
Smooth Tradeoffs between Insert and Query Complexity in Nearest
Neighbor Search

Michael Kapralov
IBM Watson

December 5, 2014

Abstract

Locality Sensitive Hashing (LSH) has emerged as the method of choice for high dimensional similarity search, a
classical problem of interest in numerous applications. LSH-based solutions require that each data point be inserted
into a number A of hash tables, after which a query can be answered by performing B lookups. The original LSH
solution of [IM98] showed for the first time that both A and B can be made sublinear in the number of data points.
Unfortunately, the classical LSH solution does not provide any tradeoff between insert and query complexity, whereas
for data (respectively, query) intensive applications one would like to minimize insert time by choosing a smaller
A (respectively, minimize query time by choosing a smaller B). A partial remedy for this is provided by Entropy
LSH [Pan06], which allows to make either inserts or queries essentially constant time at the expense of a loss in the
other parameter, but no algorithm that achieves a smooth tradeoff is known.

In this paper, we present an algorithm for performing similarity search under the Euclidean metric that resolves the
problem above. Our solution is inspired by Entropy LSH, but uses a very different analysis to achieve a smooth tradeoff
between insert and query complexity. Our results improve upon or match, up to lower order terms in the exponent, best
known data-oblivious algorithms for main memory LSH for the Euclidean metric.

0

1 Introduction
Similarity search is a classical problem of interest to numerous applications in data-mining such as duplicate detection,
content-based search [KG09, LJW+07], collaborative filtering [DDGR07], pattern classification [CH67], clustering
[Ber02]. In the similarity search problem the algorithm is given a database of objects to preprocess and is then required
to find, for each query object q, the object in the database that is closest to q in some metric. In these applications,
objects in the database are usually represented by high dimensional feature vectors, resulting in a nearest neighbor
search problem in Rd under an appropriate metric. In this paper, we consider the Euclidean metric, or `2.

For the exact nearest neighbor problem a family of tree-based approaches have been developed such as K-D trees
[Ben75], cover trees [BKL06], navigating nets [KL04], R-trees [Gut84], and SR-trees [KS97]. However, the perfor-
mance of these techniques degrades very fast with the dimensionality of the problem (known as the ‘curse of dimen-
sionality’) and in fact degrades to a linear scan of the data quite quickly [WSB98]. Since the exact version of the nearest
neighbor problem suffers from the ‘curse of dimensionality’, substantial attention has been devoted to the Approximate
Nearest Neighbor Problem. In this problem, instead of reporting the closest point to the query q, the algorithm only
needs to return a point that is at most a factor c > 1 further away from q than its nearest neighbor in the database.
Specifically, let D = {p1, . . . , pN} denote a database of points, where pi ∈ Rd, i = 1, . . . , N . In the Euclidean
c-Approximate Nearest Neighbor problem one is required to report, for each query q, a point p̂ ∈ D such that

||q − p̂||2 ≤ c ·min
p∈D
||q − p||2.

One can see [IM98, KOR98] that this problem reduces, with a slight overhead in space and time, to the so-called (c, r)-
Near Neighbor problem ((c, r)-NN for short). In the (c, r)-NN problem the goal is to return a data point within distance
cr of the query point q if a data point within distance r of q exists. The simple reduction from the c-Approximate Near
Neighbor problem to the (c, r)-NN problem can be obtained by considering a sequence of geometrically increasing radii
r, which increases the space and time requirement only by a logarithmic factor.

Locality Sensitive Hashing (LSH) has emerged as the method of choice for the (c, r)-NN problem [IM98]. LSH is
based on a special hashing scheme such that similar points have a higher chance of getting mapped to the same buckets
than distant points. Then for each query, the nearest neighbor among the data points mapped to the same bucket as the
query point is returned as the search result. We now describe the LSH approach formally. We start with the definition of
a locality sensitive family of hash functions:

Definition 1 Let the space Rd be equipped with a norm || · ||, let r ≥ 0 be a distance threshold, let c > 1. A family of
hash functions H = {h : Rd → U} is said to be a (r, cr, p1, p2)-LSH family if for all x, y ∈ Rd, (1) if ||x − y|| ≤ r,
then Prh∈H[h(x) = h(y)] ≥ p1; and (2) if ||x− y|| ≥ cr, then Prh∈H[h(x) = h(y)] ≤ p2.

Points x, y ∈ Rd are called near points in the former case and far points in the latter. An LSH family can be used to
obtain the following solution to the (c, r)-NN problem:

Theorem 2 ([IM98]) Let H denote a (r, cr, p1, p2)-LSH family for a norm || · || on Rd. Then H can be used to solve
the (c, r)-NN problem with norm || · || on a database D on N points using space dN1+ρ+o(1) and query time dNρ+o(1)

as long as p1 ≥ N−o(1), where ρ = log(1/p1)
log(1/p2) .

The algorithm that yields Theorem 2 hashes the points in the database into Nρ/p1 hash tables, resulting in space usage
dNρ/p1 = dNρ+o(1). Then for each query lookups are performed in Nρ/p1 tables, resulting in the stated query time.
As seen from Theorem 2, the ratio ρ = log(1/p1)

log(1/p2) governs the quality of the solution provided by LSH, so constructing
LSH families with the smallest possible ρ is crucial. The original paper [IM98] exhibited an LSH familty for the
Hamming cube with ρ ≤ 1/c. For the Euclidean metric, which we consider in this paper, a simple and practical LSH
familty achieving ρ ≤ 1

c was constructed in [DIIM04]. An LSH familty achieving ρ = 1
c2 + o(1) was constructed

in [AI, And09]. This dependence of ρ on c is optimal [MNP06, OWZ11]. The LSH scheme of [AI] implements the
ball-carving approach. First, the points of the database are projected to a smaller reduced space Rn, where n� logN .
Then the reduced space Rn is covered by randomly shifted grids of Euclidean balls, and each point in the reduced space
is hashed to the lexicographically first ball that covers it. We will use a similar approach as our basic hashing scheme in
this paper (see Algorithm 1 in section 3).

The main disadvantage of the conventional LSH indexing scheme is the relatively large number (in practice, up to
hundreds [GIM99]) of hash tables required for good search quality. This imposes large space requirements and insert
time. To mitigate the space inefficiency, Panigrahy [Pan] introduced the Entropy LSH scheme, which uses only Õ(1)
hash tables as opposed to N1/c:

1

Theorem 3 ([Pan]) There exists a data structure for solving the (c, r)-NN problem under the `2 metric in Rd that uses
Õ(N) space and Õ(N2.06/c) query time for sufficiently large c > 1.

This result guarantees extremely small space (or, insert time) at the expense of an increase of query time from N1/c

of [IM98] to N2.06/c. Alternatively, [Pan] also showed that the query time can be made very efficient (constant time) at
the expense of larger space requirements:

Theorem 4 ([Pan]) There exists a data structure for solving the (c, r)-NN problem under the `2 metric in Rd that uses
Õ(N1/(1−2.06/c)) space and polylogarithmic query time.

In [And09] an algorithm inspired by Entropy LSH is given that achieves Õ(n) space and query time NO(1/c2) for the
same setting.

As seen from the above, despite its efficiency, the classical LSH solution does not provide any tradeoff between the
insert and query complexity. However, for data (respectively, query) intensive workloads one would like to minimize one
parameter, even if it entails an increase in the other. Entropy LSH provides a partial remedy for this, allowing to make
either inserts or queries extremely efficient (No(1) time per point) at the expense of a loss in the other parameter, but
no algorithm that achieves a smooth tradeoff is known. In this paper we provide the first algorithm for nearest neighbor
search that achieves a smooth tradeoff between insert and query complexity, improving upon or matching known results
for parameter settings that algorithms were known for before.

Our results As before, we denote the database of points by D = {p1, . . . , pN}. Our main result is

Theorem 5 Let α ∈ [0, 1] be a constant. Let c ≥ 1 be the desired approximation ratio, and assume that c2 ≥
3(1 − α)2 − α2 + δ for an arbitrarily small constant δ > 0. Then there exists a data structure for the (c, r)-NN
problem under `2 with dNα2ρα+o(1) insert time1, dN (1−α)2ρα+o(1) query time and space dN1+α2ρα(1+o(1)), where
ρα = 4

c2+(1−α)2−3α2 . Furthermore, setting α = 0 results in a data structure with space dN , and α = 1 results in a
single probe data structure. The success probability is 1− o(1) for any fixed query.

We note that the constraint on the approximation ratio c is only nontrivial when one is interested in very low query
complexity, i.e. α is close to 1. When α = 1, our condition constrains c to be strictly larger than

√
3. This constraint

is inherent to the approach, and is also inherent in Entropy LSH (see Theorem 4 above, where c is required to be larger
than a constant).

Note that setting α = 0, we get a data structure with space dN , dNo(1) insert time and dN
4

c2+1 query time. Prior
to our work, the best known scheme with linear space and O(1/c2) dependence of the exponent was due to [And09],
where dNO(1/c2) dependence was achieved with unspecified constant in the O(·) notation. Setting α = 1/2, we obtain
a data structure with dN1/c2+o(1/c2) insert and query time, as well as dN1+1/(c2−1/2)+o(1) space, matching, up to lower
order terms, the best known exponent of 1/c2 obtained in [AI, And09]. Setting α = 1, we obtain a single probe data
structure with dN4/(c2−3)+o(1) insert time that succeeds with probability 1 − o(1). The query time is dNo(1) and the
space is dN1+4/(c2−3)+o(1).

