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Abstract

Cut and spectral sparsification of graphs have numerous applications, including e.g. speed-
ing up algorithms for cuts and Laplacian solvers. These powerful notions have recently been
extended to hypergraphs, which are much richer and may offer new applications. However, the
current bounds on the size of hypergraph sparsifiers are not as tight as the corresponding bounds
for graphs.

Our first result is a polynomial-time algorithm that, given a hypergraph on n vertices with
maximum hyperedge size r, outputs an ε-spectral sparsifier with O∗(nr) hyperedges, where O∗

suppresses (ε−1 log n)O(1) factors. This size bound improves the two previous bounds: O∗(n3)
[Soma and Yoshida, SODA’19] and O∗(nr3) [Bansal, Svensson and Trevisan, FOCS’19]. Our
main technical tool is a new method for proving concentration of the nonlinear analogue of the
quadratic form of the Laplacians for hypergraph expanders.

We complement this with lower bounds on the bit complexity of any compression scheme
that (1+ε)-approximates all the cuts in a given hypergraph, and hence also on the bit complexity
of every ε-cut/spectral sparsifier. These lower bounds are based on Ruzsa-Szemerédi graphs,
and a particular instantiation yields an Ω(nr) lower bound on the bit complexity even for fixed
constant ε. In the case of hypergraph cut sparsifiers, this is tight up to polylogarithmic factors
in n, due to recent result of [Chen, Khanna and Nagda, FOCS’20]. For spectral sparsifiers it
narrows the gap to O∗(r).

Finally, for directed hypergraphs, we present an algorithm that computes an ε-spectral spar-
sifier with O∗(n2r3) hyperarcs, where r is the maximum size of a hyperarc. For small r, this
improves over O∗(n3) known from [Soma and Yoshida, SODA’19], and is getting close to the
trivial lower bound of Ω(n2) hyperarcs.
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1 Introduction

Sparsification is an algorithmic paradigm where a dense object is replaced by a sparse one with
similar features, which often leads to significant improvements in efficiency of algorithms, including
running time, space complexity, and communication. We study edge-sparsification of hypergraphs,
which replaces a hypergraph G = (V,E,w) with a sparse hypergraph G̃ that has the same vertex
set V and only a few hyperedges, often a reweighted subset of E. This is a natural extension of
edge-sparsification of ordinary graphs, which includes key concepts such as cut sparsifiers, spectral
sparsifiers, and flow sparsifiers. These were studied extensively from numerous angles, including
various constructions, tight size bounds, related variants, and practical applications. As this litera-
ture is too vast to cover here, we quickly recap the basics for graphs before discussing hypergraphs,
which are our focus here.

Graphs. Let G = (V,E,w) be an edge-weighted graph, where w ∈ RE+. The energy of a vector
x ∈ RV in G is defined as

QG(x) =
∑
uv∈E

wuv(xu − xv)2,

and can also be written as x>LGx, where LG is the Laplacian matrix of G. Spielman and
Teng [ST11a] introduced the notion of an ε-spectral sparsifier of G, which is a graph G̃ = (V, Ẽ, w̃)
that satisfies (for 0 ≤ ε ≤ 1/2)

∀x ∈ RV , Q
G̃

(x) ∈ (1± ε)QG(x). (1)

The size of a spectral sparsifier G̃ is |Ẽ|.
We say that an edge e ∈ E is cut by S ⊆ V if one endpoint of e belongs to S and another one

belongs to V \S. The total weight of edges cut by S is clearly QG(1S), where 1S ∈ RV denotes the
characteristic vector of a set S ⊆ V .

A spectral sparsifier G̃ of a graph G preserves many important properties of G: its cuts have
approximately the same weight as those in G; its Laplacian L

G̃
approximates every eigenvalue of

LG; electrical flows in G̃ approximate those in G. It is extremely useful to have a spectral sparsifier
with a small number of edges because algorithms that involve these quantities can be applied on
the sparsifier G̃ instead of on G, with only a small loss in accuracy.

A spectral sparsifier of size O(n/ε2) can be computed in almost linear time [LS18], where n is
the number of vertices in G.

Hypergraphs. A hypergraph is a natural extension of a graph, which can represent relations
between three or more entities, and has proved useful to solve problems in practical areas such
as computer vision [HLM09, OB12], bioinformatics [KHT09], and information retrieval [GKR00].
Many of those problems, such as semi-supervised learning [HSJR13, YNY+19, ZHTC20] and link
prediction [YNN+20], involve the notion of energy for hypergraphs, where the energy of a vector
x ∈ RV in an edge-weighted hypergraph G = (V,E,w) is defined as

QG(x) =
∑
e∈E

we max
u,v∈e

(xu − xv)2. (2)

This definition matches the one for graphs when every hyperedge in G is of size two. As before,
QG(1S) gives the total weight of hyperedges cut by S, where we regard a hyperedge e ∈ E as cut
if e ∩ S 6= ∅ and e ∩ (V \ S) 6= ∅.
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Table 1: Bounds on the size of hypergraph sparsifiers

cut sparsification spectral sparsification reference

Õ(n2/ε2) [NR13] implicitly

Õ(nr/ε2) [KK15]

Õ(n3/ε2) [SY19]

Õ(nr3/ε2) [BST19]

Õ(n/ε2) [CKN20]

Õ(nr/εO(1)) Theorem 1.1

Spectral sparsification of hypergraphs was first defined by Soma and Yoshida [SY19], as follows.
Similarly to graphs, an ε-spectral sparsifier of G is a hypergraph G = (V, Ẽ, w̃) that satisfies (1).
This is a strictly stronger notion than that of the hypergraph cut sparsifier which has been previously
studied in [NR13] and [KK15].

Besides the applications mentioned above, spectral sparsifiers for hypergraphs were used to
show agnostic learnability of a certain subclass of submodular functions [SY19].

Soma and Yoshida [SY19] showed that every hypergraph G admits an ε-spectral sparsifier with
Õ(n3/ε2) hyperedges,1 which is non-trivial because a general hypergraph can have 2n − 1 (non-
empty) hyperedges. Moreover, they provide an algorithm recovering this sparsifier, that runs in
close to linear time (in the input size). Later, Bansal, Svensson and Trevisan [BST19] showed
that every hypergraph G admits a spectral sparsifier with Õ(nr3/ε2) hyperedges, where r is the
maximum size of a hyperedge in G. Note that this bound is incomparable to [SY19] because r
could be as large as n.

1.1 Results

Spectral sparsification of undirected hypergraphs. Our first contribution is an algorithm
that constructs an ε-spectral sparsifier of a hypergraph with only Õ(nr/εO(1)) hyperedges, which
improves upon the previous constructions mentioned above. (See Table 1 for known bounds for
hypergraph sparsification.)

Theorem 1.1. Given an r-uniform hypergraph G = (V,E,w) and 1/n ≤ ε ≤ 1/2, one can compute
in polynomial time with probability 1 − o(1) an ε-spectral sparsifier of G with nr(ε−1 log n)O(1)

hyperedges. The running time is O(mr2) + nO(1), where m = |E|.

To simplify notation, our entire technical analysis considers a hypergraph G = (V,E) that
is unweighted (i.e., unit weight hyperedges), reserving the letter w for the edge weights in the
sparsifier.

This is actually without loss of generality, see Section 6.4.
We stress that Theorem 1.1 in fact applies to hypergraphs with maximum size of a hyperedge at

most r. Indeed, in our analysis every hyperedge is a multiset of vertices, and therefore a hyperedge
with less than r vertices can be trivially extended to a multiset of exactly r vertices by copying an
arbitrary vertex, without changing the energy (but it might affect vertex degrees).

1Throughout, we write Õ(·) to suppress a factor of logO(1) n.
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Bit-complexity lower bound. To complement Theorem 1.1, we consider lower bounds on the
bit complexity of sparsifiers. Here, we consider ε-cut sparsifiers, which require that (1) holds only
for vectors of the form x = 1S . This notion actually predates spectral sparsification and was first
defined by Benczúr and Karger [BK15] for graphs, and by Kogan and Krauthgamer [KK15] for
hypergraphs. Obviously, lower bounds for cut sparsifiers directly imply the same lower bounds also
for spectral sparsifiers.

The second contribution of this work is a surprising connection between a Ruzsa-Szemerédi
(RS) graph [RS78], which is a well-studied notion in extremal graph theory, and a lower bound on
the bit complexity of a hypergraph cut sparsifier. Here, an (ordinary) graph is called a (t, a)-RS
graph if its edge set is the union of t induced matchings of size a. Then, we show the following.

Theorem 1.2. Suppose that there exists a (t, a)-Ruzsa-Szemerédi graph on n vertices with a ≥
6000
√
n log n. Assume also one can compress unweighted (t + 1)-uniform hypergraphs G = (V,E)

on 2n vertices into k bits, from which QG(1S) can be approximated for every S ⊆ V within factor
1± ε, where ε = O(a/n). Then, k = Ω(at).

For example, by instantiating Theorem 1.2 with the (nΩ(1/ log logn), n/3−o(n))-Ruzsa-Szemerédi
graphs known due to Fischer et al. [FLN+02], we deduce that Ω(nr) bits are necessary to encode
all the cut values of an arbitrary r-uniform hypergraph with r = nO(1/ log logn), even within a fixed
constant ratio 1 + ε.

This lower bound is in fact near-tight. Indeed, Chen, Khanna, and Nagda [CKN20] showed very
recently that every hypergraph G admits an ε-cut sparsifier with O(n log n/ε2) hyperedges, which
are actually sampled from G. Applying this construction with fixed ε and r = nO(1/ log logn) yields
a sparsifier of G with O(n log n) hyperedges; encoding a hyperedge (including its weight, which
is bounded by nr) takes at most O(r log n) bits, and thus one can encode all the cuts of G using
O(nr log2 n) bits. It follows that our lower bound is optimal up to a lower order factor O(log2 n).
Instantiating our lower bound with the original construction of Ruzsa and Szemerédi [RS78], we
can rule out the possibility of compressing the cut structure of a hypergraph with n vertices and
maximum hyperedge size r with significantly less than nr space, and a polynomial scaling in the
error (that is with nr1−Ω(1)ε−O(1) space), for any r. See Corollaries 7.11, 7.12 and 7.13 in Section 7
for more details.

In fact, our space lower bound for hypergraphs far exceeds the O(n log n/ε2) bits that suffices
to approximately represent all the cuts of an (ordinary) graph by simply storing a cut sparsifier.
We thus obtain the first provable separation between the bit complexity of approximating all the
cuts of a graph vs. of a hypergraph.

Spectral sparsification of directed hypergraphs. We also consider spectral sparsification of
directed hypergraphs. Here, a hyperarc e consists of two disjoint sets, called the head h(e) ⊆ V and
the tail t(e) ⊆ V , and the size of the hyperarc is |t(e)|+ |h(e)|. A directed hypergraph G = (V,E)
then consists of a vertex set V and a hyperarc set E. For an edge-weighted directed hypergraph
G = (V,E,w) and a vector x ∈ RV , the energy of x in G is defined as

QG(x) =
∑
e∈E

we max
u∈t(e),v∈h(e)

(xu − xv)2
+, (3)

where (a)+ = max{a, 0}. Again, it is defined so that QG(1S) is the total weight of hyperarcs that
are cut by S, where a hyperarc e is cut if t(e) ∩ S 6= ∅ and h(e) ∩ (V \ S) 6= ∅.

It is not difficult to see that a spectral sparsifier might require (in the worst-case) at least Ω(n2)
hyperarcs, even for an ordinary directed graph. Indeed, consider a balanced bipartite clique directed
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from one side of the bipartition towards the other. Here, every arc is the unique arc crossing some
particular directed cut, and hence a sparsifier must keep all the Ω(n2) arcs (see also [IT18, CPS20]).
However, Soma and Yoshida [SY19] showed that every directed hypergraph admits an ε-spectral
sparsifier with Õ(n3/ε2) hyperarcs. We tighten this gap by showing that Õ(n2/ε2) hyperarcs are
sufficient when every hyperarc is of constant size.

Theorem 1.3. Given a directed hypergraph G = (V,E) with maximum hyperarc size at most r
such that 11r ≤

√
εn, and a value ε ≤ 1/2, one can compute in polynomial time with probability

1− o(1) an ε-spectral sparsifier of G with O(n2r3 log2 n/ε2) hyperarcs.

We note that Theorem 1.3 is stated under the assumption 11r ≤
√
εn, which is useful for our

analysis for technical reasons. For larger values of r the result of [SY19] gives a better bound on
the number of hyperedges in the sparsifier, and therefore this assumption is not restrictive.

1.2 Related Work

The first construction of cut sparsifiers for hypergraphs was given by Kogan and Krauthgamer [KK15]
and uses O(n(r+ log n)/ε2) hyperedges. They also mention that an upper bound of O(n2 log n/ε2)
hyperedges follows implicitly from the results of Newman and Rabinovich [NR13]. Very recently
(and independent of our work), Chen, Khanna, and Nagda [CKN20] improved this bound to
O(n log n/ε2) hyperedges, which is near-optimal because the current lower bound is Ω(n/ε2) edges,
and actually holds for (ordinary) graphs [ACK+16, CKST19].

Louis [Lou15] (later merged with Chan et al. [CLTZ18]) initiated the spectral theory for hy-
pergraphs, in which the Laplacian operator L : RV → RV of a hypergraph is defined so that its
“quadratic form” xL(x) coincides with the energy (2). As opposed to the graph case, here the
Laplacian operator is merely piecewise linear, and hence computing its eigenvalues/vectors is hard.
He showed that O(log r)-approximation is possible, and that obtaining a better approximation ra-
tio is NP-hard assuming the Small-Set Expansion (SSE) hypothesis [RS10]. He further showed a
Cheeger inequality for hypergraphs, which implies that, given a vector x ∈ RV with a small energy,
one can efficiently find a set S ⊆ V of small expansion, which roughly means that the number of
hyperedges cut by S is small relative to the number of hyperedges incident to vertices in S (see
Section 2 for details). Since then, several other algorithms for finding sets of small expansion have
been proposed [TMIY20, IMTY18].

Yoshida [Yos16] proposed another piecewise linear Laplacian for directed graphs and used it to
study structures of real-world networks. Generalizing the Laplacians for hypergraphs and directed
graphs, Laplacian L for directed hypergraphs was proposed [LM18, Yos19], whose quadratic form
x>L(x) coincides with (3).

1.3 Discussion

An obvious open question is the existence of a spectral sparsifier with Õ(n) hyperedges. As we will
see in Section 3, our overall strategy to construct a spectral sparsifier is decomposing the input
hypergraph into good expanders (in a non-trivial way) and then sparsifying each expander. Here
a good expander is a hypergraph with the maximum possible expansion up to a constant factor
(see Section 2.1 for the details). However, we do not even know whether we can spectrally sparsify
hypergraph expanders with Õ(n) hyperedges. To see the difficulty, note that a graph expander has
expansion Θ(1) whereas an r-uniform hypergraph expander has expansion Θ(1/r). Let x ∈ RV be
a vector with

∑
v∈V x

2
vd(v) = 1, where d(v) is the degree of a vertex v ∈ V . Then by the Cheeger

inequality for hypergraphs (Theorem 2.3), the energy of x in a graph expander is Ω(1) whereas
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that in an r-uniform hypergraph expander is merely Ω(1/r). Hence preserving the latter energy is
seemingly a harder problem.

2 Preliminaries

In the paper, we will often need to deal with additive or multiplicative errors of various approxi-
mations. For simplicity of notation we use Ã = A ± δ to denote A − δ ≤ Ã ≤ A + δ, and we use
Ã = (1± ε)A to denote (1− ε)A ≤ Ã ≤ (1 + ε)A.

2.1 Hypergraph and Expansion

A hypergraph G = (V,E) on a vertex set V is usually defined so that E is a set of hyperedges, each
of which is an arbitrary (non-empty) subset of V (as opposed to ordinary graphs, where it is a subset
of size two). In a slight departure from the norm, we allow the hyperedges in E to be multisets
instead. That is, a hyperedge may contain certain vertices multiple times. This may be thought of
as a generalization of the use of self-loops in ordinary graphs, which can be considered as multisets
containing a single vertex with multiplicity two — and thus having size two. This slight change
in the definition allows us to consider r-uniform hypergraphs throughout the paper without loss of
generality, which makes the analysis in Section 6 much simpler. We call a hypergraph r-uniform if
all of its hyperedges have size r.

Let us denote the multiplicity of a vertex v ∈ V in e ∈ E by µe(v). Then the size of e is∑
v∈V µe(v) (as is normal for multisets). The degree of a vertex v is d(v) =

∑
e∈E µe(v).

Furthermore, we also allow hyperedges in E to appear with multiplicity, i.e., parallel edges.
This means that E itself is a multiset. We call a hypergraph that has neither multiset edges nor
multiple instances of the same edge a simple hypergraph.

For a hypergraph G = (V,E) and a set S ⊆ V , let E(S) ⊆ E be the multiset of hyperedges
e ∈ E such that every vertex in e belongs to S. Then, let G[S] = (S,E(S)) denote the subgraph of
G induced by S.

Let G = (V,E) be a hypergraph and S ⊆ V be a vertex set. The volume of S, denoted by
vol(S), is

∑
v∈S d(v). We say that a hyperedge e ∈ E is cut by S if e ∩ S 6= ∅ and e ∩ (V \ S) 6= ∅.

In this context, we often call a pair (S, V \ S) a cut. Let E(S, V \ S) denote the set of hyperedges
cut by S. Then, the expansion of S (or a cut (S, V \ S)) is

Φ(S) =
|E(S, V \ S)|

min {vol(S), vol(V \ S)}
.

