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Abstract
In this paper we revisit the kernel density estimation problem: given a kernel K(x, y) and

a dataset of n points in high dimensional Euclidean space, prepare a data structure that can
quickly output, given a query q, a (1+ε)-approximation to µ := 1

|P |
∑

p∈P K(p, q). First, we give
a single data structure based on classical near neighbor search techniques that improves upon
or essentially matches the query time and space complexity for all radial kernels considered in
the literature so far. We then show how to improve both the query complexity and runtime by
using recent advances in data-dependent near neighbor search.

We achieve our results by giving an new implementation of the natural importance sampling
scheme. Unlike previous approaches, our algorithm first samples the dataset uniformly (consid-
ering a geometric sequence of sampling rates), and then uses existing approximate near neighbor
search techniques on the resulting smaller dataset to retrieve the sampled points that lie at an
appropriate distance from the query. We show that the resulting sampled dataset has strong ge-
ometric structure, making approximate near neighbor search return the required samples much
more efficiently than for worst case datasets of the same size. As an example application, we
show that this approach yields a data structure that achieves query time µ−(1+o(1))/4 and space
complexity µ−(1+o(1)) for the Gaussian kernel. Our data dependent approach achieves query
time µ−0.173−o(1) and space µ−(1+o(1)) for the Gaussian kernel. The data dependent analysis
relies on new techniques for tracking the geometric structure of the input datasets in a recursive
hashing process that we hope will be of interest in other applications in near neighbor search.

This project has received funding from the European Research Council (ERC) under the European UnionâĂŹs
Horizon 2020 research and innovation programme (grant agreement No 759471).
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1 Introduction
Kernel density estimation is a fundamental problem with numerous applications in machine learn-
ing, statistics and data analysis [FG96, SS01, JKPV11, SZK14, GPPV+14, ACMP15, GB17]. For-
mally, the Kernel Density Estimation (KDE) problem is: preprocess a dataset P of n points
p1, . . . ,pn ∈ Rd into a small space data structure that allows one to quickly approximate, given a
query q ∈ Rd, the quantity

K(P,q) := 1
|P |

∑
p∈P

K(p,q). (1)

where K(p,q) is the kernel function. The Gaussian kernel

K(p,q) := exp(−||p− q||22/2)

is a prominent example, although many other kernels (e.g., Laplace, exponential, polynomial etc)
are the method of choice in many applications [STC+04, RW06].

In the rest of the paper, we use the notation µ∗ defined as µ∗ := K(P,q), and µ is a quantity
that satisfies µ∗ ≤ µ ≤ 4µ∗.1 Moreover, in the statement of the main results, we assume that a
constant factor lower bound to the actual kernel density, µ∗, is known. In general, if we only know
that µ∗ ≥ τ for some τ , then the µ∗ terms in the space should be replaced by τ (similar to prior
results in the literature). However, the query time can always be stated in terms of µ∗.

The kernel density estimation problem has received a lot of attention over the years, with very
strong results available for low dimensional datasets. For example, the celebrated fast multipole
method [BG97] and the related Fast Gauss Transform can be used to obtain efficient data struc-
ture for KDE (and in fact solves the more general problem of multiplying by a kernel matrix).
However, this approach suffers from an exponential dependence on the dimension of the input
data points, a deficiency that it shares with other tree-based methods [GM01, GM03, YDGD03,
LMG06, RLMG09]. A recent line of work [CS17, CS19, BCIS18, BIW19a] designed sublinear query
algorithms for kernel density estimation in high dimensions using variants of the Locality Sensitive
Hashing [CS17] framework of Indyk and Motwani [IM98].

Most of these works constructed estimators based on locality sensitive hashing, and then
bounded the variance of these estimators to show that a small number of repetitions suffices for
a good estimate. Bounding the variance of LSH-based estimators is nontrivial due to correlations
inherent in sampling processes based on LSH, and the actual variance turns out to be nontrivially
high.

In this work we take a different approach to implementing importance sampling for KDE us-
ing LSH-based near neighbor search techniques. At a high level, our approach consists of first
performing independent sampling on the dataset, and then using using LSH-based near neighbor
search primitives to extract relevant data points from this sample2. The key observation is that
the sampled dataset in the KDE problem has nice geometric structure: the number of data points
around a given query cannot grow too fast as a function of distance and the actual KDE value
µ (we refer to these constraints as density constraints – see Section 2 for more details). The fact
that our approach departs from the idea of constructing unbiased estimators of KDE directly from

1We have replaced µ∗ with µ in the abstract for the ease of notation in the abstract.
2The approach of [BCIS18] also used near neighbor search techniques, but was only using c-ANN primitives as

a black box, which turns out to be constraining – this only leads to strong results for slowly varying kernels (i.e.,
polynomial kernels). Our data-independent result recovers the results of [BCIS18], up to a µ−o(1) loss, as a special
case.

1



LSH buckets turns out to have two benefits: first, we immediately get a simple algorithm that uses
classical LSH-based near neighbor search primitives (Euclidean LSH of Andoni and Indyk [AI06])
to improve on or essentially matches all prior work on kernel density estimation for radial kernels.
The result is formally stated as Theorem 1 for the Gaussian kernel below, and its rather compact
analysis in a more general form that extends to other kernels is presented in Section 4. The second
benefit of our approach is that it distills a clean near neighbor search problem, which we think
of as near neighbor search under density constraints, and improved algorithms for that problem
immediately yield improvements for the KDE problem itself. This clean separation allows us to
use the recent exciting data-depending techniques pioneered by [?, ?, ALRW17] in our setting. It
turns out that while it seems plausible that data-dependent techniques can improve performance
in our setting, actually designing an analyzing a data-dependent algorithm for density constrained
near neighbor search is quite nontrivial. The key difficulty here lies in the fact that one needs to
design tools for tracking the evolution of the density of the dataset around a given query through
a sequence of recursive partitioning steps (such evolution turns out to be quite involved, and in
particular governed by a solution to an integral equation involving the log density of the kernel and
properties of Spherical LSH). The design of such tools is our main technical contribution and is
presented in Section 5. The final result for the Gaussian kernel is given below as Theorem 2, and
extensions to other kernels are presented in Section 5.

1.1 Our results

We instantiate our results for the Gaussian kernel as an illustration, and then discuss extensions
to more general settings. We assume that µ∗ = n−Θ(1), since this is the interesting regime for this
problem. For µ∗ = n−ω(1) under the Orthogonal Vectors Conjecture (e.g. [Rub18]), the problem
cannot be solved faster than n1−o(1) using space n2−o(1) [CS19], and for larger values µ∗ = n−o(1)

random sampling solves the problem in no(1)/ε2 time and space.

Data-Independent LSH Our first result uses data-independent LSH of Andoni-Indyk [AI06]
to improve upon the previously best known result [CS17] and follow up works that required query
time Õ(µ−0.5−o(1)/ε2) if only polynomial space in 1/µ is available.

Theorem 1. Given a kernel K(p,q) := e−a||p−q||22 for any a > 0, ε = Ω
(

1
polylogn

)
, µ∗ = n−Θ(1)

and a data set of points P , there exists an algorithm for preprocessing and an algorithm for query
procedure such that after receiving query q one can approximate µ∗ := K(P,q) (see Definition 17)
up to (1± ε) multiplicative factor, in time Õ

(
ε−2

(
1
µ∗

)0.25+o(1)
)
, and the space consumption of the

data structure is
min

{
ε−2n

( 1
µ∗

)0.25+o(1)
, ε−2

( 1
µ∗

)1+o(1)
}
.

Remark 1. In Theorem 1 (and similar theorems in the rest of the paper), we assumed that
ε = Ω

(
1

polylogn

)
and µ∗ = n−Θ(1), so that we can assume d = Õ(1) (and ignore the dependencies

on dimension in the statements). The reason (for d = Õ(1)) is that in this case the contribution
of far points (points at distance Ω(logn)) is negligible and for close points, we can use Johnson-
Lindenstrauss (JL) lemma to reduce the dimension to O(polylogn), without distorting the kernel
value by a more than 1 ± o(1) multiplicative factor. If we remove these assumptions, we need to
multiply the query-time and space bounds by dimension d.
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This theorem is stated and proved as Theorem 15 in Section 4. To get a sense of the improve-
ment, the result of [CS17] exhibited query time that is roughly a square root of the query time of
uniform random sampling. Our result uses the same LSH family as in [CS17] but achieves query
time that is itself roughly the square root of that of [CS17]!

Data-Dependent LSH Our main technical contribution is a collection of techniques for using
data dependent hashing introduced by [?, ?, ALRW17] in the context of kernel density estimation.
Unlike these works, however, who had no assumptions on the input data set, we show how to
obtain refined bounds on the efficiency of near neighbor search under density constraints imposed
by assumptions on KDE value as a function of the kernel. This turns out to be significantly more
challenging: while in approximate near neighbor search, as in [ALRW17], it essentially suffices to
track the size of the dataset in recursive iterations of locality sensitive hashing and partitioning
into spheres, in the case of density constrained range search problems arising from KDE one must
keep track of the distribution of points across different distance scales in the hash buckets, i.e.
track evolution of functions as opposed to numbers. This leads to a natural linear programming
relaxation that bounds the performance of our algorithm that forms the core of our analysis3. Our
ultimate result for the Gaussian kernel is:

Theorem 2. For Gaussian kernel K, any data set of points P and any ε = Ω
(

1
polylogn

)
, µ∗ =

n−Θ(1), using Algorithm 1 for preprocessing and Algorithm 2 for the query procedure, one can ap-
proximate µ∗ := K(P,q) (see Definition 17) up to (1±ε) multiplicative factor, in time Õ(µ−0.173−o(1)/ε2).
The space complexity of the algorithm is also bounded by

min
{
O(n · µ−(0.173+o(1))/ε2), O

(
µ−(1+c+o(1))/ε2

)}
,

for c = 10−3.4

The proof of Theorem 2 is given in Section 5.
Our techniques extend to other kernels – the extensions are presented in Section 5.

1.2 Related Work

For d� 1, KDE was studied extensively in the 2000’s with the works of [GM01, GM03, YDGD03,
LMG06, RLMG09] that employed hierarchical space partitions (e.g. kd-trees, cover-trees) to ob-
tain sub-linear query time for datasets with low intrinsic dimensionality [KR02]. Nevertheless,
until recently [CS17], in the regime of d = Ω(logn) and under worst case assumptions, the best
known algorithm was simple random sampling that for constant δ > 0 requires O(min{1/ε2µ, n})
evaluations of the kernel function to provably approximate the density at any query point q.

[CS17] revisited the problem and introduced a technique, called Hashing-Based-Estimators
(HBE), to implement low-variance Importance Sampling (IS) efficiently for any query through
Locality Sensitive Hashing (LSH). For the Gaussian f(r) = e−r

2 , Exponential f(r) = e−r, and
t-Student kernels f(r) = (1 + rt)−1 the authors gave the first sub-linear algorithms that require
O(min{1/ε2√µ, n}) kernel evaluations. Using ideas from Harmonic Analysis, the technique was
later extended in [CS19], to apply to more general kernels resulting in the first data structures that

3The actual optimal evolution is described by an integral equation involving the log density of the kernel function
and collision probabilities of LSH on the Euclidean sphere, but we do not make the limiting claim formal here since
the ultimate integral equation appears to not have a closed form solution, and hence would not be useful for analysis
purposes.

4This c can be set to any small constant that one desires. For our setting of parameters c = 10−3.
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require O(min{1/ε2√µ, n}) kernel evaluations to approximate the density for log-convex kernels
eφ(〈x,y〉). Furthermore, under the Orthogonal Vectors Conjecture it was shown that there does not
exist a data structure that solves the KDE problem under the Gaussian kernel in time n1−o(1)/µo(1)

and space n2−o(1)/µo(1).
The work most closely related to ours is that of [BCIS18]. [BCIS18] introduced a technique,

called Spherical Integration, that uses black-box calls to c-ANN data structures (constructed on
sub-sampled versions of the data set) to sample points from “spherical annuli” (r, cr) around the
query, for all annuli that had non-negligible contribution to the density of the query. For kernels
with polynomial tails of degree t, their approach required Õ(c5t) calls to such data-structures
(without counting the query time required for each such call) to estimate the density. Unfortunately,
this approach turns out to be constraining due to its reliance on black-box c-ANN calls, and in
particular only applies to polynomial kernels. Our techniques in this paper recover the result
of [BCIS18] up to µ−o(1) factors as a special case (see Section 4). Furthermore, the µ−o(1) factor
loss that we incur is only due to the fact that we are using the powerful Euclidean LSH family in
order to achieve strong bounds for kernels that exhibit fast decay (e.g., Gaussian, exponential and
others) using the same algorithm. For polynomial kernels the dependence on µ in our approach
can be reduced to polylogarithmic in 1/µ by using an easier hash family (e.g., the hash family of
[DIIM04]; see [Sym19, Chapter 10] for details).

Scalable approaches to KDE and Applications Recent works [SRB+19, BIW19a] also ad-
dress scalability issues of the original approach of [CS17]. [SRB+19] designed a more efficient
adaptive procedure that can be used along with Euclidean LSH [DIIM04] to solve KDE for a va-
riety of power-exponential kernels, most prominently the Gaussian. Their algorithm is the first
practical algorithm for Gaussian KDE with worst case guarantees that improve upon random sam-
pling in high dimensions. Experiments in real-world data sets show [SRB+19] that the method of
[CS17], yields practical improvements for many real world datasets. [BIW19a] introduced a way
to sparsify hash tables and showed that in order to estimate densities µ∗ ≥ τ ≥ 1

n one can reduce
the space usage of the data structures [SRB+19] from O(1/τ3/2ε2) to O(1/τε2). The authors also
evaluated their approach on real world data for the Exponential e−‖x−y‖2 and Laplace e−‖x−y‖1
kernels showing improvements compared to [CS17] and uniform random sampling. A related ap-
proach of Locality Sensitive Samplers [SS17] has also been applied to obtain practical procedures
in the contexts of Outlier detection [LS18], Gradient Estimation [CXS19] and Clustering [LS19].
Finally, [WCN18] uses similar ideas to address the problem of approximate range counting on the
unit sphere.

Core-sets and Kernel sketching The problem of KDE is phrased in terms of guarantees for
any single query q ∈ Rd. A related problem is that of Core-sets for kernels [Phi13], where the goal is
to find a (small) set S ⊂ P such that the kernel density estimate on P is close to the one on S. After
recent flurry of research efforts [PT18a, PT18b] has resulted in near optimal [PT18b] unweighted
|S| = O(

√
d log(1/ε)/ε) and optimal [KL19] weighted core-sets |S| = O(

√
d/ε) for positive definite

kernels. Somewhat related to this problem is the problem of oblivious sub-space embeddings for
polynomial kernels [ANW14, PP13, AKM+17, AKK+20].

1.3 Outline

We start by giving a technical overview of the paper in Section 2. Preliminary definitions and results
are presented in Section 3. In Section 4, we present our data-independent result for Gaussian KDE
and state a general version of our result for other decreasing kernels. We present our data structure
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based on Data-Dependent LSH for Gaussian KDE in Section 5 and its analysis in Sections 6
(Query time), 7 (Valid execution path analysis), 8 (Linear Program analysis), and 9 (Primal-Dual
solution).

2 Technical overview
In this section we give an overview of our results and the main ideas behind them. For simplicity
we use the Gaussian kernel, even though both our results extend to more general settings. Thus,
for the purposes of this overview our problem is: preprocess a dataset P of n points p1, . . . ,pn ∈ Rd
into a small space data structure that allows fast KDE queries, i.e. can quickly approximate, given
q ∈ Rd, the quantity

K(P,q) := 1
|P |

∑
p∈P

K(p,q), (2)

where

K(p,q) := exp(−||p− q||22/2).

We present two schemes based on ideas from data independent and data dependent LSH schemes.
Both schemes employ the strategy of first sampling the dataset at a sequence of geometric levels,
and then using near neighbor search algorithms to retrieve all points at an appropriate distance from
the query from the sample. The difference between the two approaches lies in the implementation
and analysis of the near neighbor search primitive used for this retrieval. In what follows we
first overview our approach to implementing importance sampling for KDE using near neighbor
search primitives, and then instantiate this scheme with data-independent (Section 2.1) and data-
dependent (Section 2.2) schemes.

2.1 Data-independent algorithm (Section 4)

We start by showing a new application of data-independent locality sensitive hashing to KDE that
results in a simple scheme that provides the following result.

Theorem 3 (Informal version of Theorem 15). If µ∗ := K(P,q), then there exists an algorithm
that can approximate µ∗ up to (1 ± ε) multiplicative factor, in time

(
1
µ∗

)0.25+o(1)
, using a data

structure of size

min
{
ε−2n

( 1
µ∗

)0.25+o(1)
, ε−2

( 1
µ∗

)1+o(1)
}
.

We remark that the actual non-adaptive algorithm that we present in Section 4 is more general
than the above and applies to a wide class of kernels. In particular, it simultaneously improves
upon all prior work on radial kernels that exhibit fast tail decay (such as the exponential and the
Gaussian kernels) [CS17] as well as matches the result of [BCIS18] on kernels with only inverse
polynomial rate of decay up to µ−o(1) factors.

We now outline the algorithm and the analysis. The main idea is simple: we note that in order
to approximate the sum on the right hand side of (2), ideally we would like to do importance
sampling, i.e. pick every point with probability proportional to its contribution to the KDE value.
It is of course not immediate how to do this, since the contribution depends on the query, which
we do not know at the preprocessing stage. However, we show that it is possible to simply prepare
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sampled versions of the input dataset using a fixed geometric sequence of sampling rates, and then
use locality sensitive hashing to retrieve the points relevant to the given query from this sample
efficiently. Below, we present an overview of our algorithm.

Geometric weight levels: Let J := dlog 1
µe and partition the points in the data set into J

sets, such that the contribution of any point in the j’th set to the kernel density is ≈ 2−j . If
wi := K(pi,q), then we define (see Definition 18) level sets

Lj :=
{

pi ∈ P : wi ≈ 2−j
}
.

The kernel density can be expressed in terms of the level sets as

K(P,q) ≈ 1
n

J∑
j=1
|Lj | · 2−j ,

which implies size upper bounds for Lj , namely:

|Lj | . 2jnµ. (3)

This means that for every query q such that the KDE value at q equals µ to within constant
factors one can place an upper bound of 2jnµ on the number of points at distance corresponding
to level Lj – these are exactly the geometric weight constraints that make our near neighbor search
primitives very efficient. Note that we are only considering level sets Lj for j at most J = dlog 1

µe.
We describe our implementation of importance sampling now.

Importance sampling: Suppose that one designs a sampling procedure that samples each point
pi with probability pi and calculates the following estimator

Z =
∑
i

χi
pi
wi

where χi = 1 if pi is sampled and χi = 0 otherwise. Obviously, this estimator is an unbiased
estimator for nµ∗. So, if we can prove that this estimator has a relatively low variance, then by
known techniques (repeating many times, averaging and taking the median) one can approximate
µ∗, efficiently. It can be shown (see Claim 25) that if pi’s are proportional to wi’s (more specifically,
we set pi ≈ wi

nµ) then the variance is low. This approach is known as importance sampling. In
other words, we need to sample points with higher contribution, with higher probability.

If Lj ’s were known to the algorithm in the preprocessing phase, then for each j, one could have
sampled points in Lj with probability ≈ 1

2jnµ . However, the query is not known in the preprocessing
phase and hence geometric weight levels are not known beforehand.

Our approach is the following: for each j we sample the data set P with probability 1
2jnµ .

Then, we prepare a data structure (for this sampled data set) that can recover any sampled point
with contribution ≈ 2−j in the query procedure, efficiently and with high probability. Note that
the number of points with contribution ≥ 2−j is upper bounded by 2jnµ. So, on average after
the sub-sampling we expect to have at most O(1) point from L1 ∪ . . . ∪ Lj . On the other hand,
since Gaussian kernel is a decreasing function of distance, points in Lj+1 ∪ . . . ∪ LJ are actually
further than the query. Thus, our recovery problem can be seen as an instance of near neighbor
problem. Therefore, we use the locality sensitive hashing (LSH) approach, which has been
used in the literature for solving the approximate near neighbor problem.

6
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Figure 1: Illustration of distance levels induced by geometric weight levels. Areas marked with
colors red, green, brown, blue and so on correspond to geometric weight levels L1, . . . , L4 and so
on.

Using Euclidean LSH for recovery: Now, we explain how one can use Euclidean LSH scheme
to design a data structure to recover points from Lj in the corresponding sub-sampled data set.

We first present an informal and over-simplified version of LSH function used in [AI06]. Roughly
speaking [AI06] presents the following result (see Lemma 16 for the formal statement):

Lemma 4 (Informal version of Lemma 16). For every r there exists a (locality sensitive) hash
family such that, if p (a ‘close’ point) and p′ (a ‘far’ point) are at distance r and ≥ c · r (for some
c ≥ 1) of some point q, respectively, then if

p := Pr[h(p) = h(q)],

then

Pr[h(p′) = h(q)] ≤ p(1−o(1))c2 .

Now given a query q, for every j we use Euclidean LSH to retrieve the points in Lj from a
sample of the dataset where every point is included with probability 1

2jnµ . We repeat the hashing
process multiple times to ensure high probability of recovery overall, as in the original approach
of [IM98]. However, the parameter setting and the analysis are different, since in the context of
KDE we can exploit the geometric structure of the sampled dataset, namely upper bounds on the
sizes of level sets Lj given in (3) above – we outline the parameter setting and analysis now.

On the other hand, geometric weight levels induce distance levels (see Definition 18 and Fig-
ure 1). Roughly speaking, for the Gaussian kernel if p ∈ Lj and p′ ∈ Li, then

‖p′ − q‖2
‖p− q‖2

≈
√
i

j
=: ci,j .

Recall that since we sampled the data set with probability 1
2jnµ then for every i we will have

at most ≈ 2i−j points from Li in the sampled set, in expectation. In particular, most likely the
sample does not contain points from level sets i < j. We instantiate Euclidean LSH from Lemma 4
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with the ‘near’ distance r being the distance to the target level set Lj . Let p denote the probability
that the query collides with a point in Lj . Now by Lemma 4 we upper bound the expected number
of points from level sets Li, i > j, in the bucket of the query:∑

i>j

2i−j · pc
2
i,j

We now select p (note that Lemma 4 allows flexibility in selecting p, which is achieved by con-
catenating hash functions; see Section 4 for the detailed analysis). We set p such that the number
of points from each Li in the bucket of the query is at most 1 for all i > j. For every such i,

2i−j · p
i
j ≤ 1 implies p ≤

(
1
2

)j− j2
i , and hence we let

p = pj = min
i>j

(1
2

)j− j2
i

,

where we give the probability a subscript j to underscore that this is the setting for level set Lj .
On the other hand, note that since the point that we want to recover will be present in the

query’s bucket with probability pj , we need to repeat this procedure Õ
(

1
pj

)
times, to recover the

point with high probability. This means that for every j the contribution of level set Lj to the
query time will be Õ

(
1
pj

)
. Now, note that

max
j∈[J ]

log2
1
pj

= max
j∈[J ]

max
i∈(j,J ]

(
j − j2

i

)

= J ·max
j∈[J ]

j

J
·
(

1− j

J

)
= J

4
= 1

4 log 1
µ
,

(4)

implying a (1/µ)0.25 upper bound on the query time. This (informally) recovers the result mentioned
in Theorem 3. Note that the space complexity of our data structure is no larger than the number
of data points times the query time, i.e., ≈ n(1/µ)0.25, since at every sampling rate we hash at
most the entire dataset about (1/µ)0.25 times independently. The space complexity can also be
bounded by Õ(1/µ) by noting that the datasets for which we have the highest query time and
hence many repetitions are in fact heavily subsampled versions of the input dataset. These bounds
are incomparable, and the latter is preferable for large values of KDE value µ.

We used the Gaussian kernel in the informal description above to illustrate our main ideas, but
the approach extends to a very general class of kernels. In particular, it gives improvements over
all prior work on the KDE problem for shift invariant kernels (with the only exception that our
results essentially match the results of [BCIS18], where an already very efficient algorithm with a
polylogarithmic dependence on 1/µ is presented). We present the detailed analysis of this approach
in Section 4.

2.2 Data dependent algorithm (Section 5)

We note that the efficiency of our implementation of importance sampling relies heavily on the
efficiency of near neighbor search primitive under density constraints. In this section we show
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how to use data-dependent techniques, i.e. data partitioning followed by the use of the more
efficient Spherical LSH, to achieve significantly better results. Our approach builds on the exciting
recent line of work on data-dependent near neighbor search [?, ?, ALRW17], but the fact that we
would like to optimally use the assumptions on the density of various spherical ranges that follow
from assumptions on KDE value, the analysis turns out to be significantly more challenging. In
particular, the core of our approach is a linear program that allows one to analyze the worst case
evolution of densities during the hashing process. The analysis is presented in Section 5, Section 8
and Section 9. Since the analysis is somewhat involved, we present it for the case of the Gaussian
kernel to simplify notation. We then provide a version of the key lemma for other kernels and state
the corresponding results.

Theorem 5 (Informal version of Theorem 26). There exists an algorithm that, when K is the
Gaussian kernel and µ∗ := K(P,q), for ε ∈ (0, 1) approximates µ∗ to within a (1± ε) multiplicative
factor, in expected time

(
1
µ∗

)0.173+o(1)
and space min{n

(
1
µ∗

)0.173+o(1)
,
(

1
µ∗

)1+o(1)
}.

Our techniques extend to kernels beyond the Gaussian kernel (e.g., the exponential kernel, for
which we obtain query time

(
1
µ∗

)0.1+o(1)
and space n

(
1
µ∗

)0.1+o(1)
). We outline the extension in

Section 5.
Recall that we need to preprocess a dataset P of n points p1, . . . ,pn ∈ Rd into a small space

data structure that allows fast KDE queries, i.e., can quickly approximate, given q ∈ Rd, the
quantity

µ∗ = K(P,q) = 1
|P |

∑
p∈P

exp(−||p− q||22/2). (5)

Recall also that we assume knowledge of a quantity µ such that

µ∗ ≤ µ ≤ 4µ∗. (6)

This is without loss of generality by a standard reduction – see Section 5, Remark 2. For simplicity
of presentation, in this section we use a convenient rescaling of points so that

µ∗ = K(P,q) = 1
|P |

∑
p∈P

(1/µ)−||p−q||22/2. (7)

Note that this is simply a rescaling of the input points, namely multiplying every coordinate by
(log(1/µ))−1/2. This is for analysis purposes only, and the algorithm does not need to perform such
a rescaling explicitly. We fix the query q for the rest of this section.

Densities of balls around query. Upper bounds on the number of points at various distances
from the query point in dataset (i.e., densities of balls around the query) play a central part in our
analysis. For any x ∈ (0,

√
2) let

Dx(q) := {||p− q|| : p ∈ P, ||p− q|| & x}, (8)

denote the set of possible distances from q to points in the dataset P . Note that we are ignoring
distances that are too close to x – this is for technical reasons that let us introduce some simpli-
fications with respect to the analysis of [ALRW17] at the expense of a small constant loss in the
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exponent of the ultimate query time (see Section 5.3 for more discussion of this). When there is
no ambiguity we drop q and x and we simply call it D. For any y ∈ D we let

Py(q) := {p ∈ P : ||p− q|| ≤ y} (9)

be the set of points at distance y from q. Since for every y > 0

µ∗ = K(P,q) = 1
n

∑
p∈P

µ||p−q||22/2

≥ µy
2/2

n
|Py(q)|

we get

|Py(q)| ≤ nµ∗ ·
( 1
µ

) y2
2
≤ n ·

( 1
µ

) y2
2 −1

, (10)

since µ∗ ≤ µ by assumption.
We implement the same importance sampling strategy as in Section 2.1: sample the dataset

at a geometric sequence of sampling rates, and for each such sampling rate use approximate near
neighbor search primitives (in this case data dependent ones) to retrieve the relevant points (which
are generally a few closest points to the query) from the sample. The rescaling of the input space (7)
together with the assumption (6) implies that one essentially only needs to care about points p ∈ P
such that

||p− q||2 ≈ x for some x ∈ [0,
√

2).

This is because every p ∈ P such that ||p−q||2 ≥
√

2 contributes at most (1/µ)−||p−q||22/2 ≤ µ ≤ 4µ∗
by (6). This means that the contribution of such points can be approximated well by simply
sampling every point with probability ≈ 1/n = 1/|P | and examining the entire sample – see
Section C for details. Therefore in the rest of this section (and similarly in its formal version,
namely Section 5) we focus on the following single scale recovery problem:

Given x ∈ (0,
√

2) and a sample P̃ of the dataset P that includes every point with

probability 1
n ·
(

1
µ

)1−x
2
2 , recover all sampled points at distance at most ≈ x from the

query.

