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We consider the well-studied problem of finding a perfect matching in d-regular bipartite
graphs with 2n vertices and m=nd edges. While the best-known algorithm for general bi-
partite graphs (due to Hopcroft and Karp) takes O(m+/n) time, in regular bipartite graphs,
a perfect matching is known to be computable in O(m) time. Very recently, the O(m)

bound was improved to O(min{m, "Qi%}) expected time, an expression that is bounded

by O(n'™). In this paper, we further improve this result by giving an O(min{m, @})
expected time algorithm for finding a perfect matching in regular bipartite graphs; as a
function of n alone, the algorithm takes expected time O((nlnn)'?).

To obtain this result, we design and analyze a two-stage sampling scheme that reduces
the problem of finding a perfect matching in a regular bipartite graph to the same prob-
lem on a subsampled bipartite graph with O(nlnn) edges. The first-stage is a sub-linear
time uniform sampling that reduces the size of the input graph while maintaining certain
structural properties of the original graph. The second-stage is a non-uniform sampling
that takes linear-time (on the reduced graph) and outputs a graph with O(nlnn) edges,
while preserving a matching with high probability. This matching is then recovered using
the Hopcroft-Karp algorithm. While the standard analysis of Hopcroft-Karp also gives us
an O(n'®) running time, we present a tighter analysis for our special case that results in

the stronger O(min{m, %}) time mentioned earlier.

Our proof of correctness of this sampling scheme uses a new correspondence theorem
between cuts and Hall’s theorem “witnesses” for a perfect matching in a bipartite graph
that we prove. We believe this theorem may be of independent interest; as another example
application, we show that a perfect matching in the support of an nxn doubly stochastic
matrix with m non-zero entries can be found in expected time O(m+n'"°).
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1. Introduction

A bipartite graph G=(P,Q, E') with vertex set PUQ and edge set EC PxQ
is said to be regular if every vertex has the same degree d. We use m=nd to
denote the number of edges in G and n to represent the number of vertices
in P (as a consequence of regularity, P and @ have the same size). Regular
bipartite graphs are a fundamental combinatorial object, and arise, among
other things, in expander constructions, scheduling, routing in switch fabrics,
and task-assignment [15,1,6].

A regular bipartite graph of degree d can be decomposed into exactly d
perfect matchings, a fact that is an easy consequence of Hall’s theorem [4],
and is closely related to the Birkhoff-von Neumann decomposition of a dou-
bly stochastic matrix [3,17]. Finding a matching in a regular bipartite graph
is a well-studied problem, starting with the algorithm of Koénig in 1916 [13],
which is now known to run in time O(mn). The well-known bipartite match-
ing algorithm of Hopcroft and Karp [9] can be used to obtain a running time
of O(m+/n). In graphs where d is a power of 2, the following elegant idea,
due to Gabow and Kariv [7], leads to an algorithm with O(m) running time.
First, compute an Euler tour of the graph (in time O(m)) and then follow
this tour in an arbitrary direction. Exactly half the edges will go from left
to right; these form a regular bipartite graph of degree d/2. The total run-
ning time 7'(m) thus follows the recurrence T'(m) = O(m)+T(m/2) which
yields T'(m) = O(m). Extending this idea to the general case proved quite
hard, and after a series of improvements (eg. by Cole and Hopcroft [5], and
then by Schrijver [16] to O(md)), Cole, Ost, and Schirra [6] gave an O(m)
algorithm for the case of general d. Their main interest was in edge color-
ing of general bipartite graphs, where finding perfect matchings in regular
bipartite graphs is an important subroutine. Very recently, Goel, Kapralov,

and Khanna [8], gave a sampling-based algorithm that computes a perfect

matching in d-regular bipartite graphs in O(min{m, "Q‘i% ) expected time,

an expression that is bounded by O(n'7®). The algorithm of [8] uses uniform
sampling to reduce the number of edges in the input graph while preserv-
ing a perfect matching, and then runs the Hopcroft-Karp algorithm on the
sampled graph.

Our Results and Techniques: We present a significantly faster algorithm
for finding perfect matchings in regular bipartite graphs.

Theorem 1.1. There is an O <min{m,@}) expected time algorithm

to find a perfect matching in a d-regular bipartite graph G.

As a function of n alone, the running time stated above is O((nlnn)!®).

Since the O(m) running time is guaranteed by the algorithm of Cole, Ost,
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and Schirra, we are only concerned with the case where d is 2(y/nlnn).
For this regime, our algorithm reduces the perfect matching problem on a
regular bipartite graph G to the same problem on a (not necessarily regular)
sparse bipartite graph H with O(nlnn) edges. This reduction takes time

O(%). We then use the Hopcroft-Karp algorithm on H to recover a
perfect matching. A black-box use of the analysis of the Hopcroft-Karp

algorithm would suggest a running time of O(%—i—nl‘5 Inn). However, we
show that the final sampled graph has some special structure that guarantees
that the Hopcroft-Karp algorithm would complete in time O(%) whp.
For every pair A C P,B C @, we define a witness set W(A,B) to be
the set of all edges going from A to @\ B. Of particular interest are what
we call Hall witness sets, which correspond to |A| > |B|; the well-known
Hall’s theorem [4] says that a bipartite graph H(P,Q, E) contains a perfect
matching iff Ey includes an edge from each Hall witness set. Thus any
approach that reduces the size of the input bipartite graph by sampling
must ensure that some edge from every Hall witness set is included in the
sampled graph; otherwise the sampled graph no longer contains a perfect
matching. Goel, Kapralov, and Khanna [8] showed that no uniform sampling

scheme on a d-regular bipartite graph can reduce the number of edges to

0(%) while preserving a perfect matching, and hence their O(n'")-time

algorithm is the best possible running time achievable via uniform sampling
followed by a black-box invocation of the Hopcroft-Karp analysis.

In order to get past this barrier, we use here a two-stage sampling process.
The first stage is a uniform sampling (along the lines of [8]) which generates a
reduced-size graph G'=(P,Q, E’) that preserves not only a perfect matching
but also a key relationship between the sizes of “relevant” witness sets and
cuts in the graph G. The second stage is to run the non-uniform Benczir-
Karger sampling scheme [2] on G’ to generate a graph G” with O(n) edges
while preserving a perfect matching whp. Since this step requires 2(|F’|)
time, we crucially rely on the fact that G’ does not contain too many edges.

While our algorithm is easy to state and understand, the proof of cor-
rectness is quite involved. The Benczir-Karger sampling was developed to
generate, for any graph, a weighted subgraph with O(n) edges that approx-
imately preserves the size of all cuts in the original graph. The central idea
underlying our result is to show that there exists a collection of core witness
sets that can be identified in an almost one-one manner with cuts in the
graph such that the probability mass of edges in each witness set is com-
parable to the probability mass of the edges in the cut identified with it.
Further, every witness set in the graph has a “representative” in this collec-
tion of core witness sets. Informally, this allows us to employ cut-preserving
sampling schemes such as Benczir-Karger as “witness-preserving” schemes.
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We note here that the natural mapping which assigns the witness set of a
pair (A, B) to the cut edges associated with this pair can map arbitrarily
many witness sets to the same cut and is not useful for our purposes. One
of our contributions is an uncrossing theorem for witness sets, that we re-
fer to as the proportionate uncrossing theorem. Informally speaking, it says
that given any collection of witness sets R such that the probability mass
of each witness set is comparable to that of its associated cut, there exists
another collection 7 of witness sets such that (i) the natural mapping to
cuts as defined above is half-injective for T, that is, at most two witness
sets in 7 map to any given cut, (ii) the probability mass of each witness
set is comparable to the probability mass of its associated cut, and (iii) any
subset of edges that hits every witness set in 7 also hits every witness set
in R. The collection 7T is referred to as a proportional uncrossing of R. As
shown in Figure 1(a), we can not achieve an injective mapping, and hence
the half-injectivity is unavoidable.

We believe the half-injective correspondence between witness sets and
cuts, as facilitated by the proportionate uncrossing theorem, is of indepen-
dent interest, and will perhaps have other applications in this space of prob-
lems. We also emphasize here that the uncrossing theorem holds for all
bipartite graphs, and not only regular bipartite graphs. Indeed, the graph
G’ on which we invoke this theorem does not inherit the regularity property
of the original graph G. As another illustrative example, consider the cele-
brated Birkhoff-von Neumann theorem [4,17] which says that every doubly
stochastic matrix can be expressed as a convex combination of permutation
matrices (i.e., perfect matchings). In some applications, it is of interest to do
an iterative decomposition whereby a single matching is recovered in each
iteration. The best-known bound for this problem, to our knowledge, is an
O(mb) time algorithm that follows from the work of Gabow and Kariv [7];
here b denotes the maximum number of bits needed to express any entry
in M. The following theorem is an easy consequence of our proportionate
uncrossing result.

