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Abstract
In this paper we revisit the problem of constructing randomized
composable coresets for bipartite matching. In this problem the
input graph is randomly partitioned across k players, each of which
sends a single message to a coordinator, who then must output a
good approximation to the maximum matching in the input graph.
Assadi and Khanna [6] gave the first such coreset, achieving a 1/9-
approximation by having every player send a maximum matching,
i.e. at most n/2 words per player. The approximation factor
was improved to 1/3 by Bernstein et al. [2]. In this paper, we
show that the matching skeleton construction of Goel, Kapralov
and Khanna [20], which is a carefully chosen (fractional) matching,
is a randomized composable coreset that achieves a 1/2 − o(1)

approximation using at most n − 1 words of communication per
player. We also show an upper bound of 2/3 + o(1) on the
approximation ratio achieved by this coreset.

1 Introduction
Composable coresets is a generic technique for the analysis
of large data, that has been shown to be effective for a variety
of problems. In the context of graphs, the idea is to partition
the edges of the input graph into k parts, extract some small
yet informative summary of each part, and recombine these
summaries into a single graph without losing too much in
the quality of the solution (the formal definition is presented
in Section 2). The small summary of each part is called
the composable coreset. This versatile technique translates
simply to algorithms in both the MPC and the randomized
streaming models (Section 1.1 in [6]).

The study of randomized composable coresets in the
context of approximating maximum matching was initiated
by [6] as the usefulness of deterministic composable core-
sets, where the initial partition of the input is arbitrary, was
shown to be limited (see e.g. [7, 25]). They proved that
a maximum matching coreset, which contains n/2 edges,
achieves nearly 1/9 approximation, which was improved to
nearly 1/3 by [2]. This paper further showed that the ap-
proximation quality of the maximum matching coreset is at
best 1/2, and proposed an alternative: the EDCS coreset.
EDCS’s achieve a nearly 2/3 approximation as randomized
composable coresets for maximum matching; they are how-
ever significantly denser, with size n ·poly(ε−1) ·poly(log n)
to achieve a 2/3− ε approximation. More recently, the work

of [3] gave a coreset of linear size in n that achieves an
approximation ratio of 1/2 − ε for small ε > 0, but at the
expense of duplicating every edge Ω(1/ε) times, increasing
the communication accordingly. This is again prohibitively
expensive for small ε.

As the main result of this paper, we propose a small
composable coreset of size at most n− 1, which nonetheless
achieves a 1/2 approximation ratio, without the need for the
duplication of edges.
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Figure 1: A visual representation of randomized composable
coresets. G is first partitioned into k parts randomly. Then
each of those parts is reduced into coresets independently us-
ing an algorithmA. A maximum matching is then computed
amongst the recombination of all the coresets.

THEOREM 1.1. There exists a 1/2− o(1)-approximate ran-
domized composable coreset with size n − 1 for bipartite
maximum matching as long as k = ω(1), MM(G) =
ω(k log n).

Intuition behind our construction Our coreset is inspired
by the previous best known ‘small’ randomized composable
coreset, the maximum matching coreset. The main chal-
lenge in analyzing the performance of picking any maxi-
mum matching as a coreset lies in the fact that graphs that
do not admit a perfect matching generally admits many dif-
ferent maximum matchings. To circumvent this, we propose
to use any matching skeleton (a structure introduced by [20],
and later rediscovered by [14]) as a coreset. This is essen-
tially a carefully chosen ‘canonical’ fractional matching that
matches vertices as uniformly as possible (see Section 4).
Such a fractional matching can always be selected to be sup-
ported on a forest by a simple argument similar to the one
that establishes the integrality of the bipartite matching poly-
tope, meaning that the support size is never larger than n−1.
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The fact that the coreset is essentially an ‘optimally spread
out’ maximum matching leads to a rather simple proof of
the approximation ratio of 1/2 − o(1), which we present in
Section 5. In Section 6, we show that any matching skeleton
does not provide a better than 2/3 approximation to maxi-
mum matching, leaving some amount of room for improve-
ment of our approximation ratio bound.