Fix x ∈ (0,
√

2), and recall that P̃ contains every point in P independently with probability
1
n ·
(

1
µ

)1−x
2
2 . Note that by (10) for every y ∈ (x,

√
2] the expected number of points at distance at

most y from q that are included in P̃ is upper bounded by

n ·
( 1
µ

) y2
2 −1
· 1
n
·
( 1
µ

)1−x
2
2
≈
( 1
µ

) y2−x2
2

. (11)

What we defined so far is of course just a reformulation of our approach from Section 2.1,
and indeed our data-dependent result follows the overall uniform sampling scheme. The difference
comes in a much more powerful primitive for recovering data points at distance ≈ x from the
query from the uniform sample. We describe this primitive now. In this development we start with
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the observation that underlies the work of [ALRW17] on data-dependent near neighbor search.
Namely, one first observes that if the points in the sampled dataset P̃ were uniformly random on
the sphere (except of course for the actual points at distance ≈ x from the query q), then instead of
Euclidean LSH one could use random spherical caps to partition the dataset, leading to significantly
improved performance. In order to leverage this observation, the work of [ALRW17] introduces
the definition of a pseudo-random dataset (see Definition 13 below), gives an efficient procedure
for decomposing any dataset into pseudorandom components and shows that the pseudorandom
property is sufficiently strong to allow for about the same improvements as a random dataset
does. Then their algorithm is a recursive process that partitions a given input dataset using
random spherical caps, decomposes the resulting smaller datasets into pseudorandom components
and recurses. Our algorithm follows this recipe, but the analysis turns out to be significantly more
challenging due to the fact that we need to track the evolution of the densities of balls around the
query during this recursive process. In what follows we state the necessary definitions and outline
our algorithm.

The work of [ALRW17] introduces a key definition of a pseudorandom dataset (see Defini-
tion 13), which we reuse in our analysis and state here for convenience of the reader:
Definition 13 (Restated) Let P be a set of points lying on Sd−1(o, r) for some o ∈ Rd and r ∈ R+.
We call this sphere a pseudo-random sphere5, if @u∗ ∈ Sd−1(o, r) such that∣∣∣{u ∈ P : ||u− u∗|| ≤ r(

√
2− γ)

}∣∣∣ ≥ τ · |P |.
In other words, a dataset is pseudorandom on a sphere if at most a small fraction of this dataset

can be captured by a spherical cap of nontrivially small volume. It turns out [ALRW17] that every
dataset can be partitioned into pseudorandom components efficiently, so one can assume that the
input dataset is pseudorandom. The significance of this lies in the fact that the power of Spherical
LSH manifests itself on the points p at distance

√
2 − γ from the query essentially as well as on

uniformly random points. Thus, if the fraction τ of ‘violating’ points is small, one now use Spherical
LSH to partition the dataset into hash buckets and then recursive on the hash buckets, partition
them into pseudorandom components and proceed recursively in this manner. Our algorithms
follows this recipe, but the analysis introduces new techniques, as we describe below. We start by
fixing some notation. Our algorithm (Algorithm 3) recursively constructs a tree T with alternating
levels of SphericalLSH nodes and Pseudorandomify nodes, which correspond to partitioning
the dataset using locality sensitive hashing and extraction of dense components as per Definition 13
respectively. At every SphericalLSH node (Algorithm 4) we repeatedly generate subsets P ′ of
the dataset P by sampling a Gaussian vector g ∼ N(0, 1)d and letting

P ′ ←
{

p ∈ P :
〈
p− o
R

, g

〉
≥ η

}
,

where R and o are the radius and center of the sphere that dataset P resides on, and η = ω(1) is an
appropriately chosen parameter – we choose η to ensure that the collision probability of the query
with a point at distance x from it is exactly µ1/T for a parameter T (see line 16 of Algorithm 4).
Crucially, we chose the parameter η to ensure that the size of the spherical cap is not too large.
Specifically, for a parameter T = ω(1) that governs the depth of our recursive process we choose η
to ensure that for every p ∈ P such that ||p− q||2 ≈ x one has

Pr
g∼N(0,I)d

[〈p− o
R

, g

〉
≥ η|

〈q − o
R

, g

〉
≥ η

]
≈ µ1/T ,

5Whenever we say pseudo-random sphere, we implicitly associate it with parameter τ, γ which are fixed throughout
the paper.
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where we assume for simplicity of presentation here that the query is on the sphere. The number
of datasets P̃ is chosen to be such that the query q collides with any given point p at distance
≈ x with high constant probability over all O(T ) levels of the tree T . This means (see Section 6)
that the expected number of datasets that the query q will be exploring is (1/µ)1/T . We limit the
depth of the exploration process to ≈ 0.172 · T (see line 27 of Algorithm 4), so that the Query
algorithm (see Algorithm 6) explores at most ((1/µ)1/T )0.172·T = (1/µ)0.172 leaf datasets in the
tree T . The main challenge lies in showing that these leaf datasets have small (nearly constant)
expected size. In other words, we need to bound the effect of such a filtering process on the density
of balls of various radius y around the query q. Generally, the densities along any root to leaf path
are decreasing because of two effects:

Truncation due to pseudorandom spheres: First effect that we consider is the condition that
pseudo-randomness of spheres imply over the densities. Consider any query q and any pseudo-
random sphere with radius r, and let ` be the distance from q to the center of the sphere. Let q′
be the projection of the query on the sphere. Then, by pseudo-randomness of the sphere, we know
that most of the points are orthogonal to q′, i.e., have distance ≈

√
2r from q′ (see Lemma 14).

However, we are interested in the condition that implies over the densities. Roughly speaking, the
orthogonal points are at distance c :=

√
`2 + r2. So we expect that the number of points at distance

≈ c will dominate the densities.

Claim 6 (Informal version of Claim 34). Suppose that a sphere with center o and radius r is
pseudo-random. Then, if ` ≈ ||q−o||, c :=

√
`2 + r2 and for all y we let By be the number of points

at distance y from q in the sphere. Then, the following conditions hold.∑
y≤c−rψ

By ≤
τ

1− 2τ ·
∑

y∈(c−rψ,c+rψ)
By,

and ∑
y≥c+rψ

By ≤
τ

1− 2τ ·
∑

y∈(c−rψ,c+rψ)
By,

where ψ = o(1) is small factor.

Removing points due to Spherical LSH: The second phenomenon that reduces the densities
is spherical LSH rounds. We set the size of the spherical cap as described above. Under this setting
of size of spherical cap, the probability that a spherical cap conditioned on capturing the query,
captures p, which is at distance y from q, is given by Claim 35, which is restated informally below.

Claim 7 (Informal version of Claim 35). Consider a sphere of radius r around point o, and let
` ≈ ||q − o||. Also let p be a point on the sphere such that y = ||p − q||. Now, suppose that one
generates a Gaussian vector g as in Algorithm 4. Then, we have

Pr
g∼N(0,1)d

[
〈g, p− o
||p− o|| 〉 ≥ η|〈g,

q − o
||q − o|| 〉 ≥ η

]
. expµ

(
−4(r/x′)2 − 1

4(r/y′)2 − 1 ·
1
T

)
.

where

• η is such that F (η)
G(x′/r,η) ≈

(
1
µ

) 1
T (see line 16 of Algorithm 4).

• x′ := Project(x, `, r) (see Definition 11).
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• y′ := Project(y, `, r).

We use Claim 6 and Claim 7 to bound the evolution of the density of various balls around the
query q in the datasets constructed on the way from the root of the tree T down to a leaf.

Formally, we gather all necessary information about such a path in the definition of a valid
execution path below:

Definition 36 (Valid execution path; slightly informal version) Let R := (rj)Jj=1 and L := (`j)Jj=1
for some positive values rj ’s and `j ’s such that for all j ∈ [J ], x & |`j − rj |. Also let D be as
defined in (8). Then, for

A := (ay,j), y ∈ D, j ∈ [J ] ∪ {0} (Intermediate densities)
B := (by,j), y ∈ D, j ∈ [J + 1] ∪ {0} (Truncated intermediate densities)

(L,R,A,B) is called a valid execution path, if the conditions below are satisfied for ψ := o(1) and
cj :=

√
r2
j + `2j for convenience.

(1) Initial densities condition. The ay,0 and by,0 variables are upper-bounded by the initial
expected densities in the sampled dataset: for all y ∈ D

∑
y′∈[0,y]∩D

ay′,0 ≤ min
{

expµ

(
y2 − x2

2

)
, expµ

(
1− x2

2

)}

and ∑
y′∈[0,y]∩D

by′,0 ≤ min
{

expµ

(
y2 − x2

2

)
, expµ

(
1− x2

2

)}

(2) Truncation conditions (effect of PseudoRandomify). For any j ∈ [J ], for all y ∈ D \
[`j − rj , `j + rj ] one has by,j = 0 (density is zero outside of the range corresponding to the
j-th sphere on the path; condition (2a)), for all y ∈ D∩ [`j−rj , `j +rj ] one has by,j ≤ ay,j−1
(removing points arbitrarily (2b)) and∑

y∈[0,cj−ψrj ]∩D
by,j ≤

τ

1− 2τ ·
∑

y∈(cj−ψrj ,cj+ψrj)∩D
by,j (condition (2c))

(3) LSH conditions. For every j ∈ [J ] and all y ∈ [`j − rj , `j + rj ] ∩D

ay,j ≤ by,j · expµ

− 4
( rj
x′
)2 − 1

4
(
rj
y′

)2
− 1
· 1
T


where x′ := Project(x+∆, `j , rj) and y′ := Project(y−∆/2, `j , rj). See Remark 4 below
for a discussion about ∆ factors.

(4) Terminal density condition. For any y such that ay,J is defined, by,J+1 ≤ ay,J .

Thus, our main goal is to show that
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rj

q

cj

o
o′

r′jc′j = cj

(a) When the query is outside of the sphere.

r′j

q

c′j = cj

o′
o

rjcj

(b) When the query is inside the sphere

Figure 2: Converting a (non-zero-distance) sphere to its corresponding zero-distance sphere

For every valid execution path (L,R,A,B) one has
∑
y by,J+1 = no(1).

The main challenge here is optimizing over sequences (`j , rj)Jj=1 (distance to center of the sphere
from q and the radius of the sphere). We perform this optimization in two steps, which we describe
below.
Step 1.Suppose that there are two spheres such that the distance from the query to the orthogonal
points for these spheres are the same. Also, assume that for the first sphere the query is not on
the sphere, but for the second sphere the query is on the sphere (see Figure 2). Now, let p and
p′ lie on the first and the second spheres, respectively. Moreover, assume that they have the same
distance from the query (see Figure 3). Comparing the spherical LSH effect on these two spheres,
we prove that p is removed with higher probability compared to p′ (see Claim 48). So, when the
query is on the sphere, the densities are shrinking with a lower rate.

q
o

o′

p

p′

(a) When the query is outside of the sphere

q

p′

p

o′
o

(b) When the query is inside the sphere

Figure 3: Mapping points from a sphere to its corresponding zero-distance sphere.
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Step 2. Now consider two spheres with different radii, and assume that query q lies on them
at the same time. Due to less curvature on the larger sphere, after one round of spherical LSH
on these two spheres, the densities are shrinking with a lower rate on this sphere compared to the
smaller sphere (see Claim 49).

The following definition enables us to state our claims more efficiently.
Definition 38 (Zero-distance and monotone path) Let (L,R,A,B) be an execution path defined
in Definition 36. If for R = (rj)Jj=1, rj’s are non-increasing in j, and L = R, then we say that
(L,R,A,B) is a zero-distance and monotone execution path. When L = R, we usually drop L, and
simply write (R,A,B).

Now, using the two steps above, we can argue that for any valid execution path, we can find a
zero-distance monotone execution path, with the same terminal densities and the same length (see
Lemma 39 restated below for the convenience of the reader).
Lemma 39 (Zero-distance and monotone path) For every valid execution path (L,R,A,B) (see
Definition 36), there exists a zero-distance and monotone valid execution path (R′, A′, B′) (see
Definition 38) such that b′y,J+1 = by,J+1 for all y ∈ D6 and |R′| = |R| (i.e., the length of the paths
are equal).

The proof of the lemma (the formal version of the two steps mentioned above) is given in
Section 7.

As mentioned before, we analyze the evolution of density of points in various distances. First,
we define a grid of distances around query, which we use to properly round the distances of real
spheres in the execution of algorithm. Second, instead of analyzing continuous densities, we define
a new notion, called discretized log-densities (see Definition 41 below), for which we round densities
to the discretized distances in a natural way, and for simplicity of calculations we take the log of
these densities.
Definition 40 (x-centered grid Zx; restated) For every x ∈ (0, Rmax) define the grid Zx =
{zI , zI−1, . . . , z0} by letting zI = x, letting zI−i := (1 + δz)i · zI for all i ∈ [I] and choosing the
smallest integer I such that z0 ≥ Rmax

√
2.

Definition 41 (Discretized log-densities fzi,j; restated) For any zero-distance monotone valid exe-
cution path (R,A,B) (as per Definition 36) with radii bounded by Rmax and J = |R|, for all j ∈ [J ]
let kj be the index of the largest grid element which is not bigger than rj · (

√
2 + ψ), i.e.,

rj · (
√

2 + ψ) ∈ [zkj , zkj−1) (12)

and for every integer i ∈ {kj , . . . , I} define

fzi,j := log1/µ

 ∑
y∈D∩[zi+1,zi−1)

by,j

 (13)

Note that the variables by,j on the right hand side of (13) are the by,j variables of the execution
path (R,A,B).

These two steps, allow us to analyze the evolution of densities over the course of time. In this
section, we present an LP (see (33)) that its optimal cost bounds the query time of our algorithm.
The main idea behind the linear program is to relax the notion of a zero-distance monotone path,
which may involve only a small number of decreasing sphere radii, to a process that uses a grid
Z = Zx of decreasing radii and possibly applies locality sensitive hashing at every such point (see
the spherical LSH constraint in (14) below), and applies pseudorandmification, i.e. ensures that the
dataset is dominated by points at distance zj ≈

√
2rj from the query (see the truncation constraints

6We need the final condition to argue that we have the same number of points remaining at the end.
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in (14) below). We note that the grid Zx represents distances to points on the j-the sphere that are
nearly orthogonal to the query, i.e. whose at distance ≈

√
2rj , as opposed to the radii themselves.

It is also important to note that the linear program is parameterized by two quantities: the target
distance x ∈ [0,

√
2] and a parameter j∗ that indexes a point zj∗ in the grid Zx. The quantity zj∗

should be thought of as the distance scale that contributes the most to query time, i.e. the band
that the has the most number of points in the final densities (see non-empty range constraints in
the linear program (14), as well as the similar calculation (4) in Section 2.1). To obtain our final
bound on the query time, we enumerate over all x and j∗ ∈ Zx, upper bound the value of the
corresponding LP(x, j∗) and take the maximum. Finally, we note that the intended LP solution is
as follows. Consider a root to leaf path in the tree T constructed by PreProcess(P̃ , x, µ) that
an invocation of Query(q, T , x), and suppose that the sequence of radii of spheres traversed by
Query is exactly Zx. Then letting αj denote the number of LSH nodes that correspond to sphere
with radius rj = zj/

√
2, divided by T , should intuitively give a feasible solution7.

In Section 8 we will show in details why this LP formulation is enough to analyze the query time.
Informally, this LP considers all possible root to leaf paths, and applies corresponding truncation
and spherical LSH functions on the density and its cost is related to the length of root to leaf
paths. We show in Section 8 that any execution path with large enough final densities gives a
feasible solution to the linear program whose cost is (almost) equal to the length of the path
divided by T . Thus, if we take any path with length more than T · OPT(LP), the final densities
are small.

Letting Z := Zx to simplify notation, we will consider I linear programs defined below in (33),
enumerating over all j∗ ∈ [I], where we let x′ = x+ ∆:

LP(x, j∗) : max
α≥0

j∗−1∑
j=1

αj (14)

∀y ∈ Z : gy,1 ≤ min
{
y2 − x2

2 , 1− x2

2

}
Density constraints

for all j < j∗, y ∈ Z, y < zj :
gy,j ≤ gzj ,j Truncation

gy,j+1 ≤ gy,j −
2 (zj/x)2 − 1
2 (zj/y)2 − 1

· αj Spherical LSH

gzj∗ ,j∗ ≥ 0 Non-empty range constraint

The following claim is the main technical claim relating zero-distance monotone execution paths
and the linear program (14):
Claim 55(Feasible LP solution from an execution path; Restated) If integer J is such that J >

T
1−10−4 OPT(LP) then, for all y ≤ zj∗−1 , fy,J+1 < 7δz for j∗ = kJ + 1 (see Definition 41 for the
definition of kJ).

The proof of Claim 55 is somewhat delicate, and exploits specific properties of the (negative)
log-density of the Gaussian kernel. In fact, one can construct rather simple kernels with non-
decreasing log-density for which Claim 55 is false – we give an example in Figure 4a. Informally, we

7This statement is somewhat imprecise, and in fact is quite nontrivial to make fully formal – this is exactly what
our algorithm achieves by introducing the notion of valid execution paths.
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call a kernel well-behaved, if the log-densities after applying a few rounds of LSH (and corresponding
truncations), are increasing up to some point and then they are decreasing. More formal description
is given after the following paragraph.

Intuitively, the reason is the difference between how the LP works and how the algorithm works.
In the algorithm if we are running LSH on some sphere z we apply truncations based on distance
z after each round of LSH (except the last step, for the intuition we can ignore this fact) and when
we move to the next sphere z′, the algorithm applies truncation to log-densities with respect to
log-density at z′. However, the LP applies all the LSH rounds at once and then does truncation
with respect to all bands from z to z′. Now, if some kernel is not well-behaved, say like the kernel
depicted in Figure 4a then when the LP wants to move from z to z′ it also truncates the log-densities
with respect to the log-density at any η ∈ (z′, z). Then, for some η as shown in Figure 4a the log-
density at some η ∈ (z′, z) is lower compared to the density at z and z′. Thus the log-densities
in the LP shrink faster than the algorithm, which makes this approach not applicable to these set
of kernels. However, for instance in the case of Gaussian kernel, the truncation with respect to
log-densities at η ∈ (z′, z), do not impose a problem since the log-density at any η ∈ (z′, z) is larger
than the minimum of densities at z and z′. This informally suggests that the evolution of the LP,
can be seen as evolution of log-densities for well-behaved kernels, and thus can be used to analyze
the run-time of the algorithm.

Now, we present a relatively more formally definition of well-behaved kernels. We say that
a kernel k(p,q) = exp(−h(||p − q||2)) with the input space scaled so that exp(−h(

√
2)) = µ is

well-behaved if for every integer t ≥ 1, x ∈ (0,
√

2) and any sequence c1 ≥ c2 ≥ . . . ≥ ct ≥ x, such
that

f(y) = y2 − x2

2 −
t∑

s=1

2(cs/x)2 − 1
2(cs/y)2 − 1 ·

1
T

satisfies f(
√

2ct) > 0, the following conditions hold. There exists y∗ ∈ (x,
√

2ct] such that the
function satisfies f(y∗) = 0 is monotone increasing on the interval [y∗, η], where η is where the
(unique) maximum of f on (y∗,

√
2ct] happens. See Fig. 4b for an illustration. Intuitively, a log-

density h is well-behaved if the result of applying any amount of LSH on any collection of spheres to
h results in a function with at most one maximum. This lets us control the structure of log-densities
that arise after several iterations of LSH and truncation primitives in a valid execution path (and
thus in a root to leaf path in T that a query q traverses).

We show in Section 8 (see Claim 53) that the Gaussian kernel is well behaved, and use this
fact that prove Claim 55. We also show a similar claim for the class of kernels whose negative log
density is concave (the exponential kernel is one example). This lets us extend our result to kernels
beyond Gaussian (see Remark 3 in Section 5).

On the other hand, we show numerically that the solution of the LP in (14) is upper bounded
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Figure 4: In both figures, the red curve and the blue curve represents the densities before and after
running LSH rounds on sphere z, respectively. In the case of well-behaved kernels the density at
any η ∈ (z′, z) is lower-bounded by the minimum of densities at z and z′. However, for a kernel
which is not well-behaved, for instance for the η shown in the left figure, the density is lower than
the density at z and z′.

by 0.1718 for the Gaussian kernel. This is done in Section 9 by formulating the dual LP

min
∑
y∈Z

{
y2 − x2

2 , 1− x2

2

}
ry,0 (15)

such that :
∀j ∈ [j∗ − 1], y ∈ Z, y < zj : ry,j−1 − ry,j + qy,j = 0 (gy,j) Mass transportation

∀j ∈ [j∗ − 1] : rzj ,j−1 −
∑

x∈Z,x<zj
qx,j = 0 (gzj ,j) Max tracking

∀y ∈ Z, y < zj∗ : ry,j∗−1 = 0 (gy,j∗) Sink
− η + rzj∗ ,j∗−1 = 0 (gzj∗ ,j∗) Terminal flow

j ∈ [j∗ − 1] :
∑

y∈Z:y<zj

2 (zj/x)2 − 1
2 (zj/y)2 − 1

ry,j ≥ 1 (αj)

ry,j , qy,j ≥ 0
η ≥ 0

and exhibiting a dual feasible solution of value ≈ 0.1716 for a fine grid of points Zx and every x in
a fine grid over [0,

√
2]. We also give an analytic upper bound of x2

2 (1 − x2

2 ) + 0.001 on the value
of the LP (14).
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3 Preliminaries
We let µ∗ ∈ (0, 1] denote the kernel density of a dataset P in Rd at point q ∈ Rd:

µ∗ = K(P,q) := 1
|P |

∑
p∈P

K(p,q).

3.1 Basic notation

Throughout the paper we assume that the points lie in a d-dimensional Euclidean space, Rd. We
let Sd−1 denote the set of points on the unit radius sphere around the origin in Rd. Also, for any
o ∈ Rd and R > 0, we let Sd−1(o,R) to be the set of points on the sphere centered at o and radius
R, and for any point q ∈ Rd \{o}, the projection of q onto Sd−1(o,R) is defined as the closest point
in Sd−1(o,R) to q. For any pair of points u,v ∈ Rd, we let ||u − v|| to be the Euclidean distance
of u and v.

For any integer J we define [J ] := {1, 2, . . . , J}. For ease of notation in the rest of the paper,
we let expµ (a) :=

(
1
µ

)a
and (abusing notation somewhat) let exp2(a) = 2a for any a ∈ R.

3.2 F (η) and G(s, η, σ)
In this section, we define notations and present results, which we later use to analyze the collision
probability of spherical-LSH.

Lemma 8 (Lemma 3.1, [ALRW17]). If for any u ∈ Sd−1 we define

F (η) := Pr
z∼N(0,1)d

[〈z, u〉 ≥ η] ,

then, for η →∞

F (η) = e−(1+o(1))· η
2
2 .

Lemma 9 (Lemma 3.2, [ALRW17]). If for any u, v ∈ Sd−1 such that s := ||u− v||, we define

G(s, η, σ) := Pr
z∼N(0,1)d

[〈z, u〉 ≥ η and 〈z, v〉 ≥ σ] ,

then if σ, η →∞, and max{σ,η}
min{σ,η} ≥ α(s), then one has

G(s, η, σ) = e
−(1+o(1))· η

2+σ2−2α(s)ησ
2β2(s) ,

where α(s) := 1− s2

2 and β(s) :=
√

1− α2(s).

Definition 10. For ease of notation we also define

G(s, η) := G(s, η, η).
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3.3 Projection

Definition 11. Let q be a point on Sd−1(o,R1) and p be a point on Sd−1(o,R2), such that
y := ||q − p||. Now, if we define q′ as the projection of q on Sd−1(o,R2). Then, we define the
following

Project(y,R1, R2) := ||q′ − p||.

Lemma 12. For any R1, R2 ∈ R+ and o ∈ Rd assume that we have points q,p on spheres
S1 := Sd−1(o,R1) and S2 := Sd−1(o,R2), respectively. Also, let x := ||p − q|| and let q′ be
the projection of point q on S2. Then we have the following

Project(x,R1, R2) = ||q′ − p|| =
√
R2
R1

(
x2 − (R2 −R1)2

)
.

The proof is deferred to Appendix A.

3.4 Pseudo-Random Spheres

Definition 13. (Pseudo-random spheres) Let P be a set of points lying on Sd−1(o, r) for some
o ∈ Rd and r ∈ R+. We call this sphere a pseudo-random sphere8, if @u∗ ∈ Sd−1(o, r) such that∣∣∣{u ∈ P : ||u− u∗|| ≤ r(

√
2− γ)

}∣∣∣ ≥ τ · |P |.
As shown in [?, Section 6], it is possible to decompose a dataset P into pseudo-random compo-

nents in time poly
(
d, γ−1, τ−1, log |P |

)
·|P |. We present a slight modification of their argument using

our notation in Appendix B. The following claim summarizes the properties of a pseudo-random
sphere that we use later:

Claim 14. If P is a set of points lying on Sd−1(o, r) for some o ∈ Rd and r ∈ R+, and P is a
pseudo-random sphere (see Definition 13) then for any point q′ on the sphere we have the following
property∣∣∣{u ∈ P : ||u− q′|| ≤ r(

√
2− γ)

}∣∣∣ ≤ τ

1− 2τ ·
∣∣∣{u ∈ P : ||u− q′|| ∈

(
r
(√

2− γ
)
, r(
√

2 + γ)
)}∣∣∣ ,

and consequently, ∣∣∣{w ∈ P : ||w− q′|| ∈
(
r
(√

2− γ
)
, r
(√

2 + γ
))}∣∣∣ = Ω(|P |).

The proof is deferred to Appendix A.

4 Kernel Density Estimation Using Andoni-Indyk LSH
In this section, we present an algorithm for estimating KDE, using the Andoni-Indyk LSH frame-
work. In order to state the main result of this section for general kernels, we need to define a few
notions first. Thus, we state the main result for Gaussian kernel in the following theorem, and then
state the general result, Theorem 22, after presenting the necessary definitions.

8Whenever we say pseudo-random sphere, we implicitly associate it with parameter τ, γ which are fixed throughout
the paper.
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Theorem 15. Given a kernel K(p,q) := e−a||p−q||22 for any a > 0, ε = Ω
(

1
polylogn

)
, µ∗ = n−Θ(1)

and a data set of points P , using Algorithm 1 for preprocessing and Algorithm 2 for the query
procedure, one can approximate µ∗ := K(P,q) (see Definition 17) up to (1 ± ε) multiplicative
factor, in time Õ

(
ε−2

(
1
µ∗

)0.25+o(1)
)
, for any query point q. Additionally, the space consumption

of the data structure is

min
{
ε−2n

( 1
µ∗

)0.25+o(1)
, ε−2

( 1
µ∗

)1+o(1)
}
.

Throughout this section, we refer to Andoni-Indyk LSH’s main result stated in the following
lemma.

Lemma 16 ([AI06]). Let p and q be any pair of points in Rd. Then, for any fixed r > 0, there
exists a hash family H such that, if pnear := p1(r) := Prh∼H[h(p) = h(q) | ||p − q|| ≤ r] and
pfar := p2(r, c) := Prh∼H[h(p) = h(q) | ||p− q|| ≥ cr] for any c ≥ 1, then

ρ := log 1/pnear
log 1/pfar

≤ 1
c2 +O

( log t
t1/2

)
,

for some t, where pnear ≥ e−O(
√
t) and each evaluation takes dtO(t) time.

Remark 2. From now on, we use t = log2/3 n, which results in no(1) evaluation time and ρ =
1
c2 + o(1). In that case, note that if c = O

(
log1/7 n

)
, then

1
1
c2 +O

(
log t
t1/2

) = c2(1− o(1)).

Definition 17. For a query q, and dataset P = {p1, . . . ,pn}, we define

µ∗ := K(P,q) := 1
|P |

∑
p∈P

K(p,q)

where for any p ∈ P , K(p,q) is a monotone decreasing function of ||q − p||. Also, we define

wi := K(pi,q).

From now on, we assume that µ is a quantity such that

µ∗ ≤ µ (16)

We also use variable J :=
⌈
log2

1
µ

⌉
.

Definition 18 (Geometric weight levels). For any j ∈ [J ]

Lj :=
{

pi ∈ P : wi ∈
(
2−j , 2−j+1

]}
.

This implies corresponding distance levels (see Figure 1 and Figure 5), which we define as follows

∀j ∈ [J ] : rj := max
s.t. f(r)∈(2−j ,2−j+1]

r.

where f(r) := K(p,p′) for r = ||p− p′||. Also define LJ+1 := P \ ∪j∈[J ]Lj .9

9One can see that LJ+1 = {pi ∈ P : wi ≤ 2−J}.
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rj−1

rj

Lj

q

Figure 5: Illustration of definition of rj ’s based on Lj ’s.

We start by stating basic bounds on collision probabilities under the Andoni-Indyk LSH func-
tions in terms of the definition of geometric weight levels Lj (Definition 18):
Claim 19. Assume that kernel K induces weight level sets, Lj’s, and corresponding distance levels,
rj’s (as per Definition 18). Also, for any query q, any integers i ∈ [J + 1], j ∈ [J ] such that i > j,
let p ∈ Lj and p′ ∈ Li. And assume that H is an Andoni-Indyk LSH family designed for near
distance rj (see Lemma 16). Then, for any integer k ≥ 1, we have the following conditions:

1. Prh∗∼Hk [h∗(p) = h∗(q)] ≥ pknear,j,

2. Prh∗∼Hk [h∗(p′) = h∗(q)] ≤ pkc
2(1−o(1))

near,j ,

where c := ci,j := min
{
ri−1
rj
, log1/7 n

}
(see Remark 1) and pnear,j := p1(rj) in Lemma 16.

Proof. If p ∈ Lj by Definition 18, we have
||q − p|| ≤ rj .

Similarly using the fact that the kernel is decaying, for p′ ∈ Li we have
||q − p′|| ≥ ri−1 ≥ c · rj .

So, by Lemma 16 and Remark 1 the claim holds. Figure 6 shows an instance of this claim.

Now, we prove an upper-bound on sizes of the geometric weight levels, i.e., Lj ’s (see Defini-
tion 18).
Lemma 20 (Upper bounds on sizes of geometric weight levels). For any j ∈ [J ], we have

|Lj | ≤ 2jnµ∗ ≤ 2jnµ.
Proof. For any j ∈ [J ] we have

nµ ≥ nµ∗ =
∑
p∈P

K(p,q) By Definition 17

≥
∑
i∈[J ]

∑
p∈Li

K(p,q)

≥
∑

p∈Lj
K(p,q)

≥ |Lj | · 2−j
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ri−1

rj

Lj

Li

q

p

p′

Figure 6: Illustration of rj and ri−1 in terms of Lj and Li.

which proves the claim.