Theorem 1.2. Given an nxn doubly-stochastic matrix M with m non-zero
entries, one can find a perfect matching in the support of M in O(m+n'?)
expected time.

The proof of this theorem and a discussion of known results about this
problem are given in section 6. Though this result itself represents only a
modest improvement over the earlier O(mb) running time, it is an instructive
illustration of the utility of the proportionate uncrossing theorem.

It is worth noting that while the analysis of Goel, Kapralov, and Khanna
was along broadly similar lines (sample edges from the original graph, fol-
lowed by running the Hopcroft-Karp algorithm), the proportionate uncross-
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ing theorem developed in this paper requires significant new ideas and is
crucial to incorporating the non-uniform sampling stage into our algorithm.
Further, the running time of the Hopcroft-Karp algorithm is easily seen to
be £2(m+/n) even for the 2-regular graph consisting of ©(y/n) disjoint cycles
of lengths 2,4,...,1/n respectively; the stronger analysis for our special case
requires both our uncrossing theorem as well as a stronger decomposition.
As a step in this analysis, we prove the independently interesting fact that
after sampling edges from a d-regular bipartite graph with rate Clg”, for
some suitable constant ¢, we obtain a graph that has a matching of size
n—0(n/d) whp and such a matching can be found in O(n/d) augmenting
phases of the Hopcroft-Karp algorithm whp.

Organization: Section 2 reviews and presents some useful corollaries of rel-
evant earlier work. In section 3, we establish the proportionate uncross-
ing theorem. In section 4, we present and analyze our two-stage sampling
scheme, and section 5 outlines the stronger analysis of the Hopcroft-Karp
algorithm for our special case. Section 6 contains the proof of Theorem 1.2
and a discussion of known results on finding perfect matchings in the sup-
port of double stochastic matrices.

2. Preliminaries

In this section, we adapt and present recent results of Goel, Kapralov, and
Khanna [8] as well as the Benczir-Karger sampling theorem [2] for our
purposes, and also prove a simple technical lemma for later use.

2.1. Bipartite decompositions and relevant witness pairs

Let G=(P,Q,E) be a regular bipartite graph, with vertex set PU(Q and
edge set £ C P x Q). Consider any partition of P into k sets Pi, Ps,..., Py,
and a partition of @ into Q1,Q2,...,Qk. Let G; denote the (not necessarily
regular) bipartite graph (P;,Q;, E;) where E; = EN(P; X Q;). We will call
this a “decomposition” of G.

Given AC P and B C (), define the witness set corresponding to the pair
(A,B), denoted W (A, B), as the set of all edges between A and @\ B, and
define the cut C'(A, B) as the set of all edges between AUB and (P\A)JQ\B).
The rest of the definitions in this section are with respect to some arbitrary
but fixed decomposition of G.

LIt is known that the Hopcroft-Karp algorithm terminates quickly on bipartite ex-
panders [14], but those techniques don’t help in our setting since we start with an arbitrary
regular bipartite graph.
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Definition 2.1. An edge (u,v) € E is relevant if (u,v) € E; for some i.

Definition 2.2. Let Eg be the set of all relevant edges. A pair (A, B) is
said to be relevant if

1. ACP; and BCQ; for some 1,

2. |A|>|B|, and

3. There does not exist another A’ € P;, B’€@Q;, such that A’ C A, |A’|>|B/|,
and W(A/,B/)QERQW(A,B)QER.

Informally, a relevant pair is one which is contained completely within
a single piece in the decomposition, and is “minimal” with respect to that
piece. The following lemma is implicit in [8] and is proved in appendix A for
completeness.

Lemma 2.3. Let R denote all relevant pairs (A, B) with respect to a de-
composition of G(P,Q,F), and let Er denote all relevant edges. Consider
any graph G*=(P,Q, E*). If for all (A, B) € R, we have W (A, B)NE*NER # 1),
then G* has a perfect matching.

2.2. A Corollary of Benczur-Karger sampling scheme

The Benczur-Karger sampling theorem [2] shows that for any graph, a rel-
atively small non-uniform edge sampling rate suffices to ensure that every
cut in the graph is hit by the sampled edges (i.e. it has a non-empty in-
tersection) with high probability. The sampling rate used for each edge e
inversely depends on its strength, as defined below.

Definition 2.4. [2] A k-strong component of a graph H is a maximal
vertex-induced subgraph of H with edge-connectivity k. The strength of
an edge e in a graph H is the maximum value of k£ such that a k-strong
component contains e.

Definition 2.5. Given a graph H = (V,E), let H;) = (V,E};) denote the
subgraph of H restricted to edges of strength j or higher, where j is some
integer in {1,2,...,|V|}.

It is easy to see that whenever a cut in a graph H(V,E) contains an
edge of strength k, then the cut must contain at least k edges. Furthermore,
for any 1 < j <|V|, each connected component of graph H [j] is contained
inside some connected component of Hj;_;). The Benczir-Karger theorem
utilizes these properties to show that it suffices to sample each edge e with
probability ©(min{1,Inn/s.}).
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We now extend this sampling result to any collection of edge-sets for
which there exists an injection (one-one mapping) to cuts of comparable
inverse strengths. The statement of our Theorem 2.6 closely mirrors the
Benczar-Karger sampling theorem, and the proof is also along the same gen-
eral lines. However, the proof does not follow from the Benczur-Karger sam-
pling theorem in a black-box fashion, so a proof is provided in appendix B.

Theorem 2.6. Let H(V,E) be any graph on n vertices, and let C denote
the set of all possible edge cuts in H, and v € (0,1] be a constant. Let H' be
a subgraph of H obtained by sampling each edge e in H with probability
2
suitably large constant. Further, let X be a collection of subsets of edges,
and let f be a one-one (not necessarily onto) mapping from X to C satisfying
Doeex 1/8¢>73 cep(x)1/se for all X € X. Then

Pe = min{l, }, where s. denotes the strength of edge e, and c is a

Z Pr[No edge in X is chosen in H'] <

1
n?’
XeXx

The result below from [2] bounds the number of edges chosen by the
sampling in Theorem 2.6.

Theorem 2.7. Let H(V,E) be any graph on n vertices, and let H' be a
subgraph of H obtained by sampling each edge e in H with probability

Pe = min {1,
constant. Then with probability at least 1 — #, the graph H' contains at
most dnlnn edges, where ¢’ is another suitably large constant.

Clg“"}, where s. denotes the strength of edge e, and c is any

We conclude with a simple property of integer multisets that we will use
later. A similar statement was used in [11] (lemma 4.5). A proof is provided
in appendix C for completeness.

Lemma 2.8. Let S1 and Sy be two arbitrary multisets of positive integers
such that |Si| > y|S2| for some v > 0. Then there exists an integer j such

that
1
> >0 > 3

i>j and 1€S51 >4 and i€Sa

—_

3. Proportionate uncrossing of witness sets

Consider a bipartite graph G =(P,Q, F), with a non-negative weight func-
tion t defined on the edges. Assume further that we are given a set of “rel-
evant edges” Fr C E. We can extend the definition of ¢ to sets of edges, so
that t(S)=>_.cgt(e), where SCE.
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Definition 3.1. For any v>0and AC P, BCQ, the pair (A, B) is said to be
v-thick with respect to (G,t, ER) if t(W (A, B)NER)>~t(C(A,B)), i.e., the
total weight of the relevant edges in W (A, B) is strictly more than v times the
total weight of C'(A, B). A set of pairs R={(A1,B1),(A42,B2),...,(Ax,Bk)}
where each A; C P and each B; C () is said to be a ~-thick collection with
respect to (G,t, ER) if every pair (A;,B;) € R is y-thick.

The quantities G,t, and Er will be fixed for this section, and for brevity,
we will omit the phrase “with respect to (G,t, ER)” in the rest of this section.

Before defining proportionate uncrossings of witness sets, we will infor-
mally point out the motivation for doing so. If a pair (A, B) is y-thick for
some constant 7y, and if we know that a sampling process where edge e is
chosen with probability ¢ chooses some edge from C'(A, B) with high prob-
ability, then increasing the sampling probability by a factor of 1/ should
result in some relevant edge from W (A, B) being chosen with high proba-
bility as well, a fact that would be very useful in the rest of this paper. The
sampling sub-routines that we employ in the rest of this paper are analyzed
by using union-bound over all cuts, and in order to apply the same union
bound, it would be useful if each witness set were to correspond to a unique
cut. However, in figure 1(a), we show two pairs (A,B) and (X,Y) which
are both (1/3)-thick with respect to the uniform weight function ¢t=1 but
correspond to the same cut; we call this a “crossing” of the pairs (A, B)
and (X,Y), drawing intuition from the figure. In general, we can have many
witness sets that map to the same cut. We would like to “uncross” these
witness sets by finding subsets of each witness set that map to unique cuts,
but there is no way to uncross figure 1(a) in this fashion. Fortunately, and
somewhat surprisingly, this is the worst case: any collection of «-thick pairs
can be uncrossed into another collection such that all the pairs in the new
collection are also y-thick (hence the term proportionate uncrossing), every
original witness set has a representative in this new collection, and no more
than two new pairs have the same cut. Figure 1(b) shows two %—thick pairs
that can be uncrossed using a single %-thick representative, (ANX, BNY).
We will spend the rest of this section formalizing the notion of proportionate
uncrossings and proving their existence. The uncrossing process is algorith-
mically inefficient, but we only need to demonstrate existence for the purpose
of this paper. The arguments in this section represent the primary techni-
cal contribution of this paper; these arguments apply to bipartite graphs in
general (not necessarily regular), and may be independently interesting.
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P 0

(a) (b)

Figure 1. Both (a) and (b) depict two -thick pairs (4, B) and (X,Y’) that have
different witness sets but the same cut (i.e. W(A,B)#W(X,Y) but C(A,B)=C(X,Y)).
The pairs in (a) can not be uncrossed, whereas the pairs in (b) can be uncrossed by
choosing the single pair (ANX,BNY) as a representative.