It is interesting to note that, unlike Entropy LSH, which requires knowledge of the distance between near points up
to 1± o(1) factor, our scheme only needs an upper bound on the distance between near points, similarly to the classical
construction of [IM98]. Also, interestingly, our approach yields success probability 1− o(1) even in the linear space or
single probe regime, as opposed to Ω(1/ logN) success probability provided by Entropy LSH [Pan].

Our techniques. At a high level, our algorithm is a natural interpolation between two extremes of Entropy LSH
(Theorem 3 and Theorem 4). The algorithm is parameterized by a α ∈ [0, 1], which governs the tradeoff between the
insert and query complexity. Our data structure uses exactly one random hash function, which is selected at initialization.
In order to insert a data point p into the data structure, we project p to a reduced space Rn using a dimensionality
reduction matrix S, generate A = Nα2ρα(1+o(1)) perturbations Sp + ui, i = 1, . . . , A of p, and insert p into buckets
that these perturbations Sp + ui hash to. The magnitude of the perturbation ui is proportional to α. Similarly, given
a query q, we generate B = N (1−α)2ρα(1+o(1)) perturbations Sq + vj , j = 1, . . . , B of q, examine buckets that these

1Note that our expressions for runtime have a extra additive o(1) term in the exponent. This term is due to the time needed to evaluate our hash
function. On the other hand, the space complexity only suffers from a multiplicative 1 + o(1) loss in the exponent. The latter loss is zero at the
extreme points, where α = 0 or α = 1, yielding strictly linear space (α = 0) and single probe (α = 1) data structures with success probability
1 − o(1) respectively.

2

perturbations Sq + vj hash to, and return the closest point found (see Fig. 2) . The magnitude of the perturbation vj is
proportional to 1− α.

While our algorithm is inspired by [Pan], our analysis is fundamentally different. In [Pan] correctness of hashing
schemes is argued using an entropy based approach. One shows that for a random hash function and two near points
p, q the conditional entropy I of h(p) given h and q is small, and then generates about 2I samples from this conditional
distribution. This many samples are sufficient to ensure a collision with nontrivial probability. In [And09] Andoni
achieves the nearly optimal O(1/c2) dependence of the exponent on the approximation parameter c at the expense of
introducing a more complex framework that still relies on entropy considerations.

In this paper, we take a more direct approach to analyzing our algorithm, avoiding entropy-based arguments alto-
gether. In order to achieve correctness, we need to prove two statements: lower bounds on collision probability for
(perturbations of)near points, and upper bounds on collision probability for (perturbations of)far points. For the first
claim, we need to prove that for a given pair of near points p, q, with high probability over the choice of the hash func-
tion h and the perturbations ui, i = 1, . . . , A, vj , j = 1, . . . , B (see Fig. 2) at least one of Sp + ui collides with at
least one of Sq + vj under our hash function. This claim turns out to be rather delicate: we cannot prove that a fixed
perturbation Sp+ ui is likely to collide with at least one of the perturbations Sq + vj since this is simply not true. One
can prove, for example, that a given perturbation Sp + ui collides with at least one of the Sq + vj’s with nontrivial
probability, but that does not lead to the result since such events for different ui’s are dependent (via the qj’s). Instead,
we define a point z := (1 − α)p + αq lying on the line segment between p and q, and show that (a) at least one of
Sp + ui’s collides with Sz under h with probability 1 − o(1) and (b) at least one of Sq + vj’s collides with z with
probability 1− o(1). A union bound over the failure events for these two claims yields the result.

The proof of the upper bound on the collision probability is also somewhat subtle, and requires a careful setting
of parameters. The main issue is that we need to argue about the probability that the pair of points Sp + ui, Sq + vj

collide under hashing. This probability depends on the distribution of the vector (Sp + ui) − (Sq + vj), which is not
particularly simple, for example, when ui and vj are sampled uniformly from a ball of fixed radius (the most convenient
setting for the first claim). To remedy this, we sample the perturbations ui, vj from balls whose radii are sampled from
an appropriate distribution, so that ui, vj are vectors of independent Guassians. Since S(p− q) is Gaussian, this ensures
that the vector (Sp + ui) − (Sq + vj) = S(p − q) + ui − vj is a vector of independent Gaussians, making analysis a
manageable task.

Related work The problem of proving lower bounds for nearest neighbor search has received a lot of attention in the
literature. The results of [MNP06, OWZ11] Euclidean metric show that ρ = 1/c2 + o(1) achieved by LSH functions of
[AI] is best possible up to lower order terms. The results of [PTW08, PTW] show that that single-probe algorithms for
(c, r)-NN under the Euclidean metric must use N1+Ω(1/c2) space (these lower bounds hold for the cell probe model).
In a recent paper [AINR14] showed how to use LSH functions in a more efficient way than Theorem 2 to obtain better
space and query time, namely N1+(7/8)/c2 space and N (7/8)/c2 query time for large c. Unlike previous works, their
approach is data-dependent: the family of LSH functions is chosen carefully as a function of the database as opposed
to sampled uniformly at random from a fixed distribution. It would be very interesting to see if similar analysis can be
used to improve our tradeoffs.

Organization We give some definitions and relevant results from probability and high dimensional geometry in sec-
tion 2. The algorithm is presented in section 3. The analysis is presented in section 4. An outline of the analysis is given
in section 4.1, some technical lemmas are presented in section 4.2. Upper and lower bounds on collision probability
of far and near points respectively are given in sections 4.3 and 4.4 respectively, and are put together in section 4.5 to
obtain a proof of Theorem 5. Proofs omitted from the main body of the paper are given in the Appendix.

2 Preliminaries
Definition 6 The Gamma distribution with shape parameter k > 0 and scale θ > 0, denoted by Γ(k, θ), has the pdf

1
Γ(k)θk

xk−1e−x/θ.

Claim 7 [BGMN05] Let X ∼ 1√
π
e−|xi|

2

. Then |X|2 ∼ Γ(1/2, 1).

We will define the distribution D ∼ 2Γ(n/2 + 1, 1), where n is the dimension of our reduced space (see section 3
below). This distribution will be used extensively throughout the algorithm. For any real t we write t · D to denote the

3

distribution of t ·X , where X ∼ D. We writeN (0, In) to denote the Gaussian distibution on Rn with covariance matrix
In.

Claim 8 Let X ≥ 0 be a random variable. For any event E one has E[X|E] ≤ 1

Pr[E]
E[X].

In what follows for a vector x we write ||x|| or ||x||2 to denote the `2-norm of x. We write BR(x) to denote the
`2 ball of radius R around x, and write |BR(x)| to denote the volume of BR(x). Let C(u, r) denote the volume of the
spherical cap at distance u from the center of a ball Br(0). Let I(u, r) = C(u,r)

|Br(0)| be the relative cap volume.

Lemma 9 Let a,w ∈ Rn. Let r,R ∈ R+ be parameters, and suppose that R > r. Let d = ||a − w||2. Let
x = r2+d2−R2

2d . If x > 0, then

I (x) ≤ |Br(a) ∩ BR(w)|
|Br(a)|

≤ 2I (x) .

We will use

Lemma 10 [[AI], Lemma 2.1] For any n ≥ 2 and 0 ≤ u ≤ r one has C′
√
n

(
1−

(
u
r

)2)n/2 ≤ I(u, r) ≤
(

1−
(
u
r

)2)n/2
,

where C ′ is an absolute constant.

3 The algorithm
In this section we describe our algorithm. We denote data points by p ∈ Rd, and query points by q ∈ Rd. The number of
points in the database is denoted by N , as before. In the preprocessing stage for each point p we perform the following
operation K times independently (we index the independent repetitions by l = 1, . . . ,K). First, we project p down to
dimension n � logN using a dimensionality reduction matrix Sl. Then we perturb Slp by an appropriately chosen
vector of independent Gaussians (the magnitude of the perturbation is proportional α). Finally, we hash the perturbed
points using a ball-carving approach described below (see BASICHASH). Thus, for each perturbation of p and for each
l we obtain a hash value. We concatenate these values and hash point p into the corresponding bucket. The query phase
is analogous, the only difference is the magnitude of the perturbations (specified below). We now describe these steps
in details.

Dimensionality reduction. Let S ∈ R(K·n)×d denote a matrix of independent Gaussians of unit variance. We partition
the rows of S intoK blocks, corresponding toK hash functions. Thus Sl ∈ Rn×d is the dimensionality reduction matrix
for the l-th hash function. Since entries of S are chosen as Gaussians with unit variance, for any p, q ∈ Rd we have
Sl(p− q) ∼ ||p− q||2 · N (0, In). We will also write Sp ∈ RK·n for p ∈ Rd to denote the concatenation of Slp’s.

Perturbation. Let dnear denote the distance between near points in the original space Rd (this corresponds to the
radius r in the (c, r)-NN problem). For each l the perturbations of a projected data point p are of the form Slp + uil ,
i = 1, . . . , A, where uil ∼ αdnear · N (0, In). Note that by Lemma 14 this is the same as first sampling a radius rp,l so
that r2

p,l ∼ (αdnear)
2 ·D, and then sampling uil uniformly from the ball Brp,l(0) (see Algorithm 2). The perturbation for

query points is analogous: for each l the perturbations of a projected query point q are obtained as Slq+v
j
l , j = 1, . . . , B,

where vjl ∼ (1− α)dnear · N (0, In) (see Algorithm 3).

