ ξ

n
,

where, κ ∈ [k], r ∈ [κ], δ ∈ [0, 1
1000), ξ ∈ ( 1

n5 ,
1

1000), s̃ ≥ kc·n160A0·γ/ϕ

ξ2
and A0, c > 1 are large

enough constants.

Next, Lemma 22 asserts that the approximate inner products between fκx , f
κ
y in the projected

space obtained in Line 3 of ProjectedDotProduct using Π̃ are very close to the actual inner
products computed using Π̃ when we know fκx , f

κ
y .

Lemma 22. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Let Q ⊆
V be a set that is δ-close to r-clusterable (Definition 21) and let Π ∈ Rκ×κ be the subgraph projec-
tion matrix of Q for κ and r (Definition 12). Then InitializeSubgraphProjMatrix(G, ., κ, r, Q̃, s, ξ)
(Algorithm 6) computes a data structure D such that with probability at least 1− n−97 the fol-
lowing property is satisfied: With probability at least 1−n−97, for every pair of vertices x, y ∈ V ,

ProjectedDotProduct(G, x, y, ξ,D) (Algorithm 7) computes an output value
〈
fκx , Π̃f

κ
y

〉
apx

such that ∣∣∣∣〈fκx , Π̃fκy 〉
apx

−
〈
fκx , Π̃f

κ
y

〉∣∣∣∣ ≤ ξ

n
,

where, κ ∈ [k], r ∈ [κ], δ ∈ (0, 1
1000), ξ ∈ ( 1

n5 ,
1

1000), and A0, c > 1 are large enough constants.

Also, Q̃ is a set of size s̃ ≥ kc·n560A0·γ/ϕ

ξ6
sampled independently and uniformly at random from

Q, and s is an estimation of |Q| such that |s− |Q|| ≤ |Q|·ξ3
kc·n280A0·γ/ϕ

.

Now we are ready to prove Theorem 6.

Proof. (Of Theorem 6) Correctness: Let ξ′ = ξ
2 . Note that by choice of s̃ for large enough

constant c we have s̃ ≥ kc·n560A0·γ/ϕ

ξ6
≥ kc

′ ·n160A0·
γ
ϕ

ξ′2 where c′ is the constant from Lemma 21.

Therefore, by Lemma 21 with probabaility at least 1− n−100 for any x, y ∈ V we have∣∣∣〈fκx , Π̃fκy 〉− 〈fκx ,Πfκy 〉∣∣∣ ≤ ξ

2 · n

Also note that by choice of s, s̃ for large enough constant c we have s̃ ≥ kc·n560A0·γ/ϕ

ξ6
≥

kc
′′ ·n560A0·

γ
ϕ

ξ′6 and |s− |Q|| ≤ |Q|·ξ3
kc·n280A0·γ/ϕ

≤ |Q|·ξ′3
kc′′ ·n280A0·γ/ϕ

where c′′ is the constant from Lemma

22. Therefore, by Lemma 22 with probabaility at least 1− n−97 for any x, y ∈ V we have∣∣∣∣〈fκx , Π̃fκy 〉
apx

−
〈
fκx , Π̃f

κ
y

〉∣∣∣∣ ≤ ξ

2 · n
.
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Therefore, by triangle inequality with probabaility at least 1 − n−96 for any x, y ∈ V we have
we have

∣∣∣∣〈fκx , Π̃fκy 〉
apx

−
〈
fκx ,Πf

κ
y

〉∣∣∣∣ ≤ ∣∣∣∣〈fκx , Π̃fκy 〉
apx

−
〈
fκx , Π̃f

κ
y

〉∣∣∣∣+
∣∣∣〈fκx , Π̃fκy 〉− 〈fκx ,Πfκy 〉∣∣∣ ≤ ξ

n

Runtime: We first bound the running time of InitializeSubgraphProjMatrix (Al-
gorithm 6). We consider individual steps of this procedure and consider the running time

for each of these. By Theorem 8, line 1 takes time n1/2+O(γ/ϕ) ·
(
k·logn
γ·ξ·ϕh

)O(1)
. Line 3 com-

putes s̃2 dot products. For z1, z2 ∈ Q̃, by Theorem 8 computing
〈
fκz1 , f

κ
z2

〉
apx

takes time

tz1,z2 ≤ n1/2+O(γ/ϕ) ·
(
k·logn
γ·ξ·ϕh

)O(1)
. Thus, overall time taken by Line 3 is

∑
z1,z2∈Q̃

tz1,z2 ≤
k2c · n1120A0·γ/ϕ

ξ12
· max
z1,z2∈Q̃

tz1,z2 ≤ n1/2+O(γ/ϕ) ·
(
k · log n

γ · ξ · ϕh

)O(1)

The time taken by lines 4 and 5 both is s̃3. Thus, the overall time taken by InitializeSubgraphProjMatrix

(Algorithm 6) is at most n1/2+O(γ/ϕ) ·
(
k·logn
γ·ξ·ϕh

)O(1)
.

Now we bound the running time of ProjectedDotProduct (Algorithm 7). Lines 1 and
2 find vectors αx, αy ∈ Rs̃ one coordinate at a time. By Theorem 8, finding a single coordinate

αx(z), αy(z) takes time tz ≤ n1/2+O(γ/ϕ) ·
(
k·logn
γ·ξ·ϕh

)O(1)
. So, the overall time taken to construct

these vectors is at most s̃ · tz ≤ kc·n560A0γ/ϕ

ξ6
· tz ≤ n1/2+O(γ/ϕ) ·

(
k·logn
γ·ξ·ϕh

)O(1)
.

Line 3 computes the approximate inner product between every pair of vectors in Q̃. Accord-

ing to Theorem 8, each of these s̃2 computations takes time n1/2+O(γ/ϕ) ·
(
k·logn
γ·ξ·ϕh

)O(1)
. Thus,

asymptotically the overall time is n1/2+O(γ/ϕ) ·
(
k·logn
γ·ξ·ϕh

)O(1)
.

Space Used: Finally, we bound the size of the data structure D computed by the procedure
InitializeSubgraphProjMatrix. Recall D = {Dh, Ψ̂, Q̃}. Here, the data structure Dh is ob-
tained by calling InitializeDotProductOracle in Line 1 of InitializeSubgraphProjMatrix.

By Theorem 8, the size of Dh is n1/2+o(γ/ϕ) ·
(
k·logn
γ·ξ

)o(1)
. Further, ψ̂ is just a s̃-by-s̃ matrix and

the set Q̃ contains s̃ vertices. In all, the overall size is dominated by the size of Dh which can

be upperbounded as n1/2+O(γ/ϕ) ·
(
k·logn
γ·ξ

)O(1)

4.9.2 Proof of Theorem 5 (Correctness of Algorithm 8)

Theorem 5. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Let
ξ ∈ ( 1

n5 ,
1

1000), D = D0
β4·ϕ2 where D0 is some large constant. Let h ∈ [H], κ = |Ph|, S∗ ∈ Ph−1

and r = |children(S∗)|. Let S∗ ⊆ V be a set that is D-hierarchically-close to S∗ (Definition
19). Let Π ∈ Rκ×κ denote the subgraph projection matrix of S∗ for κ and r. Let A0, c > 1

be large constants and let S̃∗ be a set of size s̃ ≥ kc·n560A0·γ/ϕ

ξ6
sampled independently and uni-

formly at random from Q. Let s∗ be an estimation of |S∗| such that |s∗ − |S∗|| ≤ |S∗|·ξ3
kc·n280A0·γ/ϕ

.

Then InitializeSubgraphProjMatrix(G, h, κ, r, S̃∗, s∗, ξ) (Algorithm 6) computes a sublin-
ear space data structure D such that with probability at least 1− n−96 the following property is
satisfied:
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1. For every pair of vertices x, y ∈ V , ProjectedDotProduct(G, x, y, ξ,D) (Algorithm

7) runs in time n1/2+O(γ/ϕ) ·
(
k·logn
γ·ξ·ϕh

)O(1)
and computes an output value

〈
fκx , Π̃f

κ
y

〉
apx

such

that with probability at least 1− n−96,∣∣∣∣〈fκx , Π̃fκy 〉
apx

−
〈
fκx ,Πf

κ
y

〉∣∣∣∣ ≤ ξ

n

2. For every pair of vertices x, y ∈ V , ProjectedDistance(G, x, y, ξ,D) (Algorithm 8)

runs in time n1/2+O(γ/ϕ) ·
(
k·logn
γ·ξ·ϕh

)O(1)
and computes an output value

∥∥∥Π̃fκx − Π̃fκy

∥∥∥2

apx

such that with probability at least 1− n−96,∣∣∣∣∥∥∥Π̃fκx − Π̃fκy

∥∥∥2

apx

− ||Πfκx −Πfκy ||22
∣∣∣∣ ≤ ξ

n

Proof. Let A ∈ Rκ×|S∗| be matrix whose columns are fκx for all x ∈ S∗. Note that r =
children(S∗) ≤ 1

β since for every S ∈ children(S∗) we have |S| ≥ β · |S∗| by Definition 6.
Therefore, we have

r ≤ 1

β
≤ D0

β4 · ϕ2
= D

Let δ = 13 ·D · γ1/4. Note that by Definition 6, min
(

γ
β30 ,

γ
ϕ20

)
is a sufficiently small constant.

Therefore, by choice of D = D0
β4·ϕ2 we have δ < 0.01, we can apply Lemma 17 and we get

νr+1

(
AAT

)
≤ 5 ·D · γ1/4 ≤ δ

and
νr
(
AAT

)
≥ 1− 13 ·D · γ1/4 = 1− δ

Therefore, set Q is δ-close to be r-clusterable (Definition 21). Let ξ′ = ξ
4 and c′ be the

constant from Theorem 6. Note that by choice of s, s̃ for large enough constant c we have

s̃ ≥ kc·n560A0·γ/ϕ

ξ6
≥ kc

′ ·n560A0·
γ
ϕ

ξ′6 and |s− |S∗|| ≤ |S∗|·ξ3
kc· n280A0·γ/ϕ

≤ |S∗|·ξ′3
kc′ ·n280A0·γ/ϕ

. Therefore by

Theorem 6 with probabaility at least 1− n−96 for any x, y ∈ V we have∣∣∣∣〈fκx , Π̃fκy 〉
apx

−
〈
fκx ,Πf

κ
y

〉∣∣∣∣ ≤ ξ′

n
≤ ξ

n

Also as per line (5) of Algorithm 8 we define∥∥∥Πfκx − Π̃fκy

∥∥∥2

apx

= 〈fκx ,Πfκx 〉apx +
〈
fκy ,Πf

κ
y

〉
apx
− 2 ·

〈
fκx ,Πf

κ
y

〉
apx

Note that
||Πfκx − Π̃fκy ||22 = 〈fκx ,Πfκx 〉+

〈
fκy ,Πf

κ
y

〉
− 2 ·

〈
fκx ,Πf

κ
y

〉
Therefore, by triangle inequality and by item (1) with probabaility at least 1− n−96 we have

∣∣∣∣∥∥∥Πfκx − Π̃fκy

∥∥∥2

apx

− ||Πfκx − Π̃fκy ||22
∣∣∣∣

≤
∣∣〈fκx ,Πfκx 〉apx − 〈fκx ,Πfκx 〉∣∣+

∣∣∣〈fκy ,Πfκy 〉apx − 〈fκy ,Πfκy 〉∣∣∣+ 2 ·
∣∣∣〈fκx ,Πfκy 〉apx − 〈fκx ,Πfκy 〉∣∣∣

≤ ξ′

n
+
ξ′

n
+ 2 · ξ

′

n

=
ξ

n
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The last equality holds by choice of ξ′ = ξ
4 .

Finally, we bound the running time of ProjectedDistance. Note that the running
time is dominated by ProjectedDotProduct (Algorithm 7) that is at most n1/2+O(γ/ϕ) ·(
k·logn
γ·ξ·ϕh

)O(1)
.

4.10 Correctness of hierarchical-clustering oracle

4.10.1 Quality of approximated cylinders

The main result of this Section is Lemma 23. that shows if a cylinder around vertex x has large
enough size then it overlaps with a unique cluster S, hence, a bigger cylinder around x can be
used to recover (a good approximation to) S.

Definition 22. (Approximate cylinder) Let G = (V,E) be a (k, γ)-hierarchically-clusterable
graph (Definition 6). Let h ∈ [H], S∗ ∈ Ph−1, κ = |Ph|, r = |children(S∗)| and A0, c > 1 be
large constants. For vertex x ∈ Q∗ we define

cylapx(fκx , `|Q∗) =

{
y ∈ Q∗ :

∥∥∥Π̃fκx − Π̃fκy

∥∥∥2

apx

≤ `
}

where,
∥∥∥Π̃fκx − Π̃fκy

∥∥∥2

apx

= ProjectedDistance(G, x, y, ξ,D) (Algorithm 8). Note that D

is the data structure computed by InitializeSubgraphProjMatrix(G, h, κ, r, Q̃, s, ξ) (Al-

gorithm 6), where ξ = 10−3, Q̃ is a set of size s̃ ≥ kc·n560A0·γ/ϕ

ξ6
sampled independently and

uniformly at ranodm from Q∗, and s is an estimation of |Q∗| such that |s− |Q∗|| ≤ |Q∗|·ξ3
kc·n280A0·γ/ϕ

.

Lemma 23. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Let
h ∈ [H], and Q∗ be a set that is D-hierarchically-close to S∗ ∈ Ph−1 (Definition 19). Let
x ∈ Q∗ be a vertex such that

∣∣cylapx (fκx , 5`apx|Q∗)
∣∣ ≥ 0.85 · β · |S∗|. Then with probability at

least 1− n−96 there exists a unique cluster S ∈ children(S∗) such that:

1. cylapx (fκx , 25`apx|Q∗) is D-hierarchically-close to S,

2. for every S′ 6= S ∈ children(S∗), cyl (µS′ , `|Q∗) ∩ cylapx (fκx , 25`apx|Q∗) = ∅,

where, |Ph| = κ, D = D0
β4·ϕ2 , ` = 1

103·|S∗| , and `apx = 1
1000·s , where, s is an estimation of |Q∗|

such that |s− |Q∗|| ≤ |Q∗|·ξ3
kc·n280A0·γ/ϕ

and A0, D0, c > 1 are large constants. Also, µS′ ∈ Rκ is the
κ-dimensional center of set S′ (Definition 10).

To prove Lemma 23 we need Claim 1 that we defer its proof to Appendix G.

Claim 1. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). For some
large constant D0 and let D = D0

β4·ϕ2 , ξ ≤ 10−3, h ∈ [H], S∗ ∈ Ph−1, and Q∗ be a set that is D-

hierarchically-close to S∗ (Definition 19). Let s be an estimation of |Q∗| such that |s− |Q∗|| ≤
|Q∗|·ξ3

kc·n280A0·γ/ϕ
where A0, c > 1 are large enough constants. Then we have |s− |S∗|| ≤ |S

∗|
103

.

Now we are ready to prove Lemma 23.

Proof. Let r = |children(S∗)|, κ = |Ph| and Π ∈ Rκ×κ be the subgraph projection matrix of
Q∗ with respect to κ and r (Definition 12). Let ξ = 1

103
. By Definition 22, we have Q̃ is a set

of size s̃ ≥ kc·n560A0·γ/ϕ

ξ6
sampled independently and uniformly at random from Q∗, and s is an
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estimation of |Q∗| such that |s− |Q∗|| ≤ |Q∗|·ξ3
kc·n280A0·γ/ϕ

. Therfore, by Theorem 5, with probability

at least 1− n−96 for every y ∈ V we have

||Πfκx −Πfκy ||22 −
1

103 · n
≤
∥∥∥Π̃fκx − Π̃fκy

∥∥∥2

apx

≤ ||Πfκx −Πfκy ||22 +
1

103 · n
Let ` = 1

103·|S∗| . Therefore, for every y ∈ cylapx (fκx , 5`apx|Q∗) we have

||Πfκx −Πfκy ||22 ≤
∥∥∥Π̃fκx − Π̃fκy

∥∥∥2

apx

+
1

103 · n
By Theorem 5

≤ 5 · `apx +
1

103 · n
As y ∈ cylapx (fκx , 5`apx|Q∗)

=
1

103 · s
+

1

103 · n
As `apx =

1

103 · s
≤ 6

103 · |S∗|
By Claim 1, s ∈ (1± 10−3)|S∗|

= 6 · ` As ` =
1

103 · |S∗|
Hence, for every y ∈ cylapx (fκx , 5`apx|Q∗), we have y ∈ cyl (fκx , 6`|Q∗). Thus cylapx (fκx , 5`apx|Q∗) ⊆
(fκx , 6`|Q∗). Therefore, by the assumption of the lemma we have

|cyl (fκx , 6`|Q∗) | ≥ |cylapx (fκx , 5`apx|Q∗) | ≥ 0.85 · β · |S∗|

Therefore, by Theorem 4 for every set Q satisfying cyl (fκx , 20`|Q∗) ⊆ Q ⊆ cyl (fκx , 30`|Q∗),
there exists a unique cluster S ∈ children(S∗) such that Q is D-hierarchically-close to S, and
for every S′ 6= S ∈ children(S∗), cylapx (µS′ , `|Q∗) ∩Q = ∅. Therefore, to complete the proof
it suffices to show that

cyl (fκx , 20`|Q∗) ⊆ cylapx (fκx , 25`apx|Q∗) ⊆ cyl (fκx , 30`|Q∗)

Note that for every y ∈ cylapx (fκx , 25`apx|Q∗) we have

||Πfκx −Πfκy ||22 ≤
∥∥∥Π̃fκx − Π̃fκy

∥∥∥2

apx

+
1

103 · n
By Theorem 5

≤ 5 · `apx +
1

103 · n
As y ∈ cylapx (fκx , 25`apx|Q∗)

=
25

103 · s
+

1

103 · n
As `apx =

1

103 · s
≤ 30

103 · |S∗|
By Claim 1, s ∈ (1± 10−3)|S∗|

= 30 · ` As ` =
1

103 · |S∗|
Hence, for every y ∈ cylapx (fκx , 25`apx|Q∗), we have y ∈ cyl (fκx , 30`|Q∗). Thus cylapx (fκx , 25`apx|Q∗) ⊆
(fκx , 30`|Q∗).

Also note that for every y ∈ cyl (fκx , 20`|Q∗) we have∥∥∥Π̃fκx − Π̃fκy

∥∥∥2

apx

≤ ||Πfκx −Πfκy ||22 +
1

103 · n
By Theorem 5

≤ 20 · `+
1

103 · n
As y ∈ cyl (fκx , 20`|Q∗)

=
20

103 · |S∗|
+

1

103 · n
As ` =

1

103 · |S∗|

≤ 25

103 · s
By Claim 1, s ∈ (1± 10−3)|S∗|

= 25 · `apx As `apx =
1

103 · s
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Therefore, with probability at least 1−n−96 we have cyl (fκx , 20`|Q∗) ⊆ cylapx (fκx , 25`apx|Q∗) ⊆
cyl (fκx , 30`|Q∗). Thus, by Theorem 4, cylapx (fκx , 25`apx|Q∗) satisfies the required guarantees.