>

3.1. Proportionate uncrossings: definitions and properties

Definition 3.2. A ~-uncrossing of a «y-thick collection R is another ~-thick
collection of pairs 7 that satisfies the three properties below:

P1: For every pair (A,B) € R there exists a pair (A’,B’) € T such that
C(A,B")CC(A,B), and W(A'",B") CW(A, B). We will refer to (A’,B’)
as a representative of (A, B).

P2: For every (A',B’) € T, there exists (A,B) € R such that C(A’,B’) C
C(A,B).

P3: (Half-injectivity): There can not be three distinct pairs (A, B),(A4’, B'),
and (A”,B") in T such that C(A,B)=C(A',B")=C(A",B").

Since 7 has the same (or larger) thickness as the thickness guarantee
that we had for R, it seems appropriate to refer to 7 as a proportionate
uncrossing of R.

Definition 3.3. A ~-partial-uncrossing of a -thick collection R is another
~-thick collection of pairs 7 which satisfies properties P1, P2 above but not
necessarily P3.

The following three lemmas follow immediately from the two definitions
above, and it will be useful to state them explicitly. Informally, the first
says that every collection is its own partial uncrossing, the second says that
uncrossings can be composed, and the third says that the union of the partial
uncrossings of two collections is a partial uncrossing of the union of the
collections.

Lemma 3.4. If R is a y-thick collection, then R is a y-partial uncrossing
of itself.
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Lemma 3.5. If S is a vy-partial uncrossing of a y-thick collection R, and T
is a «y-uncrossing of S, then T is also a y-uncrossing of R.

Lemma 3.6. If R and Rs are two ~y-thick collections, T; is a ~y-partial-
uncrossing of Ri, and Ts is a ~y-partial-uncrossing of Ro, then T1U7T; is a
~-partial-uncrossing of R1URa.

3.2. Proportionate uncrossings: an existence theorem

The main technical result of this section is the following:

Theorem 3.7. For every ~-thick collection R, there exists a ~y-uncrossing
of R.

The proof is via induction over the “largest cut” corresponding to any
pair in the collection R; each inductive step “uncrosses” the witness sets
which corresponds to this largest cut. Before proving this theorem, we need
to provide several useful definitions and also establish a key lemma.

Define some total ordering < over all subsets of E which respects set
cardinality, so that if |Ej| < |Es|, then Ej < Ea. Overload notation to use
C(R) to denote the set of cuts {C(A,B): (A4,B) € R}. Analogously, use
W(R) to denote the set of witness sets corresponding to pairs in R. Since
C(A, B) may be equal to C(A’,B’) for (A,B)# (A’,B’), it is possible that
|C'(R)| may be smaller than |R|. In fact, if R and |C(R)| are equal, then R is
its own ~-uncrossing and the theorem is trivially true. Similarly, it is possible
that W (A, B) is equal to W(A’, B) for two different pairs (A, B) and (A, B)
in R. However, suppose W(A,B) =W (A’,B’) and C(A,B)=C(A’,B’) for
two different pairs (A,B) and (A’,B’) in R. In this case, we can remove
one of the two pairs from the collection to obtain a new collection R’; it is
easy to see that a ~y-uncrossing of R’ is also a y-uncrossing of R. So we will
assume without loss of generality that for any two pairs (A, B) and (A’, B’)
in R, either W(A,B)#W(A',B") or C(A,B) #C(A’,B’); we will call this
the non-redundancy assumption.

We will now prove a key lemma which contains the meat of the uncrossing
argument. When we use this lemma later in the proof of Theorem 3.7, we
will only use the fact that there exists a y-partial-uncrossing of R, where
R satisfies the preconditions of the lemma. However, the stronger claim
of existence of a y-uncrossing does not require much additional work and
appears to be an interesting graph theoretic argument in its own right, so
we prove this stronger claim.

Lemma 3.8. If R is a y-thick collection such that |R|>2, R satisfies the
non-redundancy assumption, and C(R) contains a single set S, then there
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exists a y-uncrossing T of R. Further, for every pair (A,B) € T, we have
C(A,B)CS.

Proof. Let R={(A1,B1),(A2,B2),...,(As,Byj)}. Since C(A;, B;)=S for all
i, we know by the non-redundancy assumption that W (A4;, B;) # W (A, By)
for i#14'. We break the proof down into multiple stages.

1. Definition of Venn witnesses and Venn cuts. For any J-dimensional bit-
vector b€ {0,1}7, define

o= (o 2) ) (U )
o= (en(5) )1 (U )

We overload notation and use Wy to denote the witness set W(A(b) , B(b))
and C(3) to denote the cut set C'(A(), Bp)). A node u belongs to A if
it is in every set A; such that b; = 1 and not in any of the sets A; for
which b; = 0. Thus, each A corresponds to one of the regions in the
Venn diagram of the sets Ai,As,..., Ay, and the analogous statement
holds for each B). Hence, we will refer to the sets W) and C) as the
Venn-witness and the Venn-cut for b, respectively, and refer to the pair
(A@), Bwy) as a Venn pair. Also, we will use b to refer to a vector which
differs from b in every bit.

2. The special structure of Venn witnesses and Venn cuts. Consider an edge
(u,v) that goes out of A(). Suppose that edge goes to By where d#b

and d#b. Then there must exist 1<4,i’ <J such that b; =d; and by #d;.
Since b; = d;, either u € A;,v € B; (lf b, =d; = 1) or u g A Q B; (lf
bi = d; = 0). In either case the edge (u,v) does not belong to the cut
C(A;,B;), and since all pairs in R have the same cut S, we conclude
that (u,v) € S. On the other hand, since by # d;, either u € Ay, v & By
(if by =1,dy =0) or u € Ay,v € By (if by = 0,dy = 1). In either case
the edge (u,v) belongs to the cut C'(Ay,B;r) and hence to S, which is a
contradiction. Thus, any edge from Ay goes to either By or B(g).

and similarly,

If the edge (u,v) goes to B(y), then it does not belong to any witness
set in W(R), any Venn witness set, any Venn cut, or S. If (u,v) goes to
B(g), then it belongs to S, to the Venn witness set W), to the Venn cuts
Cp) and C(g), and to no other Venn witness set or Venn cut. This edge
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also belongs to W (A;, B;) for all i such that b; =1. These observations,
and the definitions of Venn witnesses, cuts, and pairs easily lead to the
following consequences:

W(A,B)= | W, (2)
be{0,1}7 : b;=1

Cw) = C) (3)

C(b)ﬁC(d):(Z)ifb;«édandb;«éa, (4)

(Vi,1<i<J): 8= U  cw, (5)

be{0,1}7: bi=1

and finally,
W(b) U W(g) = C(b) (6)

3. The collection T . Define T to consist of all y-thick Venn pairs (A, B(y))
where b is not the all zero vector.

4. Proving that T is a y-uncrossing of R. (P1): Fix some 7,1 < i < J.
Since R is a ~v-thick collection, it follows from the definition that
(A;, B;) must be a v-thick pair. From equations 2 and 1, we know that
tW (Ai, BONER) =3 410,137 =1 LW (r)NER). We also know, from equa-
tions 4 and 5, that ¢(S) =} 10137 p,=1 t(C(p))- Hence, there must be
some be {0,1}7 such that b;=1 and (A, B)) is 7-thick, which in turn
implies that (A, B)) is in 7. This is the representative of (A;, B;)
and hence 7 satisfies P1. (P2): This follows trivially from equation 5.
(P3): From equation 4 we know that there are only two possible Venn
pairs (specifically, (A@), Bp)) and (A(g),B(E))) that have the same non-
empty cut Cp). Observe that our definition of y-thickness involves “strict
inequality”, and hence Venn pairs where the Venn witness set and the
Venn cut are both empty can’t be ~-thick and can’t be in 7.