Ball-carving. We use the ball-carving approach of [AI] as the basic scheme, i.e. we first project point in Rd down
to smaller dimension n = o(logN), and then perform ball-carving in the reduced space Rn. We will use ball-carving
with `2 balls as the basic scheme. The (expected) distance between near points after dimensionality reduction will be at
most dnear

√
n for dnear = n−1/4, the distance between far points will be at least c · dnear

√
n. We will be carving with

Euclidean balls of radius Rl, for l = 1, . . . ,K. The radii Rl are sampled independently from the distribution R2
l ∼ D

at the beginning of the algorithm and passed as a parameters to all functions (see Algorithms 1, 2 and 3).
We now describe how the reduced space Rn is covered by Euclidean balls. For each l = 1, . . . ,K let Ul denote a

subset of [0,
√
πnRl]

n of size

T = (C logN) · (
√
πnRl)

n

vol(BRl(0))
= (C logN) · (

√
πnRl)

n

πn/2Γ(n/2 + 1)Rnl
= (C logN) · nn

(n/2)!
(1)

4

sampled uniformly at random. Here C > 0 is an appropriately large constant, and N is the number of points in the
database. Note that T is integer as long as n is even and (C logN) ≥ 1 is an integer, which we assume from now on.
Let G := (

√
πnR) · Zn denote an infinite grid of scaled integer points. Our basic hashing function BASICHASH, for

each l, will map the input point to one of the balls of radius Rl centered at shifts u+ G of the grid, for u ∈ Ul (note that
the balls centered at different grid points do not overlap) . More precisely, for each l ∈ [1 : K] the centers of the balls
are given by

Wl := Ul + G,

where we use the notation S1 + S2 = {a + b : a ∈ S1, b ∈ S2} for S1, S2 ⊂ Rn. We refer to points in Wl as
centers. First note that for any l a ball of radius Rl around any point x ∈ Rd contains exactly C logN centers inWl in
expectation by choice of parameters. We will need the fact that with high probability over the choice of Ul all perturbed
points below have about C logN centers in the ball of radius Rl around them. We now make this precise. Fix a constant
α ∈ [0, 1]. Let p, q denote a query and its near point. Define the event

E∗(p, q) :=
{
BRl(Slp+ uil) ∩Wl ≤ 2C logN and BRl(Slq + vjl) ∩Wl ≤ 2C logN for all i, j, l

}
. (2)

One has

Claim 11 Let α ∈ [0, 1] be a constant. Let c ≥ 1 be the desired approximation ratio, and assume that c2 ≥ 3(1−α)2−
α2 + δ for an arbitrarily small constant δ > 0, as in Theorem 5. Suppose that the constant C in (1) is sufficienlty large.
Then for any pair of points p, q one has Pr[E∗(p, q)] ≥ 1− 1/N .

Proof: Recall that by assumption of Theorem 5 one has c2 ≥ 3(1− α)2 − α2 + δ for a constant δ > 0, so the number
of perturbations is always bounded by N8/δ , say.

Fix l. Then by standard concentration inequalities on has

Pr[|BRl(Slp+ uil) ∩Wl| > 2C logN] < N−8/δ−2

for any i, and
Pr[|BRl(Slq + vil) ∩Wl| > 2C logN] < N−8/δ−2

for any j as long as the constant C is sufficiently large. Now the claim follows by a union bound over all l = 1, . . . ,K
and at most 2N8/δ perturbations of p and q.
The basic hash function simply returns such a center if it is unique, and a uniformly random element of a large universe
otherwise:

Algorithm 1 `2-ball carving LSH for `2: hashing data points
1: procedure BASICHASH(x,R, n,W)
2: If |W∗ ∩ BR(x)| 6= 1 return UNIF ([0, 1]n) . If no center falls into BR(x), return a random element of a

large universe
3: return a uniformly random element ofW∗ ∩ BR(x)
4: end procedure

The function BASICHASH can be evaluated in time nO(n), which we will ensure to be No(1) below (see Claim 20
in Appendix A for the runtime bound).

5

Algorithm 2 `2-ball carving LSH for `2: hashing data points

1: procedure HASHDATA(p, α, S,K, {Rl}Kl=1, B, n, , {Ul}Kl=1, dnear) . We have dnear = n−1/4 and Rl ≈
√
n

2: for l = 1, . . . ,K do
3: Sample rp,l from distribution given by r2

p,l ∼ (αdnear)
2 · D.

4: end for
5: for j = 1, . . . , A do . Generating A points around p
6: for l = 1, . . . ,K do
7: uil ← UNIF (Brp,l(0)) . So that uil ∼ (αdnear)

2 · N (0, In)
8: hl ← BASICHASH(Slp+ uil, Rl, n,Ul)
9: end for

10: PUT(h, p) . Insert 〈h, p〉 into hash table
11: end for
12: end procedure

Queries are performed as follows:

Algorithm 3 `2-ball carving LSH for `2: query

1: procedure QUERY(q, α, S,K, {Rl}Kl=1, A, n, {Ul}Kl=1, dnear) . We have dnear = n−1/4 and Rl ≈
√
n

2: T ← ∅ . Candidate points
3: for l = 1, . . . ,K do
4: Sample rq,l from distribution given by r2

q,l ∼ ((1− α)dnear)
2 · D.

5: end for
6: for i = 1, . . . , B do . Generating B points around q
7: for l = 1, . . . ,K do
8: vil ← UNIF (Brq,l(0)) . So that vjl ∼ ((1− α)dnear)

2 · N (0, In)
9: hl ← BASICHASH(Slq + vil , Rl, n,Ul)

10: end for
11: If |T | > N (1−α)2ρα+o(1) then break
12: T ← T ∪ GET(h) . Retrieve at most N (1−α)2ρα+o(1) points from hash bucket
13: end for
14: return closest point to q in T
15: end procedure

Note that the main difference between Algorithms 2 and 3 is the magnitude of the perturbations to projected points
(see Fig. 1). We gather useful properties of random variables used in Algorithms 2 and 3 below.

Claim 12 Let p be a data point, let q be a query point such that p − q = λdnear. Let i ∈ [A], j ∈ [B], l ∈ [K]. Then
the vector (Slp+ uil)− ((Slq + vjl) is uniformly random in the ball Br′(0), where

(r′)2 ∼ (λ2 + α2 + (1− α)2)d2
near · D.

and (Slp+ uil)− (Slq + vjl) ∼
√
λ2 + α2 + (1− α)2dnear · N (0, In).

Proof: Recall that uil is sampled uniformly at random from Brp,l(0), where r2
p,l ∼ (αdnear)

2 · D. By Corollary 15 we
thus have that uil ∼ αdnear · N (0, In). Similarly, vjl ∼ (1− α)dnear · N (0, In). Also, Slp− Slq ∼ γdnear · N (0, In)
by the choice of S and 2-stability of the Gaussian disrtibution. Thus, we have

(Slp+ uil)− (Slq + vjl) ∼
√
||p− q||22 + α2d2

near + (1− α)2d2
near · N (0, In).

The distribution of (r′)2 follows by Corollary 15.

Claim 13 Let x ∈ Rd. Let wl := BASICHASH(Slx,Rl, n,Ul), and condition on E∗. Then wl is a uniformly random
point in BRl(x). In particular, wl − x ∼ N (0, In).

6

Sp SqSz

perturbation of p

perturbation of q

Figure 1: Perturbations of data points and query points in projected space. The radii of balls around projected points
Sp and Sq are about α||Sp − Sq|| and (1 − α)||Sp − Sq|| respectively. The radii are sampled from a distribution
independently, so they do not add up to ||Sp− Sq|| in general.

Proof: By conditioning on E∗ the output of BASICHASH is a center in Wl. Since BASICHASH outputs a uniformly
random center that falls into BRl(x), the first claim follows. Further, since R2

l ∼ D by definition of Rl, we have that
wl − x ∼ N (0, In) by Corollary 15.

In the next section we give the analysis of our algorithms, resulting in a proof of Theorem 5. We give a glossary of
main parameters here for convenience of the reader.

Glossary of parameters

• α – parameter governing balance between insert and query complexity. α ∈ [0, 1] is assumed to be an absolute
constant.

• N – number of points in the database

• d – dimension of the original space

• dnear – distance between near points in the original space (the r in (c, r)-NN problem)

• n – dimension of the reduced space, i.e. the space in which BASICHASH performs ball-carving

• K – number of hash functions to concatenate

• Rl – radius of balls used for carving in the reduced space for the l-th hash function, l = 1, . . . ,K. Rl is sampled
from the distribution R2

l ∼ D.

• W =
⋃K
l=1Wl – set of centers in reduced space that points are hashed to. The sets Wl are inifiinite, since

Wl = Ul + G (Ul are the shifts), and they are represented implicitly by Ul.

• Sl ∈ Rn×d, l = 1, . . . ,K – dimensionality reduction matrices for the l independent hash functions (each Sl is a
matrix of independent unit variance Gaussians).

• rl – radius of the small balls around projected points Slp, Slq that we sample perturbed points from (see Fig. 1).

• C logN – expected number of centers w ∈ W that belong to the ball BR(a) for a typical point a ∈ Rn in the
reduced space.

4 Analysis
In this section we give the formal analysis of our algorithm. We start with an outline in section 4.1, then present some
technical lemmas in section 4.2. Upper and lower bounds on collision probability of far and near points respectively are
given in sections 4.3 and 4.4 respectively, and are put together in section 4.5 to obtain a proof of Theorem 5.