Lemma 24. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Let
h ∈ [H], and Q∗ be a set that is D-hierarchically-close to S∗ ∈ Ph−1 (Definition 19). Then for
every S ∈ children(S∗) and x ∈ cyl (µS , `|Q∗) with probability at least 1− n−96, we have

cyl (µS , `|Q∗) ⊆ cylapx (fκx , 5`apx|Q∗) ,

where, |Ph| = κ, D = D0
β4·ϕ2 , ` = 1

103·|S∗| and `apx = 1
1000·s , where s is an estimation of |Q∗| such

that |s− |Q∗|| ≤ |Q∗|·ξ3
kc·n280A0·γ/ϕ

and A0, D0, c > 1 are large enough constants. Also, µS ∈ Rκ is
the κ-dimensional center of S (Definition 10).

Proof. Let r = |children(S∗)|, κ = |Ph| and Π ∈ Rκ×κ be the subgraph projection matrix of
Q∗ with respect to κ and r (Definition 12). Note that x ∈ cyl (µS , `|Q∗). Thus by Definition
20 we have ||ΠµS − Πfκx ||22 ≤ `. Also for every y ∈ cyl (µS , `|Q∗) we have ||ΠµS − Πfκy ||22 ≤ `.
Therefore, by triangle inequality for every y ∈ cyl (µS , `|Q∗) we have

||Πfκx −Πfκy ||22 ≤ 4` (123)

Let ξ = 1
103

. By Definition 22, we have Q̃ is a set of size s̃ ≥ kc·n560A0·γ/ϕ

ξ6
sampled in-

dependently and uniformly at random from Q∗, and s is an estimation of |Q∗| such that

|s− |Q∗|| ≤ |Q∗|·ξ3
kc·n280A0·γ/ϕ

. Therfore, by Theorem 5, with probability at least 1− n−96 for every
y ∈ V we have

||Πfκx −Πfκy ||22 ≤
∥∥∥Π̃fκx − Π̃fκy

∥∥∥2

apx

+
1

103 · n
Thus, for every y ∈ cyl (µS , `|Q∗) we have

∥∥∥Π̃fκx − Π̃fκy

∥∥∥2

apx

≤ ||Πfκx −Πfκy ||22 +
1

103 · n
By Theorem 5

≤ 4`+
1

103 · n
By (123)

=
4

103 · |S∗|
+

1

103 · n
As ` =

1

103 · |S∗|

≤ 5

103 · s
By Claim 1, s ∈ (1± 10−3)|S∗|

= 5 · `apx As `apx =
1

103 · s

Hence, for every y ∈ cyl (µS , `|Q∗), we have y ∈ cylapx (fκx , 5`apx|Q∗). Thus, with probability
at least 1− n−96 we have

cyl (µS , `|Q∗) ⊆ cylapx (fκx , 5`apx|Q∗)

4.10.2 Quality of subsampled cylinders

Lemma 25. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Let
h ∈ [H], and Q∗ be a set that is D-hierarchically-close to S∗ ∈ Ph−1 (Definition 19). Let Q̃ be
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a set of size |Q̃| ≥ 107·logn
β sampled independently and uniformly at random from Q∗. Then for

every S ∈ children(S∗), with probability at least 1− n−100, we have

|Q̃ ∩ cyl (µS , `|Q∗) | ≥ 0.95 · β · |Q̃|,

where, |Ph| = κ, S∗ ∈ Ph−1, D = D0
β4·ϕ2 , ` = 1

103·|S∗| , D0 > 1 is a large enough constant and

µS ∈ Rκ is the κ-dimensional center of S (Definition 10).

Proof. By Theorem 3, for every S ∈ children(S∗) we have cyl (µS , `|Q∗) is D-hierarchically-
close to sets S. Therefore, by Definition 19 and by Lemma 19 we have

||cyl (µS , `|Q∗) | − |S|| ≤ 3 ·D · ϕh−1 · |S|

≤ 3 ·
(

D0

β4 · ϕ2

)
· γ · |S| As D =

D0

β4 · ϕ2
and ϕh−1 ≤ ϕH−1 = γ · ϕ ≤ γ

≤ |S|
100

By Definition 6,
γ

β30
and

γ

ϕ20
are sufficiently small

(124)

Let Xi be a a random variable which is 1 if the i-th sampled vertex is in cyl (µS , `|Q∗), and

0 otherwise. Thus E[Xi] = cyl(µS ,`|Q∗)
Q∗ . Observe that |Q̃ ∩ cyl (µS , `|Q∗) | is a random variable

defined as
∑|Q̃|

i=1Xi, where its expectation is given by

|Q̃ ∩ cyl (µS , `|Q∗) | = |Q̃| ·
cyl (µS , `|Q∗)
|Q∗|

≥ |Q̃| · 0.99 · |S|
|Q∗|

By (124)

≥ 0.99 · |Q̃| · β · |S
∗|

|Q∗|
By Definition 6, |S| ≥ β · |S∗|

≥ 0.99 · β · |Q̃| · 0.99 · |Q∗|
|Q∗|

By Claim 4, |S∗| ≥ 0.99 · |Q∗|

≥ 0.98 · β · |Q̃| (125)

Therefore, by Chernoff bound,

Pr
[
|Q̃ ∩ cyl (µS , `|Q∗) | < 0.95 · β · |Q̃|

]
≤ exp

(
−0.98 · β · |Q̃|

2 · 104

)
≤ n−100,

where the last inequality holds since |Q̃| ≥ 107·logn
β . Thus, for every S ∈ S∗ with probability at

least 1− n−100, we have
|Q̃ ∩ cyl (µS , `|Q∗) | ≥ 0.95 · β · |Q̃|,

We defer the proof of the Lemma 26 and Lemma 27 to Appendix G.

Lemma 26. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Let
h ∈ [H], and suppose (P i)h−1

i=0 is a D-approximation of (P i)h−1
i=0 (Definition 7). Let Ṽ be a

set sampled independently and uniformly at ranodm from V . Then for every S∗ ∈ P h−1 with
probability at least 1− n−100 we have

1. |Ṽ ∩ S∗| ≥ max
(
kc·n560A0·γ/ϕ

ξ6
, 107·logn

β

)
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2.
∣∣∣|S∗| − n·|Ṽ ∩S∗|

|Ṽ |

∣∣∣ ≤ |S∗|·ξ3
kc·n280A0·γ/ϕ

,

where, A0, c > 1 are constants, ξ = 10−3, D = D0
β4·ϕ2 , D0, c

′ > 1 are large constants, and

|Ṽ | ≥ kc
′ ·n560A0·γ/ϕ·logn

ξ6
.

Lemma 27. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Let
D = D0

β4·ϕ2 , where D0 is a large constant. Let h ∈ [H], S∗ ∈ Ph−1 and S∗ be a set that is

D-hierarchically-close to S∗ ∈ Ph−1 (Definition 19). Let S̃∗ be a set of size |S̃∗| ≥ 107·logn
β

sampled independently and uniformly at ranodm from S∗. Let B ⊆ S∗ and B̃ = S̃∗ ∩ B. If
|B̃| ≥ 0.9 · β · |S̃∗|, then with probability at least 1− n−100 we have

|B| ≥ 0.85 · β · |S∗|

4.10.3 Correctness of Algorithm 3 and 5

In this section, we prove the correctness of the RefinePartition (Lemma 30) and Oracle
(Lemma 31). Intuitively, a good representative for a cluster S is a vertex such that the cylender
around the vertex is D-hierarchically-close to the cluster S. The formal definition follows:

Definition 23 (Good Representative). Let G = (V,E) be a (k, γ)-hierarchically-clusterable
graph (Definition 6). Let h ∈ [H], |Ph| = κ, and S∗ ∈ Ph−1. Let Q∗ be a set that is D-
hierarchically-close to S∗ (Definition 19). Let `apx = 1

1000·s , where, s is an estimation of |Q∗|
such that |s− |Q∗|| ≤ |Q∗|·ξ3

kc·n280A0·γ/ϕ
, and A0, c > 1 are large constants. We say that vertex x ∈ Q∗

is a good representative for cluster S if cylapx(fκx , 25`apx|Q∗) (Definition 20) is D-hierarchically-
close to S.

To prove Lemma 30, we need Lemma 28 to count the number of clusters at every level. We
defer the proof of Lemma 28 to Appendix F.

Lemma 28. Let k ∈ N and let γ > 0 be a sufficiently small constant. There exists an algorithm
which on input a (k, γ)-hierarchically clusterable graph G (Definition 6) and a parameter h ≤
H (where the associated hierarchical clustering is denoted P = (P0, . . . ,Ph)) runs in time

(dn)1/2+Oβ,ϕ(γ) ·
(
k·logn
γ

)O(1)
and computes a number κ where κ = |Ph| holds with probability at

least 1− n−100.

To prove Lemma 30, we also need Lemma 29 to count the number of children of every
cluster. We defer the proof of Lemma 29 to Appendix E.

Lemma 29. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). For
some large enough constant D0 > 1, let D = D0

β4·ϕ2 , h ∈ [H], κ = |Ph|, S∗ ∈ Ph−1, r =

|children(S∗)| and c > 1 be a large enough constant. Let S∗ ⊆ V be a set that is D-
hierarchically-close to S∗ (Definition 19). Let S̃∗ be a set of size s̃ ≥ kc ·n80A0·γ/ϕ sampled inde-
pendently and uniformly at random from S∗. Let s be an estimation of |S∗| such that |s− |S∗|| ≤

|S∗|
kc·n40A0·γ/ϕ

. Then CountChildren(G, κ, S̃∗, s) runs in time n1/2+O(γ/ϕ) ·
(
k·logn
γ·ϕh

)O(1)
and with

probability at least 1− n−97 returns r.

Now we are ready to prove Lemma 30.

Lemma 30. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Let
h ∈ [H], κ = |Ph|, D = D0

β4·ϕ2 where D0 > 1 is some large constant. Suppose that (P i)h−1
i=0 is a

3D-approximation of (P i)h−1
i=0 (Definition 7) such that for every S ∈ P, σ(S) is D-hierarchically

close to S (Definition 19). Let P̃ h−1 be the subsampled clustering of P h−1 (Definition 15). Then
with probability at least 1− κ · n−95, RefinePartition(G, h, κ, P̃ h−1, Ṽ , ξ, T̃ ,D) (Algorithm 4)
finds a good representative for every S ∈ Ph.
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Proof. By Lemma 28 and as per line 4 of the ConstructTree (Algorithm 3), we find κ =
|Ph| correctly with probability at least 1 − n−100. Then as per line 6 of Algorithm 3, let

Ṽ be a set of size |Ṽ | ≥ kc
′ ·n560A0·γ/ϕ·logn

ξ6
sampled independently and uniformly at random

from V where c′ is the constant from Lemma 26 and ξ = 10−3 as per line 2. Let P̃ h−1 =
Ṽ ∩P h−1 denote the clustering subsampled from P h−1 (Definition 15). Then in Line 8 we call
RefinePartition (Algorithm 4) on the subsampled clustering P̃ h−1. Now, to argue correctness
of the ConstructTree, it suffices to show that RefinePartition (Algorithm 4) finds a good
representative for every S ∈ Ph.

Let S∗ ∈ Ph−1 and let S∗ = σ(S∗) be the corresponding set in P h−1 (Definition 7). Let S̃∗ =

S∗ ∩ Ṽ , and s = n·|S̃∗|
|Ṽ |

be an estimation of |S̃∗|. Note that by choice of |Ṽ | ≥ kc
′ ·n560A0·γ/ϕ·logn

ξ6
,

and by Lemma 26 we have

|S̃∗| ≥ max

(
kc · n560A0·γ/ϕ

ξ6
,
107 · log n

β

)
(126)

and

||S∗| − s| ≤ |S∗| · ξ3

kc · n280A0·γ/ϕ
(127)

Let r = |children(S∗)|. By (126), we have |S̃∗| ≥ kc · n80A0·γ/ϕ, and by (127) we have

|s− |S∗|| ≤ |S∗|
kc·n40A0·γ/ϕ

. Therefore, by Lemma 29, as per line 4 of Algorithm 4, we find r =

|children(S∗)| correctly with probability at least 1 − n−97. Next we will show that for every
S ∈ children(S∗) we will find a good representative. As per line 3 of Algorithm 4, let
`apx = 1

1000·s . For every x ∈ S∗ we define

Bx = cylapx (fκx , 5`apx|S∗) =

{
y ∈ S∗ :

∥∥∥Π̃fκx − Π̃fκy

∥∥∥2

apx

≤ 5 · `apx

}
and

Sx = cylapx (fκx , 25`apx|S∗) =

{
y ∈ S∗ :

∥∥∥Π̃fκx − Π̃fκy

∥∥∥2

apx

≤ 25 · `apx

}
.

Note that as per line 7 of Algorithm 4 we have

B̃x =

{
y ∈ S̃∗ :

∥∥∥Π̃fκx − Π̃fκy

∥∥∥2

apx

≤ 5 · `apx

}
= Bx ∩ S̃∗

In line 6 of Algorithm 4, we iterate over every vertex x ∈ S̃∗. If for some vertex x ∈ S̃∗, the
condition in line 8 passes (i.e., |B̃x| ≥ 0.9 · β · |S̃∗|), then, in line 10 we set vertex x as the
representative of S̃, where as per line 9, S̃ is defined as follows:

S̃ =

{
y ∈ S̃∗ :

∥∥∥Π̃fκx − Π̃fκy

∥∥∥2

apx

≤ 25 · `apx

}
= Sx ∩ S̃∗

We will show that for every cluster S ∈ children(S∗), there exists a good representative x
in S̃∗ that passes the test (i.e., |B̃x| ≥ 0.9 · β · |S̃∗|), and this vertex does not get removed while
ball-carving other children S′ ∈ children(S∗).
For every S ∈ children(S∗) there exists a good representative in S̃∗ that passes the

test : Note that S̃∗ is uniformly distributed within S∗ and |S̃∗| ≥ 107·logn
β , thus by Lemma 25,

with probability at least 1− n−100 we have

|S̃∗ ∩ cyl (µS , `|S∗) | ≥ 0.95 · β · |S̃∗|

By a union bound over children of S∗, with probability at least 1 − r · n−100 for all S ∈
children(S∗) we have |S̃∗ ∩ cyl (µS , `|S∗) | ≥ 0.95 · β · |S̃∗|.
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We will show that for each S ∈ children(S∗), there exists x ∈ S̃∗ for which |B̃x| ≥ 0.9·β·|S̃∗|
holds. Pick x ∈ S̃∗ ∩ cyl (µS , `|S∗). By Lemma 24, with probability at least 1 − n−96 we have
cyl (µS , `|S∗) ⊆ Bx. Therefore, we get

S̃∗ ∩ cyl (µS , `|S∗) ⊆ S̃∗ ∩ Bx = B̃x

Thus, we have |B̃x| ≥ |S̃∗ ∩ cyl (µS , `|S∗) | ≥ 0.95 · β · |S̃∗|. Therefore, the test in line 8 will be
passed for every x ∈ S̃∗ ∩ cyl (µS , `|S∗).
If vertex x passes the size test (i.e., |B̃x| ≥ 0.9 ·β · |S̃∗|), then x is a good representative
for a unique cluster S ∈ children(S∗): Note that vertices in S̃∗ are uniformly distributed
in S∗. Therefore, by Lemma 27 if |B̃x| ≥ 0.9 · β · |S̃∗|, then with probability at least 1− n−100

we have
|Bx| ≥ 0.85 · β · |S∗| (128)

Therefore, by Lemma 23, with probability at least 1 − n−96 there exists a unique cluster S ∈
children(S∗) such that Sx = cylapx (fκx , 25`apx|S∗) is D-hierarchically-close to S, and for every
S′ 6= S ∈ children(S∗),

cyl (µS′ , `|S∗) ∩ Sx = cyl (µS′ , `|S∗) ∩ cylapx (fκx , 25`apx|S∗) = ∅ (129)

For each S ∈ children(S∗), a good representative survives: Finally, note that in line 12,
we remove vertices from S̃∗. We show that despite these removals, for every S ∈ children(S∗),
there still exists some x for which |B̃x| ≥ 0.9β|S̃∗| holds. By Lemma 23, for any x such that
|Bx| ≥ 0.9β|S∗|, and for every S′ 6= S ∈ children(S∗) we have cyl (µS′ , `|S∗) ∩ Sx = ∅.
Therefore, a good representative for S survives with probability 1− n−96.

Overall, by a union bound, for a fixed S∗ ∈ Ph−1, we pick good representatives for all
S ∈ children(S∗) with probability at least 1−r ·n−96−n−99. Thus, by a union bound over all
S∗ ∈ Ph−1, we pick a correct representatives for all S ∈ Ph with probability at least 1−κ ·n−95.
Finally, in line 14 of RefinePartition (Algorithm 4) stores the representative of clusters in
data structure D.

Now we prove the correctness of ORACLE (Algorithm 5) in Lemma 31.

Lemma 31. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Let
h ∈ [H], κ = |Ph|, and D = D0

β4·ϕ2 where D0 > 1 is a large constant. Suppose that (P i)h−1
i=0 is a

3D-approximation of (P i)h−1
i=0 (Definition 7), such that for every S ∈ P, σ(S) is D-hierarchically

close to S (Definition 19). For every i ∈ [κ] and z ∈ V , let

Si =
{
z ∈ V : Oracle(G, z, T̃ ,D) = i

}
,

where D and T̃ are constructed by ConstructTree(G) (Algorithm 3) until iteration h − 1.
Let (P )h = {Si}κi=1. Then with probability at least 1 − κ · n−95 we have (P i)hi=0 is a 3D-
approximation of (P i)hi=0.

Proof. Note that by Lemma 30, RefinePartition(G, h, κ, P̃ h−1, Ṽ , ξ, T̃ ,D) (Algorithm 4) finds
a good representative for every S ∈ Ph with probability at least 1 − κ · n−95. Let x1, . . . , xκ
denote a set of representatives found by Algorithm 4. We then define

Sxi = cylapx

(
fκxi , 25`apx|S∗

)
=

{
y ∈ S∗ :

∥∥∥Π̃fκxi − Π̃fκy

∥∥∥2

apx

≤ 25 · `apx

}
.

Since xi is a good representative for cluster Sxi , then by Definition 23, Sxi is D-hierarchically-
close to a unique cluster S ∈ Ph. Since Sxi is D-hierarchically-close to S, by Definition 19 and
Lemma 19 we have |Sxi4S| ≤ 3 ·D ·ϕh−1 · |S|. Therefore, with probability at least 1− κ ·n−95

we have (P i)hi=0 is a 3D-approximation of (P i)hi=0.

63



4.10.4 Proof of Theorem 2

Now, we prove the main theorem.

Theorem 1. [Informal version of Theorem 2] For sufficiently small constant γ ∈ (0, 1) there ex-
ists a hierarchical clustering oracle with ≈ kO(1)n1/2+O(γ) preprocessing time and ≈ kO(1)n1/2+O(γ)

query time that achieves a constant factor approximation to Dasgupta cost on (k, γ)-hierarchically
clusterable graphs.

Proof. Correctness: By Lemma 31, and by union bound over all h ∈ [H], with probability at
least 1−

∑H
h=1 κh ·n−95 ≥ 1−k2 ·n−95 ≥ 1−n−93, we have that (P h)Hh=0 is a 3D-approximation

of (Ph)Hh=0.