Previous results Coresets have been studied in a variety
of contexts [6, 15, 10, 9, 22, 31, 29] (also see e.g. [4, 5,
7, 13, 12, 17, 23, 26, 30, 19] for the related work in the
linear sketching context). Related to our problem, maximum
matching approximation has been widely studied in low
space regimes such as MPC [2, 21, 18, 27, 3] and streaming
[28, 20, 24, 32, 6, 1]. In particular [2] achieves nearly
2/3 approximate maximum matching in two MPC rounds
and Õ(

√
mn + n) space per machine, using randomized

composable coresets of size O(n log n).

2 Randomized Composable Coresets
DEFINITION 1. Let G = (V,E) be a graph and k ∈ N and
integer. A random k-partition of G is a set of k random
subgraphs {Gi = (V, Ei)}i∈[k] of G, where each edge
e ∈ E is sent uniformly at random to exactly one of the Ei.

DEFINITION 2. [31] Let A be an algorithm that takes as
input a graphH and returns a subgraphA(H) ⊆ H . We say
thatA outputs an α-approximate randomized composable
coreset for the maximum matching problem if given any
graph G = (V,E), any k ∈ N and a random k-partition
of G we have

α ·MM(G) ≤ E[MM(A(G1) ∪ · · · ∪ A(Gk))]

where the expectation is taken over the randomness of the
partition. The size of the coreset is the number of edges
returned by A.

REMARK 1. Throughout this paper we will assume some
natural bounds on the parameter k. Firstly, similarly to
[6, 2], we suppose that the maximum matching size of
the input graph MM(G) = ω(k log n). This allows us
to argue concentration at various places in the analysis,
and is a natural assumption: The regime where MM(G) is
smaller is handled in [16]. We will further make the natural
assumption that k = ω(1), that is we parallelize over a
superconstant number of machines.

3 Preliminaries and Notation
Throughout the paper we consider bipartite graphs, denoted
by G = (P, Q, E), where the vertex-sets P and Q are the
two sides of the bipartition, and E is the edge-set. We let
n = |P∪Q| denote the number of vertices inG andm = |E|
denote the number of edges. For a vertex v ∈ P ∪Q ofG we

write ΓG(v) to denote the set of neighbors of v in G, or Γ(v)
if G is clear from context. Similarly, for a set S ⊆ P ∪Q we
write ΓG(S) or Γ(S) to the denote the neighborhood of the
set in G.

DEFINITION 3. A matching in a graph is a set of edges such
that no two of them share an end point. The maximum
matching size of a graph is the maximum possible size of
a matching in it; we usually denote it MM(G).

DEFINITION 4. Given a graph G = (P,Q,E), a fractional
matching is a set of non-negative edge weights x : E →
[0, 1] such that no vertex has more than unit weight adjacent
on it:

∀v ∈ P ∪Q :
∑

w∈Γ(v)

xvw ≤ 1

The size of a fractional matching is the sum of all edge-
weights.

Note that an integral fractional matching corresponds
to the classical matching definition. We will also use the
extended notion of α-matching of [20], which are classical
fractional matching with a changed constraint for one side of
the bipartition.

DEFINITION 5. Given a graph G = (P,Q,E), a α-
matching with respect to P is a set of non-negative edge
weights x : E → [0, 1] that saturates each vertex of P frac-
tionally exactly α times and each vertex of Q at most once.

DEFINITION 6. A vertex cover is a set of vertices Φ ⊆ P∪Q
such that all edges have at least one end point in Φ.

The following theorem is a fundamental fact about
bipartite graphs, on which we will be relying throughout the
paper.

THEOREM 3.1. For any bipartite graph, the size of the
maximum matching, the size of the maximum fractional
matching, and the size of the minimum vertex cover are
equal.

COROLLARY 3.1. If a matching and a vertex cover have the
same size, both are optimal.

Furthermore, we will rely on the following concentra-
tion inequality.

THEOREM 3.2. (CHERNOFF BOUND, SEE [8]) Let Y =∑n
i=1Xi be the sum of n independent binary random vari-

able each with P[Xi = 1] = pi. Let µY = E[Y ] =
∑n
i=1 pi.

Then, for any ε ∈ (0, 1), we have:

P[X /∈ (1± ε)µY ] ≤ 2e−
ε2µY

3
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4 Our coreset: the matching skeleton
In this section, we recall the notion of matching skeleton,
introduced by [20] and later rediscovered by [14]. We
simplify slightly the original definitions and results to suit
our needs. We also introduce a new related object, the
canonical vertex cover which is central to our proof.