7

4.1 Proof outline
We now give intuition for the analysis. Recall that algorithm first projects a pair of points p, q ∈ Rd to Rn for a slowly
growing parameter n. Then at preprecessing timeA ≈ Nα2/c2 random points in a ball of radius proportional to α around
data point p are generated. Similarly, at query time B ≈ N (1−α)2/c2 random points in a ball of radius proportional to
1−α around q are generated (see Algorithm 2 and 3 respectively).These points are then hashed using BASICHASH: the
reduced space Rn is covered with a sufficient number of Euclidean balls, and a point is hashed to a uniformly random
ball in our collection that contains it. This is repeated K times independently, and the outputs are concatenated to obtain
the final hash function.

In order to establish our result, we need to prove lower bounds on collision probability for (perturbations of) near
points, and upper bounds on collision probability for (perturbations of) far points.

Near points. Given a pair of points p, q such that ||p − q|| ≤ dnear, we need to argue that with probability at least
1−o(1) over the choice of the hash function h and perturbations ui, vj (see Fig. 1) one has h(Sp+ui) = h(Sq+vj) for
at least one pair i, j. This claim turns out to be rather delicate: we cannot prove that a fixed perturbation p+ ui is likely
to collide with at least one of the perturbations q + vj since this is simply not true. One can prove, for example, that a
given perturbation p+ui collides with at least one of the q+vj’s with nontrivial probability, but that does not lead to the
result since such events for different ui’s are dependent (via the qj’s). Instead, we define the point z = (1−α)p+αq on
the line segment joining p and q, and argue that (1) h(Sq+ vj) = h(Sz) for at least one j and (2) h(Sp+ui) = h(Sz)
for at least one i with probability 1 − o(1) over the choice of h and {ui}, {vj}. Steps (1) and (2) are similar, so we
outline the proof of (1) only.

We first note that h(Sq+vj) = h(Sz) if and only if hl(Sq+vj) = hl(Sz) for all l, i.e. the collision should happen
in every independent repetition. Now fix l, and let wl ∈ Wl denote the center that Slz hashes to under BASICHASH.
By definition of BASICHASH our point Slq + vjl collides with Slz if and only if two conditions are satisified: (a)
wl ∈ BRl(Slq + vjl) and (b) wl is chosen as the center to be hashed to in line 3 of BASICHASH. Condition (b) is easy
to handle, so we describe our approach to ensuring (a).

Note that for a fixed hash function h and fixed i = 1, . . . , B we have

Prvj
[
wl ∈ BRl(Slq + vjl) for all l = 1, . . . ,K

]
=

K∏
l=1

Prvj
[
wl ∈ BRl(Slq + vjl)

]
by independence of perturbations vj across different repetitions. On the other hand, since the perturbed query point
Slq + vjl is uniformly random in the ball Brq,l(Slq), we have

Prvj
[
wl ∈ BRl(Slq + vjl)

]
=
|Brq,l(Slq) ∩ BRl(wl)|

|Brq,l(Slq)|
. (3)

Denote the rhs by ξl, and note that ξl is a random variable that depends on the projection matrix Sl, random shifts Ul and
radius Rl used in repetition l. In section 4.4 below we prove a concentration result for

∏K
l=1 ξl, implying that the lhs of

(3) is quite tightly concentrated. More precisely, we prove that
∑K
l=1 ln ξl is within a 1 + o(1) factor of its expectation

with probability 1−o(1), which is sufficient for our purposes. Note that concentration is not immediate, since the rhs of
(3) may in general take arbitrarily small values. However, a careful choice of parameters allows to control the variance
and prove concentration.

The details of this argument are presented in section 4.4. The argument requires a good estimate for

E[ln ξl] = E
[|Brq,l(Slq) ∩ BRl(wl)|

|Brq,l(Slq)|

]
.

Such an estimate is provided by Lemma 16 below, one of our two main technical lemmas.

Far points Consider a pair of far points p, q ∈ Rd, i.e. ||p − q|| ≥ c · dnear. We need to prove that the perturbations
of p and q in projected space, i.e. Slp + uil and Slq + vjl , are unlikely to collide under all K hash functions. Fix l and
let wl ∈ Wl denote the center that Slq + vjl hashes to. We need to upper bound the probability that Slp+ uil belongs to
the ball BRl(wl). This quantity depends on the distribution of

(Slp+ uil)− (Slq + vjl), (4)

8

which is in general quite complicated if radii rp,l, rq,l of the small balls that perturbations are sampled from are fixed.
This is the reason why we sample these radii from the (scaled) distribution D – this sampling ensures that uil, v

j
l are

simply vectors of independent Gaussians. But Sl(p − q) also is a vector of independent Gaussians by the choice of S.
Thus, (4) is just a vector of independent Gaussians. Finally, again by Lemma 14, (4) is a uniformly random vector in a
ball of radius r that satisfies r2 ∼ γ2D for some γ > 0. Thus, all we are interested in is the expectation of

|Br(a) ∩ BR(wl)|
|Br(a)|

,

where r2 ∼ γ2 ·D, a = Slq+vjl , wl−a ∼ N (0, In), and R2 = ||w−a||2 +Y, Y ∼ 2Γ(1, 1). A bound on this quantity
is provided by Lemma 17. The details of the analysis outlined above are provided in section 4.3.

In the rest of this section we state our main technical lemmas in section 4.2, prove the upper bound on collision
probability in section 4.3 and prove the lower bound in section 4.4. We then put these results together in section 4.5 to
obtain a proof of Theorem 5.

4.2 Technical lemmas
The follows lemma will be very useful for our analysis:

Lemma 14 Let Xi ∼ 1√
π
e−x

2

, i = 1, . . . , n. Let Y be exponential with mean 1. Let R = (X2
1 + . . . + X2

n + Y)1/2.
Then (X1, . . . , Xn) is uniformly distributed in the ball R · B(0).

The proof of Lemma 14 is given in Appendix C. Note that the random variablesXi for p = 2 in Lemma 14 are Gaussian
with variance 1/2. Since we work with unit norm Gaussians, we need to introduce appropriate scaling:

Corollary 15 Let Xi ∼ N(0, 1), i = 1, . . . , n. Let Y ∼ 2Γ(1, 1). Let R = (X2
1 + . . .+X2

n + Y)1/2, so that R2 ∼ D.
Then (X1, . . . , Xn) is uniformly distributed in the ball R · B(0).

The following two lemmas will be our main tool in bounding collision probability for near and far points in sec-
tion 4.3 and 4.4 below.

Lemma 16 (Lower bounds on collision probability in reduced space) Let a, b ∈ Rn such that a− b ∼ γ′ ·N (0, In).
Let r2 ∼ γ2 · D, where γ = on(1), γ′ ≤ γ. Let w − a ∼ N (0, In), and let R2 = ||w − a||2 + Y, Y ∼ 2Γ(1, 1)(see
Fig. 2(a) for an illustration). Let

ξ :=
|Br(b) ∩ BR(w)|
|Br(b)|

.

Then there exists an event E with Pr[Ē] ≤ e−γ
2n such that E[ln ξ|E] ≥ − 1

2γ
2n(1 + o(1)). Furthermore, one has

ln ξ > −n conditional on E .

The proof of this lemma is given in Appendix B. The next lemma will be useful for upper bounding collision
probability:

Lemma 17 Let a ∈ Rn. Let r2 ∼ γ2 · D, where γ is such that γ2n = ω(1). Let w − a ∼ N (0, In), and let
R2 = ||w − a||2 + Y, Y ∼ 2Γ(1, 1) (see Fig. 2(b) for an illustration). Let

ξ :=
|Br(a) ∩ BR(w)|
|Br(a)|

.

Then E[ξ] ≤ 2exp
(
− 1

8γ
2n(1−O(γ))

)
.

The proof of this lemma is given in Appendix B. We note this is quite similar to the upper bound on the probability p2

that two points at distance 2r from each other collide under hashing proved in [AI] (see equation (2) in [AI]). Indeed,
since b is uniformly random in a ball of radius r as above, a − b can be viewed as the Gaussian projection of a fixed
length vector x− y in Rd. We are thus intrested in the probability that w, the point that a hashes to, is within distance R
of b. This is up to a factor of 2 the quantity studied in [AI], with the minor difference that the radius R of the balls that
we are carving with is sampled from a distribution rather than fixed.

9

a

w

BR(w)
Br(a)

(a) Illustration for Lemma 16. The boundary of the ball BR(w) is
shown.

b a

w

BR(w)

Br(b)

(b) Illustration for Lemma 17. The boundary of the ball BR(w) is shown.

4.3 Upper bound on collision probability for far points
In this and the next section we state the main lemmas of our analysis (the proofs are deferred to the appendix due to
space constraints), and then put them together to obtain a proof of Theorem 5 in section 4.5.

We gather some of the random variables used in Algorithms 2 and 3 here for convenience of the reader. Recall
that S ∈ R(K·n)×d is a matrix of independent Gaussians of unit variance used for dimensionality reduction. For each
l = 1, . . . ,K we have

1. r2
p,l ∼ (αdnear)

2 · D, r2
q,l ∼ ((1− α)dnear)

2 · D.

2. ui = (ui1, . . . , u
i
K) ∈ RK·n, i = 1, . . . , A, vj = (vj1, . . . , v

j
K) ∈ RK·n, j = 1, . . . , B be sampled by choosing uil

independent uniformly random in Brp,l(0), and vjl uniformly at random in Brq,l(0).