5. Proving that C(X,Y) C S for all pairs (X,Y) e T. Any cut C(A,B) €
C(T) is of the form C(y for some J-dimensional bit vector b. Each C,) C
S, from equation 5. We will now show that this containment is strict.
Suppose not, i.e., there exists some C(;)=S. By equation 3, C(E) =5 as

well. Since J > 2, either b or b must have two bits that are set to 1; without
loss of generality, assume that by = bs = 1. From equations 1 and 6, we
know that C(;) (and hence S) is the disjoint union of Wy and W@). Any
edge in W) must belong to both W (A1, By) and W (Azg, Bz), whereas any
edge in W) can not belong to either W(A1,B;1) or W(Az,Bs). Hence,
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W (A1, By) = W(Az, B2) = W,y which contradicts the non-redundancy
assumption on R. Therefore, we must have C) CS. |

Proof of Theorem 3.7. The proof will be by induction over the largest
set in C(R) according to the ordering <. Let M (R) denote this largest set.

For the base case, suppose M (R) is the smallest set S under the order-
ing <. Then S must be singleton, C'(R) must have just a single set S, and
W (R) must also have a single witness set, which must be the same as S since
‘R is y-thick. By the non-redundancy assumption, R must have at most one
pair, and is its own ~y-uncrossing.

For the inductive step, consider any possible cut S and assume that the
theorem is true when M (R)~<S. We will show that the theorem is also true
when M (R)=.S, which will complete the inductive proof.

Suppose there is a unique (A4, B) € R such that C(A, B)=S. Intuitively,
one would expect this to be the easy case, since there is no “uncrossing” to
be done for S, and indeed, this case is quite straightforward. Define R’ =
R—(A, B). Let T’ denote a y-uncrossing of R, which is guaranteed to exist by
the inductive hypothesis. Since T is y-thick, so is T=T"U{(A, B)}. The pair
(A, B) clearly has a representative in 7 (itself), and any (A, B’) e R—(A4, B)
has a representative in 7’ and hence also in 7. Thus, 7 satisfies property
P1 for being a vy-uncrossing of R. Every set in C(7”) is a subset of some
cut in C(R’) (by property P2) and C(A,B) is also in C(R), and hence T
satisfies property P2 for being a y-uncrossing of R. Every set in 77 is smaller
than C(A, B) according to < and 7 satisfies property P3. Hence, T also
satisfies property P3. Thus, 7T is a y-uncrossing of R. If there are exactly two
distinct pairs (A, B) and (A’,B’) in R such that C(A,B)=C(A",B') =S,
then the same argument works again, except that R'=R\{(A,B),(4’,B’)}
and T=T'U{(A,B),(A",B")}.

We now need to tackle the most interesting case of the inductive step,
where there are more than two pairs in R that correspond to the same cut S.
Write R =R1UR2 where C(A,B) < S for all (A,B)e Ry and C(A,B)=S
for all (A, B) € Ra. Recall that for two different pairs (A, B) and (A’,B’) in
R, we must have W (A, B)#W (A’, B') by the non-redundancy assumption.
From Lemma 3.8, there exists a ~y-partial-uncrossing, say So, of Ro with the
property that for every set S’ € C(S;), we have S’ C S, and hence S’ < S. By
Lemma 3.4, we know that R, is its own y-partial-uncrossing. Further, by
definition of R, every set S’ € C'(R1) must satisfy S’ < S. Define S=R1USs.
By Lemma 3.6, S is a y-partial-uncrossing of R1 URo, i.e., of R. Further,
for every cut S’ € C(S), we have S’ <S. Hence, by our inductive hypothesis,
there exists a y-uncrossing of S; let 7 be a y-uncrossing of S. By Lemma 3.5,
T is also a y-uncrossing of R, which completes the inductive proof. |
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Remark 3.1. An alternate approach to relating cuts and witness sets is
to suitably modify the proof of the Bencziur-Karger sampling theorem, cir-
cumventing the need for the proportionate uncrossing theorem. The idea is
based on the observation that Karger’s sampling theorem also holds for ver-
tex cuts in graphs. Since Benczuir-Karger sampling theorem is proved using
multiple invocations of Karger’s sampling theorem, it is possible to set up a
correspondence between cuts and witness sets using a vertex-cut version of
the Benczur-Karger sampling theorem. However, we prefer to use here the
approach based on the proportionate uncrossing theorem as it is an inter-
esting combinatorial statement in its own right.

4. An 6(n1'5) time algorithm for finding a perfect matching

We present here an O(n1'5) time randomized algorithm to find a perfect
matching in a given d-regular bipartite graph G(P,Q,E) on 2n vertices.
Throughout this section, we follow the convention that for any pair (A, B),
the sets C(A, B) and W (A, B) are defined with respect to the graph G. Our
starting point is the following theorem, established by Goel, Kapralov, and
Khanna [8].2

Theorem 4.1. Let G(P,Q, F) be a d-regular bipartite graph, e any number
in (0, %), and c a suitably large constant that depends on €. There exists a
decomposition of G into k = O(n/d) vertex-disjoint bipartite graphs, say
Gl:(P17Q13E1)7G2:(P27Q27E2)7'"7Gk:(Pk‘7Qk‘7Ek‘)7 such that

1. Each G; contains at least d/2 perfect matchings, and the minimum cut
in each G; is 2(d*/n).

2. Let R denote the set of relevant pairs with respect to this decomposition,
and Eg denote the set of relevant edges. Then for each (A,B) in R, we
have |W (A, B)NERg]| Z%]C(A,B)L

3. Let G'(P,Q,E") be a random graph generated by sampling the edges of
G uniformly at random with probability p= C"dl# Then with probability
at least 1—1/n, for every pair (A,B)€R,

1—
(W (A, B)NE'NER| > (1—€)p|W (A, B)NER| > <2(1+6)> |C(A, B)NE'|.
€
The last condition above says that in addition to all cuts, all relevant
witness edge sets are also preserved to within (1+¢) of their expected value

2 Part 1 of Theorem 4.1 corresponds to theorem 2.3 in [8], part 2 is proved as part of the
proof of theorem 2.1 in [8], and part 3 combines remark 2.5 in [8] with Karger’s sampling
theorem [10].
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in G’, with high probability. We emphasize here that the decomposition
highlighted in Theorem 4.1 will be used only in the analysis of our algorithm;
the algorithm itself is oblivious to this decomposition.

Our algorithm consists of the following three steps.

(S1) Generate a random graph G’ =(P,Q, E’) by sampling edges of G uni-
formly at random with probability p=min{1, C“;‘i#} where ¢ is a con-
stant as in Theorem 4.1.3 We choose ¢ to be any fixed constant not larger
than 0.2.

(S2) The graph G’ contains O(”Q%dn") edges whp. We now run the Benczur-
Karger sampling algorithm [2] that takes O(|E’|In?n) time to compute
the strength s, of every edge e and samples each edge e with probability
pe;* here p is as given by Theorem 2.6 with v=1/3. We show below that
whp the graph G” = (P,Q,E") obtained from this sampling contains a
perfect matching. Also, let G”’ be obtained by including each edge of G
independently with probability min{1, (clnn)/d} for a sufficiently large
constant cs.

(S3) Finally, we run the Hopcroft-Karp algorithm to obtain a maximum
cardinality matching in G” UG" in O(n'®Inn) time since G” contains
O(nlnn) edges whp by Theorem 2.7, and G” has O(nlnn) edges whp by
a simple application of Chernoff bounds. The rationale behind running
the Hopcroft-Karp algorithm on G” UG"" is that G” contains a perfect
matching whp and the structure of G" ensures that this matching can be
found fast (see section 5 for the improved analysis of the Hopcroft-Karp
algorithm that makes use of the structure of G”).

Running time: With high probability, the running time of this algorithm
is bounded by O("fjln3n+n1'5 Inn). Since we can always use the algo-
rithm of Cole, Ost, and Schirra [6] instead, the final running time is
O(min{m,%ln3n+n1'5lnn}) using standard bounds on the runtime of
the Hopcroft-Karp algorithm. This reduces to O(m) if d < /nlnn; to
O(n'®Inn) when d > y/nln?n; and to O((nlnn)™®) in the narrow range
Vnlnn<d<./nin’n.

Correctness: 'To prove correctness, we need to show that G” contains a
perfect matching whp.

3 The time required for this sampling is proportional to the number of edges chosen,
assuming the graph is presented in an adjacency list representation with each list stored
in an array.

4 In fact, this sampling algorithm computes an upper bound on s., but this only affects
the running time and the number of edges sampled by a constant factor.
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Theorem 4.2. The graph G” contains a perfect matching with probability
1-0(1/n).

Proof. Consider the decomposition defined in Theorem 4.1. Let R denote
the set of relevant pairs with respect to this decomposition, and let Eg
denote the set of all relevant edges with respect to this decomposition. We
will now focus on proving that, with high probability, for every (A4, B) €R,
W (A, B)NERNE" #0; by Lemma 2.3, this is sufficient to prove the theorem.

