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Abstract

The Discrete Fourier Transform (DFT) is a fundamental computational primitive, and
the fastest known algorithm for computing the DFT is the FFT (Fast Fourier Transform)
algorithm. One remarkable feature of FFT is the fact that its runtime depends only on the
size N of the input vector, but not on the dimensionality of the input domain: FFT runs in
time O(N logN) irrespective of whether the DFT in question is on ZN or Zd

n for some d > 1,
where N = nd.

The state of the art for Sparse FFT, i.e. the problem of computing the DFT of a signal
that has at most k nonzeros in Fourier domain, is very different: all current techniques for
sublinear time computation of Sparse FFT incur an exponential dependence on the dimension
d in the runtime. In this paper we give the first algorithm that computes the DFT of a k-
sparse signal in time poly(k, logN) in any dimension d, avoiding the curse of dimensionality
inherent in all previously known techniques. Our main tool is a new class of filters that
we refer to as adaptive aliasing filters: these filters allow isolating frequencies of a k-Fourier
sparse signal using O(k) samples in time domain and O(k logN) runtime per frequency, in
any dimension d.

We also investigate natural average case models of the input signal: (1) worst case
support in Fourier domain with randomized coefficients and (2) random locations in Fourier

domain with worst case coefficients. Our techniques lead to an Õ(k2) time algorithm for the

former and an Õ(k) time algorithm for the latter.
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1 Introduction

The Discrete Fourier Transform (DFT) is one of the most widely used computational primi-
tives in modern computing, with numerous applications in data analysis, signal processing, and
machine learning. The fastest algorithm for computing the DFT is the Fast Fourier Transform
(FFT) algorithm of Cooley and Tukey, which has been recognized as one of the 10 most impor-
tant algorithms of the 20th century [Cip00]. The FFT algorithm is very efficient: it computes
the Discrete Fourier Transform of a length N complex-valued signal in time O(N logN). This
applies to vectors in any dimension: FFT works in O(N logN) time irrespective of whether the
DFT is on the line, on a

√
N ×

√
N grid, or is in fact the Hadamard transform on {0, 1}d, with

d = log2N .
In any applications of the Discrete Fourier Transform, the input signal x ∈ CN often satisfies

sparsity or approximate sparsity constraints: the Fourier transform x̂ of x has a small number of
coefficients k or is close to a signal with a small number of coefficients (e.g., this phenomenon is
the motivation for compression schemes such as JPEG and MPEG). This has motivated a rich
line of work on the Sparse FFT problem: given access to a signal x ∈ CN in time domain that
is sparse in Fourier domain, compute the k nonzero coefficients in sublinear (i.e., o(N)) time.

Very efficient algorithms for the Sparse FFT problem have been developed in the litera-
ture [GL89, KM91, Man92, GGI+02, AGS03, GMS05, Iwe10a, Aka10, HIKP12b, HIKP12a,
LWC12, BCG+12, HAKI12, PR13, HKPV13, IKP14, IK14, Kap16, PS15, CKPS16, Kap17].
The state-of-the-art approach, due to [HIKP12a], yields an O(k logN) runtime algorithm for
the following exact k-sparse Fourier transform problem: given access to an input signal of length
N whose Fourier transform has at most k nonzeros, output the nonzero coefficients and their
values. This highly efficient algorithm comes with a caveat, however: the runtime of O(k logN)
only holds for the Fourier transform on the line, namely, ZN . The algorithm naturally extends
to higher dimensions, namely, Zdn, where N = nd, but with an exponential loss in runtime;
the runtime becomes O(k logdN) as opposed to O(k logN). Interestingly, the other extreme of
d = log2N , i.e., the Hadamard transform, has been known to admit an O(k logN) algorithm
since the seminal work of Goldreich and Levin [GL89]. However, all intermediate values of d
exhibit a curse of dimensionality. This is in sharp contrast with FFT itself, which runs in
time O(N logN), where N = nd is the length of the input signal, in any dimension d. The
focus of our work is to design sublinear time algorithms for Sparse FFT that avoid this curse of
dimensionality. Our main point of attention is the Sparse FFT problem:

Input: access to x : [n]d → C,

integer k ≥ 1 such that |supp x̂| ≤ k
Output: nonzero elements of x̂ and their coefficients

(1)

Our main result is the first sublinear algorithm for exact Sparse FFT (1), as stated in the
following theorem.

Theorem 1 (Main result, informal version of Theorem 3 in Section 2.1). For any integer n that
is a power of two and any positive integer d, there exists a deterministic algorithm that, given
access to a signal x ∈ Cnd with ‖x̂‖0 ≤ k, recovers x̂ in time poly(k, logN).

We note that this is the first sublinear time Sparse FFT algorithm that avoids an exponential
dependence on the dimension d. One should note that the runtime still depends on d, since
log2N = d log2 n is lower bounded by d, but this dependence is polynomial as opposed to
exponential.
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1.1 Significance of our results and related work

Significance of our results. The state of the art in high dimensional Sparse Fourier Trans-
forms presents an interesting conundrum: algorithms with runtime O(k logN) are known for
d = 1 (Discrete Fourier Transform on the line, see [HIKP12a]) and d = log2N (the Hadamard
transform, see [GL89]), but for all intermediate values of d the runtime scales exponentially
in d. Given that FFT itself is dimension-insensitive, this strongly suggests that exciting new
algorithmic techniques can be developed for the high-dimensional version of the problem. Our
paper designs the first approach to high dimensional Sparse FFT that does not suffer from the
curse of dimensionality, and naturally leads to several exciting open problems that we hope will
spur further progress in this area.

In addition, we note that rather high-dimensional versions of the Fourier transform arise in
applications (e.g., 2D, 3D and 4D-NMR in medical imaging), and designing practical Sparse
FFT algorithms for this regime is an important problem. We hope that new techniques for
dimension-independent Sparse FFT will lead to progress in this direction as well.

Sample complexity of high-dimensional Sparse FFT. We note that, besides runtime,
another very important parameter of a Sparse FFT algorithm is sample complexity, i.e., the
number of samples that an algorithm needs to access in time domain in order to compute the
top few coefficients of the Fourier transform. The sample complexity of Sparse FFT, unlike
runtime, does not suffer from a curse of dimensionality. Indeed, there exist several algorithms
with Õ(N) runtime that can recover the top k coefficients of x̂ using only k poly(logN) accesses
in time domain, irrespective of the dimensionality of the problem. This can be achieved, for
example, using either results on the restricted isometry property (RIP) [CT06, RV08, Bou14,
CGV12, HR17], or using the filtering approach developed in the Sparse FFT literature, with
Õ(N) decoding time. Thus, the challenge is to achieve sublinear runtime without an exponential
dependence on the dimension.

We now outline existing approaches to Sparse FFT and explain why they fail to scale well
in high dimensions:

State-of-the-art approaches to Sparse FFT and their lack of scalability in high di-
mensions. The main idea behind many recently developed algorithms for the Sparse FFT
problem is the “hashing” approach inherited from sparse recovery with arbitrary linear mea-
surements. Given access to a signal x : [n]d → C, one designs linear measurements of x that
allow one to “hash” the nonzero positions of x̂ into a number of “buckets.” The number of
buckets B = bd is chosen to be a constant factor larger than the sparsity k to ensure that a large
constant fraction of the nonzero positions of x̂ are isolated in their buckets. Every isolated ele-
ment can be recovered and subtracted from x for future iterations of the same hashing scheme,
thereby ensuring convergence. The idea of hashing is implemented via filtering: one designs a
filter G : [n]d → C such that Ĝ approximates a “bucket,” i.e., Ĝ is close to 1 on an `∞ ball of
side length ≈ (N/B)1/d = n/b in dimension d. The content of the j-th ‘bucket’, for j ∈ [B], is
then

̂(x·−a ·G)j·n/b =
∑
f∈[n]d

x̂fe
2πfT a/n · Ĝj·n/b−f . (2)

Since Ĝ is essentially 1 on the `∞ ball around the center j · n/b of the ‘bucket’ and essentially
zero outside, (2) gives the algorithm time domain access to the restriction of x̂ to the “bucket,”
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i.e., the essential support of Ĝ, where a ∈ [n]d is the location in time domain at which the signal
is being accessed. A pseudorandom permutation of the frequency space ensures that such a
bucket is likely to contain just a single element of the support, which enables the algorithm to
recover at least a constant fraction of elements in a single round and perform iterative recovery.
Furthermore, if the (essential) support of G in time domain is small, one obtains an efficient
algorithm.

The difficulty that arises in using (2) in high dimensions is the fact that it is not known
how to ensure that Ĝ is close to 1 in an appropriately defined “bucket” while simultaneously
ensuring that |supp G| is small. For example, the filters constructed in [HIKP12a] ensure that
Ĝ is polynomially close to 1 in Fourier domain, but this comes at the expense of |supp G|
being larger than k (the ideal support size) by a factor of Θ(log n), and this effect is even more
pronounced in higher dimensions, resulting in a logd n loss in runtime. The other extreme would
be to choose G to be equal to 1 on an `∞ ball with k points around the origin, but in that case,
its Fourier transform Ĝ is the sinc function, which is only a constant factor approximation to the
indicator of the corresponding `∞ box in Fourier domain (i.e., the ideal “bucket”). In dimension
d, the approximation degrades to cd for some constant c ∈ (0, 1), leading to exponential loss in
runtime. Indeed, suppose that all elements of x̂ have roughly the same value. Then for a given
element f ∈ supp x̂, the expected contribution of other elements to the noise in the “bucket”
that f is hashed to is ||x̂||22/B, but the contribution of x̂f to its own bucket is (most of the
time) only cd of its value, and, hence, only an exponentially small fraction of coefficients can be
recovered in a given round of hashing. 1

Related work. In [CI17], the authors presented a deterministic Sparse Fourier transform algo-
rithm for the Hadamard transform, i.e., d = log2N , that runs in nearly linear time in the sparsity
parameter k, but it is not known how this extends to lower dimensions. In [Iwe10b, Iwe12] the
author gives a Õ(k2) time deterministic algorithm for the Sparse Fourier Transform, but the
algorithm only applies to a related but distinctly easier problem. Specifically, the problem con-
siders a continuous function on [0, 2π) whose Fourier transform is bandlimited and sparse. The
presented algorithm requires sampling the signal at arbitrary locations in [0, 2π). A natural ap-
proach is to emulate sampling off-grid (i.e., at arbitrary points in [0, 2π)) given discrete samples
that we have access to, which is achieved in [MZIC17] giving an Õ(k2) time deterministic algo-
rithm for one dimensional sparse FFT. But this is a challenging task in multi-dimensional setting
for several reasons. First, we are operating under the sparsity assumption alone, and no powerful
general interpolation techniques that work under the sparsity assumption alone are available, to
the best of our knowledge. Furthermore, even if the function were bandlimited, a natural ap-
proach to interpolation would involve some form of Taylor expansion or semi-equispaced Fourier
Transform, however, both approaches incur a logdN loss in dimension d. Indeed, similar ex-
ponential dependence on the dimensionality of the problem manifests itself in Fast Multipole
Methods [GR87b, BG97] and the Sparse FFT algorithms mentioned above. Finally, one should
also note that whereas the problem of computing the Fourier transform on a p × q grid with p
mutually prime with q is equivalent to a one-dimensional Fourier transform on Zpq, the standard
case of side lengths that are powers of two (for which we have the most efficient FFT algorithms)
does not admit such a reduction. Furthermore, such a reduction appears to be quite challenging

1In addition, the discussion above assumes the presence of an approximate pairwise hashing lemma for high
dimensions that does not lose an exponential factor in the dimension (it is known that such a lemma holds with
at most about a factor of 2d loss [IK14], but no dimension-independent version is available in the literature).
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in high dimensions for reasons outlined above, and even more so for highly oscillatory functions
that Sparse FFT algorithms need to handle.

2 Overview of our results and techniques

Prior works on Sparse FFT have primarily focused on efficiently implementing hashing-based
ideas developed in the extensive literature on sparse recovery using general linear measurements
(e.g., [GHI+13]), which meets with several difficulties. In particular, the presence of multiplica-
tive subgroups in Zdn has been a hurdle in analyzing Sparse FFT algorithms: while aliasing
filters have optimal performance from the point of view of the uncertainty principle, their ap-
plications have been limited due to the fact that frequencies that belong to the same subgroup
get hashed together if such filters are used, making it impossible to reason about isolation of
individual frequencies. At the same time, FFT itself owes much of its efficiency to the very same
multiplicative subgroups of Zdn, and a natural question is whether one can design a Sparse FFT
algorithm that operates on similar principles. This is precisely the approach that we take.

Adaptive aliasing filters. The main technical innovation that allows us to avoid exponential
dependence on the dimension and obtain Theorem 1 is a new family of filters for isolating a subset
of frequencies in Fourier domain in a sparse signal x̂ using few samples in time domain. We refer
to the family of filters as adaptive aliasing filters.

Definition 1 ((f , S)-isolating filter, informal version of Definition 21, see Section 4). Suppose
n is a power of two integer and S ⊆ [n]d for a positive integer d. Then, for any frequency f ∈ S,
a filter G : [n]d → C is called (f , S)-isolating if Ĝf = 1 and Ĝf ′ = 0 for every f ′ ∈ S \ {f}.

We explain the intuition behind the construction of the filter in Section 2.1 below and provide
the details later in Section 4.

The reason why an (f , S)-isolating filter G is useful lies in the fact that for every signal

x ∈ Cnd with supp x̂ ⊆ S we have, for all t ∈ [n]d∑
j∈[n]d

xjGt−j = (x ∗G)t =
1

N

∑
j∈[n]d

x̂j · Ĝj · e2πi j
T t
n =

1

N
x̂fe

2πi f
T t
n

Thus, the filter G enables access to the time domain representation of the restriction of x̂ to f
in time proportional to |supp G|, at any point t. Of course, this is only useful if the support
of G is small. The main technical lemma of our paper shows that for every support set S ⊆ x̂,
there exists an f ∈ S that can be isolated efficiently:

Lemma 1 (Informal version of Corollary 2 in Section 4). For every power of two n ≥ 1, positive
integer d, and set S ⊆ [n]d, there exists an f ∈ S and an (f , S)-isolating filter G such that
|supp G| ≤ |S|.

The proof of the lemma is given in Section 4.

Accessing the residual signal. Lemma 1 suggests a natural approach to the estimation
problem with Fourier measurements in high dimensions: iteratively construct an (f , S)-isolating
filter G, estimate f , remove f from S, and proceed. The hope is that we can essentially assume
that we are given access to F−1(x̂S\{f}) once we have estimated f . In general, if we have been
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able to estimate the values of x̂f for all f ∈ C with some C ⊆ S, then we would like to obtain
access to

xt −
∑
f∈C

x̂f · e2πifT t.

Note that we would need xt for t in the support of G at the next iteration, and this support
is generally a rather complicated set of size Ω(k), from which we need to subtract the inverse
Fourier transform of the signal estimated so far. This problem is the non-uniform Fourier
transform problem, and no subquadratic methods for subtraction are known even in dimension
d = 1 when the set in time domain that we want to compute the inverse Fourier transform on is
arbitrary. Even if the target set is an `∞-box, the best known algorithms for this problem run in
time Ω(k logd(1/ε)), where ε > 0 is the precision parameter of the computation—this reduces to
quadratic time even when d = Ω(log k/ log log k) and inverse polynomial in k precision is desired.
Thus, subtracting from time domain would result in at least cubic runtime in k. Instead, we
subtract the influence of the residual in frequency domain, which requires O(k) evaluations of
Ĝ (as we show, Ĝ can be evaluated at a cost of just O(logN)). Note that it is crucial here
that we peel off one coefficient at at time. Any improvements to this process, if they were to
achieve k2−Ω(1) runtime overall, would likely also imply improvements in the computation of
approximate non-uniform Fourier transform: given a k-sparse signal x̂ and a set T ⊆ [n]d with
|T | ≤ k, output y : [n]d → C such that ||(x − y)T ||22 ≤ ε||x||22. However, it seems plausible that
quadratic runtime in k is essentially optimal for the non-uniform Fourier transform problem:
specifically, that under natural complexity theoretic assumptions there exists no algorithm for the
ε-approximate non-uniform Fourier transform problem with runtime k2−Ω(1) when d = Ω(log k)
and ε < 1/kC for sufficiently large constant C. We note that current techniques do not provide
a subquadratic algorithm even for simple sets T such as the `∞ box with k points in dimension
d = Ω(log k/ log log k) (due to the k logd(1/ε) dependence mentioned above; a similar exponential
dependence on the dimension is present in Fast Multipole Methods [GR87a, BG]). For an
arbitrary set T no subquadratic algorithm is known even when d = 1.

Putting it together: estimation with Fourier measurements Combining the aforemen-
tioned ideas, we are able to develop a deterministic algorithm for the estimation problem with
Fourier measurements in high dimensions:

Input: access to x : [n]d → C,

subset S ⊆ [n]d such that supp x̂ ⊆ S
Output: x̂S

(3)

For the estimation problem (3) we obtain the following result.

Theorem 2 (Estimation guarantee, informal version of Theorem 8 in Section 5). Suppose n is

a power of two integer, d is a positive integer, and S ⊆ [n]d. Then, for any signal x ∈ Cnd with
supp x̂ ⊆ S, the procedure Estimate(x, S, n, d) (see Algorithm 2) recovers x̂. Moreover, the
sample complexity of this procedure is O(|S|2) and its runtime is O(|S|2 · logN). Furthermore,
the procedure Estimate is deterministic.

In the rest of this section, we give an overview of our techniques. Throughout the section,
we present our results for the one-dimensional setting, as this makes notation simpler. All our
results translate to the high-dimensional setting without any loss—see Section 4.2 for details.
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2.1 Recovery via adaptive aliasing filters

Our main theorem is the following, which presents an algorithm for problem (1) for worst-case
signals.

Theorem 3 (Sparse FFT for worst-case signals). For any power of two integer n and any

positive integer d and any signal x ∈ Cnd with ‖x̂‖0 = k, the procedure SparseFFT(x, n, d, k) in
Algorithm 4 recovers x̂. Moreover, the sample complexity of this procedure is O(k3 log2 k log2N)
and its runtime is O(k3 log2 k log2N).

The major difference between estimation and recovery (i.e., problem (3) vs. (1)) is the
fact in the latter problem, the set S of frequencies is unknown to us: the algorithm is only
given access to x and an upper bound on the sparsity of x̂. Since our (f, S)-separating filter is
adaptive, i.e., depends on S, this appears to present a challenge. However, we circumvent this
challenge by constructing a sequence of successive approximations to the set S. In dimension 1,
these approximations amount to reducing S modulo 2j for all j = 1, . . . , log2 n, and adaptively
probing to learn which of the residue classes are nonzero. As before, our approach extends
seamlessly to high dimensions by simply concatenating the d coordinates into a single vector.
Note that this is in sharp contrast to all previously known approaches, which are more efficient
in low dimensions, but incur an exponential loss overall. We would like to note that at a high
level one can view our filtering approach as a way to prune the FFT computation graph in a
way that suffices for recovery of a k-Fourier sparse vector.

We outline the main ideas in one-dimensional setting here to simplify the presentation (see
Section 4.2 for the high-dimensional version of the argument). Let N = n be the length of the
signal and d = 1 be the dimension for n a power of two. We define T full

n to be a full binary tree
of height log2 n and define a labelling scheme on the vertices as follows.