Running time in the Preprocessing phase: Line 3 of ConstructTree (Algorithm 3)
makes H iterations in all. Line 4 of ConstructTree finds the number of clusters at level h
in Ph (where h ≤ H). By Lemma 28, each of these calls takes time at most tκh ≤ n1/2+Oβ,ϕ(γ) ·(
k·d·logn

γ

)O(1)
. Now we consider the calls to RefinePartition (Algorithm 4) and the contribu-

tion to running time from these calls. By Lemma 29 line 4 of the RefinePartition procedure

(Algorithm 4) takes time at most n1/2+O(γ/ϕ) ·
(
k·logn
γ·ϕh

)O(1)
. Line 5 in RefinePartition calls

InitializeSubgraphProjMatrix with ξ = 0.001. By Theorem thm:cluster-pi-apx, the call to

InitializeSubgraphProjMatrix (Algorithm 6) takes time at most n1/2+O(γ/ϕ) ·
(
k·logn
γ·ϕh

)O(1)
.

The last major step in Algorithm 4, line 7 finds the cylinder Bx which by Remark 2 which com-

putes
∥∥∥Π̃fκx − Π̃fκy

∥∥∥2

apx

at most s2 times for each pair of vertices x, y ∈ S̃ and thus takes total

time at most s2 · n1/2+O(γ/ϕ) ·
(
k·logn
γ·ϕh

)O(1)
which is asymptotically dominated by n1/2+O(γ/ϕ) ·(

k·logn
γ·ϕh

)O(1)
. In all, therefore the total time taken by a single iteration of ConstructTree

procedure (Algorithm 3) is dominated by line 4 which is at most n1/2+Oβ,ϕ(γ) ·
(
k·d·logn
γ·ϕh

)O(1)
.

For any h ≥ 1, recall ϕh ≥ ϕ1 ≥ 1/γH and since H = O(log k), we get, 1
ϕh
≤ kO(1). So, the

overall running time over all the H calls is asymptotically at most n1/2+Oβ,ϕ(γ) ·
(
k·d·logn

γ

)O(1)
.

Running time in the Query phase: Now we bound the running time of the Oracle(G, z, T̃ ,D)
procedure (Algorithm 5). Note that this procedure takes the data structure D as an argument
which stores all the representatives associated with each node in T̃ . Also, note that D also con-
tains the subgraph projection matrices for each node in T̃ . Thus, in each iteration of the loop in
line 2 comes from line 6. By Remark 2, since ξ = 0.001, each computation in line 6 takes time

thc = n1/2+Oβ,ϕ(γ) ·
(
k·d·logn
γ·ϕh

)O(1)
. In total, line 6 is executed at most H times per vertex. And

thus the total time taken by Oracle(G, z, T̃ ,D) procedure (Algorithm 5) is at most H ·thc which

asymptotically, as seen with the preprocessing phase, is at most n1/2+Oβ,ϕ(γ) ·
(
k·d·logn
γ·ϕ0

)O(1)
.

Number of Random bits: Finally, we bound the number of random bits used in the pre-
processing phase (ConstructTree, Algorithm 3) and the query phase (Oracle, Algorithm

5). First, consider the preprocessing phase. Fix h ∈ [H]. Line 6 samples s0 =
(
k·nγ/ϕ·logn

ξ

)O(1)

vertices. The number of random bits used by this step is at most s0 · log n. Line 8 calls
RefinePartition(G, h, κ, P̃ h−1, Ṽ , ξ, T̃ ,D) (Algorithm 4). We now bound the number of bits
used by this procedure. Line 4 calls the CountChildren(G, h, κ, r, S̃∗, s∗) procedure (Algo-
rithm 11). For x, y ∈ S̃∗, CountChildren computes

〈
fκx , f

κ
y

〉
apx

. We compute this inner prod-
uct by estimating collision probabilities between walks from x and y. Using 4-wise independent
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hash functions, the random walks from x can be implemented with log d · 1
ϕ · O(log n) random

bits. In total, this step takes B ≤ |S̃∗|2 ·log d· 1
ϕ ·O(log n) bits. Line 5 of RefinePartition calls

InitializeSubgraphProjMatrix(G, h, κ, r, S̃∗, s∗, ξ) (Algorithm 6). It can be implemented
using the same number of random bits as the previous step. In line 7, number of random bits
used to find Bx for each x ∈ S̃∗ is at most log d · 1

ϕ · O(log n). So in total line 8 takes at most

B bits. So the total number of bits used across the H = height(T̃ ) levels in the preprocessing

phase is at most O(HB · s0 log n) bits which is at most kO(1)·nO(γ/ϕ)·(logn)O(1)

ξO(1) . Recalling that

Line 2 of ConstructTree sets ξ = 0.001, this is at most Õ
(
kO(1) · nOβ,ϕ(γ)

)
.

Now we consider the Oracle(G, z, T̃ ,D). For any vertex x ∈ V , line 2 makes H iterations.
Number of random bits used in line 6 is at most H · log d · 1

ϕ · log n ≤ Õ
(
kO(1) · nOβ,ϕ(γ)

)
.

4.11 Bounding Dasgupta cost (Proof of Lemma 1 and Lemma 2)

In this section we first show that in a (k, γ)-hierarchically clusterable graph, any hierarchical
clustering P which is a D-approximation of the ground truth hierarchical clustering P provides

an O
(
D
β

)
approximation to Dasgupta’s cost of the hierarchical clustering P. Next, in Lemma 2

we show that in a (k, γ)-hierarchically clusterable graph, the cost of the ground truth hierarchical
clustering P is an Oβ(1) approximation of the optimum Dasgupta’s cost. Finally, we put these
results together in Corollary 1 to construct a hierarchical clustering with Oβ,ϕ(1) approximation
to the optimum Dasgupta cost of G.

Lemma 1. Let G = (V,E) be a (k, γ)-hierarchical clusterable graph and let P be the hierarchical-

clustering. If P is a D-approximation of P, then COST(P ) ≤ O
(
D
β

)
COST(P).

Proof. Let T and T be the tree representation of a hierarchical clustering P and P respectively
(Definition 3). We can write COST(P) and COST(P ) as

COST(P) =
∑

(x,y)∈E

|leaves(T [LCA(x, y)])| =
H∑
h=0

∑
S∗∈Ph

∑
(x,y)∈E s.t.

T [LCA(x,y)]=S∗

|S∗| (130)

and

COST(P ) =
∑

(x,y)∈E

|leaves(T [LCA(x, y)])| =
H∑
h=0

∑
S∗∈P h

∑
(x,y)∈E s.t.

T [LCA(x,y)]=S∗

|S∗|, (131)

Recall that every cluster S ∈ P, the corresponding approximation cluster in P is denoted by
S = σ(S). For any S∗ = σ(S∗) we want to estimate the number of edges with T [LCA(x, y)] =
S∗ by the number of edges with T [LCA(x, y)] = S∗. Note that S∗ is an approximation of S∗,
hence, during refinement of S∗ to its children some outliers migh have been generated. Let

O(S∗) = S∗ \

 ⋃
S∈childrenT (S∗)

S


denote the set of outliers generated during refinement of S∗ in T . We have∑

(x,y)∈E s.t.

T [LCA(x,y)]=S∗

|S∗| = |S∗| · |E(O(S∗),S∗)|+ |S∗| ·
∑

S 6=S′∈childrenT (S∗)

|E(S,S′)| (132)
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Next, we will bound |E(O(S∗),S∗)|, and
∑

S 6=S′∈childrenT (S∗) |E(S,S′)|. Note that we have

|O(S∗)|

= |S∗| −
∑

S∈childrenT (S∗)

|S|

≤ |S∗| · (1 +D · ϕh−1)−
∑

S∈children(S∗)

(1−D · ϕh)|S| As S∗ (resp. S) is D-hierarchically-close to S∗ (resp. S)

≤ D · |S∗| · (ϕh−1 + ϕh) As |S∗| =
∑

S∈children(S∗)

|S|

≤ 2 ·D · ϕh · |S∗| (133)

Since S∗ is D-hierarchically-close to S∗ we have |S∗| ≤ 2 · |S∗|. Thus, by (133) we have

|S∗| · |E(O(S∗),S∗)| ≤ |S∗| · d · |O(S∗)| ≤ 4 · d ·D · ϕh · |S∗|2 (134)

Next, we bound
∑

S 6=S′∈childrenT (S∗) |E(S,S′)| recalling that S = σ(S).

∑
S 6=S′∈childrenT (S∗)

|E(S,S′)|

≤
∑

S 6=S′∈children(S∗)

|E(σ(S) ∩ S, σ(S′) ∩ S′)|+
∑

S∈children(S∗)

|E(σ(S) \ S,S∗)|

≤
∑

S 6=S′∈children(S∗)

|E(S, S′)|+
∑

S∈children(S∗)

d · |S4σ(S)|

≤
∑

S 6=S′∈children(S∗)

|E(S, S′)|+
∑

S∈children(S∗)

d ·D · ϕh · |S|

=
∑

S 6=S′∈children(S∗)

|E(S, S′)|+ d ·D · ϕh · |S∗| As |S∗| =
∑

S∈children(S∗)

|S|

Since S∗ is D-approximation of S∗ we have |S∗| ≤ 2 · |S∗|. Therefore,

|S∗| ·
∑

S 6=S′∈childrenT (S∗)

|E(S,S′)| ≤ 2 · |S∗| ·

 ∑
S 6=S′∈children(S∗)

|E(S, S′)|+ d ·D · ϕh · |S∗|


≤ 2

∑
(x,y)∈E s.t.

T [LCA(x,y)]=S∗

|S∗|+ 2 · d ·D · ϕh · |S∗|2 (135)
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Thus, by (130), (131), (132), (134) and (135) we have

COST(P ) =
H∑
h=0

∑
S∗∈P h

∑
(x,y)∈E s.t.

T [LCA(x,y)]=S∗

|S∗| By (131)

≤
H∑
h=0

∑
S∗∈Ph

4 · d ·D · ϕh · |S∗|2 + 2 · d ·D · ϕh · |S∗|2 + 2 ·
∑

(x,y)∈E s.t.

T [LCA(x,y)]=S∗

|S∗|

 By (132), (134), (135)

= 2 · COST(P) + 6 ·
H∑
h=0

∑
S∗∈Ph

d ·D · ϕh · |S∗|2 By (130)

(136)

Note that we have

COST(P) =
H∑
h=0

∑
S∗∈Ph

∑
(x,y)∈E s.t.

T [LCA(x,y)]=S∗

|S∗|

=
1

2
·
H∑
h=0

∑
S∗∈Ph

∑
S∈children(S∗)

|S∗| · |E(S, S∗ \ S)|

≥ 1

2
·
H∑
h=0

∑
S∗∈Ph

|S∗| · |S∗| · d · ϕh · β By Definition 6 and as |S| ≥ β · |S∗|

(137)

Therefore, by (136) and (137) we have

COST(P ) ≤
(

2 +
12D

β

)
· COST(P) ≤ 14 ·D

β
· COST(P).

The second main result of this section is Lemma 2 whose proof is a modification of Theorem
2.3 of [CC17]. This lemma essentially asserts that in a (k, γ)-hierarchically clusterable graph,
the cost of the ground truth hierarchical clustering P is an Oβ( 1

γ ) approximation of the optimum
Dasgupta’s cost. To prove Lemma 2 we first need the following definition from [CC17].

Definition 24 (Maximal clusters induced by a tree). Let G = (V,E) be a graph. Let T be a
tree with n leaves on vertices of G. Let T (s) denote the clusters of size at most s induced by T .
We refer to these clusters as maximal clusters of size at most s. We denote by ET (s) the edges
that are cut in T (s), i.e. edges with end points in different clusters in T (s). For convenience,
we also define ET (0) = E. We remark that T (s) is a partition of V .

Lemma 2. Let G = (V,E) be a (k, γ)-hierarchical clusterable graph and let P be the hierarchical-
clustering. Suppose that φin(G) ≥ ϕ0. Let P∗ be a hierarchical clustering of the graph G that

minimizes Dasgupta cost, then COST(P) ≤ O
(

1
β2

)
· COST(P∗).

Proof. Let T and T ∗ be the tree representation of a hierarchical clustering P and P∗ respectively.
Let T ∗ be the optimal solution for Dasgupta’s cost. Let T ∗(t) be the maximal clusters in T ∗ of
size at most t (Definition 24). Recall that T ∗(t) is a partition of V . We denote E∗(t) the edges
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that are cut in T ∗(t), i.e. edges with end points in different clusters in T ∗(t). For convenience,
we also define E∗(0) = E. By Claim 2.1 of [CC17] we have

COST(T ∗) =
n−1∑
t=0

|E∗(t)| (138)

It will be convenient to use the following bound that is directly implied by the above claim.

2 · COST(T ∗) = 2 ·
n−1∑
t=0

|E∗(t)| ≥
n∑
t=0

|E∗ (bt/2c)| (139)

For convenience, we define ϕH+1 = 1. Let 0 ≤ h ≤ H, and let’s look at a cluster S∗ ∈ Ph
with size |S∗| = s in the solution produced by T . Suppose that S∗ has r children S1, . . . , Sr.
Note that by Definition 6 we have β · |S∗| ≤ |Si| ≤ (1 − β) · |S∗|. For every Si 6= Sj ∈
children(S∗), the contribution of the edges E(Si, Sj) to the hierarchical clustering objective
function is s · |E(Si, Sj)|. We want to charge this cost to T ∗(bs/2c) and for that we first observe
that the edges cut in T ∗(bs/2c)satisfy the following:

s · |E∗(bs/2c)| = 1

β
· (β · s · |E∗(bs/2c)|) ≤ 1

β
·

s∑
t=(1−β)·s+1

|E∗(bt/2c)| (140)

This follows easily from the fact that |E∗(t) ∩ S∗| ≤ |E∗(t − 1) ∩ S∗|. For any partition of S∗

into disjoint sets Q1, . . . , Q` we define the value of the partition as follows:

VAL(Q1, . . . , Q`) =

∑`
i=1 |E(Qi, S

∗ \Qi)|∑`
i=1 |Qi| · |S∗ \Qi|

(141)

Now in order to explain our charging scheme, let’s look at the partition O1, . . . , Om induced
inside the cluster S∗ by T ∗(bs/2c), where by design the size of each |Oi| = γi · |S∗|, γi ≤ 1

2 . We
have:

VAL(O1, . . . , Om) =

∑m
i=1 |E(Oi, S

∗ \Oi)|∑m
i=1 γi(1− γi) · s2

≤ 2 · |E
∗(bs/2c)|
s2/2

= 4 · |E
∗(bs/2c)|
s2

(142)

The first inequality holds because
∑m

i=1 γi = 1 and
∑m

i=1 γ
2
i ≤ 1/2, and the factor of 2 is

introduced since we double counted every edge. Let D1, . . . , Db be a partition of S∗ into at least
two parts that minimizes VAL(D1, . . . , Db). Therfore, by the definition of minimum we have

VAL(D1, . . . , Db) ≤ VAL(O1, . . . , Om) ≤ 4 · |E
∗(bs/2c)|
s2

(143)

Note that since S∗ ∈ Ph we have φGin(S∗) ≥ ϕh. Therefore, we have

VAL(D1, . . . , Db) =

∑b
i=1 |E(Di, S

∗ \Di)|∑b
i=1 |Di| · |S∗ \Di|

≥ min
i∈[b]

|E(Di, S
∗ \Di)|

|Di| · |S∗ \Di|

≥ min
i∈[b]

ϕh · d ·min(|Di|, |S∗ \Di|)
|Di| · |S∗ \Di|

As φGin(S∗) ≥ ϕh

≥ ϕh · d
|S∗|

(144)
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Also, note that for every Si ∈ children(S∗) we have Si ∈ Ph+1, therefore, we have

VAL(S1, . . . , Sr) =

∑r
i=1 |E(Si, S

∗ \ Si)|∑r
i=1 |Si| · |S∗ \ Si|

≤ max
i∈[r]

|E(Si, S
∗ \ Si)|

|Si| · |S∗ \ Si|

≤ max
i∈[r]

ϕh · d · |Si|
|Si| · |S∗ \ Si|

As φGout(Si) ≤ O(ϕh)

≤ O
(
ϕh · d
β · |S∗|

)
As |S∗ \ Si| ≥ β · |S∗| (145)

Putting (143), (144), and (145) together we get

VAL(S1, . . . , Sr) ≤ O
(

1

β

)
·VAL(D1, . . . , Db) ≤ O

(
1

β

)
· |E

∗(bs/2c)|
s2

(146)

The contribution of this step to the hierarchical clustering objective function is:

s · 1

2
·

r∑
i=1

|E(Si, S
∗ \ Si)| =

s

2
·VAL(S1, . . . , Sr) ·

r∑
i=1

|Si| · |S∗ \ Si|

≤ s

2
·VAL(S1, . . . , Sr) · s2 ·

r∑
i=1

zi(1− zi) As zi =
|Si|
|S∗|

≤ s

2
·O
(

1

β

)
· |E

∗(bs/2c)|
s2

· s2 By (146), and

r∑
i=1

zi(1− zi) ≤ 1

≤ O
(
s

β

)
· |E∗(bs/2c)| (147)

Therefore, the total cost of T is

COST(T ) =
∑
S∗∈T

|S∗| · 1

2
·

∑
S∈children(S∗)

|E(S, S∗ \ S)|

≤
∑
S∗∈T

O

(
|S∗|
β

)
· |E∗(bs/2c)| By (147)

= O

(
1

β

)
·
∑
S∗∈T

1

β

|S∗|∑
t=(1−β)·|S∗|+1

|E∗(bt/2c)| By (140)

≤ O
(

1

β2

)
·
n∑
t=1

|E∗(bt/2c)| explained below

≤ O
(

1

β2

)
· 2 · COST(T ∗) By (139) (148)

The fourth inequality holds because

∑
S∗∈T

|S∗|∑
t=(1−β)|S∗|+1

|E∗(bt/2c) ∩ S∗| ≤
n∑
t=1

|E∗(bt/2c)|,

as for a fixed value of t and S∗, the LHS is: |E∗(bt/2c) ∩ S∗|. Consider which clusters S∗

contribute such a term to the LHS. From the fact that (1 − β)|S∗| + 1 ≤ t ≤ |S∗| we need
to have that |S∗| ≥ t and maxS∈children(S∗) |S| ≤ (1 − β) · |S∗| ≤ t. We deduce that S∗ is a
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minimal cluster of size |S∗| ≥ t > maxS∈children(S∗) |S|. Thus, if all of the children of S∗ are
of size less than t, then this cluster S∗ contributes such a term. The set of all such S∗ form
a disjoint partition of V because of the definition for minimality (in order for them to overlap
in the hierarchical clustering, one of them needs to be ancestor of the other and this cannot
happen because of minimality). Since |E∗(bt/2c)∩S∗| for all such S∗ forms a disjoint partition
of E∗(bt/2c), the claim follows by summing up over all t. Thus we have

COST(T ) ≤ O
(

1

β2

)
· COST(T ∗).

Finally, we state the following corollary of Theorem 2 that bounds the Dasgupta’s cost of
the approximate hierarchical clustering.

Corollary 1. For every integer k ≥ 2, every H ∈ O(log k), every β, ϕ ∈ (0, 1), every γ ≤
O(min(ϕ20, β30)) and every graph G = (V,E) that φin(G) ≥ ϕ0 and admits a (k, γ)-hierarchical
clustering P, there exists a D-approximate hierarchical clustering P (Definition 8) with D =

O
(

1
β4·ϕ2

)
such that

COST(P ) ≤ O
(

1

β7 · ϕ2

)
· COST(P∗),

where, P∗ is the hierachical clustering with optimum Dasgupta cost.