The expansion of a hypergraph G = (V,E) is defined to be Φ(G) := minS⊆V Φ(S). For Φ ≥ 0, we
say that G is a Φ-expander if Φ(G) ≥ Φ.

2.2 Spectral Hypergraph Theory

We briefly review spectral theory for hypergraphs. See, e.g., [CLTZ18, Yos19] for more details.

Definition 2.1. Let G = (V,E) be a hypergraph and x ∈ RV be a vector. The energy of a hyperedge
e ∈ E with respect to x is defined as Qx(e) = maxa,b∈e (xa − xb)2, and the energy of a subset of
hyperedges E′ ⊆ E is Qx(E′) =

∑
e∈E′ Qx(e), respectively. Finally, the entire energy of x is defined

as the energy of all hyperedges combined, that is, Q(x) = Qx(E). If the underlying hypergraph G
is unclear from context, we specify by writing QG(x).

5



Definition 2.2. Let G = (V,E) be a hypergraph and ε > 0. G̃ = (V, Ẽ, w) is a weighted subgraph
of G if w is a vector in RE+, mapping each hyperedge e ∈ E to a non-negative value, and Ẽ denotes
{e ∈ E | we > 0}. Such a weighted subgraph is called an ε-spectral sparsifier if for any vector
x ∈ RV , Q̃(x) = (1± ε) ·Q(x), where Q̃ denotes energy with respect to the graph G̃, that is

Q̃(x) =
∑
e∈Ẽ

we ·Qx(e).

The size of such a sparsifier is |Ẽ|.

Given a hypergraph G = (V,E) and a vector x ∈ RV , we can define an ordinary graph Gx =
(V,Ex) so that the energy of x on G and that on Gx are equal. Specifically, we define Ex as the
multiset

Ex =

{(
argmax
a∈e

xa, argmin
b∈e

xb

) ∣∣∣∣ e ∈ E} ,
where ties are broken arbitrarily.

The following Cheeger’s inequality is a cornerstone of spectral hypergraph theory. Although a
similar theorem has been proven in [CLTZ18, Theorem 6.1], we include the proof in Appendix A for
completeness because we do not know whether their proof goes through when we allow for multiset
hyperedges.

Theorem 2.3 (Hypergraph Cheeger’s inequality). Let G = (V,E) be an r-uniform hypergraph with
expansion at least Φ ≤ 2/r. Then for any vector x ∈ RV with

∑
v∈V xvd(v) = 0, we have

Q(x) ≥ rΦ2

32

∑
v∈V

x2
vd(v).

Remark 2.4. In fact, for simple hypergraphs the requirement Φ ≤ 2/r is unnecessary and the
statements holds in full generality. In our setting, this requirement is crucial, as non-simple r-
uniform hypergraphs may have expansion ω(1/r), in which case the statement clearly does not hold.

3 Technical Overview

In this section we briefly outline the techniques used in the proofs of our main results.

3.1 Spectral Sparsification of Expanders

We begin by constructing spectral sparsifiers for “good” hypergraph expanders, where we call a
hypergraph a good expander if it has expansion at least Ω̃(1/r). Even in this restricted case, no
result better than Õ(nr3/ε2) [BST19] was known previously. Our plan will then be to partition
general input hypergraphs into a series of good expanders. The expansion Ω̃(1/r) is in some sense
the best we can hope for. In fact, r-unifrom simple hypergraphs cannot have an expansion better
than Θ(1/r) and consequently no expander decomposition algorithm can guarantee expansion more
than that.

To construct our spectral sparsifier for a good expander, we apply importance sampling to the
input hypergraph. We sample each hyperedge e independently with some probability pe and scale
it up with weight 1/pe if sampled. This guarantees that E(G̃) = G and so for any vector x ∈ RV
we have EQ̃(x) = Q(x), where Q̃ denotes the energy with respect to the sparsifier. In our case, pe
is inversely proportional to minv∈e d(v), and then the expected number of sampled hyperedges is
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proportional to n — simply charge each hyperedge e to a vertex v ∈ e of minimum degree, then
each vertex is in charge of O(1) sampled hyperedges in expectation. It remains to prove that the
random quantity Q(x) concentrates well around its expectation for all vectors x simultaneously.

So far this is a known technique: similar approaches to constructing spectral sparsifiers in
ordinary graphs have appeared in many works, starting from [ST11b, SS11]. However, all of these
rely on concentration inequalities for linear functions of independent random variables related to
the matrix Bernstein inequality – see, e.g., [Tro15]2. Unfortunately, the energy of a hypergraph is
not a linear transformation and such tools cannot be applied to it. Two recent works on spectral
sparsification of hypergraphs developed methods for circumventing this problem, namely [SY19]
and [BST19]. The former uses a rather crude union bound plus Chernoff bound argument, and
loses a factor of n in the size of the sparsifier, both for undirected and directed hypergraphs.
The latter, namely the recent work of [BST19] uses Talagrand’s comparison inequality and generic
chaining to compare the hypergraph sampling process to effective resistance sampling of [SS11], and
loses a factor of r3 in the size of the sparsifier. In this work we derive a simultaneous concentration
inequality for Q̃(x) for all x ∈ RV from more basic principles, and obtain a sparsifier with ≈ nr
hyperedges as a result – a bound that is seemingly best that can be obtained through the expander
decomposition route.

Note that for a single, fixed vector x ∈ RV , the concentration inequality Q̃(x) = (1 ± ε)Q(x)
holds with high probability by the Chernoff bound (Theorem A.1). Our broad strategy will be to
prove concentration over individual choices of x, and combine these results through a union bound.
An obvious issue is that x is a continuous variable, making a direct union bound infeasible. We
therefore have to discretize it, rounding each x to some x̃ from a finite net. Our plan then becomes
to prove the chain of approximations

Q(x) ∼= Q(x̃) ∼= Q̃(x̃) ∼= Q̃(x),

where the second approximation (Q(x̃) ∼= Q̃(x̃)) utilizes the idea above of a Chernoff bound for
each x̃ plus a union bound over the net.

This turns out to be too simplistic, and the analysis requires a more technical discretization of
x. Recall that the energy of the whole hypergraph can be written as a sum of the energies of the
individual hyperedges:

Q(x) =
∑
e∈E

Qx(e).

We categorize hyperedges based on a carefully chosen metric maxv∈e x
2
v · minv∈e d(v), which we

will call the hyperedge’s power. If a hyperedge’s power is approximately 2−i, then it resides in
the ith category Ei (see Section 4.2). We have in total a logarithmic number of categories. This
categorization is important, because the power of a hyperedge turns out to be closely related to
the strength of the Chernoff bound applicable to it, as well as to the required accuracy of the
approximation x̃. That is, some cruder approximation x̃ may be sufficient to guarantee Qx(E1) ∼=
Qx̃(E1), but it might not be able to guarantee the same for a later category. Conversely, the
Chernoff bound is stronger (i.e., the failure probability is smaller) at larger values of i. Thus, for
each i we discretize x into a different vector x(i) (rather than the same x̃) and we prove individually
for each i that

Qx(Ei) ∼= Qx(i)(Ei)
∼= Q̃x(i)(Ei)

∼= Q̃x(Ei).

2More precisely, the proof of the necessary concentration properties in [ST11b] heavily relies on linearity of the
graph Laplacian (specifically, the proof proceeded by bounding the trace of a high power of a corresponding matrix
using combinatorial methods), and the analysis of [SS11] relies on a concentration inequality for linear functions of
independent random variables due to Rudelson and Vershynin [RV07]. Both of these proofs can also be reproduced
using the matrix Bernstein inequality.
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Here, “∼=” necessarily covers both multiplicative and additive errors. Indeed, we have no guar-
antee on the sizes of these categories. Some Ei could contain only a single hyperedge, in which
case a simple Chernoff bound would yield no concentration whatsoever. This is where we utilize
the additive-multiplicative version (Theorem A.2). Since we have Θ(log n) categories to sum over,
we naturally allow additive error Θ(εQ(x)/ log n).

Note that x(i) is a discretization of x specialized to preserve the energies of hyperedges in Ei.
Intuitively, the energy of such a hyperedge e is dictated by the largest value of x2

v within it. This
value necessarily belongs to a vertex satisfying x2

vd(v) ' 2−i. Thus, it should be enough for our
rounding to preserve the x-values of vertices that satisfy this. To this end, we round the x-values
of vertices with x2

vd(v) ' 2−i carefully — by an inverse polynomial amount in n. However, we
round the x-values of all other vertices to 0 — which is obviously a crude (non-careful) rounding.
Thus, if there are only ki vertices we have to be careful about, the number of possible settings of
x(i) becomes ≈ exp(ki).

Recall the formula of the additive-multiplicative Chernoff bound from Theorem A.2. In our case,
the allowable multiplicative error is always ≈ 1 + ε, while the allowable additive error is always
≈ εQ(x). The only quantity that varies from level to level is the range of the random variables
involved. If a specific hyperedge is sampled, it is scaled up by 1/pe ≈ minv∈e d(v), and the energy of
this weighted hyperedge can be upper bounded by ≈ maxv∈e x

2
v ·minv∈e d(v) — exactly the power

of the hyperedge. Thus, at level i, the additive-multiplicative Chernoff bound guarantees a failure
probability of ≈ exp(−2iQ(x)). (Here we omit the ε terms, along with others, for simplicity.)

Finally, we want to equate the terms in the exponents of the Chernoff bound with the enumera-
tion of x(i)’s, so as to bound the total failure probability. We use hypergraph Cheeger (Theorem 2.3)
to relate ki to Q(x). Suppose that x is normalized in the sense that

∑
v∈V x

2
vd(v) = 1. This imme-

diately gives that ki ≤ 2i by definition. On the other hand, we can finally use our assumption that
the input hypergraph G was a good expander, since hypergraph Cheeger gives us that Q(x) ' 1/r.
This makes the error probability for individual x(i)’s ≈ exp(−2i/r) (from Chernoff bounds), while
the enumeration of all x(i) becomes ≈ exp(2i). To bridge this gap, we must sacrifice a factor r in the
sampling ratio pe, and correspondingly in the size of the output sparsifier (see proof of Claim 4.7).

The formal proof is far more involved, and can be found in Section 4.

3.2 General Spectral Sparsification of Hypergraphs

Having constructed spectral sparsifiers for good expanders, we move our attention to arbitrary
input hypergraphs. We decompose the vertex set of the input hypergraph G = (V,E) into clusters
of good expansion, while being careful not to cut too many hyperedges between the clusters. We
adapt well-known techniques to the setting of hypergraphs, and is detailed for completeness in
Section 5. As is common for expander decompositions, we partition V into clusters C1, . . . , Ck such
that the internal expansion of each cluster (along with its induced hyperedges) is at least Ω̃(1/r)
while cutting only a constant fraction of the hyperedges between the clusters.

In ordinary graphs, this would immediately yield the desired result: We could simply decompose
G into expanders and sparsify these, then repeat this process on the discarded hyperedges. Since
the number of hyperedges decreases by a constant factor at each level, this process terminates after
O(log n) levels of expander decomposition; each vertex only participates in O(log n) expanders,
and thus the size bound of the overall sparsifier only suffers a logarithmic factor compared to the
sparsifiers of expanders. For hypergraphs, this is not the case. Even simple, r-uniform hypergraphs
may have up to nearly nr hyperedges. This means that such a decomposition process could require
r log n levels to terminate, introducing another factor r in the size of the sparsifier.

To combat this problem, we contract clusters into individual supernodes after sparsifying them
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(see Algorithm 2). This allows us to simply bound the number of clusters a single vertex can
participate in, and consequently the size of the output sparsifier. However, proving the correctness
of this more complicated algorithm introduces new challenges.

We denote the contracted version of the input hypergraph G by G/ ≈, where u ≈ v if the
two vertices u and v have been contracted into the same supernode. We can equate between the
hyperedges of G and those of G/ ≈ using the natural bijection between them (this means that a
hyperedge e in G refers also to the corresponding hyperedge in G/ ≈, and vice versa). Note that
this operation can produce multiple parallel hyperdges, as well as vertices appearing within the same
hyperedge with multiplicity, even if these phenomena were not allowed in the input hypergraph. It
is important to note that our expander sparsification algorithm from Section 4 works equally well
in this setting. Furthermore, by allowing hyperedges to contain vetices with multiplicity higher
than 1, we may continue to work with r-uniform hypergraphs throughout this process of repeatedly
contracting vertices. This technicality is crucial, since our expander decomposition algorithm is
designed for this setting, and does not work when hyperedges have different sizes (by more than a
constant factor).

The main technical contribution of Section 6 is to show that a sparsifier computed after con-
traction still sufficiently approximates the energy of the input hypergraph before contraction. Here
we take a simplified example: Suppose we wish sparsify a cluster C ⊂ V and subsequently contract
it into a supernode vC . At a later level we might wish to sparsify some other cluster C ′ that con-
tains vC as one of its vertices (see Figure 1). The result is a (weighted) subset of hyperedges that
well-approximates the spectral structure of C ′, but will this still be the case when we un-contract
vC?

cluster C

after contraction of C

=⇒

contracted cluster C

cluster C ′

supernode vC

Figure 1: Illustration of the contraction process. Vertices inside C are contracted into a single
supernode vC . This is then contained in a later cluster C ′.

Denote the hyperedges of C ′ by E′, and let their sparsifier be Ẽ′ (which is a weighted subset
of E′). Being a sparsifier with respect to the contracted hypergraph can be viewed as being a
sparsifier on the original hypergraph only when x ∈ RV is uniform, i.e., takes the same value, on
all verices of C, as in this case we can simply assign that same value to vC , and the energy of
the original and contracted hypergraphs will be the same. Unfortunately, we have to deal with
general vectors x ∈ RV , so we quantify how far x is from satisfing that uniformity requirement. We

9



consider the maximum discrepancy between the x-values of C, defined as δ = maxu,v∈C |xu − xv|.
We show in Section 6.3 that the additive error introduced by taking Ẽ′ as a sparsifier to E′ in the
original hypergraph – as opposed to the contracted hypergraph where it is guaranteed to be a good
sparsifier – is proportional to δ2 per hyperedge (see the proof of Claim 6.13).

We handle this additive error by arguing that it is dwarfed by energy of x with respect to C.
On the one hand, we introduce δ2 error per hyperedge of C ′ for a total of at most ≈ δ2d′n, where
d′ is the typical degree in C ′. On the other hand, we know that the range of x within C is δ, so by
hypergraph Cheeger (Theorem 2.3) the energy of C is at least ≈ δ2d/r, where d is the typical degree
in C. (Here we assume that there are no outlier vertices with extremely low degree, which can be
guaranteed by a slight adaptation of the expander decomposition subroutine, Lemma 5.1.) Recall
that the number of hyperedges — and therefore the typical degree — decreases by a constant factor
per level. If we can simply guarantee that the sparsifiaction of C precedes the sparsification of C ′

by at least Ω(log n) levels, then d will dwarf d′ by an arbitrarily large nΘ(1) factor. We accomplish
this by simply waiting Ω(log n) levels to contract a cluster after sparsifying it (see Algorithm 2).

The formal proof is far more involved, but relies on the same concept of charging additive
errors to previous clusters, until we ultimately achieve the desired overall error of εQ(x). The
details appear in Section 6.

3.3 Lower Bounds

The most common method for approximating the Laplacian of a (hyper)graph is to take a weighted
subset of the original (hyper)edges. While asympotically optimal for graphs [ACK+16, CKST19],
this method has obvious limitations as a data structure: it is not hard to come up with an example
where Ω(n) hyperedges are required even for the sparsifier to be connected, and if the input hyper-
graph is r-uniform, this translates into Ω(nr log n) bit complexity, a linear loss in the arity r of the
hypergraph. It is therefore natural to ask whether there are more efficient ways of storing a spectral
approximation to a hypergraph. As concrete example, we could permit the inclusion of hyperedges
not in the original hypergraph – could this or another scheme lead to a data structure that can
approximate the spectral structure of a hypergraph using Õ(n) space, avoiding a dependence on r?

In Section 7, we study this question in full generality:

Is it possible to compress a hypergraph into a o(n · r) size data structure that can
approximate the energy QG(x) (defined in (2)) simultaneously for all x ∈ RV ?

In Section 7, we show a space lower bound of Ω(nr) for sparsifying a hypergraph on n vertices
with maximum hyperedge-size r3. In fact, our lower bound applies even to the weaker notion of cut
sparsification (where one only wants to approximate QG(x) for all x ∈ {0, 1}V ), and is tight by the
recent result of [CKN20], who gave a sampling-based cut sparsification algorithm that produces
hypergraph sparsifiers with O(n logO(1) n) hyperedge. In what follows we give an outline of our
lower bound.

We start by formally defining the data structure for approximating the cut structure of a
hypergraph that we prove a lower bound for. A hypergraph cut sparsification scheme (HCSS) is an
algorithm for compressing the cut structure of a hypergraph such that queries on the size of cuts
can be answered within a small multiplicative error:

3With some limits on the range of r. For more formal statements of our results see Section 7.2.
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Definition 3.1. Let H(n, r) be the set of hypergraphs on a vertex set [n] with each hyperedge having
size at most r. A pair of functions Sparsify : H(n, r) → {0, 1}k and Cut : {0, 1}k × 2[n] → N is
said to be an (n, r, k, ε)-HCSS if for all inputs G = (V,E) ∈ H(n, r) the following holds.

• For every query S ∈ 2[n],
∣∣Cut(Sparsify(G), S)− |E(S, S)|

∣∣ ≤ ε · |E(S, S)|.