For convenience, define W/(A, B)=W (A, B)NE’ and C'(A,B)=C(A,B)N
E’. Assume for now that the low-probability event in Theorem 4.1 does not
occur. Thus, by choosing € <0.2, we know that for y=1/3, every relevant pair
(A, B) € R satisfies |W'(A, B)NER|>~|C'(A, B)|. Let s, denote the strength
of e in G'. Recall that G’[j] =(V, Efj}) is the graph with the same vertex set
as G’ but consisting of only those edges in E' which have strength at least j.
Define W[’].] (A, B) to be the set of all edges in W' (A, B)ﬂE[’j]; define C’[’ﬂ (A,B)
analogously. Finally, let t(e)=1/s.. Since |W'(A, B)NEg|>~|C'(A, B)|, by
Lemma 2.8, there must exist a j such that

1 1
> D DR
e€(W'(A,B)NER),s.>j © e€C’(A,B),sL>j ¢

which implies that (A4, B) is 7-thick with respect to <G/[j}’t’ ER), as defined in
Definition 3.1. Partition R into Ry}, Rz, - -, Rn), such that if (4, B) e Ry,
then (A, B) is y-thick with respect to (G’[j],t,ER), breaking ties arbitrar-
ily if (A, B) can belong to multiple R;. Consider an arbitrary non-empty
Ryj- Let T represent a y-uncrossing of R[;}, as guaranteed by Theorem 3.7.
By property P3 in Definition 3.1, no three pairs in a y-uncrossing can have
the same cut; partition 7 into 77 and 72 such that every pair (4,B) € Ty
has a unique cut C[’j] (A,B) and the same holds for 75. We focus on T;
for now. For any (A,B) € Ti, define Y(A,B) = W[’j](A,B) N Er. Define
X ={Y(A,B): (A,B) € T1}. For any X € X, define f(X) = C’[’ﬂ(A,B)
for some arbitrary (A,B) € 71 such that X = Y (A,B). The function

f is one-one by construction, and since (A,B) is v-thick, we know that
Deex 1/8e > Y2 cep(x)1/se- Thus, X satisfies the preconditions of The-
orem 2.6. Further, the sampling probability p. in step (S2) of the algo-
rithm is chosen to correspond to 7 = 1/3. Thus, with probability at least
1—1/n% XNE" is non-empty for all X € X, i.e., W[’ﬂ(A,B)ﬁERﬁE”;AQ
for all (A,B) € T1. Since G/[j] is a subgraph of G’, we can conclude that
W'(A,B)NERrNE"#( for all (A, B) € T; with probability at least 1—1/n?.

Since the analogous argument holds for 73, we obtain W/(A, B)NEgNE" #
() for all (A, B) €T with probability at least 1—2/n2. As T is a y-uncrossing
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of Ry}, we use property P1 to conclude that W'(A, B)NErNE" #() for all
(A,B) € Ry;), again with probability at least 1—2/ n?. Applying the union
bound over all j, we further conclude that W/(A,B)NErNE" #{ for all
(A, B) € R with probability at least 1—2/n. As mentioned before, this suffices
to prove that G has a perfect matching with probability at least 1—2/n, by
Lemma 2.3. We assumed that condition 3 in Theorem 4.1 is satisfied; this
is violated with probability at most %, which proves that G has a perfect
matching with probability at least 1— % ]

As presented above, the algorithm takes time min{O(n'®),0(m)} with
high probability, and outputs a perfect matching with probability 1-O(1/n).
We conclude with two simple observations. First, it is easy to convert
this into a Monte Carlo algorithm with a worst case running-time of
min{O(n!®),0(m)}, or a Las Vegas algorithm with an expected running-
time of min{O(n'®),0(m)}. If either the sampling process in steps (S1)
or (S2) returns too many edges, or step (S3) does not produce a perfect
matching, then (a) abort the computation to get a Monte Carlo algorithm,
or (b) run the O(m) time algorithm of Cole, Ost, and Schirra [6] to get
a Las Vegas algorithm. Second, by choosing larger constants during steps
(S1) and (S2), it is easy to amplify the success probability to be at least
1-0 (—]) for any fixed j>1.

1
5. An improved O (min{nd, (n?In®n)/d}) bound on the runtime

In this section we give an improved analysis of the runtime of the Hopcroft-
Karp algorithm on the subsampled graph, leading to an overall bound of
O (min{nd, (n*In®n)/d}) for our algorithm. We first give intuition behind
the analysis, and then proceed to the technical details.

The runtime bound, which is proved in subsection 5.3, relies on breaking
the execution of the algorithm into two parts. The first part corresponds
to augmentation phases of the Hopcroft-Karp algorithm during which the
size of the matching is at most n — O(n/d). The second part corresponds
to the final augmentation phases, during which the size of the matching is
increased from n — O(n/d) to n. The runtime of the second part is easy
to bound: a phase of the Hopcroft-Karp algorithm takes time linear in the
number of edges in the graph, which is O(nlnn) for the graphs G” and
G"" that are used in step S3. There can be at most O(n/d) augmentations
in the second part, so the bound of O((n?logn)/d) follows. Thus, most of
the development in this section is directed towards bounding the runtime
of the first part. To prove the stated bound, we show in subsection 5.3
that during the execution of the first part, the length of augmenting paths
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does not exceed O(n/d) (see Lemma 5.7). This is achieved by relating the
length of augmenting paths with respect to partial matchings of size at most
n—0(n/d) to an expansion property for the set of witness sets W (A, B) that
naturally arise in the Hopcroft-Karp algorithm (see subsection 5.3). More
precisely, these are witness sets W (A, B) that are sufficiently unbalanced in
the sense that |A| > |B|+2n/d. Their properties and their behavior under
aggressive sampling of a d-regular bipartite graph G (at rate p=clogn/d for
a constant ¢> 0, the sampling rate that is used to obtain the graph G’ in S2)
are studied in subsections 5.1 and 5.2. The main result of subsections 5.1
and 5.2 is Corollary 5.6, which lower bounds the size of the witness set
W(A,B),|A| > |B|+2n/d in terms of the size of the witness set W (B, A)
in such subsampled graphs (for A C P,B C @, the set W (B, A) is defined
as C(A,B)\W (A, B)). This corollary is later used in the main argument of
subsection 5.3.

5.1. Combinatorial uncrossings

Theorem 5.2 below, which we state for general bipartite graphs, requires a
variant of the uncrossing theorem that we formulate now. We introduce the
definition of combinatorial uncrossings:

Definition 5.1. Let R be any collection of pairs (A,B),AC P, BC Q. A
combinatorial uncrossing of R is a tuple (7,Z), where 7 is another collection
and 7 is a mapping from R to subsets of T, such that the following properties
are satisfied:

Q1: For all (A,B)eR
. {W(AI, B/)}(A’,B/)EI(A,B) are dlSJOIl’lt,
. {C(A/7B/)}(A’,B’)€I(A,B) are dlSJOlHt,

W N =

. {A/UB/}(A’,B')EI(A,B) are dlSJOlnt,
4. ACA B CB forall (A,B')eZ(A,B);

5.
W(A,B) = U W(A', B)

(A’,B")e€Z(A,B)
C(A,B) = U C(A', B).

(A, B")ET(A,B)

Q2: (Half-injectivity) There cannot be three distinct pairs (A, B), (A’, B'),
(A”,B") in T such that C(A,B)=C(A",B")=C(A",B").
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The proof of existence of combinatorial uncrossings is along the lines of
the proof of existence of y-thick uncrossings (see Theorem 3.7), so we omit
it here.

For a graph H we denote Wy (A, B)=W(A,B)NE(H) and Cy(A,B)=
C(A,B)NE(H), and omit the subscript when the underlying graph is fixed.

Theorem 5.2. There exists a constant ¢>0 such that for all e >0 such that
for all bipartite graphs G=(P,Q, E), |P|=|Q|=n, with a minimum cut of
size at least « the following holds. If a graph G* is obtained by sampling
edges of G uniformly at random with probability p> 06151:, then whp for all
ACP, and BC(Q, we have

pIWa(A, B)| — ep|Ca(A, B)| < [We- (A, B)| < p|Wa(A, B)| + ep|Ca (A, B)|.

Proof. Define R as the set of pairs (4, B),AC PNV (G),BCQV (G). Denote
a combinatorial uncrossing of R by (7,Z). We first prove the statement for
pairs from 7T, and then extend it to pairs from R to obtain the desired result.