Proof. Let P be the approximate hierarchical clustering that is obtained by Theorem 2. With
high probability, P is a D-approximation of P. Thus, by Lemma 1, we have

COST(P ) ≤ O
(
D

β

)
· COST(P). (149)

Let P∗ denote a hierarchical clustering of G with the optimum Dasgupta cost. Thus, by
Lemma 2 we have

COST(P) ≤ O
(

1

β2

)
· COST(P∗). (150)

Thus, by (149), (150) and as D = D0
β4ϕ2 we get

COST(P ) ≤ O
(
D

β3

)
· COST(P∗) ≤ O

(
1

β7 · ϕ2

)
· COST(P∗).
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A Graphs in Hierarchical Stochastic Block Models are (k, γ)-
clusterable

In this section we present a natural family of graphs that is (k, γ)-hierarchically-clusterable
showing that our definition is at the same time natural and well-founded. In particular, the
main result of this section is Theorem 7. We briefly sketch the proof of Theorem 7. Fix
H ∈ N, ϕ ∈ (0, 1) (which is some large constant bounded away from zero) and some sufficiently
small γ. We use a standard random graph model to sample 2H expanders, C1, C2, . . . , C2H ,
each containing t = n/2H vertices and each with inner conductance at least ϕ ≥ Ω(1). The
parameters of our model are chosen so that it is possible to (recursively) merge these expanders,
two at a time which produces a collection of 2H−1 sets each containing 2t vertices such that each
set has inner conductance ϕ · γ. We recursively merge these clusters to obtain a collection Ph
of sets for all 0 ≤ h ≤ H. Finally, we prove that at any level h, the collection Ph at that level
satisfies the properties needed in Definition 6. The following lemma is a useful primitive which
we use to show that a cluster obtained after merging two clusters (according to our random
model) has nice expansion properties.

Lemma 32. Let ϕ > 0 be a constant bounded away from 0 and let d ∈ N. Let ε ∈ (1/d, ϕ/16).
For sufficiently large n, let G = (V,E) be a d + εd-regular graph with two clusters C1 and C2

where

• |C1| = |C2| = n/2

• G[C1], G[C2] are d-regular.

• min(ϕGin(C1), ϕGin(C2)) ≥ ϕ.

• For each u ∈ C1, v ∈ C2, we have |E(u,C2)| = εd = |E(v, C1)| > 1.

Then ϕ(G) ≥ ε/16.

Proof. Let S ⊆ C1 ∪ C2 be such that |S| ≤ n/2. We will show that

|E(S, V \ S)| ≥ ε · d|S|
16

.

Let S1 = S ∩ C1, T1 = C1 \ S1 and S2 = S ∩ C2, T2 = C2 \ S2. Consider the following cases

• |S1| ≤ |T1| and |S2| ≤ |T2|. In this case, note that

|E(S, V \ S)| ≥ |E(S1, T1)|+ |E(S2, T2)| ≥ ϕd|S1|+ ϕd|S2| ≥ ϕd|S|.

• |S1| ≥ |T1|, |S2| ≤ |T2|. We now split into two more cases as below.

1. |S1| − |S2| ≥ n/8. In this case, note

|E(S, V \ S)| ≥ |E(S1, T2)| ≥ εd · (|S1| − |S2|) ≥ εd · n/8 ≥
εd · n

16
.

2. |S1|−|S2| < n/8. In this case, note that |S1|, |T1|, |S2|, |T2| all have comparable sizes.
In particular, |S1| ∈ [n/4, n/4 + n/8] and |S2| ∈ [n/4 − n/8, n/4]. Thus, both |T1|
and |S2| contain at least n/8 vertices. Therefore,

|E(S, V \ S)| ≥ |E(S1, T1)|+ |E(S2, T2)| ≥ ϕd|T1|+ ϕd|S2| ≥ ϕ ·
dn

4
≥ ϕ · d|S|

12
.

• |S2| ≥ |T2|, |S1| ≤ |T1|. Identical to the case above.
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The key to our argument lies in the precise description of the random model our graphs
come from. We first setup the stage to describe our random model.

Fact 1. Let n be a sufficiently large positive integer. For p ≥ 10 log n/n, sample a graph
G ∼ G(n, p). Then with probability at least 1− 1/n2, G has expansion at least Ω(1).

Claim 2. Let n be a sufficiently large positive integer. For c > 30 and p = c log n/n, sample a
graph G ∼ G(n, p). Then with probability at least 1−1/n2, all vertices in G have degree between
2/3 · np and 4/3 · np is at least 1− 1/n2.

Proof. The proof is a direct application of Chernoff Bounds. The average degree is np = c log n.
By a Chernoff bound, the probability that for a fixed vertex the degree is between 2/3np and
4/3np is at most exp(−1/9 · 30 log n) ≤ 1/n3. By a union bound over all the vertices, the
probability that some vertex has degree outside this interval is at most 1/n2.

We are now ready to describe our base cluster.

Construction of Erdos Renyi Clusters: Fix H ∈ N and let ϕ ∈ (0, 1) denote a constant
so that for large enough integer n, it holds that G ∼ G(n/2H , 30 logn

n/2H
) has inner conductance

ϕ ≥ Ω(1) (by Fact 1). Now, let

ϕ0 ≥
1

2O(H)
.

Set k = 2H and for some large enough n, sample graphs

C ′1, C
′
2, . . . C

′
k ∼ G

(
n

k
,
30 log n

n/k

)
.

By Claim 2 w.h.p. all vertices in each Ci have degree between 20k · log n and 40k · log n. Add
enough self loops at each vertex to obtain a d′ regular graph where d′ = 40k · log n. Call the
resulting clusters C1, C2, . . . Ck. We refer to these k = 2H clusters as Erdos-Renyi collection of
clusters with parameter H.

Claim 3. Fix H ∈ N, let k = 2H and let C1, C2, . . . Ck denote the Erdos Renyi Clusters with
paramter H as defined above. Then each of these clusters has conductance at least Ω(1) with
probability at least 1− 2/n.

Proof. Follows from Fact 1 and Claim 2 on taking the union bound.

Hierarchy of (H,ϕ0, γ)-clusters: Fix H ∈ N, ϕ0 ≥ 1
2O(H) . Let k = 2H and for sufficiently

large n, let C1, C2, . . . Ck denote the Erdos Renyi collection of clusters with paramter H where
each cluster has inner conductance at least 2 · ϕ ≥ Ω(1).

Recall each cluster is d′-regular with d′ = 40k log n. Let γ ≤ ϕ20 and set ϕh = ϕ0/γ
h. Add

εd′ half-edges at each vertex where ε = 16(ϕ0+ϕ1+. . .+ϕH−1). Write d = d′+εd′ and note that
the resulting graph is a collection of k disjoint components each of which is d-regular. We say
that these half-edges come in H different colors and for h ∈ [H], we have 16ϕh−1d

′ half-edges
colored h at each vertex. We now describe a tree with base clusters C1, C2, . . . Ck at level H.
The definition of our tree is recursive. Suppose we already have a collection of sets (all of which
are actually parition V ) PH ,PH−1, · · · Ph where 0 < h ≤ H. We now define the partition Ph−1.
This is done in the following steps. Denote the clusters at level h as A1, A2, . . . A2h .

• For an odd i ≤ 2h, take the clusters Ai, Ai+1. Take all the half-edges colored h between Ai
and Ai+1. Add a perfect matching between the all the half-edges. If the matching pairs
up a half-edge colored h on u with a half-edge colored h on v, we add in the edge (u, v).
Note that this results in a graph which has parallel edges.
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• Drop all the half-edges colored h from Ai and Ai+1.

This gives level h−1. Note that this procedure preserves d-regularity while going from level
h to level h − 1. Repeat this process till it terminates at level 0 and return the final graph
obtained. We denote this model as G(n,H, ϕ0, γ).

Theorem 7. Fix H ∈ N, ϕ0 ≥ 1
2O(H) and ϕ ∈ (0, 1). Let γ ≤ ϕ20 and for h ∈ [H] set

ϕh = ϕ0/γ
h and let k = 2H . For sufficiently large n, let G ∼ G(n,H, ϕ0, γ). Then, with high

probability G is (k, γ)-hierarchically clusterable (Definition 6).

Proof. We need to verify that with high probability, a graph G sampled from G(n,H, ϕ0, γ)
satisfies the conditions in Definition 6. As noted in Claim 3, with probability at least 1− 2/n,
all the clusters C1, C2, . . . Ck are d′-regular for d′ = 40k · log n and have inner conductance at
least 2ϕ. As per the definition of the hierarchy of (H,ϕ0, γ)-clusters, we add εd′ half-edges at
each vertex where ε = 16(ϕ0 + ϕ1 + . . .+ ϕH−1) (and thus each Ci still has inner conductance
at least ϕ ≥ Ω(1)). Write d = d′ + εd′ and note that each vertex has degree d. We recall
the half-edges come in H different colors and we have 16ϕh−1d

′ half-edges colored h. Now, we
proceed to verify the conditions of Definition 6.

To do this, take any h ∈ [H] and note that for each S∗ ∈ Ph−1 and any S ∈ children(S∗)
we have |S| = |S∗|/2 and thus the size condition in Definition 6 is met. For the first condition,
we will show the following. Take any pair of sibling clusters at level h. For convenience denote
them as A1 and A2. Suppose for some 0 < δ < α� 1, both A1 and A2 have inner conductance
α and the sparsity of the cut between A1 and A2 is δ.

By Lemma 32, the inner conductance of A = A1 ∪ A2 is at least δ/16. Now, we apply the
above to the bottom level collection PH of G by setting δ = 16ϕH−1. This means the inner
conductance of any cluster at level H − 1 is at least ϕH−1. Inductively, this means all clusters
at level h ≥ 1 have inner conductance at least ϕh and outer conductance at most 16ϕh−1.

B Properties of Hierarchically Clusterable Graphs

Lemma 5. (Variance bounds) Let κ ∈ [n] and m ≥ 2 be integers. Let G = (V,E) be a d-regular
graph. Suppose that V is partitioned into m disjoint subsets V = S1 ∪ . . . ∪ Sm. Then for any
α ∈ Rκ with ‖α‖ = 1 we have

m∑
i=1

∑
x∈Si

〈fκx − µi, α〉
2 ≤ λκ

mini∈m χ2(Si)
,

where µi ∈ Rκ is the κ-dimensional center of set Si (Definition 10), χ2(Si) is the second smallest
eigenvalue of LSi (Definition 13), and λκ denote the κ-th smallest eigenvalue of LG.

Proof. Let z = U[κ]α. Note that
〈z, LGz〉 ≤ λκ (151)

Fix some i ∈ [k], let z′ ∈ Rn be a vector such that z′(x) := z(x) − 〈µi, α〉. For any S ⊆ V , we
define z′S ∈ Rn to be a vector such that for all x ∈ V z′S(x) = z′(x) if x ∈ S and z′S(x) = 0
otherwise. Note that z(x) = 〈fκx , α〉, thus we have∑

x∈V
z′Si(x) =

∑
x∈Si

z′(x) =
∑
x∈Si

z(x)− 〈µi, α〉 =
∑
x∈Si

〈fκx − µκi , α〉 = 0

Thus we have z′|Si ⊥ 1, so by properties of Rayleigh quotient we get

χ2(G[Si]) ≤
〈z′Si , Liz

′
Si
〉

〈z′Si , z
′
Si
〉

=
1

d

∑
x,y∈Si,(x,y)∈E(z′(x)− z′(y))2∑

x∈Si(z
′(x))2

=
1

d

∑
x,y∈Si,(x,y)∈E(z(x)− z(y))2∑

x∈Si(z(x)− 〈µi, α〉)2

(152)
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Thus we have

λκ ≥ 〈z, LGz〉 By (151)

=
1

d
·
∑

(x,y)∈E

(z(x)− z(y))2

≥ 1

d
·
m∑
i=1

∑
x,y∈Si,(x,y)∈E

(z(x)− z(y))2

≥ min
i∈m

χ2(G[Si]) ·
m∑
i=1

∑
x∈Si

(z(x)− 〈µi, α〉)2 By (152)

Recall that for all x ∈ V , z(x) = 〈fκx , α〉. Therefore we have

m∑
i=1

∑
x∈Si

〈fκx − µi, α〉2 ≤
λκ

mini∈m χ2(G[Si])

Lemma 6. Let κ ∈ [n] and m ≥ 2 be integers. Let G = (V,E) be a d-regular graph. Suppose
that V is partitioned into m disjoint subsets V = S1 ∪ . . . ∪ Sm. Let Q ⊆ V . Then for any
α ∈ Rκ with ‖α‖ = 1 we have∣∣∣∣∣∣αT

 m∑
i=1

|Q ∩ Si|µiµTi −
∑
x∈Q

fκx f
κ
x
T

α

∣∣∣∣∣∣ ≤ 2 ·

√
λκ

mini∈m χ2(Si)
,

where µi ∈ Rκ is the κ-dimensional center of set Si (Definition 10), χ2(Si) is the second smallest
eigenvalue of LSi (Definition 13), and λκ denote the κ-th smallest eigenvalue of LG.

Proof. Let Υ ∈ Rκ×|Q| denote a matrix whose x-th column is µi if x ∈ Si. Note that

ΥΥT =
m∑
i=1

|Q ∩ Si| (µi) (µi)
T .

We define z, z̃ ∈ R|Q| as follows: z̃ := ΥTα, and for any x ∈ Q, z(x) := 〈fκx , α〉. Therefore we
have∣∣∣∣∣∣αT

ΥΥT −
∑
x∈Q

(fκx )(fκx )T

α

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
x∈Q

z̃(x)2 − z(x)2

∣∣∣∣∣∣ From definition of z(x) and z̃(x)

≤
∑
x∈Q
|(z(x)− z̃(x)) (z(x) + z̃(x))|

≤
√∑
x∈Q

(z(x)− z̃(x))2
∑
x∈Q

(z̃(x) + z(x))2 By Cauchy-Schwarz inequality

(153)

Note that for any x ∈ Q, we have z(x) = 〈fκx , α〉 and z̃(x) = 〈µx, α〉. Therefore by Lemma 5 we
have √∑

x∈Q
(z(x)− z̃(x))2 ≤

√∑
x∈V
〈fκx − µκx, α〉

2 ≤

√
λκ

mini∈m χ2(G[Si])
(154)

74



To complete the proof it suffices to show that
∑

x∈Q(z̃(x) + z(x))2 ≤ 2. Note that∑
x∈Q

z̃(x)2 ≤
∑
x∈V
〈α, µx〉2

=
m∑
i=1

|Si|
〈
α,

∑
x∈Si f

κ
x

|Si|

〉2

=
m∑
i=1

|Si|
(∑

x∈Si 〈α, f
κ
x 〉

|Si|

)2

≤
m∑
i=1

∑
x∈Si

〈α, fκx 〉
2 By Jensen’s inequality

= ||U[κ]α||22
= 1

Thus we have∑
x∈Q

(z̃(x) + z(x))2 ≤
∑
x∈Q

(
2 · z̃(x)2 + 2 · z(x)2

)
≤ 2 + 2

∑
x∈Q
〈α, fκx 〉

2 ≤ 4 (155)

In the first inequality we used the fact that (z̃(x)− z(x))2 ≥ 0 and for the second inequality we
used the fact that

∑
x∈Q 〈α, fκx 〉

2 ≤
∑

x∈V 〈α, fκx 〉
2 = ||U[κ]α||22 = 1. Putting (155), (154), and

(153) together we get∣∣∣∣∣∣αT
 m∑
i=1

|Q ∩ Si| (µi) (µi)
T −

∑
x∈Q

(fκx )(fκx )T

α

∣∣∣∣∣∣ ≤ 2 ·

√
λκ

mini∈m χ2(G[Si])

C Dot Product Oracle of κ-dimensional Spectral Embeddings

The main result of this section is Theorem 8. This is a variant of Theorem 2 in [GKL+21] and
asserts the following: In a (k, γ)-hierarchically-clusterable graph, for every level h, and every
pair of vertices x, y ∈ V , one can estimate

〈
fκx , f

κ
y

〉
in time ≈ n1/2+O(γ/ϕ), where κ = |Ph|. Note

that whereas the result in [GKL+21] requires the clusters to have sizes within constant factor
of each other, here the clusters in level h can have sizes which are within a O( 1

βh
) ≈ kO(1) factor

of each other. However, the result continues to hold at the expense of extra kO(1) factors in the
running time.

Moreover, the proof of Theorem 2 in [GKL+21] assumes that the input instance admits a
k-clustering where each cluster has outer conductance at most ε and relies on the fact that

||fkx ||22 ≤ kO(1)·nO(γ/ϕ)

n . In a (k, γ)-hierarchically-clusterable graph, for every level h we have
||fκx ||22 ≤ ||fkx ||22, where κ = |Ph|, and k = |PH |. Moreover as shown in Lemma 36, we have

||fκx ||22 ≤ kO(1)·nO(γ/ϕ)

n , hence, the proof of Theorem 2 in [GKL+21] can be used for our setting
as well (and we do not require to assume ϕh−1/ϕ

2
h � 1).

Theorem 8. [Spectral Dot Product Oracle[GKL+21]] Let G = (V,E) be a (k, γ)-hierarchically-
clusterable graph (Definition 6). Let ξ ∈ ( 1

n5 , 1) and let κ = |Ph| denote the number of clusters at
level h. Then InitializeDotProductOracle(G, 1/2, ξ, h, κ) (Algorithm 9) computes in time

n1/2+O(γ/ϕ) ·
(
k·logn
ξ·γ·ϕh

)O(1)
a sublinear space data structure Dh of size n1/2+O(γ/ϕ) ·

(
k·logn
γ·ξ

)O(1)

such that with probability at least 1− n−100 the following property is satisfied:
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For every pair of vertices x, y ∈ V , SpectralDotProduct(G, x, y, 1/2, ξ,Dh) (Algorithm
10) computes an output value

〈
fκx , f

κ
y

〉
apx

such that with probability at least 1− n−100

∣∣∣ 〈fκx , fκy 〉apx − 〈fκx , fκy 〉∣∣∣ ≤ ξ

n
.

The running time of SpectralDotProduct(G, x, y, 1/2, ξ,Dh) is n1/2+O(γ/ϕ) ·
(
k·logn
ξ·γ·ϕh

)O(1)

and the space used by this procedure is
(
k logn
ξγϕh

)O(1)
· nO(γ/ϕ).

Furthermore, for any 0 ≤ ω ≤ 1/2, one can obtain the following trade-offs between pre-
processing time and query time: Algorithm SpectralDotProduct(G, x, y, ω, ξ,Dh) requires

nω+O(γ/ϕ)·
(
k·logn
ξ·γ·ϕh

)O(1)
per query when the preprocessing time of Algorithm InitializeDotProductOracle(G,ω, ξ, h, κ)

is increased to n1−ω+O(γ/ϕ) ·
(
k·logn
ξ·γ·ϕh

)O(1)
.