Definition 21 (Cost of a kernel). Suppose that a kernel K induces geometric weight levels, Lj ’s,
and corresponding distance levels, rj ’s (see Definition 18). For any j ∈ [J ] we define cost of kernel
K for weight level Lj as

cost(K, j) := exp2

(
max

i=j+1,...,J+1

⌈
i− j

c2
i,j(1− o(1))

⌉)
,

where ci,j := min
{
ri−1
rj
, log1/7 n

}
. Also, we define the general cost of a kernel K as

cost(K) := max
j∈[J ]

cost(K, j).

Description of algorithm: The algorithm runs in J phases. For any j ∈ [J ], in the j’th phase,
we want to estimate the contribution of points in Lj to K(P,q). We show that it suffices to have
an estimation of the number of points in Lj . One can see that if we sub-sample the data set with
probability min{ 1

2jnµ , 1}, then in expectation we get at most O(1) points from Li for any i ≤ j.
Now, assume that a point p ∈ Lj gets sampled by sub-sampling, then we want to use Andoni-Indyk
LSH to distinguish this point from other sub-sampled points, efficiently. Thus, we want to find the
appropriate choice of k for the repetitions of Andoni-Indyk LSH (see Claim 19). Suppose that we
call Claim 19 with some k (which we calculate later in (18)). Then we have

Pr
h∗∼Hk

[h∗(p) = h∗(q)] ≥ pknear,j ,

which implies that in order to recover point p with high probability, we need to repeat the procedure
Õ
(
p−knear,j

)
times. Another factor that affects the run-time of the algorithm is the number of points

that we need to check in order to find p. Basically, we need to calculate the number of points that
hash to the same bucket as q under h∗’s. For this purpose, we use the second part of Claim 19,
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which bounds the collision probability of far points, i.e., points such as p′ ∈ Li for any i > j.
Intuitively, for any point p′ ∈ Li for any i > j, by Claim 19 we have

Pr
h∗∼Hk

[
h∗(p′) = h∗(q)

]
≤ pkc2(1−o(1))

where c := ci,j := min
{
ri−1
rj
, log1/7 n

}
and p := pnear,j

10. On the other hand, by Lemma 20, for
i = j + 1, . . . , J we have

|Li| ≤ 2inµ∗ ≤ 2inµ.

Then, one has the following bound,

E
[∣∣{p′ ∈ Li : h∗(p′) = h∗(q)}

∣∣]
≤ 2inµ · 1

2jnµ · p
kc2(1−o(1)) Sub-sampling and then applying LSH

= 2i−j · pkc2(1−o(1)). (17)

Since we have O
(
log 1

µ

)
geometric weight levels, then the expression in (17) for the worst i, bounds

the run-time up to O
(
log 1

µ

)
multiplicative factor. In order to optimize the run-time up to Õ(1)

multiplicative factors, we need to set k such that the expression in (17) gets upper-bounded by
O(1) for all i > j. So, in summary, for any fixed j ∈ [J ], we choose k such that any weight level
Li for i ≥ j contributes at most Õ(1) points in expectation to the hash bucket of the query, i.e.,
h∗(q). One can see that we can choose k as follows

k := kj := −1
log p · max

i=j+1,...,J+1

⌈
i− j

c2
i,j(1− o(1))

⌉
. (18)

For sampling the points in LJ+1, it suffices to sample points in the data set with probability 1
n

(see line 15 in Algorithm 1), since the size of the sampled data set is small and there is no need to
apply LSH. One can basically scan the sub-sampled data set.

10The indices are dropped for ci,j and pnear,j for ease of notation.
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Algorithm 1 Preprocessing
1: procedure PreProcess(P, ε)
2: . P represents the set of data points
3: . ε represents the precision of estimation
4: K1 ← C logn

ε2 · µ−o(1) . C is a universal constant
5: J ←

⌈
log 1

µ

⌉
. We use geometric weight levels with base 2, see Definition 18

6: for a = 1, 2, . . . ,K1 do . O(logn/ε2) independent repetitions
7: for j = 1, 2, . . . , J do . J =

⌈
log 1

µ

⌉
geometric weight levels

8: K2 ← 100 logn · p−kjnear,j
9: . See Claim 19 and (18) for definition of pnear,j and kj
10: psampling ← min{ 1

2jnµ , 1}
11: P̃ ← sample each element in P with probability psampling.
12: for ` = 1, 2, . . . ,K2 do
13: Draw a hash function from hash family Hkj as per Claim 19 and call it Ha,j,`

14: Run Ha,j,` on P̃ and store non-empty buckets
15: P̃a ← sample each element in P with probability 1

n

16: Store P̃a . Set P̃a will be used to recover points beyond LJ+1

Algorithm 2 Query procedure
1: procedure Query(P,q, ε, µ)
2: . P represents the set of data points
3: . ε represents the precision of estimation
4: K1 ← C logn

ε2 · µ−o(1) . C is a universal constant
5: J ←

⌈
log 1

µ

⌉
. We use geometric weight levels with base 2, see Definition 18

6: for a = 1, 2, . . . ,K1 do . O(logn/ε2) independent repetitions
7: for j = 1, 2, . . . , J do . J =

⌈
log 1

µ

⌉
geometric weight levels

8: K2 ← 100 logn · p−kjnear,j . See Claim 19 and (18) for definition of pnear,j and kj
9: for ` = 1, 2, . . . ,K2 do
10: Scan Ha,j,`(q) and recover points in Lj
11: Recover points from LJ+1 in the sub-sampled dataset, P̃a.
12: S ← set of all recovered points in this iteration
13: for pi ∈ S do
14: wi ← K(pi,q)
15: if pi ∈ Lj for some j ∈ [J ] then
16: pi ← min{ 1

2jnµ , 1},
17: else if pi ∈ P \ ∪j∈[J ]Lj then
18: pi ← 1

n

19: Za ←
∑

pi∈S
wi
pi

Now, we present the main result of this section.

Theorem 22 (Query time). For any kernel K, the expected query-time of the algorithm is equal
to Õ

(
ε−2no(1) · cost(K)

)
.
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Assuming Theorem 22, we prove Theorem 15.
Proof of Theorem 15: We first start by proving the query time bound and then we prove the
space consumption of the data structure, and the guarantee over the precision of the estimator is
given in Claim 25.

Proof of the query time bound: We calculate the cost of Gaussian kernel e−a||x−y||22 . First,
we present the weight levels and distance levels induced by this kernel. As per Definition 17, let

µ∗ := K(P,q) =
∑
p∈P

e−a||p−q||22 .

By Definition 18, one has

Lj :=
{

pi ∈ P : wi ∈
(
2−j , 2−j+1

]}
=

pi ∈ P : ||pi − q||2 ∈

√(j − 1) ln 2
a

,

√
j ln 2
a

 ,
which immediately translates to rj :=

√
j ln 2
a for all j ∈ [J ]. Also, we for all i ∈ [J + 1], j ∈ [J ] such

that i > j, we have

ci,j := min
{
ri−1
rj

, log1/7 n

}

= min
{√

i− 1
j

, log1/7 n

}
At this point, one can check that

max
j∈[J ]

max
i=j+1,...,J+1

⌈
i− j

c2
i,j(1− o(1))

⌉
= (1 + o(1))1

4 log 1
µ
,

Therefore, the cost of Gaussian kernel is

cost(K) =
( 1
µ

)(1+o(1)) 1
4
.

Now, invoking Theorem 22, the statement of the claim about the query time holds.

Proof of the space bound: First, since the query time is bounded by ε−2
(

1
µ∗

)0.25+o(1)
, then the

number of hash functions used is also bounded by the same quantity. This implies that the expected
size of the space needed to store the data structure prepared by the preprocessing algorithm is
ε−2n

(
1
µ∗

)0.25+o(1)
, since for each hash function we are hashing at most n points (number of points

in the dataset).
For the other bound, we need to consider the effect of sub-sampling the data set. Fix j ∈ [J ].

In the phase when we are preparing the data structure to recover points from Lj , we sub-sample
the data set with probability min{ 1

2jnµ , 1}, and then we apply Õ
(
p
−kj
near,j

)
hash functions to this

sub-sampled data set. Since

kj = −1
log p · max

i=j+1,...,J+1

⌈
i− j

c2
i,j(1− o(1))

⌉
,
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by (18), where p = pnear,j , we have

p
−kj
near,j = exp2

(
max

i=j+1,...,J+1

⌈
i− j

c2
i,j(1− o(1))

⌉
− j

)
. (19)

At the same time, the expected size of the sampled dataset is bounded by n · min{ 1
2jnµ , 1} ≤

1
µ · 2

−j . Putting this together with the equation above, we get that the expected size of the dataset
constructed for level Lj is upper bounded by

1
µ

exp2

(
max

i=j+1,...,J+1

⌈
i− j

c2
i,j(1− o(1))

⌉
− j

)
. (20)

Now for every i = j + 1, . . . , J such that ci,j =
√

i−1
j one has

max
i=j+1,...,J+1

⌈
i− j

c2
i,j(1− o(1))

⌉
− j = max

i=j+1,...,J+1

⌈
j · i− j

(i− 1)(1− o(1))

⌉
− j ≤ o(J),

and for the other values of i we have maxi=j+1,...,J+1

⌈
i−j

log1/7 n(1−o(1))

⌉
− j ≤ o(J) as well. Putting

this together with (20) and multiplying by J = O(log(1/µ)) = µ−o(1) to account for the number of
choices j ∈ [J ], we get the second bound for the expected size of the data structure ε−2

(
1
µ∗

)1+o(1)
.

Proof of the precision of the estimator: First, we prove the following claim, which guarantees
high success probability for recovery procedure.

Claim 23 (Lower bound on probability of recovering a sampled point). Suppose that we invoke
Algorithm 1 with (P, ε). Suppose that in line 11 of Algorithm 1, when k = k∗ and j = j∗, we sample
some point p ∈ Lj∗. We claim that with probability at least 1− 1

n10 , there exists `∗ ∈ [K2] such that
Hk∗,j∗,`∗(p) = Hk∗,j∗,`∗(q).

Proof. By Claim 19 we have

Pr
h∗∼Hk

[h∗(p) = h∗(q)] ≥ pkjnear,j .

Now note that we repeat this process for K2 = 100 logn · p−kjnear,j times. So any point p which is
sampled from band Lj∗ is recovered in at least one of the repetitions of phase j = j∗, with high
probability.

Now, we argue that the estimators are unbiased (up to small inverse polynomial factors)

Claim 24 (Unbiasedness of the estimator). For every µ∗ ∈ (0, 1), every µ ≥ µ∗, every ε ∈ (µ10, 1),
every q ∈ Rd, estimator Za for any a ∈ [K1] constructed in Query(P,q, ε, µ) (Algorithm 2) satisfies
the following:

(1− n−9)nµ∗ ≤ E[Za] ≤ nµ∗

Proof. Let E be the event that every sampled point is recovered and let Z := Za (see line 19 in
Algorithm 2). By Claim 23 and union bound, we have

Pr[E ] ≥ 1− n−9
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We have that E[Z] =
∑n
i=1

E[χi]
pi
wi with (1 − n−9)pi ≤ E[χi] ≤ pi, where we now define χi = 1

if point pi is sampled and recovered in the phase corresponding to its weight level, and χi = 0
otherwise. Thus

(1− n−9)nµ∗ ≤ E[Z] ≤ nµ∗. (21)

Remark 3. We proved that our estimator is unbiased11 for any choice of µ ≥ µ∗. Therefore
if µ ≥ 4µ∗, by Markov’s inequality the estimator outputs a value larger than µ at most with
probability 1/4. We perform O(logn) independent estimates, and conclude that µ is higher than
µ∗ if the median of the estimated values is below µ. This estimate is correct with high probability,
which suffices to ensure that we find a value of µ that satisfies µ/4 < µ∗ ≤ µ with high probability
by starting with some µ = n−Θ(1) (since our analysis assumes µ∗ = n−Θ(1)) and repeatedly halving
our estimate (the number of times that we need to halve the estimate is O(logn) assuming that µ
is lower bounded by a polynomial in n, an assumption that we make).

Claim 25 (Variance bounds). For every µ∗ ∈ (0, 1), every ε ∈ (µ10, 1), every q ∈ Rd, using
estimators Za, for a ∈ [K1] constructed in Query(P,q, ε, µ) (Algorithm 2), where µ/4 ≤ µ∗ ≤ µ,
one can output a (1± ε)-factor approximation to µ∗.

Proof. By Claim 24 and noting that Z ≤ n2µ∗, where the worst case (equality) happens when all
the points are sampled and all of them are recovered in the phase of their weight levels. Therefore,

E [Z|E ] · Pr[E ] + n2µ∗(1− Pr[E ]) ≥ E[Z].

Also, since Z is a non-negative random variable, we have

E [Z|E ] ≤ E [Z]
Pr[E ] ≤

nµ∗

Pr[E ] = nµ∗(1 + o(1/n9))

Then, we have

E[Z2] = E


∑

pi∈P
χi
wi
pi

2


=
∑
i 6=j

E
[
χiχj

wiwj
pipj

]
+
∑
i∈[n]

E
[
χi
w2
i

p2
i

]

≤
∑
i 6=j

wiwj +
∑
i∈[n]

w2
i

pi
I[pi = 1] +

∑
i∈[n]

w2
i

pi
I[pi 6= 1]

≤
(∑

i

wi

)2

+
∑
i∈[n]

w2
i + max

i

{
wi
pi

I[pi 6= 1]
} ∑
i∈[n]

wi

≤ 2n2(µ∗)2 + max
j∈[J ],pi∈Lj

{wi2j+1}nµ · nµ∗

≤ 4n2µ2 Since µ∗ ≤ µ

and

E[Z2|E ] ≤ E[Z2]
Pr[E ] ≤ n

2µ2−o(1)(1 + o(1/n9))

11Up to some small inverse polynomial error.
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Now, since µ ≤ 4µ∗, in order to get a (1± ε)-factor approximation to µ∗, with high probability,
it suffices to repeat the whole process K1 = C logn

ε2 · µ−o(1) times, where C is a universal constant.
Suppose we repeat this process m times and Z̄ be the empirical mean, then:

Pr[|Z̄ − µ∗| ≥ εnµ∗] ≤ Pr[|Z̄ − E[Z]| ≥ εµ∗ − |E[Z]− nµ∗|]
≤ Pr[|Z̄ − E[Z]| ≥ (ε− n−9)nµ∗]

≤ E[Z̄2]
(ε− n−9)2(n2µ∗)2

≤ 1
m

16n2(µ∗)2

(ε− n−9)2(n2µ∗)2

Thus by picking m = O( 1
ε2 ) and taking the median of O(log(1/δ)) such means we get a (1 ± ε)-

approximation with probability at least 1− δ per query.

All in all, we proved the expected query time bound, the expected space consumption and the
precision guarantee in the statement of the theorem.

Now, we calculate the cost of kernel for t-student kernel.

t-student kernel ( 1
1+||x−y||t2

): We directly calculate distance levels induced by this kernel as
follows

rj = t
√

2j − 1

which implies that for all i ∈ [J + 1], j ∈ [J ] such that i > j,

ci,j := min
{
ri−1
rj

, log1/7 n

}

= min

 t

√
2i−1 − 1
2j − 1 , log1/7 n

 .
Now, one can check that

max
j∈[J ]

max
i=j+1,...,J+1

⌈
i− j

c2
i,j(1− o(1))

⌉
=

log 1
µ

log2/7 n
(1 + o(1)).

Thus, we have

cost(K) = µ−o(1).

We note that this matches the result of [BCIS18] up to the difference between µ−o(1) and log(1/µ)
terms. The µ−o(1) dependence comes from the fact that we used the LSH of [AI06], and the
dependence can be improved to log(1/µ) by using the hash family of [DIIM04], for instance.

Exponential Kernel (e−‖x−y‖2) The distance levels induced by the kernel are given by rj =
j log(2) for j ∈ [J ]. Hence, we get that cij = min

{
ri−1
rj
, log1/7 n

}
= min{ i−1

j , log1/7 n}. If i >
j log1/7 n+ 1 then the cost is increasing in i > 0 becomes:

cost(K, j) = exp2

(
J + 1− j
log2/7 n

)
≤ exp2

(
J

log2/7 n

)
= µ−o(1).
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Thus, for the rest we will assume that i ≤ j log1/7 n+ 1, and we need to find the maximum over j
of

(1 + o(1)) max
i=j+1,...,J+1

⌈
j2((i− 1)− (j − 1))

(i− 1)2

⌉

Setting x = i− 1 and A = j− 1, we optimize the function (x−A)
x2 for x ≥ A+ 1. We get that the

optimal value is attained for i∗(j) = max{min{2j − 1, J + 1}, j + 1}. We distinguish three cases:

1. j = 1: then i∗ = 2 and we get cost(K, 1) = µ−o(1)

2. j > J+2
2 : then the maximum over i is j2(J+1−j)

J2 (1 + o(1)), and the optimal choice of j is
j∗ = 2(J+1)

3 . We thus get
max
j>J+2

2

{cost(K, j)} = µ−(1+o(1)) 4
27

3. j ≤ J+2
2 : then the maximum over i is j2

4(j−1)(1+o(1)) and the optimal choice for j is j∗ = J+2
2 .

We thus get
max
j≤J+2

2

{cost(K, j)} = µ−(1+o(1)) 1
8 .

Overall, the worst-case cost is attained for i∗ = J and j∗ = 2J
3 and yields

cost(K) = µ−(1+o(1)) 4
27 .

Proof of Theorem 22: One should note that the query time of our approach depends on the
number of times that we hash the query and the number of points that we check, i.e., the number
of points that collide with the query. First, we analyze the number of points colliding with the
query. We Fix j ∈ [J ], so, we want to estimate the contribution of points in Li to K(P,q). We
consider 3 cases:

Case 1. i ≤ j: Note that we have |Li| ≤ 2inµ and note that in j’th phase, we sample the data set
with rate min{ 1

2jnµ , 1}. Thus, we have at most 1 = O(1) sampled points from Li in expectation.

Case 2. i = j + 1, . . . , J : Again, note that by Lemma 20, |Li| ≤ 2inµ, and the sampling rate is
min{ 1

2jnµ , 1}. Thus, we have at most 2i−j sampled points from Li in expectation. Now, we need
to analyze the effect of LSH. Note that we choose LSH function such that the near distance is rj
(see Claim 19). Also, note that as per (18), we use

k := kj := −1
log pnear,j

· max
i=j+1,...,J+1

⌈
i− j

c2
i,j(1− o(1))

⌉
.

as the number of concatenations. Now, we have the following collision probability for p ∈ Li using
Claim 19

Pr
h∗∈Hk

[h∗(p) = h∗(q)] ≤ pkc2(1−o(1)),

where c := ci,j := min
{
ri−1
rj
, log1/7 n

}
and p := pnear,j for ease of notation. This implies that the

expected number of points from weight level Li in the query hash bucket is at most

2i−j · pkc2(1−o(1)) = Õ(1)

by the choice of k.
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Case 3. points in LJ+1: We know that we have n points, so after sub-sampling, we have at most
1

2jµ points from this range, remaining in expectation. For any p ∈ LJ+1, note that ||p−q|| ≥ c · rj
for c := cJ+1,j := min

{
rJ
rj
, log1/7 n

}
. Then,

Pr
h∗∈Hk

[h∗(p) = h∗(q)] ≤ pkc2(1−o(1)),

which implies that the expected number of points form this range in the query hash bucket is at
most

1
2jµ · p

kc2(1−o(1)) = 2J−j · pkc2(1−o(1)) = Õ(1)

by the choice of kj .
All in all, we prove that each weight level Li for i ∈ [J + 1] contribute at most Õ(1) points to

the hash bucket of query. Now, we need to prove a bound on the number of times we evaluate our
hash function. One should note that by the choice of kj in (18) we have

kj = Õ(1)

which basically means that we only concatenate Õ(1) LSH functions. Thus, we the evaluation time
of h∗(q) for any h∗ ∈ Hk is Õ(no(1)), by Remark 1. On the other hand, note that for recovering the
points in LJ+1 we just sub-sampled the data set with probability 1

n so in expectation we only scan
1 point. So in total, since we repeat this for all j ∈ [J ] and J = dlog 1

µe, by the choice of K1 and
K2 assigned in lines 4 and 8 of Algorithm 1, respectively, the claim holds.
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5 Improved algorithm via data dependent LSH
In this section, we improve the algorithm presented in the previous section using data dependent
LSH approach for the Gaussian kernel. Consider a data set P ⊂ Rd, a positive real number a, and
a query q ∈ Rd. Let

µ∗ := K(P,q) =
∑
p∈P

e−a||p−q||22

denote the KDE value at the query q ∈ Rd of interest, and for the rest of the paper suppose that
the algorithm is given a parameter µ that satisfies the following property

µ∗ ≤ µ. (22)

We prove the following main result in the rest of the paper.

Theorem 26. Given a kernel K(p,q) := e−a||p−q||22 for any a > 0, ε = Ω
(

1
polylogn

)
, µ∗ =

n−Θ(1) and a data set of points P , there exists a preprocessing algorithm and a corresponding query
algorithm that one can approximate µ∗ := K(P,q) (see Definition 17) up to (1 ± ε) multiplicative
factor, in time Õ

(
ε−2

(
1
µ∗

)0.173+o(1)
)
, for any query point q. Additionally, the space consumption

of the data structure is

min
{
ε−2n

( 1
µ∗

)0.173+o(1)
, ε−2

( 1
µ∗

)1+c+o(1)
}
.

for a small constant c = 10−3.

Proof. First, in Section 5.1 we present the main primitives in the preprocessing phase (Algorithms 3,
4 and 5) and prove the space bound in Lemma 30. The standard outer algorithm is presented
in Appendix C for completeness. The main query primitive in query algorithm is presented in
Section 5.3, and the query time is proved in Section 6 in Lemma 31. The correctness proof (precision
of the estimator) is rather standard and similar to the correctness proof in Section 4 and is given
in Appendix C for completeness.

Remark 4. Although we present the analysis for the Gaussian kernel, our techniques can be used
for other kernels such as the exponential kernel as well. We do not present the full analysis to
simplify presentation of our main result for the Gaussian kernel, but provide proofs of key lemmas
in Appendix F. Specifically, we present the equivalent of Claims 53 and 54, which underly our LP
analysis, for kernels whose negative log density is concave (this includes the exponential kernel
exp(−||x||2)). Our dual solution presented in Section 9 gives an upper bound of ≈ 0.1 on the
value of the corresponding LP. Replacing the parameter α∗ in the algorithms presented in this
section with 0.1 thus yield an data structure for KDE with the exponential kernel with query time
Õ

(
ε−2

(
1
µ∗

)0.1+o(1)
)

and space consumption ε−2n
(

1
µ∗

)0.1+o(1)
for the exponential kernel.

In order to simplify notation we apply the following normalization without loss of generality:
For any point in p ∈ P ∪ {q}, let p′ := σp and σ :=

√
2a

log(1/µ) such that a point p′ at distance
√

2
from the query q′ contributes exactly µ to the kernel. In other words, we assume by convenient
scaling that

K(P,q) = 1
n

∑
p′

(µ)||p′−q′||22/2.
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and to lighten notation we will assume that σ = 1, i.e. points are already properly scaled. For
x ∈ (0,

√
2), let P̃ be the dataset obtained from P by including every point independently with

probability min
{

1
n ·
(

1
µ

)1−x
2
2 , 1

}
. We state these conditions in a compact way as follows and use

them in the rest of the paper.

Assumption 1. We have the followings

• P ⊂ Rd and |P | = n.

• q ∈ Rd.

• µ∗ := K(P,q)

• 1
µ∗ = nΩ(1)

• µ is such that µ∗ ≤ µ.

• µ = n−Θ(1).

• The points are scaled so that K(p,q) = µ
||p−q||2

2 .

• P̃ is obtained by independently sub-sampling elements of P with probability min
{

1
n ·
(

1
µ

)1−x
2
2 , 1

}
,

for some x ∈ (0,
√

2), which is clear from the context.

In this section we design a data structure that allows preprocessing P̃ as above using small
space such that every point at distance at most x from any query q is recovered with probability
at least 0.8 (see Lemma 60).

In what follows we present our preprocessing algorithm (Algorithm 3) in Section 5.1, the query
algorithm (Algorithm 6) in Section 5.3 as well as proof of basic bounds on their performance in the
same sections. Our main technical contribution is the proof of the query time bound. This proof
relies on a novel linear programming formulation that lets us bound the evolution of the density
of points around the query q as the query percolates does the tree T of hash buckets produced
by PreProcess. This analysis is given in Section 6, with the main supporting technical claims
presented in Section 8.

5.1 Preprocessing algorithm and its analysis

Our preprocessing algorithm is recursive. At the outer level, given the sampled dataset P̃ as input,
the algorithm hashes P̃ into buckets using Andoni-Indyk Locality sensitive hashing. The goal of
this is to ensure that with high probability all hash buckets that a given query explores are of
bounded diameter, while at the same time ensuring that any close point p hashes together with q
in at least one of the hash buckets with high constant probability. The corresponding analysis is
presented in Sections 5.3 and 6.

Our main tool in partitioning the data set into (mostly) low diameter subsets is an Andoni-
Indyk Locality Sensitive Hash family. Such a family is provided by Lemma 16, which was our
main tool in obtaining the non-adaptive KDE primitives in Section 4, and Corollary 27 below. We
restate the lemma below for convenience of the reader:
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Lemma 16 ([AI06]) (Restated) Let p and q be any pair of points in Rd. Then, for any fixed r > 0,
there exists a hash family H such that, if pnear := p1(r) := Prh∼H[h(p) = h(q) | ||p− q|| ≤ r] and
pfar := p2(r, c) := Prh∼H[h(p) = h(q) | ||p− q|| ≥ cr] for any c > 1, then

ρ := log 1/pnear
log 1/pfar

≤ 1
c2 +O

( log t
t1/2

)
,

for some t, where pnear ≥ e−O(
√
t) and each evaluation takes dtO(t) time. One should also recall

Remark 1, which ensures no(1) evaluation time, with appropriate choice of t in Lemma 16.

Corollary 27. Let α be a constant, and let x ∈ (0,
√

2) and y be such that y ≥ x. Then, there exists
a hash family H such that for any points q ∈ Rd, p and p′, where ||p− q|| ≤ x and ||p′ − q|| ≥ y,
we have the following conditions

• Prh∼H [h(q) = h(p)] ≥ µα

• Prh∼H [h(q) = h(p′)] ≤ µαc2(1−o(1))

where c := min
{
y
x , log1/7 n

}
, and we call such a hash family a (α, x, µ)-AI hash family.

Our preprocessing algorithm is given below. It simply hashes the dataset several times inde-
pendently using an Andoni-Indyk LSH family and calls Spherical-LSH (Algorithm 4 below) on
the buckets. The hashing is repeated several times to ensure that the query collides with any given
close point with high probability in at least one of the hashings. Overall PreProcess simply
reduces the the diameter of the dataset, whereas most of the work is done by Spherical-LSH,
defined below.

Algorithm 3 PreProcess: P̃ is the subsampled data-set, x is the target distance to recover

1: procedure PreProcess(P̃ , x, µ)
2: Add a root w0 to the recursion tree T
3: w0.P ← P̃ , w0.level← 0, w0.g ← 0 . g = 0 since this node uses Euclidean LSH
4: if x >

√
2 then return P̃ . In that case the expected size of P̃ is small

5: α← 10−4 . Choice of α affects hash bucket diameter, see Lemma 28
6: K1 = 100

(
1
µ

)α
. The number of repetitions of the first round of hashing

7: for j = 1, 2, . . . , dK1e do
8: Pick hj from a (α, x, µ)-AI hash family, H . See Definition 27
9: B ← set of non-empty hash buckets by hashing points in P using hj .

10: for each b ∈ B do
11: Add a node v as a child of w0 in recursion tree T
12: v.P ← b, v.level← 0, v.g ← 0
13: v.o← any point in bucket b
14: Spherical-LSH(v, x, µ)
15: return T

We will use the following basic upper bound on the Euclidean diameter of LSH buckets:

Lemma 28 (Diameter bound for Andoni-Indyk LSH buckets). Under Assumption 1, suppose that
H is a (α, x, µ)-AI hash family (see Corollary 27), for some constant α and let c := min

{
Rdiam
x , log1/7 n

}
for some Rdiam ≥

√
2, then if αc2 = 2 + Ω(1) then one has
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(a) E
h∼H,P̃

[∣∣∣{p ∈ P̃ : ||p− q|| ≥ Rdiam and h(p) = h(q)
}∣∣∣] ≤ ( 1

µ

)2−αc2(1−o(1))

(b) and consequently

Pr
h∼H,P̃

[diameter of h−1(q) ∩ P̃ is larger than Rdiam] ≤
( 1
µ

)2−αc2(1−o(1))
.

Proof. One has for every Rdiam ≥
√

2

E
P̃

[∣∣∣{p ∈ P̃ : ||p− q|| ≥ Rdiam
}∣∣∣] ≤ E

P̃

[∣∣∣P̃ ∣∣∣] = n · 1
n

( 1
µ

)1−x
2
2

=
( 1
µ

)1−x
2
2

Taking the expectation with respect to the hash function h, we get,

E
h∼H,P̃

[∣∣∣{p ∈ P̃ : ||p− q|| ≥ Rdiam and h(p) = h(q)
}∣∣∣] ≤ ( 1

µ

)1−x
2
2 −αc

2(1−o(1))

≤
( 1
µ

)2−αc2(1−o(1))
,

establishing (a). Claim (b) now follows by applying Markov’s inequality since αc2 = 2 + Ω(1).