Also, Rl, l = 1, . . . ,K,R2
l ∼ D are the radii of the balls that BASICHASH uses for carving. Ul, l = 1, . . . ,K are the

shifts of the grids G, andWl = Ul + G is the set of centers of balls used for carving.

Lemma 18 Let α ∈ [0, 1] be a constant. Let c > 1 denote the desired approximation ratio, and suppose thatK = nΘ(1).
Let dnear = n−1/4. Let p, q ∈ Rd be a pair of far points, i.e. ||p − q||2 ≥ cdnear. Consider an invocation of
HASHDATA(p, α, S,K, {Rl}Kl=1, B, n, {Ul}Kl=1, dnear) and QUERY(q, α, S,K, {Rl}Kl=1, A, n, {Ul}Kl=1, dnear).

Then for each i ∈ [1 : A], j ∈ [1 : B] one has

Pr[h(Sp+ ui) = h(Sq + vj)] ≤ e−(c2+α2+(1−α)2)·d2
near(1−o(1))nK/8.

The proof of the Lemma is given in Appendix B.

4.4 Lower bound for near points
Lemma 19 Let α ∈ [0, 1] be a constant. Let c > 1 denote the desired approximation ratio, and suppose that
K = nΘ(1), Kd2

near = nΩ(1), d2
nearn = nΩ(1), n = ω(1), n = o(logN). Let p, q ∈ Rd be a pair of near

points, i.e. ||p − q||2 ≤ dnear. Consider an invocation of HASHDATA(p, α, S,K, {Rl}Kl=1, B, n, {Ul}Kl=1, dnear) and
QUERY(q, α, S,K, {Rl}Kl=1, A, n, {Ul}Kl=1, dnear). Then

Pr[∃i ∈ [1 : A], j ∈ [1 : B] s.t. h(Sp+ ui) = h(Sq + vj)] = 1− o(1)

as long as
A ≥ (C logN)2Ke(1+o(1))α2d2

nearnK/2,

and
B ≥ (C logN)2Ke(1+o(1))(1−α)2d2

nearnK/2.

If α = 0 then setting A = 1 and B as above is sufficient. Similarly, if α = 1, setting A as above and B = 1 is sufficient.

The proof of the Lemma is given in Appendix B.

10

4.5 Putting it together
We can now give the proof of our main theorem:
Proof of Theorem 5:

Let K ′ = d2
nearnK/2, and recall that dnear = n−1/4. We choose the scaling so that ||p − q||2 ≤ dnear for near

points and ||p− q||2 ≥ cdnear for far points. We choose

K ′ :=
4

c2 + α2 − 3(1− α)2
lnN,

and set K,n as follows. Recal that K ′ = d2
nearnK/2 = n1/2K/2, i.e. n1/2K = 2K ′. We let K = (2K ′)3/4 and

n = (2K ′)1/2. Note that we have K = nΘ(1), as required by Lemma 18. Furtheremore, we have Kd2
near = Kn−1/2 =

(2K ′)3/4−1/4 = (2K ′)1/2 = ω(1) and dnearn = n1/2 = nΩ(1), as required by Lemma 19. We now verify that the
factor (2C logN)2K that arises in Lemma 19 is No(1), and that the BASICHASH function can be computed in time
No(1) for our choice of parameters.

For the first claim, note that we have K = O(log3/4N), and hence

(2C logN)K = eO(log3/4 N log logN) = No(1). (5)

Also, we have
nO(n) = (logN)O(log1/2 N) = No(1), (6)

implying that BASICHASH can be computed in time No(1) by Claim 20.
Let

A = (2C logN)2KeK
′α2(1+ε) = Nα2ρα(1+o(1))

B = (2C logN)2KeK
′(1−α)2(1+ε) = N (1−α)2ρα(1+o(1)),

where ε = o(1) as in Lemma 19. When α = 0, we set A = 1 and B as above, and when α = 1, we set B = 1 and
A as above, in accordance with Lemma 19. The space and insert and query complexity are immediate. Correctness
is guaranteed by Lemma 19 if pruning were not done in lines 11 and 12 of Algorithm 3. We now argue correctness
formally.

Consider a query q. We now show that the number of collisions of perturbations q + vj of q with perturbations
p′ + uj

′
of points p′ that are far from q is bounded by N (1−α)2ρα+o(1). By Lemma 18 the expected number of such

collisions is bounded by
ABNe−

1
4 (c2+α2+(1−α)2)K′(1−o(1)). (7)

Indeed, this is because there are N points in the database, each of which is inserted into the hash table A times, and the
near neighbor query for point q performs B lookups. The expected query time is bounded by B plus (7). The latter term
equals

ABNe−
1
4 (c2+α2+(1−α)2)K′(1−o(1)) = (2C logN)4K ·Ne(α2+(1−α)2− 1

4 (c2+α2+(1−α)2))K′(1−o(1))

= N1+o(1)e−
1
4 (c2−3α2−3(1−α)2)K′

= No(1) · e 1
4 (c2+(1−α)2−3α2)K′

· e− 1
4 (c2−3α2−3(1−α)2)K′

= No(1) · e(1−α)2K′
= N (1−α)2ρα+o(1).

Thus, by Markov’s inequality the number of collisions of perturbations q+ vj of q with perturbations p′ + uj
′

of points
p′ that are far from q is bounded by N (1−α)2ρα+o(1) with probability 1− o(1), so the pruning step does not prune away
a near point if it exists, and correctness follows.

References
[AI] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high dimen-

sions. In FOCS’06.

11

[AINR14] Alexandr Andoni, Piotr Indyk, Huy L. Nguyen, and Ilya Razenshteyn. Beyond locality-sensitive hashing.
SODA, 2014.

[And09] Alexandr Andoni. Nearest Neighbor Search: the Old, the New, and the Impossible. Ph.D. Thesis, MIT,
2009.

[Ben75] J. Bentley. Multidimensional binary search trees used for associative searching. In Comm. ACM, 1975.

[Ber02] P. Berkhin. A survey of clustering data mining techniques. Springer, 2002.

[BGMN05] Franck Barthe, Olivier Guédon, Shahar Mendelson, and Assaf Naor. A probabilistic approach to the geom-
etry of the lnp -ball. The Annals of Probability, 33:480–513, 2005.

[BKL06] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbors. In ICML, 2006.

[CH67] T. Cover and P. Hart. Nearest neighbour pattern classification. In IEEE Trans. on Inf. Theory, 1967.

[DDGR07] A. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization: Scalable online collaborative
filtering. In WWW, 2007.

[DIIM04] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive hashing scheme
based on p-stable distributions. In Symposium on Computational Geometry, pages 253–262, 2004.

[GIM99] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. In VLDB, 1999.

[Gut84] A. Guttman. R-trees: a dynamic index structure for spatial searching. In SIGMOD, 1984.

[IM98] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality.
In STOC, 1998.

[KG09] B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for scalable image search. In ICCV, 2009.

[KL04] R. Krauthgamer and J. Lee. Navigating nets:simple algorithms for proximity search. In SODA, 2004.

[KOR98] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search of approximate nearest neighbor in high
dimensional spaces. In STOC, 1998.

[KS97] N. Katayama and S. Satoh. The sr-tree: an index structure for high-dimensional nearest neighbor queries.
In SIGMOD, 1997.

[LJW+07] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-probe lsh: Efficient indexing for high-
dimensional similarity search. In VLDB, 2007.

[MNP06] R. Motwani, A. Naor, and R. Panigrahy. Lower bounds on locality sensitive hashing. In SCG ’06: Pro-
ceedings of the twenty-second annual symposium on Computational geometry, pages 154–157, 2006.

[OWZ11] Ryan O’Donnell, Yi Wu, and Yuan Zhou. Optimal lower bounds for locality sensitive hashing (except when
q is tiny). ITCS, 2011.

[Pan] Rina Panigrahy. Entropy based nearest neighbor search in high dimensions. In SODA’06.

[PTW] R. Panigrahy, K. Talwar, and U. Wieder. Lower bounds on near neighbor search via metric expansion.
FOCS’10.

[PTW08] Rina Panigrahy, Kunal Talwar, and Udi Wieder. A geometric approach to lower bounds for approximate
near-neighbor search and partial match. FOCS, pages 414–423, 2008.

[RR91] S. T. Rachev and L. Ruschendorf. Approximate independence of distributions on spheres and their stability
properties. The Annals of Probability, 19(3):1311–1337, 07 1991.

[SZ90] G. Schechtman and J. Zinn. On the volume of intersection of two lp balls. Proc. Amer. Math. Soc.,
110:217–224, 1990.

[WSB98] R. Weber, H. Schek, and S. Blott. A quantititative analysis and performance study for similarity search
methods in high dimensional spaces. In VLDB, 1998.

12

A Omitted proofs from section 3
Claim 20 BASICHASH can be implemented to run in expected time (C log n)nO(n).

Proof: In order to implement BASICHASH it is sufficient, given input point x, to form a list {w1, . . . , wQ} of centers
in Wl that belong to BRl(x), and output a uniformly random such center. To form the list, we consider the T =
(C logN)nO(n) shifted grids u + G, u ∈ Ul. For a fixed shift u, it is sufficient to round x − u to the closest grid point
(this can be done in O(n) time), and check if this grid point is within Euclidean distance Rl of x. Thus, BASICHASH
can be implemented in stated time.

B Omitted proofs from section 4
We will need

Claim 21 Let X ∼ Γ(k, 1) for some k ≥ 1. Then for any δ ∈ (0, 1) one has

Pr[X 6∈ (1± δ)E[X]] < e−Ω(δ2k).