Consider a pair (A,B) € T. Denote Ag(A,B) = |Wg-(A,B)| —
p|Wa(A, B)|. We shall write W (A, B) and C(A, B) instead of W (A, B) and
Ca (A, B) in what follows for brevity. We have by Chernoff bounds that for
a given pair (A,B)eT

2
Pr[|Ac(A, B)| > ep|C(A, B)|] < 2exp [_ (6\0(& B)I) pIW (A, B)|

[W(A, B)| 3
< 20 [ (B2
3
since |C(A,B)|>|W (A, B)|. Since T satisfies Q2, we get that
Pr[3(A,B) € T: |Ac(A, B)| > ep|C(A, B)|]

<2 Z exp [—ezp]C(A, B)|/3]
W (A,B)eW (T)
<4 Z exp [—€*p|C(A, B)|/3] = O(n™")
C(A,B)eC(T)
for ¢=3(r+2) by Corollary 2.4 in [10]. This implies that for ¢>3(r+2) we
have with probability 1—O(n™") for all (A,B)eT
|Ac(A, B)| < ep|C(A, B)l. (7)
Now consider any pair (A, B) € R. Summing (7) over all (A", B")€Z(A,B)
and using properties Q1.1-5, we get

|Ac(4, B)| < > elC(4A, B =ep|C(A, B),
(A, B")EL(A,B)
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for all (A4, B)€R as required. 1

5.2. Decomposition of the graph G

Corollary 5.6, which relates the size of sufficiently unbalanced witness sets
in the sampled graph to the size of the corresponding cuts is the main result
of this subsection. It follows from Theorem 5.2 and a stronger (than [8]) de-
composition of bipartite d-regular graphs that we outline now. For ACV(G)
we denote the set of edges in the cut (4,V(G)\ A) in G by 6(A).

Theorem 5.3. Any d-regular graph G with 2n vertices can be decomposed
into vertex-disjoint induced subgraphs G = (P1,Q1,FE1), Go = (P2,Q2, E2),
eovry G =Py, Qk, Ex), where k<4n/d+1, that satisfy the following proper-
ties:

1. The minimum cut in each G; is at least d/8.

2. 31 106 (V(Gi))| <2n.

To prove Theorem 5.3, we give a procedure that decomposes the graph
G into vertex-disjoint induced subgraphs G1(Py,Q1, E1), Go(P2,Q2, Es), ...,
G (Pr,Qp, Ey), k<4n/d+1 such that the min-cut in G; is at least d/8 and
at most n edges run between pieces of the decomposition.

The procedure is as follows. Initialize H1:=G, and set i:=1.

1. Find a smallest proper subset X; C V(H;) such that |0y, (X;)| <d/4. If
no such set exists, define GG; to be the graph H; and terminate.

2. Define G; to be the subgraph of H; induced by vertices in X;, i.e. X;=
P,UuQ;=V(G;). Also, define H; 11 to be the graph H; with vertices from
X; removed.

3. Increment ¢ and go to step 1.

We now prove that the output of the decomposition procedure satisfies
the properties claimed above.

Lemma 5.4. The min-cut in G; is greater than d/8.

Proof. If G; contains a single vertex the min-cut is infinite by definition, so
we assume wlog that G; contains at least two vertices. The proof is essentially
the same as the proof of property P1 of the decomposition procedure in [§]
(see Theorem 2.4).

Suppose that there exists a cut (V,V¢) in G; where VCV(G;) and V=
V(G;)\V, such that |dg, (V)| <d/8 (note that it is possible that VNP, () and
VNQ; #0). We have |dp, (V)\oa, (V)|+|0m, (V)\dg, (V)| <d/4 by the choice
of X; in (1). Suppose without loss of generality that |0z, (V)\dg, (V)| <d/8.
Then |6p,(V)| <d/4 and V C X;, which contradicts the choice of X; as the
smallest cut of value at most d/4 in step (1) of the procedure. 1
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Lemma 5.5. The number of steps in the decomposition procedure is k <
4n/d, and at most n edges are removed in the process.

Proof. We call a vertex v €V (G;) bad if its degree in G; is smaller than d/2.
Note that for each 1<i<k either G; contains a bad vertex or |V (G;)| >d.

Note that since strictly fewer than d/4 edges are removed in each itera-
tion, the number of bad vertices created in the first j iterations is strictly
less than j(d/4)/(d/2)=7j/2. Hence, during at least half of the j iterations
at least d vertices were removed from the graph, i.e.

J
S OIV(G)| = (§/2) - d = jd/2.

i=1

This implies that the process terminates in at most 4n/d steps, and the
number of edges removed is at most (4n/d)-d/4=n. 1

Proof of Theorem 5.3. The proof follows by putting together Lemmas 5.4
and 5.5. |

We overload notation here by denoting W (B,A) = W(P\ A,Q\ B) =
C(A,B)\W(A,B) for AC P,B C Q. The main result of this subsection is
the following.

Corollary 5.6. Let G* = (P,Q,E*) be a graph obtained by sampling the
edges of a d-regular bipartite graph G = (P,Q,F) on 2n vertices indepen-
dently with probability p. There exists a constant ¢>0 such that if p> Cgf ,
then whp for all pairs (A,B),AC P,BCQ, |A| >|B|+2n/d one has that
(W (A, B)NE*| > 155¢|W (B, A)N E*| for all e<1/10. In particular, G* con-
tains a matching of size at least n—2n/d whp.

Proof. Set A;=ANP;,B;=BNQ;, where G;=(P;,Q;, E;) are the pieces of
the decomposition obtained in Theorem 5.3. For each (A4;, B;) such that G;
is not an isolated vertex we have by Lemma 5.4 and Theorem 5.2

[We; (Ai, Bi) N E7| = plWe; (Ai, Bi)l| < ep|Ca; (Ai, Bi)-

If G; is an isolated vertex, we have |Wg, (A;, B;) N E*|=p|Wg, (Ai, Bi)| =0.
Since the latter estimate is stronger than the former, we shall not consider
the isolated vertices separately in what follows.

Adding these inequalities over all ¢ we get

k k k
Z [We, (Ai, Bi) N BT > pz \We, (Ai, Bi)| — sz Ca, (Ai, Bi)|- (8)

i=1 =1 =1
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Denote the set of edges removed during the decomposition process by FE,.
Denote By =E,NW(A,B) and E;=E,NW(B,A). Since |W(A,B)NE*|=
> [We, (As, BONE* [+ EiNE*| and 31, (W, (A, Bi)| =W (A, B)|=| 4],
this implies

W(A, B) 1 E*| > p|W (A, B)| - ep|C(A, B)| — p|Erl. (9)
Likewise, since W(B,A)=W (P\ A,Q\ B), we have

W (B, A) N E*| < p|W (B, A)| + ep|C(A, B)| + p|Bal.
Since |A|>|B|+2n/d, we have |W(A,B)|>|W (B, A)|+2n, so

(W(A, B)N E*| > p|W(A, B)| — ep|C(A, B)| — p|En|
> p(|W(B, A)| + 2n) — ep|C(A, B)| — p| Er| — p|Ex|
> |[W(B, A) N E*| - 2ep|C(A, B)| + p(2n — | E;|)
> |W (B, A) N E*| — 2ep|C(A, B)| + pn.
Adding (9) for the pairs (A,B) and (B,A), we get |C(A,B) N E*| >
(1—2¢)p(|C(A,B)|—n), ie. p|C(A,B)| < 1-|C(A,B) N E*| + pn. Hence,
we have
W(A, B) N E*| > [W(B, A) 1 E*| - 26p|C(A, B)| + pn

2e «
= 26]C’(A, B)NE*|+ (1 —2€¢)pn
2¢

1—2¢

> [W(B, A) N E*| -

> |W(B,A)NE*|—

(IW(A, B) N E*|+|W (B, A) N E*) + (1—2¢)pn,

which implies
1
1

for e<1/10. This completes the proof. |

—3
W(AB)NE| > 1 3in(B,A) N E*|

Remark 5.1. The result in Corollary 5.6 is tight up to an O(Ind) factor

for d=2(\/n).

Proof. The following construction gives a lower bound of n — Q(ﬁ).
Denote by Gy 4 the graph from Theorem 4.1 in [8] and denote by G}, ; a

graph obtained by sampling edges of G, 4 at the rate of Cl% for a constant
¢ > 0. Define the graph G as d disjoint copies of Ga4ind,q, and denote the
sampled graph by G*. Note that by Theorem 4.1 the maximum matching in
each copy of G5, 4 4 has size at most 2dInd—1 whp, and since the number
of vertices in G is N = 2d?Ind, the maximum matching in G* has size at

most N — {2 (dﬁid) whp. |
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5.3. Runtime analysis of the Hopcroft-Karp algorithm

In this section we derive a bound on the runtime of the Hopcroft-Karp algo-
rithm on the subsampled graph obtained in step S2 of our algorithm. The
main object of our analysis is the alternating level graph, which we now
define. Given a partial matching of a graph G = (P,Q, F), the alternating
level graph is defined inductively. Define sets A; and B;, j=1,...,L as fol-
lows. Let Ag be the set of unmatched vertices in P and let By=0. Then let

Bj1=1(A;)\ (UKj Bi>, where I'(A) is the set of neighbours of vertices

in A C V(G), and let A; be the set of vertices matched to vertices from
Bj. The construction terminates when either B, 1 contains an unmatched
vertex or when Bji; = (), and then we set L = j. We use the notation
AU) = ngj Ay, BU) = ngj Bj.. We now give an outline of the Hopcroft-Karp
algorithm for convenience of the reader. Given a non-maximum matching,
the algorithm starts by constructing the alternating level graph described
above and stops when an unmatched vertex is found. Then the algorithm
finds a maximal set of vertex-disjoint augmenting paths of length L (this
can be done by depth-first search in O(m) time) and performs the aug-
mentations, thus completing one augmentation phase. It can be shown that
each augmentation phase increases the length of the shortest augmenting
path. Standard analysis of the run-time for general bipartite graphs is based
on the observation that once y/n augmentations have been performed, the
constructed matching necessarily has size at most \/n smaller than the max-
imum matching.