Now, we establish a constant upper bound on the diameter of data set after the Andoni-Indyk
LSH round. Since we have µ = n−Θ(1), and α = 10−4 as per line 5 of Algorithm 3, by Lemma 28
if we let Rdiam be a large enough constant, then one has

Pr
h

[diameter of h−1(q) ∩ P̃ is larger than Rdiam] ≤ n−20 (23)

Let Ediam denote the event that all Andoni-Indyk hash buckets that the query hashes to have
diameter bounded by Rdiam. We have, combining the failure event over sampling of P̃ (over-
sampling by a factor more than O(logn)) with (23) that Pr[Ē ] ≤ 2n−20 ≤ n−19. Conditioned on E
buckets that the query hashes have diameter bounded by Rdiam. Now, if we take any point in the
data set and consider a ball of radius Rmax := 2Rdiam, using the triangle inequality, it contains all
the points of this hash bucket. This ensures that all the spheres in the recursion tree have radius
bounded by Rmax = Θ(1).

Corollary 29 (Bounded diameter spheres). All the spheres that the query scan in the algorithm
have radius bounded by Rmax = Θ(1).12

We are now ready to present our main preprocessing primitive Spherical-LSH, given as Al-
gorithm 4 below. The input to the algorithm is a node in the recursion tree T created by recursive
invocations of Spherical-LSH. Every such node v is annotated with a dataset v.P , a radius v.r
of a ball enclosing the dataset, the center v.o of that ball and a level, v.level, initially set to 0
for the root of the tree T that is created by PreProcess. Spherical-LSH then proceeds as
follows. First it calls the Pseudorandomify procedure (Algorithm 5 below). This procedure par-
titions the input dataset v.P into subsets that are pseudorandom as per Definition 13. A similar
procedure was used in the work of [ALRW17] on space/query time tradeoffs for nearest neighbor
search. Intuitively, a dataset is pseudorandom if the points belong to a thin spherical shell and

12Since we did not use any density constraints other than the upper bound of n on the number of points, this
corollary applies for all spheres in the Algorithm.

35



furthermore do not concentrate on any spherical cap in this shell (appropriately defined). These
pseudorandom datasets are added to the recursion tree T as children of v. Spherical-LSH then
generates random subsets of these pseudorandom spheres defined by random spherical caps, adds
these datasets to the recursion tree T and recursively calls itself until a depth budget T (see line 3
below) is exhausted. Note that the radius of spherical caps generated depends on the distance x′
from the projected query point to the target near point (which is assumed to be at distance x from
the query). Note that since the query is not available at the preprocessing stage, the algorithm
prepares data structures for all possible values of x′ (see line 14 in Algorithm 4 below). Note that
the value of x′ is passed down the recursion tree. In the section below, we set the parameters that
we use in the algorithms.

5.2 Parameter settings

• γ = 1
log log logn and τ = 1

10 are the parameters used for pseudo-random spheres (see Defini-
tion 13) in Algorithm 5.

• α∗ = 0.172 (see Section 9), T =
√

logn and J = min
{
α∗ · T,

(
x2

2

(
1− x2

2

)
+ 10−4

)
· T
}
are

parameters to bound the depth of the recursion tree.

• δ = exp(−(log logn)C) for some large enough constant C, is a parameter used for partitioning
point in a ball to discrete spheres of radii multiplies of δ (see Algorithm 5)

• δ′ = exp(−(log logn)C) for some large enough constant C, is a parameter for rounding x′’s
to x′′’s (see lines 18 and 19 in Algorithm 6)

• Rmin = 10−5 is a lower bound on the radius of spheres that we process further, i.e., we stop
whenever the radius becomes less than Rmin.

• ∆ = 10−20 is a tiny constant. For a discussion about ∆ see Remark 4.

• α = 10−4 is a parameter used for the Andoni-Indyk LSH round (see Algorithm 3)

• δz = 10−6 is a parameter used in discretizing continuous densities in Definition 41.

• δx = 10−8 is used for defining a grid over (0,
√

2), such that for any x from this grid we
prepare the data structure to recover points from [x− δ, x) (see Algorithm 9).
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Algorithm 4 Spherical-LSH: x is the target distance to recover, v is the node in recursion tree
(corresponds to a subset of the dataset)
1: procedure Spherical-LSH(v, x, µ)
2: γ ← 1

log log logn
3: T ←

√
logn

4: U ← PseudoRandomify(v, γ)
5: for w ∈ U do
6: Add w as a child of v in recursion tree T
7: P ← w.P . The dataset of w
8: R← w.r . Radius of the sphere of w
9: if R < Rmin continue
10: δ′ ← exp(−(log logn)C)
11: o← w.o . Center of sphere of w
12: W ←

{
b∆−δ

δ′ c · δ
′,
(
b∆−δ

δ′ c+ 1
)
δ′, . . .

}
∩ (0, R(

√
2 + γ)]

13: . The smallest element in W is Θ(1) by the setting of parameters. See 5.2
14: for x′′ ∈W do . Enumerate over potential target distances
15: if x′′ > R(

√
2 + γ) continue

16: Choose η such that F (η)
G(x′′/R,η) =

(
1
µ

) 1
T

17: . Choose η such that a query explores
(

1
µ

) 1
T children in expectation

18: for i = 1, . . . ,
⌈

100
G(x′′/R,η)

⌉
do

19: Sample a Gaussian vector g ∼ N(0, 1)d

20: P ′ ←
{

p ∈ P :
〈

p.new−o
R , g

〉
≥ η

}
21: . p.new is the rounded p to the surface of the sphere (see line 10 of Algorithm 5)
22: if P ′ 6= ∅ then
23: Add a node v′ as child of w in T
24: v′.P ← P ′, v′.level← v.level + 1, v′.g ← g, v′.r ← R, v′.o← o, v′.x← x′′

25: v′.η ← η
26: if v′.level 6= J then
27: . Stop whenever the level becomes J (see Section 5.2 for the value of J .)
28: Spherical-LSH(v′, x, µ) . Recurse unless budget has been exhausted

Algorithm 9 is the standard (similar to Section 4) outer algorithm and is presented in Ap-
pendix C. It simply calls PreProcess (Algorithm 3) presented in this section. The following
lemma bounds the space complexity of the preprocessing algorithm:
Lemma 30. Under Assumption 1, the expected space consumption of the datastructure generated
by PreProcess-KDE(P̃ , µ) (Algorithm 9) is bounded by

min
{
n expµ (0.173) , expµ (1 + c+ o(1))

}
,

for small constant c = 10−3.
Proof. First, we calculate the expected size of the data structure created by PreProcess(P̃ , x, µ)
for any x ∈ {δx, 2δx, . . .} ∩ (0,

√
2) (see line 6 in Algorithm 9). Note that the expected size of the

sampled dataset is

E[|P̃ |] ≤ min
{

expµ

(
1− x2

2

)
, n

}
.
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Since PseudoRandomify does not duplicate points, every point in the dataset is duplicated (due
to their presence in different spherical caps) at most

expµ
( 1
T

)
· |W | = expµ

( 1
T

)
· exp

(
(log logn)O(1)

)
times in expectation each time we increase the level. So, in total every point is duplicated at most

expµ
(
J

T

)
· |W |J = expµ

(
J

T

)
· |W |J

in expectation. Indeed, in every level we enumerate over at most |W | = exp((log logn)O(1)) pos-
sibilities for x′′, amounting to at most a factor of |W |J = exp

(
(log logn)O(1) ·O(

√
logn)

)
= no(1)

duplication due to the termination condition in line 27 of Algorithm 4. Finally, PreProcess itself
hashes every point 100 expµ (α) ≤ 100 expµ

(
10−4) times (see line 6 and line 5 of Algorithm 3).

Putting these bounds together yields that the space consumption of PreProcess(P̃ , x, µ) is at
most

min
{

expµ

(
1− x2

2

)
, n

}
· expµ

(
10−4 + min

{
α∗,

x2

2

(
1− x2

2

)
+ 10−4

}
+ o(1)

)

in expectation, where c := 10−4. Now, note that we also repeat this procedure
(

1
µ

)4δx+o(1)
times

(see Algorithm 9), which results in the following bound on the total space consumption

max
x∈(0,

√
2)

(
min

{
expµ

(
1− x2

2

)
, n

}
· expµ

(
10−4 + min

{
α∗,

x2

2

(
1− x2

2

)
+ 10−4

}
+ 4δx + o(1)

))
≤ min

{
n expµ (0.173) , expµ (1 + c+ o(1))

}
,

for c = 10−3.

Finally, we introduce the procedure PseudoRandomify (Algorithm 5 below) used in Spherical-
LSH. This procedure is quite similar to the corresponding primitive in [ALRW17] and is guaranteed
to output pseudo-random spheres with parameters τ and γ (See Definition 13).
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Algorithm 5 PseudoRandomify
1: procedure PseudoRandomify(v, γ)
2: δ ← exp(−(log logn)C)
3: Rmin ← sufficiently small constant larger than ∆ and δx (see Section 5.2)
4: P ← v.P . Dataset of node v
5: R← v.r . Radius of sphere of node v
6: o← v.o . Center of sphere of node v
7: τ ← 1

10
8: if R < Rmin return
9: for p ∈ P do

10: p.new ← o+ δd ||p−o||δ e · p−o
||p−o|| . p represents the initial coordinates of point p

11: V ← ∅
12: for i← 1 . . . dRδ e do . Process all resulting spheres
13: P̃ ← {p ∈ P : ||p.new − o|| = δi}
14: if P̃ 6= ∅ then
15: R̂← (

√
2− γ)R

16: m← |P̃ |
17: m′ ← 0
18: while m′ ≤ m

2 do
19: m← |P̃ |
20: while ∃ô ∈ ∂B(o, δi) : |B(ô, R̂) ∩ P̃ | ≥ 1

2 · τ ·m do
21: . Using rounded p.new coordinates (see line 10) in line above
22: P ′ ← P̃ ∩B(ô, R̂)
23: B(o′, R′)← SEB(P ′) . SEB=smallest enclosing ball
24: Create a node tmp
25: tmp.P ← P ′, tmp.level← v.level, tmp.g ← 0, tmp.r ← R′, tmp.o← o′

26: V ← V ∪PseudoRandomify(tmp, γ)
27: P̃ ← P̃ \B(ô, R̂)
28: m′ ← |P̃ |
29: Create a node w
30: w.P ← P̃ , w.level← v.level, w.g ← 0, w.r ← δi, w.o← o
31: V ← V ∪ {w}
32: return V

5.3 Query procedure

We now present our query procedure (Algorithm 6 below). The procedure simply traverses the
recursion tree T from the root, exploring leaves that the query is mapped to according to line 29.
Since every node u of the tree T corresponds to a pseudorandom dataset u.P residing (essentially)
on a sphere of radius u.r centered at u.o, the query is projected onto the sphere, after which one
recursively explores the children of u in T whose Gaussian vectors (see line 29) are sufficiently
correlated with the projected query. One notable feature in comparison to the corresponding
procedure in [ALRW17] is the follows. Note that the procedure of [ALRW17] recurses on a sphere
even if the intersection of a sphere of radius x around the query (i.e. the range in which we would
like to report points) barely touches the sphere that the dataset resides on. Our data structure,
however, uses an increased search range x + ∆ (see Figure 7), which results in somewhat higher
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runtime, but allows one to only recurse when the extended search range has nontrivial overlap with
the sphere in question – see lower bound on x′ in line 12 of Algorithm 4. This additive ∆ technique,
can also be used to simplify the technical proofs of [ALRW17], by not allowing their algorithm to
recurse on tiny spheres at distance roughly x (i.e., when the distance x barely touches the sphere).
The reason is that all the points on these small spheres has distance at most x + 2Rmin from
the query, and we have small number of such points in expectation, by sub-sampling and density
constraints.

q o

x

x+ ∆

Figure 7: An (exaggerated) illustration of x and x+ ∆.
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Algorithm 6 Query
1: procedure Query(q, T , x)
2: Px ← ∅
3: δ ← exp(−(log logn)C)
4: v ← root of T
5: if v.level = 0 then
6: K1 = 100

(
1
µ

)α
. α is the constant from line 5 in Algorithm 3

7: for j = 1, 2, . . . , dK1e do
8: Locate q in hj and u← the corresponding node in T
9: for each w child of u do
10: Tw ← sub-tree of w and its descendants.
11: Px ← Px ∪Query(q, Tw, x)

return Px
12: else if T is just one node, without any children then
13: return v.P
14: else
15: o← v.o
16: R← v.r
17: R2 ← ||q − o||
18: x′ ← Project(x+ ∆, R2, R)
19: x′′ ← smallest element in the grid W (line 12 of Algorithm 4) which is not less than x′
20: if x+ δ < |R−R2| then return
21: . Then no point from distance x can be on this sphere
22: if @u child of v, such that u.x = x′′ then
23: return v.P
24: for each u child of v do
25: ∆← 10−20

26: if u.x = x′′ then
27: g ← u.g
28: η ← u.η
29: if 〈g, q−o

||q−o||〉 ≥ η then
30: for each w child of u do
31: Tw ← sub-tree of w and its descendants.
32: Px ← Px ∪Query(q, Tw, x)
33: return Px

Since the correctness analysis of this procedure is standard and similar to [ALRW17], we present
it in Appendix C (Lemma 60), for completeness. Basically, we prove the query procedure outputs
any given point within distance x with high constant probability.

6 Query time analysis
The main result of this section is the following lemma which bounds the expected query time of
the algorithm.

Lemma 31. The expected query time is bounded by O
((

1
µ

)0.173+o(1)
)
.
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Throughout this section we consider the setting where one is given a query q ∈ Rd and a
parameter µ ∈ (0, 1] with the promise that

µ∗ ≤ µ, (24)

where
µ∗ = K(P,q)

is the true kernel density value. We assume that µ∗ = n−Θ(1), since this is the interesting regime
for this problem. For µ∗ = n−ω(1) under the Orthogonal Vectors Conjecture (e.g. [Rub18]), the
problem cannot be solved faster than n1−o(1) using space n2−o(1) [CS19], and for larger values
µ∗ = n−o(1) random sampling solves the problem in no(1)/ε2 time and space.

Densities of balls around query. Upper bounds on the number of points at various distances
from the query point in dataset (i.e., densities of balls around the query) play a central part in our
analysis. The core of our query time bound amounts to tracking the evolution of such densities in
the recursion tree T . In order to analyze the evolution of these upper bounds we let, for a query
q ∈ Rd (which we consider fixed throughout this section) and any x ∈ (0,

√
2) let

Dx(q) := {||p− q|| : p ∈ P, ||p− q|| ≥ x+ 1.5∆}, (25)

denote the set of possible distances from the query to the points in the dataset which are further
that x+ 1.5∆ from the query. When there is no ambiguity we drop q and x and we simply call it
D. For any y ∈ D we let

Py(q) := {p ∈ P : ||p− q|| ≤ y} (26)

be the set of points at distance y from q. Since for every y > 0

µ∗ = K(P,q) = 1
n

∑
p∈P

µ||p−q||22/2

≥ µy
2/2

n
|Py(q)|

we get

|Py(q)| ≤ nµ∗ ·
( 1
µ

) y2
2
≤ n ·

( 1
µ

) y2
2 −1

,

since µ∗ ≤ 4µ by assumption.

Densities in the subsampled dataset. Fix x ∈ (0,
√

2), and recall that P̃ contains every point

in P independently with probability 1
n ·
(

1
µ

)1−x
2
2 . Note that for every y the expected number of

points at distance at most y from query q that are included in P̃ is upper bounded by

min

n ·
( 1
µ

) y2
2 −1

, n

 · 1
n
·
( 1
µ

)1−x
2
2
≤ min

{
expµ

(
y2 − x2

2

)
, expµ

(
1− x2

2

)}
, (27)

and Figure 8 illustrates this.
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Figure 8: Upper-bound on log-densities after sub-sampling.

Our main goal is to track the progress of the query q and any p, for which we have ||p−q||2 ≤ x,
that was included in the set P̃ , and exploit the upper bounds (27) on the number of points at various
distances from q in q’s ‘hash bucket’ to show that the process quickly converges to a constant size
data set at a leaf of T . It is not hard to see (Lemma 46 below) that the number of nodes in T that
the query explores is low. The main challenge is to show that the expected size of a leaf data set
in T is small, since for that one needs to prove strong upper bounds on the number of points at
various distances from the query in dataset that the query traverses on its path to a leaf in T . We
exploit two effects:

(Removal of points due to truncation) The Pseudorandomify procedure, which is crucial
to ensuring that spheres at nodes on T are pseudorandom, essentially acts as a trunction
primitive on the density curve. See conditions (2) in Definition 36 below.

(Removal of points due to LSH) As the query explores the children of an LSH node v ∈ T
the probability that a given point p ∈ v.P belongs to the same spherical cap as q depends on
the distance between p and q. This implies bounds on the evolution of the density of points
at various distances y from q in the datasets that q explores on its path towards a leaf in T .
See conditions (3) in Definition 36 below.

The bulk of our analysis is devoted to understanding the worst case sequence of geometric
configurations, i.e. spheres, that the query encounters on its path towards a leaf in T .

6.1 Path geometries

We start by defining the path geometries in the recursion tree. Assume an invocation of PrePro-
cess algorithm (Algorithm 3) and let T be the sub-tree that the query explores. Let

P := (w0, v0, w1, v1, . . . , wJ , vJ)

be any path from root to a LSH leaf at level J .
For any j ∈ [J ], suppose that given x′′ := vj .x and r := vi.r, we are interested in the distance

from the query to the center of the sphere (vj .o). For simplicity of notation let ˜̀= ||q−vj .o||. Recall
that x′′ is the rounded value for x′ = Project(x + ∆, ˜̀, r) (see lines 18 and 19 of Algorithm 6).
However, this equation is a degree two polynomial in ˜̀, so it has at most two solutions. For intuition,
Figure 9 shows these two solutions with an example. The solutions to the equation correspond to
the points that the dashed circle intersects with the dashed line, i.e., position of q. Now, recall
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that x′′ is the rounded x′ (see line 19 of Algorithm 6). So, x′ can change in a small interval. This
corresponds to moving the center of the dashed circle over the red arc. This changes the position
of intersections, however, they still belong to a relatively small interval (shown in blue in Figure 9),
we denote this intervals by left interval and right interval. Now, given query q, we check weather
it corresponds to the left interval or the right interval, and based on that we set bj to be 1 or 2,
respectively. We also let ` be the distance of the leftmost point in the interval of the query, from
the center of the sphere. And we call ` the distance induced by (x′′, r) and q. In appendix D we
formally argue this procedure.

o

x+ ∆

x′

Figure 9: Geometric illustration of equation x′ = Project(x+ ∆, ˜̀, r) when we have access to an
approximation of x′ (red arc).

Definition 32 (Path geometry and induced distances). For any query q and tree T (as described
above) for any root to leaf path

P = (w0, v0, w1, v1, . . . , wJ , vJ),

we call
G(P) := ((x′′1, r1, b1), . . . , (x′′J , rJ , bJ))

the geometry of path P where for all i ∈ [J ],

1. x′′i := vi.x,

2. ri := vi.r,

3. bi is as described above (formally defined in Appendix D).

Additionally, we call L(P) := (`1, . . . , `J) the induced distances of path P, where for all i ∈ [J ], `i
is induced by (x′′i , ri) as explained above and formally defined in Appendix D.

Definition 33 (Sphere geometries). For any query q and tree T (as described above) for any root
to leaf path

P = (w0, v0, w1, v1, . . . , wJ , vJ),

if the geometry of this path is defined as

G(P) := ((x′′1, r1, b1), . . . , (x′′J , rJ , bJ))

then for any j ∈ [J ] we say that wj and vj has geometry (x′′j , rj , bj).
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Recall from Definition 13 that the Pseudoranomify procedure (Algorithm 5) ensures that
most of the points on any pseudorandom sphere w are nearly orthogonal to q − w.o. We want to
know, how the fact that a sphere is pseudorandom translates to densities. For the first step, we
need to understand if a point on the sphere is almost orthogonal to the projection of the query on
the sphere, then what the range of possible distances of these points from the query is. We define
the c :=

√
`2 + r2 which simplifies the notation. As Figure 10 suggests, we expect the orthogonal

points to be at distance ≈ c. The following claim formally argues how pseudorandomness of a
sphere translates to a condition on the densities.

r

q̃ q′

c

` := ||q̃ − o||
o

Figure 10: Illustration of the definition of c, the distance from the query to a ‘typical’ point on the
sphere.

Claim 34 (Truncation claim). Given query q, let w be a pseudo random sphere with geometry
(x′′, r, b) which induces distance `. Let w.P be the set of points on this sphere, i.e., for any p ∈ w.P ,
p.new is on the sphere. For all y let By be the number of points at distance y from q in w.P . Then,
the following conditions hold. ∑

y≤c−rψ
By ≤

τ

1− 2τ ·
∑

y∈(c−rψ,c+rψ)
By,

and ∑
y≥c+rψ

By ≤
τ

1− 2τ ·
∑

y∈(c−rψ,c+rψ)
By,

where ψ = γ1/3 + δ′1/4 + δ1/4 (the same as in Claim 63) and c :=
√
`2 + r2.

Proof. The proof is just a simple application of Claim 63 to this sphere.

Suppose that one has two points on the sphere at some distance from each other, we can use
Lemma 8 and Lemma 9, to find collision probabilities under a spherical cap of size η. However, in
general the query is not on the sphere, so we need to translate distance from q to any point p to
distance from q′ (projection of q on the sphere) to p, using a function called Project (formally
defined in Definition 11 and its formula is given in Lemma 12). Also, there are some rounding
steps, such as rounding the points to the sphere and rounding of the distance from the query to the
center of the sphere (rounding of ˜̀ to `). Considering all these issues, the following claim illustrates
the effect of spherical LSH on the points based on their distance from the query.
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Claim 35 (Spherical LSH claim). Suppose that there is a sphere with geometry (x′′, r, b) and induced
distance ` (see Section 6.1 and Definition 32) for some x′′ ∈ W , r ∈

[⌈
Rmax
δ

⌉]
and b ∈ {1, 2}. Let

o be the center of the sphere. Also, let p be a point such that y = ||p − q|| and p.new is on the
sphere (see line 10 of Algorithm 5). Now, suppose that one generates a Gaussian vector g as in
Algorithm 4. Then, we have

Pr
g∼N(0,1)d

[
〈g, p.new − o
||p.new − o||

〉 ≥ η|〈g, q − o
||q − o||

〉 ≥ η
]
≤ expµ

(
−4(r/x′)2 − 1

4(r/y′)2 − 1 ·
1
T

)
.

where

• η is such that F (η)
G(x′′/r,η) =

(
1
µ

) 1
T (see line 16 of Algorithm 4).

• x′ := Project(x+ ∆, `, r).

• y′ := Project(y −∆/2, `, r).

Proof. Let o be the center of the sphere. Let ˜̀ := ||q − o||. Recall by the discussion in Section 6.1
and Definition 32 that any sphere geometry (x′′, r, b) induces a distance `. Now, suppose that we
move the query in the direction of the vector from o to q, such that for the new point q̃, we get
||q̃− o|| = `. Now, one should note that the geometry of the sphere with respect to q and q̃ is the
same. Also, the projections of q and q̃ on the sphere are identical. Also, for point p at distance y
from q, by the triangle inequality for (q, q̃,p), since ˜̀∈ [`− δ′1/3, `] we get

||p− q̃|| ∈ [y − δ′1/3, y + δ′1/3]. (28)

Now, if we let point q′ be the projection of q̃ on the sphere, and let p.new be the rounded p on
the sphere, then ||p.new − q̃|| ∈ [y − δ − δ′1/3, y + δ + δ′1/3], which implies

y′′ := ||q′ − p.new|| ∈ [Project(y − δ − δ′1/3, `, r),Project(y + δ + δ′1/3, `, r)].

Note that with this definition of y′′ one has

Pr
g∼N(0,1)d

[
〈g, p.new − o
||p.new − o|| 〉 ≥ η|〈g,

q − o
||q − o|| 〉 ≥ η

]
= G(y′′/r, η)

F (η) . (29)

Now, by invoking Claim 64, (b)

Pr
g∼N(0,1)d

[
〈g, p.new − o
||p.new − o|| 〉 ≥ η|〈g,

q − o
||q − o|| 〉 ≥ η

]
≤ expµ

(
−4(rj/x′)2 − 1

4(rj/y′)2 − 1 ·
1
T

)
(30)

Now, we verify the preconditions of Claim 64, (b). Condition (p1) of Claim 64 is satisfied by
setting of δ as δ + δ′1/3.13 Condition (p2) is satisfied by line 10 in Algorithm 4. Condition (p3) is
satisfied by setting of ∆ in line 25 of Algorithm 6. Finally, condition (p4) is satisfied due to line 15
in Algorithm 4 that ensures that a nontrivial data structure is only prepared for x′ ≤ R(

√
2 + γ),

and no recursion is performed otherwise.
Conditioned on event Ediam (which ensures constant upper-bound on the radii of spheres, see

the discussion in Section 5.1), r = O(1). Thus, we can invoke part (b) of Claim 64 applies and
gives (30).

13To be more clear, we set the δ of claim 64 as δ + δ′1/3 where δ and δ′ are the parameters of the algorithm.
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In the following definition we summarize the effect of sub-sampling the dataset, the truncation
rounds and the spherical LSH rounds on densities along the path.

Definition 36 (Valid execution path). Let R := (rj)Jj=1 and L := (`j)Jj=1 for some positive values
rj ’s and `j ’s such that for all j ∈ [J ], x+ δ ≥ |`j − rj |. Also let D be as defined in (25). Then, for

A := (ay,j), y ∈ D, j ∈ [J ] ∪ {0} (Intermediate densities)
B := (by,j), y ∈ D, j ∈ [J + 1] ∪ {0} (Truncated intermediate densities)

(L,R,A,B) is called a valid execution path, if the conditions below are satisfied. We define
ψ := γ1/3 + δ′1/4 + δ1/4 and cj :=

√
r2
j + `2j for convenience.

(1) Initial densities condition. The ay,0 and by,0 variables are upper-bounded by the initial
expected densities in the sampled dataset: for all y ∈ D

∑
y′∈[0,y]∩D

ay′,0 ≤ min
{

expµ

(
y2 − x2

2

)
, expµ

(
1− x2

2

)}

and ∑
y′∈[0,y]∩D

by′,0 ≤ min
{

expµ

(
y2 − x2

2

)
, expµ

(
1− x2

2

)}

(2) Truncation conditions (effect of PseudoRandomify). For any j ∈ [J ], for all y ∈ D \
[`j − rj , `j + rj ] one has by,j = 0 (density is zero outside of the range corresponding to the
j-th sphere on the path; condition (2a)), for all y ∈ D∩ [`j−rj , `j +rj ] one has by,j ≤ ay,j−1
(removing points arbitrarily (2b)) and∑

y∈[0,cj−ψrj ]∩D
by,j ≤

τ

1− 2τ ·
∑

y∈(cj−ψrj ,cj+ψrj)∩D
by,j (condition (2c))

(3) LSH conditions. For every j ∈ [J ] and all y ∈ [`j − rj , `j + rj ] ∩D

ay,j ≤ by,j · expµ

− 4
( rj
x′
)2 − 1

4
(
rj
y′

)2
− 1
· 1
T


where x′ := Project(x+∆, `j , rj) and y′ := Project(y−∆/2, `j , rj). See Remark 4 below
for a discussion about ∆ factors.

(4) Terminal density condition. For any y such that ay,J is defined, by,J+1 ≤ ay,J .

Remark 5. Throughout the paper we need good bounds on the probability that a random spherical
cap encompasses a data point p, given that the spherical cap captures the projection of the query.
The expression in condition (3) of Definition 36 is a convenient upper bound for this quantity when
the distance from p to q is equal to y. Exact expressions for such collision probabilities are unstable
with respect to perturbations of the point p when p is antipodal to q on the sphere, and because of
this it is more convenient to work with upper bounds. Specifically, we upper bound this probability
by imagining that the point is slightly closer (by ∆/2) than the actual distance y, for a small
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positive constant ∆ that affects our query time bounds. The advantage is that such probabilities
are more stable under small perturbations of the data point p – see the proof of Claim 64 for more
details. One notes that the expression in condition (3) also depends on x. This is because we select
spherical cap sizes based on x – see line 16 of Algorithm 4.

We introduce the notion of the length of an execution path (L,R,A,B).

Definition 37. We define the length of an execution path (L,R,A,B) by Length ((L,R,A,B)) :=
|R| = J .

A special class of execution paths that we refer to as zero-distance monotone paths will be
central to our analysis:

Definition 38. (Zero-distance and monotone path) Let (L,R,A,B) be an execution path defined
in Definition 36. If for R = (rj)Jj=1, rj ’s are non-increasing in j, and L = R, then we say that
(L,R,A,B) is a zero-distance and monotone execution path. When L = R, we usually drop L, and
simply write (R,A,B).

The following crucial lemma allows our LP based analysis of the query time:

Lemma 39. (Reduction to zero-distance monotone execution paths) For every valid execution path
(L,R,A,B) (see Definition 36), there exists a zero-distance and monotone valid execution path
(R′, A′, B′) (see Definition 38) such that b′y,J+1 = by,J+1 for all y ∈ D14 and |R′| = |R| (i.e., the
length of the paths are equal).

The proof of this lemma is given in Section 7.