To argue a lower bound on the space requirement (parameter k above), we use a reduction to
string compression. It is known that {0, 1}-strings of length ` cannot be significantly compressed
to a small space data structure that allows even extremely crude additive approximations to subset
sum queries — see, e.g., the LP decoding paper of [DN03] (here we only need a lower bound for
computationally unbounded adversaries), or Section 7.1. We manage to encode a {0, 1}-string of
length ` into the cut structure of a hypergraph H with fewer hyperedges than ` — a testament to
the higher complexity of hypergraph cut structures, as opposed to the cut structures of ordinary
graphs.

Our string encoding construction utilizes Ruzsa-Szemerédi graphs. These are (ordinary) graphs
whose edge-sets are the union of induced matchings. Our construction works generally on any
Ruzsa-Szemerédi graphs and as a result we get several lower bounds in various parameter regimes
(values of the hyperedge arity r and the precision parameter ε) based on the specific Ruzsa-
Szemerédi graph constructions we choose to utilize. In particular, for the setting where r =
nO(1/ log logn) we are able to conclude that any hypergraph cut sparsification scheme requires Ω(rn)
bits of space even for constant ε, matching the upper bound of [CKN20] to within logarithmic
factors. For larger r we get a lower bound of n1−o(1)r bits of space for ε = n−o(1). The latter
in particular rules out the possibility of an ε-sparsifier that can be described with asymptotically
fewer than (ε−1)O(1)nr bits of space.

Here we briefly describe how we encode strings into hypergraphs generated from Ruzsa-Szemerédi
graphs. Let G be a bipartite Ruzsa-Szemerédi-graph (with bipartition P ∪ Q) composed of t in-
duced matchings of size a each. We can then use the a · t edges of the graph to encode a string s of
length ` = at: simply order the edges of G and remove any edges corresponding to 0 coordinates
in s, while keeping edges corresponding to 1’s. This graph — which we call Gs — already encodes
s when taken as a whole. However, its cut structure is not sufficient for decoding it. For that we
need to turn Gs into a hypergraph Hs as follows: For each vertex u on one side of the bipartition,
say P , we combine all edges adjacent on u into one hyperedge containing {u} ∪ Γ(u). This means
that each hyperedge will have only a single vertex in P , but many vertices in Q (see Figure 2).

To decode the original string s from the cut structure of H, we must be able to answer subset
sum queries q ⊆ [at], that is return how many 1-coordinates s has, restricted to q. (For more
details see the definition of string compression – Definition 7.1 in Section 7.1.) To do this, consider
each induced matching one at a time and decode s restricted to the corresponding coordinates. We
measure the size of a carefully chosen cut in Hs. Consider Figure 2: We restrict our view to a single
matching Mj supported on Pj and Qj in the two sides of the bipartition. Suppose for simplicity
that q is entirely contained in this matching, and we are interested in the Hamming-weight of s
restricted to a subset of coordinates q. To create our cut, in the top half of the hypergraph (P ),
we take the endpoints of edges corresponding to q – we call this set A. In the bottom half (Q), we
take everything except for Qj . The cut, which we call S, is depicted in red in Figure 2.

Informally, the crux of the decoding is the observation that the number of hyperedges crossing
from A to Qj is exactly the quantity we want to approximate. Indeed, consider a coordinate in q.
If it has value 1 in s, the corresponding hyperedge crosses from A to Qj , thus crossing the cut S.
If however this coordinate is 0 in s, the corresponding hyperedge does not cross to Qj , thus not
crossing the cut. These types of hyperedges are denoted by 1 in Figure 2.
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P

Q

Pj

Qj

A

hyperedges of type 1

hyperedges of type 2

hyperedges of type 3

matching Mj

Figure 2: Illustration of the decoding process. One side of the cut S is depicted in orange.

Unfortunately, there are more hyperedges crossing S, adding noise to our measurement of s.
One might hope to prove that the noise is small, i.e., can be attributed to measurement error, but
this is not the case. Instead, we show that while this noise is not small, it is predictable enough
to subtract accurately without knowing s. Hyperedges denoted 2 in Figure 2 cross from Pj \ A to
Q\Qj . Here we observe that nearly all hyperedges from Pj \A do in fact cross the cut, for almost all
choices of s. Hyperedges denoted 3 in Figure 2 cross from P \Pj to Q\Qj . Here we cannot say much
about the quantity of such hyperedges crossing the cut. However, we observe that this quantity
does not depend on q, and therefore we can use Chernoff bounds (Theorem A.1) to prove that it
concentrates around its expectation with high probability over s. This allows us to predict and
subtract the noise caused by type 3 hyperedges, for whatever instance of Ruzsa-Szemerédi-graph
we use (see the proof of Theorem 7.9).

Ultimately, we show that efficient cut sparsification for such hypergraphs would result in an
equally efficient compression of {0, 1}-strings, which implies our lower bounds. For more details see
Section 7.

3.4 Directed Spectral Sparsification of Hypergraphs

In Section 8, we apply our discretization technique from Section 4 to the spectral sparsification of
directed hypergraphs. As a testiment to the versitility of this technique, we are able to produce an
O(n2r3 log2 n/ε2)-sized ε-spectral sparsifier. This is a factor n better than the previous state of the
art by [SY19], and nearly optimal in the setting where r is constant.

The broad arc of the proof is very similar to that of Section 4: We construct our sparsifier
using importance sampling. We then divide the set of hyperarcs into a logarithmic number of
categories, Ei. For each category separately, we show using discretization that the energy of the
proposed sparsifier approximates the energy of the input hypergraph with respect to all x ∈ RV
simultaneously with high probability.

However, the details of each of these steps differ from their corresponding step in Section 4.
Here we mention only a few key differences. Instead of looking at degrees or expansion, we define
a novel quantity characterizing each hyperarc we call its overlap. Intuitively, this denotes the
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highest density of an induced subgraph in which the paericular hyperarc resides. We then sample
each hyperarc with probability inverse proportional to its overlap. We show that this produces a
sufficiently small sparsifier with high probability (see Lemma 8.2).

Perhaps the most crucial departure from Section 4 occurs during the discretization step when
proving Qx(Ei) = Q̃x(Ei). Instead of discretizing the vector x ∈ RV , we discretize the derived

vector of energies on the hyperarcs, that is Qx ∈ RE . So for each x and i we define a vector Q
(i)
x

— from a finite set of possibilities — such that, informally

Qx(Ei) ∼= Q(i)
x (Ei) ∼= Q̃(i)

x (Ei) ∼= Q̃x(Ei).

For more details on the definition of Q
(i)
x , see the proof of Lemma 8.7. This additional trick is

necessary; we do not know of a way to make the discretization argument work by rounding x itself.
For more details on the construction of directed hypergraph sparsifiers and their analysis see

Section 8.

4 Spectral Sparsification of Expanders

In this section, we prove the following.

Theorem 4.1. There is an algorithm that, given a parameter n, given 100/n ≤ ε ≤ 1/2 and an r-
uniform hypergraph G = (V,E) with |V | ≤ n and expansion at least 350

√
(log n)/(εrn) ≤ Φ ≤ 2/r,

outputs an ε-spectral sparsifier of G with O(|V | · (1
ε log n)O(1)/(Φ2r)) hyperedges with probability

1−O((log n)/n2) in O(r|E|) time.

Remark 4.2. Note that n here does not denote the size of V but an arbitrary parameter larger
than that. n serves only as an indirect error parameter, as the failure probability of the algorithm
is allowed to be 1 − O((log n)/n2). The reason for this notation is that later on, in Section 6, we
apply Theorem 4.1 to subgraphs of the input hypergraph. In this context, n will denote the the size
of the input hypergraph, whereas |V | will denote the (potentially much smaller) size of the cluster
within it, to be sparsified. Note that the size of the sparsifier scales linearly in the size of the cluster,
but only logarithmically in the size of the input hypergraph. The latter is because the desired failure
probability is always defined in terms of n.

Remark 4.3. The guarantee of Theorem 4.1 translates to |Ẽ| = Õ(|V |r) when Φ(G) = Ω(1/r),
i.e., when G is a nearly-optimal expander.

We show our construction of the sparsifier in Section 4.1 and discuss its correctness in Sec-
tion 4.2, where some proofs are deferred to Section 4.3.

The following lemma is useful throughout this section.

Lemma 4.4. For any hypergraph G = (V,E), we have∑
e∈E

1

minv∈e d(v)
≤ |V |.

Proof. Consider each hyperedge e ∈ E to be directed towards its vertex with the lowest degree, i.e.,
argminv∈e d(v), breaking ties arbitrarily. Each vertex v ∈ V has at most d(v) incoming hyperedges,
and each such hyperedge contributes to the above sum by 1/d(v). Hence the total contribution of
all the incoming hyperedges to v is at most 1. It follows that the overall summation is at most
|V |.
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4.1 Construction

The construction of G̃ is quite simple. Sample each hyperedge e ∈ E with probability pe =

min
(

λ
minv∈e d(v) , 1

)
for

λ = (ε−1 log n)O(1)/(Φ2r). (4)

Each sampled hyperedge e is given weight we = 1/pe, and for every non-sampled hyperedge e define
we = 0. Let G̃ contain the sampled hyperedges, i.e., Ẽ = {e ∈ E | we > 0}. Notice that each
random variable we has expectation E[we] = 1, and thus informally E[G̃] = G.

Clearly we can compute the output in time O(r|E|). Also, we can bound the size of the sparsifier
with high probability as follows.

Lemma 4.5. We have
P[|Ẽ| ≥ 2λ|V |] ≤ O(1/n2),

when |Ẽ| = Ω(log n).

Proof. First, we have

E[|Ẽ|] ≤
∑
e∈E

pe ≤ λ
∑
e∈E

1

minv∈e d(v)
≤ λ|V |,

where the last inequality is due to Lemma 4.4. Noting that |Ẽ| is a sum of independent indicator
random variables, the claimed inequality is a direct consequence of the Chernoff bound (Theo-
rem A.1).

4.2 Correctness

Let us now consider the spectral properties of G̃. We must prove that with high probability

∀x ∈ RV , Q̃(x) = (1± ε) ·Q(x). (5)

We stress that this gives an error bound that holds for all x simultaneously. We may assume
without loss of generality that

∑
v∈V xvd(v) = 0 and

∑
v∈V x

2
vd(v) = 1, because Equation (5) is

invariant under translation and scaling of x. Let the set of such centered and normalized vectors
be RV . This guarantees that every non-isolated vertex v has x2

v ≤ 1/d(v) ≤ 1, and by Theorem 2.3

we get Q(x) ≥ rΦ2

32 .

Now fix one such vector x ∈ RV , and use it to partition the hyperedge multiset E into O(log n)
subsets as follows. For each i = 1, . . . , i∗, where i∗ = d2 log ne, let

Ei =
{
e ∈ E | max

v∈e
x2
v ·min

v∈e
d(v) ∈ (2−i, 2−i+1]

}
,

and let

E∗ = E \
i∗⋃
i=1

Ei =
{
e ∈ E | max

v∈e
x2
v ·min

v∈e
d(v) ≤ 2−i

∗
}
.

To justify the second equality in the equation above, note that
∑

v∈V x
2
vd(v) = 1 implies x(v)2 ≤

1/d(v), and therefore for every e ∈ E

max
v∈e

x2
v ·min

v∈e
d(v) ≤ max

v∈e
1/d(v) ·min

v∈e
d(v) = 1.
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Informally, we would like to show that with high probability, for all x and all i we have Q̃x(Ei) ∼=
Qx(Ei). Note that the multisets Ei and E∗ are dependent on x, but we omit this from the notation
for better readability. Our plan is to define another vector x(i) ∈ RV by rounding the coordinates
of x, that preserves Q(Ei) up to small multiplicative and additive error. Using this rounded vector,
we will then show

Q̃x(Ei) ∼= Q̃x(i)(Ei)
∼= Qx(i)(Ei)

∼= Qx(Ei),

and similarly also Q̃x(E∗) ∼= Qx(E∗).

Formally, for each v ∈ V define x
(i)
v as follows:

• If x2
vd(v) ≥ ε22−i/2500, then round xv to the nearest integer multiple of 1/(n2

√
d(v)).

• If x2
vd(v) < ε22−i/2500, then round xv to 0.

We implement the above plan using the following four claims.
First, we show that for every scale i the energy of Ei with respect to the rounded vector x(i) is

quite close to the energy of Ei with respect to the original vector x:

Claim 4.6. For all x ∈ RV and all i = 1, . . . , i∗,

Qx(i)(Ei) =
(

1± ε

10

)
Qx(Ei)±

20

n
.

Next, we show that for every scale i our sampling process preserves energy of Ei on rounded
version of all x simultaneously:

Claim 4.7. For all i = 1, . . . , i∗,

P
[
∀x ∈ RV , Q̃x(i)(Ei) =

(
1± ε

10

)
Qx(i)(Ei)±

εQ(x)

10 log n

]
≥ 1− 1

n2
.

We then relate the energy of the sampled Ei on rounded versions of x to the corresponding
energy on original x:

Claim 4.8. For all i = 1, . . . , i∗,

P
[
∀x ∈ RV , Q̃x(i)(Ei) =

(
1± ε

10

)
Q̃x(Ei)±

60

n

]
≥ 1− 1

n2
.

Finally we bound the error introduced on the hyperedges of E∗.

Claim 4.9.

P
[
∀x ∈ RV , Q̃x(E∗) = Qx(E∗)±

12

n

]
≥ 1− 1

n2
.

Before proving these claims, which we do in the next section, let us show how to use them to
show the correctness of the sparsifier.

Lemma 4.10. The hypergraph G̃ is an ε-spectral sparsifier of G with probability 1−O((log n)/n2).

Proof. Assume henceforth that the events in Claims 4.7, 4.8, and 4.9 all hold simultaneously for
every i — we know that this happens with probability 1 − O(log n/n2) — and let us compare
Qx(Ei) with Q̃x(Ei) for each i. If the above claims had no additive error, we could conclude that
Q̃x(Ei) = (1 ± 4ε/10)Qx(Ei). Similarly, if they had no multiplicative error, we could conclude

that |Q̃x(Ei)−Qx(Ei)| ≤ 80
n + εQ(x)

10 logn ; we could then use the assumed lower bound on Φ to bound
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80
n ≤

εQ(x)
10 logn , and sum up these additive errors over all i = 1, . . . , i∗ to a total that is bounded by

4
10εQ(x). These arguments extend easily also to E∗.

For the formal calculation, consider first one direction,

Q̃x(Ei) ≤
(

1− ε

10

)−1
[

60

n
+ Q̃x(i)(Ei)

]
By Claim 4.8

≤
(

1− ε

10

)−1
[

60

n
+

εQ(x)

10 log n
+
(

1 +
ε

10

)
Qx(i)(Ei)

]
By Claim 4.7

≤
(

1− ε

10

)−1
[

60

n
+

εQ(x)

10 log n
+
(

1 +
ε

10

)[20

n
+
(

1 +
ε

10

)
Qx(Ei)

]]
By Claim 4.6

≤ 120

n
+

2εQ(x)

10 log n
+

(
1 +

4ε

10

)
Qx(Ei),

since ε ≤ 1/2. Now sum this over all i and combine it with the bound from Claim 4.9 on the error
introduced by E∗, to get

Q̃(x) = Q̃x(E∗) +

i∗∑
i=1

Q̃x(Ei)

≤
[
Qx(E∗) +

12

n

]
+ i∗

[
120

n
+

2εQ(x)

10 log n

]
+

(
1 +

4ε

10

) i∗∑
i=1

Qx(Ei)

≤ 250 log n

n
+

5εQ(x)

10
+

(
1 +

4ε

10

)
Q(x)

≤ (1 + ε)Q(x).

The last inequality follows from Q(x) ≥ Φ2r/32 (by Theorem 2.3), and the theorem’s assumption
that Φ ≥ 350

√
(log n)/(εrn).

The other direction, Q̃(x) ≥ (1− ε)Q(x), follows similarly.

Theorem 4.1 then follows by Lemmas 4.5 and 4.10 and a union bound.

4.3 Proofs of Claims 4.6, 4.7, 4.8, and 4.9

We begin by presenting a preliminary lemma about the effects of approximating x on a general
quadratic form, which will be useful in proving the four claims, and will be useful later on in
Section 6.

Lemma 4.11. Let G = (V,E) be a hypergraph and let x, x̃ be two vectors in RV such that |xv−x̃v| ≤
δ on every coordinate v ∈ V for some δ ≥ 0. Then for any e ∈ E,∣∣Qx(e)−Qx̃(e)

∣∣ ≤ 4δ
(√

Qx(e) + δ
)
.

Proof. Given e ∈ E, we begin by finding two vertices u∗, v∗ ∈ e such that∣∣Qx(e)−Qx̃(e)
∣∣ ≤ ∣∣(xu∗ − xv∗)2 − (x̃u∗ − x̃v∗)2

∣∣.
It is indeed possible to find such vertices. IfQx(e) ≥ Qx̃(e), set u∗, v∗ such thatQx(e) = (xu∗−xv∗)2,
and we get ∣∣Qx(e)−Qx̃(e)

∣∣ = Qx(e)−Qx̃(e) ≤ (xu∗ − xv∗)2 − (x̃u∗ − x̃v∗)2,
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since Qx̃(e) ≥ (x̃u− x̃v)2 for every u, v ∈ e, and in particular Qx̃(e) ≥ (x̃u∗ − x̃v∗)2. Otherwise, i.e.,
Qx̃ > Qx(e), similarly set u∗, v∗ such that Qx̃(e) = (x̃u∗ − x̃v∗)2.