Proof of Lemma 9: Note that Br(a) ∩ BR(w) is the union of a spherical cap of Br(a) and a spherical cap of BR(w).
SinceR > r, the volume of the first spherical cap is at least the volume of the second one, so we concentrate on bounding
this volume. Let x be the distance from p to the plane that defines the smaller cap. Then r2 − x2 = R2 − (d − x)2.
Since R2 − (d− x)2 = R2 − d2 + 2dx− x2, this implies x = r2+d2−R2

2d as required.

p x w

BR(w)
Br(b)

r R

Figure 2: Intersection of Br(a) and BR(w).

Proof of Lemma 16: By Lemma 9

ξ ≥ I
(
||c− b||2 + r2 −R2

2||c− b||
, r

)
.

First note that

||c− b||2 −R2 = ||c− a||2 + ||a− b||2 + 2〈c− a, a− b〉 −R2

= (||c− a||2 −R2) + ||a− b||2 + 2||a− b|| · 〈c− a, a− b
||a− b||

〉

= −Y + ||a− b||2 + 2||a− b|| · Z,

where Z = 〈c− a, a−b
||a−b|| 〉 ∼ N(0, 1) is Gaussian. Thus, by Lemma 10

ξ ≥ C ′√
n

(
1−

(
−Y + r2 + ||a− b||2 + 2||a− b|| · Z

2||c− b||r

)2
)n/2

(8)

13

for a constant C ′ > 0.
We now show that all quantities involved in (8) are tightly concentrated, and use this fact to prove the claimed result.

By Claim 21 with δ = Θ(γ)2 one has

1. Pr[r 6∈ (1 +O(γ))γ
√
n] < e−γ

2n

2. Pr[||a− b|| 6∈ (1 +O(γ))γ′
√
n] < e−γ

2n

3. Pr[||c− b|| 6∈ (1 +O(γ))
√

1 + γ2
√
n] < e−γ

2n

Before we prove the claim of the lemma, we show that

−Y + r2 + ||a− b||2 + 2||a− b|| · Z
2||c− b||r

≤ 100γ (9)

with high probability. Let E = {| − Y + r2 + ||a− b||2 + 2||a− b|| · Z| < 100γ||c− b||r}.
By concentration results 1, 2, 3 above, we have

Pr[Ē] ≤ e−γ
2n + Pr[| − Y + 2γ2n+ 4γ

√
n · Z| < 50γ2n]

≤ e−γ
2n + Pr[| − Y + 4γ

√
n · Z| < 40γ2n]

≤ e−γ
2n + Pr[Y > 20γ2n] + Pr[4γ

√
n · |Z| > 20γ2n]

≤ e−γ
2n + e−Ω(γ2n) + e−Ω(γ2n) = e−Ω(γ2n).

(10)

We now get a proof of the last claim of the lemma by noting that

ln ξ ≥ (n/2) ln

(
1−

(
−Y + r2 + ||a− b||2 + 2||a− b|| · Z

2||c− b||r

)2
)
−O(lnn) ≥ −O(γ)n,

where we used the bound ln(1− x) ≥ −(1 +O(γ))x for x = O(γ).
We condition on E in what follows, so we have

ξ ≥ C ′√
n

(
1−

(
−Y + r2 + ||a− b||2 + 2||a− b|| · Z

2||c− b||r

)2
)n/2

≥ C ′√
n

exp

(
−(1 +O(γ))(n/2)

(
−Y + r2 + ||a− b||2 + 2||a− b|| · Z

2||c− b||r

)2
)
.

Taking logarithms of both sides, we get

ln ξ ≥ −(1 +O(γ))(n/2)

(
−Y + r2 + ||a− b||2 + 2||a− b|| · Z

2||c− b||r

)2

−O(lnn)

≥ −(1 +O(γ))
1

8(1 + γ2)γ2n

(
−Y + r2 + ||a− b||2 + 2||a− b|| · Z

)2 −O(lnn).

(11)

By (11) we now have

E[ln ξ|E] ≥ −(1 +O(γ))
1

8(1 + γ2)γ2n
E[
(
−Y + r2 + ||a− b||2 + 2||a− b|| · Z

)2 |E]−O(lnn), (12)

and thus it is sufficient to upper bound

E[
(
−Y + r2 + ||a− b||2 + 2||a− b|| · Z

)2 |E] ≤ 1

Pr[E]
E[
(
−Y + r2 + ||a− b||2 + 2||a− b|| · Z

)2
]. (13)

2This choice of δ is not unique in that any choice of δ = Ω(γ) would have been sufficient to obtain the claimed result, with this choice affecting
the precise form of the o(1) term in the result of the lemma. We choose δ = Θ(γ) to minimize the amount of notation.

14

For the latter quantity we have using independence of Y, Z, a− b, r

EY,Z,a−b,r[
(
−Y + r2 + ||a− b||2 + 2||a− b|| · Z

)2
]

≤ E[r4 + ||a− b||4 + 2r2||a− b||2] + o(r4)

≤ 4r4 + o(r4),

where we used that γ′ ≤ γ. Substituting this into (12), using (13) and (10), we get

E[ln ξ|E] ≥ −1

2
γ2n(1 + o(1))

and Pr[E] ≥ 1− e−γ2n, as desired.
Proof of Lemma 17: By Lemma 9 and Lemma 10 one has

ξ ≤ 2I

(
r2 + ||a− c||2 −R2

2||a− c||
, r

)
= 2I

(
r2 − Y

2||a− c||
, r

)
≤ 2 exp

(
−(n/2)

(
r2 − Y

2r||a− c||

)2
)

as long as Y < r2. If Y > r2, we upper bound the probability of collision by 1. This corresponds to a negligible e−r
2/2

term.
By Claim 21 one has ||a − c|| ∈ (1 ± O(γ))n with probability at least 1 − e−γ

2n. Also, by Claim 21 one has
r ∈ (1 ± O(γ))γn > 8 with probability at least 1 − e−γ2n. We condition on this event (call it E) in what follows. We
get

1

2

∫ r2

0

exp

(
− n

8r2||a− c||2
(
r2 − y

)2)
e−y/2dy ≤ 1

2

∫ r2

0

exp

(
− (1−O(γ))

8r2

(
r2 − y

)2)
e−y/2dy

≤ 1

2

∫ r2

0

exp

(
− (1−O(γ))

8r2

(
r2 − y

)2)
e−(1−δ)y/2dy

=
1

2

∫ ∞
0

exp

(
−1−O(γ)

8r2

(
r4 + 2r2y + y2

))
dy

=
1

2

∫ ∞
0

exp

(
−1−O(γ)

8r2

(
r2 + y

)2)
dy

We now show that the value of this integral is essentially upper bounded by the value of the integrand at the left endpoint,
i.e. when y = 0:∫ ∞

0

exp

(
−1−O(γ)

8r2

(
r2 + y

)2)
dy = exp

(
− (1−O(γ))r2

8

)∫ ∞
0

exp

(
−1−O(γ)

8r2

[(
r2 + y

)2 − r4
])

dy

= exp

(
− (1−O(γ))r2

8

)∫ ∞
0

exp

(
−1−O(γ)

8r2

[
2yr2 + y2

])
dy

We now show that the integral in the last line is bounded by a constant. First note that r ≥ 8 by our conditioning. We
have ∫ ∞

0

exp

(
−1−O(γ)

8r2

[
2yr2 + y2

])
dy ≤

∫ ∞
0

exp (−y) dy ≤ 1

Since we conditioned on an event of probability 1− e−γ2n < 9/10 for sufficiently large γ2n, the result follows.
We now give a proof of Lemma 18. We restate the lemma here for convenience of the reader.

Lemma 18 Let α ∈ [0, 1] be a constant. Let c > 1 denote the desired approximation ratio, and suppose thatK = nΘ(1).
Let dnear = n−1/4. Let p, q ∈ Rd be a pair of far points, i.e. ||p − q||2 ≥ cdnear. Consider an invocation of
HASHDATA(p, α, S,K, {Rl}Kl=1, B, n, {Ul}Kl=1, dnear) and QUERY(q, α, S,K, {Rl}Kl=1, A, n, {Ul}Kl=1, dnear).

Then for each i ∈ [1 : A], j ∈ [1 : B] one has

Pr[h(Sp+ ui) = h(Sq + vj)] ≤ e−(c2+α2+(1−α)2)·d2
near(1−o(1))nK/8.

15

Proof: Recall that h is a concatenation of K independent hash functions. Fix l ∈ [1 : K] and consider the l-th hash
function. We will prove that for each i ∈ [1 : A], j ∈ [1 : B] and each l ∈ [1 : K] one has

Pr[hl(Sp+ ui) = hl(Sq + vj)] ≤ e−(c2+α2+(1−α)2)(1−o(1))d2
nearn/8, (14)

where hl stands for the l-th component of l. The result will then follow by independence of hl for different l. Let
a = Slp+ uil, b = Slq + vjl . By Claim 12 we have

a− b ∼ γ · N (0, In),

where γ =
√
||p− q||22 + α2d2

near + (1− α)2d2
near. We also have by Claim 12 that b is a uniformly random point in

the ball Br(a), where r2 ∼ γ2 · D.
Let BRl(a) ∩ Wl = {w1, . . . , wQ}. Each wq is uniformly random in BRl(a). Let wq be the uniformly random

element of BRl(a) ∩Wl that a hashes to (by line 3 of BASICHASH). By Claim 13 wq − a ∼ N (0, In), so we are in the
setting of Lemma 17, i.e. we are interested in upper bounding

ξ =
|Br(a) ∩ BRl(w)|

|Br(a)|
.