Definition 2. Suppose n is a power of two. Let T full
n be a full binary tree of height log2 n,

where for every j ∈ {0, 1, . . . , log2 n}, the nodes at level j (i.e., at distance j from the root) are
labeled with integers in [2j ]. For a node v ∈ T full

n , we let fv be its label. The label of the root

is froot = 0. The labelling of T fulln satisfies the condition that for every j ∈ [log2 n] and every v
at level j, the right and left children of v have labels fv and fv + 2j , respectively. Note that the
root of T full

n is at level 0, while the leaves are at level log2 n.

The tree captures the computation graph of FFT algorithm, where leaves correspond to
frequencies in [n] (given by the label), and for any j ∈ {0, 1, . . . , log2 n}, the nodes at level j
(i.e., at distance j from the root) correspond to congruence classes of frequencies modulo 2j , as
specified by the labelling (see Figure 1a).

Note that the full FFT algorithm starts from the root of T full
n and computes the congruence

classes of the Fourier transform of signal x at each level of this tree iteratively. Because it can
reuse the computations from each level for computing the next levels, the total runtime of FFT
is O(n log2 n).

In order to speed up the computation for sparse signals, we introduce the notion of a splitting
tree, which is nothing but the subtree of T full

n that contains the nonzero locations of x̂ together
with paths connecting them to the root. Given a set S ⊆ [n] (the support of x̂ in Fourier
domain), we define the splitting tree of the set S as follows:

Definition 3 (Splitting tree). Let n be a power of two. For every S ⊆ [n], the splitting tree
T = Tree(S, n) of a set S is a binary tree that is the subtree of T full

n that contains, for every
j ∈ [log2 n], all nodes v ∈ T full

n at level j such that {f ∈ S : f ≡ fv (mod 2j)} 6= ∅.
6
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(a) T full
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(b) A splitting tree of depth 3 with three leaves.
Set of leaves S = {2, 4, 5}.

Figure 1: An example of T fulln and a splitting tree with n = 8 and binary labelling.

An illustration of such a tree is given in Figure 1b. In order to recover the identities of the
elements in S, our algorithm performs an exploration of this tree. At every point, the algorithm
constructs a filter G that isolates frequencies in a given subtree and tests whether that subtree
contains a nonzero signal. In order to make this work, we need a construction of filters that
isolates the entire subtree as opposed to only one element, as Definition 1 does. Fortunately,
the actual (f, S)-isolating filters G constructed in Lemma 1 satisfy precisely this property. The
stronger isolation properties are captured by the following definition:

Definition 4 (Frequency cone of a leaf of T ). For every power of two n, subtree T of T full
n , and

vertex v ∈ T which is at level lT (v) from the root, define the frequency cone of v with respect to
T as

FrequencyConeT (v) :=
{
f ∈ [n] : f ≡ fv (mod 2lT (v))

}
.

Intuitively, the frequency cone of a node v in T captures all potential nonzeros of x̂ that
belong to the subtree of v in T (see Figure 2). Our adaptive filter construction lets us obtain
time domain access to the corresponding part of the frequency space:

Definition 5 ((v, T )-isolating filter). For every integer n, subtree T of T full
n , and leaf v of T , a

filter G ∈ Cn is called (v, T )-isolating if the following conditions hold:

• For all f ∈ FrequencyConeT (v), we have Ĝf = 1.

• For every f ′ ∈
⋃

u6=v
u: leaf of T

FrequencyConeT (u), we have Ĝf ′ = 0.

Note that for all signals x ∈ Cn with supp x̂ ⊆
⋃
u: leaf of T FrequencyConeT (u) and t ∈ [n],∑

j∈[n]

xjGt−j =
1

n

∑
f∈FrequencyConeT (v)

x̂fe
2πi ft

n .

Iterative tree exploration process leading to an algorithm with Õ(k3) runtime. Now
that we have defined the framework for our algorithm, we need to specify the order in which
the algorithm will be accessing the leaves of the tree in order to minimize runtime. This is
governed by the cost of constructing and using a (v, T )-isolating filter for various nodes v in T .
To quantify cost, we introduce the notion of a weight of a leaf in the tree.
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u

v

Partially recovered splitting tree

Frequency cone of v

Frequency cone of u

Figure 2: A partially recovered splitting tree (shown in bold). Frequency cones of u and v
correspond to the subtrees rooted at nodes u and v, respectively, which have not been discovered
yet.

Splitting tree T

v0

h

h0

log2 n

v

2h−h0 n/2h0

Support of (v, T )-isolating filter G

Figure 3: An instance of a (v, T )-isolating filter G, where the weight of leaf v is h and hence the
filter G satisfies |supp G| = 2wT (v) = 2h.

Definition 6 (Weight of a leaf). Suppose n is a power of two. Let T be a subtree of T full
n . Then

for any leaf v ∈ T , we define its weight wT (v) with respect to T to be the number of ancestors
of v in tree T with two children.

It turns out that the techniques from Lemma 1 also yield the following.

Lemma 2 (Informal version of Lemma 3 in Section 4). Suppose n is a power of two. Let
T be a subtree of T full

n . Then for any leaf v ∈ T , there exists a (v, T )-isolating filter G with
|supp G| ≤ 2wT (v) such that G and Ĝ can be evaluated at O(logN) cost per point.

Before describing the algorithm we give an example illustrating filter support in time domain.
Consider a complete binary tree T of height h� log2 n. Suppose that v0 is some vertex at level
h0 < h of this tree. Now we take the subtree rooted at v0 and add an appendage of length
log2 n− h to v0. The appendage is a path of log2 n− h nodes each of which has a single child.
This doesn’t change the weight of any of the leafs of the original tree because every node on
the appendage has exactly one child. One can see an example of such tree in Fig. 3. Suppose
that the leaf v is a leaf of the subtree rooted at v0, which is moved far from the root by the
appendage. In order to isolate v from the elements that are not in the subtree of v0 we need
a filter which is (n/2h0)-periodic in time domain and in order to isolate from the rest of the
elements in subtree of v0 the filter needs to sample the signal at a fine grid of length 2h−h0 . Note
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that the support of a (v, T )-isolating filter G is supp G =
{
i+ (n/2h0) · j; j ∈ [2h0 ], i ∈ [2h−h0 ]

}
.

In Fig. 3 we exhibit a (v, T )-isolating filter G which is constructed based on Lemma 3, where v
and T correspond to this instance of splitting tree.

Given Lemma 2, our algorithm is natural. We find the vertex v∗ = argminv∈TwT (v), which,
by Kraft’s inequality, satisfies wT (v∗) ≤ log2 k. We then define an auxiliary tree T ′ by appending
a left a and a right child b to v. Then for each of the children a, b, we, in turn, construct a filter
G that isolates them from the rest of T (i.e., from the frequency cones of other nodes in T ) and
check whether the corresponding restricted signals are nonzero. The latter is unfortunately a
nontrivial task, since the sparsity of these signals can be as high as k, and detecting whether
a k-sparse signal is nonzero requires Ω(k) samples. However, a fixed set of k log3N locations
that satisfies the restricted isometry property (RIP) can be selected, and accessing the signal
on those values suffices to test whether it is nonzero. The overall runtime becomes Õ(k3): the
isolating filter has support at most 2k, while the number of samples needed to test whether the
two subtrees of v are nonempty is Õ(k), so peeling off ≤ k elements takes Õ(k3) time overall.
This results in Theorem 3 (the algorithm is presented as Algorithm 4).

Õ(k2) runtime under random phase assumption. We note that the runtime can be easily
reduced to Õ(k2) if assumptions are made on the signal that ensure that its energy is evenly
spread across time domain, making Õ(1) samples sufficient to detect whether the signal is zero
or not. This occurs, for instance, if a signal’s frequencies satisfy distributional assumptions (e.g.,
the values have random phases). We present such a result in Section 7. It seems that even under
this assumption on the values of the signal, since the support of the signal in Fourier domain
is worst case, reducing the runtime below k2 likely requires a major advance in techniques for
non-uniform Fourier transform computation.

More formally, we introduce the notion of a worst-case signal with random phase as follows:

Definition 7 (Worst-case signal with random phase). For any positive integer d and power of
two n, we define x to be a worst-case signal with random phase having values {βf}f∈[n]d if

x̂f = βfe
2πiθ for uniformly random θ ∈ [0, 2π),

independently for every f ∈ [n]d. Furthermore, if k of the values {βf}f∈[n]d are nonzero, then x
is said to be a worst-case k-sparse signal with random phase and is guaranteed to have sparsity
k.

Note that “worst-case” in the above definition signifies the fact that the support of the signal
is arbitrary (having no distributional assumptions), subject to a potential sparsity constraint.
We then present the following theorem:

Theorem 4 (Sparse FFT for worst-case signals with random support). For any power of two

integer n, positive integer d, and worst-case k-sparse signal with random phase x ∈ Cnd, the
procedure SparseFFT-RandomPhase(x, n, d, k) in Algorithm 5 recovers x̂ with probability
1 − 1

N2 . Moreover, the sample complexity of this procedure is O(k2 log4N) and its runtime

is O(k2 log4N).

Impossibility of reducing the number of iterations (rounds of adaptivity): signals
with low Hamming weight support. We note that our algorithm differs from all prior
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works in that it uses many rounds of adaptivity. Indeed, the samples that our algorithm takes
are guided by values of the signal that have been read in previously queried locations, which
is in contrast to most prior Sparse Fourier Transform algorithms. Two notable exceptions in
recent literature include the adaptive block Sparse FFT algorithms of [CKSZ17] and [CKPS16].

Our algorithm uses k rounds of adaptivity, peeling off one element at a time. It would be
desirable to reduce the number of rounds of adaptivity by perhaps peeling off many elements
in one batch as opposed to one at a time. For example, if the locations of the nonzeros of x̂
are uniformly random in [n]d, then the splitting tree of x is likely to be rather balanced (see,
e.g. Fig. 5 for an illustration), so perhaps one can find a filter G that has small support and can
be efficiently used to isolate many coefficients at once? Indeed, this intuition turns out to be
correct for signals with uniformly random supports—we show in Section 2.2 below (with details
presented in Section 8) that this idea yields a Õ(k) time algorithm. However, rather surprisingly,
adversarial instances exist that force the peeling process to use k1−o(1) rounds of adaptivity in
the worst case, making our analysis essentially tight. We now present this adversarial instance.

Definition 8 (Hamming ball). For any power of two integer n any integer 0 ≤ c ≤ log2 n, we
define Hn

c to be the closed Hamming ball of radius c centered at 0:

Hn
c = {f ∈ [n] : w(f) ≤ c},

where w(f) is the Hamming weight of the binary representation of f , i.e., w(f) is the number
of ones in the binary representation of f .

Note that |Hn
c | =

∑c
j=0

(log2 n
j

)
.

Definition 9 (Class of signals with low Hamming support). For any power of two integer n and
any integer c, Let X nc denote the class of signals in Cn with support Hn

c as in Definition 8,

X nc = {x ∈ Cn : supp x ⊆ Hn
c }

Note that for any x ∈ X nc we have that ‖x‖0 =
∑c

i=0

(log2 n
i

)
, so for any c ≤ (1

2 − ε) log2 n,

the signals that are contained in class X nc are Θ
((

log2 n
c

))
-sparse.

Definition 10 (Low Hamming weight binary trees). Suppose n is a power of two integer. Then,
we define a low Hamming weight binary tree Tnc inductively for c = 0, 1, . . . , log2 n:

1. Tn0 is defined to be the unique tree of depth log2 n that has a single leaf node and satisfies
the property that each non-leaf node has a single right child only. Thus, Tn0 has log2 n+ 1
nodes.

2. For any c > 0, Tnc is constructed as follows: Take Tn0 and label the nodes in order from
the root to the leaf as 0, 1, . . . , log2 n. Then, for each node 0 ≤ j < log2 n, take a copy of

T
n/2j+1

c−1 and let its root be the left child of node j. The resulting tree defines Tnc .

Note that all the leaves of Tnc are at level log2 n.

It is not hard to see that Tnc is in fact the splitting tree for the set Hn
c and, hence, the number

of its leaves is
∑c

i=0

(log2 n
i

)
. An illustration of the tree Tnc for c = 2 and n = 32 is shown in

Figure 4.
We prove the following theorem in Section 6 (see Theorem 9):
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Figure 4: Illustration of Tn2 , the splitting tree corresponding to a family of signals with
Hamming weight 2. For simplicity, we truncate terminal rightward paths from leaves to the
bottom level of the tree from the picture. The corresponding support set of this tree is
S = {0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, 24}. Note that all the elements of S have binary
representations with Hamming weight at most 2.

Theorem 5 (Informal version of Theorem 9). A peeling process with threshold τ ≤ log2 k+O(1)
(i.e. any threshold that allows isolation of an element at cost bounded by O(k)) must take k1−o(1)

iterations to terminate.

To add to the result above, we note that the lower bound on the number of rounds of
adaptivity is not the only cause for quadratic runtime in our algorithm. The other cause is the
necessity to update the residual signal as more and more elements are recovered, i.e. perform
non-uniform Fourier transform computations. Since no subquadratic approach to this problem
are known in high dimensions, it seems plausible that a k2−Ω(1) runtime algorithm for high-
dimensional FFT would also shed light on the complexity of this intriguing problem.

2.2 Runtime Õ(k) for random supports through a batched peeling process

To complement our lower bound of k1−o(1) rounds of adaptive pruning for worst-case signals
using our adaptive aliasing filters, we show that if the support of the signal is uniformly random,
adaptive aliasing filters can be used to achieve an algorithm with Õ(k) runtime. A beautiful Õ(k)
runtime and optimal O(k) sample complexity algorithm for this model was given in [GHI+13].
The algorithm was stated for d = 2 but readily extends to high dimensions. Unfortunately,
it comes with a major restriction, namely, the sparsity k must be o(N1/d). Our approach is
different and extends to all k ≤ N .

We now introduce the notion of a Fourier sparse random support signal :

Definition 11 (Random support signal). For any positive integer d, power of two n, and
arbitrary β : [n]d → C, we define x : [n]d → C to be a random support signal of Fourier sparsity

11
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Figure 5: An example of a splitting tree for a signal with uniformly random support (the nodes
are labelled in binary). For simplicity, we truncate terminal rightward paths from leaves to
the bottom level of the tree from the picture. The corresponding support set of this tree is
S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 15, 24, 26}

.

k (with values given by β) if x̂ is the signal defined by

x̂f =

{
βf with probability k/nd

0 with probability 1− k/nd
,

where the xf are independently chosen for the various f ∈ [n]d.
In other words, we assume a Bernoulli model for supp x̂, while the values at the frequencies

that are chosen to be in the support are arbitrary.

Our algorithmic result for such signals is stated below.

Theorem 6 (Sparse FFT algorithm for random support signals). Suppose d is a positive integer

and n and k are powers of two. For any signal x ∈ Cnd such that x is a random support signal
of Fourier sparsity k, the procedure SparseFFT (x, n, d, k) (see Algorithm 8) returns x̂ with
probability 9/10. Moreover, the runtime and sample complexity of this procedure are Õ(k).

The algorithm is motivated by the idea of speeding up our algorithm for worst-case signals
(Algorithm 4, also see Theorem 3) by reducing the number of iterations of the process from Θ(k)
down to O(log k). Such a reduction (which we show to be impossible for worst-case signals in
Section 6) requires the ability to peel off many elements of the residual in a single phase of the
algorithm, which turns out to be possible if the support of x̂ is chosen uniformly at random as
in Definition 11. Indeed, if one considers the splitting tree T of a signal with uniformly random
support (see Fig. 5 for an illustration), one sees that

(a) a large constant fraction of nodes v ∈ T satisfy wT (v) ≤ log2 k +O(1);

(b) the adaptive aliasing filters G constructed for such nodes will have significantly overlapping
support in time domain.
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Figure 6: The illustration of the transition from Bprev-bucketing to Bnext-bucketing on the
splitting tree of a signal with random support.

We provide the intuition for this for the one-dimensional setting (d = 1) to simplify notation
(changes required in higher dimensions are minor). In this setting, property (b) above is simply
a manifestation of the fact that since the support is uniformly random, any given congruence
classes modulo B′ = Ck for a large enough constant C > 1 is likely to contain only a single
element of the support of x̂. Our adaptive aliasing filters provide a way to only partition
frequency space along a carefully selected subset of bits in [log2N ], but due to the randomness
assumption, one can isolate most of the elements by simply partitioning using the bottom log2 k+
O(1) bits. This essentially corresponds to hashing x̂ into B = Ck buckets at computational
cost O(B′ logB′) = O(k log k). While this scheme is efficient, it unfortunately only recovers a
constant fraction of coefficients. One solution would be to hash into B = Ck2 buckets (i.e.,
consider congruence classes modulo Ck2), which would result in perfect hashing with good
constant probability, allowing us to recover the entire signal in a single round. However, this
hashing scheme would result in a runtime of Ω(k2 log k) and is, hence, not satisfactory. On the
other hand, hashing into Ck2 buckets is clearly wasteful, as most buckets would be empty. Our
main algorithmic contribution is a way of “implicitly” hashing into Ck2 buckets, i.e., getting
access to the nonempty buckets, at an improved cost of Õ(k).

Our algorithm uses an iterative approach, and the main underlying observation is very
simple. Suppose that we are given the ability to “implicitly” hash into B buckets for some
B, namely, get access to the nonempty buckets. If B is at least min(Ck2, N), we know that
there are no collisions with high probability and we are done. If not, then we show that, given
access to nonempty buckets in the B-hashing (i.e. a hashing into B buckets), we can get access
to the nonempty buckets of a (ΓB)-hashing for some appropriately chosen constant Γ > 1 at
a polylogarithmic cost in the size of each nonempty bucket of the B-bucketing by essentially

13



computing the Fourier transform of the signal restricted to nonempty buckets in the B-bucketing.
We then proceed iteratively in this manner, starting with B = Ck, for which we can perform
the hashing explicitly. Since the number of nonzero frequencies remaining in the residual after t
iterations of this process decays geometrically in t, we can also afford to use a smaller number of
buckets B′ in the hashing that we construct explicitly, ensuring that the runtime is dominated
by the first iteration.

Ultimately, the algorithm takes the following form. At every iteration, we explicitly compute
a hashing into Bbase ≤ Ck buckets explicitly. Then, using a list of nonempty buckets in a Bprev-
hashing from the previous iteration, we extend this list to a list of nonempty buckets in a
Bnext-bucketing at polylogarithmic cost per bucket (by solving a well-conditioned linear system,
see Algorithm 6), where Bnext = Γ ·Bprev for some large enough constant Γ > 1. Meanwhile, we
reduce Bbase by a factor of Γ, thus maintaining the invariant Bbase ·Bnext ≈ k2 at all times (note
that this is satisfied at the start, when Bbase = Bprev ≈ k, and Bbase ·Bnext remains invariant at
each iteration). Therefore, after a logarithmic number of iterations, we have effectively emulated
hashing into ≈ k2 but at a total cost of roughly one hashing computation into ≈ k buckets (see
Figure 6 for an illustration).

Organization. In Section 3, we introduce basic definitions and notation that will be used
throughout the paper. Section 4 introduces our main technical tool of adaptive aliasing filter,
which are used in the various algorithms found in this paper. Section 5 shows how to use
the adaptive aliasing filters to solve the problem of estimation for Fourier measurements for
worst-case signals, i.e., problem (3), thereby proving Theorem 2. Section 6 then shows that
the inherent tree pruning process used to subtract off recovered frequencies and access residual
signals in the estimation algorithm is essentially optimal.