We first set up notations and then state the algorithms below.
Let m ≤ n be integers. For any matrix A ∈ Rn×m with singular value decomposition (SVD)

A = Y ΓZT we assume Y ∈ Rn×n and Z ∈ Rm×n are orthogonal matrices and Γ ∈ Rn×n is a
diagonal matrix of singular values. Since Y and Z are orthogonal matrices, their columns form
an orthonormal basis. For any integer q ∈ [m] we denote Y[q] ∈ Rn×q as the first q columns of

Y and Y−[q] to denote the matrix of the remaining columns of Y . We also denote ZT[q] ∈ Rq×n

as the first q rows of ZT and ZT−[q] to denote the matrix of the remaining rows of Z. Finally

we denote ΓT[q] ∈ Rq×q as the first q rows and columns of Γ and we use Γ−[q] as the last n − q
rows and columns of Γ. So for any q ∈ [m] the span of Y−[q] is the orthogonal complement of
the span of Y[q], also the span of Z−[q] is the orthogonal complement of the span of Z[q]. Thus

we can write A = Y[q]Γ[q]Z
T
[q] + Y−[q]Γ−[q]Z

T
−[q].

Algorithm 9 InitializeDotProductOracle(G,ω, ξ, h, κ)

1: t := 6000·logn
ϕh·β3·ϕ2

2: Rinit := n1−ω+O(γ/ϕ) ·
(
k
ξ

)O(1)

3: s := nO(γ/ϕ) ·
(
k·logn
ξ

)O(1)

4: Let IS be the multiset of s indices chosen independently and uniformly at random from
{1, . . . , n}

5: for i = 1 to O(log n) do
6: Q̂i := EstimateTransitionMatrix(G, IS , Rinit, t) . Q̂i has at most Rinit · s non-zeros

7: G :=EstimateCollisionProbabilities(G, IS , Rinit, t)

8: Let n
s · G := Ŵ Σ̂Ŵ T be the eigendecomposition of n

s · G . G ∈ Rs×s

9: Ψ := n
s · Ŵ[κ]Σ̂

−2
[κ] Ŵ

T
[κ] . Ψ ∈ Rs×s

10: return Dh := {Ψ, Q̂1, . . . , Q̂O(logn)}
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Algorithm 10 SpectralDotProductOracle(G, x, y, ω, ξ,Dh)

1: Rquery := nω+O(γ/ϕ) ·
(
k
ξ

)O(1)

2: for i = 1 to O(log n) do
3: m̂i

x := RunRandomWalks(G,Rquery, t, x)
4: m̂i

y := RunRandomWalks(G,Rquery, t, y)

5: Let αx be a vector obtained by taking the entrywise median of (Q̂i)
T (m̂i

x) over all runs
6: Let αy be a vector obtained by taking the entrywise median of (Q̂i)

T (m̂i
y) over all runs

7: return
〈
fκx , f

κ
y

〉
apx

:= αTxΨαy

D Projection On Subgraph Projection Matrix

D.1 Stability Bounds under Sampling of Vertices

The main result of this subsection is Lemma 21.

Lemma 21. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Let
Q ⊆ V be a set that is δ-close to r-clusterable (Definition 21) and let Q̃ be a set of size s̃ that is
sampled independently and uniformly at random from Q. Let Π, Π̃ ∈ Rκ×κ denote the subgraph
projection matrix of Q and Q̃ for κ and r respectively (Definition 12). Then with probabaility
at least 1− n−100 for every x, y ∈ V we have∣∣∣〈fκx , Π̃fκy 〉− 〈fκx ,Πfκy 〉∣∣∣ ≤ ξ

n
,

where, κ ∈ [k], r ∈ [κ], δ ∈ [0, 1
1000), ξ ∈ ( 1

n5 ,
1

1000), s̃ ≥ kc·n160A0·γ/ϕ

ξ2
and A0, c > 1 are large

enough constants.

To prove Lemma 21 we require the matrix concentration bound, which is a generalization of
Bernstein’s inequality bound to matrices. Equipped with the Matrix Bernstein bound, we can
show that under certain spectral conditions we can approximate a matrix AAT by (AS)(AS)T ,
i.e. by sampling columns of A. The idea is to write AAT =

∑n
i=1(A1i)(A1i)

T as a sum over
the outer products of its columns and make the sample size depend on the spectral norm of
the summands (Lemma 34). To prove Lemma 34 we require the following matrix concentration
bound, which is a generalization of Bernstein’s inequality bound to matrices.

Lemma 33 (Matrix Bernstein [Tro12]). Consider a finite sequence Xi of independent, random
matrices with dimensions d1 × d2. Assume that each random matrix satisfies E[Xi] = 0 and
‖Xi‖2 ≤ b almost surely. Define σ2 = max{‖

∑
i E[XiX

T
i ]‖2, ‖

∑
i E[XT

i Xi]‖2}. Then for all
t ≥ 0,

P

[
‖
∑
i

Xi‖2 ≥ t

]
≤ (d1 + d2) · exp

(
−t2/2

σ2 + bt/3

)
.

Lemma 34. Let p, q ≤ n and A ∈ Rp×q be a matrix. Let B = maxh∈{1,...,q} ‖(A1h)(A1h)T ‖2.

Let ξ ∈ (0, 1) and s ≥ 40·q2B2 logn
ξ2

. Let IS = {i1, . . . , is} be a multiset of s indices chosen

independently and uniformly at random from {1, . . . , q}. Let S be the q × s matrix whose j-th
column equals 1ij . Then we have

P
[
‖AAT − q

s
(AS)(AS)T ‖2 ≥ ξ

]
≤ n−100.
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Proof. Observe that

A(A)T =
∑

`∈{1,...,q}

(A1`)(A1`)
T . (156)

and
q

s
(AS)(AS)T =

q

s
·
∑
ij∈IS

(A1ij )(A1ij )
T . (157)

Let Xj ∈ Rp×p be a random variable defined with value Xj = q
s · (A1ij )(A1ij )

T . Thus we have

E[Xj ] =
q

s
· E[(A1ij )(A1ij )

T ] =
q

s
· 1

q

∑
`∈{1,...,n}

(A1`)(A1`)
T =

1

s
·A(A)T (158)

By equality (157) we have q
s(AS)(AS)T =

∑s
j=1Xj . Thus by equality (158) we get

‖q
s

(AS)(AS)T −A(A)T ‖2 = ‖
s∑
j=1

(Xj − E[Xj ])‖2. (159)

Let Zj = Xj − E[Xj ]. We then have ‖Zj‖2 = ‖Xj − E[Xj ]‖2 ≤ ‖Xj‖2 + ‖E[Xj ]‖2 Now let
B = max`∈{1,...,q} ‖(A1`)(A1`)T ‖22. Furthermore, by our assumption we have

‖Xj‖2 =
∥∥∥q
s
· (A1j)(A1j)T

∥∥∥
2
≤ q

s
·B (160)

By subadditivity of the spectral norm and (158) we get

‖E[Xj ]‖2 ≤
q

s
·B (161)

Putting (160) and (161) together we get

‖Zj‖2 = ‖Xj − E[Xj ]‖2 ≤ ‖Xj‖2 + ‖E[Xj ]‖2 ≤ 2 · q
s
·B (162)

Now we would like to get a bound for the variance. Since Zj is symmetric, we have ZTj Zj =

ZjZ
T
j = Z2

j .

‖
s∑
j=1

E[Z2
j ]‖2 ≤ s · ‖E[Z2

j ]‖2 = s · ‖E[X2
j ]− E[Xj ]

2‖2 ≤ s · ‖E[X2
j ]‖2 + s · ‖E[Xj ]

2‖2

By submultiplicativity of the spectral norm we get

‖E[X2
j ]‖2 =

∥∥∥∥∥∥1

q
· q

2

s2

∑
`∈{1,...,q}

((A1`)(A1`)
T )2

∥∥∥∥∥∥
2

≤ q2

s2
·B2 (163)

Moreover by submultiplicativity of spectral norm we have ‖E[Xj ]
2 ‖2 ≤ ‖E[Xj ]‖22 ≤

q2

s2
· B2.

Putting things together we obtain ∥∥∥∥∥∥
s∑
j=1

E[Z2
j ]

∥∥∥∥∥∥
2

≤ 2 · q2B2

s

Now we can apply Lemma 33 and we get with b = 2 · qsB and σ2 ≤ 2·q2B2

s using s ≥ 40·q2B2 logn
ξ2

P

‖ s∑
j=1

Zj‖2 > ξ

 ≤ (p+ q) · exp

(
−ξ2

2

σ2 + bξ
3

)
≤ n−100 (164)
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The following lemma proves a 2-norm bound on the κ-dimensional vectors fκx . In turn, its
proof requires the following lemma which was proved in [GKL+21].

Lemma 35. [[GKL+21]] Let ϕ ∈ (0, 1) and ε ≤ ϕ2

100 , and let G = (V,E) be a d-regular graph
that admits (k, ϕ, ε)-clustering C1, . . . , Ck. Let u be a normalized eigenvector of L with ||u||2 = 1
and with eigenvalue at most 2ε. Then we have

||u||∞ ≤ n20·ε/ϕ2 ·
√

160

mini∈[k] |Ci|
.

Lemma 36. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Then
there exists a constant A0 such that for every κ ∈ [k] and every x ∈ V we have

||fκx ||2 ≤
kO(1) · n

(
A0γ
ϕ

)
√
n

Proof. Let C1, . . . , Ck ∈ PH denote the clusters at level H. Note that for any cluster C at
level H we have φin(C) ≥ ϕH = ϕ and φout(C) ≤ O(ϕH−1) = A0 · ϕ · γ for some constant
A0. Therefore, G is (k, ϕ,A0ϕ · γ)-clusterable. Also note that A0γ·ϕ

ϕ2 = A0γ
ϕ is smaller than a

sufficiently small constant. Thus by Lemma 35 for any κ ≤ k we have

||fκx ||∞ ≤ n
20A0· γϕ ·

√
160

mini∈[k] |Ci|

Also note that by Proposition 1 we have mini∈[k] |Ci| ≥ n·βH . By Definition 6, H = O(log k),
thus we get

||fκx ||2 ≤
√

160 ·
√
k ·
(

1

β

)(H/2)

· n
20A0· γϕ
√
n
≤ kO(1) · n

(
20A0·γ
ϕ

)
√
n

Lemma 37. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Let
ξ ∈ ( 1

n5 , 1) and c > 1, A0 > 1 be sufficiently large constants. Let Q ⊆ V and Q̃ be a set of

size s̃ ≥ kc·n80A0·
γ
ϕ

ξ2
that is sampled independently and uniformly at random from Q. Let s be an

estimation of |Q| such that |s− |Q|| ≤ |Q|·ξ
kc·n40A0·γ/ϕ

. Let A ∈ Rκ×|Q| and Ã ∈ Rκ×|Q̃| be matrices

whose columns are fκx for x ∈ Q and x ∈ Q̃ respectively. Then with probabaility at least 1−n−100

we have: ∥∥∥AAT − s

s̃
· (Ã)(Ã)T

∥∥∥
2
≤ ξ

Proof. Note that |Q̃| = s̃. Recall that A ∈ Rκ×|Q| and Ã ∈ Rκ×s̃ are matrices whose columns
are fκx for x ∈ Q and x ∈ Q̃ respectively. Let S ∈ R|Q|×s̃ be a matrix whose x-th column equals
1x for any x ∈ Q̃. Note that Ã = AS. Let B = maxx∈Q ||fκx ||22. Note that by Lemma 36 we

have B ≤ kO(1)·n40A0·γ/ϕ

n holds for some large constant A0. Also, recall that |Q| ≤ n. Therefore,
by choice of s̃ for large enough c we have

s̃ ≥ kc · n80A0·γ/ϕ

ξ2
≥ 40 · |Q|2 ·B2(

ξ
2

)2

Thus by Lemma 34 with probabaility at least 1− n−100 we have∥∥∥∥AAT − |Q|s̃ · (Ã)(Ã)T
∥∥∥∥

2

≤ ξ

2
(165)
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Also note that

∥∥∥∥ |Q|s̃ · (Ã)(Ã)T − s

s̃
· (Ã)(Ã)T

∥∥∥∥
2

(166)

=

∣∣∣∣ |Q| − ss̃

∣∣∣∣ · ||(Ã)(Ã)T ||2

≤
∣∣∣∣ |Q| − ss̃

∣∣∣∣ · ||Ã||2F Since ||.||F ≤ ||.||2 and ||(Ã)(Ã)T ||2 = ||Ã||22

=

∣∣∣∣ |Q| − ss̃

∣∣∣∣ ·∑
x∈Q̃

||fx||22

≤
∣∣∣∣ |Q| − ss̃

∣∣∣∣ · |Q̃| · kO(1) · n40A0·γ/ϕ

n
By Lemma 36, ||fx||22 ≤

kO(1) · n40A0·γ/ϕ

n

≤
(
|Q| · ξ

kc · n40·γ/ϕ

)
· k

O(1) · n40A0·γ/ϕ

n
Since s̃ = |Q̃| and ||Q| − s| ≤ |Q| · ξ

kc · n40A0·γ/ϕ

≤ ξ

2
Since |Q| ≤ n

Note that the last inequality holds since constant c is large enough to cancel the hidden

constants in kO(1)·n40A0·γ/ϕ

n . Therefore by (165) and (166) with probabaility at least 1 − n−100

we have∥∥∥AAT − s

s̃
· (Ã)(Ã)T

∥∥∥
2
≤
∥∥∥∥AAT − |Q|s̃ · (Ã)(Ã)T

∥∥∥∥
2

+

∥∥∥∥ |Q|s̃ · (Ã)(Ã)T − s

s̃
· (Ã)(Ã)T

∥∥∥∥
2

By triangle inequality

≤ ξ

2
+
ξ

2
By (165) and (166)

≤ ξ

To prove Lemma 39 we need Lemma 6 in which we will use the following result from [HJ90]
(Theorem 1.3.20 on page 53).

Lemma 38 ([HJ90]). Let j,m, n be integers such that 1 ≤ j ≤ m ≤ n. For any matrix
A ∈ Rm×n and any matrix B ∈ Rn×m, the multisets of nonzero eigenvalues of AB and BA are
equal. In particular, if one of AB and BA is positive semidefinite, then νj(AB) = νj(BA).

Lemma 39. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Let
κ ∈ [k], r ∈ [κ], δ ∈ (0, 1

2), ξ ∈ ( 1
n5 , 1) and c > 1, A0 > 1 be large enough constants. Let Q ⊆ V

be a set that is δ-close to r-clusterable (Definition 21) and let Q̃ be a set of size s̃ ≥ kc·n80A0·
γ
ϕ

ξ2

that is sampled independently and uniformly at random from Q. Let s be an estimation of |Q|
such that |s− |Q|| ≤ |Q|·ξ

kc·n40A0·γ/ϕ
. Let Ã ∈ Rκ×s̃ be a matrix whose columns are fκx for x ∈ Q̃

and let Υ̃ = ÃT Ã. Then with probabaility at least 1− n−100 we have:

1. νr

(
s
s̃ · Υ̃

)
= νr

(
s
s̃ · ÃÃ

T
)
≥ 1− (δ + ξ)

2. νr+1

(
s
s̃ · Υ̃

)
= νr+1

(
s
s̃ · ÃÃ

T
)
≤ (δ + ξ)

Proof. Let A ∈ Rκ×|Q| be a matrix whose columns are fκx for x ∈ Q. Note that Q is δ-close to
r-clusterable. Therefore, by Definition 21 we have

νr(AA
T ) ≥ 1− δ (167)
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and
νr+1(AAT ) ≤ δ (168)

Also note that since s̃ ≥ kc·n80A0·
γ
ϕ

ξ2
and |s− |Q|| ≤ |Q|·ξ

kc·n40A0·γ/ϕ
, by Lemma 37 with probabaility

at least 1− n−100 we have ∥∥∥AAT − (s
s̃

)
· ÃÃT

∥∥∥
2
≤ ξ (169)

Therefore, by Weyls inequality (Lemma 16), (167) and (169) we have

νr

(s
s̃
· ÃÃT

)
≥ νr

(
AAT

)
−
∥∥∥AAT − (s

s̃

)
· ÃÃT

∥∥∥
2
≥ 1− (δ + ξ)

Also, by Weyls inequality (Lemma 16),(168) and (169) we have

νr+1

(s
s̃
· ÃÃT

)
≤ νr+1

(
AAT

)
+
(
AAT

)
+
∥∥∥AAT − (s

s̃

)
· ÃÃT

∥∥∥
2
≤ (δ + ξ)

Recall that Υ̃ ∈ Rs̃×s̃ is a matrix such that for any z1, z2 ∈ Q̃ we have Υ̃(z1, z2) =
〈
fκz1 , f

κ
z2

〉
and

Ã ∈ Rκ×s̃ is a matrix whose columns are fκx for x ∈ Q̃. Therefore, we have Υ̃ = ÃT Ã. Thus by
Lemma 38 we have

νr

(s
s̃
· Υ̃
)

= νr

(s
s̃
· ÃÃT

)
≥ 1− (δ + ξ)

and
νr+1

(s
s̃
· Υ̃
)

= νr+1

(s
s̃
· ÃÃT

)
≤ (δ + ξ)

Our main technical tool is the Davis-Kahan sin(θ) Theorem [DK70].

Theorem 9 (Davis-Kahan sin(θ)-Theorem [DK70]). Let A = Y0Γ0Y
T

0 +Y1Γ1Y
T

1 and A+E =

Ỹ0Γ̃0Ỹ
T

0 + Ỹ1Γ̃1Ỹ
T

1 be symmetric real-valued matrices with Y0, Y1 and Ỹ0, Ỹ1 orthogonal. If the

eigenvalues of Γ0 are contained in an interval (a, b), and the eigenvalues of Γ̃1are excluded from
the interval (a−D, b+D)for some D > 0, then for any unitarily invariant norm ‖.‖.

‖Ỹ T
1 Y0‖ ≤

‖Ỹ T
1 EY0‖
D

.

Lemma 40 ([GKL+21]). For every symmetric matrix E and every pair of orthogonal projection
matrices P, P̃ one has

||P · E · P − P̃ · E · P̃ ||2 ≤ 2‖E‖2 · (‖P · (I − P̃ )‖2 + ‖P̃ · (I − P )‖2).

Lemma 41. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Let
κ ∈ [k], r ∈ [κ], δ ∈ (0, 1

1000), ξ ∈ ( 1
n5 ,

1
1000) and A0 > 1, c > 1 be large enough constants.