6.1.1 Linear programming formulation

As we prove in Lemma 39, for any execution path there exists a zero-distance monotone path (see
Definition 38) with the same length and the same final densities. This means that if we prove
that for any zero-distance monotone path, the final densities are small, then this generalizes to all
possible execution paths. So, from now on we only consider zero-distance monotone paths.

As mentioned before, we analyze the evolution of density of points at various distances. In-
stead of analyzing continuous densities, we define a new notion, called discretized log-densities (see
Definition 41), for which we round densities to the discretized distances in a natural way, and for
simplicity of calculations we take the log of these densities. These two steps allow us to analyze
the evolution of densities over the course of time. More specifically, we define an LP (see (33))
such that any zero-distance monotone execution path with large enough final densities, imposes a
feasible solution to the LP, with cost (almost) equal to the length of the execution path divided
by T . Thus, if the length of the execution path is large, final densities cannot be too large (see
Section 8 and Claim 55 for the formal statement), which means that we managed to reduce the
densities to a small amount.

In section 8 we formally describe the procedure for constructing a feasible solution based on
discretized densities.

We start by defining a convenient discretization of the distances on a valid execution path:

Definition 40 (x-centered grid Zx). For every x ∈ (0, Rmax) define the grid Zx = {zI , zI−1, . . . , z0}
by letting zI = x, letting zI−i := (1 + δz)i · zI for all i ∈ [I] and choosing the smallest integer I
such that z0 ≥ Rmax

√
2.

14We need the final condition to argue that we have the same number of points remaining at the end.
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Definition 41 (Discretized log-densities fzi,j). For any zero-distance monotone valid execution
path (R,A,B) (as per Definition 36) with radii bounded by Rmax and J = |R|, for all j ∈ [J ] let
kj be the index of the largest grid element which is not bigger than rj · (

√
2 + ψ), i.e.,

rj · (
√

2 + ψ) ∈ [zkj , zkj−1) (31)

and for every integer i ∈ {kj , . . . , I} define

fzi,j := log1/µ

 ∑
y∈D∩[zi+1,zi−1)

by,j

 (32)

Note that the variables by,j on the right hand side of (32) are the by,j variables of the execution
path (R,A,B).

Letting Z := Zx to simplify notation, we will consider I linear programs defined below in (33),
enumerating over all j∗ ∈ [I], where we let x′ = x+ ∆:

LP(x, j∗) : max
α≥0

j∗−1∑
j=1

αj (33)

∀y ∈ Z : gy,1 ≤ min
{
y2 − x2

2 , 1− x2

2

}
Density constraints

for all j < j∗, y ∈ Z, y < zj :
gy,j ≤ gzj ,j Truncation

gy,j+1 ≤ gy,j −
2 (zj/x)2 − 1
2 (zj/y)2 − 1

· αj Spherical LSH

gzj∗ ,j∗ ≥ 0 Non-empty range constraint

Intuitively, LP (33) captures the evolution of the density of points at different distances from
the query throughout the hashing process. Our main technical claim connecting the LP (33) and
execution paths in the query process is Claim 55 in Section 8.

6.2 Upper-bounding the expected number of points examined by the query

In this section we bound the expected number of points that the query examines in the query
procedure. Let T be the tree that the query traverses. Note that the query only examines the
points that it sees in the leaves that it visits. One should note that some leaves (which are LSH
nodes for this case) in the tree have level J (see line 27 of Algorithm 4). However, they are other
leaves in tree T , due to two cases:

1. Path termination due to x′′ > R(
√

2 + γ). This case happens when query q is such that it
needs to recover points at distance x′′ on the sphere, but this distance corresponds to points
beyond orthogonal. Note that in the preprocessing phase we did not prepare any child with
this x′′ (see line 15 in Algorithm 4), so the query will stop at this node and scan the points
(see line 22 of Algorithm 6). Roughly speaking, since we only expect O(1) number of points
at distance x, and since the number of points on the sphere is dominated by the number of
points in the orthogonal band, then we expect to see small number of points on this sphere.
We formally prove this in Claim 42.
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2. Path termination due to small sphere radius. This simple case corresponds to the cases
when Pseudorandomify does not process a ball further due to line 8 of Algorithm 5 or
SphericalLSH does not partition the dataset further due to line 9 of Algorithm 4. Note
that in that case the entire ball is necessarily at distance at most x + 2Rmin, and hence the
total number of points in the ball is small. We formally argue and prove this in Claim 42.

Claim 42. For any tree T that the query q explores, the expected total number of points in the
leaves with level less than J is bounded by ( 1

µ

)α+α∗+c
,

for c = 10−4.

Proof. We investigate the two cases mentioned above separately:

Path termination due to x′′ > R(
√

2 + γ). First, suppose that the exploration process ter-
minates at node u ∈ T because of line 15 in Algorithm 4 . In that case one has by invoking
Claim 14 for two diametral points on the sphere, since the current dataset u.P is pseudorandom as
per Definition 13 and τ = 1/10,∣∣∣{p ∈ u.P : ||p− q′|| ∈

(
R(
√

2− γ), R(
√

2 + γ)
)}∣∣∣ = Ω (|u.P |) .

Note that the expected number of points at distance at most R(
√

2 + γ) from the query is upper-
bounded by the expected number of points at distance at most x+ ∆ + δ′, since x′′ > R(

√
2 + γ)

and by rounding of x′ to x′′ (see line 19 in Algorithm 6). So, after sub-sampling the data set and
using the density constraints, we have at most

1
n
·
( 1
µ

)1−x2/2
· 4n · µ1− (x+∆+δ′)2

2 = 4 expµ

(
(x+ ∆ + δ′)2

2 − x2

2

)

≤ 4 expµ

(
(x+ 2∆)2

2 − x2

2

)

≤ 4 expµ
(1

2 · (4∆x+ 4∆2)
)

≤ expµ (5∆) Since x ≤
√

2 and ∆ = 10−20

points.

Path termination due to small sphere radius. As we discussed above for this case, the entire
ball is necessarily at distance at most x+ 2Rmin, since this sphere passed the condition in line 20
of Algorithm 6, and hence on expectation the total number of points in this ball is bounded by

1
n
·
( 1
µ

)1−x2/2
· n · µ1−(x+2Rmin)2/2 ≤ expµ (4Rmin)

where the last line is by our choice of parameters, and since x ≤
√

2.
Also, by Lemma 46 we know that the query explores at most

(
1
µ

)α∗+α+o(1)
leaves. Now, by

setting of parameters, the claim holds.
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Lemma 43. Under Assumption 1, there exists an event E that depends on the choice of the hash
function in PreProcess only and occurs with probability at least 1−(1/µ)−4 such that conditioned
on E, the following holds. The query examines at most( 1

µ

)0.173
(34)

number of points in expectation.

Proof. First, we just calculate the expected size of the data set examined by the query in invocations
of Query (Algorithm 6), and then we bound the expected total number of points of Query-KDE
(Algorithm 10). Note that the goal is to prove an upper-bound on the expected number of points
that the query examines.

Consider an invocation PreProcess and let T be the sub-tree of the recursion tree that the
query explores. Now, we define processes on this tree that output a subset of leaves of this tree.
Suppose that

H = W ×
[⌈
Rmax
δ

⌉]
× {1, 2}

And let J be the maximum number of times that we applied spherical LSH. Let q be the query.
Let M := |HJ | and enumerate elements in HJ . For any leaf in T if one looks at the path to the
root from this leaf, this corresponds to one element in HJ (See the discussion in Section 6.1 and
Definition 32). For i’th element of HJ , hi = (hi(j))Jj=1, the procedure Pi(T ) outputs set Ei, which
is the set of output(s) of Sample(T , hi, 0).15 Note that Algorithm 7 outputs a set of leaves in the
tree.

Algorithm 7
1: procedure Sample(T , hi, k)
2: v ← a uniformly random child of the root of T which is consistent with hi(k).
3: if k = J then
4: Return v
5: for all w in the set of the childern of v do
6: if w is consistant with hi(k) then
7: T ′ ← the sub-tree of tree where the root is w.
8: Sample(T ′, h, k + 1).

Also, for any pseudo-random node on the tree that the query visits, since µ = n−Ω(1) by
assumption, using a simple Chernoff bound argument, we have that it explores at most

m := O(1)
( 1
µ

) 1
T

children of this node, with high probability.
Let V be the set of leaves in T , with level J . Partition V into V1, . . . , VM , such that for all

i ∈ [M ], the leaves in Vi admit the geometry defined by hi.

Claim 44. For any u ∈ Ui we have the following

Pr[u ∈ Ei|T ] ≥
( 1
m

)J  1
100

(
1
µ

)α
 .

15Also, for the purpose of consistency define hi(0) = (0, 0, 0) and let hi ← (hi(j))Jj=0 and assume that every
Andoni-Indyk LSH bucket is consistent with hi(0).
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Proof. There is exactly one path from root to u. So, u ∈ Ei if in all choices in line 2 of Algorithm 7,
the algorithm chooses the correct child. This happens with probability at least

(
1
m

)J ( 1
100
(

1
µ

)α).
To be more clear, with probability

(
1

100
(

1
µ

)α) the correct child of the root is chosen, and the other
term correspond to the success probability in J steps.

Now, we have the following:

∑
i∈[M ]

E

∑
v∈Ei
|v.P | |T

 =
∑
i∈[M ]

E

∑
u∈Vi

I{u ∈ Ei}|u.P | |T


=
∑
i∈[M ]

∑
u∈Vi

Pr[u ∈ Ei|T ] · |u.P |

≥
( 1
m

)J ∑
i∈[M ]

∑
u∈Vi
|u.P |

=
( 1
m

)J ∑
u∈V
|u.P | (35)

where expectations are over the random choices of line 2 of Algorithm 7.
Let V ′ be the leaves with level 6= J . Note that

∑
u∈V |u.P |+

∑
u∈V ′ |u.P | is equal to the number

of points that the query examines in the leaves of T . Note that Claim 42 proves that

ET

∑
u∈V ′

|u.P |

 ≤ ( 1
µ

)α+α∗+0.0001
(36)

Now, we need to take expectation over the tree T . From now on, the goal is to prove an upper-bound
on

ET

E
∑
v∈Ei
|v.P | |T


where the outer expectation is over the randomness of trees, and the inner expectation is over the
randomness of choices in line 2 of Algorithm 7.

For any T , define W (0,T ), as the root of T . For all j ∈ [J ] ∪ {0} let V (j,T ) be the nodes in
the tree selected by line 2 of Algorithm 7, when k = j. Also, for all j ∈ [J ] let W (j,T ) be the
children of V (j−1,T ) which are consistent with hi(j), .i.e., nodes satisfying the condition in line 6 of
Algorithm 7 when k = j. We drop superscripts for the tree, when it is clear from the context.

For all j ∈ [J ] ∪ {0}, Ay,j denote the number of points at distance y for all y ≥ x+ 1.5∆ from
the query in ∪u∈V (j)u.P . And similarly, for all j ∈ [J ] ∪ {0} define By,j as the number of points at
distance y from the query in ∪u∈W (j)u.P .

Also, let L = (`j)Jj=1 be the distances induced by the geometry hi. Now, define x′j := Project(x+
∆, `j , rj) and y′j = Project(y −∆/2, `j , rj). Now, Claim 35 implies that for all j ∈ [J ]

E [Ay,j |By,j , T<j ] ≤ py,j ·By,j , (37)

where the expectation is over the randomness of the tree and the random choice of line 2 of
Algorithm 7, and

py,j := expµ

(
−

4(rj/x′j)2 − 1
4(rj/y′j)2 − 1 ·

1
T

)
. (38)
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On the other hand, since By,j variables correspond to pseudo-random spheres, using Claim 34 they
should satisfy the following: ∑

y≤cj−ψRj

By,j ≤
τ

1− 2τ ·
∑

y∈(cj−ψRj ,cj+ψRj)
By,j , (39)

and ∑
y≥cj+ψRj

By,j ≤
τ

1− 2τ ·
∑

y∈(cj−ψRj ,cj+ψRj)
By,j . (40)

Also, since ∪u∈V (j)u.P ⊆ ∪u∈W (j)u.P , then By,j ≤ Ay,j−1. At this point, define Now, for all j ∈ [J ]
define

B̃y,j := E [By,j ]

and

Ãy,j := B̃y,j · py,j (41)

and define

B̃y,J+1 := Ãy,J . (42)

Therefore, if A := (Ãy,j)Jj=1 and B := (B̃y,j)J+1
j=1 and L is the ordered set of distances induced by the

path geometry hi (see Section 6.1 and Definition 32) and R is the set of radii of the spheres, then
we can argue that (L,R,A,B) is a valid execution path by Definition 36. Checking the conditions
of Definition 36:

• Initial conditions: They are satisfied by the expectation of sub-sampling (see (27)), i.e.,

∑
y′∈[0,y]∪D

Ãy′,0 ≤ min
{

expµ

(
y2 − x2

2

)
, expµ

(
1− x2

2

)}

and ∑
y′∈[0,y]∪D

B̃y′,0 ≤ min
{

expµ

(
y2 − x2

2

)
, expµ

(
1− x2

2

)}
.

• Truncation conditions: (2a) is satisfied since if a point is on the sphere, its distance to the
query can be in interval [x+ 1.5∆, `j + rj ] which is a sub-interval of [`j − rj , `j + rj ], by the
definition of induced distances and setting of parameters. (2b) holds, since the number of
points in each distance is non-increasing from root to leaf. (2c) is satisfied by (39).

• LSH conditions: They are satisfied by (41) and the definition of py,j in (38).

• Terminal density condition: It holds by (42).

we conclude that (L,R,A,B) is a valid execution path.
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Now by Lemma 39 there exists a zero distance monotone execution path (R′, A′, B′) such that
A′ = (a′y,j), B′ = (b′y,j) and b′y,J+1 = B̃y,J+1. Let fy,j ’s be defined based on b′y,j ’s using Definition 41.
More specifically, for every integer i ∈ {kj , . . . , I} (see Definition 41 for the definition of kj) define

fzi,j := log1/µ

 ∑
y∈D∩[zi+1,zi−1)

b′y,j

 (43)

Now, by Claim 55 and our setting of J (see Section 5.2), which ensures that J > T
1−10−4OPT(LP),

for all y ≤ zj∗−1 we have fy,J+1 < 7δz for j∗ = kJ + 1. Now, we need to prove that this implies
that

∑
y Ãy,J is small:

Claim 45. If for all y ≤ zj∗−1 we have fy,J+1 < 7δz for j∗ = kJ + 1, then we have the following
bound ∑

y

Ãy,J ≤ expµ (7δz + o(1)) .

The proof is deferred to Appendix E.
We just proved that for any fixed i ∈ [M ],

∑
y Ãy,J (which bounds the expected number of

points at distance ≥ x + 1.5∆ (see (25)) that the query examines in buckets with geometry hi) is
bounded by expµ (7δz + o(1)). Moreover, recall that in this process we only considered points at
distance ≥ x + 1.5∆. We should also add the contribution of points at distance < x + 1.5∆. For
this, just recall that after sub-sampling (even without considering any LSH effect on these points)
in expectation we have

4
( 1
µ

) (x+1.5∆)2−x2
2

≤
( 1
µ

)10∆
. (44)

Now, in order to argue that the expected number of points examined by the query is bounded, we
need to multiply by M , which results in the following bound

M ·
(
expµ (7δz + o(1)) + expµ (10∆)

)
(45)

which by the setting of parameters, combining with (35) and summing with (36), and considering
the we call Query (Algorithm 6) at most

(
1
µ

)4δx+o(1)
, gives the following bound on the expected

number of points scanned by the query ( 1
µ

)0.173
.

6.3 Proof of Lemma 31

Before we present the proof of Lemma 31, we need to show another auxiliary claim that helps us
establish an upper bound on the expected number of leaves that a query explores, which helps
upper bound the work done to reach a leaf (recall that Lemma 43 shows that the expected size of
the dataset corresponding to a leaves of T that the query scans is bounded, so combining these two
bounds will give us the final result).
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Lemma 46. For every q ∈ Rd, every x > 0, every µ ∈ (0, 1) under Assumption 1, if T is the tree
generated by PreProcess(P, x, µ), then the expected number of leaves explored by a query q in a
call to Query(q, x, T ) (Algorithm 6) is bounded by expµ(α∗ + α+ o(1)).

The proof is given in Appendix E. We will also need the following technical claim, which we
also prove in Appendix E.

Claim 47. For every R ≥ Rmin, for every x′ ∈ (∆, R(
√

2 + γ)) and sufficiently large η we have

that 1
G(x′/R,η) =

(
F (η)

G(x′/R,η)

)O(1/∆2)
.

Proof of Lemma 31: By Lemma 46 the expected number of leaves that the query explores is
bounded by ( 1

µ

)α∗+α+o(1)
(46)

The expected size of the dataset that the query scans is bounded by
(

1
µ

)0.173
with high probability

by Lemma 43. Now by an application of Markov’s inequality to (46) we have that the query
explores at most

(
1
µ

)0.173+o(1)
leaves with high probability, and hence the total work is bounded

by ( 1
µ)0.173 · no(1), as required. Finally, we bound the work done in line 18 of Algorithm 4. Indeed,

recall that x′ < R(
√

2 + γ) by line 15 of Algorithm 4, and at the same time by Claim 47 we have

1
G(x′/R, η) =

(
F (η)

G(x′/R, η)

)O(1/∆2)
.

Equipped with this observation, we can now finish the proof. We get using the choice of T in line 16
of Algorithm 4

100
G(x′/R, η) = 100 ·

(
F (η)

G(x′/R, η)

)O(1/∆2)
= 100 · (1/µ)O(1/(∆2·T )) = no(1)

by choice of ∆ = Ω(1) and T =
√

logn in line 3 of Algorithm 4. This completes the proof.

7 Reduction to zero-distance monotone execution paths
In this section, we prove Lemma 39, which proves that for any valid execution path, there exists a
zero-distance valid execution path such that the final densities are identical and both have the same
length. First, we state the following claims, and then assuming these claims, we prove Lemma 39.
Then, we present the proof of these claims.

Claim 48 (Reduction to zero distance paths). For any L, R, A and B such that (L,R,A,B) is a
valid execution path (see Definition 36), there exists R′ and A′ such that (R′, R′, A′, B) is a valid
execution path for some A′.

Claim 49 (Local improvement towards monotonicity). For every valid zero-distance execution path
(R,A,B), if for some i ∈ [J − 1] one has ri ≤ ri+1, then for R′ := (r1, . . . , ri−1, ri+1, ri+1, . . . , rJ),
there exist A′, B′ such that the path (R′, A′, B′) is a valid execution path and b′y,J+1 = by,J+1 for all
y ∈ D (see (25) for the definition of D).
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Now, assuming the correctness of Claim 48 and Claim 49 we present the proof of Lemma 39.
Proof of Lemma 39: First, using Claim 48, we find a zero-distance valid execution path
(L′′, R′′, A′′, B). Now, we repeat the procedure described in Claim 49 on (L′′, R′′, A′′, B), until
it becomes a zero-distance monotone execution path, (R′, A′, B′), which satisfies the conditions of
the lemma.

Now we present the proof of Claim 48 and Claim 49.
Proof of Claim 48: Let (`j)Jj=1 = L and (rj)Jj=1 = R. Then ∀j ∈ [J ] we define: 16

r′j :=

√
`2j + r2

j

2 (47)

`′j :=

√
`2j + r2

j

2 (48)

and we let R′ := (`′j)Jj=1 = (r′j)Jj=1. The same as Definition 36 for all j ∈ [J ], we define

c′j :=
√

(`′j)2 + (r′j)2 =
√

2 · r′j

which translates to c′j = cj . First, we need to show that

[0, `j + rj ] ⊆ [0, `′j + r′j ].

Note that

(`′j + r′j)2 − (`j + rj)2 = 2c2
j − c2

j − 2`jrj ≥ 0

where the last inequality is due to cj =
√
r2
j + `2j . One can see that since we can set a′y,0 = ay,0 for

all y ∈ D, it suffices to show that for all j ∈ [J ], x ∈ [|`j−rj |− δ, `j +rj ] (see line 20 of Algorithm 6
and Definition 36) and y ∈ [`j − rj , `j + rj ] such that y −∆/2 ≥ x+ ∆:

4
(

rj
Proj(x+∆,`j ,rj)

)2
− 1

4
(

rj
Proj(y−∆/2,`j ,rj)

)2
− 1
≥

4(r′j/(x+ ∆))2 − 1
4(r′j/(y −∆/2))2 − 1 (49)

We drop the indices j for ease of notation, and let α := x+ ∆ and β := y −∆/2. Note that using
the formula for Project (see Lemma 12) have

4
(

r
Project(α,`,r)

)2
− 1

4
(

r
Project(β,`,r)

)2
− 1
· 4(r′/β)2 − 1

4(r′/α)2 − 1

=
4
(

r2
r
`
(α2−(`−r)2)

)
− 1

4
(

r2
r
`
(β2−(`−r)2)

)
− 1
·

4r′2−β2

β2

4r′2−α2

α2

= (`+ r)2 − α2

α2 − (`− r)2 ·
β2 − (`− r)2

(`+ r)2 − β2 ·
α2

β2 ·
4r′2 − β2

4r′2 − α2

16We define `′j ’s for the convenience of the reader, otherwise it is clear that `′j = r′j .
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where in the second transition above we used the fact that

4 r2

r
` (α2 − (`− r)2) − 1 = 4r2`2 −

(
α2 − (`− r)2)

α2 − (`− r)2 = (`+ r)2 − α2

α2 − (`− r)2

and
4 r2

r
` (β2 − (`− r)2) − 1 = 4r`− (β2 − (`− r)2)

β2 − (`− r)2 = (`+ r)2 − β2

β2 − (`− r)2 .

Now, by re-ordering the factors, and the fact that 4r′2 = 2(`2 + r2) by (47)

(`+ r)2 − α2

α2 − (`− r)2 ·
β2 − (`− r)2

(`+ r)2 − β2 ·
α2

β2 ·
4r′2 − β2

4r′2 − α2

=
(

2(`2 + r2)− β2

(r + `)2 − β2 ·
(r + `)2 − α2

2(`2 + r2)− α2

)
·
(

α2

α2 − (r − `)2 ·
β2 − (r − `)2

β2

)

We bound the two terms above separately. For the first term we have

2(`2 + r2)− β2

(r + `)2 − β2 ·
(r + `)2 − α2

2(`2 + r2)− α2 = 2(`2 + r2)− β2

(2(r2 + `2)− β2)− (`− r)2 ·
(
2(r2 + `2)− α2)− (`− r)2

2(`2 + r2)− α2 ≥ 1

where the inequality follow since for any 0 < d < a ≤ b one has a
a−d

b−d
b ≥ 1. Set a = 2(r2 +`2)−β2,

b = 2(r2 + `2) − α2 and d = (` − r)2. Note that, a ≤ b since x + ∆ ≤ y − ∆/2, and d < a since
y −∆/2 < `j + rj .

Now, we bound the second term(
α2

α2 − (r − `)2 ·
β2 − (r − `)2

β2

)
≥ 1

again by the same argument as above, by setting d = (r − `)2, a = α2 and b = β2. Again, a ≤ b
since x+ ∆ ≤ y−∆/2, and d < a since x+ ∆ > |r− `| (since ∆ > δ by the setting of parameters).

Now, combining these two facts (49) holds.

Remark 6. One should note that in some cases, the radius of a sphere may decrease when convert-
ing it to a zero distance sphere and it means that the size of the band corresponding to orthogonal
bands may decrease and this may cause the sphere not being pseudo-random anymore. However,
one should note that in our algorithm the radius of the sphere is always Θ(1), meaning that the
radius may change by a constant multiplicative factor, so one can re-scale the size of the orthogonal
band in the definition (Definition 36) to cover the previously covered distances.

Proof of Claim 49: First note that for r′ ≥ r, we have

4
(

r
x+∆

)2
− 1

4
(

r
y−∆/2

)2
− 1
≥

4
(

r′

x+∆

)2
− 1

4
(

r′

y−∆/2

)2
− 1

, (50)

since f(c) = 4( r
x+∆)2−1

4
(

r
y−∆/2

)2
−1

is a decreasing function in r, assuming y −∆/2 > x+ ∆. For the rest of

the proof, let x′ := x+ ∆ and y′ := y −∆/2.
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Defining A′ and B′. We now construct the sequence of intermediate densities A′ that satisfies
the conditions in Definition 36 by modifying the original sequence A on position j (the position
where non-monotonicity occurs in the original sequence). Let a′y,i := ay,i and b′y,i := by,i for all
y ∈ D and i ∈ ([J ] ∪ {0}) \ {j}. Also, let b′y,J+1 := by,J+1 for all y ∈ D. Now, let

∀y ∈ D : a′y,j := by,j+1 (51)

and also set

b′y,j := a′y,j · expµ

(
4(rj+1/x

′)2 − 1
4(rj+1/y′)2 − 1 ·

1
T

)
= by,j+1 · expµ

(
4(rj+1/x

′)2 − 1
4(rj+1/y′)2 − 1 ·

1
T

)
(52)

since r′j = rj+1.
We now prove that our choice of A′ and B′ above satisfies the conditions of Definition 36, i.e.

yields a valid execution path. Initial density condition (condition (1)) and the terminal density
condition (condition (4)) are satisfied since they were satisfied by the original execution path
(R,A,B), and we did not modify the path on the first and last coordinates. The LSH condition
(condition (3)) is also satisfied by (52) and tha fact that the original execution path satisfied it.
We now verify condition (2). Condition (2a) follows since rj+1 > rj .

Verifying condition (2b). One has, using the assumption that (L,R,A,B) is a valid execution
path,

b′y,j = by,j+1 · expµ

(
4(rj+1/x

′)2 − 1
4(rj+1/y′)2 − 1 ·

1
T

)
(by (52))

≤ ay,j · expµ

(
4(rj+1/x

′)2 − 1
4(rj+1/y′)2 − 1 ·

1
T

)
(property (2b) for (R,A,B))

≤ by,j expµ

(
−4(rj/x′)2 − 1

4(rj/y′)2 − 1 ·
1
T

)
· expµ

(
4(rj+1/x

′)2 − 1
4(rj+1/y′)2 − 1 ·

1
T

)
(property (3) for (R,A,B))

≤ by,j (by (50) together with rj < rj+1)
≤ ay,j−1 (property (2b) for (R,A,B))

Verifying condition (2c). We need to prove∑
y∈[0,rj+1(

√
2−ψ)]∩D

b′y,j ≤
τ

1− 2τ ·
∑

y∈(rj+1(
√

2−ψ),rj+1(
√

2+ψ))∩D

b′y,j (53)

Note that by property (2c) we have∑
y∈[0,rj+1(

√
2−ψ)]∩D

by,j+1 ≤
τ

1− 2τ ·
∑

y∈(rj+1(
√

2−ψ),rj+1(
√

2+ψ))∩D

by,j+1 (54)

Also, recall that by (52) we have

b′y,j = by,j+1 · expµ

(
4(rj+1/x

′)2 − 1
4(rj+1/y′)2 − 1 ·

1
T

)

Now, combing the fact that expµ
(

4(rj+1/x′)2−1
4(rj+1/y′)2−1 ·

1
T

)
is increasing in y′ with (54), proves (53).

We have thus shown that (R′, A′, B′) is a valid execution path. Note that b′y,J+1 = by,J+1 for
all y ∈ D by definition of b′, as required.

58



8 Feasible LP solutions based on valid execution paths
First, we state the main result of this section informally below. We refer the reader to Claim 55
for the formal version of this claim.

Claim 50. (Informal) If the length of a valid execution path is large enough, then the terminal
densities must be small.

We prove this claim, by arguing that if the terminal densities are not small then there exists a
feasible solution to the LP. However, the feasible solution that we construct, has a cost larger than
the optimal solution of the LP, which is a contradiction. This implies that we cannot have large
terminal densities.

We use Definition 40, Definition 41 and the corresponding notations in the rest of this section.
At this point, one should recall that the definition of valid execution paths (Definition 36) is over
the continuous densities. Now, we need to present a similar notion for discretized log-densities.

Claim 51 (Discretized execution path). If the fzi,j variables are defined as per (32) (based on a
zero distance monotone execution path (R,A,B), with J = |R|) then

(1) Initial densities: For any integer i: fzi,1 ≤ min
{
·z2
i−x

2

2 + 3δz, 1− x2

2

}
.

(2) Truncation: for any j ∈ [J ] and i ∈ {kj + 1, . . . , I} one has fzi,j ≤ fzkj ,j + log1/µ
2−2τ
1−2τ .

(3) Locality Sensitive Hashing: for any j ∈ [J ] and any integer i ∈ {kj , . . . , I} one has fzi,j+1 ≤

fzi,j −
2(zkj /x)2−1
2(zkj /zi)

2−1 ·
1
T · (1− 10−4).

Proof. For the purposes of the proof it is convenient to introduce an auxiliary definition. For every
j ∈ [J ] and every integer i ∈ {kj , . . . , I} define

ãzi,j :=
∑

y∈Dx∩[zi+1,zi−1)
ay,j . (55)

and

b̃zi,j :=
∑

y∈Dx∩[zi+1,zi−1)
by,j . (56)

Note that with these definitions in place (32) is equivalent to

fzi,j := log1/µ b̃zi,j . (57)

We also let D := Dx, omitting the dependence on x, to simplify notation. We now prove the
properties one by one.