Section 7 proves our main theorem, Theorem 3, for problem (1) on worst-case signals. Ad-
ditionally, it shows how to improve on the runtime under the assumption that the signal is a
worst-case signal with random phase, thereby proving Theorem 4.

Finally, Section 8 discusses how to obtain an algorithm for problem (1) on random support
signals and proves Theorem 6.
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3 Preliminaries and notation

In this section, we introduce some notation and basic definitions that we will use in the paper.
For any positive integer n, we use the notation [n] to denote the set of integer numbers

{0, 1, . . . , n−1}. We are interested in computing the Fourier transform of discrete signals of size
N in dimension d, where N = nd for some n ≥ 2. Such a signal will be a function [n]d → C.

However, we will often identify [n]d → C with Cnd for convenience (and often use the two
interchangably depending on the context). This correspondence is formally defined later in
Definition 19. We first need the notion of an inner product.

Definition 12 (Inner product). Let t and f be two vectors in dimension d. We denote the
inner product of t and f by fT t =

∑d
q=1 fqtq.

Let us define the Fourier transform of a signal.

Definition 13 (Fourier transform). For any positive integers d and n, the Fourier transform of

a signal x ∈ Cnd is denoted by x̂, where for any f ∈ [n]d, we define x̂f =
∑
t∈[n]d xte

−2πi f
T t
n .

Note that in the case of n = 2, the Fourier transform reduces to the Hadamard transform of
size N = 2d.

Claim 1 (Parseval’s theorem). For any positive integers n and d, any signal x ∈ Cnd satisfies
‖x̂‖22 = nd · ‖x‖22.

Definition 14 (Unit impulse). For any positive integers n and d, the unit impulse function

δ ∈ Cnd is defined as the function given by δ(t) = 1 for t = 0 and δ(t) = 0 for t 6= 0.

Claim 2. For any positive integers d, n, and any a ∈ [n]d, the inverse Fourier transform of

x̂ : [n]d → C given by x̂f = e2πia
T f
n is xt = δ(t+ a).

Claim 3 (Convolution theorem). Suppose d and n are positive integers. Then, for any signals

x, y ∈ Cnd, (̂x ∗ y) = x̂ · ŷ, where x ∗ y is the convolution of x and y which itself is a signal in

Cnd defined as, (x ∗ y)t =
∑
τ∈[n]d xτyt−τ for all t ∈ [n]d.

We will require the notion of a tensor product of signals. Given d signals G1, G2, . . . , Gd :
[n]→ C, the tensor product constructs a signal in Cnd that is defined as follows.

Definition 15 (Tensor multiplication). Suppose d and n are positive integers. Given functions
G1, G2, . . . , Gd : [n] → C, we define the tensor product (G1 × G2 × · · · × Gd) : [n]d → C as
(G1 ×G2 × · · · ×Gd) (j) = G1(j1) ·G2(j2) · · ·Gd(jd) for all j = (j1, j2, . . . , jd) ∈ [n]d.

Note that the tensor product is essentially a generalization of the usual outer product on
two vectors to d vectors.

Claim 4 (Fourier transform of a tensor product). For any integers n and d and G1, G2, . . . , Gd ∈
Cn, let G : [n]d → C denote the tensor product G = G1×G2×· · ·×Gd. Then, the d-dimensional
Fourier transform Ĝ of G is the tensor product of Ĝ1, Ĝ2, · · · , Ĝd, i.e., Ĝ = Ĝ1× Ĝ2×· · ·× Ĝd.

Definition 16. For any positive d, n, and k, a signal x : [n]d → C is called Fourier k-sparse if
‖x̂‖0 = k.
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Definition 17 (The Restricted isometry property). We say that a matrix A ∈ Cq×n satisfies the
restricted isometry property (RIP) of order k if for every k-sparse vector x ∈ Cn, i.e., ‖x‖0 ≤ k,
it holds that 1

2‖x‖
2
2 ≤ ‖Ax‖22 ≤ 3

2‖x‖
2
2.

We will use the following theorem from [HR17].

Theorem 7. (The Restricted Isometry Property [HR17, Theorem 3.7]) For sufficiently large

N and k, and a unitary matrix M ∈ CN×N satisfying ‖M‖∞ = O
(

1√
N

)
, the following holds.

For some q = O
(
k log2 k logN

)
let A ∈ Cq×N be a matrix whose q rows are chosen uniformly

and independently from the rows of M , multiplied by
√

N
q . Then, with probability 1 − 1

N10 , the

matrix A satisfies the restricted isometry property of order k, as per Definition 17.

4 Adaptive aliasing filters

In this section, we introduce a new class of filters that forms the basis of our algorithm for
estimation of worst case Fourier sparse signals. For simplicity, we begin by introducing the filters
in the one-dimensional setting and then show how they naturally extend to the multidimensional
setting (using tensoring). Throughout the section, we assume that the input is a signal x ∈ Cn
with supp x̂ = S for some S ⊆ [n].

4.1 One-dimensional Fourier transform

We restate the following definition for T full
n and corresponding labels of vertices:

Definition 2. Suppose n is a power of two. Let T full
n be a full binary tree of height log2 n,

where for every j ∈ {0, 1, . . . , log2 n}, the nodes at level j (i.e., at distance j from the root) are
labeled with integers in [2j ]. For a node v ∈ T full

n , we let fv be its label. The label of the root

is froot = 0. The labelling of T fulln satisfies the condition that for every j ∈ [log2 n] and every v
at level j, the right and left children of v have labels fv and fv + 2j , respectively. Note that the
root of T full

n is at level 0, while the leaves are at level log2 n.

Next, we recall the definition of the splitting tree of a set.

Definition 3 (Splitting tree). Let n be a power of two. For every S ⊆ [n], the splitting tree
T = Tree(S, n) of a set S is a binary tree that is the subtree of T full

n that contains, for every
j ∈ [log2 n], all nodes v ∈ T full

n at level j such that {f ∈ S : f ≡ fv (mod 2j)} 6= ∅.

The splitting tree T = Tree(S, n) can be constructed easily in O(|S| log n) time, given S. We
provide simple pseudocode in Algorithm 9.

For every node v ∈ T , the level of v, denoted by lT (v), is the distance from v to the root. The
following basic claim will be useful and follows immediately from the definition of T = Tree(S, n):

Claim 5. For every integer power of two n, if T is a subtree of T full, then for every node
v ∈ T , the labels of nodes that belong to the subtree Tv of T rooted at v are congruent to fv
modulo 2lT (v). Furthermore, every node u ∈ T at level lT (v) or higher which satisfies fu ≡ fv
(mod 2lT (v)) belongs to Tv.

Definition 6 (Weight of a leaf). Suppose n is a power of two. Let T be a subtree of T full
n . Then

for any leaf v ∈ T , we define its weight wT (v) with respect to T to be the number of ancestors
of v in tree T with two children.
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Definition 18 ((f, S)-isolating filter). For every power of two n, set S ⊆ [n], and f ∈ S, a filter
G ∈ Cn is called (f, S)-isolating if Ĝf = 1, and Ĝf ′ = 0 for all f ′ ∈ S \ {f}.

In particular, if G is (f, S)-isolating, then for every signal x ∈ Cn with supp x̂ ⊆ S, we have∑
j∈[n]

xjGt−j = (x ∗G)t

=
1

n

∑
f∈[n]

x̂f · Ĝf · e2πi ft
n

=
1

n
x̂fe

2πi ft
n

for all t ∈ [n], by convolution theorem, see Claim 3.

While the definitions above suffice to state our estimation primitive, our Sparse FFT algo-
rithm requires a filter G that satisfies a more refined property due to the fact that throughout
the execution of the algorithm, the identity of supp x̂ is only partially known. We encode this
knowledge as a subtree T of T full

n whose leaves are not necessarily at level log2 n. Hence, every
leaf v ∈ T corresponds to a set of frequencies in the support of x̂ whose full identities have not
been discovered yet. This is captured by the following definition:

Definition 4 (Frequency cone of a leaf of T ). For every power of two n, subtree T of T full
n , and

vertex v ∈ T which is at level lT (v) from the root, define the frequency cone of v with respect to
T as

FrequencyConeT (v) :=
{
f ∈ [n] : f ≡ fv (mod 2lT (v))

}
.

Note that under this definition, the frequency cone of a vertex v of T corresponds to the
subtree rooted at v when T is embedded inside T full

n (see Figure 2).

Definition 5 ((v, T )-isolating filter). For every integer n, subtree T of T full
n , and leaf v of T , a

filter G ∈ Cn is called (v, T )-isolating if the following conditions hold:

• For all f ∈ FrequencyConeT (v), we have Ĝf = 1.

• For every f ′ ∈
⋃

u6=v
u: leaf of T

FrequencyConeT (u), we have Ĝf ′ = 0.

Note that in particular, for all signals x ∈ Cn with supp x̂ ⊆
⋃
u: leaf of T FrequencyConeT (u)

and t ∈ [n], ∑
j∈[n]

xjGt−j =
1

n

∑
f∈FrequencyConeT (v)

x̂fe
2πi ft

n .

Lemma 3 (Filter properties). For every power of two n, subtree T of T full
n , and leaf v ∈ T ,

the procedure FilterPreProcess(T, v, n) outputs a static data structure g ∈ Clog2 n in time
O(log2 n) such that, given g, the following conditions hold:

1. The primitive FilterTime(g, n) outputs a filter G such that |supp G| = 2wT (v) and G is
a (v, T )-isolating filter. Moreover, the procedure runs in time O(2wT (v) + log2 n).

2. For every ξ ∈ [n], the primitive FilterFrequency(g, n, ξ) computes the Fourier trans-
form of G at frequency ξ, namely, Ĝ(ξ), in time O(log2 n).
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Algorithm 1 Filter construction in time and Fourier domain

1: procedure FilterPreProcess(T, v, n)
2: r ← root of T , l← lT (v), f ← fv
3: v0, v1, . . . , vl ← path from r to v in T , where v0 = r and vl = v
4: g← {0}log2 n

5: for j = 1 to l do
6: if vj−1 has two children in T then

7: gj ← e
−2πi f

2j

8: return g

9: procedure FilterTime(g, n)
10: G(t)← δ(t) for all t ∈ [n]
11: for l = 1 to log2 n do
12: if gl 6= 0 then

13: G(t)← G(t)
2 + gl · G(t+n/2l)

2 for all t ∈ [n]

14: return G
15: procedure FilterFrequency(g, n, ξ)
16: Ĝξ ← 1
17: for l = 1 to log2 n do
18: if gl 6= 0 then

19: Ĝξ ← Ĝξ · (1 + gl · e2πi ξ
2l )
/

2

20: return Ĝξ

Before we prove Lemma 3, we establish the following corollary, assuming the statement of
Lemma 3 holds.

Corollary 1. Suppose n is a power of two, S ⊆ [n], and f ∈ S. Then, let T = Tree(S, n)
be the splitting tree of S. If v is the leaf of T with label fv = f , while g is the output of
FilterPreProcess(T, v, n), and G is the filter computed by FilterTime(g, n), then the fol-
lowing conditions hold:

(1) G is an (f, S)-isolating filter.

(2) |supp G| = 2wT (v).

Proof. Indeed, given a subset S and f ∈ S, if T = Tree(S, n), then all the leaves of T are at
level log2 n and the set of labels of the leaves is exactly S. Hence, for every leaf v of T , one has
FrequencyConeT (v) = {fv}. By Lemma 3, G is a (v, T )-isolating filter. Therefore, by Definition
5,

∅ = supp Ĝ∩

 ⋃
u6=v

u: leaf of T

FrequencyConeT (u)

 = supp Ĝ∩

 ⋃
u6=v

u: leaf of T

{fu}

 = supp Ĝ∩(S\fv),

and Ĝ(f) = 1 for all f ∈ FrequencyConeT (v) = {fv}. This implies (1), see definition of
(f, S)-isolating filters in 18. Property (2) follows directly from Lemma 3.
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Now, we prove Lemma 3.

Proof of Lemma 3: Let v be a leaf of T , l = lT (v) denote the level of v (i.e., distance from
the root), r denote the root of T , and v0, v1, . . . , vl denote the path from root to v in T , where
v0 = r and vl = v.

We first show how to efficiently construct a (v, T )-isolating filter in the Fourier domain,
i.e., how to efficiently construct Ĝ. Then we derive the time domain representation of G. We
iteratively define a sequence of functions G0, G1, . . . , Gl (with Fourier transforms Ĝ0, Ĝ1, . . . , Ĝl,
respectively) by traversing the path from the root to v in T , after which we let G be the final
filter constructed on this path, i.e., G := Gl (and Ĝ := Ĝl). We start with Ĝ0(ξ) = 1 for all
ξ ∈ [n]. Then, we iteratively define Ĝq in terms of Ĝq−1 according to the following update rule
for all q = 1, 2, . . . , l:

Ĝq(ξ) =

Ĝq−1(ξ) · 1+e
2πi

ξ−fv
2q

2 if vq−1 has two children in T

Ĝq−1(ξ) otherwise
. (4)

for every ξ ∈ [n].
We now show that G = Gl is a (v, T )-isolating filter. It is enough to show that G satisfies

(supp Ĝ) ∩

 ⋃
u6=v

u: leaf of T

FrequencyConeT (u)

 = ∅ (5)

and
Ĝ(f) = 1 for all f ∈ FrequencyConeT (v). (6)

We now prove (5). Consider a leaf u of T distinct from v. Recall that v0, v1, . . . , vl denotes
the root to v path in T . Let j be the largest integer such that vj is a common ancestor of v and
u.

By definition of tree T (Definition 2) and because vj is at level j, one has that the label of
the right child a of vj is fvj , and the label of the left child b is fvj + 2j . Furthermore, using this
together with Claim 5, we get that the labels of nodes in subtree Ta of T subtended at the right
child a of v are congruent to fa = fvj modulo 2j+1, and labels in the subtree Tb rooted at the
left child b of vj are all congruent to fb = fvj + 2j modulo 2j+1.

Suppose that v belongs to the right subtree of vj , and u belongs to the left subtree (the other
case is symmetric). We thus get that fv ≡ fvj (mod 2j+1), and fu ≡ fvj + 2j (mod 2j+1). It

now suffices to note that by construction of Ĝ (see (4)), we have that for all ξ ∈ [n],

Ĝj+1(ξ) = Ĝj(ξ) ·
1 + e

2πi ξ−fv
2j+1

2
.

By Claim 5, for all f ∈ FrequencyConeT (u) one has that f ≡ fu (mod 2lT (u)) and hence, f ≡ fu
(mod 2j+1) because j + 1 ≤ lT (u). Therefore, by substituting ξ = f in the above, we get

Ĝj+1(f) = Ĝj(f) · 1 + e
2πi f−fv

2j+1

2
= Ĝj(f) · 1 + e

2πi fu−fv
2j+1

2
= 0,

implying that Ĝj+1(f) = 0 and, hence, Ĝl(f) = 0, as required.

19



It remains to prove (6). Consider any f ′ ∈ FrequencyConeT (v), and note that by Claim 5,
f ′ ≡ fv (mod 2l). Using this in (4), we get

Ĝ(f ′) =
∏

q∈{1,2,...,l}
vq−1 has two children in T

1 + e2πi f
′−fv
2q

2

= 1,

since f ′ − fv ≡ 0 (mod 2q) for every q = 0, . . . , l.
Next, note that the primitive FilterPreProcess(T, v, n) preprocesses the tree T by travers-

ing the path from root to leaf v in time O(log2 n). Given g, the primitive FilterFrequency
(g, n, ξ) implements (4) for successive values of q, and the runtime of this algorithm is O(log2 n)
because of the for loop passing through vector g.

Finally, it remains to show that the filter G in time domain can be computed efficiently and

has a small support. First note that by Claim 2, the inverse Fourier transform of 1+e
2πi

ξ−fv
2q

2 is
δ(t)+e−2πifv/2

q
δ(t+ n

2q )
2 .

By the duality of convolution in the time domain and multiplication in Fourier domain (see
Claim 3), we can equivalently define G (see (4)) by letting G0(t) = δ(t) and setting

Gq(ξ) =

{
Gq−1(t) ∗ δ(t)+e

−2πifv/2
q
δ(t+ n

2q )
2 if vq−1 has two children in T

Gq−1(t) otherwise
(7)

for every q = 1, . . . , l. Thus, G = Gl is the time domain representation of the filter Ĝ defined
in (4). We now note that convolving any function with a function supported on two points,
e.g., 1

2

(
δ(t) + e−2πifv/2qδ(t+ n

2q )
)
, at most doubles the support. Since the number of times the

convolution is performed in obtaining Gl from G0 (as per (7)) is wT (v), the support size of G is
at most 2wT (v). Given g, the primitive FilterTime (g, n) implements the above algorithm for
construction of G and, therefore, runs in time O(2wT (v) + log2 n).

4.2 d-dimensional Fourier transform

In this section, we show that our construction of adaptive aliasing filters from the previous
section naturally extends to higher dimensions without any loss by tensoring.

Definition 19 (Flattening of [n]d to [nd]. Unflattening of [nd] to [n]d). For every power of two
n, positive integer d, and f = (f1, . . . , fd) ∈ [n]d we define the flattening of f as

f̃ =

d∑
r=1

fr · nr−1.

Similarly, for a subset S ⊆ [n]d we let S̃ := {f̃ : f ∈ S} denote the flattening of S.
For ξ̃ ∈ [nd], we define the unflattening of ξ̃ as ξ = (ξ1, . . . , ξd) ∈ [n]d, where

ξq =
ξ̃ − ξ̃ (mod nq−1)

nq−1
(mod n).

for every q = 1, . . . , d. Similarly, for a subset R̃ ⊆ [nd], we let R := {ξ ∈ [n]d : ξ̃ ∈ R̃} denote
the unflattening of R̃.
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Definition 20 (Multidimensional splitting tree). Suppose d is a positive integer and n is a
power of two. For every S ⊆ [n]d, the flattened splitting tree of S is defined as T̃ = Tree(S̃, nd)
where S̃ is flattening of S.

The unflattened splitting tree of S is denoted by T and is obtained from the flattened splitting
tree T̃ by unflattening the labels f̃v of all nodes v ∈ T̃ .

Definition 21 (Multidimensional (f , S)-isolating filter). Suppose n is a power of two integer
and S ⊆ [n]d for a positive integer d. Then, for any frequency f ∈ S, a filter G : [n]d → C is
called (f , S)-isolating if Ĝf = 1 and Ĝf ′ = 0 for every f ′ ∈ S \ {f}.

Definition 22 (Frequency cone of a leaf of T in high dimensions). Suppose d is a positive
integer, n is a power of two, and N = nd. For every unflattened subtree T of T full

N and v ∈ T ,
we define the frequency cone of v as

FrequencyConeT (v) :=
{
f ∈ [n]d : f̃ ≡ f̃v (mod 2lT (v))

}
,

where lT (v) denotes the level of v in T (i.e., the distance from the root).

Claim 6. For every positive integer d, power of two n, and every subtree T of T full
nd

and every
leaf v ∈ T of height lT (v) < d log2 n, let T ′ = T ∪{left child u of v}∪{right child w of v}. Then
the following holds,

FrequencyConeT (v) = FrequencyConeT ′(u) ∪ FrequencyConeT ′(w)

Definition 23 (Multidimensional (v, T )-isolating filter). Suppose d is a positive integer, n
is a power of two, and N = nd. For every subtree T of T full

N and vertex v ∈ T , a filter

G ∈ Cnd is called (v, T )-isolating if Ĝf = 1 for all f ∈ FrequencyConeT (v) and for every

f ′ ∈
⋃

u6=v
u: leaf of T

FrequencyConeT (u) one has Ĝf ′ = 0.