By Lemma 17 we have

E[ξ] ≤ 2exp
(
−1

8
γ2n(1 +O(γ))

)
,

where the expectation is over the choice of centersWl, dimensionality reduction matrix Sl and perturbations uil, v
j
l . Let

q ∈ [1 : Q] denote the (uniformly random) center that a hashes to (by line 3 of BASICHASH). We have

Pr[wq ∈ BRl(b)|wq ∈ BRl(a)] ≤ 2exp
(
−1

8
γ2n(1 +O(γ))

)
≤ 2exp

(
−1

8
(c2 + α2 + (1− α)2)d2

nearn(1− o(1))

) (15)

where the probability is over Wl, Sl, u
i
l, v

j
l . This yields the required bound when Q 6= 0. It remains to note that if

BRl(a) ∩ Wl = ∅, then a is hashed to a uniformly random element from an arbitrarily large universe, so the collision
probability can easily be made polynomially small in the number of input points by choosing the universe to be poly(N)
size. Since n = o(logN) by assumption of the lemma, a 1/poly(N) term is smaller than the rhs of (15), and (14)
follows by a union bound over these two cases. The result of the lemma now follows by independence of the hashing
process for different l = 1, . . . ,K.

We now give a proof of Lemma 19. We restate the lemma here for convenience of the reader.
Lemma 19 Let α ∈ [0, 1] be a constant. Let c > 1 denote the desired approximation ratio, and suppose that
K = nΘ(1), Kd2

near = nΩ(1), d2
nearn = nΩ(1), n = ω(1), n = o(logN). Let p, q ∈ Rd be a pair of near

points, i.e. ||p − q||2 ≤ dnear. Consider an invocation of HASHDATA(p, α, S,K, {Rl}Kl=1, B, n, {Ul}Kl=1, dnear) and
QUERY(q, α, S,K, {Rl}Kl=1, A, n, {Ul}Kl=1, dnear). Then

Pr[∃i ∈ [1 : A], j ∈ [1 : B] s.t. h(Sp+ ui) = h(Sq + vj)] = 1− o(1)

as long as
A ≥ (C logN)2Ke(1+o(1))α2d2

nearnK/2,

and
B ≥ (C logN)2Ke(1+o(1))(1−α)2d2

nearnK/2.

If α = 0 then settingA = 1 andB as above is sufficient. Similarly, if α = 1, settingA as above andB = 1 is sufficient.
We prove Lemma 19 in a sequence of steps. We start by giving an outline of the proof, then prove every step

formally and put them together below. We need to prove that if a sufficiently large number of perturbations ui, vj , i =
1, . . . , A, j = 1, . . . , B are used, then at least one pair of perturbed points collides under h, i.e.

Pr[∃i ∈ [1 : A], j ∈ [1 : B] s.t. h(Sp+ ui) = h(Sq + vj)] = 1− o(1)

16

as long as A,B are sufficiently large. Here the probability is over the choice of the hash function h (which consists of
dimensionality reduction matrices Sl and centersWl, l = 1, . . . ,K) as well as the choice of perturbations ui, vj . Also,
each perturbed point choose a center inW to hash to in line 3 of BASICHASH independently uniformly at random. Our
argument proceeds as follows. First, we define the point (see Fig. 1)

z = (1− α)p+ αq.

We then follow these three steps:

(1) Prove that if the number of perturbations B of the query point q is sufficiently large, then at least one of them will
collide with z under h:

Pr[∃j ∈ [1 : B] s.t. h(Sq + vi) = h(Sz)] = 1− o(1).

(2) Prove that if the number of perturbations A of the data point p is sufficiently large, then at least one of them will
collide with the z under h:

Pr[∃i ∈ [1 : A] s.t. h(Sp+ ui) = h(Sz)] = 1− o(1).

(3) Conclude, using the union bound, that at least one perturbation of p is very likely to collide with at least one
perturbation of q, obtaining the result.

In what follows we give the argument for Step 1. and Step 2 (which are symmetric, so we will only give the details
for Step 1). Thus, we are now interested in proving that

Pr[∃j ∈ [1 : B] s.t. h(Sq + vj) = h(Sz)] = 1− o(1), (16)

where the probability is over the choice of the hash function h (i.e. matrices Sl and centersWl, l = 1, . . . ,K), and the
choice of perturbations vj . Let wl ∈ Wl denote the element that Slz hashes to, i.e. BASICHASH(Slz,Rl, n,Wl) (this
is well-defined if the ball of radius Rl around Slz contains a center inWl – see below).

Our argument now proceeds in three steps:

Step 1a. Prove that with probability 1 − o(1) over the choice of the dimensionality reduction matrix S and centersW
one has

Prvj [wl ∈ BRl(Slq + vjl) for all l = 1, . . . ,K] ≥ e−K 1
2 (1−α)2d2

nearn(1+o(1)).

Denote this event by Ea. Note that this is by itself not sufficient for (16), since for each l = 1, . . . ,K BASICHASH
chooses a uniformly random center fromWl ∩ BRl(x) to output. However, for any fixed pair of points p, q if the
event E∗(p, q) occurs (see (2)), then all balls BRl(Slq + vj) around perturbations of q and p contain at most
2C logN centers. Thus, conditional on the high probability event E∗(p, q), a given perturbation Slq + vj is
reasonably likely (probability at least 1/(2C logN)) to get hashed to wl after all. By independence of these
perturbations, we should be able to argue that at least one of them will get hashed to wl with overwhelming
probability, as long as the number of trials is sufficiently large. In Step 1b below we argue that the number of
independent trials is large, and in Step 1c below show that this number of trials is sufficient.

Step 1b. Prove that, conditional on Ea, with probability 1−o(1) over the choice of perturbations vj , j = 1, . . . , B there
exists a set J ⊆ [B] of size at least (2C logN)2K/2 such that

wl ∈ BRl(Slq + vjl) for all l = 1, . . . ,K

and all j ∈ J . Call this event Eb.

Step 1c. Prove that conditional on E∗(p, q) ∧ Ea ∧ Eb, with probability 1− o(1) over the choices of centers to hash to
in BASICHASH there exists j ∈ J such that h(Sq + vj) = h(Sz).

We now give the details of Steps 1a-1c.
Step 1a. is given by

17

Lemma 22 Let α ∈ [0, 1] be a constant. Let c > 1 denote the desired approximation ratio, and suppose that K =
nΘ(1), Kd2

near = nΩ(1), d2
nearn = nΩ(1), n = ω(1), n = o(logN). Let p, q ∈ Rd be a pair of near points, i.e.

||p− q||2 ≤ dnear. Let z = (1− α)p+ αq.
Letwl ∈ Wl denote the element that Slz hashes to, i.e. BASICHASH(Slz,Rl, n,Wl). Then with probability 1−o(1)

over the choice of the dimensionality reduction matrix S and centersW one has for all j

Prvj [wl ∈ BRl(Slq + vjl) for all l = 1, . . . ,K] ≥ e−K 1
2 (1−α)2d2

nearn(1+o(1)).

Similarly, for all i

Prui [wl ∈ BRl(Slp+ uil) for all l = 1, . . . ,K] ≥ e−K 1
2α

2d2
nearn(1+o(1)).

Proof: We prove the first claim (the proof of the second is analogous).
If α = 1, then the claim is obvious, since vjl = 0 for all j and l. Thus, we assume that α 6= 1 in what follows, i.e. α

is bounded away from 1 since α is a constant. Fix j ∈ [1 : B], and let v := vj to simplify notation. First note that for
any fixed S andW one has by independence of perturbations in different coordinates

Prv[wl ∈ BRl(Slq + vl) for all l = 1, . . . ,K] =

K∏
l=1

Prvl [wl ∈ BRl(Slq + vl)].

Recall that for each l = 1, . . . ,K wl is the center that Slz is hashed to. By Claim 13 we have Slz−wl ∼ N (0, In).
Also,

Slz − Slq ∼ (1− α)||p− q||2N (0, In) (17)

by 2-stability of the Gaussian distribution. Recall that Slq + vl is a uniformly random point in Brq,l(Slq), so the
probability that wl is at distance at most R from it is given by

ξl =
|Brp,l(Slq) ∩ BRl(wl)|

|Brp,l(Slq)|
. (18)

We are in the setting of Lemma 16, where we have γ′ = (1− α)||p− q||2 by (17) and γ = (1− α)dnear by definition
of rp,l. Note that γ′ ≤ γ as required by Lemma 16 since p and q are near points by assumption. Thus for each l there
exists an event E1

l with Pr[E1
l] ≥ 1− e−Ω((1−α)2d2

nearn) such that

E[ln ξl|E1
l] ≥ −1

2
(1− α)2d2

nearn(1 + o(1))

and | ln ξ| ≤ n conditional on E1
l . Let E1 :=

∧K
l=1 E1

l . Note that Pr[Ē1] ≤ Ke−Ω(γ2n) = nO(1)e−n
Ω(1)

= o(1) (we used
that K = nΘ(1) and d2

nearn = nΩ(1) by the assumptions of the lemma). By Chernoff bounds we have for any ε > 0

Pr

[
K∑
l=1

ln ξl ∈ −(1± ε)K 1

2
(1− α)2d2

nearn(1 + o(1))

∣∣∣∣∣ E1

]
< e−Ω(ε2K 1

2 (1−α)2d2
near)

≤ e−Ω(ε2K(1−α)2d2
near).