We define a partition of the vertex set of G into sub-
graphs of varying vertex expansion as follows. For each
i = 1, . . . we define a tuple (Pi, Qi, αi) iteratively as fol-
lows, starting with G0 = G, P0 = P :

1. Let αi = min∅6=S⊆Pi−1

|ΓGi−1
(S)|

|S|

2. Let Pi = largest S ⊆ Pi−1 such that
|ΓGi−1

(S)|
|S| = αi

3. Let Qi = ΓGi−1(Pi)

4. Gi = Gi−1 \ (Pi ∪Qi)

This process continues until Gi is empty.

DEFINITION 7. We call each (Pi, Qi, αi) a block and αi
its expansion level, which is carried over to the vertices
of the block using the notation α(v) := αi for v ∈ Pi ∪
Qi. We call the collection {(Pi, Qi, αi)}i∈[k] the block
decomposition of G.

REMARK 2. A practical way to find α1 is to solve several
max-flow instances. For some α ∈ R+, let Gα be a copy
of G where edges are directed from P to Q with an infinite
weight. Also part of Gα is a source vertex s which has edges
directed toward each p ∈ P with weight α and a sink vertex t
with unit-weight edges incoming from each q ∈ Q. Observe
that α1 = inf{α ∈ R+ : |MC(α)| > 1} where MC(α) is
the min-cut containing s in Gα. Finding α1 thus reduces to
solving max-flow instances with increasing α until a non-
trivial min-cut is found. This cut actually consists of P1

and Q1 together with s. The remaining of the partition is
obtained by repeating this argument.

We now recall the main properties of the block decom-
position of G, most of which comes from Section 3 of [20].

LEMMA 4.1. ([20]) Let {(Pi, Qi, αi)}i∈[k] be the block
partition of G. The sequence (αi)i∈[k] is strictly increasing
and such that αi = |Qi|/|Pi|. Also, for any i ∈ [k]:

Γ(Pi) ⊆
⋃
j≤i

Qj

Intuitively, each block Pi ∪ Qi is associated with a
certain expansion of the Pi side, namely αi. The expansion
of the block cannot be greater than αi, as |Qi| = αi|Pi|.
However, it is also no less than αi, as the entire block admits
of an αi-matching with respect to Pi.

LEMMA 4.2. ([20],[14]) Let G = (P, Q, E) be a graph
together with its block decomposition {(Pi, Qi, αi)}i∈[k].
For each i ∈ [k] there is an αi-matching of Pi ∪ Qi with
respect to Pi.

REMARK 3. ([20]) The above α-matchings can easily be
made to have cycle-free supports, by eliminating cycles
through standard techniques.

Now that the block decompositon of a graph is intro-
duced, we can define matching skeletons which are simply
the union of the above introduced cycle-free α-matching for
each block.

DEFINITION 8. (MATCHING SKELETON [20]) Let G =
(P, Q, E) be a graph together with its block decomposition
{(Pi, Qi, αi)}i∈[k]. For each i ∈ [k], let xi : (Pi × Qi) ∩
E → [0, 1] be a cycle-free αi-matching. We call

H =
⋃
i∈[k]

supp(xi)

a matching skeleton of G. See Figure 2 for a visual example.

α2 = 1.5 α1 = 0.75

Q

P

Figure 2: A graph G = (P, Q, E) and its block partition. A
cycle-free matching skeleton is shown with solid edges. Due
to the construction of the block partition, edges between P2

and Q1 cannot be part of any matching skeleton. Also, from
Lemma 4.1, no edge can exist between Q2 and P1.

REMARK 4. The matching skeleton coreset has size at most
|P |+ |Q| − 1, as it is always a forest.

We now describe a special kind of vertex cover, related
with the block partition of a graph, which will be a crucial
tool in analyzing the quality of our coreset.

DEFINITION 9. (CANONICAL VERTEX COVER) Given a
graph G = (P, Q, E) together with its block decomposi-
tion, we call

Φ = {q ∈ Q |α(q) < 1} ∪ {p ∈ P |α(p) ≥ 1}

the canonical vertex cover of G. That is, in each block we
take the smaller side of the bipartition.
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LEMMA 4.3. The canonical vertex cover is a minimum ver-
tex cover.