Using these u∗, v∗, we have∣∣Qx(e)−Qx̃(e)
∣∣ ≤ ∣∣(xu∗ − xv∗)2 − (x̃u∗ − x̃v∗)2

∣∣
= |xu∗ + x̃u∗ − xv∗ − x̃v∗ | · |xu∗ − x̃u∗ − xv∗ + x̃v∗ |

Let us now bound each of these two factors. The second one is clearly bounded by 2δ by the lemma’s
assumption. To bound the first term, we use that Qx(e) = maxu,v∈e(xu − xv)2 ≥ (xu∗ − xv∗)2, and
therefore

|xu∗ + x̃u∗ − xv∗ − x̃v∗ | ≤ 2|xu∗ − xv∗ |+ |xu∗ − x̃u∗ |+ |xv∗ − x̃v∗ | ≤ 2
√
Qx(e) + 2δ.

Putting these two bounds together, we obtain the result of the lemma.

The following claim examines the effects of rounding from x to x(i) (from the previous section)
on a single hyperedge of Ei. This is the main technical claim that allows as to then easily prove
both Claims 4.6 and 4.8.

Claim 4.12. For all x ∈ RV , all i = 1, . . . , i∗, and every hyperedge e ∈ Ei,

Qx(i)(e) =
(

1± ε

10

)
Qx(e)± 20

n2 minv∈e d(v)
.

Proof. We examine the difference
∣∣Qx(e)−Qx(i)(e)

∣∣. Recall that x
(i)
v is either rounded to the nearest

multiple of 1/(n2
√
d(v)) or rounded to zero. We consider two cases:

1. No vertex in e is rounded to zero.

2. At least one vertex in e is rounded to zero.

For simplicity, denote x+ = maxv∈e |xv| and d− = minv∈e d(v). Recall that by definition of Ei,

x2
+d− ∈

(
2−i, 2−i+1

]
. (6)

In the first case, the value of x on every vertex v ∈ e changes by at most 1/(n2
√
d(v)) ≤

1/(n2
√
d−). Thus, we can apply Lemma 4.11 with δ = 1/(n2

√
d−) to get

∣∣Qx(e)−Qx(i)(e)
∣∣ ≤ 4

n2
√
d−
·

(√
Qx(e) +

1

n2
√
d−

)
.

We can use (6) to bound Qx(e) ≤ 4x2
+ ≤ 4 · 21−i/d− ≤ 4/d−. Substituting this in, we get

∣∣Qx(e)−Qx(i)(e)
∣∣ ≤ 4

n2
√
d−
·

(
2√
d−

+
1

n2
√
d−

)
≤ 20

n2d−
.

In the second case, the value of x on a vertex in e can still change by at most 1/(n2
√
d−)

by rounding to a non-zero value. It can additionally be rounded to a zero, as long as x2
vd(v) <

ε22−i/2500, which amounts to additive error per coordinate of at most |xv| < ε/
√

2500 · 2id(v) ≤
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ε/
√

2500 · 2id−. Therefore we can apply Lemma 4.11 with δ = ε/
√

2500 · 2id− ≥ 1/(n2
√
d−),

which gives us that

∣∣Qx(e)−Qx(i)(e)
∣∣ ≤ 4ε√

2500 · 2id−
·

(√
Qx(e) +

ε√
2500 · 2id−

)
.

This time we use a lower bound on Qx(e). Recall that we assumed that at least one vertex in e
is rounded to zero. Let one such vertex be v0. This means that x2

v0d(v0) ≤ ε22−i/2500, but at the
same time x2

+d(v0) ≥ x2
+d− ≥ 2−i. Using these two facts, we get our lower bound√

Qx(e) ≥ x+ − |xv0 | ≥ x+ − εx+/50 ≥ 49

50
√

2id−
.

Substituting this in, we get

∣∣Qx(e)−Qx(i)(e)
∣∣ ≤ 4ε

√
Qx(e)

49
·

(√
Qx(e) +

ε
√
Qx(e)

49

)
≤ 4εQx(e)

49
·
(

1 +
ε

49

)
≤ ε

10
Qx(e).

In conclusion, in the first case we get the claimed additive error, while in the second case we get
the claimed multiplicative error.

We are now ready to proceed to proving Claims 4.6 and 4.8.

Claim 4.6. For all x ∈ RV and all i = 1, . . . , i∗,

Qx(i)(Ei) =
(

1± ε

10

)
Qx(Ei)±

20

n
.

Proof. We can bound∣∣Qx(Ei)−Qx(i)(Ei)
∣∣ ≤∑

e∈Ei

∣∣Qx(e)−Qx(i)(e)
∣∣

≤
∑
e∈Ei

[
ε

10
Qx(e) +

20

n2 minv∈e d(v)

]
by Claim 4.12

≤ ε

10
Qx(Ei) +

20

n2

∑
e∈E

1

minv∈e d(v)

≤ ε

10
Qx(Ei) +

20

n
by Lemma 4.4 and n ≥ |V |,

as claimed.

Claim 4.8. For all i = 1, . . . , i∗,

P
[
∀x ∈ RV , Q̃x(i)(Ei) =

(
1± ε

10

)
Q̃x(Ei)±

60

n

]
≥ 1− 1

n2
.

Proof. Similarly to the previous proof, we first bound∣∣Q̃x(Ei)− Q̃x(i)(Ei)
∣∣ ≤∑

e∈Ei

∣∣Q̃x(e)− Q̃x(i)(e)
∣∣.
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Recall that Q̃x(e) = weQx(e) where we is a random variable (independent from all others) that takes
value 1/pe with probability pe, and value 0 otherwise. Similarly, Q̃x(i)(e) = weQ̃x(i)(e). Applying
this along with Claim 4.12, we get∣∣Q̃x(Ei)− Q̃x(i)(Ei)

∣∣ ≤∑
e∈Ei

we
∣∣Qx(e)−Qx(i)(e)

∣∣
≤
∑
e∈Ei

[
ε

10
weQx(e) + we ·

20

n2 minc∈e d(v)

]
=

ε

10
Q̃x(e) +

∑
e∈Ei

20we
n2 minv∈e d(v)

.

Note that in the sum here the term corresponding to e is zero unless e is sampled to Ẽ, in which
case we = 1/pe ≤ 1 + minv∈e d(v)/λ. (Recall λ from equation 4.) Using also Lemmas 4.4 and 4.5,
and the fact that n ≥ |V |, we have that with high probability∑
e∈Ei

20we
n2 minv∈e d(v)

≤
∑
e∈Ẽi

20

n2 minv∈e d(v)
+
∑
e∈Ẽ

20

λn2
≤
∑
e∈Ei

20

n2 minv∈e d(v)
+ |Ẽ| · 20

λn2
≤ 60

n
.

Claim 4.9.

P
[
∀x ∈ RV , Q̃x(E∗) = Qx(E∗)±

12

n

]
≥ 1− 1

n2
.

Proof. Note that

|Q̃x(E∗)−Qx(E∗)| ≤ Q̃x(E∗) +Qx(E∗) =
∑
e∈E∗

max
u,v∈e

(xu − xv)2 +
∑
e∈E∗

we · max
u,v∈e

(xu − xv)2.

Now, we bound each term using that maxv∈e x
2
v ·minv∈e d(v) ≤ 1/n2 by definition of E∗. For the

first term, we use Lemma 4.4,∑
e∈E∗

max
u,v∈e

(xu − xv)2 ≤ 4
∑
e∈E∗

max
v∈e

x2
v ≤ 4

∑
e∈E∗

1

n2 minv∈e d(v)
≤ 4

n
.

For the second term, we have by Lemma 4.5, and the fact that n ≥ |V |, that with high probability,∑
e∈E∗

we · max
u,v∈e

(xu − xv)2 ≤ 4
∑
e∈E∗

we ·max
v∈e

x2
v ≤ 4

∑
e∈E∗

we
n2 minv∈e d(v)

≤ 4|Ẽ| · 1

λn2
≤ 8

n
.

Finally, we prove the technical crux of the theorem, Claim 4.7.

Claim 4.7. For all i = 1, . . . , i∗,

P
[
∀x ∈ RV , Q̃x(i)(Ei) =

(
1± ε

10

)
Qx(i)(Ei)±

εQ(x)

10 log n

]
≥ 1− 1

n2
.

Proof. We shall prove the stronger claim

P
[
∀x ∈ RV , Q̃x(i)(Ei) =

(
1± ε

10

)
Qx(i)(Ei)±

εrΦ2/32

10 log n

]
≥ 1− 1

n2
.

This is indeed stronger, since for all x ∈ RV , we know that Q(x) ≥ rΦ2/32 by the Hypergraph
Cheeger inequality (Theorem 2.3). This allows us to argue that the probabilistic claim depends
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on x only through x(i) and Ei. These are discrete which will allow for the use of union bound
later on. We will first prove a deviation bound for a single instance of (x(i), Ei) using an additive-
multiplicative Chernoff bound, and then extend it to hold for all instances simultaneously using a
union bound.

Fix i, x(i), and Ei. Notice that Q̃x(i)(Ei) =
∑

e∈Ei
we · maxa,b∈e(x

(i)
a − x

(i)
b )2 is a sum of

independent random variables whose expectation is Qx(i)(Ei). Let us bound the maximum range
of one summand, for some e ∈ Ei. If pe = 1 the range is 0, and otherwise the range is bounded by

we ·max
a,b∈e

(
x(i)
a − x

(i)
b

)2
≤ max

a,b∈e

2(x2
a + x2

b)

pe
≤ 4

λ
max
v∈e

x2
v ·min

v∈e
d(v) ≤ 2−i+3

λ
.

We can thus apply Theorem A.2 and get

P
[
|Q̃x(i)(Ei)−Qx(i)(Ei)| ≥

ε

10
Qx(i)(Ei) +

εrΦ2/32

10 log n

]
≤ 2 exp

(
−ε/10 · (εrΦ2/32)/(10 log n)

3 · 2−i+3/λ

)
= 2 exp

(
− λ2iε2rΦ2

32 · 2400 log n

)
.

Now we wish to extend this high-probability bound to hold simultaneously for all possible x(i)

and Ei. How many possible settings of (x(i), Ei) are there? Each non-zero coordinate v of x(i) has
x2
vd(v) ≥ ε22−i/2500, so there are at most 2500 · 2i/ε2 such coordinates. Furthermore, each such

coordinate x
(i)
v is an integer multiple of 1/(n2

√
d(v)) in the range [−1/

√
d(v), 1/

√
d(v)], so there

are only 2n2 possibilities per non-zero coordinate. Thus, the total number of vectors x(i) is at most(
|V |

2500 · 2i/ε2

)
· (2n2)

2500·2i/ε2 ≤ (2n3)
2500·2i/ε2

We still need to enumerate the number of possible hyperedge multisets Ei given x(i). To know
whether some hyperedge e ∈ E is in Ei, we must know whether the value of maxv∈e x

2
v minv∈e d(v)

is in (2−i, 2−i+1]. Unfortunately, this depends on maxv∈e x
2
v, which is not determined by x(i), due

to the rounding error between x and x(i). Let D = {d(v) | v ∈ V } be the set of all degrees in G. It
suffices to know for each v corresponding to a non-zero coordinate of x(i) the two values

min{d ∈ D | x2
vd > 2−i} and max{d ∈ D | x2

vd ≤ 2−i+1}.

Indeed, we need not worry about zero coordinates of x(i), i.e., vertices v with x2
vd(v) < ε22−i/2500,

as these cannot attain maxu∈e x
2
u for a hyperedge e ∈ Ei. Thus, the total number of possible

multisets Ei given x(i) is at most (|V |2)2500·2i/ε2 ≤ (n2)2500·2i/ε2 .
We are now ready to apply a union bound,

P
[
∀x, |Q̃x(i)(Ei)−Qx(i)(Ei)| ≤

ε

10
Qx(i)(Ei) +

ε(rΦ2/32)

10 log n

]
≤
(
n2 · (2n3)

)2500·2i/ε2 · 2 exp

(
− λ2iε2rΦ2

32 · 2400 log n

)
≤ 2 exp

(
15000 · 2i log n

ε2
− λ2iε2rΦ2

32 · 2400 log n

)
≤ 1

n2
,

where the last inequality holds as long as λ ≥ 24 · 108 · log2 n/(ε4Φ2r), which is indeed how we set
λ.
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5 Expander Decomposition

This section provides a procedure to decompose an input hypergraph into expanders while cutting
a small number of hyperedges. This is stated in the following lemma, which we fully prove for
completeness, as we cannot find a useful reference for it. It is based on the standard technique of
iteratively removing a sparse cut, with slight adaptations like a minimum-degree guarantee in each
expander, and an approximation algorithm for sparsest cut (minimal expansion) in a hypergraph.

Lemma 5.1 (Expander Decomposition). There exists a polynomial-time algorithm that, given an
r-uniform hypergraph G = (V,E) with n vertices and m hyperedges, outputs disjoint vertex subsets
C1, . . . , Ck ⊆ V (not necessarily a partition) that satisfy

1. Φ(G[Cj ]) = Ω(1/(r log2 n)) for all j = 1, . . . , k;

2. minv∈Cj dG[Cj ](v) ≥ m/(4n) for all j = 1, . . . , k; and

3. |E \
⋃k
j=1E(G[Cj ])| ≤ m/2.

We first provide (in Section 5.1) an approximation algorithm for the sparsest cut problem on hy-
pergraphs by slightly modifying a known algorithm from [FHL08]. We then use it (in Section 5.2) to
prove Lemma 5.1, where we decompose an input hypergraph into expanders by iteratively deleting
sparse cuts and low-degree vertices.

5.1 Approximating Sparsest Cut

Lemma 5.2. There exists a polynomial-time algorithm that, given a hypergraph G = (V,E), com-
putes a cut S ⊆ V with Φ(S) = O(log n · Φ(G)).

We remark that a better approximation ratioO(
√

log n) was shown by Louis and Makarychev [LM16].
Strictly speaking, their definition of expansion is slightly different, using |S| rather than vol(S),
but their results probably extend also to our setting.

Our algorithm is an extension of known approximation algorithms for the sparsest cut problem
on ordinary graphs. Specifically, we follow the rounding procedure techniques of Feige, Hajiaghayi
and Lee [FHL08], which in turn build on the linear programming relaxation approach introduced
by Leighton and Rao [LR99] and on the rounding procedures based on metric embeddings devised
by Aumann and Rabani [AR98] and Linial, London and Rabinovich [LLR95].

For a hypergraph G = (V,E) and a vertex set S ⊆ V , we define

φ(S) =
|E(S, V \ S)|

vol(S) · vol(V \ S)

(notice the difference in the denominator from Φ(S)), and let φ(G) = minS⊆V φ(S). We note that

vol(S) · vol(V \ S)

vol(G)
≤ min{vol(S), vol(V \ S)} ≤ 2 · vol(S) · vol(V \ S)

vol(G)
,

and hence a ρ(n)-approximation algorithm for φ(G) immediately gives a 2ρ(n)-approximation for
Φ(G).

For a vertex set S ⊆ V , let 1S : V → {0, 1} be the indicator function of S. Then, we have

φ(S) =

∑
e∈E maxu,v∈e |1S(u)− 1S(v)|∑
u,v∈V d(u)d(v)|1S(u)− 1S(v)|

.
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By relaxing this optimization over cut metrics (distances induced by indicator functions) to opti-
mization over all pseudo-metrics, we obtain the following linear program (LP).

minimize
∑
e∈E

z(e),

subject to
∑
u,v∈V

d(u)d(v)`(u, v) = 1,

z(e) ≥ `(u, v) ∀e ∈ E, u, v ∈ e,
`(u,w) ≤ `(u, v) + `(v, w) ∀u, v, w ∈ V,
`(u, v) = `(v, u) ≥ 0 ∀u, v ∈ V.

This LP has variables {`(u, v)}u,v∈V and {z(e)}e∈E , and its size is O(n2 + mr2). Our algorithm
solves this LP and then rounds the solution as explained next.

Our rounding procedure is similar to [FHL08], who designed an approximation algorithm for
the sparsest vertex-cut problem. They use the following embedding result due to Bourgain.

Theorem 5.3 (Bourgains embedding [Bou85]). Let ` : V × V → R be a pseudo-metric on an
n-point set V . Then there exists an embedding f : V → Rk with distortion D = O(log n) in the
following sense:

∀u, v ∈ V, max
i∈[k]
|fi(u)− fi(v)| ≤ `(u, v), (7)

∀u, v ∈ V, 1

k

∑
i∈[k]

|fi(u)− fi(v)| ≥ `(u, v)

D
. (8)

Linial, London and Rabinovich [LLR95] showed how to compute such an embedding with high
probability in time Õ(n2).

Remark 5.4. The above form of Bourgain’s embedding is slightly stronger than the usual statement
of embedding into `1 (see also [MR01]). Indeed, the usual statement follows easily by viewing f as
an embedding into `1, then

∀u, v ∈ V, `(u, v)

D
≤ 1

k
‖f(u)− f(v)‖1 ≤ `(u, v),

which means that scaling f by factor 1/k achieves distortion D.

Lemma 5.5. Given an embedding f : V → Rk, one can find in polynomial time a cut S∗ ⊆ V such
that

φ(S∗) ≤ min
i∈[k]

∑
e∈E maxu,v∈e |fi(u)− fi(v)|∑
u,v∈V d(u)d(v)|fi(u)− fi(v)|

.

Proof. Let i ∈ [k] be the index that minimizes the above ratio, and define the embedding g : V → R
by scaling and translating the corresponding fi such that minv g(v) = 0 and maxv g(v) = 1.