(19)

We have
K(1− α)2d2

near = ω(1) (20)

by assumption of the lemma, so the rhs of (19) is o(1). Now note that by (19) and (20) there exists a setting of ε = o(1)
such that with probability 1− o(1) overW, S, conditional on E1

K∑
l=1

ln ξl ∈ −(1± ε)K 1

2
(1− α)2d2

nearn(1 + o(1)),

implying that with probability at least 1−o(1) over the choice of the centersW and the dimensionality reduction matrix
S one has for each j

Prv[wl ∈ BRl(Slq + vl) for all l = 1, . . . ,K|E1] =

K∏
l=1

|Brp,l(Slq) ∩ BRl(wl)|
|Brp,l(Slq)|

≥ e−K 1
2 (1−α)2d2

nearn(1+ε)

18

for some ε = o(1). Since Pr[E1] ≥ 1− o(1), this gives the claimed result.
We now give the formal argument for Step 1b.

Lemma 23 Let α ∈ [0, 1] be a constant. Let c > 1 denote the desired approximation ratio, and suppose thatK = nΘ(1),
Kd2

near = nΩ(1) = ω(1), dnearn = nΩ(1). Let p, q ∈ Rd be a pair of near points, i.e. ||p − q||2 ≤ dnear. Let
z = (1− α)p+ αq.

Letwl ∈ Wl denote the element that Slz hashes to, i.e. BASICHASH(Slz,Rl, n,Wl). Suppose thatB ≥ (C logN)2Ke(1+o(1))(1−α)2d2
nearnK/2

and S, {Ul} are such that

Prvj [wl ∈ BRl(Slq + vjl) for all l = 1, . . . ,K] ≥ e−K 1
2 (1−α)2d2

nearn(1+o(1)).

Then with probability 1 − o(1) over the choice of perturbations vj , j = 1, . . . , B there exists a set J ⊆ [B] of size
at least (2C logN)2K/2 such that

wl ∈ BRl(Slq + vjl) for all l = 1, . . . ,K

and all j ∈ J . An analogous statement holds for perturbations of data points.

Proof: For each j = 1, . . . , B let Yj = 1 if wl ∈ BRl(Slq + vjl) for all l = 1, . . . ,K and 0 otherwise. Since
the choices of vj are independent for different j, we get that

∑B
j=1 Yj is a sum of independent Bernoulli 0/1 rv’s with

E[Yj] ≥ e−K
1
2 (1−α)2d2

nearn(1+ε) for some ε = o(1). Thus, E[
∑B
j=1 Yj] ≥ (2C logN)2K , and by standard concentration

inequalities

Pr

 B∑
j=1

Yj < (2C logN)2K/2

 = o(1)

as required, where the probability is over the choice of perturbations vj .
Step 1c. is provided by

Lemma 24 Let α ∈ [0, 1] be a constant. Let c > 1 denote the desired approximation ratio, and suppose that K =
nΘ(1), Kd2

near = nΩ(1), d2
nearn = nΩ(1), n = ω(1), n = o(logN). Let p, q ∈ Rd be a pair of near points, i.e.

||p − q||2 ≤ dnear. Let z = (1 − α)p + αq. Suppose that there exists a set J ⊆ [B] of size at least (2C logN)2K/2
such that

wl ∈ BRl(Slq + vjl) for all l = 1, . . . ,K

and all j ∈ J . Then with probability 1− o(1) over the choice of center to hash to in line 3 of BASICHASH there exists
j ∈ J such that h(Sq + vj) = h(Sz).

Proof: Recall that if the event E∗(p, q) occurrs (see (2) and Claim 11), then for every perturbed point Slq + vjl one has∣∣∣BRl(Slq + vjl) ∩Wl

∣∣∣ ≤ 2C logN.

Thus, each perturbation j ∈ J chooses wl independently with probability at least 1/(2C logN) for each l = 1, . . . ,K.
By independence of these choices for different vjl ’s, at least one perturbation vj , j ∈ J is hashed to h(Sz) with
probability at least

1− (1− (2C logN)−K)(2C logN)2K

≥ 1− e−Ω((2C logN)K) = 1− o(1).

Since by Claim 11 one has Pr[E∗(p, q)] ≥ 1− 1/N , the result follows.
We can now get

Proof of Lemma 19: Follows by putting together Lemma 22, Lemma 23 and Lemma 24.

C Proof of Lemma 14
In this section we give a proof of Lemma 14. We use the notation B(0) for the unit ball in `2 norm. To estimate the
intersection we will use the following results of [BGMN05].

19

Theorem 25 [BGMN05] Let Xi ∼ 1√
π
e−x

2
i , and let Y ∼ e−y . Then(

X1

(|X1|2 + . . .+ |Xn|2 + Y)1/2
, . . . ,

Xn

(|X1|2 + . . .+ |Xn|2 + Y)1/2

)
is uniformly distributed in B(0).

Theorem 26 ([RR91, SZ90]; see also [BGMN05], Theorem 2) Let Xi ∼ 1√
π
e−|xi|

2

. Then the random vector(
X1

(|X1|2 + . . .+ |Xn|2)1/2
, . . . ,

Xn

(|X1|2 + . . .+ |Xn|2)1/2

)
is independent of (|X1|2 + . . .+ |Xn|2)1/2.

In this section we derive an expression for a uniformly random point in R · B(0), where R2 ∼ Γ(n/2 + 1). By
Theorem 25 sampling a uniformly random point from R · B can be done as follows. Sample X1, . . . , Xn ∼ 1√

π
e−x

2

,
Y ∼ e−y and R2 ∼ Γ(n/2 + 1, 1) independently. Then

R ·
(

X1

(X2
1 + . . .+X2

n + Y)1/2
, . . . ,

Xn

(X2
1 + . . .+X2

n + Y)1/2

)
. (21)

is a uniformly random point in R · Bε(0). We now rewrite (21) as

R ·
(

Xi

(X2
1 + . . .+X2

n + Y)1/2

)n
i=1

=

(
Xi

(X2
1 + . . .+X2

n)1/2

)n
i=1

· (X2
1 + . . .+X2

n)1/2

(X2
1 + . . .+X2

n + Y)1/2
·R

=

(
Xi

(X2
1 + . . .+X2

n)1/2

)n
i=1

· 1

(1 + Y/(X2
1 + . . .+X2

n))1/2
·R

= V · 1

(1 +Q)1/2
·R,

(22)

where

V =

(
Xi

(X2
1 + . . .+X2

n)1/2

)n
i=1

∈ Rn,

and
Q = Y/(X2

1 + . . .+X2
n).

By Theorem 26 V is independent of X2
1 + . . . + X2

n. In particular, since R is sampled independently of (V,Q), this
implies that V,Q,R are independent. Let µ denote the distribution of Q. We now prove

Lemma 27 Let Xi ∼ 1√
π
e−x

2

, i = 1, . . . , n. Let Y be exponential with mean 1. Let R = (X2
1 + . . . + X2

n + Y)1/2.
Then

(X1, . . . , Xn)

is uniformly distributed in the ball R · B(0).

Proof: We have

(Xi)
n
i=1 =

(
Xi

(X2
1 + . . .+X2

n)1/2

)n
i=1

·
(

X2
1 + . . .+X2

n

X2
1 + . . .+X2

n + Y

)1/2

· (X2
1 + . . .+X2

n + Y)1/2

=

(
Xi

X2
1 + . . .+X2

n

)n
i=1

·
(

1

1 + Y/(X2
1 + . . .+X2

n)

)1/2

· (X2
1 + . . .+X2

n + Y)1/2

= V ·
(

1

1 +Q′

)1/2

·R.

(23)

20

Note that Q′ ∼ µ if we do not condition on R. Furthermore, R2 ∼ Γ(n/2 + 1, 1) by Claim 7 and the additivity
property of the Γ distribution, so R has the correct distribution as well. Hence, it is sufficient to show that V,Q′, R are
independent. First, V is independent of X2

1 + . . .+X2
n by Theorem 26, and independent of Y by definition. Thus, since

Q′ is a function of X2
1 + . . .+X2

n and Y , V is independent of (Q′, R). It remains to show that Q′ is independent of R.
Let Z2 = X2

1 + . . .+X2
n. Note that Z2 ∼ Γ(n/2, 1) and Y ∼ Γ(1, 1). We now compute the distribution of Y/Z2

conditional on Y + Z2 = R2:

Pr[Y/Z2 ≥ α|Y + Z2 = R2] =

∫ R2

R2α/(1+α)
e−y(R2 − y)n/2−1e−(R2−y)dy∫ R2

0
e−y(R2 − y)n/2−1e−(R2−y)dy

=

∫ R2

R2α/(1+α)
(R2 − y)n/2−1dy∫ R2

0
(R2 − y)n/2−1dy

=
(R2 −R2α/(1 + α))n/2

(R2)n/2
= (1 + α)−n/2,

(24)

which is independent of R. Thus, V,Q′, R are independent, which completes the proof.

Proof of Lemma 14: Follows by Lemma 27 and Claim 7.

21

	1 Introduction
	2 Preliminaries
	3 The algorithm
	4 Analysis
	4.1 Proof outline
	4.2 Technical lemmas
	4.3 Upper bound on collision probability for far points
	4.4 Lower bound for near points
	4.5 Putting it together

	A Omitted proofs from section 3
	B Omitted proofs from section 4
	C Proof of Lemma 14