Proof. First we show that Φ is indeed a vertex cover. Sup-
pose there exists an edge {p, q} not adjacent on Φ and let
p ∈ Pi and q ∈ Qj . By definition of the canonical vertex
cover, this means that αj ≥ 1 > αi and hence i < j us-
ing monotonicity of the expansion levels (Lemma 4.1). In
turn, this implies that Γ(p) 6⊆

⋃
`≤iQ`: a contradiction with

Lemma 4.1.
We now proceed to show that Φ is minimum, by show-

ing that there exists a fractional matching of size |Φ| (See
Corollary 3.1). We define this fractional matching block-by-
block: Consider the block (Pi, Qi, αi).

• If αi < 1, then Φ∩ (Pi∪Qi) is exactlyQi. In this case,
we can take the αi-matching with respect to Pi as our
fractional matching. This will have size αi|Pi| = |Qi|,
exactly as desired.

• On the other hand, if αi ≥ 1, then Φ ∩ (Pi ∪ Qi)
is exactly Pi. Thus, an αi-matching with respect to
Pi scaled down by a factor of αi is a valid fractional
matching of the block, and has size |Pi|.

The above deduction also shows that any matching
skeleton contains a maximum matching. Therefore, the
matching skeleton coreset performs at least as well as the
maximum matching coreset of [6]. In particular, this directly
yields a lower bound of 1/3 on the approximation ratio of
our coreset. However, a matching skeleton retains more in-
formation from the input graph, as the entire block partition
can be recovered from it. This allows for a better approxi-
mation ratio as Section 5 demonstrates.

REMARK 5. Let us draw the parallels between the server
flows of [14] and the notion of matching skeleton of [20]. In
the context of [14], the support of a realization of the bal-
anced server flow is simply a matching skeleton. The bal-
ancedness condition corresponds to the neighboring prop-
erty of Lemma 4.1. Finally, the server flow values of [14]
are exactly the expansion levels.

Finally, we prove a structural result about the robustness
of the block decomposition under changes to the edge-set of
G. This will be crucial to our proofs in both Sections 5 and 6.

LEMMA 4.4. Let G = (P, Q, E) be a graph together
with its block decomposition {(Pi, Qi, αi)}i∈[k] and H a
matching skeleton of G. Let E+, E− ⊆ P × Q be two sets
of edges such that E− ∩ H = ∅ and for any {p, q} ∈ E+,
α(p) ≥ α(q).

Denote by G′ = (P,Q,E′) the modification of G with
edge set E′ = (E ∪ E+) \ E−. The block decomposition

of G′ is still {(Pi, Qi, αi)}i∈[k], and therefore H remains a
valid matching skeleton of G′.

Proof. We will use Γ(S), Γ′(S) and ΓH(S) to denote the
neighborhood of some set S in the graphs G, G′ and H re-
spectively. Consider now the first step of the block decom-
position of G′. We first prove that no set S ⊆ P has lower
expansion than α1 in G′. Consider any set S ⊆ P . We can
lower bound the size of Γ′(S) by ΓH(S) since H ⊆ G′.
Moreover, we note that H contains the support of an αi-
matching with respect to Pi, in block (Pi ∪ Qi), for each
i. Therefore, the expansion of any subset in Pi is at least αi
and

|ΓH(S ∩ Pi) ∩Qi| = |ΓH(S ∩ Pi)| ≥ αi|S ∩ Pi|.

The equality comes from the fact that a matching skeleton
contains no edge crossing two blocks. Using this, we have:

|Γ′(S)| ≥ |ΓH(S)|

≥
k∑
i=1

|ΓH(S ∩ Pi) ∩Qi|

=

k∑
i=1

|ΓH(S ∩ Pi)|

≥
k∑
i=1

αi|S ∩ Pi|

≥ α1|S|

Note that the statement is true with strict inequality when
S 6⊆ P1. On the other hand, the expansion of P1 in G′ is
exactly α1, as Γ′(P1) = Q1. This is because E+ cannot
have any edge between P1 and Q \Q1.