Pick uniformly at random a threshold s ∈ [0, 1], and consider the (random) set S = {v ∈ V |
g(v) > s}. Then by simple calculations

∀u, v ∈ V, E|1S(u)− 1S(v)| = |g(u)− g(v)|,
∀e ∈ E, E max

u,v∈e
|1S(u)− 1S(v)| = max

u∈e
g(u)−min

v∈e
g(v).
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It follows that there must exist S∗ = {v ∈ V | g(v) > s∗} that is non-trivial (i.e., S∗ 6= ∅, V ) for
which

φ(S∗) =

∑
e∈E maxu,v∈e |1S∗(u)− 1S∗(v)|∑
u,v∈V d(u)d(v)|1S∗(u)− 1S∗(v)|

≤
E
∑

e∈E maxu,v∈e |1S(u)− 1S(v)|
E
∑

u,v∈V d(u)d(v)|1S(u)− 1S(v)|

=

∑
e∈E maxu,v∈e |g(u)− g(v)|∑
u,v∈V d(u)d(v)|g(u)− g(v)|

=

∑
e∈E maxu,v∈e |fi(u)− fi(v)|∑
u,v∈V d(u)d(v)|fi(u)− fi(v)|

.

A polynomial-time implementation can simply take the best sweep cut.

Proof of Lemma 5.2. The algorithm computes an optimal LP solution and then applies to it Bour-
gain’s embedding (Theorem 5.3) and then Lemma 5.5 to find a cut S∗ ⊂ V . This is a (randomized)
polynomial-time algorithm, and with high probability its output S∗ ⊆ V satisfies

φ(S∗) ≤ min
i∈[k]

∑
e∈E maxu,v∈e |fi(u)− fi(v)|∑
u,v∈V d(u)d(v)|fi(u)− fi(v)|

≤ min
i∈[k]

∑
e∈E maxu,v∈e `(u, v)∑

u,v∈V d(u)d(v)|fi(u)− fi(v)|

≤
∑

e∈E z(e)

maxi∈[k]

∑
u,v∈V d(u)d(v)|fi(u)− fi(v)|

≤
∑

e∈E z(e)

Ei∈[k]

∑
u,v∈V d(u)d(v)|fi(u)− fi(v)|

≤
∑

e∈E z(e)∑
u,v∈V d(u)d(v)`(u, v)/D

= D · LP ≤ O(log n) · φ(G).

We thus conclude an O(log n)-approximation algorithm for φ(G).

5.2 Proof of Lemma 5.1

We now prove Lemma 5.1. We shall refer to the algorithm given in Lemma 5.2 as SparseCut.

Algorithm 1

1: procedure ExpanderDecomposition(G = (V,E))
2: C ← {V }
3: while true do
4: if ∃C ∈ C and v ∈ C such that dG[C](v) < m/(4n) then
5: remove v from C.
6: else if ∃C ∈ C s.t. SparseCut(G[C]) finds a cut S with ΦG[C](S) ≤ 1/(4r log n) then
7: C ← (C \ {C}) ∪ {S,C \ S}
8: else
9: return C

Proof of Lemma 5.1. Our algorithm is given in Algorithm 1. By Lemma 5.2, there exists a constant
K > 0 such that, if there is a cut of expansion at most 1/(Kr log2 n), then SparseCut finds a cut
of expansion at most 1/(4r log n), and hence Guarantee 1 holds. Guarantee 2 also holds, since the
algorithm only returns when when no vertices violate the min-degree condition, due to Line 4.

We now show Guarantee 3, which claims that at most half the hyperedges are omitted from
this clustering. First, we bound the number of hyperedges cut by splitting C on Line 7. To this
end, we charge some weight to vertices for each cut (S,C \ S) found throughout the algorithm.
Specifically, suppose |S| ≤ |C \ S| — then we charge cut hyperedges to vertices in S proportionally
to their degree: Each vertex v ∈ S is charged

E(S,C \ S) ·
dG[C](v)

volG[C](S)
≤ dG[C](v) · E(S,C \ S)

min(volG[C](S), volG[C](C \ S))
≤
dG[C](v)

4r log n
≤ d(v)

4r log n
.
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If |C \ S| ≤ |S|, vertices of C \ S get charged similarly. Since each vertex is charged only when the
size of its containing component is decreased by at least a factor of 2, each vertex can get charged
a maximum of log n times. This means that in total v is charged at most d(v)/(4r) cut hyperedges.

Hence, the total number of hyperedges cut by splitting components is bounded by∑
v∈V

d(v)

4r
=
m

4
.

The total number of hyperedges cut by discarding low-degree vertices in Line 5 is at most

m

4n
· n =

m

4
.

Altogether, the total number of hyperedges cut by the algorithm is at most m/4+m/4 = m/2.

6 General Spectral Sparsification of Hypergraphs

In this section, we prove Theorem 1.1. We describe our construction in Section 6.1 and then prove
its correctness in Section 6.2.

6.1 Construction

We shall call a hyperedge a self-loop if all of its vertices are identical (i.e., the number of distinct
vertices in it is one). We explicitly prohibit self-loops in the next lemma for a technical reason
inside the proof of Theorem 1.1.

Lemma 6.1. There is an algorithm that, given a parameter n, given 100/n ≤ ε ≤ 1/2 and an r-
uniform hypergraph G = (V,E) with |V | ≤ n and expansion Φ(G) ≥ Ω( 1

r log2 n
) and r ≤ εn/ log6 n,

outputs an ε-spectral sparsifier of G with at most V |r(ε−1 log n)O(1) hyperedges and no self-loops
with probability at least 1−O((log n)/n2) in O(r|E|) time. Let ExpanderSparsify(G, ε) be such
an algorithm.

Proof. This is a simple corollary of Theorem 4.1 when applied with Φ = Ω( 1
r log2 n

), the only

difference being the exclusion of self-loops. One can simply remove all the self-loops from the
sparsifier obtained from Theorem 4.1, as this does not change the spectral properties at all.

Definition 6.2. Let ∼ be a relation on a ground set V . The transitive closure ≈ of ∼ is a relation
on V defined as follows

a ≈ b ⇐⇒ ∃c1, . . . , ck ∈ V, a ∼ c1 ∼ · · · ∼ ck ∼ b.

Definition 6.3. Let G = (V,E) be a hypergraph and let ≈ be an equivalence relation on V . Then
the contraction of G with respect to ≈, denoted by G/ ≈, is a hypergraph on the vertex set V ′ = V/ ≈
and the multiset of hyperedges

E′ = {{[v] | v ∈ e} | e ∈ E},

where [v] denotes the equivalence class of v with respect to ≈. We stress that each hyperedge in the
contracted hypergraph is itself a multiset, i.e., for each e ∈ E there is a corresponding hyperedge
in E′ of total multiplicity |e|. Moreover, E′ is a multiset and thus may have copies of the same
hyperedge (i.e., parallel hyperedges).
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Remark 6.4. Since there is a bijection between E and E′, we shall slightly abuse notation and
equate the hyperedges of G and of G/ ≈ (i.e., use one as a shorthand for the other). This occurs
already in the next observation.

Observation 6.5. Let G = (V,E) be a hypergraph and let ≈ be an equivalence relation on V . Let
G̃ be an ε-spectral sparsifier of the contracted hypergraph G/ ≈ (not of G). Then it need not be true
that the energy of G is always approximated by the energy of G̃ in the sense that for all x ∈ RV ,

Q̃(x) = (1± ε)Q(x).

Here Q̃ is the energy of the sparsifier G̃ when interpreted as a subgraph of G, not G/ ≈. That is,
we take the weighted hyperedges found in G̃ and interpret them as hyperedges over the vertex set of
G (see Remark 6.4).

However, the equation above does hold if x is constant on each equivalence class of ≈, that is
whenever

u ≈ v ⇒ xu = xv.

We are now ready to define our main algorithm for sparsifying arbitrary r-uniform input
hypergraphs G = (V,E). We use ExpanderDecomposition produce subsets of V that are
good expanders and ExpanderSparsify to sparsify them. Since we get rid of at least half
the edges each turn, this process, repeated until no hyperedges remain, would take potentially
Ω(logm) = Ω̃(r log n) rounds. To reduce the number of rounds, we contract clusters into su-
pernodes shortly after sparsifying them. For more intuition on the workings of Algorithm 2 see
Section 3.2.

Algorithm 2 Algorithm sparsifying an arbitrary hypergraph

1: procedure Sparsify(G, ε)
2: E(0) ← E
3: Ẽ ← ∅
4: for i = 0, . . . , logm do
5: if i ≥ 10 log n then

6: ∼i ← the relation on V where u ∼i v iff ∃i′ ≤ i− 10 log n, ∃j, [u], [v] ∈ C(i′)
j

7: ≈i ← transitive closure of ∼i
8: G(i) ← (V,E(i))/ ≈i
9: else

10: G(i) ← (V,E(i))

11:

(
C

(i)
1 . . . , C

(i)
ki

)
← ExpanderDecomposition(G(i))

12: for j = 1, . . . , ki do

13: G
(i)
j = (C

(i)
j , E

(i)
j )← G(i)[C

(i)
j ]

14: (C
(i)
j , Ẽ

(i)
j , w

(i)
j )← ExpanderSparsify(G

(i)
j , ε/10)

15: Ẽ ← Ẽ ∪ Ẽ(i)
j

16: w|
E

(i)
j

= w
(i)
j

17: E(i+1) ← E(i) \ ∪kij=1E
(i)
j

18: return G̃ = (V, Ẽ)

G is assumed to be r-regular, and ε is assumed to be in [1000/n, 1/2]. In Line 6, [u], [v] ∈ C(i′)
j

means that the supernodes containing u and v were in the same expander of the decomposition at an

25



earlier level i′. Note also the abuse of notation in Lines 14 and 15 (in accordance with Remark 6.4):

In Line 14, Ẽ
(i)
j is defined as a multiset of hyperedges on the contracted vertex set C

(i)
j ⊆ V/ ≈i,

but in Line 15 we treat it as containing hyperedges supported on V . This is justified because

elements of Ẽ
(i)
j have clearly corresponding counterparts in E (recall our definition of a sparsifier

as a weighted subgraph and that a contraction maintains a bijection between the hyperedges), and
it would only complicate the notation to make this distinction formal.

Also note that throughout the contractions, our graphs always remain r-regular, thanks to the
use of multisets as hyperedges (see Definition 6.3). This — along with Guarantee 1 of Lemma 5.1

that the expansion of G
(i)
j is Ω( 1

r log2 n
) — allows the use of ExpanderSparsify in Line 14.

Line 16 simply means that we set the weights of hyperedges in E
(i)
j as in the sparsifier computed

in Line 14. This is consistent with the update of Ẽ in Line 15.

6.2 Correctness

First we bound the total size and number of clusters C
(i)
j :

Claim 6.6.
logm∑
i=0

ki∑
j=1

∣∣∣C(i)
j

∣∣∣ ≤ 21n log n.

Proof. We first bound the number of distinct vertices (including supernodes) that appear through-
out the execution of Algorithm 2, i.e.,

V ∗ =

logm⋃
i=0

ki⋃
j=1

C
(i)
j .

This set includes vertices from V , as well as some contracted supernodes that are subsets of V .
Note however, that these sets form a laminar family, since supernodes are only constructed by
merging previous supernodes — no supernodes ever get broken apart. Therefore, |V ∗| ≤ 2n− 1.

Let us first bound the number of non-singleton clusters a single v ∈ V ∗ can participate in. As
soon as v participates in some cluster C of size at least 2 at level i, we know that at level i+10 log n
C will be contracted into a different vertex in V ∗. Therefore, v can participate in at most 10 log n
clusters of size 2 or more.

On the other hand, any v ∈ V ∗ can participate in at most one singleton cluster. Indeed as soon
as v forms a cluster {v} all of its self-loop hyperedges are removed, and it will not have self-loops
until it is contracted again. Therefore, {v} cannot appear again as a cluster as this would violate
Guarantee 3 of Lemma 5.1.

Therefore, the total of the sum is at most (2n− 1) · (10 log n+ 1) ≤ 21n log n, for large enough
n.

As an immediate corollary to this, we can conclude that are there at most 21n log n clusters
considered throughout the entire algorithm, since the size of a cluster is always at least one. There-
fore, ExpanderSparsify — the only non-deterministic step of our algorithm — gets called at
most 21n log n time, and succeeds all of these times with combined probability 1−O((log2 n)/n).
From this point on we consider only the event that all of these calls indeed succeed.

Let us consider the size of the sparsifier output by Sparsify(G, ε).

Lemma 6.7. Let G be r-regular hypergraph and let (r log6 n)/n ≤ ε ≤ 1/2. The hypergraph returned
by Sparsify(G, ε) has nr(ε−1 log n)O(1) hyperedges with probability 1−O((log2 n)/n).
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Proof. The hyperedge multiset of the hypergraph G̃ = (V, Ẽ) is simply the union of Ẽ
(i)
j for all i

and j, and by Lemma 6.1 the size of each of them is bounded by |Ẽ(i)
j | ≤ |C

(i)
j |r(ε−1 log n)O(1) with

probability 1−O(log n2/n). So by Claim 6.6

|Ẽ| ≤
logm∑
i=0

ki∑
j=1

∣∣∣C(i)
j

∣∣∣ r(ε−1 log n
)O(1) ≤ nr

(
ε−1 log n

)O(1)
,

as claimed.

Lemma 6.8. Let G be r-regular hypergraph and let (r log6 n)/n ≤ ε ≤ 1/2. Then hypergraph
Sparsify(G, ε) an ε-spectral sparsifier to G in polynomial time with probability at least 1−O((log2 n)/n).

Proof. We will consider each cluster C
(i)
j separately, it suffices to prove that for each i and j, the

energy of (V, Ẽ
(i)
j ) approximates the energy of (V,E

(i)
j ) up to small additive and multiplicative

errors. We must first verify that each hyperedge of E appears in exactly one of E
(i)
j . Indeed, any

hyperedge can appear in at most one of them: E
(i)
j gets removed from E(i+1) at the end of the main

for loop in Line 17. Furthermore, all hyperedges eventually get removed this way: By Guarantee 3
of Lemma 5.1, after each round no more than half of the hyperedges remain, so after logm + 1
rounds all hyperedges must be gone and E(logm+1) = ∅.

Let us fix a single cluster C
(i)
j and compare the spectral properties of E

(i)
j and Ẽ

(i)
j . Let Ĉ

(i)
j

be the set of vertices from V that make up C
(i)
j after contraction by ≈i, that is, formally

Ĉ
(i)
j = {v ∈ V | [v] ∈ C(i)

j },

where [v] denotes the equivalence class of v with respect to ≈i. At this point it is important to

keep in mind the differences between the graphs Ĝ
(i)
j =

(
Ĉ

(i)
j , E

(i)
j

)
, G

(i)
j =

(
C

(i)
j , E

(i)
j

)
, G̃

(i)
j =(

C
(i)
j , Ẽ

(i)
j

)
, and Ğ

(i)
j =

(
Ĉ

(i)
j , Ẽ

(i)
j

)
. Though Ĝ

(i)
j and G

(i)
j share their hyperedge multiset, they

are not the same, in fact G
(i)
j = Ĝ

(i)
j / ≈i. Similarly, G̃

(i)
j = Ğ

(i)
j / ≈i. Lemma 6.1 says that G̃

(i)
j is

an ε-spectral sparsifier to G
(i)
j , it makes no such guarantee about Ĝ

(i)
j and Ğ

(i)
j .

We will show that for every vector x ∈ RV ,

Q̆(x) =

(
1± 4ε

10

)
Q̂(x)± 3εQ(x)

n2
, (9)

where Q̂ and Q̆ denote the energy with respect to Ĝ
(i)
j and Ğ

(i)
j , respectively. Recall from Obser-

vation 6.5 that the equation

Q̆(x) =
(

1± ε

10

)
Q̂(x) (10)

holds when x is constant within all supernodes of C
(i)
j . Informally, our plan is to round x to x̃ such

that it satisfies this requirement and then show that

Q̂(x) ∼= Q̂(x̃) ∼= Q̆(x̃) ∼= Q̆(x).

We may assume without loss of generality that i ≥ 10 log n, as otherwise no contraction takes
place and Equation (10) holds trivially. Denote the maximum discrepancy between the values of x

within supernodes of C
(i)
j by

δ = max
u,v∈Ĉ(i)

j : u≈iv

|xu − xv|.
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Our rounding of x to x̃ is mostly arbitrary, we enforce only that no coordinate changes by more
than an additive δ.

We will show the following three claims in the next section.

Claim 6.9.

Q̂(x̃) =
(

1± ε

10

)
Q̂(x)± εQ(x)

n2
.

Claim 6.10.
Q̆(x̃) =

(
1± ε

10

)
Q̂(x̃).

Claim 6.11.

Q̆(x̃) =
(

1± ε

10

)
Q̆(x)± εQ(x)

n2
.

By combining Claims 6.9, 6.10, and 6.11 we get that the quadratic form Q̆ is indeed close to
the quadratic form Q̂, with small additive and multiplicative error, as claimed. As in the proof of
Lemma 4.10, first note that the multiplicative error between Q̂(x) and Q̆(x) by itself would only
amount to (1 ± 4ε/10). Similarly, the additive error by itself would be exactly 2εQ(x)/n2, small

enough even when summed over all possible clusters C
(i)
j . This is because the number of clusters

throughout the whole algorithm is bounded by 21n log n due to Claim 6.6.
Formally, we consider one direction of the bound first:

Q̆(x) ≤
(

1− ε

10

)−1
[
εQ(x)

n2
+ Q̆(x̃)

]
By Claim 6.11

≤
(

1− ε

10

)−1
[
εQ(x)

n2
+
(

1 +
ε

10

)
Q̂(x̃)

]
By Claim 6.10

≤
(

1− ε

10

)−1
[
εQ(x)

n2
+
(

1 +
ε

10

)[εQ(x)

n2
+
(

1 +
ε

10

)
Q̂(x)

]]
By Claim 6.9

≤
(

1 +
4ε

10

)
Q̂(x) +

3εQ(x)

n2
,

since ε ≤ 1/2. The other direction that

Q̆(x) ≥
(

1− ε

10

)
Q̂(x)− 3εQ(x)

n2

follows similarly, which concludes the proof of Equation (9).