Let Q ⊆ V be a set that is δ-close to r-clusterable (Definition 21) and let Q̃ be a set of size

s̃ ≥ kc·n80A0·
γ
ϕ

ξ2
that is sampled independently and uniformly at ranodm from Q. Let Π, Π̃ ∈ Rκ×κ

denote the subgraph projection matrix of Q and Q̃ for κ and r respectively (Definition 12). Then
with probabaility at least 1− n−100 we have∥∥∥Π− Π̃

∥∥∥
2
≤ ξ

81



Proof. Let s = |Q| and let A ∈ Rκ×s and Ã ∈ Rκ×s̃ be matrices whose columns are fκx for
x ∈ Q and x ∈ Q̃ respectively. Let B = (A)(A)T and B̃ = s

s̃ · (Ã)(Ã)T . Let B = Y ΓY T and

B̃ = Ỹ Γ̃Ỹ T denote the eigendecomposition of B and B̃ respectively. Therefore by Definition 12
we have Π = Y[r]Y

T
[r] and Π̃ = Ỹ[r]Ỹ

T
[r]. We define∥∥∥Π− Π̃

∥∥∥
2

=
∥∥∥Y[r]Y

T
[r] − Ỹ[r]Ỹ

T
[r]

∥∥∥
2

We define P = Y[r]Y
T

[r], P̃ = Ỹ[r]Ỹ
T

[r] and E = Iκ×κ. Note that since P and P̃ are projection

matrices we have PP = P and P̃ P̃ = P̃ . Therefore, we have

P · E · P − P̃ · E · P̃ = P − P̃ = Y[r]Y
T

[r] − Ỹ[r]Ỹ
T

[r] (170)

Therefore, (170) and by Lemma 40 we have∥∥∥Π− Π̃
∥∥∥

2
=
∥∥∥Y[r]Y

T
[r] − Ỹ[r]Ỹ

T
[r]

∥∥∥
2

≤ 2‖I‖2 · (‖P · (I − P̃ )‖2 + ‖P̃ · (I − P )‖2) By Lemma 40

= 2 · ‖(Y[r]Y
T

[r])(Ỹ[−r]Ỹ
T

[−r])‖2 + 2 · ‖(Ỹ[r]Ỹ
T

[r])(Y[−r]Y
T

[−r])‖2
≤ 2 · ||Y[r]||2 · ‖Y T

[r]Ỹ[−r]‖2 · ||Ỹ T
[−r]||2 + 2 · ||Ỹ[r]||2 · ‖Ỹ T

[r]Y[−r]‖2||Y T
[−r]||2 By submultiplicativity of norm

= 2 ·
(
‖Y T

[r]Ỹ[−r]‖2 + ‖Ỹ T
[r]Y[−r]‖2

)
(171)

where the last inequality holds since ||Y[r]||2 = ||Y[−r]||2 = ||Ỹ[r]||2 = ||Ỹ[−r]||2 = 1. Therefore,

we need to upper bound ‖Y T
[r]Ỹ[−r]‖2 and ‖Ỹ T

[r]Y[−r]‖2.

Let ξ′ = ξ
8 . Note that by choice of s̃ for large enough c we have s̃ ≥ kc·n80A0·γ/ϕ

ξ2
≥ kc

′ ·n80A0·γ/ϕ

ξ′2

where c′ is the constant from Lemma 37. Thus by Lemma 37 with probability 1 − n−100 we
have

||B − B̃||2 =
∥∥∥AAT − (s

s̃

)
· (Ã)(Ã)T

∥∥∥
2
≤ ξ′ (172)

Bounding ||Y T
[r]Ỹ[−r]||2: Note that since Q is δ-close to r-clusterable we have νr(B) ≥ 1 − δ.

Moreover, by Lemma 39 with probability 1−n−100 we have νr+1(B̃) ≤ (δ+ξ′). Since δ, ξ′ < 1
1000 ,

thus we have
νr(B) ≥ 1/2 + νr+1(B̃) (173)

Thus by Davis-Kahan (Theorem 9) and (173) we have

||Y T
[r]Ỹ[−r]||2 ≤

∥∥∥Y T
[r](B − B̃)Ỹ[−r]

∥∥∥
2

1/2

≤ 2 · ||Y T
[r]||2 ·

∥∥∥B − B̃∥∥∥
2
· ||Ỹ[−r]||2 By submultiplicativity of norm

≤ 2 · ξ′ By (172), and since ||Y T
[r]||2 = ||Ỹ[−r]||2 = 1

(174)

Bounding ||Ỹ T
[r]Y[−r]||2: Note that since Q is δ-close to r-clusterable we have νr+1(B) ≤ δ.

Moreover, by Lemma 39 with probability 1 − n−100 we have νr(B̃) ≥ 1 − (δ + ξ′). Since
δ, ξ′ < 1

100 , thus we have

νr(B̃) ≥ νr(B) + 1/2 (175)
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Thus, by Davis-Kahan (Theorem 9), (172) and (175) we have

||Ỹ T
[r]Y[−r]||2 ≤

∥∥∥Ỹ T
[r](B − B̃)Y[−r]

∥∥∥
2

1/2

≤ 2 · ||Ỹ T
[r]||2 ·

∥∥∥B − B̃∥∥∥
2
· ||Y[−r]||2 By submultiplicativity of norm

≤ 2 · ξ′ By (172), and since ||Ỹ T
[r]||2 = ||Y[−r]||2 = 1

(176)

Put together: By (171), (174) and (176) with probability 1− n−100 we have∥∥∥Π− Π̃
∥∥∥

2
≤ 2 · ‖Y T

[r]Ỹ[−r]‖2 + 2 · ‖Ỹ T
[r]Y[−r]‖2 ≤ 8 · ξ′ ≤ ξ (177)

Now we are ready to prove Lemma 21.

Lemma 21. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Let
Q ⊆ V be a set that is δ-close to r-clusterable (Definition 21) and let Q̃ be a set of size s̃ that is
sampled independently and uniformly at random from Q. Let Π, Π̃ ∈ Rκ×κ denote the subgraph
projection matrix of Q and Q̃ for κ and r respectively (Definition 12). Then with probabaility
at least 1− n−100 for every x, y ∈ V we have∣∣∣〈fκx , Π̃fκy 〉− 〈fκx ,Πfκy 〉∣∣∣ ≤ ξ

n
,

where, κ ∈ [k], r ∈ [κ], δ ∈ [0, 1
1000), ξ ∈ ( 1

n5 ,
1

1000), s̃ ≥ kc·n160A0·γ/ϕ

ξ2
and A0, c > 1 are large

enough constants.

Proof. Note by submultiplicativity of norm we have

∣∣∣〈fκx , Π̃fκy 〉− 〈fκx ,Πfκy 〉∣∣∣ =
∣∣∣(fκx )T (Π̃−Π)(fκy )

∣∣∣ ≤ ||fκx ||2 · ||Π̃−Π||2 · ||fκy ||2 (178)

Note that by Lemma 36 for any x ∈ V we have

||fκx ||2 ≤
kO(1) · n20A0·γ/ϕ

√
n

(179)

Let ξ′ = ξ

kc′ ·n40A0·γ/ϕ
where we set c′ later. By choice of s̃ and for large enough constant c

we have s̃ ≥ kc·n160A0·
γ
ϕ

ξ2
≥ kc

′′ ·n80A0·
γ
ϕ

ξ′2 where c′′ is the constant from Lemma 41. Therefore, by

Lemma 41 with probability 1− n−100 we have

||Π̃−Π||2 ≤ ξ′ (180)

Therefore, with probability 1− n−100 for every x, y ∈ V we have

∣∣∣〈fκx , Π̃fκy 〉− 〈fκx ,Πfκy 〉∣∣∣ ≤ ||fκx ||2 · ||Π̃−Π||2 · ||fκy ||2 By (178)

≤ ξ′ ·

(
kO(1) · n20A0·γ/ϕ

√
n

)2

By (179) and (180)

=
ξ

kc′ · n40A0·γ/ϕ
· k

O(1) · n40A0·γ/ϕ

n
By choice of ξ′ =

ξ

kc′ · n40A0·γ/ϕ

≤ ξ

n

The last inequality holds by choice of c′ as the constant hidden in O notation.
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D.2 Stability Bounds under Approximations by Dot Product Oracle

The main result of this subsection is Lemma 22.

Lemma 22. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Let Q ⊆
V be a set that is δ-close to r-clusterable (Definition 21) and let Π ∈ Rκ×κ be the subgraph projec-
tion matrix of Q for κ and r (Definition 12). Then InitializeSubgraphProjMatrix(G, ., κ, r, Q̃, s, ξ)
(Algorithm 6) computes a data structure D such that with probability at least 1− n−97 the fol-
lowing property is satisfied: With probability at least 1−n−97, for every pair of vertices x, y ∈ V ,

ProjectedDotProduct(G, x, y, ξ,D) (Algorithm 7) computes an output value
〈
fκx , Π̃f

κ
y

〉
apx

such that ∣∣∣∣〈fκx , Π̃fκy 〉
apx

−
〈
fκx , Π̃f

κ
y

〉∣∣∣∣ ≤ ξ

n
,

where, κ ∈ [k], r ∈ [κ], δ ∈ (0, 1
1000), ξ ∈ ( 1

n5 ,
1

1000), and A0, c > 1 are large enough constants.

Also, Q̃ is a set of size s̃ ≥ kc·n560A0·γ/ϕ

ξ6
sampled independently and uniformly at random from

Q, and s is an estimation of |Q| such that |s− |Q|| ≤ |Q|·ξ3
kc·n280A0·γ/ϕ

.

To prove Lemma 22 we first need to prove Lemma 42 and Lemma 43.

Lemma 42. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Let
κ ∈ [k], r ∈ [κ], and s ≥ 1. Let Q̃ ⊆ V be a set of size s̃ and let Π̃ ∈ Rκ×κ be the subgraph
projection matrix of Q̃ with respect to κ and r (Definition 12). Let Υ̃ ∈ Rs̃×s̃ be a matrix

such that for any z1, z2 ∈ Q̃ we have Υ̃(z1, z2) =
〈
fκz1 , f

κ
z2

〉
. Let

(
s
s̃ · Υ̃

)
= Z̃Γ̃Z̃T be the

eigendecomposition of
(
s
s̃ · Υ̃

)
. Let Ψ = s

s̃ · Z̃[r]Γ̃
−1
[r] Z̃

T
[r]. Let x, y ∈ V and ax,ay ∈ Rs̃ be vectors

such that for any z ∈ Q̃ we have ax(z) = 〈fκx , fκz 〉 and ay(z) =
〈
fκy , f

κ
z

〉
. Then we have〈

fκx , Π̃f
κ
y

〉
= aTxΨay

Proof. Let Ã ∈ Rκ×s̃ be a matrix whose columns are fκz for all z ∈ Q̃. Note that Υ̃ ∈ Rs̃×s̃ is a
matrix such that for any z1, z2 ∈ Q̃ we have Υ̃(z1, z2) =

〈
fκz1 , f

κ
z2

〉
. Therefore, we have

s

s̃
· Υ̃ =

(√
s

s̃
· Ã
)T (√

s

s̃
· Ã
)

Therefore, Υ̃ is a gram matrix, hence Γ̃ < 0. Therefore, we denote the singular value decompo-
sition of

√
s
s̃ · Ã by

√
s
s̃ · Ã = Ỹ (Γ̃1/2)Z̃T . Observe that Ỹ ∈ Rκ×s,Γ ∈ Rs̃×s̃, Z̃ ∈ Rs̃×s̃ and we

have (√
s

s̃
· Ã
)T (√

s

s̃
· Ã
)

=
(
Ỹ (Γ̃1/2)Z̃T

)T (
Ỹ (Γ̃1/2)Z̃T

)
= Z̃Γ̃Z̃T =

(s
s̃
· Υ̃
)

Note that ax,ay ∈ Rs̃ are vectors such that for any z ∈ Q̃ we have ax(z) = 〈fκx , fκz 〉 and

ay(z) =
〈
fκy , f

κ
z

〉
. Therefore, we have ax = ÃT fx and ay = ÃT fy. Thus we can write

aTxΨay

= aTx

(s
s̃
· Z̃[r]Γ̃

−1
[r] Z̃

T
[r]

)
ay As Ψ =

s

s̃
· Z̃[r]Γ̃

−1
[r] Z̃

T
[r]

= (fκx )T (Ã)
(s
s̃
· Z̃[r]Γ̃

−1
[r] Z̃

T
[r]

)
(Ã)T (fκy ) As ax = ÃT fx and ay = ÃT fy

= (fκx )T
(√

s

s̃
· Ã
)(

Z̃[r]Γ̃
−1
[r] Z̃

T
[r]

)(√s

s̃
· ÃT

)
(fκy )

= (fκx )T
(
Ỹ (Γ̃1/2)Z̃T

)(
Z̃[r]Γ̃

−1
[r] Z̃

T
[r]

)(
Z̃(Γ̃1/2)Ỹ T

)
(fκy ) As

√
s

s̃
· Ã = Ỹ (Γ̃1/2)Z̃T (181)
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We define the padded identity matrix Ia×b ∈ Ra×b as a matrix such that for all i ≤ min(a, b),
Ia,b(i, i) = 1 and the rest is zero. Note that Z̃T ∈ Rs̃×s̃ and Z̃[r] ∈ Rs×r. Also note that since Z̃

is the right singular vector of Ã, hence, we have Z̃T Z̃ = Is×s. Therefore, we have Z̃T Z̃[r] = Is̃×r

and Z̃T[r]Z̃ = Ir×s̃. Therefore, we get

aTxΨay

= (fκx )T
(
Ỹ (Γ̃1/2)Z̃T

)(
Z̃[r]Γ̃

−1
[r] Z̃

T
[r]

)(
Z̃(Γ̃1/2)Ỹ T

)
(fκy ) By (181)

= (fκx )T (Ỹ )
(

(Γ̃1/2)(Is̃×r)(Γ̃
−1
[r] )(Ir×s̃)(Γ̃

1/2)
)

(Ỹ T )(fκy ) As Z̃T Z̃[r] = Is̃×r and Z̃T[r]Z̃ = Ir×s̃

= (fκx )T Ỹ (Is̃×r)(Ir×s̃)Ỹ
T (fκy ) As (Γ̃1/2)(Is̃×r)(Γ̃

−1
[r] )(Ir×s̃)(Γ̃

1/2) = (Is̃×r)(Ir×s̃)

= (fκx )T
(
Ỹ[r]Ỹ

T
[r]

)
(fκy ) As Ỹ (Is̃×r) = Ỹ[r] (182)

Recall that Ã ∈ Rκ×s̃ is a matrix whose columns are fκz for all z ∈ Q̃ and the singular value
decomposition of

√
s
s̃ · Ã is

√
s
s̃ · Ã = Ỹ (Γ̃1/2)Z̃T . Therefore, the eigendecomposition of ÃÃT is

ÃÃT = Ỹ

(
s̃

s
· Γ̃
)
Ỹ T

Note that by Definition 12 we have
Π̃ = Ỹ[r]Ỹ

T
[r] (183)

Therefore, by (182) and (183) we have

aTxΨay = (fκx )T
(
Ỹ[r]Ỹ

T
[r]

)
(fκy ) =

〈
fκx , Π̃f

κ
y

〉

To prove Lemma 22 we also need to use the following lemma from [GKL+21].

Lemma 43. Let A, Â ∈ Rn×n be symmetric matrices with eigendecompositions A = ZΓZT and
Ã = Z̃Γ̃Z̃T . Let the eigenvalues of A be 1 ≥ γ1 ≥ · · · ≥ γn ≥ 0. Suppose that ‖A − Â‖2 ≤ γr

100
and γr+1 < γr/4. Then we have

‖Z[r]Γ
−1
[r] Z

T
[r] − Ẑ[r]Γ̂

−1
[r] Ẑ

T
[r]‖2 ≤

32
(
‖A− Â‖2

)1/3

γ2
r

Now we are ready to prove Lemma 22.

Proof. Proof of Lemma 22. Let Υ̂ ∈ Rs̃×s̃ be a matrix such that for any z1, z2 ∈ Q̃ we have

Υ̂(z1, z2) =
〈
fκz1 , f

κ
z2

〉
apx

. Let
(
s
s̃ · Υ̂

)
= ẐΓ̂ẐT be the eigendecomposition of

(
s
s̃ · Υ̂

)
. Then as

per line (5) of Algorithm 6 we have

Ψ̂ =
s

s̃
· Ẑ[r]Γ̂

−1
[r] Ẑ

T
[r] (184)

Let αx, αy ∈ Rs̃ be vectors such that for any z ∈ Q̃ we have αx(z) = 〈fκx , fκz 〉apx and αy(z) =〈
fκy , f

κ
z

〉
apx

. Then as per line 3 of Algorithm 7 we have〈
fκx , Π̃f

κ
y

〉
apx

= αTx Ψ̂αy (185)

Let Ã ∈ Rκ×s̃ be a matrix whose columns are fκz for all z ∈ Q̃. Let Υ̃ = ÃT Ã. Note
that Υ̃ ∈ Rs̃×s̃ is a matrix such that for any z1, z2 ∈ Q̃ we have Υ̃(z1, z2) =

〈
fκz1 , f

κ
z2

〉
. Let(

s
s̃ · Υ̃

)
= Z̃Γ̃Z̃T be the eigendecomposition of

(
s
s̃ · Υ̃

)
and we define
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Ψ =
s

s̃
· Z̃[r]Γ̃

−1
[r] Z̃

T
[r] (186)

Let ax,ay ∈ Rs̃ be vectors such that for any z ∈ Q̃ we have ax(z) = 〈fκx , fκz 〉 and ay(z) =〈
fκy , f

κ
z

〉
. Therefore, by Lemma 42 we have〈

fκx , Π̃f
κ
y

〉
= aTxΨay (187)

Therefore, by (185) and (187) we have∣∣∣∣〈fκx , Π̃fκy 〉
apx

−
〈
fκx , Π̃f

κ
y

〉∣∣∣∣ =
∣∣∣αTx Ψ̂αy − aTxΨay

∣∣∣ (188)

In the rest of the proof we bound
∣∣∣αTx Ψ̂αy − aTxΨay

∣∣∣. Let E = Ψ̂ − Ψ, ex = αx − ax and

ey = αy − ay. Thus we have

∣∣∣∣〈fκx , Π̃fκy 〉
apx

−
〈
fκx , Π̃f

κ
y

〉∣∣∣∣
=
∣∣∣αTx Ψ̂αy − aTxΨay

∣∣∣
=
∣∣(ax + ex)T (Ψ + E)(ay + ey)− aTxΨay

∣∣
≤ ||ax||2||E||2||ay||2 + ||ex||2||E||2||ay||2 + ||ax||2||E||2||ey||2 + ||ex||2||E||2||ey||2
+ ||ex||2||Ψ||2||ay||2 + ||ax||2||Ψ||2||ey||2 + ||ex||2||Ψ||2||ey||2 (189)

Thus to complete the proof we need to bound ||ax||2, ||ay||2, ||ex||2, ||ey||2, ||Ψ||2 and ||E||2.