In particular, for every signal x ∈ Cnd with supp x̂ ⊆
⋃
u: leaf of T FrequencyConeT (u) and for

all t ∈ [n]d, ∑
j∈[n]d

xjGt−j =
1

N

∑
f∈FrequencyConeT (v)

x̂fe
2πi f

T t
n .

Lemma 4 (Construction of a multidimensional isolating filter). Suppose n is a power of two

integer and d is a positive integer. Let N = nd. For every subtree T of T fullN and every leaf
v ∈ T , there exists a (v, T )-isolating filter G such that |supp G| = 2wT (v). Such a filter G can
be constructed in time O(2wT (v) + log2N). Moreover, for any frequency ξ ∈ [n]d, the Fourier
transform of G at frequency ξ, i.e., Ĝ(ξ), can be computed in time O(log2N).

The proof of Lemma 4 appears in Appendix A. The key idea is to choose q∗ to be the
smallest positive integer such that lT (v) ≤ q∗ · log2 n. One then defines successive filters
G(0), G(1), . . . , G(q∗) by letting Ĝ(0) = 1 and

Ĝ(q)(f) = Ĝ(q−1)(f) · Ĝq(fq)

for q = 1, 2, . . . , q∗, where Ĝq is an isolating filter corresponding to the projection of the leaves
of tree T into coordinate q. The final filter G = G(q∗) turns out to be (v, T )-isolating.
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4.3 Putting it together

Claim 7. For any binary tree T let L be the set of leaves of T . There exists a leaf v ∈ L such
that wT (v) ≤ log2 |L|.

Proof. Let T ′ be the tree obtained by “collapsing” T , i.e., removing all nodes (and incident
edges) of T that have exactly one child. Then, observe that the leaves of T are still preserved in
T ′, except that they are at possibly varying levels. In particular, a leaf v in T ′ will be at level
wT (v). Thus, by applying Kraft’s inequality to T ′ (which is an equality because every node in
T ′ is either a leaf or has two children), we see that∑

v∈L
2−wT (v) = 1.

Therefore, there exists a v ∈ L such that 2−wT (v) ≥ 1
|L| and, therefore, wT (v) ≤ log2 |L|, as

desired.

This gives us the main result of this section, and the main technical lemma of the paper:

Corollary 2. For every integer n ≥ 1 a power of two and every positive integer d, every S ⊆ [n]d,
there exists an f ∈ S and an (f , S)-isolating filter G (as defined in Definition 21) such that
|supp G| ≤ |S|.

Proof. Follows by combining Lemma 4 with Claim 7.

5 Estimation of sparse high-dimensional signals in quadratic
time

In this section, we use the filters that we have constructed in Section 4 in order to show the first
result of the paper, a deterministic algorithm for estimation of Fourier-sparse signals in time
which is quadratic in the sparsity.

Theorem 8 (Estimation guarantee). Suppose n is a power of two integer and d is a posi-

tive integer and S ⊆ [n]d. Then, for any signal x ∈ Cnd with supp x̂ ⊆ S, the procedure
Estimate(x, S, n, d) (see Algorithm 2) returns x̂. Moreover, the sample complexity of this pro-
cedure is O(|S|2) and its runtime is O(|S|2 · d log2 n).

Proof. The proof is by induction on the iteration number t = 0, 1, 2, ... of the while loop in
Algorithm 2. One can see that since at each iteration the tree T looses one of its leaves, the
algorithm terminates after |S| iterations, since initially the number of leaves of T is |S|. Let χ̂(t)

denote the signal χ̂ after iteration t, and let T (t) denote the tree T after iteration t and let S(t)

denote the set of frequencies corresponding to leaves of T (t), i.e., S(t) = {fu : u is a leaf of T (t)}.
In particular, χ̂(0) = 0 and T (0) is the unflattened spltting tree of S and S(0) = S.

We claim that for each t = 0, 1, . . . , |S|, we have

supp (x̂− χ̂(t)) ⊆ S(t) and |S(t)| = |S| − t (8)

Base case of induction: We have S(0) = S and χ̂(0) ≡ 0, which immediately implies (8) for
t = 0.
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Algorithm 2 d-dimensional Estimation for Sparse FFT with sample and time complexity k2

1: procedure Estimate(x, S, n, d)
2: T̃ ← Tree(S̃, nd) . S̃: flattening of S . T̃ : flattened splitting tree of S
3: Let T be the unflattening of T̂
4: while T 6= ∅ do
5: v ← argminu: leaf of TwT (u), f ← fv . f is label of node v
6: v0, v1, . . . , vd·log2 n ← path from r to v in T , where v0 = r and vd·log2 n = v
7: for q = 1 to d do
8: T vq ← subtree of T rooted at v(q−1)·log2 n

9: Remove all nodes of T vq which are at distance more than log2 n from v(q−1)·log2 n

10: Label every node u ∈ T vq as fu = (fu)q
11: g← FilterPreProcess(T vq , vq·log2 n, n)
12: Gq ← FilterTime(gq, n)

13: Ĝq(ξq) = FilterFrequency(gq, n, ξq)

14: G← G1 ×G2 × ...×Gd
15: hf ←

∑
ξ∈[n]d

(
χ̂ξ ·

∏d
q=1 Ĝq(ξq)

)
16: χ̂f ← χ̂f +

(
nd ·

∑
j∈[n]d xj ·G−j

)
− hf

17: T ← Tree.remove(T, v)

18: return χ̂

Inductive step: For the inductive hypothesis, let r ≥ 1 and assume that (8) holds for t = r−1.
The main loop of the algorithm finds v = argminu: leaf of T (r−1)wT (r−1)(u). By Claim 7 along with
inductive hypothesis, wT (r−1)(v) ≤ log2 |S(r−1)| ≤ log2 |S|. Note that the main loop of the algo-

rithm constructs a (fv, S
(r−1))-isolating filter G, along with Ĝ. In order to do so, the algorithm

constructs trees T vq for all q ∈ {1, ..., d} which in total takes time O(|S|d log2 n). Given T vq ’s,

the algorithm constructs filter G and Ĝ in time O
(

2wT (r−1) (v) + d log2 n
)

= O (|S|+ d log2 n),

by Lemma 4. Moreover, the filter G has support size 2wT (r−1) (v) ≤ |S| by Lemma 4.

By Lemma 4 computing the quantity hf =
∑
ξ∈[n]d χ̂

(r−1)
ξ · Ĝ(ξ) in line 15 of Algorithm 2

can be done in time O(‖χ̂(r−1)‖0 · d log2 n) = O(|S| · d log2 n). By convolution theorem 3, the
quantity hf satisfies hf = nd · (χ(r−1) ∗G)0, and thusnd · ∑

j∈[n]d

xj ·G−j

− hf = nd ·
((
x− χ(r−1)

)
∗G
)

0

= x̂fv − χ̂
(r−1)
fv

,

where the last transition is due to the fact thatG is
(
fv, S

(r−1)
)
-isolating along with the inductive

hypothesis of supp
(
x̂− χ̂(r−1)

)
⊆ S(r−1).

We thus get that χ̂(r)(·) ← χ̂(r−1)(·) +
(
x̂− χ̂(r−1)

)
fv
· δfv(·). Moreover, it updates the

tree T (r) ← Tree.remove(T (r−1), v). Also note that the set S(r) gets updated to S(r−1) \ {fv}
accordingly. This establishes (8) for t = r, thereby completing the inductive step.

The number of steps is exactly |S|, as follows from the inductive claim. Thus, the total
runtime is O(|S|2 · d log2 n).
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6 A lower bound of k1−o(1) rounds of tree pruning

One apparent disadvantage of our algorithm presented in the previous section is the fact that
it only estimates elements of the Fourier spectrum one at a time, thereby taking k rounds to
estimate all elements in the spectrum. Since the isolation of one element takes up to k time
due to the support size of G, the resulting bound on the runtime is quadratic in k. A natural
conjecture is that our analysis is not tight, and one can achieve better runtime by removing
several nodes of weight at most log2 k+O(1) at once. If one could argue that the filters G that
isolate the nodes removed in one round have nontrivial overlap, runtime improvements could be
achieved. In this section we present a class of signals on which k1−o(1) rounds of pruning the
tree are required, showing that our analysis is essentially optimal.

Tree pruning process Suppose n is a power of two integer and τ is a positive integer. Let T
be a subtree of T full

n . The tree pruning process, P(T, τ, n), is an iterative algorithm that performs
the following operations on T successively until T is empty:

1. Find S̃τ = {leaves v of T : wT (v) ≤ τ}, i.e., set of vertices of weight no more than τ .

2. For each v ∈ S̃τ (in an arbitrary order) remove v from T together with the path from v to
its closest ancestor that has two children (i.e., run T.remove(v); see Algorithm 9).

We show that for every k and sufficiently large integer n there exists a tree T with k leaves such
that P(T, τ, n) with τ = log2 k + O(1) requires k1−o(1) rounds to terminate. This in particular
shows that our k2 runtime analysis from section 5 cannot be improved by reusing work done
in a single iteration, and hence our analysis is essentially optimal. Our construction is one-
dimensional, although higher dimensional extensions can be readily obtained.

Theorem 9. For any integer constant c ≥ 1, sufficiently large power of two integer n there
exists k = Θ(logc n) such that if τ = log2 k + O(1), the following condition holds. There exists
a subtree T of T full

n with k leaves such that the tree pruning process P(T, τ, n) requires k1−o(1)

iterations to terminate.

The following simple lemma is crucial to our analysis

Lemma 5 (Monotonicity of tree pruning process). Suppose n is a power of two integer T ′ a
subtree of T full

n and T a subtree of T ′. Then for every integer τ the number of rounds that it
takes P(T, τ, n) to collapse T is at most the number of rounds that it takes P(T ′, τ, n) to collapse
T ′.

Proof. For j = 0, 1, 2, . . . , let T (j) (respectively T ′(j)) denote the tree obtained by performing j
rounds of the tree pruning process (with threshold τ) to T (respectively T ′). Note that T (0) = T
and T ′(0) = T ′.

We claim that T (j) is a subtree of T ′(j) for all j = 0, 1, . . . , which will obviously imply the
desired conclusion. We use induction on j. Note that the base of induction is trivial for j = 0.
Now, we prove the inductive step. Suppose j > 0. By the inductive hypothesis, we have that
T (j−1) is a subtree of T ′(j−1). Thus, for any leaf v that appears in both T (j−1) and T ′(j−1), we
have wT (v) ≤ wT ′(v) (this is because any node in T ′(j−1) along the path from the root to v that
has exactly one child will also have exactly one child in T (j−1)). Hence, if v is removed from
T ′(j−1) in the j-th iteration of the process, then it is also removed from T (j−1) during the j-th
iteration. Hence, T (j) is a subtree of T ′(j), which completes the inductive step and, therefore,
proves the claim.
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We recall a few definitions.

Definition 8 (Hamming ball). For any power of two integer n any integer 0 ≤ c ≤ log2 n, we
define Hn

c to be the closed Hamming ball of radius c centered at 0:

Hn
c = {f ∈ [n] : w(f) ≤ c},

where w(f) is the Hamming weight of the binary representation of f , i.e., w(f) is the number
of ones in the binary representation of f .

Note that |Hn
c | =

∑c
j=0

(log2 n
j

)
.

Definition 9 (Class of signals with low Hamming support). For any power of two integer n and
any integer c, Let X nc denote the class of signals in Cn with support Hn

c as in Definition 8,

X nc = {x ∈ Cn : supp x ⊆ Hn
c }

Note that for any x ∈ X nc we have that ‖x‖0 =
∑c

i=0

(log2 n
i

)
, so for any c ≤ (1

2 − ε) log2 n,

the signals that are contained in class X nc are Θ
((

log2 n
c

))
-sparse.

Definition 10 (Low Hamming weight binary trees). Suppose n is a power of two integer. Then,
we define a low Hamming weight binary tree Tnc inductively for c = 0, 1, . . . , log2 n:

1. Tn0 is defined to be the unique tree of depth log2 n that has a single leaf node and satisfies
the property that each non-leaf node has a single right child only. Thus, Tn0 has log2 n+ 1
nodes.

2. For any c > 0, Tnc is constructed as follows: Take Tn0 and label the nodes in order from
the root to the leaf as 0, 1, . . . , log2 n. Then, for each node 0 ≤ j < log2 n, take a copy of

T
n/2j+1

c−1 and let its root be the left child of node j. The resulting tree defines Tnc .

Note that all the leaves of Tnc are at level log2 n.

It is not hard to see that Tnc is in fact the splitting tree for the set Hn
c and, hence, the number

of its leaves is
∑c

i=0

(log2 n
i

)
.

Now, we are ready to prove Theorem 9.
Proof of Theorem 9: Let us choose the tree T to be Tnc for some positive integer c. We will
set parameter c at the end of the proof. Let D(n, c, τ) denote the number of iterations required
to collapse Tnc with threshold τ . We prove that

D(n, c, τ) ≥ logc2 n

c! · τ c
(9)

for any power of two integer n, any integer 0 ≤ c ≤ log2 n, and any positive integer τ . We use
induction on c.

Base: Note that for c = 0, the tree Tnc has one leaf, which gets removed in the first iteration
of the tree pruning process. Thus, D(n, 0, τ) = 1 for any power of two n and τ ≥ 1, and so, (9)
holds for c = 0.

Inductive step: Suppose c > 0. For any Tnc , we label the nodes along the path from the
root to the rightmost leaf (i.e., the path formed by starting at the root and repeatedly following
the right child) in order as 0, 1, . . . , log2 n.
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Note that if n ≤ 2τ , then
logc2 n

c! · τ c
≤ τ c

c! · τ c
≤ 1.

Thus, (9) does indeed hold for n ≤ 2τ .

Now, suppose n > 2τ . Recall that a copy of T
n/2j+1

c−1 is rooted at the left child of node j of Tnc
for all j = 0, 1, . . . , τ − 1. We divide the pruning process on Tnc into two phases. The first phase
consists of the process up until the point at which the left subtree of node j in Tnc completely
collapses for some j ∈ {0, 1, . . . , τ−1}, while the second phases consists of the process thereafter.
Thus, the number of rounds in the first phase is just the number of rounds till the top τ left
subtrees collapses.

Note that during the first phase, the behavior of the collapsing process on the left subtree of

node j corresponds to running a collapsing process with threshold τ − j − 1 on T
n/2j+1

c−1 . Thus,
the number of rounds in the first phase is,

R = min
0≤j<τ

{D(n/2j+1, c− 1, τ − j − 1)}.

By the inductive hypothesis (on c), we have that for j = 0, 1, . . . , τ − 1

D(n/2j+1, c− 1, τ − j − 1) ≥ 1

(c− 1)!
·
(

log2 n− j − 1

τ − j − 1

)c−1

,

which implies that R ≥ 1
(c−1)! ·

(
log2 n−1
τ−1

)c−1
since we assumed τ ≤ log2 n.

Now, let T ′ be the tree obtained after performing R rounds of the collapsing process on
Tnc . Moreover, let T ′′ be the tree obtained by further removing any left subtrees of nodes
0, 1, . . . , τ − 1. By Lemma 5, we have that the number of rounds needed to collapse T ′ is at
least the number of rounds needed to collapse T ′′. Moreover, observe that the number of rounds
needed to collapse T ′′ is precisely D(n/2τ , c, τ), thus, the number of rounds in the second phase
is at least D(n/2τ , c, τ), and so,

D(n, c, τ) ≥ R+D(n/2τ , c, τ)

≥ 1

(c− 1)!
·
(

log2 n− 1

τ − 1

)c−1

+D(n/2τ , c, τ).

Note that a similar argument gives us

D(n/2aτ , c, τ) ≥ 1

(c− 1)!
·
(

log2 n− aτ − 1

τ − 1

)c−1

+D(n/2(a+1)τ , c, τ)

for all a = 0, 1, . . . , b(log2 n− 1)/τc− 1 (this condition ensures that τ ≤ log2(n/2aτ ), as required
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by our argument above). Hence, it follows that

D(n, c, τ) ≥
b(log2 n−1)/τc−1∑

a=0

1

(c− 1)!
·
(

log2 n− aτ − 1

τ − 1

)c−1

+D(n/2τ ·b(log2 n−1)/τc, c, τ)

≥ 1

(c− 1)!

b(log2 n−1)/τc−1∑
a=0

(
log2 n

τ
− a
)c−1

+ 1

≥ 1

(c− 1)!
·
∫ log2 n

τ

1
uc−1 du+ 1

=
1

(c− 1)!
· 1

c

((
log2 n

τ

)c
− 1

)
+ 1

≥ logc2 n

c! · τ c
,

which establishes (9) for n > 2τ . This completes the inductive step.

Recall that k = Θ
((

log2 n
c

))
, so for any constant c one has k = Θ(

(
log2 n
c

)
) ≤ (e log2 n/c)

c.

Setting τ = log2 k +O(1), we get

D(n, c, τ) ≥ logc2 n

c! · τ c
= Θ(k/(log2 k)c) = k1−o(1),

as required.

7 Sparse FFT for worst-case sparse signals and worst case sig-
nals with random phase

In this section we prove the main result of the paper, namely

Theorem 3 (Sparse FFT for worst-case signals). For any power of two integer n and any

positive integer d and any signal x ∈ Cnd with ‖x̂‖0 = k, the procedure SparseFFT(x, n, d, k) in
Algorithm 4 recovers x̂. Moreover, the sample complexity of this procedure is O(k3 log2 k log2N)
and its runtime is O(k3 log2 k log2N).

We also study Fourier sparse signals x whose nonzero frequencies are distributed arbitrarily
(worst-case) and whose values at the nonzero frequencies are independently chosen to have a
uniformly random phase. Recall Definition 7:

Definition 7 (Worst-case signal with random phase). For any positive integer d and power of
two n, we define x to be a worst-case signal with random phase having values {βf}f∈[n]d if

x̂f = βfe
2πiθ for uniformly random θ ∈ [0, 2π),

independently for every f ∈ [n]d. Furthermore, if k of the values {βf}f∈[n]d are nonzero, then x
is said to be a worst-case k-sparse signal with random phase and is guaranteed to have sparsity
k.

For this model we prove the stronger result:
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Theorem 4 (Sparse FFT for worst-case signals with random support). For any power of two

integer n, positive integer d, and worst-case k-sparse signal with random phase x ∈ Cnd, the
procedure SparseFFT-RandomPhase(x, n, d, k) in Algorithm 5 recovers x̂ with probability
1 − 1

N2 . Moreover, the sample complexity of this procedure is O(k2 log4N) and its runtime

is O(k2 log4N).

The main property that allows us to obtain the stronger result is the fact that a small number
of time domain samples from such a signal suffice to approximate its energy with high confidence
(whereas Ω(k) samples are required in general for a worst-case k-sparse signal). This is reflected
by the following

Lemma 6. For any positive integer d, power of two n, and worst-case signal with random phase
x, we have

Pr

1

2
· ‖β‖

2
2

n2d
≤ 1

s

s∑
j=1

|xtj |2 ≤
3

2
· ‖β‖

2
2

n2d

 ≥ 1− 1

n4d
,

where s = Cd3 log3
2 n for some absolute constant C > 0 and t1, t2, . . . , ts ∼ Unif([n]d) are i.i.d.

random variables. The probability is over the randomness in choosing the various tj as well the
randomness in the choice of phase for each frequency of x̂.