Finally, we can sum over all clusters C
(i)
j , noting that their number cannot exceed 21n log n, to

get that Q
Ẽ

(x) = (1± ε)Q(x).

Combining Lemmas 6.7 and 6.8, we get a polynomial-time algorithm that, given an unweighted
r-uniform hypergraph, constructs an ε-spectral sparsifier with nr(ε−1 log n)O(1) hyperedges. We
will discuss how to handle weighted hypergraphs and reduce the running time to O(mr2) + nO(1)

in Section 6.4.
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6.3 Proofs of Claims 6.9, 6.10, and 6.11

Before proceeding on to Claims 6.9, 6.10, and 6.11 from the previous section, we prove a simple

supporting lemma. This allows us to relate the total energy of G to the energies of the various C
(i)
j

clusters.

Lemma 6.12. Let G = (V,E) be an arbitrary hypergraph and let x be a vector in RV . Let ≈ be
an equivalence relation on V and define the contraction G′ = (V ′, E′) = G/ ≈. Let x′ ∈ RV be a
specification of x on vertices of G′ such that

∀v′ ∈ V ′, ∃v ∈ v′ : x′v′ = xv.

That is each vertex in V ′ takes the value of one of the vertices in V from which it was contracted.
Then

Q(x) ≥ Q′(x),

where Q and Q′ denote the energy with respect to G and G′ respectively.

Proof. We examine each hyperedge of E separately. Let e ∈ E and let the corresponding hyperedge
in E′ be e′. By definition Qx(e) = maxa,b∈e(xa − xb)

2 and Q′x′(e
′) = maxa,b∈e′(xa − xb)

2. By
definition of x′, each value of x′ in e′ also appears as a value of x in e. Therefore, Qx(e) and
Q′x′(e

′) are maximizations of the same formula, with the former having more choice in xa and xb,
so Qx(e) ≥ Q′x′(e′). Summing this over all hyperedges we get

Q(x) ≥ Q′(x′).

We are now ready to prove a claim bounding the effect of rounding from x to x̃ on the energy of
a single hyperedge. This is the main technical result of the section that allows us to do contraction
in Algorithm 2.

Claim 6.13. For all e ∈ E(i)
j ,

Qx̃(e) =
(

1± ε

10

)
Qx(e)± εQ(x)

2n3mi
,

where mi is the size of E(i).

Proof. Recall that the additive error between x and x̃ is at most δ, thus by Lemma 4.11∣∣Qx(e)−Qx̃(e)
∣∣ ≤ 4δ

(√
Qx(e) + δ

)
.

We distinguish between two cases based on the size of
√
Qx(e) relative to δ. First suppose that

δ ≤ ε
√
Qx(e)/50. This is the simpler case, because we immediately get

∣∣Qx(e)−Qx̃(e)
∣∣ ≤ 4ε

50

√
Qx(e) ·

(√
Qx(e) +

ε

50

√
Qx(e)

)
≤ ε

10
Qx(e).

Now consider the second case, δ ≥ ε
√
Qx(e)/50. This time we get

∣∣Qx(e)−Qx̃(e)
∣∣ ≤ 4δ

(
50δ

ε
+ δ

)
≤ 204δ2

ε
.
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Based on the definition of δ, let u, v ∈ Ĉ
(i)
j be such that u ≈i v and |xu − xv| = δ. By

Definition 6.2 there must exist a sequence of vertices, or path, u = w0, . . . , wk = v such that
w`−1 ∼i w` for all ` ∈ [k] (∼i is defined in Line 6). Without loss of generality, assume the path
length k is minimal and therefore at most n. Then by averaging, there exists `′ ∈ [k] such that
|xw`′−1

− xw`′ | ≥ δ/k ≥ δ/n. By definition of ∼i, there exist i′ ≤ i − 10 log n and j′ such that

w`′−1, w`′ ∈ C
(i′)
j′ but w`′−1 6≈i′ w`′ .

We now wish to relate Q(x) to δ2. We will accomplish this by lower bounding Q(x) by the

energy of G
(i′)
j′ with respect to some vector x′, as per Lemma 6.12. Let us define x′ ∈ RG

(i′)
j′ as in

Lemma 6.12 such that the supernode of w`′−1 retains the x-value of w`′−1 and the supernode of w`′

retains the x-value of w`′ . Formally,

x′[w`′−1] = xw`′−1
,

x′[w`′ ]
= xw`

,

where [w] denotes the equivalence class with respect to ≈i′ . All other coordinates of x′ are defined
arbitrarily. By applying Lemma 6.12 and discard unnecessary hyperedges we can conclude that

Q(x) ≥ Q′(x′),

the energy of x on G
(i′)
j′ .

To lower bound the energy of x on G
(i′)
j′ , we can apply the hypergraph Cheeger inequality (The-

orem 2.3). We know by Guarantee 1 of ExpanderDecomposition that Φ
(
G

(i′)
j

)
≥ Ω( 1

r log2 n
).

Let mi′ be the number of hyperedges in E(i′). Then by Guarantee 2 of ExpanderDecomposition,

the minimum degree of G
(i′)
j′ is at least mi′/4n. In general, the hypergraph Cheeger inequality states

that when x is centered, that is
∑

v∈V xvd(v) = 0, we have

Q(x) ≥ rΦ2

32

∑
v

x2
vd(v).

Our vector x′ is not centered with respect to the cluster C
(i′)
j′ . However, since the difference between

x[w`] and x[w`+1] is at least δ/n, at least one of them will have absolute value at least δ/(2n) even
when x is centered. Therefore, the terms corresponding to [w`′−1] and [w`′ ] already give

Q(x) ≥ Q
G

(i′)
j′

(x) ≥
rΩ
(

1
r log2 n

)2

32
· mi′

4n
·
(
δ

2n

)2

.

Putting these together, we have∣∣Qx(e)−Qx̃(e)
∣∣ ≤ 204δ2

ε
≤ 204

ε
· (2n)2 · 32

r · Ω
(

1
r log2 n

)2 ·
4n

mi′
·Q(x) ≤ O(1) · n3r log4 n

εmi′
·Q(x)

To relate this to mi, as stated in the claim, recall that by Guarantee 3 of ExpanderDecom-
position the total number of hyperedges decreases at least by a factor of 2 during every iteration
of the outer for-loop. So i′ ≤ i− 10 log n implies that mi ≤ mi′n

−10, and we get∣∣Qx(e)−Qx̃(e)
∣∣ ≤ O(log4 n) · n3r

εmin10
·Q(x) ≤ εQ(x)

2n3mi
,
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where the last inequality is because r, ε−1, and the O(log4 n) term are all smaller than n, by the
assumptions of Lemma 6.8 and for large enough n.

Putting the two cases together gives us the additive and multiplicative error terms and completes
the proof of Claim 6.13.

Claims 6.9 and 6.11 follow as a result of this, while Claim 6.10 is a simple consequence of
Observation 6.5.

Claim 6.9.

Q̂(x̃) =
(

1± ε

10

)
Q̂(x)± εQ(x)

n2
.

Proof. This follows immediately from Claim 6.13, as Ĝ
(i)
j has at most mi hyperedges,∣∣∣Q̂(x)− Q̂(x̃)

∣∣∣ ≤ ∑
e∈E(i)

j

∣∣∣Qx(e)−Qx̃(e)
∣∣∣ ≤ ∑

e∈E(i)
j

[
εQx(e) +

εQx(e)

2n3mi

]
≤ εQ̂(x) +

εQ(x)

n2
.

Claim 6.10.
Q̆(x̃) =

(
1± ε

10

)
Q̂(x̃).

Proof. This follows immediately from Equation (10) because x̃ is constant on all equivalence classes

of ≈i in C
(i)
j .

Claim 6.11.

Q̆(x̃) =
(

1± ε

10

)
Q̆(x)± εQ(x)

n2
.

Proof. The proof follows similarly to the proof of Claim 6.9. However,

Q̆(x) =
∑
e∈Ẽ(i)

j

we ·Qx(e),

so we must prove that the total weight
∑

e∈Ẽ(i)
j

we of the sparsifier is not too large. Note that this

is not the same as the size of the sparsifier, which is guaranteed to be small by Lemma 5.1.
To do this, note that we can bound the total weight of hyperedges adjacent on a specific vertex,

say v, by looking at the energy of the vector 1v, which has value 1 on v and 0 everywhere else.

(Here it is important that there are no self-loop hyperedges in Ẽ
(i)
j ). So we have∑

e∈Ẽ(i)
j

we ≤
∑
v∈C(i)

j

∑
e∈Ẽ(i)

j : v∈e

we =
∑
v∈C(i)

j

Q
G̃

(i)
j

(1v) ≤
∑
v∈C(i)

j

(1 + ε)Q
G

(i)
j

(1v) ≤ 2
∑
v∈C(i)

j

|Ẽ(i)
j | ≤ 2nmi.

Therefore,∣∣∣Q̆(x)− Q̆(x̃)
∣∣∣ ≤ ∑

e∈Ẽ(i)
j

we ·
∣∣∣Qx(e)−Qx̃(e)

∣∣∣ ≤ ∑
e∈Ẽ(i)

j

we ·
[
εQx(e) +

εQx(e)

2n3mi

]
= εQ̆(x) +

εQ(x)

n2
.
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6.4 Weighted Hypergraphs and Proof of Theorem 1.1

We have so far dealt only with unweighted hypergraphs, so as not to further complicate our algo-
rithms and notation. However, our techniques extend essentially unchanged to weighted ones as
well.

One way to see this is to replace weighted hyperedges with parallel hyperedges. Our proofs
throughout Sections 2–6 apply to hypergraphs that may contain hyperedges with multiplicity. Given
a weighted graph, we can simply scale the weights up (or down if necessary) and approximate them
with integer weights arbitrarily closely. A weighted hypergraph where the ratio between the largest
and smallest weights is wmax/wmin can be approximated to within a multiplicative 1±η error using
log(η−1) ·wmax/wmin parallel hyperedges to replace each weighted hyperedge. The parameter η can
be set to o(ε) so as to still produce a good spectral approximation.

One might worry that this increases the running time since the number of hyperedges has
technically increased. However, this turns out not to be the case: the running times of all of our
algorithms scale polynomially with the number of distinct hyperedges. Indeed, parallel edges can
be consider simultaneously at every step. In the expander sparsification algorithm of Section 4 the
sampling probability of parallel hyperedges is the same, and at most r(ε−1 log n)O(1) of them are
sampled. In Algorithm 1 of Section 6 each parallel instance of the same hyperedge gets cut by the
same cuts and ends up in the same component. Consequently parallel edges end up on the same
level in the same component in Algorithm 2 of Section 6 and are sampled at the same rate.

In fact, one can verify that our proofs extend even more directly to weighted hypergraphs,
without the need for approximating hyperedge weights by integers.

Until now, all of our algorithms have claimed only polynomial running time. Surprisingly it is
the above extension that allows us to accelerate the runtime to nearly linear — even in the case of
unweighted input graphs.

Proof of Theorem 1.1. Given a hypergraph G, we can apply the previously known hypergraph
sparsification algorithm of [SY19] to get a polynomial (in n) size sparsifier in nearly linear (that is
O(mr2) + nO(1)) time. We can then further sparsify this using our own Algorithm 2 in time nO(1).
Setting the error parameters of both algorithms to ε/3 allows us to recover an ε-spectral sparsifier
of G, as desired.

Note that we may drop the (r log6 n)/n ≤ ε requirement of Lemma 6.8 without loss of generality.

7 Lower Bounds

In this section we prove our space lower bound for an arbitrary compression of the cut structure of
a hypergraph. In Section 7.1 we introduce string compression, and reprove the corresponding lower
bound result for completeness. In section 7.2 we construct our generic hard example in Theorem 7.9.
We then state Corollaries 7.11, 7.12, and 7.13 which result from applying Theorem 7.9 to various
specific Ruzsa-Szemerédi graph constructions.

7.1 String Compression

A string compression scheme (SCS) is an algorithm for compressing a long string into a short
string, such that any subset sum query can be answered with small additive error. Formally, we
define it as follows.
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Definition 7.1. For positive integers `, k and ε, g > 0, a pair of functions Encode : {0, 1}` →
{0, 1}k and Decode : {0, 1}k × 2[`] → N is considered to be an (`, k, ε, g)-SCS, if there exists a set
of strings G ⊆ {0, 1}`, such that the following holds.

• |G| ≥ g · 2`.

• For every string s ∈ G and every query q ∈ 2[`], |Decode(Encode(s), q)− |s ∩ q|| ≤ ε`/2.

Remark 7.2. In general we use subsets of [`] and elements of {0, 1}` interchangeably. For instance,
in the above definition, in |s ∩ q|, s is considered as a set.

Remark 7.3. It is important that although a compression scheme may only work on a subset of
strings (G), it must work on all queries. In fact, it is trivial to answer almost all queries on all
inputs, by simply outputting |q| · |s|/`.

The lower following lower bound on the space requirement of string compression schemes has
been known, and appears, for example, in [DN03]. We reprove it here for completeness.

Theorem 7.4. Suppose (Encode,Decode) is an (`, k, ε, g)-SCS, where ε ≤ 1/10. Then

k ≥ log g + 3`/50

log 2
− 1.

Proof. We know that Encode maps G into {0, 1}k. Therefore, by pigeonhole principle, there must
be some set of inputs G0 of size at least |G| · 2−k ≥ g · 2`−k that maps to the same output, say c0.
Let s0 be an arbitrary string in G0.

Define BH(s0, 2ε`) as the ball of radius 2ε` in Hamming distance around s0, that is, the set of
strings s ∈ {0, 1}` such that the number of coordinates where s and s0 differ is at most 2ε`.

Claim 7.5. G0 ⊆ BH(s0, 2ε`).

Proof. Suppose there exists s ∈ G0\BH(s0, 2ε`), that is s and s0 differ on more than 2ε` coordinates.
Without loss of generality, we may assume that there are more than ε` coordinates where s0 is 0
but s1 is 1; let the set of such coordinates be q. By the definition of a string compression scheme

Decode(Encode(s0), q) = Decode(c0, q) ≤ |s0 ∩ q|+ ε`/2 = ε`/2,

but
Decode(Encode(s), q) = Decode(c0, q) ≥ |s ∩ q| − ε`/2 = |q| − ε`/2 > ε`/2.

This is a contradiction.

Claim 7.6. |BH(s0, 2ε`)| < 2` · 2 exp
(
− `(1−4ε)2

6

)
.

Proof. Indeed,

BH(s0, 2ε`) = BH(0`, 2ε`) = 2` · P(wH(x) ≤ 2ε`),

where x is a uniformly random vector in {0, 1}`. By Chernoff’s bound

P [wH(x) ≤ 2ε`] ≤ P
[∣∣∣∣wH(x)− `

2

∣∣∣∣ ≥ `

2
(1− 4ε)

]
≤ 2 exp

(
−`(1− 4ε)2

6

)
,

since ε ≤ 1/4, and the claim holds.
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Combining Claims 7.5 and 7.6 we get that

g · 2`−k ≤ 2` · 2 exp

(
−`(1− 4ε)2

6

)
,

⇒ log g − k log 2 ≤ log 2− `(1− 4ε)2

6
,

⇒k ≥
log g − log 2 + `(1−4ε)2

6

log 2
≥ log g + 3`/50

log 2
− 1,

since ε ≤ 1/10.

Corollary 7.7. For ` ≥ 200, there does not exist an (`, k, 1/10, 1/2)-SCS with k < `/20.

7.2 Construction

We will derive a lower bound on k from the existence of a Ruzsa-Szemerédi (RS) graph, defined as
follows.

Definition 7.8 (Ruzsa-Szemerédi graph). We call an (ordinary) graph a (t, a)-RS graph if its edge
set is the union of t induced matchings of size a.

Recall the definition of hypergraph cut sparsification schemes from Section 3.3:

Definition 3.1. Let H(n, r) be the set of hypergraphs on a vertex set [n] with each hyperedge having
size at most r. A pair of functions Sparsify : H(n, r) → {0, 1}k and Cut : {0, 1}k × 2[n] → N is
said to be an (n, r, k, ε)-HCSS if for all inputs G = (V,E) ∈ H(n, r) the following holds.

• For every query S ∈ 2[n],
∣∣Cut(Sparsify(G), S)− |E(S, S)|

∣∣ ≤ ε · |E(S, S)|.

Theorem 7.9. Suppose there exists a (t, a)-RS graph on n vertices where a ≥ 6000
√
n log n and

at ≥ 480n. Then, any (2n, t+ 1, k, ε)-HCSS where ε ≤ a/(60n) must have

k = Ω(at).

This is equivalent to Theorem 1.2.

Proof. Let us fix such a (t, a)-RS graphG on n vertices, and a (2n, t+1, k, ε)-HCSS (Sparsify,Cut).
We will use this HCSS as a black box to construct a string compression scheme using k bits of space,
then bound k by Corollary 7.7. First let us convert G into a bipartite graph G′. Let the vertex
set of G′ = (V ′, E′) be V × {0, 1} where P = V × {0} and Q = V × {1} are the two sides of the
bipartition. For each edge e = (u, v) ∈ E, we add two edges to E′: ((u, 0), (v, 1)) and ((v, 0), (u, 1)),
ensuring that G′ is indeed bipartite. Note that E′ is the union of t induced matchings of size 2a.
Let us call these matchings M1, . . .Mt and let each Mj be supported on Pj in P and Qj in Q. The
maximum degree in G′ is t.