(1) Initial densities condition: First, note that by the initial densities condition for the
execution path (R,A,B) together with the truncation conditions (Definition 36) one has

∑
y′∈[0,y]∩D

by′,1 ≤ min
{

expµ

(
y2 − x2

2

)
, expµ

(
1− x2

2

)}
.
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Combining this with (56), we get

b̃zi,1 =
∑

y∈D∩(zi+1,zi−1)
by,1 ≤

∑
y∈[0,zi−1]∩D

by,1

≤ min
{

expµ

(
z2
i−1 − x2

2

)
, expµ

(
1− x2

2

)}

= min
{

expµ

(
(1 + δz)2 · z2

i − x2

2

)
, expµ

(
1− x2

2

)}

≤ min
{

expµ

(
·z2
i − x2

2 + 3δz

)
, expµ

(
1− x2

2

)}
,

where we used the definition of the grid Z, the fact that µ = o(1) and that for zi ≥
√

2 the second
term is the minimum term.

(2) Truncation conditions (effect of PseudoRandomify): We have, using (56),

I∑
i=kj+1

b̃zi,j ≤ 2
∑

y∈D∩(0,zkj+1)
by,j +

∑
y∈D∩(zkj+1,zkj )

by,j

≤ 2
∑

y∈D∩(0,zkj )
by,j (58)

≤ 2
∑

y∈D∩(0,rj(
√

2+ψ))

by,j .

The last transition uses the fact that by definition of kj (see (31)) we have rj ·(
√

2+ψ) ∈ [zkj , zkj−1),
and in particular, rj · (

√
2 + ψ) ≥ zkj .

We now note that since 10ψ ≤ δz = 10−6 by assumption of the claim and zkj+1 = (1 + δz)−1zkj ,
we further have

(rj(
√

2− ψ), rj(
√

2 + ψ)) ⊂ [zkj+1, zkj−1)

which implies ∑
y∈D∩(rj(

√
2−ψ),rj(

√
2+ψ))

by,j ≤ b̃zkj ,j . (59)

At the same time, since (R,A,B) was a valid execution path, then by property (2c) in Definition 36,
we have ∑

y∈D∩(0,rj(
√

2+ψ))

by,j ≤
(

1 + τ

1− 2τ

) ∑
y∈D∩(rj(

√
2−ψ),rj(

√
2+ψ))

by,j

= 1− τ
1− 2τ

∑
y∈D∩(rj(

√
2−ψ),rj(

√
2+ψ))

by,j .

Substituting the bound above into (58) and using (59) yields

I∑
i=kj+1

b̃zi,j ≤
2− 2τ
1− 2τ · b̃zkj ,j ,
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establishing the claim.
(3) LSH conditions: For all j ∈ [J ] let cj :=

√
2rj . One can think of cj as the distance from a

query on the surface of the the j-th sphere in the execution path to a ‘typical’ point on the sphere.
Note that (31) defines a rounding of cj ’s points on the grid D. Specifically, cj is rounded to zkj ’s.

Claim 52. Let x′ := x + ∆ and let y ∈ (zi+1, zi−1], if y′ = y −∆/2, and i ∈ {kj , . . . , I} then we
have the following claim.

−
4
( rj
x′
)2 − 1

4
(
rj
y′

)2
− 1
≤ −

2
( zkj
x

)2
− 1

2
( zkj
zi

)2
− 1

(1− 10−4)

We prove this claim in Appendix F.
By property (3) in Definition 36, one has

ay,j ≤ by,j · expµ

(
−2(cj/x′)2 − 1

2(cj/y′)2 − 1 ·
1
T

)
. (60)

Thus, for all i ∈ {kj , . . . , I} we have

b̃zi,j+1 =
∑

y∈D∩(zi+1,zi−1)
by,j+1 By (56)

≤
∑

y∈D∩(zi+1,zi−1)
ay,j Property (2b) for (R,A,B)

≤
∑

y∈D∩(zi+1,zi−1)
by,j · expµ

(
−2(cj/x′)2 − 1

2(cj/y′)2 − 1 ·
1
T

)
By (60)

≤ b̃zi,j · expµ

(
−

2(zkj/x)2 − 1
2(zkj/zi)2 − 1 ·

1
T
· (1− 10−4)

)
By (56) and Claim 52

This completes the proof of (3).

8.1 Construction of a feasible solution

In this section, we construct a feasible solution to the LP, i.e., gy,j ’s and αj ’s, based on the execution
path that we are considering. Later, we show the relation between the cost of this solution and the
length of the execution path.

First, letting J = |R|, recall that R = (rj)Jj=1. Then, for all s ∈ [J ] define cs :=
√

2 · rs and let
c0 = +∞ for convenience. Let T̃ be such that

1
T
· (1− 10−4) = 1

T̃
. (61)

Let x′ = x+ ∆. We classify steps s = 1, . . . , J into three types:

• We say that a step s is stationary if cs = cs−1 (this corresponds to the algorithm performing
multiple rounds of hashing on the same sphere).

• Otherwise we call step s minor, if cs
cs−1
≥ 1− 1√

T
,

• and call step s major, otherwise.
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Let R = Rstat ∪ Rm ∪ RM denote the partition of R into stationary, minor and major steps. Let
j1, . . . , j|Rm∪RM | be such that zj1 > zj2 > . . . > zj|Rm∪RM | are exactly the cs values corresponding
to non-stationary steps, in decreasing order.

Note that by Lemma 28 and parameter settings in the algorithm, c1 ≤ Rmax
√

2 = O(1). Since
the grid D (see (25)) contains only elements at least as large as x+1.5∆, and if we let x to be lower
bounded by an absolute constant we have |RM | = O(

√
T ). The reason is that by the definition

above, for any major step s, we have

cs
cs−1

< 1− 1√
T
.

We define the feasible solution gy,j ’s and αj ’s to LP(x, j∗) as defined in (33) without the non-
empty range constraint. We construct feasible gy,j and αj by induction on j = 1, . . . , j∗. It
will be important that the constructed solutions for gy,j ’s are non-decreasing in y for y ∈ [0, zj ] for
every j = 1, . . . , j∗.

For the rest of the section, whenever we are working with discrete functions and it is clear from
the context, we drop the condition y ∈ Zx.

On the other hand, it is more convenient to work with the following formulation of the LP
constraints, since we construct the solution in an inductive way.

∀y : gy,1 ≤ min
{
y2 − x2

2 , 1− x2

2

}
for all j < j∗, y < zj :

gy,j+1 ≤ min
{
gy,j −

2 (zj/x)2 − 1
2 (zj/y)2 − 1

· αj , gzj+1,j −
2 (zj/x)2 − 1

2(zj/zj+1)2 − 1 · αj

}

Base: For all j ∈ [j1] such that y ≤ zj , we set

gy,j := min
{
y2 − x2

2 , 1− x2

2

}
. (62)

We let αj := 0 for all j ∈ [j1 − 1] so that spherical LSH constraints of the LP in (33) are
satisfied for j ∈ [j1 − 1]. That is, we don’t have any progress using spherical LSH, since αj = 0 for
all j ∈ [j1 − 1]. The truncation constraints of the LP in (33) are satisfied since the rhs of (62) is
non-decreasing in y.
Inductive step ji → ji + 1, . . . , ji+1: We let a := ji and b := ji+1 to simplify notation. Let s be
the first step on sphere za, i.e., cs = za and cs−1 6= za. Also, let N be the number of steps that we
stay on sphere za, i.e.,

cs = cs+1 = . . . = cs+N−1 = za and cs+N 6= za.

Note that steps s+ 1, . . . , s+N − 1 are stationary as per our definitions.
It is convenient to define a sequence of auxiliary variables in order to handle the sequence of

N − 1 stationary steps (note that N − 1 could be zero).
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Upper bounds h(q)
y , q = 0, . . . , N, on density after (possible) stationary steps:

For all y ≤ za : (Starting density)
h(0)
y := gy,a (63)

For all q ∈ [N − 1], y ≤ za : (Stationary steps)

h(q)
y := min

{
h(q−1)
y − 2(za/x)2 − 1

2(za/y)2 − 1
1
T̃
, h(q−1)

za − 2(za/x)2 − 1
T̃

}
(64)

For y ≤ za : (Final density)

h(N)
y := h(N−1)

y − 2(za/x)2 − 1
2(za/y)2 − 1

1
T̃
. (65)

Equipped with the definitions of h above, we now define g to satisfy the inductive step. First
let αa := N

T̃
and let αa+s := 0 for s = 1, . . . , N − 1. Then define for all y ≤ zb:

gy,a+1 := min
{
h(N)
y , h(N)

za+1

}
and for j = a+ 2, . . . , b and all y ≤ zj let

gy,j := min{gy,j−1, gzj ,j−1}.

We note that this implies for all y ≤ zb

gy,b := min
{

min
j∈{a+1,...,b}

{
h(N)
zj

}
, h(N)

y

}
. (66)

This finished the inductive step.
Note that in the last step, i.e., when za = zj∗−1, since we do not have truncation condition for

gy,j∗ ’s, we define

∀y ≤ zj∗−1 : gy,j∗ = h(N)
y . (67)

8.2 Monotonicity claims

Claim 53 (Unique maximum after LSH). For every integer t ≥ 1, x ∈ (0,
√

2) and any sequence
c1 ≥ c2 ≥ . . . ≥ ct ≥ x, such that

f(y) = y2 − x2

2 −
t∑

s=1

2(cs/x)2 − 1
2(cs/y)2 − 1 ·

1
T

satisfies f(
√

2ct) > 0, the following conditions hold. There exists y∗ ∈ (x,
√

2ct] such that the
function satisfies f(y∗) = 0 is monotone increasing on the interval [y∗, η], where η is where the
(unique) maximum of f on (y∗,

√
2ct] happens.

Proof. We prove that ∂2f(y)
∂y2 is a monotone decreasing function. One should note that

∂2f(y)
∂y2 = 1−

t∑
s=1

4c2
s(2c2

s + 3y2)
(2c2

s − y2)3 · 2(cs/x)2 − 1
T
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Figure 11: An illustration of proof of Claim 54. The red and blue curves represent functions G1
and G2. The dotted part of the blue curve represents G1 − q̂ function for interval [ỹ2, z2], which
gets truncated by θ′.

Now, one can see that ∂2f(y)
∂y2 is a monotone decreasing function in y. We then note that f(x) ≤ 0,

and the function f(y) has exactly one maximum on (y∗,
√

2cs).

We will need

Claim 54 (Monotonicity). For every i ∈ [|R|] we have

(a) If gzji ,ji > 0 then there exists a y∗ ∈ (x,
√

2) such that gy∗,ji ≥ 0, gy,ji ≤ 0 for any y ∈ Zx such
that y ≤ y∗, and gy,ji is non-decreasing in y for y ∈ [y∗, zji ];

(b) If h(N−1)
zji

> 0 then there exists a y∗ ∈ (x,
√

2) such that h(N−1)
y∗ ≥ 0, h(N−1)

y ≤ 0 for any y ∈ Zx
such that y ≤ y∗ and h(N−1)

y is non-decreasing in y for y ∈ [y∗, zji ].

Proof. Let

q(y) :=
t∑
i=1

2(cs/x)2 − 1
2(cs/y)2 − 1

1
T
,

where c1 ≥ c2 ≥ . . . ≥ ct ≥ z1 ≥ x for some z1 ≥ x. And let y∗1 be such that (y∗1)2−x2

2 − q(y∗1) = 0
and let ỹ1 be the smallest value such that ỹ1 ≥ y∗1 and ỹ2

1−x
2

2 − q(ỹ1) = θ for some θ ≥ 0. Now
define G1(y) on [y∗1, z1], for some z1 ≥ ỹ1 as follows

G1(y) :=
{
y2−x2

2 − q(y) y ∈ [y∗1, ỹ1)
θ y ∈ [ỹ1, z1]

(68)
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See the red curve in Figure 11.

Also, let q̂(y) := 2(z1/x)2−1
2(z1/y)2−1

1
T . Let y

∗
2 ≥ y∗1 such that G1(y∗2)− q̂(y∗2) = 0. Now, we define G2(y)

for y ∈ [y∗2, z2] as follows:

G2(y) := min
{
G1(y)− q̂(y), θ′

}
where θ′ := G1(z2)− q̂(z2) and θ′ ≥ 0 for some z2 ≤ z1. By the definition of y∗2, function G2(y) for
y ∈ [y∗2, ỹ1] is in the form of the function in Claim 53 and thus, it has a unique maximum at some
η ∈ [y∗2, ỹ1]. Also, recall that G1(y) = θ for y ∈ [ỹ1, z2]. Also, one should note that since q̂(y) is
a monotone increasing function for y ∈ (0,

√
2z1) and hence for y ∈ [ỹ1, z2], then θ′ ≤ G2(ỹ1) and

therefore θ′ ≤ G2(η). This guarantees that there exist a ỹ2 ∈ [y∗2, η] such that G2(ỹ2) = θ′. The
reason is that G2(y) is a continuous increasing function for y ∈ [ỹ2, η]. So, we have

G2(y) :=
{
y2−x2

2 − q′(y) y ∈ [y∗2, ỹ2)
θ′ y ∈ [ỹ2, z2]

(69)

where, q′(y) := q(y) − q̂(y). See the blue curve in Figure 11. Now, one can see that by a simple
inductive argument starting with the initial densities

min
{
y2 − x2

2 , 1− x2

2

}

which is in the form of (68), the statement of the claim holds.

8.3 Bounding terminal densities using feasible LP solutions

Claim 55 (Feasible LP solution from an execution path). If integer J is such that J > T
1−10−4 OPT(LP)

then, for all y ≤ zj∗−1 , fy,J+1 < 7δz for j∗ = kJ + 1 (see Definition 41 for the definition of kJ).

Proof. We prove the claim by contradiction. Suppose that there exists z ≤ zj∗−1 such that fz,J+1 ≥
7δz. We define the feasible solution gy,j ’s and αj ’s to LP(x, j∗) as defined in (33). However, the
cost of this solution will be more than the optimal cost of the LP, which gives us the contradiction.
First, we construct the solution without considering the non-empty range constraint. Then,
we show that applying fz,J+1 ≥ 7δz the non-empty range constraint is satisfied too.

Let gy,j and αj be defined as by induction on j = 1, . . . , j∗ as above. We prove by induction on
j that if there exists a s such that cs = zj and cs−1 6= zj then for all y ≤ zj ,

fy,s ≤ gy,j +Xs, (70)

where we define

Xs :=
∑

r∈Rm s.t. r≤s
O

( 1√
T

)
· 1
T̃

+
∑

r∈RM s.t. r≤s

O(1)
T̃

+ s · δ + 3δz. (71)

for ease of notation, and let δ = log1/µ
2−2τ
1−2τ = Θ

(
1

log 1/µ

)
. One should note that the δ used in this

proof is not related to the δ used in the algorithm. Also, let c0 =∞ and cJ+1 = zj∗ , for easing the
corner case analysis.
Base: For all j ∈ {1, 2, . . . , j1} = [j1] and all y ≤ zj , in (62) we did set

gy,j := min
{
y2 − x2

2 , 1− x2

2

}
. (72)
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Also, recall that we let αj := 0 for all j ∈ [j1 − 1] (see base case in Section 8.1). Now, note that
we have fy,1 ≤ gy,1 + 3δz for all y by Claim 51, (1) combined with the assumption that δz ≤ 1. So,
the base holds.
Inductive step ji → ji + 1, . . . , ji+1: We let a := ji and b := ji+1 to simplify notation. Let s be
the first step on sphere za: cs = za and cs−1 6= za. Also, let N be the number of steps that we stay
on sphere za, i.e.,

cs = cs+1 = . . . = cs+N−1 = za and cs+N 6= za.

Note that steps s + 1, . . . , s + N − 1 are stationary as per our definitions. We let t := s + N for
convenience. By the inductive hypothesis for any y ≤ za we have

fy,s ≤ gy,a +Xs (73)

We prove that for any y ≤ zb
fy,t ≤ gy,b +Xt. (74)

Let h(q)
y , q = 0, . . . , N and gy,j , j = a, . . . , b, be defined as above. We now upper bound fy,s+q

in terms of fy,s+(q−1). We have for all q ∈ [N − 1] and y ≤ zb:

fy,s+q ≤ min
{
fy,s+(q−1) −

2(za/x)2 − 1
2(za/y)2 − 1

1
T̃
, fza,s+(q−1) −

2(za/x)2 − 1
T̃

+ δ

}

≤ min
{
fy,s+(q−1) −

2(za/x)2 − 1
2(za/y)2 − 1

1
T̃
, fza,s+(q−1) −

2(za/x)2 − 1
T̃

}
+ δ.

(75)

where the first transition is by Claim 51. Similarly we have (again by Claim 51)

fy,t ≤ min
{
fy,s+(N−1) −

2(za/x)2 − 1
2(za/y)2 − 1

1
T̃
, fzjb ,s+(N−1) −

2(za/x)2 − 1
2(za/zb)2 − 1

1
T̃

+ δ

}

≤ min
{
fy,s+(N−1) −

2(za/x)2 − 1
2(za/y)2 − 1

1
T̃
, fzjb ,s+(N−1) −

2(za/x)2 − 1
2(za/zb)2 − 1

1
T̃

}
+ δ

(76)

We now note that the recurrence relations (64) and (65) defining h(q)
y are only different from the

above by an additive δ term, and the initial condition (63) for h(0)
y is only different from the

inductive hypothesis (73) by an additive Xs term. Combining these observations, we get

fy,t ≤ min
{
h(N)
y , h(N)

zb

}
+Xs + δ · (t− s). (77)

Now, one can see that we have the following upper bound for Xs for any s using the definition of
Xs

Xs =
∑

r∈Rm s.t. r≤s
O

( 1√
T

)
· 1
T̃

+
∑

r∈RM s.t. r≤s

O(1)
T̃

+ s · δ + 3δz

≤ O
( 1√

T

)
+ 3δz (78)

since we have at most O(
√
T ) major steps, at most O(T ) minor steps, and δ = Θ

(
1
T 2

)
. This

implies

fy,t ≤ min
{
h(N)
y , h(N)

zb

}
+ 3δz +O

( 1√
T

)
≤ h(N)

y + 4δz. (79)
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Combining this with the assumption that there exists a z ≤ zj∗−1 such that fz,J+1 ≥ 7δz we have

h(N)
y ≥ 0 for all y ≥ zj∗−1, (80)

which we prove below and will be useful whenever we want to invoke Claim 54.

Claim 56. ∀y ≥ zj∗−1, we have h(N)
y ≥ 0.

Proof. ∀y ≥ zj∗ : h(N)
y ≥ 0. Assume that there exists a z ≤ zj∗−1 such that fz,J+1 ≥ 7δz. Now, by

the fact that fy,j ’s are monotone in j, and by (79) we have

7δz ≤ fz,J+1 ≤ fz,t ≤ h(N)
z + 4δz,

which implies

3δz ≤ h(N)
z .

On the other hand, by (64) we get

h(N−1)
z ≤ h(N−1)

za .

which implies h(N−1)
za ≥ 3δz ≥ 0. Thus, by Claim 54, h(N−1)

y is non-decreasing in [z, za]. So, for any
y ∈ [z, za],

3δz ≤ h(N−1)
y (81)

Also, by (65) we have

h(N)
y = h(N−1)

y − 2(za/x)2 − 1
2(za/y)2 − 1

1
T̃

= h(N−1)
y −O

( 1
T

)
(82)

Combing (81) and (82), we prove that for y ≥ zj∗−1:

h(N)
y ≥ 2δz ≥ 0.

The following characterization of Xt −Xs will be useful:

Xt −Xs = δ · (t− s) +

 O
(

1√
T

)
· 1
T̃

if t ∈ Rm
O(1)
T̃

if t ∈ RM .
(83)

The above follows by (71) since all steps between s and t are stationary.
We now the upper bound the minimum on the rhs in (77). Recall from (66) that

gy,b := min
{

min
j∈{a+1,...,b}

{
h(N)
zj

}
, h(N)

y

}
.

Let y′′ be such that gy,b = h
(N)
y′′ . We consider two cases, depending on whether y′′ = y.
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Case 1: y = y′′ (the simple case). In that case we have

fy,t ≤ min
{
h(N)
y , h

(N)
b

}
+Xs + δ · (t− s) By (77)

= h(N)
y +Xs + δ · (t− s) Since y′′ = y

= gy,b +Xs + δ · (t− s) Combining y′′ = y and (66)
≤ gy,b +Xt, By (83)

as required.

Case 2: y 6= y′′ (the main case).

fy,t ≤ min
{
h(N)
y , h(N)

zb

}
+Xs + δ · (t− s)

≤ h(N)
zb

+Xs + δ · (t− s)
= gy,b +Xs + δ · (t− s) + (h(N)

zb
− gy,b).

(84)

In what follows we show that

h(N)
zb
− gy,b =

 O
(

1√
T

)
· 1
T̃

if t ∈ Rm
O(1)
T̃

if t ∈ RM ,
(85)

which gives the result once substituted in (84), as per (83).
We now consider two case, depending on whether t is a minor or a major step. For both steps

we use the fact that y′′ 6= y implies y′′ ≥ zb (this follows by definition of y′′ together with (66)).

Minor steps (t ∈ Rm). In this case we have

h(N)
zb
− gy,b

=h(N)
zb
− h(N)

y′′ By definition of y′′

=h(N−1)
zb

− 2(za/x)2 − 1
2(za/zb)2 − 1 ·

1
T̃
− h(N−1)

y′′ + 2(za/x)2 − 1
2(za/y′′)2 − 1 ·

1
T̃

By (65)

≤ 2(za/x)2 − 1
2(za/y′′)2 − 1 ·

1
T̃
− 2(za/x)2 − 1

2(za/zb)2 − 1 ·
1
T̃
.

The last transition used Claim 54, (b), and the fact that y′′ ≥ zb: we only need to verify the
preconditions of Claim 54, which follows by (80) together with the fact that h(N−1)

y ≥ h
(N)
y for all

y.
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We now bound the rhs of the equation above by

2(za/x)2 − 1
2(za/y′′)2 − 1 ·

1
T̃
− 2(za/x)2 − 1

2(za/zb)2 − 1 ·
1
T̃

≤2(za/x)2 − 1
T̃

(
1− 1

2(za/zb)2 − 1

)
Since y′′ ≤ za

=2(za/x)2 − 1
T̃

(
1− 1

2(1− 1/
√
T )−2 − 1

)
Since this is a minor step

=2(za/x)2 − 1
T̃

·O(1/
√
T )

≤2(za/∆)2 − 1
T̃

·O(1/
√
T )

= 1
T̃
·O

( 1√
T

)
, Since za ≤ Rmax = O(1) and ∆ = Ω(1)

Major steps (t ∈ RM). Now, we consider the case when the step is major.

h(N)
zb
− gzb,b

=h(N)
zb
− h(N)

y′′ By definition of y′′ and (66)

=h(N−1)
zb

− 2(za/x)2 − 1
2(za/zb)2 − 1 ·

1
T̃
− h(N−1)

y′′ + 2(za/x)2 − 1
2(za/y′′)2 − 1 ·

1
T̃

By (65)

≤ 2(za/x)2 − 1
2(za/y′′)2 − 1 ·

1
T̃
− 2(za/x)2 − 1

2(za/zb)2 − 1 ·
1
T̃
.

The last transition used Claim 54, (b), and the fact that y′′ ≥ zb: we only need to verify the
preconditions of Claim 54, which follows by (80) together with the fact that h(N−1)

y ≥ h
(N)
y for all

y. We now upper bound the rhs of the equation above:

2(za/x)2 − 1
2(za/y′′)2 − 1 ·

1
T̃
− 2(za/x)2 − 1

2(za/zb)2 − 1 ·
1
T̃

≤2(za/x)2 − 1
T̃

(
1− 1

2(za/zb)2 − 1

)
≤2(za/x)2 − 1

T̃

≤2(za/∆)2 − 1
T̃

=O(1)
T̃

Since za ≤ Rmax = O(1) and ∆ = Ω(1)

This completes the inductive claim and establishes (70) for all j = 1, . . . , j∗.
The only thing we need to verify is that the solution that we presented, satisfies the non-empty

range constraint. For the sake of this proof, let us define gzj∗−1,j∗ as follows:

gzj∗−1,j∗ := gzj∗−1,j∗−1 −
2 (zj∗−1/x)2 − 1

2 (zj∗−1/zj∗−1)2 − 1
· αj∗−1 = gzj ,j −

2 (zj∗−1/x)2 − 1
1 · αj∗−1 (86)
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If s is such that cs = zj∗−1 and cs−1 6= zj∗−1, then by the discussion above

fy,s ≤ gy,j∗−1 +Xs. (87)

and more specifically, when y = z by the assumption we have

7δz ≤ fz,J+1 ≤ gz,j∗ +O

( 1√
T

)
+ 3δz By (78)

which implies

gz,j∗ ≥ 3δz. (88)

Now, we prove that gzj∗ ,j∗ ≥ 0. The same as the discussion above, if we took N steps on sphere
zj∗−1 then by (67) we have

gz,j∗ = h(N)
z ,

where h’s are the auxiliary variables defined for sphere zj∗−1. Now, we also have

gz,j∗ = h(N)
z ≤ h(N−1)

z By (65)
≤ h(N−1)

zj∗−1
By (64)

On the other hand, we have

h(N)
zj∗−1

= h(N−1)
zj∗−1

− 2(zj∗−1/x)2 − 1
1

1
T̃

= h(N−1)
zj∗−1

−O
( 1
T

)
≥ h(N−1)

zj∗−1
− δz

Combining these facts we get

gzj∗−1,j∗ = h(N)
zj∗−1

≥ h(N−1)
zj∗−1

− δz ≥ gz,j∗ − δz ≥ 2δz

where the last inequality is due to (88). Also, by the construction of the solution and the fact that
the function 2(z/x)2−1

2(z/y)2−1 is increasing in y, we have

gzj∗−1,j∗ − gzj∗ ,j∗ ≤ min
{
z2
j∗−1 − x2

2 , 1− x2

2

}
−min

{
z2
j∗ − x2

2 , 1− x2

2

}

≤
(
√

2)2 −
(
(1− δz)

√
2
)2

2 ≤ 2δz

which implies that gzj∗ ,j∗ ≥ 0 (the non-empty range constraint in the LP (33)).
Now, recalling the values of αj ’s, one can see the cost of this solution of LP is equal to J(1−10−4)

T ,
which is greater than the optimal solution for the LP, which is a contradiction. So, the claim
holds.

It is important to note that Claim 55 is not universally true for any shift-invariant kernel, even
under natural monotonicity assumptions. An example is presented in Section 2 in Figure 4. We
show, however, that our linear programming formulation is indeed a tight relaxation for a wide
class of kernels that includes the Gaussian kernel, the exponential kernel as well as any log-convex
kernel.
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9 Upper bounding LP value
The main result of this section is a proof of Lemma 56 below:

Lemma 57. For every x ≥ 0, y ≥ x the value of the LP in (33) (restated below as (89)) is upper
bounded by 0.1718. Furthermore, for every x ∈ (0,

√
2) and y ≥

√
2 the LP value is bounded by

3 − 2
√

2 < 0.1718, and for every x ∈ (0,
√

2) and every y ∈ [x,
√

2] the LP value is bounded by
x2

2

(
1− x2

2

)
.

The main result of this section is an upper bound on the value of the LP (89) below. We first
derive a dual formulation, then exhibit a feasible dual solution and then verify numerically that
the value of dual is bounded by 0.172 for all values of the input parameters x and y∗.

Fix x ∈ [0,
√

2]. Let z1 > z2 > . . . > zI , denote the distances on the grid, and we define
Z := {z1, z2, . . . , zI}, we will consider I linear programs, enumerating over all j∗ ∈ [I] such that
zj∗ ≥ x.

max
α≥0

j∗−1∑
j=1

αj (89)

such that :

∀y ∈ Z : gy,1 ≤ min
{
y2 − x2

2 , 1− x2

2

}
(ry,0) Density constraints

∀j ∈ [j∗ − 1], ∀y ∈ Z s.t. y < zj : gy,j ≤ gzj ,j (qy,j) Truncation

gy,j+1 ≤ gy,j −
2 (zj/x)2 − 1
2 (zj/y)2 − 1

· αj (ry,j) Spherical LSH

gzj∗ ,j∗ ≥ 0 (η)

The dual of (89) is

min
∑
y∈Z

{
y2 − x2

2 , 1− x2

2

}
ry,0 (90)

such that :
∀j ∈ [j∗ − 1], y ∈ Z, y < zj : ry,j−1 − ry,j + qy,j = 0 (gy,j) Mass transportation

∀j ∈ [j∗ − 1] : rzj ,j−1 −
∑

x∈Z,x<zj
qx,j = 0 (gzj ,j) Max tracking

∀y ∈ Z, y < zj∗ : ry,j∗−1 = 0 (gy,j∗) Sink
− η + rzj∗ ,j∗−1 = 0 (gzj∗ ,j∗) Terminal flow

j ∈ [j∗ − 1] :
∑

y∈Z:y<zj

2 (zj/x)2 − 1
2 (zj/y)2 − 1

ry,j ≥ 1 (αj)

ry,j , qy,j ≥ 0
η ≥ 0

We start by exhibiting a simple feasible solution for the dual that reproduces our result from
Section 4.