We denote the graph obtained by sampling edges of G independently
with probability p= ‘31% for a constant ¢>0 by G*, and let G** be a graph
obtained by adding an arbitrary set of edges of G to G*. For A C V(G)
denote the set of edges in the cut (A,V(G)\ A) in G by 6(A) and the set
of edges in the same cut in G* by 0*(A). Similarly, we denote the vertex
neighbourhood of A in G by I'(A) and the vertex neighbourhood in G* by
I'*(A). We consider the alternating level graph in G* and prove that whp
for any partial matching of size smaller than n —2n/d for each 1 < j <L
either |B;_1UB;jUBj1| = f2(d) or B; expands by at least a factor of Inn
in either forward or backward direction (|Bj+1]| > (Inn)|Bj| or [Bj_1| >
(Inn)|B;|). This implies that L=0 ( dﬂ?ndn), thus yielding the same bound
on the length of the shortest augmenting path by virtue of Corollary 5.6.
The main technical result of this subsection is

Lemma 5.7. Let the set of edges E* be obtained by sampling edges of
a bipartite d-regular graph G = (P,Q,E) on 2n vertices uniformly with
probability p. Let G* = (P,Q, E*) and G** = (P,Q, E*UE**), where E** is

an arbitrary subset of E. There exists a constant ¢>0 such that if p> Cl%,
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then whp for any partial matching in G* of size smaller than n—2n/d there
exists an augmenting path of length O( nlnd )

dlnlnn /"

The following expansion property of the graph G* will be used to prove
Lemma 5.7:

Lemma 5.8. Define v(t) = (1 —exp(—t))/t. For all €,t > 0 there exists a
constant ¢ > 0 that depends on t and e such that if G* is obtained by

sampling the edges of G independently with probability p > Clg", then whp
for every set ACP, |A|<t/p

[ (A)] = (1 = e)dpy(t)|Al.
The corresponding claim also holds for BCQ, |B|<t/p.
Proof. Consider a set AC P, |A|<t/p. For be I'(A) denote the indicator
variable corresponding to the event that at least one edge incident on b and

going to A is sampled by X, i.e. Xy = Ijpep+(a)}- Denote the number of
edges between b and vertices of A by k. We have

Pr(X,=1]=1—(1—p)" > 1 —exp(—kyp) > kppy(2),

since kyp<t and e”* <1—~(t)x for z€]0,t].
Hence,

E|> Xb] >y(t)p >k = plo(A) (). (10)

beB beB

There are at most n® subsets A of P of size s and |0(A)|=d|A| for all A,
so we obtain using Chernoff bounds and the union bound

Pr(3 AC P/ |A| <t/p: |I""(A)] < (1 —e)pd|Aly(t)]
t/p

< Z n® exp (—e*pdsy(t))

where we summed a geometric sequence with ratio n*=<"(%) in the last step,
assuming that ¢> (2+4r)/7v(t). 1
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Proof of Lemma 5.7. Let p= 0/612—2[" for a sufficiently large constant ¢’ >0
and some € >0 that we will later fix to an absolute constant.

First note that since the partial matching is of size strictly less than
n—2n/d, by Corollary 5.6 there exists an augmenting path with respect to
the partial matching.

In order to upperbound the length of the shortest augmenting path, we
will show that for each j, at least one of the following is true:

1. |B;j|>d/500;

2. [Bj+1]=d/500;

3. |Bj41|= (Inn)|Bjl;
4. |Bj_1|>d/500;

5. |Bj—1|=(Inn)|Bj].

It then follows that for each j there exists j’ such that |j—j'| <1+log,, d
and |Bj/| >d/500. Hence, there cannot be more than O (dﬂ?ndn) levels in the
alternating level graph, so there always exists an augmenting path of length

O nind ]

(lgl‘glrln:a?ch 1 <j <L, where L is the number of levels in the alternating
level graph, we classify the edges in E* leaving B; into three classes: (1) Ep
contains edges that go to P\ AU, (2) Ejs contains edges that go to A;,
and (3) Er contains edges that go to Aj_1. The degree of every node in G*
is between (1 — e)pd and (14 ¢€)pd whp by Chernoff bounds as long as the
constant ¢’ in p= <" nn g sufficiently large. Thus, at least one of Ep, Eys, ER
has at least (1— e)pd|B |/3 edges. We now consider each of these possibilities.

Case (A): First suppose that E contains at least (1—e)pd|B;|/3 edges,
i.e. [W(BW,AU))| > (1—¢)pd|B,| /3. Note that since the partial matchlng has
size smaller than n—2n/d by assumption, we have that |AY)|>|BU)|+2n/d.
Hence, by Corollary 5.6 applied to W(A(J),B (g )) the number of edges going
from A; to Bjy1 is at least

) nW) (G AG)
W(AD, BO)| > W (BY), AD)

(1 -3¢)(1—¢) (1 —3¢)(1—¢)
>~ pd|Bj|/3 = —"——pd|A;|/3
where we used the fact that |A;|=|B;| be definition.
Suppose first that |A;| < 1/(5p). Then by Lemma 5.8 one has that

IT*(45)] = (1= y(1/5)pd|A;|. Tet B* = 1+~ 15750059 Observe that
since one edge going out of A; yields at most one neighbor, at most

(1+e€)pd|Aj| — %pd\fl |/3 = B*pd|A;| neighbours of vertices of A;
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are outside Bj;1. Suppose that e <1/17. We then have that B;; contains
at least ((1—€)y(1/5) — B*)pd|A;| > 0.011pd|A;| neighbours of |A;|. Since
0.011pd|A;|=0.011(clnn)/e? > (Inn)|A;| when the constant c is sufficiently
large, we get |Bj;1| > (Inn)|A;| = (Inn)|Bj| (this corresponds to case 3
above).

If |A;| > 1/(5p), using a simple averaging argument one can find A’ C

A; such that |A'| = |1/(5p)] and at least %pdh‘l’]/i& edges going
out of A" go to Bjy1, which implies by the same argument that |Bji1| >

0.011pd|A’| >d/500 (this corresponds to case 2 above).

Case (B): Suppose that Ejs contains at least (1—e€)pd|B;|/3 edges. Then
by the same argument as in the previous paragraph we have that |B;| >
(Inn)|A;| if |A;] <1/(5p). This is impossible when Inn>1 since |A;|=|B;|.
Hence, |Bj|>d/500 by same argument as above (this corresponds to case 1
above).

Case (C): Suppose that Er contains at least (1—€)pd|B;|/3 edges. By the

same argument as above we have that either |B;_1| >d/500 (this corresponds

to case 5 above) or B;j_1>(Inn)|B;| (this corresponds to case 4 above).
This completes the proof. ]

We are now ready to prove the main result of this section.

Theorem 5.9. Let the graph G" UG" be obtained from G using steps S1
and S2 in the algorithm of section 4. Then step S3 takes O ("2 ln2”> time

dlnlnn

whp, giving an overall run time of O (%) for the entire algorithm whp.

Proof. Our first step is to note that the set of edges of G included in
the graph G” UG"" satisfies the preconditions of Lemma 5.7. Indeed, this is
because G" is a uniform sample of edges of G with probability (c2lnn)/d
(see definition of step S2), and hence the preconditions are satisified as long
as the constant cy is chosen sufficiently large.

We now bound the time taken by the augmentation process in step S3.
We analyze the runtime in two stages: (1) finding a matching of size n—2n/d,
and (2) extending the matching of size n—2n/d to a perfect matching. By
Lemma 5.7 the maximum number of layers in an alternating level graph in
G"UG", and hence the length of the shortest augmenting path, is O ( nlnd ).

dinlnn
As each augmentation phase takes time proportional to the number of edges

in the graph, this implies that the first stage takes O (”2 1n2”>.

dinlnn
Finally, note that each augmentation phase increases the size of the
matching by at least 1, and thus O(n/d) augmentation suffice to extend
the matching constructed in the first stage to a perfect matching. This takes
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dlnlnn

o ("2}%) time, so the runtime is O (”21“2”> for step S3, and O (@)

overall.