We will use G′ to design a compression of strings of length ` = 2ta. Note that there are exactly
2ta edges of G′. Let φ be an arbitrary bijection from E′ to [`]. For a string s ∈ {0, 1}`, Let Es be
the subset of E′ defined as

Es =
{
e ∈ E′ : sφ(e) = 1

}
.

Thus the graph Gs = (P ∪Q,Es) encodes the string s. We then transform Gs into the hypergraph
Hs = (P ∪Q,EHs ). Let EHs consist of one hyperedge corresponding to each vertex u ∈ P :

EHs = {{u} ∪ Γs(u) | u ∈ P} ,
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where Γs denotes the neighborhood in Gs.
Our compression function Encode is then simply to sparsify Hs using Sparsify. This can

indeed be done, since Hs is a hypergraph with 2n vertices and each edge has cardinality at most
t+ 1. It remains to define the decoding function Decode.

Given a query q ⊆ [`], we must estimate the size of s∩ q, the number of coordinates of s within
q having value 1. To do this, we partition q into segments q1, . . . , qt, and then estimate the size of
each s ∩ qj . Specifically, let

qj = {i ∈ q | φ−1(i) ∈Mj}.

We can then define

Decode(Sparsify(Hs), q) =

t∑
j=1

Decodej(Sparsify(Hs), q
j).

Here Decodej remains undefined for now. In what follows we will define it such that

Decodej(Sparsify(Hs), q
j) ∼= |s ∩ qj |.

To estimate the size of s ∩ qj , we will observe the cut EHs (S, S) = EHs (Sjs , S
j
s) defined as follows:

• From P , S contains the subset of vertices in Pj corresponding to edges in qj . Formally

S ∩ P = {P ∩ e | e ∈Mj s.t. φ(e) ∈ qj}.

• From Q, S contains all vertices except Qj .

We will prove the the size of the cut (S, S) is closely related to the size of s∩q, as long as s satisfies
some nice properties.

Note that each hyperedge in EHs corresponds to a vertex in P : for u ∈ P we denote the
hyperedge {u} ∪ Γs(u) as eu. We will bound the contribution of eu to the cut (S, S) for all u in
each of the following three categories:

1. u ∈ Pj ∩ S:
Let the edge from Mj adjacent on u be fu. For any such u, eu crosses the cut if and only
if sφ(fu) = 1. Indeed, if sφ(fu) = 1, then f ∈ Es and f ∩ Q ∈ Qj ⊆ S. On the other
hand, if sφ(fu) = 0 then f 6∈ Es and all edges adjacent on u in Es correspond to matchings
different from Mj (that is Mk for k 6= j). Since Mj is induced by the property of RS-graphs,
Γs(u) ⊆ Q \ Qj ⊆ S. Therefore, the total amount of hyperedges crossing the cut from this
category is exactly |s ∩ qj |.

2. u ∈ Pj \ S:
In this case eu crosses the cut unless ds(u) < 2. Indeed, if ds(u) ≥ 2 then at least one edge
adjacent on u in Gs does not come from Mj . The other endpoint of this edge is in Q\Qj ⊆ S,
whereas u itself is in S by definition. In the the case where ds(u) < 2 we cannot say whether
eu crosses the cut or not. Therefore, the number of hyperedges crossing the cut from this
category is approximately m− |qj | (that is all of them), but with a possible error of

|{u ∈ Pj | ds(u) < 2}|.
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3. u ∈ P \ Pj :
In this case we cannot say anything about the number of edges crossing the cut, except that
it is unlikely to deviate from its expectation when s is considered to be uniformly random on
{0, 1}`. Let

Zj = |{u ∈ P \ Pj | Γs(u) 6⊆ Qj}|,

or the number of hyperedges in EHs from this category crossing the cut.

Overall, we can approximate the size of the cut (S, S) in Hs by

|s ∩ qj |+ (a− |qj |) + EsZj , (11)

with an maximum additive error of∣∣{u ∈ Pj | ds(u) < 2}
∣∣+
∣∣Zj − EsZj

∣∣. (12)

Conversely, this allows us to approximate |s ∩ qj | using the size of the same cut in our (2n, t+
1, k, ε)-HCSS. Therefore, we define Decodej as follows:

Decodej(Sparsify(Hs), q
j) = Cut(Sparsify(Hs), S)− (a− |qj |)− EsZj . (13)

It remains to bound the total error introduced by the inaccuracies above.
We will define the set of good input strings, G to be those where this additive error is small

across all j’s, and we will prove that this contains a majority of possible input strings.

Claim 7.10. Let G be the set of strings s ∈ {0, 1}` such that

t∑
j=1

(∣∣{u ∈ Pj | ds(u) < 2}
∣∣+
∣∣Zj − EsZj

∣∣) ≤ 8n+ 100t
√
n log n.

Then |G| ≥ 2`−1.

Proof. Consider s to be a random string, chosen uniformly on {0, 1}`. We will prove that P[s ∈
G] ≥ 1/2. We do this by considering the two bad events

t∑
j=1

|{u ∈ Pj |ds(u) < 2}| > 8n,

t∑
j=1

|Zj − EZj | > 100t
√
n log n,

and prove that neither happens with probability more than 1/4.
To bound the probability of the first event consider the expectation of the sum:

E
t∑

j=1

∣∣{u ∈ Pj | ds(u) < 2}
∣∣ = E

t∑
j=1

∑
u∈Pj

1(ds(u) < 2) =

t∑
j=1

∑
u∈Pj

P[ds(u) < 2]

=
∑
u∈P

∑
j:u∈Pj

P[ds(u) < 2] =
∑
u∈P
|{j | u ∈ Pj}| · P[ds(u) < 2]

=
∑
u∈P

d(u) · (d(u) + 1) · 2−d(u) ≤ 2n,
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as the function d(d+ 1) · 2−d is bounded by 2 for all non-negative d.
This means, that by the Markov inequality

P

 t∑
j=1

∣∣{u ∈ Pj | ds(u) < 2}
∣∣ > 8n

 ≤ 1

4
.

Now, for the second bad event, we apply Chernoff bound (Theorem A.1). Note that

Zj = |{u ∈ P \ Pj | Γs(u) 6⊆ Qj},

is the sum of n−m independent random variables bounded by one. Therefore,

P [|Zj − EZj | > δn] ≤ 2 exp

(
−δ

2n

3

)
.

Setting δ to 100
√

(log n)/n and taking union bound over j = 1, . . . , t gives us that

P

 t∑
j=1

|Zj − EZj | > 100t
√
n log n

 ≤ 1

4
.

Putting the bounds on the first and second event together gives us the statement of the claim.

This G will be our set of good inputs in our (`, k, 1/10, 1/2)-SCS. Claim 7.10 essentially shows
that the error in our estimate of |s∩ q| would be at most 8n+ 100t

√
n log n without the inaccuracy

introduced by our cut sparsifier. Since the size of the cut (S, S) is at most n (the total number of
hyperedges in the hypergraph Hs), this introduces an additional εn additive error.

Formally, when s ∈ G∣∣|s ∩ q −Decode(Encode(s), q)
∣∣

=

∣∣∣∣∣∣|s ∩ q| −
t∑

j=1

Decodej(Sparsify(Hs), q
j)

∣∣∣∣∣∣
≤

t∑
j=1

∣∣|s ∩ qj | −Decodej(Sparsify(Hs), q
j)
∣∣

≤
t∑

j=1

∣∣|s ∩ qj | −Cut(Sparsify(Hs), S) + (a− |qj |) + EsZj
∣∣ by equation 13

≤
t∑

j=1

(∣∣|s ∩ qj | − |EHs (Sjs , S
j
s)|+ (a− |qj |) + EsZj

∣∣+
∣∣|EHs (Sjs , S

j
s)| −Cut(Sparsify(Hs), S

j
s)
∣∣)

≤
t∑

j=1

(∣∣{u ∈ Pj | ds(u) < 2}
∣∣+
∣∣Zj − EsZj

∣∣+ εn
)

by equations 11 and 12

≤
(

8n+ 100t
√
n log n

)
+

t∑
j=1

εn since s ∈ G

≤8n+ 100t
√
n log n+ εtn
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This is less than `/20 = at/20 due to the theorem’s assumptions on the parameters. Therefore,
(Encode,Decode) is a (`, k, 1/10, 1/2)-SCS with the set of good inputs being G. By Corollary 7.7
k must be at least Ω(`) = Ω(at).

We can now apply Theorem 7.9 to several RS-graph constructions known in the literature. Note
that if there exists a (t, a)-RS graph, one can always reduce the parameters to get an (t′, a′)-RS
graph for t′ ≤ t and a′ ≤ a. We begin with Fischer et al. [FLN+02], which proves the existence of
(nΩ(1/ log logn), n/3− o(1))-Ruzsa-Szemerédi graphs, resulting in the following corollary.

Corollary 7.11. Any (n, r, k, ε)-HCSS with r = nO(1/ log logn) and small constant ε requires k =
Ω(nr) space.

In other words, any data structure that can provide a (1 + ε)-approximation to the size
of all cuts in an r-uniform hypergraph with n vertices and r = nO(1/ log logn) for small con-
stant ε ∈ (0, 1) requires Ω(nr) bits of space. This is tight due to the hypergraph cut sparsifier
construction of [CKN20]. A different construction, also from [FLN+02], is able to achieve an
(nc, n/O(

√
log logn/ log n))-RS graph for some small enough constant c. This results in the fol-

lowing:

Corollary 7.12. For some constant c, any (n, r, k, ε)-HCSS with r = O(nc) and ε = O(
√

log logn/ log n)
requires k = Ω(nr/

√
log n/ log log n) space.

Finally, the original construction of Ruzsa and Szemeredi [RS78] guarantees the existence of an
(n/3, n/2O(

√
logn))-RS graphs, implying:

Corollary 7.13. Any (n, r, k, ε)-HCSS with ε = 2−Ω(
√

logn) requires k = nr/2O(
√

logn) space.

These results imply that for any value of r, it is impossible to compress the cut structure of a
hypergraph with n vertices and maximum hyperedge size r, with significantly less than nr space,
and a polynomial scaling in the error (that is with nr1−Ω(1)ε−O(1) space).

8 Spectral Sparsification of Directed Hypergraphs

In this section, we discuss spectral sparsification of directed hypergraphs. First we introduce
some notions and study basic properties of directed hypergraphs in Section 8.1. Then, we discuss
spectrally sparsifying directed hypergraphs with hyperedges having nearly equal overlap (a concept
to be defined in Section 8.1). Finally, we prove Theorem 1.3 in Section 8.4.

8.1 Preliminaries

A directed hypergraph G = (V,E) is a pair of a vertex set V and a set E of hyperarcs, where a
hyperarc e ∈ E is an ordered pair of two disjoint vertex sets h(e) ⊆ V , the head, and t(e) ⊆ V ,
the tail. The size of a hyperarc e ∈ E is |h(e)|+ |t(e)|. We restrict ourselves to dealing with only
simple directed hypergraphs, that is, in Section 8 E is always considered to be a set as opposed to
a multiset.

We say that a vertex set S ⊆ V cuts a hyperarc e ∈ E if S ∩ t(e) 6= ∅ and (V \ S) ∩ h(e) 6= ∅.
The energy of a hyperarc e with respect to a vector x ∈ RV is defined as

max
a∈t(e),b∈h(e)

(xa − xb)2
+,
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where (α)+ = max{α, 0}. The energies of a set of arcs, or of an entire vector with respect to G, is
defined identically to the undirected case. So in particular the energy of x with respect to G is

Q(x) =
∑
e∈E

max
a∈t(e),b∈h(b)

(xa − xb)2
+.

Note that Q(1S), where 1S ∈ RV is the characteristic vector of S, is equal to the number of
hyperarcs cut by S. Identically to Definition 2.2, for ε > 0, a weighted subgraph G̃ of G is said to
be a ε-spectral sparsifier of G if

Q̃(x) = (1± ε)Q(x),

where Q(x) and Q̃(x) are energy of x with respect to G and G̃, respectively.
In constructing our sparsifier, a useful object to consider will be the clique graph of G, the

directed (ordinary) multigraph we get by replacing each hyperarc in G with a directed bipartite
clique. Formally, the clique of a hyperarc e ∈ E is the set of arcs C(e) = {(a, b) | a ∈ t(e), b ∈
h(e)}. The clique graph of a set of hyperarcs E′ ⊆ E is the multi-union of the individual cliques
C(E′) =

⊎
e∈E′ C(e). Finally, the clique graph of G itself is C(G) = (V,C(E)). In the following,

we make some observation about the multiplicities of arcs in the clique graph.

Definition 8.1. Given a hypergraph G = (V,E), we say that a subset of hyperarcs E′ ⊆ E k-
overlapping if every arc in C(E′) appears with multiplicity at least k. Furthermore, the overlap
k(e) of a single hyperarc e ∈ E is defined as the largest k such that there exists a k-overlapping set
of hyperarcs containing e.

Informally, we will use the inverse overlap of each hyperarc as a sampling rate in constructing
our sparsifier. Thus, the following lemma will be a useful bound on the sum of these rates:

Lemma 8.2. Let G = (V,E) be a directed hypergraph. Then, we have∑
e∈E

1

k(e)
≤ n2.

Proof. Consider the following simple algorithm:

Algorithm 3

1: procedure OverlapPeeling(G = (V,E))
2: E′ ← E.
3: for k = 1, . . . , 2n−2 do
4: E′k ← E′.
5: while there exists (u, v) ∈ C(E′) with multiplicity at most k do
6: for all hyperarcs e ∈ E′ such that (u, v) ∈ C(e) do
7: f(e)← (u, v).
8: E′ ← E′ \ {e}.

This algorithm iterates through all possible overlaps (from 1 to 2n−2) and peels off all hyperarcs
with this overlap, until no hyperarcs remain. The algorithm maintains several variables (E′k and
f(e)) that are not used. However, these will be useful in proving the lemma.

Claim 8.3. The set E′k has overlap k for all k.
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Proof. Indeed, the variable k is augmented in the for-loop at Line 3 only after exiting the while-loop
at Line 5. This means that there no longer existed any pairs (u, v) in C(E′) with multiplicity at
most k− 1, and therefore E′ was k-overlapping. (The exception to this argument is k = 1, however
all sets are 1-overlapping by definition.)

Claim 8.4. If a hyperarc e is removed at a time when k = k∗, then it has overlap exactly k∗.

Proof. It is easy to see that e has overlap at least k∗, since it was an element of E′k∗ which is itself
k∗-overlapping by Claim 8.1.

We prove that e has overlap at most k∗ by induction. By induction, we can assume that
all hyperarcs removed before e had overlap corresponding to the value of k at the time, that is,
at most k∗. Let E∗ be the current value of E′ at the time just before e is removed. Suppose
for contradiction that e is at least (k∗ + 1)-overlapping, or equivalently there exists a (k∗ + 1)-
overlapping set containing e, say Ẽk∗+1. However, no hyperarc removed before e could be in this
set, since we know they are at most k∗-overlapping. So Ẽk∗+1 ⊆ E∗. But some arc in C(e) has
multiplicity only at most k∗ in E∗, which is a contradiction.

Claim 8.5. For any pair (u, v) ∈ V 2, we have∑
e:f(e)=(u,v)

1

k(e)
≤ 1.

Proof. First note that all pairs (u, v) are only considered once in the while-loop of Line 5 throughout
the whole algorithm. Indeed, once a pair is considered, all hyperarcs containing it are removed and
(u, v) is no longer in C(E′).

Suppose (u, v) is removed in this way when k = k∗. Then all hyperarcs e such that f(e) = (u, v)
have overlap at most k∗. On the other hand, there are at most k∗ such hyperarcs due to the condition
in Line 5. This concludes the proof of the claim.

From here the lemma statement follows simply:∑
e∈E

1

k(e)
=

∑
(u,v)∈V 2

∑
e:f(e)=(u,v)

1

k(e)
≤

∑
(u,v)∈V 2

1 = n2.

Remark 8.6. Note that, by Claim 8.4, we can compute overlaps of hyperarcs by running Algo-
rithm 3. Furthermore, we can make it run in polynomial time by, instead of incrementing k at
Line 3, updating k to be the smallest multiplicity of an edge in C(E′).

8.2 Nearly Equally Overlapping Directed Hypergraphs

In this section, we consider the simpler case where every hyperarc has a similar overlap.

Lemma 8.7. There is an algorithm that, given 0 < ε ≤ 1/2 and a directed hypergraph G = (V,E)
such that every hyperarc has overlap between k and 2k for some k ≥ 1, and each hyperarc has size
at most r ≤

√
εn/11, outputs in polynomial time a weighted subgraph G̃ = (V, Ẽ, w) of G satisfying

the following with probability 1−O(1/n):

• G̃ is an ε-spectral sparsifier of G,

• |Ẽ| = O(n2r2 log n/ε2).
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Construction Let us construct G̃ = (V, Ẽ) by sampling each hyperarc independently with the
same probability p = 1000r2 log n/(kε2) and scaling them up by 1/p. Let the weight of each
hyperarc e in G̃ be denoted as we. Then we is an independent random variable taking value 1/p
with probability p and value 0 otherwise, for each e.

Clearly, we can compute the output in O(m) time. Also, we can bound the size of Ẽ easily:

Lemma 8.8. We have E[|Ẽ|] = 2000n2r2 log n/ε2 and

P
[
|Ẽ| > 4000n2r2 log n/ε2

]
≤ 2 exp

(
−2pkn2

3

)
.