71



Upper bound of x2

2 · (1−
x2

2 ) for every x. Let qy,j = 0 for all y, j. Let

rzj∗ ,j =
(
x

y

)2

for all j = 0, 1, . . . , j∗− 1 and let ry,j = 0 for y 6= zj∗ and all y. We let η = rzj∗ ,j∗−1. We first verify
feasibility. We have for every j = 1, . . . , j∗ − 1

∑
y∈Z:y<zj

2 (zj/x)2 − 1
2 (zj/y)2 − 1

ry,j = 2 (zj∗/x)2 − 1
2 (zj∗/y)2 − 1

rzj∗ ,j∗−1

≥ 2 (zj∗/x)2

2 (zj∗/y)2 rzj∗ ,j∗−1

=
(
y

x

)2
·
(
x

y

)2

= 1,

where we used the fact that x ≤ y. We thus have a feasible solution. The value of the solution is(
x

y

)2
·min

{
y2 − x2

2 , 1− x2

2

}
≤
(
x

y

)2
·min

{
y2 − x2

2 , 1− x2

2

}

When y ≥
√

2, we get,
(
x
y

)2
·
(
1− x2

2

)
, which is maximized at y =

√
2 and gives

(
x√
2

)2
· (1− x2

2 ).
Similarly, when y ≤

√
2, we get (

x

y

)2
·
(
y2 − x2

2

)
= x2

2 −
x4

2y2 ,

which is again maximized when y =
√

2. Thus, we get that the value of the LP in (89) is bounded
by

x2

2 · (1−
x2

2 ).

and we obtain the exponent of 0.25. This (almost) recovers the result of Section 4 . In what follows
we obtain a stronger bound of 0.1718 on the value of the LP in (89), obtaining our main result on
data-dependent KDE.

Upper bound of 0.1718 on LP value for all x. We exhibit a feasible solution for the dual in
which for every j < j∗

qzj+1,j > 0
qy,j = 0 for all y < zj+1

(91)

and qy,j∗ = 0 for all y < zj∗ . We later show numerically that our dual solution is optimal for the
Gaussian kernel.
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Simplifying (90) under the assumptions from (91), we get

min
∑
y∈Z

{
y2 − x2

2 , 1− x2

2

}
ry,0

such that :
∀j ∈ [j∗ − 1], y ∈ Z, y < zj+1 : ry,j−1 − ry,j = 0 (gy,j)

∀j ∈ [j∗ − 1] : rzj+1,j−1 − rzj+1,j + qzj+1,j = 0 (gy,j)
∀j ∈ [j∗ − 1] : rzj ,j−1 − qzj+1,j = 0 (gzj ,j)

∀y ∈ Z, y < zj∗ : ry,j∗−1 = 0 (gy,j∗)
− η + rzj∗ ,j∗−1 = 0 (gzj∗ ,j∗)

j ∈ [j∗ − 1] :
∑

y∈Z:y<zj

2 (zj/x)2 − 1
2 (zj/y)2 − 1

ry,j ≥ 1 (αj)

ry,j , qy,j ≥ 0
η ≥ 0

Eliminating the q variables from the above for simplicity, we get, making the inequality for the
(αj) constraints an equality (recall that we only need to exhibit a dual feasible solution),

min
∑
y∈Z

{
y2 − x2

2 , 1− x2

2

}
ry,0 (92)

such that :
∀j ∈ [j∗ − 1], y ∈ Z, y < zj+1 : ry,j−1 − ry,j = 0 (gy,j)

∀j ∈ [j∗ − 1] : rzj+1,j−1 = rzj+1,j − rzj ,j−1 (gy,j)
∀y ∈ Z, y < zj∗ : ry,j∗−1 = 0 (gy,j∗)

rzj∗ ,j∗−1 = η (gzj∗ ,j∗)

j ∈ [j∗ − 1] :
∑

y∈Z:y<zj

2 (zj/x)2 − 1
2 (zj/y)2 − 1

ry,j = 1 (αj)

ry,j ≥ 0
η ≥ 0

Defining a dual feasible solution r. We now derive an expression for a feasible solution r.
The construction is by induction: starting with j = j∗− 1 as the base we define ry,j variables for
y ∈ Z, y ≤ zj that satisfy dual feasibility. The base is provided by

rzj∗ ,j∗−1 = η =
(

2 (zj∗−1/x)2 − 1
2 (zj∗−1/zj∗)2 − 1

)−1

. (93)

Note that this fully defines ry,j for j = j∗ − 1, since ry,j∗−1 = 0 for y < zj∗ .
We now give the inductive step: j → j − 1. By the inductive hypothesis the variables ry,j

that we defined satisfy the (αj) constraints in the dual (92), which means:

∑
i>j

2 (zj/x)2 − 1
2 (zj/zi)2 − 1

rzi,j = 1. (94)
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We will define ry,j−1 so that ∑
i>j−1

2 (zj−1/x)2 − 1
2 (zj−1/zi)2 − 1

rzi,j−1 = 1 (95)

and at the same time the (gy,j) constraints relating ry,j to ry,j−1 are satisfied.
By the first constraint in (92) we have rzi,j−1 = rzi,j for all i > j+1, since y < zj+1 is equivalent

to i > j + 1. By the second constraint in (92) we have rzj+1,j−1 = rzj+1,j − rzj ,j−1. Putting these
two constraints together, we now find rzj ,j−1 and therefore rzj+1,j−1. We rewrite the left hand side
of (95) as

∑
i>j−1

2 (zj−1/x)2 − 1
2 (zj−1/zi)2 − 1

rzi,j−1 = 2 (zj−1/x)2 − 1
2 (zj−1/zj)2 − 1

rzj ,j−1 + 2 (zj−1/x)2 − 1
2 (zj−1/zj+1)2 − 1

(rzj+1,j − rzj ,j−1)

+
∑
i>j+1

2 (zj−1/x)2 − 1
2 (zj−1/zi)2 − 1

rzi,j

=
(

2 (zj−1/x)2 − 1
2 (zj−1/zj)2 − 1

− 2 (zj−1/x)2 − 1
2 (zj−1/zj+1)2 − 1

)
rzj ,j−1

+
∑
i>j

2 (zj−1/x)2 − 1
2 (zj−1/zi)2 − 1

rzi,j

(96)

Combining this with (95), we thus get that

rzj ,j−1 =
(

2 (zj−1/x)2 − 1
2 (zj−1/zj)2 − 1

− 2 (zj−1/x)2 − 1
2 (zj−1/zj+1)2 − 1

)−1
1−

∑
i>j

2 (zj−1/x)2 − 1
2 (zj−1/zi)2 − 1

rzi,j

 . (97)

We now show that rzj ,j−1 ≥ 0. The first multiplier in the expression above is non-negative since
2(zj−1/x)2−1
2(zj−1/z)2−1 is increasing in z and zj ≥ zj+1. For the second multiplier we have

1−
∑
i>j

2 (zj−1/x)2 − 1
2 (zj−1/zi)2 − 1

rzi,j = 1−
∑
i>j

2 (zj−1/x)2 − 1
2 (zj−1/zi)2 − 1

rzi,j

≥ 1−
∑
i>j

2 (zj/x)2 − 1
2 (zj/zi)2 − 1

rzi,j

= 0.

(98)

Here the first transition used (94) (the inductive hypothesis), and the second transition used the
fact that the function 2(z/x)2−1

2(z/y)2−1 is non-increasing in z for x ≤ y. To summarize, we let rzj ,j−1 be
defined by (97). Also, we let

rzj+1,j−1 = rzj+1,j − rzj ,j−1 (99)

and let rzi,j−1 = rzi,j for i > j + 1. We verify numerically that rzj+1,j−1 ≥ 0.

Integral equation representation of the dual solution. While we do not use the following
in our analysis, it is interesting to note that the dual solution that we propose satisfies an integral
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equation in the limit as the grid size goes to 0. Let zj denote a uniform grid with step size ∆→ 0
on the interval [0, C] for some constant C ≥

√
2. We now rewrite (97) as(

2 (zj−1/x)2 − 1
2 (zj−1/zj)2 − 1

− 2 (zj−1/x)2 − 1
2 (zj−1/zj+1)2 − 1

)
rzj ,j−1 =

1−
∑
i>j

2 (zj−1/x)2 − 1
2 (zj−1/zi)2 − 1

rzi,j

 . (100)

Note by the Mean Value Theorem and the fact that the derivative
(

2(zj−1/x)2−1
2(zj−1/z)2−1

)′
z
is Lipschitz

within [zj+1, zj ] it follows that(
2 (zj−1/x)2 − 1
2 (zj−1/zj)2 − 1

− 2 (zj−1/x)2 − 1
2 (zj−1/zj+1)2 − 1

)
=
(

2 (zj−1/x)2 − 1
2 (zj−1/z)2 − 1

)′
z

∣∣∣∣∣
z=zj

·∆ · (1 +O(∆)).

We thus have that rzj ,j−1/∆ converges to the solution g(y) to the following integral equation:(
2 (u/x)2 − 1
2 (u/z)2 − 1

)′
z

∣∣∣∣∣
z=u
· g(u) = 1−

∫ u

y∗

2 (u/x)2 − 1
2 (u/r)2 − 1

g(r)dr (101)

The initial condition is a point mass at y∗.

Exact solution to the primal when zj∗ ≥
√

2. We note that if zj∗ ≥
√

2 an optimal solution
to the LP (89) is easy to obtain. The reason is that we can simplify the constraints of LP for band
zj∗ as follows: for all j ∈ [j∗ − 2]

gzj+2,j+1 ≤ min
{
gzj+2,j −

2 (zj/x)2 − 1
2 (zj/zj+2)2 − 1

· αj , gzj+1,j −
2 (zj/x)2 − 1

2(zj/zj+1)2 − 1 · αj

}

≤ gzj+1,j −
2 (zj/x)2 − 1

2(zj/zj+1)2 − 1 · αj

and

gzj∗ ,j∗ ≤ gzj∗ ,j∗−1 −
2 (zj∗−1/x)2 − 1

2 (zj∗−1/zj∗)2 − 1
· αj∗−1.

Now, combining these inequalities with the fact that gz2,1 ≤ 1− x2

2 , one has

gzj∗ ,j∗ ≤ 1− x2/2−
j∗−1∑
j=1

2 (zj/x)2 − 1
2 (zj/zj+1)2 − 1

αj

≤ 1− x2

2 −
1

1 + 5δz

j∗−1∑
j=1

(
2 (zj/x)2 − 1

)
· αj

≤ 1− x2

2 −
1

1 + 5δz

j∗−1∑
j=1

(
2 (zj∗/x)2 − 1

)
· αj

≤ 1− x2

2 −
1

1 + 5δz

(
2
(√

2/x
)2
− 1

)
·
j∗−1∑
j=1

αj ,

(102)
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where we used the fact that 2 (zj/zj+1)2−1 = 2(1+δz)2−1 ≤ 1+5δz and the function 2 (z/x)2−1
is increasing in z.

Letting γ :=
∑j∗−1
j=1 αj denote the LP objective we need to maximize γ subject to 1 − x2/2 −

1
1+5δz

(
2
(√

2/x
)2
− 1

)
· γ ≥ 0 (the nonempty range LP constraint), where y∗ = zj∗ . The solution

is
γ = (1 + 5δz) (1− x2/2)

(
2
(√

2/x
)2
− 1

)−1
.

Finally, one has

maxx∈[0,
√

2]

(
1− x2/2

2(2/x2)− 1

)
= 3− 2

√
2 ≈ 0.171573,

which is achieved at x =
√

4− 2
√

2. It remains to note that this is achievable by letting αj∗−1 = γ

and letting αj = 0 for j < j∗ − 1, when zj∗ =
√

2.

Numerical verification for x ∈ [0,
√

2], y ∈ [0,
√

2]. Implementing this in Matlab and optimizing
over x and j∗ (with a uniform grid on [0,

√
2] consisting of J = 400 points) yields the exponent of

≈ 0.1716, achieved at x ≈ 1.0842 and zj∗ ≈
√

2. The Matlab code is given below. Then 0.1718
is an upper-bound on the optimal cost of LP. Moreover, for the analysis if we set α∗ = 0.172 (as
in Section 5.2) then α∗(1 − 10−4) strictly upper bounds OPT(LP) (this simplifies the notation in
other sections).
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J=400;
vmax=0;
xIdxMax=0;
yIdxMax=0;

for xIdx=5:5:J-5,
for yIdx=xIdx-5:-5:1,

z=sqrt(2)*(J-(1:J))/J;
density=zeros(J);
for j=1:J,

%% density for exp(-x^2/2)
density(j)=min((z(j)^2-z(xIdx)^2)/2, 1-z(xIdx)^2/2);

end;
r=zeros(J);
r(yIdx-1)=((2*(z(yIdx-1)/z(xIdx))^2-1)/(2*(z(yIdx-1)/z(yIdx))^2-1))^(-1);
for j=yIdx-2:-1:1,

coeff=zeros(J);
for i=j:yIdx,

coeff(i)=(2*(z(j)/z(xIdx))^2-1)/(2*(z(j)/z(i))^2-1);
end;
val=0;
for i=j+1:yIdx-1,

val=val+coeff(i+1)*r(i);
end;

r(j)=(coeff(j+1)-coeff(j+2))^(-1)*(1-val);
r(j+1)=r(j+1)-r(j);

end;
val=0;
for i=1:J,

val=val+density(i)*r(i);
end;
if vmax<val

vmax=val;
xIdxMax=xIdx;
yIdxMax=yIdx;

end;
end;

end;

vmax
xIdxMax
yIdxMax
%%%%%%%%%%%%

Matlab output:

vmax = 0.1716

xIdxMax = 95

yIdxMax = 5
%%%%%%%%%%%%

For other densities replace the density assignment above accordingly. For example, for the
exp(−||x||2) (exponential kernel, scaled by

√
2 for convenience) set

%% density for exp(-|x|/sqrt{2})
density(j)=min((z(j)-z(xIdx))/sqrt(2), 1-z(xIdx)/sqrt(2));

and for the exp
(
−
√
||x||2

)
kernel (scaled to

√
2 for convenience) set

%% density for exp(-(x/\sqrt{2})^{1/2})
density(j)=min(sqrt(z(j)/sqrt(2))-sqrt(z(xIdx)/sqrt(2)), 1-sqrt(z(xIdx)/sqrt(2)));

respectively.
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A Omitted proofs from Section 3
Proof of Lemma 12: Let x′ := ||q′ − p||. If we consider the plane containing q, p, o, then q′

also belongs to this plane, since this plane contains q, o.17 Then, without loss of generality we can
assume that we are working on R2, where o = (0, 0),q = (R1, 0),q′ = (R2, 0). Let p = (α, β) such
that

x2 = (α−R1)2 + β2 = α2 + β2 − 2αR1 +R2
1

R2
2 = α2 + β2

x′2 = (α−R2)2 + β2 = α2 + β2 − 2αR2 +R2
2

Therefore, one has

x2 = R2
2 − 2αR1 +R2

1.

Thus,

x′2 = R2
2 − 2αR2 +R2

2

= 2R2(R2 − α)

= 2R2

(
R2 −

R2
2 +R2

1 − x2

2R1

)

= R2
R1

(
x2 − (R1 −R2)2

)
,

which proves the claim. One should note that the claim holds for both R1 ≥ R2 and R1 < R2.
17The cases when q′ = p or ||p− q|| = R1 +R2 are the cases when the plane is not unique, but the reader should

note that these cases correspond to x′ = 0, x′ = 2R2 cases, which are trivial.
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Figure 12: Illustration of x′ = Project(x,R1, R2)

Proof of Claim 14: Now let q′ be the projection of the query on the sphere and let q′′ be the
antipodal point of q′ on this sphere (see Figure 13). By Definition 13, we have∣∣∣{u ∈ P : ||u− q′|| ≤ r(

√
2− γ)

}∣∣∣ ≤ τ · |P |
and ∣∣∣{u ∈ P : ||u− q′′|| ≤ r(

√
2− γ)

}∣∣∣ ≤ τ · |P |. (103)

On the other hand, in Figure 13 let a, c be points at distances r(
√

2 − γ) and r
√

2 respectively
from q′ and d be a point at distance r(

√
2− γ) from q′′. Then by Pythagoras theorem, we have

||q′ − d||2 + |q′′ − d||2 = ||q′ − q′′||2,

which implies

||q′ − d|| = r

√
4−

(√
2− γ

)2
= r

√
2− γ2 + 2

√
2γ,

since ||q′′ − d|| = ||q′ − a||. Therefore, we have the following∣∣∣{u ∈ P : ||u− q′′|| ≤ r
(√

2− γ
)}∣∣∣ =

∣∣∣∣{u ∈ P : ||u− q′|| ≥ r
(√

2− γ2 + 2
√

2γ
)}∣∣∣∣ ≤ τ · |P |.

So one has ∣∣∣∣{u ∈ P : ||u− q′|| ∈
(
r
(√

2− γ
)
, r ·

√
2− γ2 + 2

√
2γ
)}∣∣∣∣ ≥ (1− 2τ) · |P |.

On the other hand, we have(
r
(√

2− γ
)
, r ·

√
2− γ2 + 2

√
2γ
)
⊆
(
r
(√

2− γ
)
, r
(√

2 + γ
))
,

and hence ∣∣∣{u ∈ P : ||u− q′|| ∈
(
r
(√

2− γ
)
, r ·

(√
2 + γ

))}∣∣∣ ≥ (1− 2τ) · |P |.

which proves the second part of the claim. Now, using (103) we have∣∣∣{u ∈ P : ||u− q′|| ≤ r(
√

2− γ)
}∣∣∣ ≤ τ

1− 2τ ·
∣∣∣{u ∈ P : ||u− q′|| ∈

(
r
(√

2− γ
)
, r ·

(√
2 + γ

))}∣∣∣ .
which proves the first part of the claim.
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Figure 13: ε-neighborhood of orthogonal points in a sphere of radius r

B Pseudo-random data sets via Ball carving
In this section we provide a simple self-contained proof of the claim that one can efficiently (near-
linear time) detect and remove a dense ball on the sphere when it exists that avoids invoking
VC-dimension arguments as in [?].

Lemma 58. There is a randomized procedure Certifyε,τ,δ(P ) that given a set P ⊂ Sd−1 and
parameters ε, τ, δ ∈ (0, 1

3), runs in time O( d
ε2τ log(2n/δ) · n) and with probability 1− δ

1. either returns a point p∗ ∈ P such that |B(p∗,
√

2(1− ε2)) ∩ P | ≥ Ω(ε2) · τ |P |

2. or certifies that the set P is (ε′, τ)-pseudo-random with ε′ =
√

2(1−
√

1− 2ε) = Θ(ε).

Algorithm 8 Certifyε,τ,δ(P )

1: Input: parameters ε, τ, δ ∈ (0, 1
3) and P ⊂ Sd−1.

2: ζ ← 1
4 , m← d

48
ε2τ log(2n/δ)e

3: Qm ← {m uniform random points with replacement from P} . Sub-sampling
4: p∗ ← arg maxp∈P {|B(p,

√
2(1− ε2)) ∩Qm|}

5: if |B(p∗,
√

2(1− ε2)) ∩Qm| ≥ (1− ζ)(3ε2)τ ·m then
6: return p∗ ∈ P . Center for a “dense ball" is found.
7: else
8: return ⊥. . Set P is (Θ(ε), τ)-pseudo random

The partitioning procedure is based on the following lemma adapted from [?] showing that in
any set that contains a dense ball on the unit-sphere, one can find a point in the dataset that
captures a large fraction of the points in the dense ball.

Lemma 59 (Certificate). Let S′ ⊂ Sd−1 and x∗ ∈ Sd−1 such that for ε ∈ (0, 1
3) and all x ∈ S′,

‖x∗ − x‖ ≤
√

2(1− 2ε). There exists a point x0 ∈ S′ such that∣∣∣∣{x ∈ S′ : ‖x− x0‖ ≤
√

2(1− ε2)
}∣∣∣∣ ≥ (3ε2) · |S|′. (104)
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The contrapositive is that if no balls of a certain radius and density exist with points of the
dataset as centers, then the dataset is pseudo-random with appropriate constants. We can use this
lemma to show that either the data set is pseudo-random or we can always find a dense ball and
decrease the size of the remaining data set by a non-trivial factor. The issue that is left to discuss
is efficiency of the process.

By repeatedly applying the lemma and by stopping only when |P | ≤ 1
τ we can decompose any

set on the sphere in at most T = O( log |P |
ε2τ ) “dense balls" and a pseudo-random remainder. Let

χ ∈ (0, 1) be a bound on the failure probability and set δ = χ/T , then this can be done in time

O

(
d

ε4τ2 log
(
2n log(n)/ε2τχ

)
log(n) · n

)
. (105)

For any point p ∈ P let Bp := B(p,
√

2(1− ε2)) ∩ P and B := {Bp : p ∈ P ∧ |Bp| ≥ 3ε2τ}. If
Qm is a random sample of m points from P with replacement, then by Chernoff bounds ∀B ∈ B

we get Pr
[∣∣∣|B ∩Qm| − |B||P |m∣∣∣ ≥ ζ |B||P |m] ≤ 2e−

ζ2
3
|B|
|P |m. Setting ζ = 1

4 and m ≥ 48
ε2τ log(2n/δ) and

taking union bound over at most |B| ≤ |P | events, we get that with probability at least 1 − χ for
all B ∈ B we have 3

4
|B|
|P | ≤

|B∩Qm|
m ≤ 5

4
|B|
|P | . Conditional on the above event we have that:

• If there exists p∗ ∈ P such that |Bp∗ ∩Qm| ≥ 3
4(3ε2)τm, then |Bp∗ | ≥ 9

16(3ε2)τ · |P |.

• If for all p ∈ P , |Bp ∩ Qm| < (1 − ζ)(3ε2)τm then |Bp| < 3ε2τ for all p ∈ P and by Lemma
58 the set P is (ε′, τ)-pseudo random, with ε′ =

√
2(1 −

√
1− 2ε) ⇒ ε = ε′√

2(1 − ε′

2
√

2) as√
2(1− 2ε) =

√
2(1−

√
2ε′(1− ε′

2
√

2)) =
√

(
√

2− ε′)2 =
√

2− ε′

This shows correctness of the Procedure Certifyε,τ,δ (Algorithm 8). The overall cost of this
procedure isO(dmn) = O(d log(2n/χ)

ε2τ n) dominated by the cost of finding the ball of radius
√

2(1− ε2)
centered at one of the points in P with the most number of points in Qm.

To prove Lemma 58 we are going to use the following simple lemma.
Proposition 60 ([?]). For any set S ⊂ Sd−1 such that there exists c ∈ Sd−1, ‖c − x‖ ≤ rε =√

2(1− 2ε) for all x ∈ S,
1
|S|2

∑
x,y∈S

〈x, y〉 ≥
(

1− r2
ε

2

)2

= 4ε2 (106)

Proof. Given x, c ∈ Sd−1, ‖x− c‖ ≤ rε ⇒ 〈x, c〉 ≥ 1− r2
ε
2 . Thus,

∑
i,j∈S
〈xi, xj〉 = ‖

∑
x∈S

x‖2‖c‖2 ≥
∣∣∣∣∣∑
x∈S
〈x, c〉

∣∣∣∣∣
2

≥ (1− r2
ε

2 )2|S|2 (107)

The proof is concluded by substituting rε =
√

2(1− 2ε).

Proof of Lemma 58. We proceed with a proof by contradiction. Assuming that the statement is
not true, then

∀y ∈ S,
∣∣∣∣{x ∈ S : ‖x− y‖ ≤

√
2(1− ε2)

}∣∣∣∣ < (3ε2) · |S| (108)

Moreover, ‖x− y‖ >
√

2(1− ε2)⇒ 〈x, y〉 < ε2. Therefore, we get:
1
|S|2

∑
x,y∈S

〈x, y〉 <
(
1− 3ε2

)
ε2 + 3ε2 · 1 = (4− 3ε2)ε2 < 4ε2 (109)

Using Proposition 1 and the hypothesis we arrive at a contradiction.
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C Correctness proof of the data-dependent algorithm
In this section we present the outer algorithms for our approach. The procedure is quite routine
and similar to Section 4. First, in Algorithm 9 we present the outer procedure of preprocessing
phase. In Algorithm 9 for any x ∈ {δx, 2δx, 3δx, . . . δxb

√
2

δx
c}, we sample the data set with probability

min
{

1
n

(
1
µ

)1−x2/2
, 1
}
, and then using Algorithm 3, we prepare a data structure that after receiving

the query, one can recover any point that is present in the sample and has distance [x− δx, x) from
the query using Algorithm 10, with probability 0.8 (see Lemma 60 below).

Lemma 61. Under Assumption 1, if T = PreProcess(P, x, µ), then for every point p ∈ P such
that p ∈ v0.P , where v0 is the root of tree T and ||q − p|| ≤ x, one has p ∈ Query(q, T , x) with
probability at least 0.8.

Proof. By Corollary 27, if H is a (α, x, µ)-AI hash family then for any point p such that ||p−q|| ≤ x

Pr
h∼H

[h(q) = h(p)] ≥ µα

Now, noting the number of repetitions of the Andoni-Indyk LSH round, i.e., setting of K1 =
100

(
1
µ

)α
(see line 6 of Algorithm 3), with probability at least 0.9 we know that there exists a

hash bucket that both query and point p are hashed. Now, we prove by induction on depth of the
tree, that if p belongs to the dataset of root of any tree T ′ then Query(q, T ′, x) recovers it with
probability at least 0.9.

Base: If the depth of T ′ is 1, then p ∈ Px by line 13 of Algorithm 6.
Inductive step: Suppose that p ∈ v.P such that v is the root of T ′. One should note that v is
a pseudo-random sphere. Also, suppose that q is at distance R2 from the center of this sphere.
Then let x′ := Project(x + ∆, R2, R) and let x′′ be the smallest element in the grid W which
is not less than x′. Let N :=

⌈
100

G(x′′/R,η)

⌉
. Then, by Algorithm 4 we know that v has N children

u1, u2, . . . , uN such that uj .x = x′′ for all j ∈ [N ]. If p ∈ uj .P for some j then p will appear in
exactly one of the children of uj , we call this node uj(p), and if p /∈ uj .P then uj(p) =⊥. Let q′
be the projection of q on the sphere. Now, note that for any j ∈ [N ], if w is a child of uj then

Pr
[
Query(q, Tuj(p), x) will be called and p ∈ uj(p).P and p ∈ Query(q, Tuj(p), x)

]
= Pr

[〈
uj .g,

q − o
||q − o||

〉
≥ η and p ∈ uj .P and p ∈ Query(q, Tuj(p), x)

]
= Pr

[
p ∈ Query(q, Tuj(p), x) |

〈
uj .g,

q − o
||q − o||

〉
≥ η and p ∈ uj .P

]
· Pr

[〈
uj .g,

q − o
||q − o||

〉
≥ η and p ∈ uj .P

]
≥ 0.9 · Pr

[〈
uj .g,

q − o
||q − o||

〉
≥ η and p ∈ uj .P

]
≥ 0.9 ·G(||q′ − p.new||/R, η)
≥ 0.9 ·G (Project(x+ δ,R2, R)/R, η)
≥ 0.9 ·G(x′/R, η).

The first inequality holds by induction. The second inequality holds by Definition 10. The third
inequality holds since ||q′−p.new|| ≤ Project(x+ δ,R2, R). Also, the last inequality holds since
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∆ ≥ δ. Then, we have

Pr
[
Query(q, Tuj(p), x) will not be called or p /∈ uj(p).P or p /∈ Query(q, Tuj(p), x)

]
≤ 1− 0.9 ·G(x′/R, η).

Consequently

Pr
[
p /∈ Query(q, T ′, x)

]
≤ (1− 0.9 ·G(x′/R, η))N

≤ 0.1,

where the second inequality uses the following fact that since x′′ ≥ x′, we have

N =
⌈ 100
G(x′′/R, η)

⌉
≥
⌈ 100
G(x′/R, η)

⌉
≥ 100
G(x′/R, η) .

So the inductive step goes through, and the statement of the lemma holds. Now, by taking the
union bound over the failure probability of the Andoni-Indyk round (which succeeds with high
probability) and the failure probability of the data dependent part, we succeed by probability at
least 1− 0.1− 0.1 = 0.8.

For points beyond δxb
√

2
δx
c we just sample the data set with rate 1

n and just store the sampled
set (see line 10 in Algorithm 9). In the query procedure we just scan the sub-sampled data set
for recovering these points (see line 10 of Algorithm 10). We repeat this procedure O(logn) times
to boost the success probability to high probability. After recovering the sampled points from the
various bands using corresponding data structures, Algorithm 10 applies the standard procedure
of importance sampling by calculating Zµ.

Algorithm 9 PreProcess-KDE: P is the data-set
1: procedure PreProcess-KDE(P, µ)
2: δx ← 10−8 . Step size for grid over x
3: K1 ← dC logn

ε2 · µ−4δxe . where C is some large enough constant
4: for k = 1, 2, . . . ,K1 do
5: for j = 1, . . . , b

√
2/δxc do . Uniform grid with step size δx over [0,

√
2]

6: x← j · δx
7: P̃k,x ← sample each point in P with probability min

{
1
n

(
1
µ

)1−x2/2
, 1
}

8: for i = 1, . . . , 10 logn do
9: Tx,k,i ← PreProcess(P̃k,x, x, µ)

10: P̃k ← sample each point in P with probability 1
n

11: Store P̃k . This set will be used to recover points beyond δxb
√

2/δxc.
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Algorithm 10 Query-KDE: q is the query point
1: procedure Query-KDE(q, µ)
2: δx ← 10−8

3: Cx ← b
√

2
δx
c

4: K1 ← dC logn
ε2 · µ−4δxe . where C is some large enough constant

5: Zµ ← 0
6: for k = 1, 2, . . . ,K1 do
7: Zµ,k,← 0
8: for j = 1, . . . , Cx do
9: x← j · δx
10: Sx ← ∅
11: for i = 1, . . . , 10 logn do
12: Tx,k,i ← the data structure prepared by line 9 of Algorithm 9
13: Px,k,i ← Query(q, Tx,k,i, x)
14: for p ∈ Px,k,i do
15: if ||q − p|| ∈ [x− δx, x) then
16: Sx ← Sx ∪ {p}
17: for p ∈ Sx do
18: x̂← ||q − p||
19: Zµ,k ← Zµ,k +

(
µ
x̂2
2

)(
min

{
1
n expµ

(
1− x2

2

)
, 1
})−1

20: for p ∈ P̃k do . Importance sampling for points beyond δxCx.
21: if ||q − p|| ≥ δxCx then
22: x̂← ||q − p||
23: Zµ,k ← Zµ,k + n

(
µx̂

2/2
)

24: Zµ ← Zµ + Zµ,k
K1

25: return Zµ

Below, we present the proof of correctness for the outer algorithm, which is very similar to the
proof in Section 4.