We thus have proven that the first block in the decom-
position of G′ is (P1, Q1, α1). One can then proceed by
induction on i to prove that the same is true for the ith block.
The argument is identical to the base case by observing that
since E+ cannot have edges between Pi and

⋃k
j=i+1Qj , it

does not increase the expansion of Pi.

5 Main Result
Having defined the matching skeleton coreset, we now prove
a lower bound of nearly 1/2 on its effectiveness. This
improves upon any known lower bound for a randomized
composable coreset of sizeO(n) for the maximum matching
problem.

THEOREM 5.1. MatchingSkeleton(G) constitutes a
(1/2− o(1))-approximate randomized composable
coreset for maximum matching in any bipartite graph
G = (P, Q, E) where k = ω(1) and the maximum
matching size MM(G) = ω(k log n).
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Proof. Our analysis is inspired by the maximum matching
coreset analysis of [2], however, we achieve a better ap-
proximation ratio using more subtle techniques. Let µ de-
note MM(G). Recall that by the definition of randomized
composable coresets (Definition 2) we must randomly edge-
partition G = (P, Q, E) into k subgraphs G1, . . . , Gk, and
show that the union of each coresets,

(5.1) G̃ =

k⋃
i=1

MatchingSkeleton(Gi),

has an expected maximum matching size of µ · (1/2−o(1)),
over the randomness of the k-partition.

We begin by choosing an arbitrary maximum matching
M∗ of G. We separate G in two parts: M∗ and G− :=
G\M∗ for the purposes of analysis, and for every i =
1, . . . , k, let G−i := Gi ∩G−.

We will show the stronger statement that even under
adversarial partitioning ofG−, Equation 5.1 holds, as long
asM∗ is partitioned randomly. From now on we will assume
that the partition into G−1 , . . . , G

−
k is fixed arbitrarily; we

will show that either at least one of G−i contains a large
matching or M∗ ∩ G̃ is large.

Consider an arbitrary k-partitioning of G− into
G−1 , . . . , G

−
k and let the maximum matching size of G−i be

µ−i . If even one of µ−i is at least µ/2, we are done. In-
deed, following Lemma 4.3, any matching skeleton of Gi
will contain a maximum matching, that is a matching of size
MM(Gi) ≥ µ−i ≥ µ/2, and hence so will G̃. Therefore, we
can focus on the case where maxki=1 µ

−
i ≤ µ/2 and use the

following lemma, which is our main technical contribution:

LEMMA 5.1. (MAIN LEMMA) Consider an arbitrary parti-
tioning of G− where maxki=1 µ

−
i < µ/2. Let e be a uni-

formly random element of M∗. Then

P
[
e ∈ G̃

]
≥ 1/2− o(1),

where the probability is taken over the randomness of the
partitioning of M∗ as well as the randomness of the choice
of e.

The above lemma relies on a subtle probabilistic argu-
ment, and is formulated in terms of a uniformly random edge
of M∗ for technical reasons. However, an immediate conse-
quence of it is that at least nearly half of the edges of M∗

will be taken in G̃. This follows by linearity of expectation:

E
[∣∣∣M∗ ∩ G̃∣∣∣] = E

[ ∑
e∈M∗

1(e ∈ G̃)

]
=
∑
e∈M∗

P
[
e ∈ G̃

]
≥ µ · (1/2− o(1)).

where the last inequality follows by Lemma 5.1. We
have proven that Equation 5.1 holds under adversarial par-
titioning of G− both when maxki=1 µ

−
i ≥ µ/2 and when

maxki=1 µ
−
i < µ/2, which implies the statement of the theo-

rem.

We conclude the analysis of the MatchingSkeleton coreset
by proving Lemma 5.1.

Proof of Lemma 5.1: Without loss of generality we may
assume that e ∈ G1. We know that the maximum matching
size of G−1 is at most µ/2. Consider now adding to G−1
all edges of M∗ ∩ G1 except for e. Since the size of
M∗ ∩ G1\{e} is at most 2µ/k with high probability by
Theorem 3.2, the maximum matching size does not increase
by more than 2µ/k.