For completeness we present a proof for this lemma in Appendix A.

7.1 Proofs of Theorems 3 and 4

Given the construction of our adaptive aliasing filter from the previous section, our sparse
recovery algorithms follow by a reduction to the estimation problem. We find the vertex v∗ =
argminv∈TwT (v), which, by Kraft’s inequality, satisfies wT (v∗) ≤ log2 k. We then define an
auxiliary tree T ′ by appending a left a and a right child b to v. Then for each of the children
a, b, we, in turn, construct a filter G that isolates them from the rest of T (i.e., from the frequency
cones of other nodes in T ) and check whether the corresponding restricted signals are nonzero.
The latter is unfortunately a nontrivial task, since the sparsity of these signals can be as high as
k, and detecting whether a k-sparse signal is nonzero requires Ω(k) samples. However, a fixed
set of k log3N locations that satisfies the restricted isometry property (RIP) can be selected,
and accessing the signal on those values suffices to test whether it is nonzero. If the signal
is further assumed to be a worst case random phase signal, then a polylogarithmic number of
samples suffices. The following lemma (Lemma 7) makes the latter claim formal. The algorithm
is presented as Algorithm 4.

Lemma 7 (ZeroTest guarantee). Suppose d is a positive integer and n is a power of two.

Assume T is a subtree of T full
nd

. Suppose that signals x, χ̂ ∈ Cnd satisfy supp (x̂− χ̂) ⊆⋃
u: leaf of T FrequencyConeT (u). Suppose that ∆ is a multiset of sample from [n]d which sat-

isfies the following for every leaf v of T :

1

2
· ‖ŷ‖

2
2

n2d
≤ 1

|∆|
·
∑

∆∈∆
|y∆|2 ≤

3

2
· ‖ŷ‖

2
2

n2d

where y = (x̂ − χ̂)FrequencyConeT (v) is the signal obtained by restricting x̂ − χ̂ to frequencies
ξ ∈ FrequencyConeT (v) and zeroing it out on all other frequencies.

Then the following conditions hold:
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• ZeroTest(x, χ̂, T, v, n, d,∆) outputs true if supp (x̂− χ̂)∩FrequencyConeT (v) 6= ∅; oth-
erwise, it outputs false.

• The sample complexity of this procedure is O(2wT (v) · |∆|), where wT (v) is the weight of
leaf v in T (see Definition 6).

• The runtime of the ZeroTest procedure is

O
(
‖χ̂‖0 · |∆|+ |T | · d log2 n+ 2wT (v) · |∆|

)
,

where |T | denotes the number of leaves of T .

Proof. Consider lines 14-15 in Algorithm 3. By Claim 3, we have that

h∆
f =

1

nd

∑
ξ∈[n]d

e2πi ξ
T∆
n · χ̂ξĜξ

=
∑
j∈[n]d

G∆−j · χj .

Thus,

H∆
f =

 ∑
j∈[n]d

G∆−j · xj

− h∆
f

=
∑
j∈[n]d

G∆−j · (x− χ)j .

Note that, by Lemma 4, the filter G used in Algorithm 3 is a (v, T )-isolating filter. Therefore,
by the assumption supp (x̂− χ̂) ⊆

⋃
u: leaf of T FrequencyConeT (u) and the definition of a (v, T )-

isolating filter (see Definition 23), we have

H∆
f =

∑
j∈[n]d

G∆−j · (x− χ)j

=
1

nd

∑
ξ∈FrequencyConeT (v)

(x̂− χ̂)ξ · e2πi ξ
T∆
n .

Note that H∆
f is essentially the inverse Fourier transform of (x̂ − χ̂)FrequencyConeT (v), where

(x̂ − χ̂)FrequencyConeT (v) denotes the signal obtained by restricting x̂ − χ̂ to frequencies ξ ∈
FrequencyConeT (v) and zeroing out the signal on all other frequencies. By the assumption of
the lemma we have the following:

1

2
·
‖(x̂− χ̂)FrequencyConeT (v)‖22

n2d
≤ 1

|∆|
·
∑

∆∈∆
|H∆
f |2 ≤

3

2
·
‖(x̂− χ̂)FrequencyConeT (v)‖22

n2d
.

Therefore the first claim of the lemma holds.
Note that in order to construct a (v, T )-isolating filter G, along with Ĝ, the algorithm con-

structs trees T vq for all q ∈ {1, ..., d}, which has total time complexity O(|T |d log2 n). Given T vq ’s,

29



the algorithm constructs filter G and Ĝ in time O
(
2wT (v) + d log2 n

)
, by Lemma 4. Moreover,

the filter G has support size 2wT (v), by Lemma 4.

By Lemma 4, computing the quantities h∆
f = 1

nd

∑
ξ∈[n]d e

2πi ξ
T∆
n · χ̂ξĜξ for all ∆ in line 14 of

Algorithm 3 can be done in time O (‖χ̂‖0 · (|∆|+ d log2 n)) = O (‖χ̂‖0 · |∆|). Given the values
of h∆

f for various ∆, computing all
{
|H∆

f∗ |2
}

∆∈∆ in line 15 takes time O
(
2wT (v) · |∆|

)
. Therefore

the total runtime of this procedure is

O
(
|T |d log2 n+ 2wT (v) · |∆|+ ‖χ̂‖0 · |∆|

)
,

as desired.
Because support size of G is 2wT (v), computing all

{
|H∆

f∗ |2
}

∆∈∆ in line 15 of the algorithm

requires O(2wT (v) · |∆|) samples from x which proves the second claim of the lemma.

Algorithm 3 Procedure for testing zero hypothesis

1: procedure ZeroTest(x, χ̂, T, v, n, d,∆) . ∆: multiset of elements from [n]d

2: f ← fv, l← lT (v), q∗ ←
⌈

l
log2 n

⌉
3: v0, v1, . . . , vl ← path from r to v in T , where v0 = r and vl = v
4: (u1, u2, · · · , uq∗−1, uq∗)← (vlog2 n, v2 log2 n, · · · , v(q∗−1)·log2 n

, vl)
5: for q = 1 to q∗ do
6: T vq ← subtree of T rooted at v(q−1)·log2 n

7: Remove all nodes of T vq which are at distance more than log2 n from v(q−1)·log2 n

8: Label every node w ∈ T vq as fw = (fw)q
9: gq ← FilterPreProcess(T vq , uq, n)

10: Gq ← FilterTime(gq, n)

11: Ĝq(ξq) = FilterFrequency(gq, n, ξq)

12: G← G1 ×G2 × ...×Gd
13: h∆

f ←
1
nd

∑
ξ∈[n]d

(
e2πi ξ

T∆
n · χ̂ξ ·

∏d
q=1 Ĝq(ξq)

)
for all ∆ ∈∆

14: H∆
f ←

(∑
j∈[n]d G(∆− j) · xj

)
− h∆

f for all ∆ ∈∆

15: if 1
|∆|
∑

∆∈∆ |H∆
f |2 = 0 then

16: return false
17: else
18: return true

We now prove our main result:
Proof of Theorems 3 and 4: Note that Algorithms 4 and 5 are identical except in line 2.
We first analyze the common code of the algorithms (after line 2) under the assumption that
the set ∆ in all calls to ZeroTest are replaced with a more powerful set which satisfies the
precondition of Lemma 7 hence ZeroTest correctly tests the zero hypothesis on its input signal
with probability 1. We then establish a coupling between this idealized execution and the actual
execution for both Algorithms 4 and 5, leading to our result.

Let m denote the size of the set m = |∆|. We prove that the following properties are main-
tained throughout the execution of SparseFFT (Algorithm 4) and SparseFFT-RandomPhase
(Algorithm 5):

(1) supp (x̂− χ̂) ⊆
⋃
u: leaf of T FrequencyConeT (u);
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Algorithm 4 Sparse FFT for worst-case sparse signals

1: procedure SparseFFT(x, n, d, k)
2: ∆ ← Multiset of [n]d corresponding to Fourier measurements satisfying RIP of order k
. |∆| = O(k log2

2 k · d log2 n), see Theorem 7
3: T ← {r},fr ← 0
4: while T 6= ∅ do
5: v ← argminu: leaf of TwT (u), f ← fv and l← lT (v)
6: if l = d log2 n then . All bits of v have been discovered
7: v0, v1, . . . , vd·log2 n ← path from r to v in T , where v0 = r and vd·log2 n = v
8: for q = 1 to d do
9: T vq ← subtree of T rooted at v(q−1)·log2 n

10: Remove all nodes of T vq which are at distance more than log2 n from v(q−1)·log2 n

11: Label every node u ∈ T vq as fu = (fu)q
12: gq ← FilterPreProcess(T vq , vq·log2 n, n)
13: Gq ← FilterTime(gq, n)

14: Ĝq(ξq) = FilterFrequency(gq, n, ξq)

15: G← G1 ×G2 × ...×Gd
16: hf ←

∑
ξ∈[n]d

(
χ̂ξ ·

∏d
q=1 Ĝq(ξq)

)
17: χ̂f ← χ̂f +

(
nd ·

∑
j∈[n]d xj ·G−j

)
− hf

18: T ← Tree.remove(T, v)
19: else
20: T ′ ← T ∪ {left child u of v} ∪ {right child w of v}
21: if ZeroTest(x, χ̂, T ′, w, n, d,∆) then
22: Add w as the right child of node v to tree T
23: fw ← f . Frequency corresponding to node w

24: if ZeroTest(x, χ̂, T ′, u, n, d,∆) then
25: Add u as the left child of node v to tree T
26: fu ← f + 2l; . Frequency corresponding to node u

27: return χ̂;
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Algorithm 5 Sparse FFT for worst-case sparse signals with random phase

1: procedure SparseFFT-RandomPhase(x, n, d, k)
2: ∆←

{
∆i : ∆i ∼ Unif([n]d), ∀i ∈ [Cd3 log3

2 n]
}

. C: constant . ∆: Multiset
3: T ← {r},fr ← 0
4: while T 6= ∅ do
5: v ← argminu: leaf of TwT (u), f ← fv and l← lT (v)
6: if l = d log2 n then . All bits of v have been discovered
7: v0, v1, . . . , vd·log2 n ← path from r to v in T , where v0 = r and vd·log2 n = v
8: for q = 1 to d do
9: T vq ← subtree of T rooted at v(q−1)·log2 n

10: Remove all nodes of T vq which are at distance more than log2n from v(q−1)·log2 n

11: Label every node u ∈ T vq as fu = (fu)q
12: gq ← FilterPreProcess(T vq , vq·log2 n, n)
13: Gq ← FilterTime(gq, n)

14: Ĝq(ξq) = FilterFrequency(gq, n, ξq)

15: G← G1 ×G2 × ...×Gd
16: hf ←

∑
ξ∈[n]d

(
χ̂ξ ·

∏d
q=1 Ĝq(ξq)

)
17: χ̂f ← χ̂f +

(
nd ·

∑
j∈[n]d xj ·G−j

)
− hf

18: T ← Tree.remove(T, v)
19: else
20: T ′ ← T ∪ {left child u of v} ∪ {right child w of v}
21: if ZeroTest(x, χ̂, T ′, w, n, d,∆) then
22: Add w as the right child of node v to tree T
23: fw ← f . Frequency corresponding to node w

24: if ZeroTest(x, χ̂, T ′, u, n, d,∆) then
25: Add u as the left child of node v to tree T
26: fu ← f + 2l; . Frequency corresponding to node u

27: return χ̂;
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(2) For every leaf u of tree T one has supp (x̂− χ̂) ∩ FrequencyConeT (u) 6= ∅;

(3) If x̂ is a worst-case signal with random phase, then x̂− χ̂ is a worst-case signal with random
phase;

(4) The quantity φ = (d log2 n+ 1)‖x̂− χ̂‖0 −
∑

u: leaf of T lT (u) always decreases by at least 1
on every iteration of Algorithm 4 or 5;

(5) Always ‖x̂− χ̂‖0 ≤ k;

The base of the induction is provided by the first iteration, at which point T is a single
vertex T = {r} where r is the root with fr = 0 and χ̂ = 0. The conditions (1) and (2) and
(3) and (5) are satisfied since FrequencyConeT (r) = [n]d and supp (x̂ − χ̂) = supp x̂ 6= ∅ and
x̂ − χ̂ = x̂ is a worst-case signal with random phase if x̂ is a worst-case signal with random
phase.

We now prove the inductive step. We assume that conditions (1) and (2) and (3) and
(5) of the inductive hypothesis are satisfied at the beginning of a certain iteration and argue
that conditions (1) and (2) and (3) and (5) are maintained at the end of the iteration. We
also show that the value of the quantity φ defined in (4), at the end of the loop is smaller than
its value at the start of the loop by at least one. Let v ∈ T be the smallest weight leaf chosen
by the algorithm in line 4. We now consider two cases.

Case 1: lT (v) = d log2 n. Since G is a (v, T )-isolating filter, we have by Definition 5 that

for every signal z ∈ Cnd with Fourier support supp ẑ ⊆
⋃
u: leaf in T FrequencyConeT (u) and for

all t ∈ [n]d, ∑
j∈[n]d

zjGt−j =
1

nd

∑
f ′∈FrequencyConeT (v)

ẑf ′e
2πi f

′T t
n . (10)

By condition (1) of the inductive hypothesis one has supp (x̂−χ̂) ⊆
⋃
u: leaf of T FrequencyConeT (u),

and thus we can apply (10) with z = x− χ and t = 0, obtaining

∑
j∈[n]d

(x− χ)jG−j =
1

nd

∑
f ′∈FrequencyConeT (v)

̂(x− χ)f ′ . (11)

Note that by Claim 3,

nd ·
∑
j∈[n]d

χjG−j =
∑
f∈[n]

χ̂f Ĝf = hf ,

where hf is the quantity computed in line 15. We thus get that

nd
∑
j∈[n]d

xj ·G−j − hf =
∑

f ′∈FrequencyConeT (v)

̂(x− χ)f ′

= ̂(x− χ)fv ,

because FrequencyConeT (v) = {fv} due to the assumption that lT (v) = d log2 n. Thus we get

that χ̂(·)← χ̂(·) + ̂(x− χ)fvδfv(·) therefore at the end of the loop we have ̂(x− χ)fv = 0 which

means that fv will no longer be in supp ̂(x− χ). And also v gets removed from tree T implying
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that {fv} = FrequencyConeT (v) will be excluded from
⋃
u: leaf of T FrequencyConeT (u). Note

that this also implies that ̂(x− χ) will remain a worst-case signal with random phase. Therefore,
condition (1) and (2) and (3) hold.

Now, note that ‖ ̂(x− χ)‖0 will decrease by 1 exactly because fv is no longer in supp ̂(x− χ)
and the rest of the support is unchanged. This shows that condition (5) holds. Also,

∑
u: leaf of T lT (u)

decreases by exactly d log2 n because the level of v was lT (v) = d log2 n and v gets removed from
T . So φ will decrease by exactly one as required in condition (4).

Case 2 Suppose that lT (v) < d log2 n. We first check that the invocation of ZeroTest
satisfies preconditions of Lemma 7. We need to ensure that for the residual signal x̂− χ̂ one has

supp (x̂− χ̂) ⊆
⋃

u: leaf of T ′

FrequencyConeT ′(u),

where T ′ is the tree obtained from T by adding two children of v (line 19). This follows, since
by the inductive hypothesis we have

supp (x̂− χ̂) ⊆
⋃

u: leaf of T

FrequencyConeT (u),

and because by claim 6 we have,

FrequencyConeT (v) = FrequencyConeT ′(u) ∪ FrequencyConeT ′(v).

We thus get that the preconditions of Lemma 7 are satisfied, and the output of ZeroTest(x, χ̂, T ′, w, n, d,∆)
is true if (x̂ − χ̂)FrequencyConeT ′ (w) 6= 0 and false otherwise. A similar analysis shows that the
algorithm correctly tests the zero hypothesis on (x̂ − χ̂)FrequencyConeT ′ (u). We thus get, letting
Tnew denote the tree T at the end of the while loop, that

supp (x̂− χ̂) ⊆
⋃

u: leaf of Tnew

FrequencyConeTnew(u),

and for every v ∈ Tnew one has supp (x̂− χ̂) ∩ FrequencyConeTnew(v) 6= ∅. Hence, because
̂(x− χ) remains unchanged, conditions (1) and (2) and (3) hold at the end of the loop.

Now, we show φ is decreased at least by one. By inductive hypothesis supp (x̂− χ̂) ∩
FrequencyConeT (v) 6= ∅ and at least one of w or u will be added to T because FrequencyConeT (v) =
FrequencyConeT ′(u) ∪ FrequencyConeT ′(v). Note that lTnew(w) = lTnew(u) = lT (v) + 1 hence∑

u′: leaf of T lTnew(u′) ≥
∑

u′: leaf of T lT (u′) + 1. Because ‖x̂− χ̂‖0 remains unchanged, the value
of φ will decrease by at least one hence conditions (4) and (d) hold.

Because lT (u) ≤ d log2 n for every leaf u ∈ T , it follows from condition (2) that the quantity
φ = (d log2 n + 1)‖x̂ − χ̂‖0 −

∑
u: leaf of T lT (u) is non-negative. At the first iteration, χ̂ = 0

and T = {r} where r is the root with lT (f) = 0. Hence, φ = ‖x̂‖0(1 + d log2 n) at first
iteration. Because φ is decreasing by at least 1 at each iteration, the algorithm terminates after
O(‖x̂‖0 · d log2 n) iterations. By Lemma 7 along with Claim 7, the runtime of each iteration of
algorithm is O(km) and also sample complexity of each iteration is O(km) therefore the total
runtime and sample complexity both will be O(k2m · d log2 n).

Finally, observe that throughout this analysis we have assumed that the set ∆ satisfies the
precondition of Lemma 7 for all the invocations of ZeroTest by our algorithm.

In reality, there are two cases. The first case is for worst-case signals (Algorithm 4, Theo-
rem 3). In this case, the algorithm chooses ∆ to be a multiset which corresponds to the Fourier
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measurements with RIP of order k. Let F−1
N be the d dimensional inverse Fourier transform’s

matrix with N = nd points. The matrix M =
√
NF−1

N is a unitary matrix. If you let M∆ denote
the submatrix of M whose rows are sampled from M according to set ∆ defined in line 5 of
Algorithm 4 then by Theorem 7 there exists a multiset ∆ of size m = O(k log2

2 k · d log2 n) such

that
√
N
|∆|M∆ satisfies the restricted isometry property of order k. Therefore, for every signal

y ∈ Cnd :
1

2
· ‖ŷ‖

2
2

n2d
≤ 1

|∆|
·
∑

∆∈∆
|y∆|2 ≤

3

2
· ‖ŷ‖

2
2

n2d

As we have shown in condition (5) of the induction, ‖x̂− χ̂‖0 ≤ k. Hence for every leaf v of the
tree ‖(x̂− χ̂)FrequencyConeT (v)‖0 ≤ k therefore the precondition of lemma 7 is satisfied.