Claim 62 (Unbiasedness of the estimator). The estimator Zµ,k for any µ ≥ µ∗ and any k ∈ [K1](see
line 6 of Algorithm 10) satisfies the following:

(1− n−9)nµ∗ ≤ E[Zµ,k] ≤ nµ∗.

Proof. First note that if a point p ∈ P̃k,x for some k and x in line 7 of Algorithm 9 is such that
||q−p|| ∈ [x−δx, x), then since we are preparing 10 logn data structures, alongside with Lemma 60
with probability at least 1− n−10, p ∈ Sx (see line 16 of Algorithm 10). Taking union bound over
all the points, with probability 1 − n−9, any point in distance [x − δx, x) is being sampled with

probability min
{

1
n

(
1
µ

)1−x2/2
, 1
}

for any x ∈ {δx, 2δx, . . .} ∩ (0,
√

2). We call this event E . Now,

since pi · (1− n−9) ≤ Pr[χi = 1] ≤ pi, we have

E[Zµ,k] = E
[
n∑
i=1

χi
wi
pi

]
≥ (1− n−9)

n∑
i=1

wi = (1− n−10)nµ∗.
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and

E[Zµ,k] ≤ nµ∗

where pi is the probability of sampling i’th point, and χi is the indicator for the event that i’th
point is recovered.

We proved that our estimator is unbiased18 for any choice of µ ≥ µ∗. Therefore if µ ≥ 4µ∗,
by Markov’s inequality the estimator outputs a value larger than µ at most with probability 1/4.
We perform O(logn) independent estimates, and conclude that µ is higher than µ∗ if the median
of the estimated values is below µ. This estimate is correct with high probability, which suffices
to ensure that we find a value of µ that satisfies µ/4 < µ∗ ≤ µ with high probability by starting
with µ = n−Θ(1) (since our analysis assumes µ∗ = n−Θ(1)) and repeatedly halving our estimate (the
number of times that we need to halve the estimate is O(logn) assuming that µ is lower bounded
by a polynomial in n, an assumption that we make).

Claim 63. For µ such that µ/4 ≤ µ∗ ≤ µ, Query-KDE(q, µ) (Algorithm 10) returns a (1 ± ε)-
approximation to µ∗.

Proof. Also, one should note that Zµ,k < n2
(

1
µ

)
which implies

E [Zµ,k|E ] · Pr[E ] + n2
( 1
µ

)
(1− Pr[E ]) ≥ E[Zµ,k]

So,

E[Zµ,k]|E ] ≥
(

(1− n−10)nµ∗ − 1
n2

1
µ

)
= nµ∗ − o(1/n5)

Also, since Zµ,k is a non-negative random variable, we have

E [Zµ,k|E ] ≤ E [Zµ,k]
Pr[E ] ≤

nµ∗

Pr[E ] = nµ∗ + o(1/n5)

Also,

E[Z2
µ,k] = E


∑
i∈[n]

χi
wi
pi

2


=
∑
i 6=j

E
[
χiχj

wiwj
pipj

]
+
∑
i∈[n]

E
[
χi
w2
i

p2
i

]

≤
∑
i 6=j

wiwj +
∑
i∈[n]

w2
i

pi
I[pi = 1] +

∑
i∈[n]

w2
i

pi
I[pi 6= 1]

≤
(∑

i

wi

)2

+
∑
i

w2
i + max

i

{
wi
pi

I[pi 6= 1]
} ∑
i∈[n]

wi

≤ 2n2µ∗2 + n2
( 1
µ

)−1+4δx
· µ∗ ≤ n2µ2−4δx

18Up to some small inverse polynomial error.
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and

E[Z2
µ,k|E ] ≤

E[Z2
µ,k]

Pr[E ] ≤ n
2µ2−4δx + o(1/n5)

So in order to get a (1± ε)-factor approximation to nµ, with high probability, it suffices to repeat
the whole process K1 = C logn

ε2 · µ−4δx times (see Algorithm 9 and Algorithm 10), where C is a
universal constant.

D Omitted discussion from Section 6.1

o

x+ ∆

x′

Figure 14: Geometric illustration of equation x′ = Project(x + ∆, ˜̀, r) when we have access to
an approximation of x′ (red arc).

Given query q, and a LSH node v with (v.x, v.r) = (x′′, r), we define b ∈ {1, 2} which we use in
the definition of the path geometry (Definition 32). Let ˜̀ := ||q − o||, where o is the center of the
sphere. Note that, if we solve x′ = Project(x + ∆, `, r) for ` we get the following roots for this
equation.

`1 =
√

4r2((x+ ∆)2 − x′2) + x′4 + 2r2 − x′2

2r (110)

and

`2 = −
√

4r2((x+ ∆)2 − x′2) + x′4 + 2r2 − x′2

2r (111)

Stability of `1 and `2 for small changes of x′: Let x̃′ be such that x̃′ ∈ [x′, x′ + δ′]. Since
δ′ = o(1), r = Θ(1) and x = Θ(1), if we solve equation x̃′ = Project(x+ ∆, `, r) for ` then we get
roots ˜̀1 and ˜̀2 such that ˜̀1 ∈ (`1 − δ′1/3, `1 + δ1/3) and ˜̀2 = (`2 − δ′1/3, `2 + δ′1/3) for large enough
n, since δ′ = exp(−(log logn)C) (see line 10 of Algorithm 4).

Suppose that we solve x′ = Project(x+ ∆, `, r) for ` for all values of x′ ∈ [x′′− δ′, x′′], and let
`∗1 be the largest quantity that we get by (110) and let `∗2 be the largest quantity that we get by
(111). More formally,

`∗1 := max
x′∈[x′′−δ′,x′′]

√
4r2((x+ ∆)2 − x′2) + x′4 + 2r2 − x′2

2r
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and

`∗2 := max
x′∈[x′′−δ′,x′′]

−
√

4r2((x+ ∆)2 − x′2) + x′4 + 2r2 − x′2

2r .

Now, if ˜̀∈ [`∗1 − δ′1/3, `∗1] then we let b = 1 and ` := `∗1, and otherwise we let b = 2 and ` := `∗2.
Note that when b = 2 it is guaranteed that ˜̀∈ [`∗2− δ′1/3, `∗2]. One should note that since we define
geometry for root to leaf paths, then it is guaranteed that x′ = Project(x + ∆, `, r) has at least
a real valued solution for `, because otherwise such a root to leaf path is not possible in the tree
that the query explores. Also, note that the maximizations above are over the real values, and we
ignore the imaginary solutions.

E Omitted claims and proofs from Section 6
Claim 64. Given query q and a pseudo random sphere with geometry (x′′, r, b) that induces distance
` let q′ be the projection of q on the sphere. In that case, if a point p.new on the sphere is such
that ||q′ − p.new|| ∈ (r(

√
2− γ), r(

√
2 + γ)), then

||p− q|| ∈ (c− rψ, c+ rψ)

where ψ := γ1/3 + δ′1/4 + δ1/4, c :=
√
`2 + r2.

Proof. Since q and the geometry of the sphere induce distance `, then ||q− o|| ∈ [`− δ′1/3, `]. Now,
suppose that we move q in the direction of the vector from o to q and reach a point q̃ such that
||q̃ − o|| = `. Then, by assumption

Project(||q̃ − p.new||, `, r) ∈ (r(
√

2− γ), r(
√

2 + γ)).

Let ỹ := ||q̃ − p.new||. Then,
r

`

(
ỹ2 − (`− r)2

)
∈
(
r2(
√

2− γ)2, r2(
√

2 + γ)2
)

which using the definition c :=
√
r2 + `2 (see Figure 10) translates to

ỹ2 ∈
(
r`(2− 2

√
2γ + γ2) + (`− r)2, r`(2 + 2

√
2γ + γ2) + (`− r)2

)
=
(
c2 − 2

√
2r`γ + r`γ2, c2 + 2

√
2r`γ + r`γ2

)
which also translates to

ỹ ∈
(√

c2 − 2
√

2r`γ + r`γ2,
√
c2 + 2

√
2r`γ + r`γ2

)
Now, noting that ` = O(1) and r = Θ(1), for large enough n we get that√

c2 − 2
√

2r`γ + r`γ2 ≥ c−
√

2
√

2r`γ − r`γ2

≥ c− rγ1/3.

And Similarly, √
c2 + 2

√
2r`γ + r`γ2 ≤ c−

√
2
√

2r`γ + `γ2

≤ c+ rγ1/3.

90



So, overall

ỹ ∈
(
c− rγ1/3, c+ rγ1/3

)
Noting that ||q − q̃|| ≤ δ′1/3 and ||p− p.new|| ≤ δ, using the triangle inequality, for y := ||q − p||
we get

y ∈
(
c− rγ1/3 − δ′1/3 − δ, c+ rγ1/3 + δ′1/3 + δ

)
Again noting that r = Θ(1) and setting ψ = γ1/3 + δ′1/4 + δ1/4

y ∈ (c− rψ, c+ rψ) .

Note that in this proof we did not optimize the inequalities and we were generous in bounding
variables for the sake of brevity.

Claim 65. Let y be such that y ≥ x+ ∆ for some x ∈ (δx,
√

2), and y′′ is such that

y′′ ∈ [Project(y − δ,R2, R),Project(y + δ,R2, R)]

for some R2 and R. Let x′ = Project(x + ∆, R2, R), and let x′′ be the smallest element in Wx

which is not larger than x′. Additionally, assume that we have the following properties:

(p1) δ
∆ = o(1)

(p2) δ′

∆ = o(1)

(p3) ∆ = Θ(1)

(p4) x′ ≤ 8
5 ·R

If η is such that F (η)
G(x′′/R,η) = expµ

(
1
T

)
, then, we have (a)

G(y′′/R, η)
F (η) ≤ expµ

(
−(1− o(1))4(R/x′)2 − 1

4(R/y′)2 − 1 ·
1
T

)

and Furthermore, (b) when R = O(1), then

G(y′′/R, η)
F (η) ≤ expµ

(
−4(R/x′)2 − 1

4(R/y′)2 − 1 ·
1
T

)
.

Proof. By assumption we have

F (η)
G(x′′/R, η) = expµ

( 1
T

)
. (112)

On the other hand, if we set s = x′′/R

F (η)
G(x′′/R, η) = e−(1+o(1)) η

2
2

e
−(1+o(1)) η2

2 ·
4

4−s2

= e
(1+o(1)) η

2
2 ·

s2
4−s2

= exp
(

(1 + o(1))η
2

2 ·
x′′2

4R2 − x′′2

)
. (113)
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R

qq′

x′

|R2 −R|
o

x+ ∆

(a) When the query is outside the sphere

R

q q′

x+ ∆ x′

|R2 −R|
o

(b) When the query is inside the sphere

Figure 15: Triangle inequality instances for (114)

By triangle inequality in Euclidean space (see Figure 15) we have,

x′ ≥ (x+ ∆)− |R2 −R| (114)
≥ (x+ ∆)− (x+ δ) By line 20 of Algorithm 6
= ∆− δ = (1− o(1))∆ By property (p1).

Also note that by assumption

x′′ ∈
[
x′, x′ + δ′

]
,

then, since δ′

∆ = o(1) by property (p2), we have

x′′ = (1± o(1)) · x′.

And by property (p4), we have

x′′2

4R2 − x′′2
= (1± o(1)) · x′2

4R2 − x′2

Therefore

F (η)
G(x′/R, η) = exp

(
(1 + o(1))η

2

2 ·
x′2

4R2 − x′2

)
(115)

= expµ
(

(1± o(1)) 1
T

)
. (116)
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On the other hand, if we set s′ = y′/R, similarly

F (η)
G(y′/R, η) = e−(1+o(1)) η

2
2

e
−(1+o(1)) η2

2 ·
4

4−s′2

= e
(1+o(1)) η

2
2 ·

s′2
4−s′2

= exp
(

(1 + o(1))η
2

2 ·
y′2

4R2 − y′2

)
. (117)

Thus, by (115), (116) and (117)

G(y′/R, η)
F (η) = expµ

(
−(1± o(1)) 1

T

4− s2

s2 · s′2

4− s′2

)

= expµ

(
−(1± o(1)) 1

T

4(R/x′)2 − 1
4(R/y′)2 − 1

)
. (118)

Note that

y′′ ∈ [Project(y − δ,R2, R),Project(y + δ,R2, R)]

Then since δ′

∆ = o(1) by property (p2), we have

y′′ ≥ Project(y −∆/2, R2, R) = y′,

Now since G(s, η) is monotone decreasing in s, we have

G(y′/R, η)
F (η) ≥ G(y′′/R, η)

F (η) . (119)

Now, by (118) and (119), we have the statement of the first part of the claim.
For the case when R = O(1), and consequently R2 = O(1) (by the assumption fact that x ≤

√
2),

by property (p3):

y′′2 − y′2 ≥ (Project (y − δ,R2, R))2 − (Project (y −∆/2, R2, R))2

= R

R2

(
(y − δ)2 − (R2 −R)2

)
− R

R2

(
(y −∆/2)2 − (R2 −R)2

)
= Ω(1) (120)

Then,

(1− o(1)) · 1
4(R/y′′)2 − 1 ≥ (1− o(1)) · y′2

4R2 − y′′2
Since y′′ ≥ y′

≥ y′2

4R2 − y′2
By (120)

≥ 1
4(R/y′)2 − 1

which implies,

expµ

(
− 1
T

4(R/x′)2 − 1
4(R/y′)2 − 1

)
≥ expµ

(
−(1± o(1)) 1

T

4(R/x′)2 − 1
4(R/y′′)2 − 1

)
= G(y′′/R, η)

F (η) ,

which proves the second part of the claim.
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Claim 66. Let V denote the output of PseudoRandomify(v, γ) on a node v of a recursion tree T
associated with a dataset P of diameter bounded by D. Then for every positive integer j, where Rmin
is the parameter from line 3 of Algorithm 5, the number of sets with diameter at least (1−γ2/2)jD
contained in V is upper bounded by Λj for Λ = O(D log |P |)/δ.

Proof. Note that an input dataset is first partitioned into at most dR/δe = O(D/δ) spherical shells.
For each spherical shell one repeatedly removes dense clusters (containing at least a 1/10 fraction of
the current dataset), repeating this process O(log |P |) times, since at most 10 clusters are removed
before the dataset size decreases by a constant factor. Every such ball has radius smaller than the
original dataset by a (1− γ2/2) factor [ALRW17]. This gives the claimed bound.

We now give
Proof of Lemma 46: The proof is by induction on (a, b), where a is the number ` of LSH nodes
on the path from v ∈ T to the closest leaf, b is the number of pseudorandomification nodes on such
a path and r = v.R is the radius of the dataset. We prove that the expected number of nodes in
the subtree of such a node v in T is upper bounded by

(L · Λ)a · (100/µ1/T )b · Λj .

Here Λ = (O(D log |P |)/δ) is the parameter from Claim 65, j = log 1
1−γ2/2

(Rmax/r) is an up-
per bound on the number of times the radius of the sphere could have shrunk through calls
to Pseudorandomify from the largest possible (bounded Rmax) to its current value r, and
L = log 1

1−γ2/2
(Rmax/Rmin) is the maximum number of times a point can be part of a dataset

that Pseudorandomify is called on (since the radius reduces by a factor of 1−γ2/2 in every such
call).

The base is provided by the case of v being a leaf. We now give the inductive step. First
suppose that u ∈ T is a pseudorandomification node. Let x′ denote the value of rounded projected
distance computed in line 19 of Algorithm 6. Then Algorithm 4 generates 100

G(x′/R,η) Gaussians, and
the expected number of Gaussians for which the condition in line 29 is satisfied (i.e. the number of
children of u that the query q explores) is exactly 100F (η)

G(x′/R,η) by definition of F (η) (see Lemma 8 in
Section 3). We also have F (η)

G(x′/R,η) = (1/µ)1/T by setting of parameters in line 16 of Algorithm 6.
Putting this together with the inductive hypothesis and noting that LSH nodes do not change the
radius of the sphere, we get that the expected number of nodes of T that the query explores is
bounded by

100 (1/µ)1/T · (L · Λ)a · (100/µ1/T )b−1 · Λj = (L · Λ)a · (100/µ1/T )b · Λj ,

as required.
Now suppose that u ∈ T is a pseudorandomification node. Then by Claim 65 for every i the

number of datasets with diameter at least (1−γ2/2)ir generated by Pseudorandomify is bounded
by Λi. For every i = 0, . . . , L the number of nodes with radius in ((1− γ2/2)i−1r, (1− γ2/2)ir] that
are generated is bounded by Λi−1. For such nodes we have by the inductive hypothesis that the
expected number of nodes of T explored in their subtree is upper bounded by

(L · Λ)a−1
(
100/µ1/T

)b
· Λj−i+1.

Summing over all i between 1 and log 1
1−γ2/2

(r/Rmin), we get that the total number of nodes that

94



the query is expected to explore in the subtree of u is bounded by

log 1
1−γ2/2

(r/Rmin)∑
i=1

(L · Λ)a−1
(
100/µ1/T

)b
· Λj−i+1 · Λi ≤ L · (L · Λ)a−1

(
100/µ1/T

)b
· Λj+1

≤ (L · Λ) · (L · Λ)a−1
(
100/µ1/T

)b
· Λj+1

≤ (L · Λ)a ·
(
100/µ1/T

)b
· Λj

proving the inductive step.
Substituting α∗ · T as the upper bound on the number of levels in T as per Algorithm 4, we

thus get that the number of nodes explored by the query is bounded by

(L · Λ)T · (100/µ1/T )α∗T · ΛL ≤ (100L · Λ)T · ΛL · (1/µ)α∗ = no(1) · (1/µ)α∗

in expectation. In the last transition we used the fact that

(100L·Λ)T ·ΛL = (100·log 1
1−γ2/2

(Rmax/Rmin)·(O(Rmax log |P |)/δ))
√

logn·((O(D log |P |)/δ)
√

logn = no(1)

by our setting of parameters since γ = 1/ log log logn, Rmax = O(1), Rmin = Ω(1) and δ =
exp(−(log logn)O(1)) as per Algorithm 4 and Algorithm 5. And also since we use 100

(
1
µ

)α
Andoni-

Indyk hash functions (see Algorithm 3), we get

no(1) ·
( 1
µ

)α∗+α
in total.
Proof of Claim 47:

By Lemma 8 and Lemma 9 and Definition 10 one has

F (η) = e−(1+o(1))· η
2
2

and
G(x′/R, η) = e

−(1+o(1))· 2η
2(1−α(x′/R))
2β2(x′/R) = e

−(1+o(1))· 2η2
2(1+α(x′/R)) ,

where α(x′/R) := 1− (x′/R)2

2 . Using the assumption that x′ > ∆ we get that

G(x′/R, η) ≤ e
−(1+o(1))· η2

2−((∆/R)2/2) .

And in particular using the fact that R ≥ ∆

F (η)
G(x′/R, η) ≥ e

−(1+o(1))· η
2
2 +(1+o(1))· η2

2−((∆/R)2/2) = (G(x′/R, η))Ω(∆2),

or, equivalently, 1
G(x′/R,η) =

(
F (η)

G(x′/R,η)

)O(1/∆2)
.

Proof of Claim 45: For j∗ = kJ + 1, by definition of fzj ,J+1 for i ∈ {j∗ − 1, . . . , I} and the fact
that

b′y,J+1 = B̃y,J+1 = Ãy,J ,
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we have

fzi,J+1 = log1/µ

 ∑
y∈D∩[zi+1,zi−1)

Ãy,J

 (121)

On the other hand, (40) and the fact that B̃y,j = E[By,j ] we have∑
y≥cJ+ψRJ

B̃y,J ≤
τ

1− 2τ ·
∑

y∈(cJ−ψRJ ,cJ+ψRJ )
B̃y,J .

Also recall (41), where we have

Ãy,J = B̃y,J · py,J

where py,J is a decreasing and non-negative function in y (for the valid range of y). This implies
that ∑

y≥cJ+ψRJ

Ãy,J ≤
τ

1− 2τ ·
∑

y∈(cJ−ψRJ ,cJ+ψRJ )
Ãy,J .

Now, we have ∑
y

Ãy,J =
∑

y<cJ+ψRJ

Ãy,J +
∑

y≥cJ+ψRJ

Ãy,J

≤
∑

y<cJ+ψRJ

Ãy,J + τ

1− 2τ ·
∑

y∈(cJ−ψRJ ,cJ+ψRJ )
Ãy,J

≤
∑

y≤zj∗−1

expµ (fy,J+1) + expµ
(
fzj∗−1,J+1

)
≤ O(1) · expµ (7δz) = expµ (7δz + o(1))

where the second inequality is based on Definition 41, (121) and setting of parameters (the fact that
ψ = o(1), δz = Θ(1) and Rmax = O(1)). The last inequality is by the assumption that fy,J+1 < 7δz
for y ≤ zj∗−1.

F Proof of Claim 52
Proof of Claim 52: We want to prove that 4

( rj
x′
)2 − 1

4
(
rj
y′

)2
− 1


2

( zkj
zi

)2
− 1

2
( zkj
x

)2
− 1

 ≥ (1− 10−4).

By defining z := zkj , s := zi and r := rj for the sake of brevity, the left hand side becomes(
x2

x′2

)
·
(
y′2

s2

)
·
(

4r2 − x′2

2z2 − x2

)(
2z2 − s2

4r2 − y′2

)
.

We upper-bound each term one by one.
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First term: Since x′ := x+ ∆ then

x

x′
= x

x+ ∆ = 1− ∆
x+ ∆ ≥ 1− ∆

δx + ∆ ≥ 1− ∆
δx

= 1− 10−12

where we used the fact that x ≥ δx, and the last transition is by the setting of parameters. So,

x2

x′2
≥ 1− 10−11

Second term: Since y′ := y −∆/2 and y ∈
(
s(1 + δz)−1, s(1 + δz)

)
then

y′

s
≥ y −∆/2
y(1 + δz)

≥ 1− δz
1 + δz

≥ 1− 3δz

where we used the fact that y ≥ δx (since y ≥ x) and also considered that by the parameter setting
δz = 10−6, δx = 10−8 and ∆ = 10−20. Consequently, we have

y′2

s2 ≥ 1 + 9δ2
z − 6δz ≥ 1− 10−5.

Third term: Note that by (31) we have

r(
√

2 + ψ) ∈ [z, z(1 + δz))

which combining with the fact that ψ = o(1) implies

r ∈
[
z(1− o(1))√

2
,
z(1 + δz)√

2

)
. (122)

Note that we used the fact that z ≥ x so z = Ω(1) (actually we have z = Θ(1)). On the other
hand, by the bound for the first term we have

x′2 ≤ x2
(
1 + 10−10

)
Now, we use these tools to bound the third term19:

4r2 − x′2

2z2 − x2 ≥
2z2(1− o(1))− x2(1 + 10−10)

2z2 − x2

≥ 1− 2o(1)z2 + 10−10x2

2z2 − x2

≥ 1− 2× 10−10x2

2z2 − x2

≥ 1− 10−9

19Note that for the sake of brevity we are being generous in bounding terms and the inequalities are not tight
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Fourth term: For the fourth term, actually its easier to upper-bound the inverse of it. First,
note that

y′ = y −∆/2 ≥ y(1− δz) ≥ s(1− δz)(1 + δz)−1 ≥ s(1− 10−5).

The first inequality is due to y ≥ x ≥ δx = 10−8 and δz = 10−6. This also implies that

y′2 ≥ s2(1− 3× 10−5).

On the other hand, by (122) we have

2r2 ≤ z2(1 + δz)2 ≤ z2(1 + 10−5).

Combining these facts we have

4r2 − y′2

2z2 − s2 ≤
2z2(1 + 10−5)− s2(1− 3× 10−5)

2z2 − s2

≤ 1 + 10−5 + 4× 10−5 s2

2z2 − s2

≤ 1 + 5× 10−5

where the last transition is due to the fact that s ≤ z (or zi ≤ zkj equivalently). Therefore, we
have a lower-bound of 1− 5× 10−5 for the fourth term.

Combining the bounds: Now, we have:(
x2

x′2

)
·
(
y′2

s2

)
·
(

4r2 − x′2

2z2 − x2

)(
2z2 − s2

4r2 − y′2

)
≥ (1− 10−11)(1− 10−5)(1− 10−9)(1− 5× 10−5)

≥ 1− 10−4

which proves the claim.

General Kernels
Lemma 67 (Uniqueness of Maximum). Let f : [a, b] → R be a three times differentiable function
in (a, b) such that:

• f(a) < 0

• ∃y′ ∈ (a, b] such that f(y′) > 0

• for all y ∈ (a, b) it holds d3

dy3 f(y) ≤ 0.

Then

1. ∃y∗ ∈ (a, y′) such that f(y∗) = 0.

2. ∃η ∈ (y∗, b] such that η is the unique maximum of f in [a, b] and the function is monotone
increasing in [a, η].

Proof. We prove the statements in order:
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1. Using the first two assumptions and continuity of f (since it is differentiable) we get by the
Intermediate Value Theorem that ∃y∗ ∈ (a, y′) such that f(y∗) = 0.

2. Since the function is defined on a closed interval it attains a maximum. We show that there
exists only one maximum. Assume that there exist two local maxima η1 < η2 ∈ (a, b].
Then, there must be a local minimum η0 ∈ (η1, η2) for which f ′′(η0) > 0. However, this is
impossible since f ′′(η1) < 0 and the function f ′′ is non-increasing. Hence, there is exactly
one local maximum η in (a, b] and the function is increasing in [a, η] (and decreasing in (η, b]
if η 6= b).

Corollary 68. Let φ : R+ → R be any function such that φ′′′(y) ≤ 0. For all x > 0, T ≥ 1 and
c1 ≥ c2 ≥ . . . ≥ ct > x√

2 such that ∃y′ ∈ (x,
√

2ct] with f(y′) > 0 define:

f(y) := [φ(y)− φ(x)]−
t∑

s=1

2(cs/x)2 − 1
2(cs/y)2 − 1 ·

1
T
.

Then, the conclusion of Lemma 66 holds. In particular, it holds for all φ(y) ∝ (y)p with p ≤ 2.

Proof. Follows by observing that the second derivative of the summation term is decreasing and
that φ′′′(y) ∝ −(2− p)p · (p− 1) 1

y2−p ≤ 0 for all p ≤ 2 and y > 0.

Claim 69 (Monotonicity). For every i ∈ [|R|] and φ : R+ → R as in Corollary 67 we have

(a) there exists a y∗ ∈ (x,
√

2) such that gy∗,ji ≥ 0, gy,ji ≤ 0 for any y ∈ Zx such that y ≤ y∗, and
gy,ji is non-decreasing in y for y ∈ [y∗, zji ];

(b) there exists a y∗ ∈ (x,
√

2) such that h(N−1)
y∗ ≥ 0, h(N−1)

y ≤ 0 for any y ∈ Zx such that y ≤ y∗

and h(N−1)
y is non-decreasing in y for y ∈ [y∗, zji ].

Proof. Let

q(y) :=
t∑
i=1

2(cs/x)2 − 1
2(cs/y)2 − 1

1
T
,

where c1 ≥ c2 ≥ . . . ≥ ct ≥ z1 ≥ x for some z1 ≥ x. And let y∗1 be such that φ(y∗1)−φ(x)−q(y∗1) = 0
and let ỹ1 be the smallest value such that ỹ1 ≥ y∗1 and φ(ỹ1) − φ(x) − q(ỹ1) = θ for some θ ≥ 0.
Now define G1(y) on [y∗1, z1], for some z1 ≥ ỹ1 as follows

G1(y) :=
{
φ(y)− φ(x)− q(y) y ∈ [y∗1, ỹ1)
θ y ∈ [ỹ1, z1]

(123)

See the red curve in Figure 11.

Also, let q̂(y) := 2(z1/x)2−1
2(z1/y)2−1

1
T . Let y

∗
2 ≥ y∗1 such that G1(y∗2)− q̂(y∗2) = 0. Now, we define G2(y)

for y ∈ [y∗2, z2] as follows:

G2(y) := min
{
G1(y)− q̂(y), θ′

}
where θ′ := G1(z2)− q̂(z2) and θ′ ≥ 0 for some z2 ≤ z1. By the definition of y∗2, function G2(y) for
y ∈ [y∗2, ỹ1] is in the form of the function in Claim 53 and thus, it has a unique maximum at some
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η ∈ [y∗2, ỹ1]. Also, recall that G1(y) = θ for y ∈ [ỹ1, z2]. Also, one should note that since q̂(y) is
a monotone increasing function for y ∈ (0,

√
2z1) and hence for y ∈ [ỹ1, z2], then θ′ ≤ G2(ỹ1) and

therefore θ′ ≤ G2(η). This guarantees that there exist a ỹ2 ∈ [y∗2, η] such that G2(ỹ2) = θ′. The
reason is that G2(y) is a continuous increasing function for y ∈ [ỹ2, η]. So, we have

G2(y) :=
{
φ(y)− φ(x)− q′(y) y ∈ [y∗2, ỹ2)
θ′ y ∈ [ỹ2, z2]

(124)

where, q′(y) := q(y)− q̂(y). See the blue curve in Figure 11.
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