Bounding ||ax||2 and ||ay||2: Note that for any z ∈ Q̃ we have ax(z) = 〈fκx , fκz 〉. Thus we
have

||ax||2 =
√∑
z∈Q̃

〈fκx , fκz 〉
2

=

√
|Q̃| · ||fκx ||2||fκz ||2 By Cauchy Schwarz

≤
√
s̃ · k

O(1) · n40A0·γ/ϕ

n
By Lemma 36

Thus we have

||ax||2 ≤
√
s̃ · k

O(1) · n40A0·γ/ϕ

n
(190)

and

||ay||2 ≤
√
s̃ · k

O(1) · n40A0·γ/ϕ

n
(191)

Bounding ||ex||2 and ||ey||2: Note that ex = αx − ax. Recall that for any z ∈ Q̃ we have

αx(z) = 〈fκx , fκz 〉apx and ax(z) = 〈fκx , fκz 〉. Let ξ′ = ξ3

kc′ ·n240A0·γ/ϕ
where we set c′ later. By

Theorem 8 with probabaility at least 1− n2 · n−100 we have

||ex||2 =
√∑
z∈Q̃

ex(z)2 =
√∑
z∈Q̃

(
〈fκx , fκz 〉apx − 〈fκx , fκz 〉

)2 ≤√√√√∑
z∈Q̃

(
ξ′

n

)2

≤
√
s̃ · ξ′

n
(192)
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Similarly we have

||ey||2 ≤
√
s̃ · ξ′

n
(193)

Bounding ||Ψ||2: Note that Ψ =
(
s
s̃ · Z̃[r]Γ̃

−1
[r] Z̃

T
[r]

)
. Since Z̃[r] is orthonormal we have ||Z̃[r]||2 =

1. Therefore, we get

||Ψ||2 ≤
s

s̃
· ||Z̃[r]||2 · ||Γ̃−1

[r] ||2 · ||Z̃
T
[r]||2 ≤

s

s̃
· 1

νr(Γ̃)
(194)

Then, we need to bound νr(Γ̃). Recall that Υ̃ = ÃÃT and the eigendecomposition of
(
s
s̃ · Υ̃

)
is Z̃Γ̃Z̃T . Therefore, we have νr(Γ̃) = νr

(
s
s̃ · Υ̃

)
. Recall that ξ′ = ξ3

kc′ ·n240A0·γ/ϕ
and let c′′ be the

constant from Lemma 39, hence, for large enough constant c we have |s− |Q|| ≤ |Q|·ξ3
kc·n280A0·γ/ϕ

≤
|Q|·ξ′

kc′′ ·n40A0·γ/ϕ
. Also by choice of s̃ we have s̃ ≥ kc·n560A0·

γ
ϕ

ξ6
≥ kc

′′ ·n80A0·
γ
ϕ

ξ′2 . Therefore, by Lemma

39 item (1) with probabaility at least 1− n−100 we have

νr(Γ̃) = νr

(s
s̃
· Υ̃
)
≥ 1− δ − ξ′ (195)

Therefore, by (194), (195) and since 0 < δ, ξ′ < 1
1000 we have

||Ψ||2 ≤
s

s̃
· 1

νr(Γ̃)
≤ s

s̃
· 1

1− δ − ξ′
≤ 2 · s

s̃
(196)

Bounding ||E||2: Note that

E = Ψ̂−Ψ = Ẑ[r]Γ̂
−1
[r] Ẑ

T
[r] − Z̃[r]Γ̃

−1
[r] Z̃

T
[r]

To bound ||E||2 we will use Lemma 43. Hence, we first verify that prerequisites of this lemma
are satisfied. Recall that Υ̂ ∈ Rs̃×s̃ and Υ̃ ∈ Rs̃×s̃ are matrices such that for any z1, z2 ∈ Q̃
we have Υ̂(z1, z2) =

〈
fκz1 , f

κ
z2

〉
apx

and Υ̃(z1, z2) =
〈
fκz1 , f

κ
z2

〉
. Therefore, by Theorem 8 with

probabaility at least 1− n2 · n−100 we have

||Υ̂− Υ̃||2 ≤ ||Υ̂− Υ̃||F =

√√√√ ∑
z1,z2∈Q̃

(〈
fκz1 , f

κ
z2

〉
apx
−
〈
fκz1 , f

κ
z2

〉)2
≤ s̃ · ξ

′

n

Thus since s ≤ 2 · |Q| ≤ 2 · n we have∣∣∣∣∣∣(s
s̃
· Υ̂
)
−
(s
s̃
· Υ̃
)∣∣∣∣∣∣

2
≤ s

s̃
· s̃ · ξ

′

n
≤ 2 · ξ′ (197)

Recall that the eigendecomposition of
(
s
s̃ · Υ̃

)
is Z̃Γ̃Z̃T Also recall that ξ′ = ξ3

kc′ ·n240A0·γ/ϕ

and c′′ is the constant from Lemma 39. Thus, for large enough constant c we have |s− |Q|| ≤
|Q|·ξ3

kc·n280A0·γ/ϕ
≤ |Q|·ξ′

kc′′ ·n40A0·γ/ϕ
and by choice of s̃ we have s̃ ≥ kc·n560A0·

γ
ϕ

ξ6
≥ kc

′′ ·n80A0·
γ
ϕ

ξ′2 . Therefore,

by Lemma (39) item 2 we have

νr+1(Γ̃) = νr+1

(s
s̃
· Υ̃
)
≤ δ + ξ′

Also by (195) we have νr(Γ̃) ≥ 1− δ − ξ′. Since δ, ξ′ < 1
1000 , hence, we have
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νr+1(Γ̃) ≤ νr(Γ̃)

4
(198)

Also by (195), (197) and since δ, ξ′ < 1
1000 we have∣∣∣∣∣∣(s

s̃
· Υ̂
)
−
(s
s̃
· Υ̃
)∣∣∣∣∣∣

2
≤ 2 · ξ′ ≤ 1− δ − ξ′

100
≤ νr(Γ̃)

100
(199)

Putting (198) and (199) together we can apply Lemma 43 to matrices
(
s
s̃ · Υ̂

)
and

(
s
s̃ · Υ̃

)
.

Thus we get

||E||2 = ‖Ẑ[r]Γ̂
−1
[r] Ẑ

T
[r] − Z̃[r]Γ̃

−1
[r] Z̃

T
[r]‖2

≤
32 ·

(∣∣∣∣∣∣( ss̃ · Υ̂)− ( ss̃ · Υ̃)∣∣∣∣∣∣2)1/3

νr(Γ̃)2
By Lemma 43

≤ 32 · (2 · ξ′)1/3

(1− δ − ξ′)2
By (195) and (197)

≤ 100 · ξ′1/3 Since δ, ξ′ <
1

1000
(200)

Put together: Putting upper bounds of ||ax||2, ||ay||2, ||ex||2, ||ey||2, ||Ψ||2 and ||E||2 together
by (190), (191), (192), (193), (196), (200) with probabaility at least 1− n−98 − n−100 we get

∣∣∣∣〈fκx , Π̃fκy 〉
apx

−
〈
fκx , Π̃f

κ
y

〉∣∣∣∣
≤ ||ax||2||E||2||ay||2 + ||ex||2||E||2||ay||2 + ||ax||2||E||2||ey||2 + ||ex||2||E||2||ey||2
+ ||ex||2||Ψ||2||ay||2 + ||ax||2||Ψ||2||ey||2 + ||ex||2||Ψ||2||ey||2 By (189)

≤

(
s̃ · k

O(1) · n80A0·γ/ϕ

n2

)
·
(

100 · ξ′1/3
)

+ 2 ·

(
√
s̃ · k

O(1) · n40A0·γ/ϕ

n

)
·
(

100 · ξ′1/3
)
·

(√
s̃ · ξ′

n

)
+
(

100 · ξ′1/3
)
·
(
s̃ · ξ′2

n2

)

+ 2 ·

(
√
s̃ · k

O(1) · n40A0·γ/ϕ

n

)
·
(

2 · s
s̃

)
·

(√
s̃ · ξ′

n

)
+

(
s̃ · ξ′2

n2

)(
2 · s

s̃

)
≤ O

(
ξ′

1/3

· kO(1) · n80A0·γ/ϕ

n

)

≤ ξ

n
.

The last inequaliy holds by choice of ξ′ = ξ3

kc′ ·n240A0·γ/ϕ
for large enough constant c′. There-

fore, with probabaility at least 1− n−97 for any x, y ∈ V we have∣∣∣∣〈fκx , Π̃fκy 〉
apx

−
〈
fκx , Π̃f

κ
y

〉∣∣∣∣ ≤ ξ

n
.
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E Counting the Number of Children

In this section we prove the correctness of Algorithm 11 that counts the number of children of
a cluster. The main result of this section is Lemma 29.

Algorithm 11 CountChildren(G, κ, S̃∗, s)

1: s̃ = |S̃∗|.
2: Υ̂ ∈ Rs̃×s̃ ← Gram-matrix of

〈
fκx , f

κ
y

〉
apx

for x, y ∈ S̃∗ . Remark 6

3: r ← the largest number such that νr

(
s∗

s̃ · Υ̂
)
≥ 0.9, and νr+1

(
s∗

s̃ · Υ̂
)
≤ 0.1

4: return r

Remark 6. Υ̂(x, y) =
〈
fκx , f

κ
y

〉
apx

and for computing
〈
fκx , f

κ
y

〉
apx

we use Algorithm 10 given in
Appendix C. 〈

fκx , f
κ
y

〉
apx

= SpectralDotProductOracle(G, x, y, ω, 0.01,Dh)

Lemma 29. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). For
some large enough constant D0 > 1, let D = D0

β4·ϕ2 , h ∈ [H], κ = |Ph|, S∗ ∈ Ph−1, r =

|children(S∗)| and c > 1 be a large enough constant. Let S∗ ⊆ V be a set that is D-
hierarchically-close to S∗ (Definition 19). Let S̃∗ be a set of size s̃ ≥ kc ·n80A0·γ/ϕ sampled inde-
pendently and uniformly at random from S∗. Let s be an estimation of |S∗| such that |s− |S∗|| ≤

|S∗|
kc·n40A0·γ/ϕ

. Then CountChildren(G, κ, S̃∗, s) runs in time n1/2+O(γ/ϕ) ·
(
k·logn
γ·ϕh

)O(1)
and with

probability at least 1− n−97 returns r.

Proof. Let A ∈ Rκ×|S∗| be a matrix whose columns are fκx for all x ∈ S∗. Note that r =
children(S∗) ≤ 1

β since for every S ∈ children(S∗), |S| ≥ β · |S∗|. Recall that D = D0
β4·ϕ2 .

Thus we have r ≤ D. Let δ = 13 ·D · γ1/4. By Definition 6, γ
β30 and γ

ϕ20 are sufficiently small.
Thus we have δ ≤ 0.01, hence, by Lemma 17 we have

νr+1

(
AAT

)
≤ 5 ·D · γ1/4 ≤ δ

and
νr
(
AAT

)
≥ 1− 13 ·D · γ1/4 = 1− δ

Therefore, by Definition 21, we have set S∗ is δ-close to r-clusterable. Let ξ = 1
100 and

c′ be the constant from Lemma 39. Let Ã ∈ Rκ×s̃ be a matrix whose columns are fκx for
x ∈ S̃∗ and let Υ̃ = ÃT Ã. Therefore, by choice of s∗, s̃ for large enough constant c we have

s̃ ≥ kc · n80A0· γϕ ≥ kc
′ ·n80A0·

γ
ϕ

ξ2
and |s− |S∗|| ≤ |S∗|

kc· n40A0·γ/ϕ
≤ |S∗|·ξ

kc′ ·n40A0·γ/ϕ
. Therefore, by Lemma

39 with probabaility at least 1− n−100 we have:

νr

(
s∗

s̃
· Υ̃
)
≥ 1− (δ + ξ) (201)

and

νr+1

(
s∗

s̃
· Υ̃
)
≤ (δ + ξ) (202)

Note that Υ̃ = ÃT Ã where Ã ∈ Rκ×s̃ is a matrix whose columns are fκx for x ∈ S̃∗. Therefore,
for any z1, z2 ∈ S̃∗ we have Υ̃(z1, z2) =

〈
fκz1 , f

κ
z2

〉
. Also note that as per line (2) of Algorithm 11,

89



Υ̂ ∈ Rs̃×s̃ is a matrix such that for any z1, z2 ∈ S̃∗ we have Υ̂(z1, z2) =
〈
fκz1 , f

κ
z2

〉
apx

. Therefore,

by Therorem 8 with probabaility at least 1− n2 · n−100 we have

||Υ̂− Υ̃||2 ≤ ||Υ̂− Υ̃||F =

√√√√ ∑
z1,z2∈S̃∗

(〈
fκz1 , f

κ
z2

〉
apx
−
〈
fκz1 , f

κ
z2

〉)2
≤ s̃ · ξ

n

Thus since s ≤ 2 · |S∗| ≤ 2 · n we have∣∣∣∣∣∣(s
s̃
· Υ̂
)
−
(s
s̃
· Υ̃
)∣∣∣∣∣∣

2
≤ s

s̃
· s̃ · ξ

n
≤ 2 · ξ (203)

Therefore, by Weyl’s inequality (Lemma 16) and choice of H = s
s̃ · Υ̃ and P =

(
s
s̃ · Υ̂

)
−(

s
s̃ · Υ̃

)
we have

νr

(s
s̃
· Υ̂
)
≥ νr

(s
s̃
· Υ̃
)
−
∣∣∣∣∣∣(s

s̃
· Υ̂
)
−
(s
s̃
· Υ̃
)∣∣∣∣∣∣

2

≥ 1− (δ + ξ)− (2 · ξ) By (201), (203)

≥ 0.9 As ξ =
1

100
and δ ≤ 1

100

Also by Weyls inequality (Lemma 16) we have

νr+1

(s
s̃
· Υ̂
)
≤ νr+1

(s
s̃
· Υ̃
)

+
∣∣∣∣∣∣(s

s̃
· Υ̂
)

+
(s
s̃
· Υ̃
)∣∣∣∣∣∣

2

≥ (δ + ξ) + (2 · ξ) By (202), (203)

≤ 0.1 As ξ =
1

100
and δ ≤ 1

100

Therefore, with probabaility at least 1 − n2 · n−100 − n−100 we have νr

(
s
s̃ · Υ̂

)
≥ 0.9 and

νr+1

(
s∗

s̃ · Υ̂
)
≤ 0.1. Thus as per line (3) of Algorithm 11, with probabaility at least 1 − n−97

it returns r.
Now, we bound the running time of CountChildren (Algorithm 11). Line 2 computes

s̃2 dot products. As per Remark 6, this is done by calling SpectralDotProductOracle
with ξ = 0.01. With this choice of ξ, for x, y ∈ S̃∗, by Theorem 8, the time taken to compute〈
fκx , f

κ
y

〉
apx

is at most tx,y ≤ n1/2+O(γ/ϕ) ·
(
k·logn
γ·ϕh

)O(1)
.

So, the total time taken by line 2 is at most

s̃2 max
x,y∈S̃∗

tx,y ≤ k2c · n160A0γ/ϕ · max
x,y∈S̃∗

tx,y ≤ n1/2+O(γ/ϕ) ·
(
k · log n

γ · ϕh

)O(1)

.

Line 3 computes the eigenvalues of Υ̂ which takes time at most s̃3. So, the overall running

time is dominated by line 2 which is at most n1/2+O(γ/ϕ) ·
(
k·logn
γ·ϕh

)O(1)

F Counting the Number of Clusters

Let G = (V,E) be a d-regular graph. The main result of this section is Lemma 28 that shows
we can count the number of clusters at every level with high probability.
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Lemma 28. Let k ∈ N and let γ > 0 be a sufficiently small constant. There exists an algorithm
which on input a (k, γ)-hierarchically clusterable graph G (Definition 6) and a parameter h ≤
H (where the associated hierarchical clustering is denoted P = (P0, . . . ,Ph)) runs in time

(dn)1/2+Oβ,ϕ(γ) ·
(
k·logn
γ

)O(1)
and computes a number κ where κ = |Ph| holds with probability at

least 1− n−100.

To prove lemma 28 we first show Theorem 10. This is a modification of Theorem 1 of
[CKK+18], and the goal of this section is to prove guarantees of Theorem 10 as stated below.

Definition 25 (Graph clusterability). Let G = (V,E) be a d-regular graph. We say that G is
(k, χin)-clusterable if V can be partitioned into S1, . . . , S` for some ` ≤ k such that for all i ∈ [`],
χ2(Si) ≥ χin (Definition 13). Graph G is defined to be (k, ϕout, τ)-unclusterable if V contains

k+ 1 pairwise disjoint subsets S1, . . . , Sk+1 such that for all i ∈ [k+ 1], vol(Si) ≥ τ · vol(V )
k+1 , and

φGout(Si) ≤ ϕout.

Theorem 10. Suppose ϕout

χin
< 10−3. For every graph G, integer k ≥ 1, and τ ∈ (0, 1),

1. If G is (k, χin)-clusterable (YES case), then PartitionTest(G, k, χin, ϕout, τ) accepts
with probability at least 1− n−100.

2. If G is (k, ϕout, τ)-unclusterable (NO case), then PartitionTest(G, k, χin, ϕout, τ) rejects
with probability at least 1− n−100.

The algorithm PartitionTest(G, k, χin, ϕout, τ) runs in time (dn)1/2+O(ϕout/χin) ·
(
k·logn
χin·τ

)O(1)
.

Algorithm PartitionTest calls the procedure Estimate given by Algorithm 12, compares
the value returned with a threshold, and then decides whether to accept or reject.

Algorithm 12 Estimate(G, k, s, t, σ,R)

1: Sample s vertices from V independently and uniformly at random and let S be the multiset
of sampled vertices.

2: r = 192 · s ·
√
d · n.

3: for each sample a ∈ S do
4: if `22-norm tester(G, a, σ, r) rejects then return ∞. . High collision probability

5: for Each sample a ∈ S do
6: Run 2R random walks of length t starting from a. Let qa and q′a be the empirical

distribution of running R random walks started at a.

7: Let Q and Q′ be matrices whose columns are
{

qa√
d

: a ∈ S
}

and
{

q′a√
d

: a ∈ S
}

respectively.

8: Let G := 1
2 ·
(
Q>Q′ +Q′>Q

)
9: Return νk+1 (G).
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Algorithm 13 PartitionTest(G, k, χin, ϕout, τ) . Need: ϕout

χin
< 10−3

1: s := 1600·(k+1)2·log(12(k+1))·log(dn)
τ .

2: c := 10
χin

3: t := c · log(n · d)
4: σ := 192·s·k

n·d .

5: ∆thres := 1
2 ·

8(k+1) log(12(k+1))
τ · (n · d)−1−120·c·ϕout .

6: ∆err = 1
3 ·

8(k+1) log(12(k+1))
τ · (n · d)−1−120·c·ϕout

7: R := max
(

100·s2σ1/2

∆err
, 200·s4σ3/2

∆2
err

)
.

8: if Estimate(G, k, s, t, σ,R) ≤ ∆thres then
9: Accept G.

10: else
11: Reject G.

Recall that with the graph G we associated a random walk, and let M be the transition
matrix of that random walk. For a vertex a of G, denote by pta = M t1a the probability
distribution of of a t step random walk starting from a. For any vertex b, the fraction of the
random walks ending in b is taken as an estimate of pta(b) = 1>b M

t1a, the probability that the
t-step random walk started from a ends in b. However, for this estimate to have sufficiently

small variance, the quantity
‖pta‖22
d needs to be small enough. To check this, Estimate uses the

procedure `22-norm tester, whose guarantees are formally specified in the following lemma.

Lemma 44 ([CKK+18]). Let G = (V,E). Let a ∈ V , σ > 0, 0 < δ < 1, and R ≥ 16
√
d·n
δ . Let

t ≥ 1, and pta be the probability distribution of the endpoints of a t-step random walk starting
from a. There exists an algorithm, denoted by `22-norm tester(G, a, σ,R), that outputs accept

if
‖pta‖22
d ≤ σ

4 , and outputs reject if
‖pta‖22
d > σ, with probability at least 1− δ. The running time

of the tester is O(R · t).

Definition 26. We say that a vertex a ∈ V , is (σ, t)-good if
‖pta‖22
d ≤ σ.

We first claim that for all multisets S containing only (σ, t)-good vertices, with a good
probability over the R random walks, the quantity G that Algorithm 12 returns is a good
approximation to 1

d · (M
tS)>(M tS) in Frobenius norm.