The second case is for worst-case signals with random phase (Algorithm 5, Theorem 4). We
have shown in condition (3) of the induction that x − χ is a worst-case signal with random
phase in every iteration of the algorithm. Therefore for every leaf v of the tree it is true that
(x̂− χ̂)FrequencyConeT (v) is a worst-case signal with random phase. In this case, the multiset ∆ is
defined in line 5 of Algorithm 5 therefore by Lemma 6 for a fixed leaf v of tree T with probability
at least 1− 1/n4d the following holds:

1

2
· ‖ŷ‖

2
2

n2d
≤ 1

|∆|
·
∑

∆∈∆
|y∆|2 ≤

3

2
· ‖ŷ‖

2
2

n2d

where y = (x̂− χ̂)FrequencyConeT (v).
This shows that in the second case which corresponds to theorem 4, the failure probability

of procedure ZeroTest is at most 1
n4d . Moreover, the above analysis shows that SFFT makes

at most O(kd log2 n) calls to ZeroTest. Therefore, by a union bound, the overall failure
probability of the calls to ZeroTest is O

(
(kd log2 n) 1

n4d

)
≤ O(n−2d). Hence, we obtain the

desired result.

8 Signals with random support in high dimension

In this section, we consider Fourier sparse signals whose support in the frequency domain is
chosen randomly, while the values at the nonzero frequencies are chosen arbitrarily (worst-case).
In other words, we assume a Bernoulli model for supp x̂, while the values at the frequencies that
are chosen to be in the support are arbitrary. We will present an algorithm that runs in time
O(k logO(1)N). The model for random support signals can be found in Definition 11 (Section 2),
which we restate here for convenience of the reader:

Definition 11 (Random support signal). For any positive integer d, power of two n, and
arbitrary β : [n]d → C, we define x : [n]d → C to be a random support signal of Fourier sparsity
k (with values given by β) if x̂ is the signal defined by

x̂f =

{
βf with probability k/nd

0 with probability 1− k/nd
,

where the xf are independently chosen for the various f ∈ [n]d.
In other words, we assume a Bernoulli model for supp x̂, while the values at the frequencies

that are chosen to be in the support are arbitrary.
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8.1 Outline of our approach

The algorithm is motivated by the idea of speeding up our algorithm for worst-case signals
(Algorithm 4, also see Theorem 3) by reducing the number of iterations of the process from
Θ(k) down to O(logN). Such a reduction (which we show to be impossible for worst-case
signals in Section 6) requires the ability to peel off many elements of the residual in a single
phase of the algorithm, which turns out to be possible if the support of x̂ is chosen uniformly
at random as in Definition 11. Indeed, if one considers the splitting tree T of a signal with
uniformly random support, one sees that

(a) a large constant fraction of nodes v ∈ T satisfy wT (v) ≤ log2 k +O(1);

(b) the adaptive aliasing filters G constructed for such nodes will have significantly overlapping
support in time domain.

We provide the intuition for this for the one-dimensional setting (d = 1) to simplify notation
(changes required in higher dimensions are minor). In this setting, property (b) above is simply
a manifestation of the fact that since the support is uniformly random, any given congruence
classes modulo B′ = Ck for a large enough constant C > 1 is likely to contain only a single
element of the support of x̂. Our adaptive aliasing filters provide a way to only partition
frequency space along a carefully selected subset of bits in [log2N ], but due to the randomness
assumption, one can isolate most of the elements by simply partitioning using the bottom log2 k+
O(1) bits. This essentially corresponds to hashing x̂ into B = Ck buckets at computational
cost O(B′ logB′) = O(k log k). While this scheme is efficient, it unfortunately only recovers a
constant fraction of coefficients. One solution would be to hash into B = Ck2 buckets (i.e.,
consider congruence classes modulo Ck2), which would result in perfect hashing with good
constant probability, allowing us to recover the entire signal in a single round. However, this
hashing scheme would result in a runtime of Ω(k2 log k) and is, hence, not satisfactory. On the
other hand, hashing into Ck2 buckets is clearly wasteful, as most buckets would be empty. Our
main algorithmic contribution is a way of “implicitly” hashing into Ck2 buckets, i.e., getting
access to the nonempty buckets, at an improved cost of Õ(k).

Our algorithm uses an iterative approach, and the main underlying observation is very
simple. Suppose that we are given the ability to “implicitly” hash into B buckets for some
B, namely, get access to the nonempty buckets. If B is at least min(Ck2, N), we know that
there are no collisions with high probability and we are done. If not, then we show that, given
access to nonempty buckets in the B-hashing (i.e. a hashing into B buckets), we can get access
to the nonempty buckets of a (ΓB)-hashing for some appropriately chosen constant Γ > 1 at
a polylogarithmic cost in the size of each nonempty bucket of the B-bucketing by essentially
computing the Fourier transform of the signal restricted to nonempty buckets in the B-bucketing.
We then proceed iteratively in this manner, starting with B = Ck, for which we can perform
the hashing explicitly. Since the number of nonzero frequencies remaining in the residual after t
iterations of this process decays geometrically in t, we can also afford to use a smaller number of
buckets B′ in the hashing that we construct explicitly, ensuring that the runtime is dominated
by the first iteration.

Ultimately, the algorithm takes the following form. At every iteration, we explicitly compute
a hashing into Bbase ≤ Ck buckets explicitly. Then, using a list of nonempty buckets in a Bprev-
hashing from the previous iteration, we extend this list to a list of nonempty buckets in a
Bnext-bucketing at polylogarithmic cost per bucket (by solving a well-conditioned linear system,
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see Algorithm 6), where Bnext = Γ ·Bprev for some large enough constant Γ > 1. Meanwhile, we
reduce Bbase by a factor of Γ, thus maintaining the invariant Bbase ·Bnext ≈ k2 at all times (note
that this is satisfied at the start, when Bbase = Bprev ≈ k, and Bbase ·Bnext remains invariant at
each iteration). Therefore, after a logarithmic number of iterations, we have effectively emulated
hashing into ≈ k2 but at a total cost of roughly one hashing computation into ≈ k buckets (see
Figure 6 for an illustration).

Bucketing in high dimensions (MakeBucket function). We note that our vectorial no-
tation for buckets in high dimensions (see section 8.2) allows us to continue talking about
bucketings with Bbase,Bprev,Bnext buckets, even though now the number of buckets is in fact
a vector of length d. In fact in dimension d the only property of the bucketing that matters for
our analysis is the number of buckets |Bbase|, |Bprev|, |Bnext| and the shape of each bucket is
not important (this is due to the fact that the support is sampled from a permutation invariant
distribution). In order to avoid unnecessary notation overload, in Algorithm 8 we introduce
procedure MakeBucket that constructs a bucketing B of size |B| = b of the following simple
form. The vector B is defined by

Bp =


n if p ≤ blogn bc
b
np if p = blogn bc+ 1
1 o.w.

The pseudocode for MakeBucket, which implements the formula above, is given in Algo-
rithm 8.

8.2 Notation

We will need notations for vectorial operations, e.g., entrywise multiplication and/or division of
vectors, which is defined in the following definition.

Definition 24 (Entrywise vectorial arithmetic). Suppose that B = (B1, B2, · · · , Bd), j =
(j1, j2, · · · , jd) and t = (t1, t2, · · · , td) are d-dimensional vectors and a is a scalar value. Then
we define the following operations,

j · t d-dimensional vector (j1 · t1, j2 · t2, · · · , jd · td).
j/t d-dimensional vector (j1/t1, j2/t2, · · · , jd/td).
a/t d-dimensional vector (a/t1, a/t2, · · · , a/td).
j ≡ t (mod B) entrywise congruence mod B, i.e., for all q = 1, . . . , d, one has jq ≡ tq (mod Bq).

j (mod B) d-dimensional vector (j1 (mod B1), j2 (mod B2), · · · , jd (mod Bd)).

j (mod a) d-dimensional vector (j1 (mod a), j2 (mod a), · · · , jd (mod a)).

|j| the product of all the entries of vector j, i.e., |j| = j1j2 · · · jd.
[B] Cartesian product [B1]× [B2]× · · · × [Bd].

8.3 Outline of our approach

The algorithm is motivated by the idea of speeding up our algorithm for worst-case signals
(Algorithm 4, also see Theorem 3) by reducing the number of iterations of the process from
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Θ(k) down to O(log k). Such a reduction (which is shown to be impossible for worst-case signals
in Section 6) requires the ability to peel off many elements of the residual in a single phase of the
algorithm, which turns out to be possible if the support of x̂ is chosen uniformly at random as
in Definition 11. Indeed, if one considers the splitting tree T of a signal with uniformly random
support (see Figure 5 for an illustration), one sees that

(a) a large constant fraction of nodes v ∈ T satisfy wT (v) ≤ log2 k +O(1);

(b) the adaptive aliasing filters G constructed for such nodes will have significantly overlapping
support in time domain.

We provide the intuition for this for the one-dimensional setting (d = 1) to simplify notation
(changes required in higher dimensions are minor). In this setting, property (b) above is simply
a manifestation of the fact that since the support is uniformly random, any given non-empty
congruence class modulo B′ = Ck for a large enough constant C > 1 is likely to contain only a
single element of the support of x̂. Our adaptive aliasing filters provide a way to only partition
frequency space along a carefully selected subset of bits in [log2N ], but due to the randomness
assumption, one can isolate most of the elements by simply partitioning using the bottom log2 k+
O(1) bits. This essentially corresponds to hashing x̂ into B = Ck buckets at computational
cost O(B′ logB′) = O(k log k). While this scheme is efficient, it unfortunately only recovers a
constant fraction of coefficients. One solution would be to hash into B = Ck2 buckets (i.e.,
consider congruence classes modulo Ck2), which would result in perfect hashing with good
constant probability, allowing us to recover the entire signal in a single round. However, this
hashing scheme would result in a runtime of Ω(k2 log k) and is, hence, not satisfactory. On the
other hand, hashing into Ck2 buckets is clearly wasteful, as most buckets would be empty. Our
main algorithmic contribution is a way of “implicitly” hashing into Ck2 buckets, i.e., getting
access to the nonempty buckets, at an improved cost of Õ(k).

Our algorithm uses an iterative approach, and the main underlying observation is very
simple. Suppose that we are given the ability to “implicitly” hash into B buckets for some
B, namely, get access to the nonempty buckets. If B is at least min(Ck2, N), we know that
there are no collisions with high probability and we are done. If not, then we show that, given
access to nonempty buckets in the B-hashing (i.e. a hashing into B buckets), we can get access
to the nonempty buckets of a (ΓB)-hashing for some appropriately chosen constant Γ > 1 at
a polylogarithmic cost in the size of each nonempty bucket of the B-bucketing by essentially
computing the Fourier transform of the signal restricted to nonempty buckets in the B-bucketing.
We then proceed iteratively in this manner, starting with B = Ck, for which we can perform
the hashing explicitly. Since the number of nonzero frequencies remaining in the residual after t
iterations of this process decays geometrically in t, we can also afford to use a smaller number of
buckets B′ in the hashing that we construct explicitly, ensuring that the runtime is dominated
by the first iteration.

Ultimately, the algorithm takes the following form. At every iteration, we explicitly compute
a hashing into Bbase ≤ Ck buckets explicitly. Then, using a list of nonempty buckets in a Bprev-
hashing from the previous iteration, we extend this list to a list of nonempty buckets in a
Bnext-bucketing at polylogarithmic cost per bucket (by solving a well-conditioned linear system,
see Algorithm 6), where Bnext = Γ ·Bprev for some large enough constant Γ > 1. Meanwhile, we
reduce Bbase by a factor of Γ, thus maintaining the invariant Bbase ·Bnext ≈ k2 at all times (note
that this is satisfied at the start, when Bbase = Bprev ≈ k, and Bbase ·Bnext remains invariant at
each iteration). Therefore, after a logarithmic number of iterations, we have effectively emulated
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hashing into ≈ k2 but at a total cost of roughly one hashing computation into ≈ k buckets (see
Figure 6 for an illustration).

Bucketing in high dimensions (MakeBucket function). We note that our vectorial no-
tation for buckets in high dimensions (see section 8.2) allows us to continue talking about
bucketings with Bbase,Bprev,Bnext buckets, even though now the number of buckets is in fact
a vector of length d. In fact in dimension d the only property of the bucketing that matters for
our analysis is the number of buckets |Bbase|, |Bprev|, |Bnext| and the shape of each bucket is
not important (this is due to the fact that the support is sampled from a permutation invariant
distribution). In order to avoid unnecessary notation overload, in Algorithm 8 we introduce
procedure MakeBucket that constructs a bucketing B of size |B| = b of the following simple
form. The vector B is defined by

Bp =


n if p ≤ blogn bc
b
np if p = blogn bc+ 1
1 o.w.

The pseudocode for MakeBucket, which implements the formula above, is given in Algo-
rithm 8.

8.4 Filtering, hashing, and bucketing in high dimensions

We introduce the main definitions here. Our techniques in this section use a version of our
adaptive aliasing filters that is taylored to the assumption that the support of x̂ is chosen
uniformly at random. Since the signal is assumed to be sampled from a distribution, we are
able to design a fast algorithm by adapting to a distribution as opposed to a given realization
of the support of x̂. The next definition is essentially a simplified version of the definition of a
frequency cone from Section 2 (see Definition 4):

Definition 25 (Congruence classes of support). Suppose d and n are positive integers such that
n is a power of two. Let B = (B1, B2, . . . , Bd) be a vector of powers of two such that Bj | n for

j = 1, 2, . . . , d. For every b ∈ [B], and signal x ∈ Cnd , we define the (B, b)-congruence class of
supp x̂ to be the set Sx(B, b), given by

Sx(B, b) = {f ∈ supp x̂ : f ≡ b (mod B)}.

We access the signal using a bucketing operation, defined below.

Definition 26 (Bucketing in high dimensions). Suppose d and n are positive integers such that
n is a power of two. Let B = (B1, B2, . . . , Bd) be a vector of powers of two such that Bj | n for

all j = 1, 2, . . . , d. For every a ∈ [n]d, b ∈ [B], and signal x ∈ Cnd , we define the (B, b)-bucketing
of x with shift a to be Uax (B, b), given by

Uax (B, b) =
∑

f≡b (mod B)

x̂f · e2πi f
T a
n

=
∑

f∈Sx(B,b)

x̂f · e2πi f
T a
n .
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The following definition of Bernoulli set provides a compact way of referring to the distribu-
tion of supp x̂:

Definition 27 (Bernoulli set). For every power of two n and positive integer d, let N = nd and
set S ⊆ [n]d be a random set such that each j ∈ [n]d is independently chosen to be in S with
probability k/N ,

Pr[j ∈ S] =
k

N
.

Moreover, for any B = (B1, B2, . . . , Bd) such that B1, B2, . . . , Bd | n, we define

S(B) = {f ∈ [B] : ∃ g,h ∈ S such that g 6= h,f ≡ g ≡ h (mod B)}.

The next lemma is crucial for our analysis. The lemma considers two bucketings B and B′,
where B is a refinement of B. The object of interest is the number of buckets in the bucketing
B that contain at least two elements of a Bernoulli set S, i.e. non-singleton buckets. The
lemma shows that as long as the product of the number of buckets in B and B′ is at least k2,
the elements (i.e. frequencies) of a Bernoulli set S that belong to non-singleton buckets in B
must be rather uniformly spread over the coarser bucketing B′. Specifically, no bucket in B′

contains more than O(logN) such frequencies with high probability. We will use this lemma
with B′ = Bbase and B = Bnext and B = Bprev (see proof of Theorem 6 below).

Lemma 8 (Refinement lemma). For any power of two integers n and k, suppose B = (B1, B2, . . . Bd)
and B′ = (B′1, B

′
2, . . . , B

′
d) satisfy B′j | Bj | n for all j = 1, 2, . . . , d as well as |B| · |B′| ≥ k2.

Then, with probability at least 1− 1
N3 , we have that for all b ∈ [B′],∣∣∣S(B) ∩ {f ∈ [B] : f ≡ b (mod B′)}

∣∣∣ = O(logN).

The proof is a simple probabilistic argument and is given in Appendix B.

8.5 Hashing in high dimensions by using downsampling

The main primitive we need for developing an algorithm with Õ(k) sample complexity is a
hashing function based on downsampling, presented below as Algorithm 6. The algorithm takes
as input the list R of buckets in the hashing into Bprev (that will later be guaranteed to be
superset of the nonempty buckets in a Bprev-hashing of the residual signal x−χ) and outputs a
list of potentially nonempty buckets in the hashing into Bnext, together with evaluations of the
corresponding hashed signals at a point α that is given as a parameter.

Lemma 9. (Hashing in high dimensions) Suppose d and n are positive integers such that n
is a power of two. Suppose Bbase = (Bbase

1 , Bbase
2 , . . . , Bbase

d ), Bprev = (Bprev
1 , Bprev

2 , . . . , Bprev
d )

and Bnext = (Bnext
1 , Bnext

2 , . . . , Bnext
d ) are vectors of powers of two such that Bprev

j | Bnext
j and

Bbase
j | Bprev

j for all j. Moreover, let α ∈ [n]d be a shift vector. For any signals x, χ̂ ∈ Cnd

suppose that

R ⊇ {b ∈ [Bprev] : Sx−χ(Bprev, b) 6= ∅}, (12)

where Sx−χ(Bprev, b) is (Bprev, b)-congruence class of supp ̂(x− χ) as per Definition 25. Then
the procedure Hashing (x, χ̂, n, d,Bbase,Bprev,Bnext,α, R) outputs a set W that with probability
1− 1

n10d satisfies

W = {(b′, Uαx−χ(Bnext, b′)) : b′ ∈ [Bnext] s.t. b′ ≡ b (mod Bprev) for some b ∈ R}. (13)
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Algorithm 6 Procedure for hashing a signal’s Fourier transform using downsampling

1: procedure Hashing(x, χ̂, n, d,Bbase,Bprev,Bnext,α, R) . α is a point in time domain
2: . R is the set of nonempty buckets in Bprev

3: m← |Bnext|
|Bprev| maxb∈[Bbase]

∣∣{r ∈ R : r ≡ b (mod Bbase)
}∣∣

4: S ←
{
βi : βi ∼ Unif([Bnext]),∀i ∈ [Cm log2

2m · d log2 n]
}

. S: multiset . C: constant
5: for β ∈ S do
6: a← α+ β · n

Bnext

7: Z
(α,β)
b ← nd

|Bbase|xb·
n

Bbase +a for all b ∈ [Bbase]

8: Ẑ(α,β) ← FFT
(
Z(α,β)

)
9: Ẑ

(α,β)
b ← Ẑ

(α,β)
b −

∑
r∈

[
n

Bbase

] χ̂b+r·Bbasee2πi
(b+r·Bbase)

T
a

n for all b ∈ [Bbase]

10: W ← ∅;
11: for b ∈ [Bbase] do

12: wβ ← Ẑ
(α,β)
b for all β ∈ S

13: Rb ← {(r, s) : b+ r ·Bbase ∈ R and s ∈ [Bnext/Bprev]}
14: (Ab)β,(r,s) ← e2πi(b+rBbase+sBprev)T ( β

Bnext ) for all β ∈ S and (r, s) ∈ Rb
15: v ← LeastSquaresSolver(Ab,w)
16: for (r, s) ∈ Rb do

17: W ←W ∪
{(
b+ rBbase + sBprev,v

(b)
(r,s)

)}
18: return W
19: procedure LeastSquaresSolver(A, b)
20: return (ATA)−1AT b
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Moreover, the sample complexity of this procedure is

O
(
m log2m · d log n ·

∣∣∣Bbase
∣∣∣) ,

while the time complexity of this procedure is

O
(

(m log2m · d log n)3 ·
∣∣∣Bbase

∣∣∣+ (m log2m · d log n) ·
(∣∣∣Bbase

∣∣∣ log2

(
|Bbase|

)
+ ‖χ̂‖0

))
,

where m = |Bnext|
|Bprev| maxb∈[Bbase]

∣∣{r ∈ R : r ≡ b (mod Bbase)
}∣∣.