Remark 5.2. Theorem 5.9 as well as Lemma 5.7 can be slightly altered to
show that the runtime of the Hopcroft-Karp algorithm on the subsampled

graph from [8] is O ( n’ln’n ) This shows that the approach in [8] yields an

d?lnlnn

O(n/3) algorithm, which is better than O(n'™) stated in [8].

Theorem 5.10. For any function d(n)>2+/n there exists an infinite family
of d(n)-regular graphs with 2n+o(n) vertices such that whp the algorithm
in section 4 performs (2(n/d) augmentations in the worst case.

Proof. In what follows we omit the dependence of d on n for brevity. Define
H® = (UV,E), 0 <k <d, to be a (d— k)-regular bipartite graph with
|U| = |V| = d. The graph G consists of ¢ copies of H®), which we denote
by {Hj}z':l’ where H; = HE3+Y “and 2t vertices uq,...,u; and v1,...,v;.
Each of uy,...,u; is connected to all d vertices in the V-part of Hy, and for
1<j <t, the vertex v; is connected to all vertices in the U-part of H;. The
remaining connections are established by adding t — j edge-disjoint perfect
matchings between the U part of H; and the V part of H;; for all 1 <j<t.
Set t=n/d <+/n/2<d/4. Note that the strength of edges in Hj is at least
d/4, so whp there exists a perfect matching in subgraph of H; generated
by the sampling steps S1 and S2, for 1 < j <{. Suppose that at the first
iteration of the Hopcroft-Karp algorithm a perfect matching is found in
each Hj, thus leaving unmatched the vertices uy,...,u; and vy,...,v;. Then
from this point on, the shortest augmenting path for each pair (uj,v;) has
length j, and each augmentation phase of the Hopcroft-Karp algorithm will
increase the size of the matching by 1. Hence, it takes t augmentations to
find a perfect matching. The number of vertices is 2(d+1)t=2n+o(n). 1

6. Perfect matchings in doubly stochastic matrices

An n xn matrix A is said to be doubly stochastic if every element is non-
negative, and every row-sum and every column-sum is 1. The celebrated
Birkhoff-von Neumann theorem says that every doubly stochastic matrix
is a convex combination of permutation matrices (i.e., matchings). Surpris-
ingly, the running time of computing this convex combination (known as a
Birkhoff-von Neumann decomposition) is typically reported as O(m?2y/n),
even though much better algorithms can be easily obtained using existing
techniques or very simple modifications. We list these running times here
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since there does not seem to be any published record®. After listing the run-
ning times that can be obtained using existing techniques, we will show how
proportionate uncrossings can be applied to this problem to obtain a slight
improvement.

1. An O(m?)-time algorithm for finding a Birkhoff-von Neumann decom-
position can be obtained by finding a perfect matching in the existing
graph using augmenting paths (in time O(mn)), assigning this match-
ing a weight which is the weight of the smallest edge in the matching,
subtracting this weight from every edge in the matching (causing one
or more edges to be removed from the support of A), and continuing
the augmenting path algorithm without restarting. When a matching is
found, if we remove k edges, then we need to find only k£ augmenting
paths (finding each augmenting path takes time O(m)) to find another
matching, which leads to a total time of O(m?).

2. Let b be the maximum number of significant bits in any entry of A.
An O(mb)-time algorithm for finding a single perfect matching in the
support of a doubly stochastic matrix can be easily obtained using the
technique of Gabow and Kariv [7]: repeatedly find Euler tours in edges
where the lowest order bit (say bit j) is 1, and then increase the weight
of all edges going from left to right by 27/ and decrease the weight of all
edges going from right to left by the same amount, where the direction-
ality of edges corresponds to an arbitrary orientation of the Euler tour;
this eliminates bit j while preserving the doubly stochastic property and
without increasing the support.

3. An O(mnb)-time algorithm to compute the Birkhoff-von Neumann de-
composition can be obtained using the edge coloring algorithm of Gabow
and Kariv [7].

We now show how our techniques lead to an O(mIn3n + n'®Inn)-time
algorithm for finding a single perfect matching in the support of a doubly
stochastic matrix. In realistic scenarios, this is unlikely to be better than
(2) above, and we present this primarily to illustrate another application of
our proportionate uncrossing technique. First, define a weighted bipartite
graph G = (P,Q, F), where P = {uj,us,...,u,} corresponds to rows of A,
Q={v1,v2,...,v,} corresponds to columns of A, and (u;,v;) € E iff A; ;>0.
Define a weight function w on edges, with w(u;,v;) = A; ;. Let R be the
collection of all pairs (A,B),A C P,B C Q,|P| > |Q|. Since A is doubly
stochastic, the collection R is (1/2)-thick with respect to (G,w,E). Let T
be a (1/2)-uncrossing of R. Performing a Benczir-Karger sampling on G

5 This list was compiled by Bhattacharjee and Goel and is presented here to provide
some context rather than as original work.
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will guarantee (with high probability) that at least one edge is sampled from
every witness set in W (7), and hence running the Hopcroft-Karp algorithm
on the sampled graph will yield a perfect matching with high probability.
The running time of O(mIn®n4+n'°Inn) is just the sum of the running times
of Benczur-Karger sampling for weighted graphs [2] and the Hopcroft-Karp
matching algorithm [9].
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A. Proof of Lemma 2.3

Consider any (A, B) where |A| > |B|,AC P,B C Q. Define A; =P,NA and
B;=Q,NB. Fix an i such that |A;| > |B;|; such an i is guaranteed to exist. By
the definition of relevance, there exists a pair (X,Y) € R such that X C A;,
and W(X,Y)NEr CW (A;, B;)NER. By the assumption in the theorem, there
exists an edge (u,v) € EXNEgNW (X,Y). Since W(X,Y)NEr CW (A;, B;)NER,
it follows that (u,v)€ E*NErNW (A;, B;). This edge is in G*, and goes from
A; to Q;\ By, i.e., from A; to Q;\(Q;NB), and hence, from A to Q\ B. Since
the only assumption on (A, B) was that |A|>|B|, we can now invoke Hall’s
theorem to claim that G* has a perfect matching. |

B. Proof of Theorem 2.6

As mentioned before, the proof is along very similar lines to that of the
Benczar-Karger sampling theorem, but does not follow in a black-box fashion
and is presented here for completeness. The proof relies on the following
result due to Karger and Stein [12]:

Lemma B.1. Let H(V,E) be an undirected graph on n vertices such that
each edge e has an associated non-negative weight p.. Let s* be the value
of minimum cut in H under the weight function p.. Then for any a>1, the
number of cuts in H of weight at most as* is less than n>®.

Proof of Theorem 2.6. We will choose c=5. The first part of the proof
shows that it is sufficient to bound a certain expression that involves only
cuts. The second part then bounds this expression.

For the first part, let u(X) =73 cxpe denote the expected number of
edges chosen from X by the sampling process. If a set X € X contains an
edge e with p. = 1, then that edge will definitely be chosen, and that set
does not contribute to

Z Pr[No edge in X is chosen in H'|
XeXx
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and can be removed from X'. Hence, assume without loss of generality that

pe <1 for every edge in (Jycp X. Define i(X)=>" % (
set XeX,

clnn

o ) Now for any

Pr[No edge in X is chosen in H'] = H (1—pe) < H e7Pe < e X)),
e€X eeX

where

p() = BN L en) 3 T = A7),
T oeex Be ecf(X) Se

Since f is a one-one function, it is sufficient to provide an upper-bound on
>cec e MA,

For the second part, let fi1,fio,...,ian_2 be a non-decreasing sorted se-
quence corresponding to the multi-set {ji(C): C €C}. Define ¢; =e~#i. Con-
sider an arbitrary cut C'. Any edge in C' can have strength at most |C|, and
hence ji(C)>clnn, and therefore, g1 <n~¢. So the sum of ¢; for the first n?
cuts in the sequence is bounded by n~*2. We now focus on the remaining
cuts. By Lemma B.1, we know that for any a>1, we have [i,,2« > afi1. Hence

Ink _
M1,

. >
H = 2lnn

which in turn implies that g, <k~¢/2. Thus

Z Pr[No edge in X is chosen in H'|

Xex
n2
SY O gk Y a3 K = 0,
ceC k=1 k>n? k>n?
giving us the desired result when we choose c=5. |

C. Proof of Lemma 2.8

Assume by way of contradiction that no such integer j exists for some pair
of multisets S7 and Sy. Let K be the largest integer in S; U S5, and let o
and B; denote the number of occurrences of 7 in the multisets S; and So
respectively. Then for all j>1, we have

K K

o ,
E <~ @ .
— 1 7
i=j i=j
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Summing the above inequality for all j€{1..K}, we get

K K
i<y (D 8],
i=1 i=1

which is a contradiction since |Si|>y|S2| by assumption.
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