Lemma 45 ([CKK+18]). Let G = (V,E) be a graph. Let 0 < σ ≤ 1, t > 0, µerr > 0,
k be an integer, and let S be a multiset of s vertices, all whose elements are (σ, t)-good. Let

R = max
(

100·s2·σ1/2

µerr
, 200·s4·σ3/2

µ2err

)
. For each a ∈ S and each b ∈ VG, let qa(b) and q′a(b) be random

variables which denote the fraction out of the R random walks starting from a, which end in
b. Let Q and Q′ be matrices whose columns are (D−

1
2 qa)a∈S and (D−

1
2 q′a)a∈S respectively. Let

G = 1
2

(
Q>Q′ +Q′>Q

)
. Then with probability at least 49/50,∣∣∣∣νk+1(G)− νk+1

(
1

d
· (M tS)T (M tS)

)∣∣∣∣ ≤ µerr
We now prove that Algorithm 13 indeed outputs a YES with good probability on a YES

instance. For this, we need the following lemma.

Lemma 46. For all α ∈ (0, 1), and all G = (V,E) which is (k, χin)-clusterable (Definition
25), there exists V ′ ⊆ V with |V ′| ≥ (1 − α)n such that for any t ≥ logn

χin
, every x ∈ V ′ is(

2k
α·d·n , t

)
-good.
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Proof. Recall that we say that vertex x is (σ, t)-good if
‖ptx‖22
d ≤ σ. We have ptx = M t1x

Recall that 1− λ1
2 ≥ · · · ≥ 1 − λn

2 , are eigenvalues of M , and u1, . . . , un are the corresponding
orthonormal eigenvectors. We write 1x in the eigenbasis of M as 1x =

∑n
i=1 βi(x) · ui where

βi(x) = 1Txui = ui(x). Therefore we get,

||ptx||22 = ||M t1x||22

=

n∑
i=1

βi(x)2

(
1− λi

2

)2t

=
k∑
i=1

βi(x)2

(
1− λi

2

)2t

+
n∑

i=k+1

βi(x)2

(
1− λi

2

)2t

≤
k∑
i=1

βi(x)2 +

(
1− λk+1

2

)2t n∑
i=k+1

βi(x)2

≤
k∑
i=1

βi(x)2 +
(

1− χin

4

)2t

The last inequality follows by an application of Cheeger’s inequality, and the fact that
∑n

i=k+1 βi(x)2 ≤
||ui||22 ≤ 1. We now bound h(x) :=

∑k
i=1 βi(x)2. Observe that

∑
x∈V

h(x) =
k∑
i=1

∑
x∈V

ui(x)2 =
k∑
i=1

||ui||22 =
k

n

Thus by Markov’s inequality there exists a set V ′ ⊆ V with |V ′| ≥ (1− α)|V | such that for

any x ∈ V ′, h(x) ≤ 1
α ·

k
n . Thus if t ≥ log(n)

χin
for any x ∈ V ′ we have

||ptx||22 ≤
k

α · n
+
(

1− χin

2

)2t
≤ 2k

α · n
,

therefore every x ∈ V ′ is
(

2k
α·d·n , t

)
-good.

Lemma 47 ([CKK+18]). Let ϕin > 0, integer k ≥ 1, and G = (VG, EG) be a (k, ϕin)-clusterable
graph (Definition 25). Let L be its normalized Laplacian matrix, and M be the transition matrix
of the associated random walk. Let S be a multiset of s vertices of G. Then

νk+1

(
1

d
· (M tS)T (M tS)

)
≤ s ·

(
1− λk+1

2

)2t

,

where λk+1 is the (k + 1)-st smallest eigenvalue of L.

Theorem 11. Let χin > 0, and integer k ≥ 1. Then for every (k, χin)-clusterable graph
G = (V,E) (Definition 25), Algorithm 13 accepts G with probability at least 5

6 .

Proof. If Algorithm 13 outputs a NO one of the following events must happen.

• E1: Some vertex in S is not (σ4 , t)-good.

• E2: All vertices in S are (σ4 , t)-good, but `22-norm tester fails on some vertex.

• E3: All vertices in S are (σ4 , t)-good, and `22-norm tester succeeds on all vertices, but
|νk+1(G)− νk+1

(
1
d · (M

tS)T (M tS)
)
| > ∆err.
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If none of the above happen then Algorithm 12 returns νk+1(G) ≤ νk+1

(
1
d · (M

tS)T (M tS)
)

+
∆err. Note that

νk+1(G)

≤ νk+1

(
1

d
· (M tS)T (M tS)

)
+ ∆err

≤ s ·
(

1− λk+1

2

)2t

+ ∆err By Lemma 47

≤ s ·
(

1− χin
2

)2t
+ ∆err By Cheeger bound, λk+1 ≥ min

Si
χ2(Si) ≥ χin

≤ s · exp (−t · χin) + ∆err

= s · exp (−c · log(n · d) · χin) + ∆err By choice of t = c · log(n · d)

=
1600 · (k + 1)2 · log (12(k + 1)) · log(n · d)

τ
· (n · d)−c·χin + ∆err By choice of s

≤ 1

10
· 8(k + 1) log(12(k + 1))

τ
· (n · d)2−c·χin + ∆err As k + 1 ≤ n · d, and 2 · 103 log(n · d) ≤ n · d

≤ 1

10
· 8(k + 1) log(12(k + 1))

τ
· (n · d)−1−c·ϕout + ∆err As

ϕout
χin

<
1

1000

≤ ∆thres By choice of ∆thres and ∆err

Therefore, if none of the events above happen, Algorithm 13 accepts G.
Now we bound the probability of the events. Apply Lemma 46 with α = 1

24·s . Then by the

union bound, with probability at least 1− α = 1− 1
24 all the vertices in S are

(
48·s·k
d·n , t

)
-good,

that is, (σ4 , t)-good, where σ = 192·s·k
d·n , as chosen in Algorithm 12. Thus, Pr[E1] ≤ 1

24 . Given
that E1 doesn’t happen, by Lemma 26, on any sample, `22-norm tester fails with probability

at most 16
√
d·n
r < 1

12s for r = 192 · s ·
√
d · n, as chosen in Algorithm 12. Thus, with probability

at least 1 − 1
12 , `22-norm tester succeeds on all the sampled vertices, which implies Pr[E2] ≤

1
12 . Given that both E1 and E2 don’t happen, by Lemma 45, with probability at least 49

50 ,
Algorithm 12 returns a value that is at most ∆err away from νk+1(G) ≤ νk+1

(
1
d · (M

tS)T (M tS)
)
.

Thus, Pr[E3] ≤ 1
50 . By the union bound, the probability that Algorithm 13 rejects is at most

1
24 + 1

12 + 1
50 <

1
6 .

Theorem 12 ([CKK+18]). Let ϕout > 0, τ ∈ (0, 1), and integer k ≥ 1. Then for every
(k, ϕout, τ)-unclusterable graph G = (V,E) (Definition 25) Algorithm 13 rejects G with proba-
bility at least 4

7 .

Now we are set to prove Theorem 10.

Theorem 10. Suppose ϕout

χin
< 10−3. For every graph G, integer k ≥ 1, and τ ∈ (0, 1),

1. If G is (k, χin)-clusterable (YES case), then PartitionTest(G, k, χin, ϕout, τ) accepts
with probability at least 1− n−100.

2. If G is (k, ϕout, τ)-unclusterable (NO case), then PartitionTest(G, k, χin, ϕout, τ) rejects
with probability at least 1− n−100.

The algorithm PartitionTest(G, k, χin, ϕout, τ) runs in time (dn)1/2+O(ϕout/χin) ·
(
k·logn
χin·τ

)O(1)
.

Proof. The correctness of the algorithm is guaranteed by Theorem 11 and Theorem 12. Since
these theorems give correctness probability that is a constant larger than 1/2, it can be boosted
up to 2/3 using standard techniques (majority of the answers of O(log n) independent runs). It
remains to analyze the query complexity. For each of the s sampled vertices, we run `22-norm
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tester once, followed by R random walks of t steps each. Each call to the `22-norm tester
takes O(rt) = O(st

√
n · d) queries, as guaranteed by Lemma 44. The random walks from

each vertex take O(Rt) time. Thus, the overall query complexity is O(srt + sRt + s
√
n · d).

Substituting the values of s, r, R, and t as defined in Algorithm 13, we get that its runtime is

(dn)1/2+O(ϕout/χin) ·
(
k·logn
χin·τ

)O(1)
.

Now we are ready to prove Lemma 28.

Lemma 28. Let k ∈ N and let γ > 0 be a sufficiently small constant. There exists an algorithm
which on input a (k, γ)-hierarchically clusterable graph G (Definition 6) and a parameter h ≤
H (where the associated hierarchical clustering is denoted P = (P0, . . . ,Ph)) runs in time

(dn)1/2+Oβ,ϕ(γ) ·
(
k·logn
γ

)O(1)
and computes a number κ where κ = |Ph| holds with probability at

least 1− n−100.

Proof. Let Ph denote the clustering at level h in the tree representation of (Ph)0≤h≤H . There-
fore, by Definition 6 for any cluster S ∈ Ph we have φGin(S) ≥ ϕh. Note that by Lemma 3 for

any cluster S ∈ Ph we have χ2(S) ≥ β3·ϕ2

300 · φ
G
in(S) ≥ β3·ϕ2

300 · ϕh. We define χin = β3·ϕ2

300 · ϕh.
Note that by Definition 25 we have G is (κ, χin)-clusterable.

Also note that by Definition 6 for any cluster S ∈ Ph we have φGout(S) ≤ O(ϕh−1). Note

that by Proposition 1 we have minS∈Ph |S| ≥ n ·βh thus for any S 6= S′ ∈ PH we have |S||S′| ≤ β
h.

We define D = βh and ϕout = D0 · ϕh−1 where D0 is a large enough constant. Therefore, by
Definition 25 G is (κ− 1, ϕout, τ)-unclusterable. Note that

ϕout

χin
≤ D0ϕh−1

β3·ϕ2

300 · ϕh
By Lemma 3 and Definition 6

=
D0 · γ
β3·ϕ2

300

By Definition 6, ϕh−1 = γ · ϕh

≤ 1

1000
By Definition 6,

γ

β30
and

γ

ϕ20
is sufficiently small

Therefore, we have G is (κ, χin)-clusterable and (κ − 1, ϕout, τ)-unclusterable. Thus by
Theorem 10 with probability at least 1 − n−100 algorithm PartitionTest(G, k, χin, ϕout, τ)
accepts G for all k ≥ κ and rejects G for all k ≤ κ− 1. Thus to count the number of clusters it
suffices to find the smallest k such that PartitionTest(G, k, χin, ϕout, τ) accepts G. Note that

by Theorem 10 algorithm PartitionTest runs in time (dn)1/2+O(ϕout/χin) ·
(
k·logn
χin·τ

)O(1)
where

τ = βh, χin = ϕh
β3·ϕ2
300

and ϕout

χin
≤ D0·γ

β3·ϕ2
300

≤ Oβ,ϕ(γ). Therefore, the runtime of our algorithm is

(dn)1/2+Oβ,ϕ(γ) ·
(
k·logn
γ

)O(1)
.

G Quality of Subsampled and Approximated Cylinders

Claim 4. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). For a large
constant D0 > 1, let D = D0

β4·ϕ2 , and let ξ ≤ 10−3, h ∈ [H], S∗ ∈ Ph−1, and Q∗ be a set that is

D-hierarchically-close to S∗ (Definition 19). Then we have ||Q∗| − |S∗|| ≤ |S∗|
2·103

.

Proof. Note that Q∗ is D-hierarchically-close to S∗. Therefore, by Definition 19, we have
|S∗ \Q∗| ≤ D ·ϕh∗−1 · |S∗| and by Lemma 19 we have |Q∗ \S∗| ≤ 2 ·D ·ϕh∗−1 · |S∗|. Therefore,
we have
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||Q∗| − |S∗|| ≤ 3 ·D · ϕh−1 · |S∗|

≤ 3 ·
(

D0

β4 · ϕ2

)
· γ · |S∗| As D =

D0

β4 · ϕ2
and ϕh−1 ≤ ϕH−1 = γ · ϕ ≤ γ

≤ |S∗|
2 · 103

By Definition 6,
γ

β30
and

γ

ϕ20
is sufficiently small

(204)

Claim 1. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). For some
large constant D0 and let D = D0

β4·ϕ2 , ξ ≤ 10−3, h ∈ [H], S∗ ∈ Ph−1, and Q∗ be a set that is D-

hierarchically-close to S∗ (Definition 19). Let s be an estimation of |Q∗| such that |s− |Q∗|| ≤
|Q∗|·ξ3

kc·n280A0·γ/ϕ
where A0, c > 1 are large enough constants. Then we have |s− |S∗|| ≤ |S

∗|
103

.

Proof. Note that |s− |Q∗|| ≤ |Q∗|·ξ3
kc·n280A0·γ/ϕ

. Therefore, we have

|s− |S∗|| ≤ |s− |Q∗||+ ||Q∗| − |S∗|| By triangle inequality

≤ |Q∗| · ξ3

kc · n280A0·γ/ϕ
+
|S∗|

2 · 103
By Claim 4

≤ 2 · |S∗| · ξ3

kc · n280A0·γ/ϕ
+
|S∗|

2 · 103
By Claim 4, |Q∗| ≤ 2 · |S∗|

≤ |S
∗|

103
As ξ ≤ 1

103

Lemma 26. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Let
h ∈ [H], and suppose (P i)h−1

i=0 is a D-approximation of (P i)h−1
i=0 (Definition 7). Let Ṽ be a

set sampled independently and uniformly at ranodm from V . Then for every S∗ ∈ P h−1 with
probability at least 1− n−100 we have

1. |Ṽ ∩ S∗| ≥ max
(
kc·n560A0·γ/ϕ

ξ6
, 107·logn

β

)
2.
∣∣∣|S∗| − n·|Ṽ ∩S∗|

|Ṽ |

∣∣∣ ≤ |S∗|·ξ3
kc·n280A0·γ/ϕ

,

where, A0, c > 1 are constants, ξ = 10−3, D = D0
β4·ϕ2 , D0, c

′ > 1 are large constants, and

|Ṽ | ≥ kc
′ ·n560A0·γ/ϕ·logn

ξ6
.

Proof. Let S∗ ∈ Ph−1 and S∗ = σ(S∗) be the corresponding set in P h−1. For 1 ≤ i ≤ |Ṽ |,
let Xi be a random variable which is 1 if the i-th sampled vertex is in S∗, and 0 otherwise.

Thus E[Xi] = |S∗|
n . Observe that |Ṽ ∩ S∗| is a random variable defined as

∑|Ṽ |
i=1Xi, where its

expectation is given by

|Ṽ ∩ S∗| = |Ṽ | · |S
∗|
n

≥ |Ṽ | · 0.99 · |S∗|
n

By Claim 4

≥ |Ṽ | · 0.99 · βh−1 · n
n

By Definition 6, and as S∗ ∈ Ph−1

≥ max

(
103 · k2c · n560A0·γ/ϕ · log n

ξ6
,
108 · log n

β

)
,
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the last inequality holds by choice of |Ṽ | ≥ kc
′ ·n560A0·γ/ϕ·logn

ξ6
≥ max

(
103·k2c·n560A0·γ/ϕ·logn

ξ6·βh−1 , 108·logn
βh

)
,

where, c′ is a large enough constant such that kc
′ ≥ 108·k2c

βH
≥ 108·k2c

βh
. Therefore, by Chernoff

bound,

Pr

[∣∣∣|Ṽ ∩ S∗|
∣∣∣ < max

(
kc · n560A0·γ/ϕ

ξ6
,
107 · log n

β

)]
≤ exp

(
− 108 · log n

2 · 0.81 · β

)
≤ n−100,

Thus, with probability at least 1− n−100 we have

|Ṽ ∩ S∗| ≥ max

(
kc · n560A0·γ/ϕ

ξ6
,
107 · log n

β

)

Also, by Chernoff bound,

Pr

[∣∣∣∣|Ṽ ∩ S∗| − |Ṽ | · |S
∗|
n

∣∣∣∣ > ξ3

kc · n280A0·γ/ϕ
· |Ṽ | · |S

∗|
n

]
≤ exp

(
−1

3
·
(

ξ3

kc · n280A0·γ/ϕ

)2

· 103 · k2c · n560A0·γ/ϕ · log n

ξ6

)
≤ n−100

Thus, with probability at least 1− n−100 we have∣∣∣∣∣|S∗| − n · |Ṽ ∩ S∗|
|Ṽ |

∣∣∣∣∣ ≤ |S∗| · ξ3

kc · n280A0·γ/ϕ

Lemma 27. Let G = (V,E) be a (k, γ)-hierarchically-clusterable graph (Definition 6). Let
D = D0

β4·ϕ2 , where D0 is a large constant. Let h ∈ [H], S∗ ∈ Ph−1 and S∗ be a set that is

D-hierarchically-close to S∗ ∈ Ph−1 (Definition 19). Let S̃∗ be a set of size |S̃∗| ≥ 107·logn
β

sampled independently and uniformly at ranodm from S∗. Let B ⊆ S∗ and B̃ = S̃∗ ∩ B. If
|B̃| ≥ 0.9 · β · |S̃∗|, then with probability at least 1− n−100 we have

|B| ≥ 0.85 · β · |S∗|

Proof. Suppose |B| = δ|S∗| and for convenience write α = 0.9β. We will show that with
probability at least 1 − n−100, δ > 0.99α. We do this in two steps. First, we show that
with high probability δ = 0.99α cannot hold. Thereafter, we show that with high probability
δ < 0.99α cannot hold either. Consider case 1 above where δ = 0.99α. Let X = |B̃| = |S̃∗ ∩ B|.
Note that E[X] = 0.99α|S̃∗|. By a Chernoff Bound,

Pr(X ≥ α|S̃∗|) = Pr(X−0.99α|S̃∗| ≥ 0.01α|S̃∗|) = Pr(X−E[X] ≥ 0.01α|S̃∗|) ≤ exp(−0.012·0.99α|S̃∗|) ≤ n−100.

Next, we rule out case 2 where δ < 0.99α. We do this via a coupling argument. Details
follow. We define random variables X1, X2, . . . , Xs where each Xi ∼ Ber(δ) is an indicator
which takes on the value 1 if the i-th vertex belongs to B̃. We also define another (coupled)
sequence of Bernoulli random variables Y1, Y2, . . . , Ys where

• If Xi = 1, Yi = 1.

• If Xi = 0, then Yi = 1 with probability 0.99α−δ
1−δ .
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Note that each Yi ∼ Ber(0.99α) and that all the Yi’s are independent. Let X =
∑
Xi and

Y =
∑
Yi. Further, by definition of X and Y , for each t ∈ N, it holds that Pr(X ≥ t) ≤

Pr(Y ≥ t). And this holds in particular for t = α|S̃∗|. This means Pr(X ≥ α|S̃∗|) ≤ n−100 as
desired. Putting case 1 and case 2 together, this means that with probability at least 1−n−100,
it holds that

|B| > 0.99α|S∗| ≥ 0.99 · 0.9β · |S∗|.

By Claim 4, this gives |B| ≥ 0.85 · β · |S∗| as S∗ is D-close to S∗.
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