Proof. Recall that the algorithm uses a coarse Bbase-bucketing to refine a Bprev-bucketing, for
which only the non-empty buckets are computed, to a Bnext-bucketing. Let x′ = x − χ and
a = α+ β · n

Bnext , where α = a mod n
Bnext . Suppose (12) holds.

Note that for any b ∈ [Bbase],

Uax′(B
base, b) =

∑
f≡b (mod Bbase)

x̂′fe
2πi f

T a
n

=
∑

r∈
[
Bprev

Bbase

]
∑

s∈
[
Bnext

Bprev

]
∑

f≡φ(b,r,s) (mod Bnext)

x̂′fe
2πi f

T a
n

=
∑

r∈
[
Bprev

Bbase

]
∑

s∈
[
Bnext

Bprev

] e2πiφ(b,r,s)T ( β

Bnext )
∑

q∈[ n
Bnext ]

x̂′φ(b,r,s)+q·Bnexte2πi
(φ(b,r,s)+q·Bnext)Tα

n

=
∑

r∈
[
Bprev

Bbase

]
∑

s∈
[
Bnext

Bprev

] e2πiφ(b,r,s)T β

Bnext · Uαx′(Bnext,φ(b, r, s)), (14)

where φ(b, r, s) denotes b + rBbase + sBprev ∈ [Bnext] for ease of notation. Hence, Bbase-
bucketing and Bnext-bucketing are related via a linear system which is defined in (14) for any
collection of values of β. We also show how to choose a relatively small number of values of β
such that the above linear system will be well-conditioned. Note that B

next

Bprev is a vector of length
d, as per our vectorial notations in section 8.2, which denotes by how much we want to further
refine each bucket of Bprev-bucketing.

Choosing β’s that make the linear system in (14) well-conditioned: For every b ∈
[Bbase], let Ab denote the

∣∣Bnext
∣∣× ∣∣∣Bnext

Bbase

∣∣∣ matrix whose rows are indexed by β ∈ [Bnext] and

columns are indexed by (r, s) ∈ [B
prev

Bbase ]× [B
next

Bprev ], with entries defined by

(Ab)β,(r,s) = e2πiφ(b,r,s)T ( β

Bnext ).

Moreover, let vb denote the column vector of length
∣∣∣Bnext

Bbase

∣∣∣ with entries indexed by (r, s) ∈

[B
prev

Bbase ]× [B
next

Bprev ] and given by

(vb)(r,s) = Uαx′(B
next, φ(b, r, s)), (15)
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while we let wb denote the column vector of length
∣∣Bnext

∣∣ with entries indexed by β ∈ [Bnext]
and given by

wβ = U
α+β· n

Bnext

x′ (Bbase, b). (16)

Then, (14) implies the following linear system of equations,

Ab · v(b) = w(b). (17)

Next, for any b ∈ [Bbase], let

Rb = {(r, s) : b+ rBbase ∈ R and s ∈ [Bnext/Bprev]}.

By the assumption of the lemma on the set R, one has that the vectors vb in (15) satisfy
supp vb ⊆ Rb for every b ∈ [Bbase]. This shows that the linear system in (17) can be solved very
efficiently by randomly sampling its rows. More formally, suppose that S is a multiset such that
S =

{
βi : βi ∼ Unif([Bnext]),∀i ∈ [Cm log2

2m · d log2 n]
}

where m = maxb′∈[Bbase] |Rb′ | and let

AS
b denote the submatrix of Ab whose rows are selected with respect to set S. Then by Theorem

7, the matrix 1
|S|A

S
b satisfies RIP of order m. We will use this property to solve the system (17)

efficiently.
Let Ãb be a submatrix of Ab with size |S| × |Rb|. Suppose that its rows are selected with

respect to set S and its columns are selected with respect to Rb. More specifically, Ãb is a
|S| × |Rb| matrix whose rows are indexed by β ∈ S and columns are indexed by (r, s) ∈ Rb,
with entries defined by

(Ãb)β,(r,s) = e2πiφ(b,r,s)T ( β

Bnext ).

Moreover, let v(b) denote the column vector of length |Rb| with entries indexed by elements
of Rb and given by

v
(b)
(r,s) = Uαx−χ(Bnext, φ(b, r, s)), (18)

while we let w(b) denote the column vector of length |S| with entries indexed by elements of S
and given by

w
(b)
β = U

α+β· n
Bnext

x−χ (Bbase, b).

Then, (17) implies that
Ãb · v(b) = w(b). (19)

Now, because the matrix
1

|S|
AS
b

satisfies RIP of order |Rb| for all b ∈ [Bbase], one has that the condition number of Ãb
T
Ãb is at

most
√

3. Therefore, a linear least squares solver can compute v(b) efficiently and in a numerically
stable way using the reduced linear system in (19). Note that lines 11-14 of Algorithm 6 carry
out this procedure and compute v(b) for each b ∈ [Bbase].
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Computing Uax−χ(Bbase, b): Now we show how to compute Uax−χ(Bbase, b) for any b ∈ [Bbase]

and a = α+β· n
Bnext . By standard downsampling properties, we have that if Z(α,β) : [Bbase]→ C

is the signal defined by

Z
(α,β)
t =

nd

|Bbase|
xt· n

Bbase +a

then its Fourier transform is given by

Ẑ
(α,β)
b =

∑
f≡b (mod Bbase)

x̂f · e2πi f
T a
n = Uax (Bbase, b).

Hence,

Uax−χ(Bbase, b) = Ẑ
(α,β)
b −

∑
f≡b (mod Bbase)

χ̂fe
2πi f

T a
n , (20)

which demonstrates how to compute Uax−χ(Bbase, b). Note that lines 6-8 of Algorithm 6 simply

compute Uax−χ(Bbase, b), for some b ∈ [Bbase] with a = α+ β · n
Bnext for some β.

Sample complexity and Runtime: Lines 6-8 of Algorithm 6 compute Uax−χ(Bbase, b), for

some b ∈ [Bbase] with a = α+β · n
Bnext for some β, in time O(

∣∣Bbase
∣∣ log2

(
|Bbase|

)
+ ‖χ̂‖0) and

with sample complexity O
(∣∣Bbase

∣∣), according to the rule (20). This shows that the vector wb
in (16) can be constructed efficiently.

Note that lines 11-14 of Algorithm 6 carry out a least squares linear system procedure and
compute v(b) for each b ∈ [Bbase] in time O(|S|3), as the time complexity of LeastSquares-
Solver procedure is O(|S|3). Moreover, by (18), it follows that for a fixed b ∈ [Bbase], line
16 simply adds all pairs (b′, Uαx−χ(Bnext, b′)) with b′ ∈ [Bnext] satisfying (b′ mod Bprev) ∈ R.

Also, any b′ ∈ [Bnext] for which there exists f ∈ supp x̂− χ with f ≡ b′ (mod Bnext) must
satisfy f ≡ b′ (mod Bprev) and, hence, Sx−χ(Bprev, b′ (mod Bprev)) 6= ∅. This shows that
(b′ mod Bprev) ∈ R (by (12)). Thus, it follows that after looping over all b ∈ [Bbase], the final
W satisfies (13), as desired.

Note that the sample complexity of Algorithm 6 is determined by the total number of samples

required to construct the various Z(α,β). For any fixed β ∈ S, constructing Z
(α,β)
j requires

|Bbase| samples from X. Since there are |S| values of β that are relevant, it follows that the
total sample complexity is

O
(
|S| ·

∣∣∣Bbase
∣∣∣) = O

(
m log2m · d log n ·

∣∣∣Bbase
∣∣∣) .

The time complexity of this procedure is due to two computations. First, constructing each
Ẑ(α,β) for a fixed β takes time O(

∣∣Bbase
∣∣ log2

(
|Bbase|

)
+ ‖χ̂‖0). Second, computing the v(b)

vector for each fixed b ∈ [Bbase] requires time O(|S|3). Therefore, the total time complexity is

O
(
|S|3 ·

∣∣∣Bbase
∣∣∣+ |S| ·

(∣∣∣Bbase
∣∣∣ log2

(
|Bbase|

)
+ ‖χ̂‖0

))
.
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8.6 Resolving buckets in the hashed signal

The other major building block we need for developing a sparse FFT algorithm is a function for
testing bucketings of signals with various shifts for emptyness and one-sparsity. Such a primitive
takes in a list of buckets of a hashed signal and determines whether each bucket is empty or
not. If a bucket is not empty, then we determine whether the bucket consists of exactly one
frequency using a one-sparse test. If so, we can determine this frequency and the value of the
signal at this frequency from the bucketed signals. If not, then we retain the bucket for the next
iteration, in which we will hash to more buckets.

Algorithm 7 Procedure for testing a hashed signal

1: procedure TestBuckets({Wα}α∈A∪{e1,...,ed}, n, d,B) . 1-sparse test and zero test

. e1, . . . , ed are standard basis vectors in [n]d

2: χ̂← {0}nd ;
3: R← ∅
4: for b ∈ Dom (Wα) do . Dom (Wα): set of all first coordinates in Wα

5: if
∑
α∈A |Wα(b)|2 > 0 then . Zero test on Ux(B, b)

6: fq ← n
2π · φ

(
Weq (b)

W0(b)

)
for every q ∈ {1, ..., d} . e1, ..., ed are standard bases

7: v ←W0(b)

8: if
∑
α∈A |ve

2πi f
Tα
n −Wα(b)|2 = 0 then . One sparse test on Ux(B, b)

9: χ̂f ← v;
10: else
11: R← R ∪ {b};
12: return (χ̂, R)

Lemma 10. (TestBuckets in high dimensions) Suppose d and n are positive integers such
that n is a power of two. Suppose B = (B1, B2, . . . , Bd) is a vector of powers of two such that

Bj | n for all j. Suppose x ∈ Cnd is a signal such that Wα(b) = Uαx (B, b) is a (B, b)-bucketing
of x with shift α for all α ∈ A and b ∈ Dom(Wα) where A is a multiset of q i.i.d samples from
Unif([n]d) for some

q = Ω

(
max
b∈[B]

|Sx(B, b)| · log2(max
b∈[B]

|Sx(B, b)|) · (d log n)

)
,

and Sx(B, b) for all b ∈ [B] are Congruence classes of supp x̂. Also suppose that Algorithm
7 takes in the quantities Wα(b) for all α ∈ {e1, . . . , ed}, standard basis vectors in [n]d. Then,
TestBuckets({Wα}α∈A∪{e1,...,ed}, n, d,B) returns χ̂ and R that with probability 1− 1

n10d satisfy
the following:

• For any b ∈ Dom(Wα) such that Sx(B, b) is a singleton set, Sx(B, b) = {f}, we have
χ̂f = x̂f .

• We have R = {b ∈ Dom(Wα) : |Sx(B, b)| ≥ 2}.

Moreover, the runtime of this procedure is O (|A| · |Dom(Wα)|).

Proof. Let F−1
N be the d dimensional inverse Fourier transform’s matrix with N = nd points.

The matrix M =
√
NF−1

N is a unitary matrix and all of its elements have absolute value 1√
N

. If
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you let MA denote the submatrix of M whose rows are sampled from M according to set A then

by Theorem 7,
√
N
|A|MA satisfies the restricted isometry property of order maxb∈[B] |Sx(B, b)|+1

with probability 1− 1
N10 . In the rest we condition on the event corresponding to matrix

√
N
|A|MA

satisfying RIP of order maxb∈[B] |Sx(B, b)|+ 1.
Now, note that by definition of Ux(B, b) and Sx(B, b) (definitions 26 and 25 respectively)

we have,

Wα(b) = Uαx (B, b)

=
∑

f∈Sx(B,b)

x̂f · e2πi f
T a
n

=
(
(NF−1

N ) · x̂Sx(B,b)

)
α

therefore, for every b ∈ Dom(Wα) the following holds true,

|A|
2
‖x̂Sx(B,b)‖22 ≤

∑
α∈A
|Wα(b)|2 ≤ 3|A|

2
‖x̂Sx(B,b)‖22

thus the zero test in line 5 of Algorithm 7 works correctly for all buckets.
Now note that if Sx(B, b) is a singleton set {f} then,

Wα(b) = Uαx (B, b)

=
∑

j∈Sx(B,b)

x̂j · e2πi j
T a
n

=
∑
j∈{f}

x̂j · e2πi j
T a
n

= xf · e2πi f
T a
n .

Therefore, for every q = 1, 2, . . . , d, the following holds,

Weq(b)

W0(b)
= e2πi

fT eq
n = e2πi

fq
n

thus, n
2π ·φ

(
Weq (b)

W0(b)

)
= fq. Also note that, W0(b) = x̂f . This is precisely implemented in line 6-7

of Algorithm 7. On the other hand if the hypothesis that Sx(B, b) is a singleton set is incorrect
our algorithm will find it. Using the notation v = W0(b) as in line 7 of Algorithm 7,

Wα(b)− ve2πi f
T a
n =

∑
j∈Sx(B,b)

x̂j · e2πi j
T a
n − ve2πi f

T a
n

=
∑

j∈Sx(B,b)∪{f}

x̂′j · e2πi j
T a
n

=
(

(NF−1
N ) · x̂′Sx(B,b)∪{f}

)
α

where, x̂′ = x̂(·) − vδf (·). Because, x̂′Sx(B,b)∪{f} is at most maxb∈[B] |Sx(B, b)| + 1 sparse and

matrix
√
N
|A|MA satisfies RIP of order maxb∈[B] |Sx(B, b)|+ 1 we have that,
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|A|
2
‖x̂′Sx(B,b)∪{f}‖

2
2 ≤

∑
α∈A
|Wα(b)ve2πi f

T a
n |2 ≤ 3|A|

2
‖x̂Sx(B,b)∪{f}‖22

thus, the one sparse test in line 8 of Algorithm 7 works correctly for all buckets.
It is straightforward to see that the runtime of this procedure is O (|A| · |Dom(Wα)|).

8.7 Sparse FFT for signals with random support in nearly linear time

Algorithm 8 Procedure for Sparse FFT on random support signals with nearly linear sample
complexity and runtime

1: procedure SparseFFT(x, n, d, k)
2: Γ← Θ(1)
3: Bbase ←MakeBucket(Γk, n, d)
4: Bprev ← Bbase

5: Bnext ←MakeBucket(Γ2k, n, d)

6: χ̂0 ← {0}nd

7: R← [Bprev]
8: L← logΓ k
9: for t = 0 to L do

10: if R = ∅ then
11: return χ̂

12: A ← {αj : αj is an i.i.d. sample from Unif([n]d) for all j ∈ [C log2N · (log logN)2]}
13: Wα ← Hashing(x, χ̂, n, d,Bbase,Bprev,Bnext,α, R) for all α ∈ A ∪ {e1, ..., ed}
14: (χ̂′, R)← TestBuckets

(
{Wα}α∈A∪{e1,...,ed}, n, d,B

next
)

15: χ̂← χ̂+ χ̂′

16: Bprev ← Bnext

17: Bbase ←MakeBucket(Γ−tk, n, d)
18: Bnext ←MakeBucket(Γt+3k, n, d)

19: return χ̂

20: procedure MakeBucket(k, n, d)
21: p← blogn kc
22: r ← k

np

23: B1, ..., Bp ← n
24: Bp+1 ← r
25: Bp+2, ..., Bd ← 1
26: return B

Now, we are ready to present the main theorem of this section.

Theorem 6 (Sparse FFT algorithm for random support signals). Suppose d is a positive integer

and n and k are powers of two. For any signal x ∈ Cnd such that x is a random support signal
of Fourier sparsity k, the procedure SparseFFT (x, n, d, k) (see Algorithm 8) returns x̂ with
probability 9/10. Moreover, the runtime and sample complexity of this procedure are Õ(k).

The theorem is a consequence of the following lemma.
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Lemma 11. Let Bbase,(t), Bprev,(t), Bnext,(t), R(t), and χ(t) denote the values of Bbase, Bprev,
Bnext, R, and χ, respectively, at the start of iteration t of the main for loop in Algorithm 8. Then,
for all t = 0, 1, . . . , L, we define the event Et to be the occurrence of the following statements:

1. R(t) = {b ∈ [Bprev,(t)] : Sx−χ(t)(Bprev,(t), b) 6= ∅}.

2. supp ( ̂x− χ(t)) ⊆ supp x̂ and supp χ̂(t) ∩ supp ( ̂x− χ(t)) = ∅.

3. If t > 0 then
∣∣∣Sx−χ(t)

(
Bprev,(t), ξ (mod Bprev,(t))

)∣∣∣ ≥ 2 for every ξ ∈ supp (X̂ − χ̂(t)).

Then, E0 holds with probability 1, while Pr[Et | E0, E1, . . . , Et−1] ≥ 1− 1
n2d for t = 1, . . . , L.

Proof. Note that for t = 0, we have R(t) =
[
Bprev,(0)

]
. Thus, condition (1) trivially holds.

Condition (2) also trivially holds, since χ̂(0) = 0. Furthermore, (3) does not apply for event E0.
Thus, E0 holds with probability 1.

Now, assume that E0, E1, . . . , Em hold for some m ≥ 0. We consider the probability of
Em+1 occurring, conditioned on the aforementioned events. Note that it follows from the
values that Algorithm 8 assigns to Bbase,(m), Bprev,(m) and Bnext,(m) along with condition
(1) of the inductive hypothesis that Lemma 9 can be applied to invocations of Hashing
(x, χ̂(m), n, d,Bbase,(m),Bprev,(m),Bnext,(m),α, R) in line 13 of Algorithm 8, and hence the output
of Hashing procedure satisfies the following,

Wα =
{

(b′, Uα
x−χ(m)(B

next,(m), b′)) : b′ ∈ [Bnext,(m)] s.t. b′ ≡ b (mod Bprev,(m)) for some b ∈ R(m)
}
.

(21)
Moreover, it is clear that for every α ∈ [n]d and every b′ ∈ [Bnext,(m)], one has that Wα(b′)

is (Bnext,(m), b′)-bucketing of x− χ(m).
Now, note that by condition (2) of the inductive hypothesis along with definition of Congru-

ence class presented in Definition 25, it follows that Sx−χ(m)(Bnext,(m), b) ⊆ Sx(Bnext,(m), b) for

all b ∈ [Bnext,(m)]. Hence by Lemma 12, with probability 1− 1
n3d ,

Sx−χ(m)(Bnext,(m), b) = O(d log2 n)

This show that set A defined in line 12 of Algorithm 8 satisfies the precondition of Lemma 10.
Therefore by Lemma 10, a call to TestBuckets procedure in line 14 of Algorithm 8, with
probability 1− 1

n10d , outputs (χ̂′, R(m+1)) such that the following hold:

(a) For any b′ ∈ Dom(Wα) such that Sx−χ(m)(Bnext,(m), b′) is a singleton set, Sx−χ(m)(Bnext,(m), b′) =

{f}, one has χ̂′f = ( ̂x− χ(m))f .

(b) R(m+1) =
{
b′ ∈ Dom(Wα) : |Sx−χ(m)(Bnext,(m), b′)| ≥ 2

}
.

In order to complete the inductive step, it suffices to show that (a) and (b) imply conditions
(1), (2), and (3) in the definition of Et for t = m+ 1.