Proof. Note that since the overlap of each hyperarc is at most 2k, there are at most 2kn2 hyper-
arcs in total (in E) by Lemma 8.2. Each hyperarc is sampled with probability p to be in Ẽ, so
E[|Ẽ|] = 2pkn2 = 2000n2r2 log n/ε2, as claimed. By Chernoff bounds (Theorem A.1), the claimed
concentration inequality holds.

Correctness We now examine the spectral properties of G̃. Recall that C(G) is the clique graph
of G. Let us denote by QC the energy with respect to the clique graph. We may assume without
loss of generality that QC(x) = 1, since whether Q(x) = (1± ε)Q̃(x) holds or not is unaffected by
scaling x. Define RV to be the set of vectors x such that this is satisfied. Note that this means
that Qx(E) ≥ 1/r2. Indeed

Qx(E) =
∑
e∈E

max
u∈t(e), v∈h(e)

(xu − xv)2
+ =

∑
e∈E

max
f∈C(e)

QCx (f) ≥ 1

r2

∑
e∈E

∑
f∈C(E)

QCx (f)

=
1

r2

∑
f∈C(E)

QCx (f) =
QC(x)

r2
=

1

r2
.

Let us categorize the arcs in C(E) based on their contributions to the total energy QC(x) = 1
in C(G). The categories are

Ci =

{
f ∈ C(E)

∣∣∣∣ QCx (f) ∈
(

2−i

k
,
2−i+1

k

]}
,

for i = 1, . . . , i∗ where i∗ := d3 log ne, as well as

C∗ =

{
f ∈ C(E)

∣∣∣∣ QCx (f) ≤ 2−i
∗

k

}
.

Recall that C(E) is a multiset, and consequently so are Ci and C∗. Since each arc f appears with
multiplicity at least k, any single arc can contribute at most 1/k to the energy. Therefore, all arcs
of C(G) are covered by these categories.

We then partition the hyperarcs into similar categories: A hyperarc e gets into category i (or
Ei) if i is the smallest number for which C(e) contains an arc in Ci. Formally

Ei = {e ∈ E | i = max{j | C(e) ∩ Cj 6= ∅}} (i = 1, . . . , i∗), and

E∗ = {e ∈ E | C(e) ⊆ C∗} .

To prove that G̃ is an ε-spectral sparsifier, we will show that, for all i, Qx(Ei) ≈ Q̃x(Ei).
Similarly to the proof of Theorem 4.1 we will introduce a discretization of Qx(Ei). However, unlike
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in the proof of Theorem 4.1, instead of rounding the vertex potentials xv, we will round the energies
of hyperarcs, that is, Qx(e) for e ∈ E.

Let us first define Q
C,(i)
x (f), the rounding of QCx (f). Firstly, if QCx (f) ≤ 2−i/k, that is the arc

f is not relevant to Ei, we define Q
C,(i)
x (f) to be zero. Otherwise, let Q

C,(i)
x (f) be the rounding of

QCx (f) to the nearest integer multiple of 1/(kn3). Analogously with the definition of Qx, for e ∈ E
let

Q(i)
x (e) = max

f∈C(e)
QC,(i)x (f), Q(i)

x (E′) =
∑
e∈E′

Q(i)
x (E′),

Q̃(i)
x (e) = weQ

(i)
x (e), Q̃(i)

x (E′) =
∑
e∈E′

Q̃(i)
x (e).

Informally, we prove the following chain of approximations for each i:

Qx(Ei) ∼= Q(i)
x (Ei) ∼= Q̃(i)

x (Ei) ∼= Q̃x(Ei),

as well as
Qx(E∗) ∼= Q̃x(E∗).

We make this formal in the following claims:

Claim 8.9. For all x ∈ RV and all i = 1, . . . , i∗,

Q(i)
x (Ei) = Qx(Ei)±

2

n
.

Claim 8.10. For all i = 1, . . . , i∗,

P
[
∀x ∈ RV : Q̃(i)

x (Ei) =
(

1± ε

2

)
Q(i)
x (Ei)±

εQ(x)

10 log n

]
≥ 1− 1

n
.

Claim 8.11. For all i = 1, . . . , i∗,

P
[
∀x ∈ RV : Q̃(i)

x (Ei) = Q̃x(Ei)±
4

n

]
≥ 1− 1

n
.

Claim 8.12.

P
[
∀x ∈ RV : Q̃x(E∗) = Qx(E∗)±

6

n

]
≥ 1− 1

n
.

Before proving the above claims, which we do in the next section, we conclude the analysis of
correctness of the sparsifier.

Lemma 8.13. The directed hypergraph G̃ is an ε-spectral sparsifier of G with probability 1−O(1/n).

Proof. The statements of Claims 8.10, 8.11, and 8.12 all hold with high probability. Let us consider
the event that they all hold simultaneously, then by Claims 8.9, 8.10, and 8.11,∣∣Qx(Ei)− Q̃x(Ei)

∣∣ ≤ ∣∣Qx(Ei)−Q(i)
x (Ei)

∣∣+
∣∣Q(i)

x (Ei)− Q̃(i)
x (Ei)

∣∣+
∣∣Q̃(i)

x (Ei)− Q̃x(Ei)
∣∣

≤ 2

n
+
ε

2
Q(i)
x (Ei) +

Q(x)

10 log n
+

4

n
≤ ε

2
Qx(Ei) +

Q(x)

10 log n
+

6

n
,
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using that ε ≤ 1. Summing this over i = 1 . . . , i∗ = d3 log ne and adding Claim 8.12 we get

∣∣Q(x)− Q̃(x)
∣∣ ≤ i∗∑

i=1

∣∣Qx(Ei)− Q̃x(Ei)
∣∣+
∣∣Qx(E∗)− Q̃x(E∗)

∣∣
≤

i∗∑
i=1

[
ε

2
Qx(Ei) +

εQ(x)

10 log n
+

6

n

]
+

6

n
≤ ε

2
Q(x) +

4ε

10
Q(x) +

12

n
≤ εQ(x),

since εQ(x)/10 ≥ ε/(10r2) ≥ 12/n because 11r ≤
√
εn.

Lemma 8.7 follows by Lemmas 8.8 and 8.13 and a union bound.

8.3 Proofs of Claims 8.9, 8.10, 8.11, and 8.12

We begin with a preliminary claim examining the difference between Qx and Q
(i)
x on a single

hyperarc.

Claim 8.14. For all x ∈ RV , all i = 1, . . . , i∗, and any hyperarc e ∈ Ei,

Q(i)
x (e) = Qx(e)± 1

kn3
.

Proof. Suppose first that Qx(e) ≥ Q
(i)
x (e). Recall that e ∈ Ei and by definition of Ei there exist

arcs in C(e)∩Ci. In this case let f = argmaxf∈C(e)Q
C
x (f), guaranteeing that f ∈ Ci. Therefore, by

definition Q
C,(i)
x (f) is not zero, but a rounding to the nearest integer multiple of 1/(kn3). Therefore,

Qx(e)−Q(i)
x (e) ≤ QCx (f)−QC,(i)x (f) ≤ 1

kn3
.

Now suppose that Qx(e) < Q
(i)
x (e). In this case we define f to be argmaxf∈C(e)Q

C,(i)
x (e). Now

if Q
C,(i)
x (f) is zero the claim holds trivially, so we may assume that Q

C,(i)
x (f) is instead a rounding

to the nearest integer multiple of 1/(kn3):

Q(i)
x (e)−Qx(e) ≤ QC,(i)x (f)−QCx (f) ≤ 1

kn3
.

Claim 8.9. For all x ∈ RV and all i = 1, . . . , i∗,

Q(i)
x (Ei) = Qx(Ei)±

2

n
.

Proof. We can simply sum over the hyperarcs in Ei. Since |Ei| ≤ |E| ≤ 2kn2, we have that

∣∣Qx(Ei)−Q(i)
x (Ei)

∣∣ ≤∑
e∈Ei

∣∣Qx(e)−Q(i)
x (e)

∣∣ ≤ |Ei|
kn3
≤ 2

n
.

Claim 8.10. For all i = 1, . . . , i∗,

P
[
∀x ∈ RV : Q̃(i)

x (Ei) =
(

1± ε

2

)
Q(i)
x (Ei)±

εQ(x)

10 log n

]
≥ 1− 1

n
.

43



Proof. We prove the stronger claim

P
[
∀x ∈ RV : Q̃(i)

x (Ei) =
(

1± ε

2

)
Q(i)
x (Ei)±

ε

10r2 log n

]
≥ 1− 1

n
,

replacing Q(x) by 1/r2 in the allowable additive error, which depends on x only through Q
(i)
x and

Ei.
We first consider a single setting of x (and consequently Ei and Q

(i)
x ). Since E[Q̃

(i)
x (e)] = Q

(i)
x (e),

we can apply additive-multiplicative Chernoff (Theorem A.2) to get the desired bound. Each

independent random variable (Q̃
(i)
x (e) for e ∈ Ei) is in the range [0, 2−i+1/(pk)] by definition of Ei.

Therefore we get

P
[∣∣Q̃(i)

x (Ei)−Q(i)
x (Ei)

∣∣ > ε

2
Q(i)
x (Ei) +

ε

10r2 log n

]
≤ 2 exp

(
−
ε/2 · ε

10r2 logn

3 · 2−i+1/(pk)

)

= 2 exp

(
− ε2pk · 2i

120r2 log n

)
.

We will now use a union bound to prove that this holds simultaneously for all possible settings of

Ei and Q
(i)
x . Recall that by definition

⋃i
j=1Cj contains exactly arcs of C(E) that contribute more

than 2−i/k energy to the total energy of QC(x) = 1. There are at most k · 2i such arcs, but since

each arc appears with multiplicity at least k, there are at most 2i distinct arcs. The Q
C,(i)
x -value

of all arcs not in
⋃i
j=1Cj is zero. To select this multiset of non-zero valued arcs there are(

n2

2i

)
≤ n2·2i = exp

(
2 · 2i log n

)
options. Furthermore, for each relevant arc, we must choose its Q

C,(i)
x -value: This is an integer

multiple of 1/kn3 in the range [−1/k, 1/k] and so there are 2n3 options per arc—for a total of(
2n3
)2i ≤ exp

(
4 · 2i log n

)
options. Finally, for each relevant arc, we must choose which category among E1, . . . , Ei it belongs

to (as this may not be evident from the value of Q
C,(i)
x ). This is an additional i ≤ 3 log n+1 options

per arc—for a total of

(3 log n+ 1)2i ≤ exp
(
2i log n

)
,

options among all arcs.
Ultimately, there are

exp
(
2 · 2i log n+ 4 · 2i log n+ 2i log n

)
= exp

(
7 · 2i log n

)
possible settings of (E1, . . . , Ei, Q

C,(i)
x ).

Combining the above Chernoff bound for a single setting of x with this union bound we get the
statement of the claim:

P
[
∀x :

∣∣Q(i)
x (Ei)− Q̃(i)

x (Ei)
∣∣ > ε

2
Q(i)
x (Ei) +

ε

10r2 log n

]
≤2 exp

(
7 · 2i log n

)
· exp

(
−ε

2pk · 2−i

120r2

)
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=2 exp

(
2i ·
(

7 log n− ε2pk

120r2

))
≤ 1

n
,

since pk = 1000r2 log n/ε2.

Claim 8.11. For all i = 1, . . . , i∗,

P
[
∀x ∈ RV : Q̃(i)

x (Ei) = Q̃x(Ei)±
4

n

]
≥ 1− 1

n
.

Proof. We consider the high probability event that |Ẽ| ≤ 4pkn2. (Lemma 8.8). Similarly to the
proof of Claim 8.9 we simply sum over all edges of Ei. Note that if e ∈ Ẽ,∣∣Q̃x(e)− Q̃(i)

x (e)
∣∣ ≤∑

e∈Ei

∣∣Q̃x(e)− Q̃(i)
x (e)

∣∣ =
∑

e∈Ei∩Ẽ

1

p

∣∣Qx(e)−Q(i)
x (e)

∣∣ ≤ |Ẽ|
pkn3

≤ 4

n
.

Claim 8.12.

P
[
∀x ∈ RV : Q̃x(E∗) = Qx(E∗)±

6

n

]
≥ 1− 1

n
.

Proof. Note that ∣∣Qx(E∗)− Q̃x(E∗)
∣∣ ≤ Qx(E∗) + Q̃x(E∗).

We bound the two terms separately:

Qx(E∗) ≤ |E∗| ·
1

kn3
≤ |E| · 1

kn3
≤ 2

n
,

and

Q̃x(E∗) ≤ |Ẽ| ·
1

pkn3
≤ 4

n
,

with high probability by Lemma 8.8.

8.4 Proof of Theorem 1.3

Proof of Theorem 1.3. Given the results of Lemma 8.7, we only need to decompose G into directed
hypergraphs with their hyperedges having nearly the same overlap. We will repeatedly separate and
sparsify hyperarcs of the highest overlap until no hyperarcs remain. This results in an ε-spectral
sparsifier of G, since the quality of being an ε-spectral sparsifier is additive.

Consider the following simple algorithm, where UniformSamplingSparsify denotes the spar-
sification algorithm given in Lemma 8.7:

Algorithm 4 Directed hypergraph sparsification

1: procedure Sparsify(G = (V,E))
2: Ẽ ← ∅.
3: while E 6= ∅ do
4: 2k ← the largest overlap among hyperedges in E.
5: E′ ← the maximal k-overlapping set in E.
6: E ← E \ E′.
7: Ẽ ← Ẽ ∪UniformSamplingSparsify(V,E′).

8: return (V, Ẽ).

45



Note first that the maximal set of a certain multiplicity (in Line 5) is indeed unique. It follows
from definition that the union of hyperarc sets of multiplicity k still has multiplicity k. Therefore,
E′ contains all hyperarcs of overlap at least k form (the current) E. Furthermore, removing E′

from E reduces the maximum overlap of any hyperarc to below k, so by a factor of at least 2.
Since the maximum overlap started out is at most nr−2, Algorithm 8.4 terminates in at most
r log n iterations. Since the size of Ẽ increased by at most O(n2r2 log n/ε2) in each iteration, by
Lemma 8.7, this results in |Ẽ| = O(n2r3 log2 n/ε2), as claimed.

The running time is polynomial because we can compute overlaps of hyperarcs in polynomial
time by Remark 8.6, and hence can compute the largest overlap k and the maximal k-overlapping
set in polynomial time.
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A Technical lemmas

A.1 Concentration Inequalities

The following concentration bound is standard.

Theorem A.1 (Chernoff bound, see e.g. [AS08]). Let X1, . . . , Xn be independent random variables
in the range [0, a]. Let

∑n
i=1Xi = S. Then for any δ ∈ [0, 1] and µ ≥ ES,

P[|S − ES| ≥ δµ] ≤ 2 exp

(
−δ

2µ

3a

)
.

The following slight variation, allowing for both multiplicative and additive error, will be the
most convenient for our purposes throughout the paper.

Theorem A.2 (Additive-multiplicative Chernoff bounds [BV13]). Let X1, . . . Xn be independent
random variables in the range [0, a]. Let

∑n
i=1Xi = S. Then for all δ ∈ [0, 1] and α > 0,

P[|S − ES| ≥ δES + α] ≤ 2 exp

(
−δα

3a

)
.

A.2 Proof of Hypergraph Cheeger’s Inequality

Proof of Theorem 2.3: Recall that
∑

v∈V xvd(v) = 0. Suppose for contradiction that there

exists a vector x ∈ RV such that Q(x) < rΦ2

32

∑
v∈V x

2
vd(v). Let x̃ ∈ RV be such x shifted such that∑

v∈V xvdx(v) = 0, where dx(v) denotes the degree of v in Gx = (V,Ex). Then, we have

Q(x) <
rΦ2

32

∑
v∈V

x2
vd(v) ≤ rΦ2

32

∑
v∈V

x̃2
vd(v) =

rΦ2

32

∑
e∈E

∑
v∈e

x̃2
v

≤ r2Φ2

32

∑
e∈E

max
v∈e

x̃2
v ≤

r2Φ2

32

∑
(a,b)∈Ex

(
x̃2
a + x̃2

b

)
=
r2Φ2

32

∑
v∈V

x̃2
vdx(v),

The second inequality follows since x is centered, that is
∑

v∈V xvd(v) = 0.
This means, by Cheeger’s inequality for ordinary graphs [AM85, Alo86], that there exists a

vertex set S of expansion rΦ
4 in Gx. Moreover, S can be chosen to be a sweep cut with respect

to x (regardless of the degree vector) in the sense that S is of the form {v ∈ V | xv ≤ τ} or
{v ∈ V | xv ≥ τ} for some τ ∈ R. Let S ⊆ V be the smaller side of the cut (in volume). Let
η := |Ex(S, V \ S)| and ζ := |E(S)|. Then, we have

η ≤ rΦ

4

∑
v∈S

dx(v) =
rΦ

4
(η + 2ζ).

Since Φ ≤ 2
r , rΦ

4 ≤
1
2 and so ζ ≥ η

rΦ . Since S is a sweep cut with respect to x, each edge of
Gx crossing the cut (S, V \ S) corresponds to a distinct hyperedge of G also crossing the cut,
and each edge of Gx fully inside S translates to a hyperedge of G fully inside S. Therefore, the
number of edges crossing the cut (S, V \ S) in G is still η and

∑
v∈S d(v) > rζ ≥ η

Φ . Similarly,∑
v∈V \S d(v) > η

Φ . Therefore, the expansion of the cut (S, V \ S) in G is less than Φ, which is a
contradiction.
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