We base our analysis on fixing the outcome of the
random graph G1\{e} to be some fixed H . We refer to this
event that G1\{e} = H as E(H). Suppose that indeed the
maximum matching size of H is at most µ · (1/2 + 2/k),
and hence that H has a canonical vertex cover Φ of this
size. Recall from Definition 9 that the canonical vertex cover
contains exactly the vertices of Q with α-value strictly less
than one and the vertices of P with α-values at least one.
Therefore, any new edge added to H that is not adjacent on
Φ must be included in any matching skeleton, as we show in
the following paragraph.

Indeed, consider e = {p, q} to be such an edge, and
suppose that there exists some matching skeleton H of G1

where e is not included. This means, by Lemma 4.4 with
E− = {e} and E+ = ∅ that the block decompositions
of G1 and H are identical. However, by definition of the
canonical vertex cover Φ for H and because p, q /∈ Φ, we
have αH(p) < 1 ≤ αH(q). This implies that in the block
partition of G1, p ∈ Pi and q ∈ Qj with i < j, which is a
contradiction of Lemma 4.1.

Consequently, if e is not adjacent on Φ, it must be taken
into MatchingSkeleton(G1). The last important observation
is that the distribution of e, when conditioned on E(H), is
uniform on M∗\H . Indeed, this conditioning in no way
breaks the symmetry between the unsampled edges M∗\H ,
and e is equally likely to be any of them. Therefore, e is
uniformly distributed among at least µ · (1 − 2/k) edges
among which at most µ · (1/2 + 2/k) are adjacent on Φ:
Conditioned on E(H), where MM(H) ≤ µ · (1/2 + 2/k),
the probability that e is not adjacent on Φ and therefore
e ∈ MatchingSkeleton(G1) is at least 1/2− o(1).

The above deduction was made with the assumption
that MM(H) ≤ µ · (1/2 + 2/k). However, recall that this
happens with high probability by Theorem 3.2, therefore we
can extend the result to full generality. Consider the possible
outcomes of G1\{e} to form the family H. We can split H
into the disjoint union of H0 and H∗, where H∗ comprises
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the anomalous outcomes where the maximum matching size
of H is greater than µ · (1/2 + 2/k). Then,

P[e ∈ MatchingSkeleton(G1)]

=
∑
H∈H

P[E(H)]P[e ∈ MatchingSkeleton(G1)|E(H)]

≥
∑
H∈H0

P[E(H)]P[e ∈ MatchingSkeleton(G1)|E(H)]

≥
∑
H∈H0

P[E(H)] · (1/2− o(1))

=P[G1\{e} 6∈ H∗] · (1/2− o(1))

≥1/2− o(1),

as desired.

Φ Φ

Φα = 1.75 α = 1.5

α = 0.75

Q

P

Figure 3: A visual representation of the block decomposition
of H as trapezoids together with edges of M? \ H . If e
turns out to be one of the solid edges it must be taken into
MatchingSkeleton(G1); however, if it is one of the dotted
edges, it might not be.

6 Limitations of the matching skeleton coreset
In this section we show the limits of any matching skeleton as
a randomized composable coreset for maximum matching by
constructing a pathological bipartite graph on which it only
preserves the maximum matching size to a factor of 2/3.

THEOREM 6.1. For large enough n and k such that k =
O(n/ log n), k = ω(1), there exists a bipartite graph G
on n vertices with maximum matching size µ, for which the
maximum matching size of

G̃ =

k⋃
i=1

MatchingSkeleton(Gi)

is at most µ · (2/3 + o(1)) with high probability.

REMARK 6. Note that here the high probability is over the
randomness of the partition. The choice of the matching
skeleton is considered to be adversarial in each subgraph,
among the multiple possible valid choices.

We begin by defining the graph G = (P, Q, E).
The construction follows the ideas used in[2] to prove an

upper bound on the performance of the maximum matching
coreset. Let the vertex-set of G consist of six parts: P1, P2,
and P3 make up P on one side of the bipartition andQ1, Q2,
and Q3 make up Q on the other side. Let the sizes of P1, P2,
Q2, and Q3 be r, and let the sizes of Q1 and P3 be r+ 2r/k,
where r is some parameter such that 6r + 4r/k = n. The
edge-set E is comprised of the following:

• A perfect matching between all of P1 and a subset of
Q1,

• a complete bipartite graph between Q1 and P2,

• a perfect matching between P2 and Q2,

• a complete bipartite graph between Q2 and P3,

• and a perfect matching between a subset of P3 and all
of Q3.