Observe that condition (a) imply that supp χ̂′ ⊆ supp ( ̂x− χ(m)) therefore since χ(m+1) =

χ(m) + χ′ (by line 15), it follows that supp ( ̂x− χ(m+1)) ⊆ supp ( ̂x− χ(m)). Hence, by in-

ductive hypothesis Em we have supp ( ̂x− χ(m+1)) ⊆ supp x̂. Also note that for every f ∈
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supp ( ̂x− χ(m+1)) we have that f ∈ supp ( ̂x− χ(m)) and hence by condition (2) of the in-

ductive hypothesis Em, one has χ̂
(m)
f = 0. Condition (a) implies that χ̂′f = 0 for every

f ∈ supp ( ̂x− χ(m+1)) and hence χ
(m+1)
f = χ

(m)
f + χ′f = 0 for every such every f . This

establishes condition (2) of Et for t = m+ 1.
Next note that Bprev,(m+1) = Bnext,(m) (by line 16). Conditions (a) along with condition (1)

of the inductive hypothesis for Em and (21) imply that there exists no b′ ∈ [Bprev,(m+1)] such that
|Sx−χ(m+1)(Bprev,(m+1), b′)| = 1. Also note that condition (b) implies that |Sx−χ(m+1)(Bprev,(m+1), b′)| ≥
2 for every b′ ∈ R(m+1), therefore R(m+1) satisfies condition (1) of the induction Et for t = m+1.
This also establishes condition (3) of Et for t = m+ 1.

By a union bound we have that with probability 1− 1
n3d − 1

n10d ≥ 1− 1
n2d , event Em+1 holds

true as desired.

Now we are ready to prove Theorem 6.

Proof of Theorem 6. Note that by Lemma 11, there exist events E0, E1, . . . , EL such that Pr[E0] =
1 and Pr[Et | E0, E1, . . . , Et−1] ≥ 1− 1

n2d for t = 1, 2, . . . , L. Observe that

Pr[EL] ≥ Pr[E0, E1, . . . , EL]

≥ 1−
L∑
t=0

Pr[E0, . . . , Et−1] · Pr[Et | E0, . . . , Et−1]

≥ 1−
L∑
t=0

Pr[Et | E0, . . . , Et−1]

≥ 1−
L∑
t=1

1

n2d

≥ 1− L

n2d
.

Note that condition (3) of EL implies that the existence of a ξ ∈ [n]d such that χ̂
(L)
ξ 6= x̂ξ requires

S(Bprev,(L)) 6= ∅. Now, recall that after the main for loop in Algorithm 8 finishes execution,we
have

|Bprev| = k · ΓL+2.

Thus, by Lemma 14, we have that E
[
S(Bprev)

]
≤ k2

k·ΓL+2 = k
ΓL+2 ≤ 1

100 , by our choice of

Γ and L. Thus, by Markov’s inequality, with probability ≥ 99
100 over the randomness in the

choice of S = supp x̂, we have that S(Bprev) = ∅. Hence, by a union bound, we have that
Pr
[
EL ∧

(
S(Bprev) = ∅

)]
≥ 9

10 . Thus, by condition (3) in Lemma 11, we see that with probability
≥ 9

10 , the output χ̂ of Algorithm 8 satisfies χ̂f = x̂f for all f ∈ [n]d, which proves the correctness
of Algorithm 8.

Now, let us compute the sample complexity of Algorithm 8. Note that for each iteration t of

the main for loop in SparseFFT, we have |B
next|

|Bprev| = Γ. Also, By condition (1) of Et in Lemma
11,

R(t) = {b ∈ [Bprev,(t)] : Sx−χ(t)(Bprev,(t), b) 6= ∅}
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Therefore, since |Bprev| · |Bbase| ≥ k2, by Lemma 8, we have that

max
b∈Bbase,(t)

∣∣∣{r ∈ R(t) : r ≡ b (mod Bbase,(t))
}∣∣∣

= max
b∈Bbase,(t)

∣∣∣S(B) ∩ {f ∈ [B] : f ≡ b (mod B′)}
∣∣∣

= O(logN)

with probability ≥ 1− 1
N3 .

Moreover, |Bbase,(t)| = O
(
k
Γt

)
. Therefore, by Lemma 9, each call to Hashing in the t-th

iteration has sample complexity

O

(
Γ
k

Γt
(log2N)(log logN)2

)
.

Hence, because in each iteration Hashing is invoked O((log2N)(log logN)2) times, the total
sample complexity for the algorithm is

O

(
L−1∑
t=0

Γ · k
Γt

log4N(log logN)4

)
= O

(
k(log4N)(log logN)4

)
,

since Γ = O(1).
Finally, we compute the time complexity of Algorithm 8. By Lemma 9, we have that the

time complexity for each call to Hashing in the t-th iteration of the main for loop is

O

((
Γ(log2N)(log logN)2

)3 · k
Γt

+
(
Γ(log2N)(log logN)2

)
·
(
k

Γt
· log k + k

))
.

Thus, the total time complexity due to calls to Hashing is

O

(
log2N(log logN)2

L−1∑
t=0

((
Γ(log2N)(log logN)2

)3 · k
Γt

+
(
Γ(log2N)(log logN)2

)
·
(
k

Γt
log k + k

)))
,

which can be simplified as
O
(
k(log8N)(log logN)8

)
, (22)

since Γ = O(1). Moreover, the call to TestBucket in the t-th iteration of the main for loop
has time complexity

O

(
|A| ·max

α∈A
|Dom(Wα)|

)
= O

(
k

Γt
log2N · (log logN)2

)
.

Hence, the total time complexity due to calls to TestBucket is

O

(
L−1∑
t=0

k

Γt
log2N · (log logN)2

)
= O

(
k log2N · (log logN)2

)
. (23)

Therefore, by (22) and (23), the total time complexity of Algorithm 8 is

O
(
k(log8N)(log logN)8

)
,

as desired.
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A Proofs and pseudocode omitted from section 4

Proof of Lemma 4: Let v be a leaf of T , let l = lT (v) denote the level of v, let r denote the
root of T , and let v0, v1, . . . , vl denote the path from root to v in T , where v0 = r and vl = v.
Let q∗ denote the smallest positive integer such that l ≤ q∗ · log2 n. Note that q∗ ≤ d.

For q ∈ {0, 1, . . . , d} let T (q) be a subtree of T full
N which denotes the result of truncating T

to contain only the nodes that are at distance at most q log2 n from the root.
We construct the (v, T )-isolating filter Ĝ iteratively by starting with Ĝ(0) = 1 and refining

Ĝ(q−1) to Ĝ(q) over q∗ steps. The filters Ĝ(q) will be (vq·log2 n, T
(q))-isolating for q = 0, 1, . . . , q∗−1

and Ĝ(q∗) will be (vl, T
(q∗))-isolating. Since T (q∗) = T and vl = v, the filter Ĝ(q∗) will be (v, T )-

isolating, as required.
For every q ∈ {1, ..., q∗} let T vq be the subtree of T which is rooted at v(q−1)·log2 n

and is
restricted to contain only the nodes that are at distance at most log2 n from v(q−1)·log2 n

. For
every node u ∈ T vq the label of u is defined to be fu = (fu)q, i.e., the qth coordinate of fu, where
fu is the label of node u in tree T .

We now define Ĝ(q) for q = 1, . . . , q∗. We start by letting Ĝ(0) = 1 and letting for every
f = (f1, . . . , fq, . . . , fd) ∈ [n]d

Ĝ(q)(f) = Ĝ(q−1)(f) · Ĝq(fq). (24)

where Ĝq is a (vq·log2 n, T
v
q )-isolating filter for all q = 1, ..., q∗ − 1 and Ĝq∗ is a (vl, T

v
q∗)-isolating

filter. By lemma 3, for every q = 1, . . . , q∗ there exists such Gq with |supp Gq| = 2
wTvq (vq·log2 n

)

and can be constructed in time O(2
wTvq (vq·log2 n

)
+ log2 n). Such a filter can be computed in

Fourier domain at any desired frequency in time O(log2 n). Note that Ĝ(q) is a tensor product of
q filters in dimension one. We now show by induction on q that Ĝ(q) is a (vq·log2 n, T

(q))-isolating
filter.
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Algorithm 9 Splitting tree construction in time O(|S| log n)

1: procedure Tree(S, n)
2: C0 ← {(r, S)}
3: Let T be a tree with one node, labeled fr = 0
4: for j = 1 to log2 n do
5: Cj ← ∅
6: for all (v, Sv) ∈ Cj−1 do. Cj−1 contains nodes at level j − 1 and their corresponding

set of frequencies
7: R← {g ∈ Sv : g = fv (mod 2j)}
8: L← {g ∈ Sv : g = fv + 2j−1 (mod 2j)}
9: if R 6= ∅ then

10: Add u as right child of v in T
11: Cj ← Cj ∪ {(fv, R)}
12: if L 6= ∅ then
13: Add w as left child of u in T
14: Cj ← Cj ∪ {(fv + 2j−1, L)}
15: return T
16: procedure Tree.remove(T, v)
17: r ← root of T , l← lT (v)
18: v0, v1, . . . , vl ← path from r to v in T , where v0 = r and vl = v
19: q ← largest integer j ≤ l such that vj has two children
20: Remove vq+1, ..., vl and their connecting edges from T
21: return T
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The base of the induction is provided by q = 0: since v0 is the root of T (0), we have that
FrequencyConeT (0)(v0) = [n]d and Ĝ(0) ≡ 1 as required.

We now prove the inductive step: q − 1 → q. We first show that Ĝ
(q)
f ′ = 0 for every

f ′ ∈
⋃

u6=vq·log2 n

u: leaf of T (q)

FrequencyConeT (q)(u). Let u be a leaf of T (q) distinct from vq·log2 n. Let u′

denote the leaf of T (q−1) which is the ancestor of u. We consider two cases.

Case 1: f ′ 6∈ FrequencyConeT (q−1)(v(q−1) log2 n
) Suppose that u′ 6= v(q−1)·log2 n

. Note that lT (u′) ≤
(q − 1) log2 n, and also note that

FrequencyConeT (q)(u) ⊆ FrequencyConeT (q−1)(u′),

Thus for every f ′ ∈ FrequencyConeT (q)(u) it is true that f ′ ∈ FrequencyConeT q−1(u′). By

the inductive hypothesis we have that Ĝ(q−1) is (v(q−1) log2 n
, T (q−1))-isolating, and hence

by the assumption of u′ 6= v(q−1)·log2 n
, one has Ĝ(q−1)(f ′) = 0 for every such f ′, and thus

Ĝ(q)(f ′) = Ĝ(q−1)(f ′) · Ĝq(f ′q) = 0 as required.

Case 2: f ′ ∈ FrequencyConeT (q−1)(v(q−1) log2 n
) Suppose that v(q−1)·log2 n

is ancestor of u. There-
fore, by definition of T vq , one can see that u is a leaf in T vq . Hence, by definition of
T vq , for every f ′ ∈ FrequencyConeT (q)(u), it is true that f ′q ∈ FrequencyConeT vq (u).

Recall that Ĝq is a (vq·log2 n, T
v
q )-isolating filter and therefore, Ĝq(f

′
q) = 0, and thus

Ĝ(q)(f ′) = Ĝ(q−1)(f ′) · Ĝq(f ′q) = 0 as required.

Now we show that Ĝ
(q)
f = 1 for all f ∈ FrequencyConeT (q)(vq·log2 n). Note that vq·log2 n is a leaf

in T vq . Hence, for every f ∈ FrequencyConeT (q)(vq·log2 n), it is true that fq ∈ FrequencyConeT vq (vq·log2 n).

Since Ĝq is a (vq·log2 n, T
v
q )-isolating filter, Ĝq(fq) = 1. Now, note that

FrequencyConeT (q)(vq·log2 n) ⊆ FrequencyConeT (q−1)(v(q−1)·log2 n
),

Thus for every f ∈ FrequencyConeT (q)(vq·log2 n) it is true that f ∈ FrequencyConeT (q−1)(v(q−1)·log2 n
).

By the inductive hypothesis we have that Ĝ(q−1) is (v(q−1) log2 n
, T (q−1))-isolating, and hence

Ĝ(q−1)(f) = 1, and thus Ĝ(q)(f) = Ĝ(q−1)(f) · Ĝq(fq) = 1 as required.

It remains to note that wT (v) =
∑q∗

q=1wT vq (vq·log2 n). By Lemma 3, for every q ∈ {1, ..., q∗}
one has |supp Gq| = 2

wTvq (vq·log2 n
)
, so |supp G| = 2wT (v), as required (note that the support size

of the convolution of two filters is at most the product of support sizes of each filter).
The total runtime for constructing this filter has two parts; First part is the computation time

of Gq’s for all q ∈ {1, ..., q∗} which takes
∑q∗

q=1O
(

2
wTvq (vq·log2 n

)
+ log2 n

)
= O

(
2wT (v) + d log2 n

)
by Lemma 3. Second part is the time needed for computing the tensor product of all Gq’s which
is O (‖G1‖0 · ... · ‖Gq∗‖0) = O(2wT (v)). Therefore the total runtime is O

(
2wT (v) + d log2 n

)
.

Moreover, the total time for computing Ĝ(ξ) is the sum of the times needed for computing all
Ĝq(ξq)’s for q = 1, · · · , q∗, which is O(d log2 n) by Lemma 3.

Proof of Lemma 6: Let N = nd. Recall that for every t ∈ [n]d,

xt =
1

N

∑
f∈[n]d

x̂f · e2πi f
T t
n
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Because all x̂f ’s are zero mean independent random variables, for every fixed t ∈ [n]d one has

that for every f ∈ [n]d the random variables x̂f ·e2πi f
T t
n are zero mean and independent. Observe

that for all f ∈ [n]d, we have |x̂f · e2πi f
T t
n | = |βf | ≤ ‖β‖∞ and also E

[
|x̂f · e2πi f

T t
n |2

]
= |βf |2.

Therefore by Bernstein’s inequality we have that for every fixed t ∈ [n]d,

Pr

[
|xt| >

θ

N

]
≤ 2 exp

(
−

1
2θ

2

‖β‖22 + 1
3‖β‖∞ · θ

)

≤ 2 exp

(
−

1
2θ

2

‖β‖22 + 1
3‖β‖2 · θ

)

If we choose θ = C1 log2N · ‖β‖2 for some absolute constant C1 > 0,

Pr

[
|xt| >

C1 log2N · ‖β‖2
N

]
≤ 2 exp

(
−

1
2C

2
1 log2

2N

1 + 1
3C1 log2N

)
≤ 1

2N5

for large enough constant C1. By a union bound over all t ∈ [n]d we get that, |xt|2 ≤
C2

1 log2
2N

N2 ‖β‖22
for all t ∈ [n]d with probability 1− 1

2N4 .
Now note that by Parseval’s theorem, Claim 1,∑

j∈[n]d

|xj |2 =
1

N

∑
f∈[n]d

|βf |2.

Conditioning on ‖x‖∞ ≤
C2

1 log2
2 N

N2 ‖β‖22, by Chernoff-Hoeffding Bound we have,

Pr

1

2
· ‖β‖

2
2

N2
≤ 1

s

s∑
j=1

|xtj |2 ≤
3

2
· ‖β‖

2
2

N2

 ≥ 1− 2e
−C2·s·‖β‖

2
2

N2‖x‖∞

≥ 1− 2e
− C2·s
C2

1 log2
2 N

where the probability is over the i.i.d. random variables t1, t2, . . . , ts ∼ Unif([n]d) and C2 is
some positive constant. Therefore, by the choice of s = C log3

2N for some large enough constant
C we have that,

Pr

1

2
· ‖β‖

2
2

N2
≤ 1

s

s∑
j=1

|xtj |2 ≤
3

2
· ‖β‖

2
2

N2

 ≥ 1− 1

2N4
.

By a union bound over these two events we have that 1
2 ·
‖β‖22
N2 ≤ 1

s

∑s
j=1 |xtj |2 ≤

3
2 ·
‖β‖22
N2 with

probability at least 1− 1
N4 .
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B Proof of Lemma 8

Lemma 12. For every power of two integer n and positive integer d, if x ∈ Cnd is a random sup-
port signal as per Definition 11, the following conditions hold. If N = nd, B = (B1, B2, . . . , Bd)
is a vector of powers of two such that Bj | n for all j = 1, 2, . . . , d and |B| ≥ 4k, then, with
probability at least 1− 1

N3 over x,

|Sx(B, b)| = O(logN)

for all b ∈ [B] (where Sx(B, b) is the set from Definition 25).

Proof. Note that for every b ∈ [B], we have that for each f ∈ [n]d with f ≡ b (mod [B]),
Pr[f ∈ S] = k/N . Then, since there are N/|B| such f for every fixed b ∈ [B], it follows that,

E [|Sx(B, b)|] ≤ k

N
· N
|B|
≤ 1

4
.

Hence, by the Chernoff bound, it follows that |Sx(B, b)| = O(logN) with probability 1 −N−4

for any fixed b ∈ [B]. Finally, by a union bound over all b ∈ [B], we have the desired result.

We now prove a lemma about the size of the sets S(B):

Lemma 13. For any power of two integers n and k, positive integer d and B = (B1, B2, . . . , Bd)

such that B1, B2, . . . , Bd | n and f = (f1, . . . , fd) ∈ [B], we have that Pr[f ∈ S(B)] ≤
(

k
|B|

)2
,

where S(B) is defined as in Definition 27.

Proof. Suppose f ∈ [B]. Then, observe that there are
(
n
B1

)(
n
B2

)
·
(
n
Bd

)
= N

B1B2···Bd elements

g = (g1, . . . , gd) ∈ [n]d such that f ≡ g (mod B). Note that f ∈ S(B) if at least two of these
elements lies in S. Thus, for every f ∈ [B] we have,

Pr[f ∈ S(B)] = 1−
(

1− k

N

) N
|B|
− N

|B|
· k
N

(
1− k

N

) N
|B|−1

≤ 1−
(

1− k

N

) N
|B|−1(

1− k

N
+

k

|B|

)
≤ 1−

(
1− k

|B|
+
k

N

)(
1− k

N
+

k

|B|

)
= 1−

(
1−

(
k

|B|
− k

N

)2
)

=

(
k

|B|
− k

N

)2

≤
(

k

|B|

)2

,

since |B| ≤ nd = N .

As a consequence, we have a bound on the expected size of S(B).
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Lemma 14. For any power of two integers n and k, any B = (B1, B2, . . . , Bd) such that

B1, B2, . . . , Bd | n, we have E
[
|S(B)|

]
≤ k2

|B| .

Proof. Simply note that

E
[
|S(B)|

]
=
∑
f∈[B]

Pr[f ∈ S(B)]

≤ |B| ·
(

k

|B|

)2

=
k2

|B|
,

by Lemma 13.

We are now ready to proof Lemma 8.
Proof of Lemma 8: Consider a fixed b ∈ [B′]. Note that there are m = B1B2···Bd

B′1B
′
2···B′d

values of

f ∈ [B] such that f ≡ b (mod B′). Moreover, by Lemma 13, each such f lies in S(B) with
identical probability

p ≤
(

k

|B|

)2

,

and these events are all independent. Thus,

E
[∣∣∣S(B) ∩ {f ∈ [B] : f ≡ b (mod B′)}

∣∣∣] ≤ mp
≤ k2

|B| · |B′|
≤ 1.

Thus, by the Chernoff bound, we have that∣∣∣S(B) ∩ {f ∈ [B] : f ≡ b (mod B′)}
∣∣∣ = O(logN)

with probability at least 1 − 1
N4 , as desired. Finally, taking a union bound over all |B′| ≤ N

values of b ∈ [B] gives the desired result.
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