The graph is pictured in Figure 4. The analysis of the
behavior of MatchingSkeleton on this graph relies on the
observation that in a typical subsampled version, P1∪Q1∪P2

forms a region of α-value at least 1 while Q2 ∪ P3 ∪ Q3

forms a region of α-value at most 1. This means that the
edges sampled between P2 and Q2 need not be taken into
the matching skeleton, which further implies that G̃ can be
missing the entire (P2, Q2) matching.

In order to prove this we will need the following basic
property of expansion levels. One side of the lemma has been
previously shown in [14].

LEMMA 6.1. Consider a bipartite graph G = (P, Q, E).

• If P can be perfectly matched to Q, then minα ≥ 1.

• Conversely, if Q can be perfectly matched to P , then
maxα ≤ 1.

Proof. By optimality of the canonical vertex cover
(Lemma 4.3), and by Theorem 3.1 we have that the size of
the maximum matching is

k∑
i=1

{
|Pi| if αi ≥ 1

|Qi| if αi < 1
.

In the first case of the lemma, MM(G) = |P | =
∑k
i=1 |Pi|,

therefore αi must always be at least 1. In the second case,
MM(G) = |Q| =

∑k
i=1 |Qi|, therefore αi must always be

at most 1.

Finally, we state a result on perfect matchings in random
bipartite graphs. This is a simplification, and direct result of
Corollary 7.13 from [11].

THEOREM 6.2. Let H be a random bipartite graph on
n+ n vertices, where each of the n2 possible edges appears
independently with probability p = Ω(log n/n). Then H
contains a perfect matching with high probability.
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We are ready to prove Theorem 6.1.

Proof of Theorem 6.1:
Consider Gi = (P, Q, Ei), the graph G sub-sampled

at rate 1/k. We claim that with high probability the non-
isolated vertices of P1 ∪ P2 can be perfectly matched to
Q1. Indeed, out of r edges of P1 × Q1, we expect r/k of
them to appear in Gi and with high probability no more
than 2r/k do (see Theorem 3.2). In this case, at least r
unmatched vertices of Q1 remain, which we will call Q′1.
Note that the graph between Q′1 and P2 follows the same
distribution as the random graph described in Theorem 6.2,
with p = 1/k = Ω(log n/n). Therefore, (Q′1 × P2) ∩ Ei
contains a perfect matching with high probability.

By Lemma 6.1, this means that the subgraph induced
by P1 ∪ Q1 ∪ P2 in Gi has block decomposition with all
α ≥ 1. By similar reasoning we can show that the non-
isolated vertices of Q2 ∪Q3 can be perfectly matched to P3.
Hence, by Lemma 6.1, the induced subgraph ofQ2∪P3∪Q3

in Gi has a block decomposition with all α ≤ 1.
Simply taking the disjoint union of these two induced

subgraphs does not change the expansion levels. Hence the
graphG−i , consisting of all edges ofGi except those between
P2 andQ2, has block decomposition with the α values of P1,
Q1, and P2 being at least 1, and the α values of Q2, P3 and
Q3 being at most 1. LetH be a matching skeleton ofG−i . By
applying Lemma 4.4 with E− = ∅ and E+ = Ei∩P2×Q2,
we get that H is still a matching skeleton of Gi. Therefore,
there exists a matching skeleton of Gi which contains no
edges from P2 ×Q2.

In conclusion, it is possible that each coreset selects a
matching skeleton of its sub-graph containing no edges from
Q2×P2. In such case, the maximum matching of G̃ has size
at most 2r + 4r/k, whereas that of G was 3r.

REMARK 7. With a simple alteration to the proof, it can be
shown that this upper bound holds even when the individual
matching skeletons are selected arbitrarily.

complete bipartite

complete bipartite

matching
of size n

P3

r + 2r
k

P2

r
P1

r

Q3

r
Q2

r

Q1

r + 2r
k

Figure 4: The pathological graph. A typical sub-sampling of
the graph has a matching skeleton that does not contain any
edges of Q2 × P2.
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