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Abstract

We consider the problem of estimating the value of MAX-CUT in a graph in the streaming model
of computation. We show that there exists a constant ε∗ > 0 such that any randomized streaming
algorithm that computes a (1 + ε∗)-approximation to MAX-CUT requires Ω(n) space on an n vertex
graph. By contrast, there are algorithms that produce a (1 + ε)-approximation in space O(n/ε2) for
every ε > 0. Our result is the first linear space lower bound for the task of approximating the max cut
value and partially answers an open question from the literature [Berb]. The prior state of the art ruled
out (2− ε)-approximation in Õ(

√
n) space or (1 + ε)-approximation in n1−O(ε) space, for any ε > 0.

Previous lower bounds for the MAX-CUT problem relied, in essence, on a lower bound on the
communication complexity of the following task: Several players are each given some edges of a graph
and they wish to determine if the union of these edges is ε-close to forming a bipartite graph, using one-
way communication. The previous works proved a lower bound of Ω(

√
n) for this task when ε = 1/2,

and n1−O(ε) for every ε > 0, even when one of the players is given a candidate bipartition of the graph
and the graph is promised to be bipartite with respect to this partition or ε-far from bipartite. This
added information was essential in enabling the previous analyses but also yields a weak bound since,
with this extra information, there is an n1−O(ε) communication protocol for this problem. In this work,
we give an Ω(n) lower bound on the communication complexity of the original problem (without the
extra information) for ε = Ω(1) in the three-player setting. Obtaining this Ω(n) lower bound on the
communication complexity is the main technical result in this paper. We achieve it by a delicate choice
of distributions on instances as well as a novel use of the convolution theorem from Fourier analysis
combined with graph-theoretic considerations to analyze the communication complexity.
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1 Introduction

In this paper, we consider the space complexity of approximating MAX-CUT in the streaming model of
computation. We elaborate on these terms and describe our main result below.

The input to the MAX-CUT problem is an undirected graph, and the goal is to find a bipartition of the
vertices of this graph (or a cut) that maximizes the number of edges that cross the bipartition. The size of a
MAX-CUT on graph G, denoted MAX-CUT(G), is the number of edges that cross the optimal bipartition.
An algorithm A is said to produce an α-approximation to the size of the MAX-CUT if for every graph G,
the algorithm’s output A(G) satisfies MAX-CUT(G)/α ≤ A(G) ≤ MAX-CUT(G).

In this paper, we study the space complexity of approximating MAX-CUT in the streaming model of
computation. The streaming model of computation, formally introduced in the seminal work of [AMS96]
and motivated by applications in processing massive datasets, is an extremely well-studied model for de-
signing sublinear space algorithms. For the MAX-CUT problem in this model, the edges of the input
graph G are presented as a stream to a (randomized) algorithm, which must output an α-approximation to
MAX-CUT(G). The complexity measure is the space complexity, namely, the number of bits of memory
used by the streaming algorithm, measured as a function of n, the number of vertices in G.

Our main result is a strong lower bound (optimal to within polylogarithmic factors) on the space required
for a strong approximation to the MAX-CUT size. Specifically, we show that there is an α > 1 such that
every α-approximation algorithm in the streaming model must use Ω(n) space (see Theorem ??).

Context and Significance. There are two basic algorithmic results for MAX-CUT in the streaming model:
On the one hand, the trivial algorithm that counts the number, say m, of edges in G and outputs m/2
is a 2-approximation that uses O(log n) space. On the other hand, if one has Õ(n) space1, one can get
an approximation scheme, i.e., a (1 + ε)-approximation algorithm for every ε > 0, by building a “cut-
sparsifier” [BK96, SS08].

Given just the two algorithms above, it is possible to envision three possible scenarios for improving the
approximability of MAX-CUT: (1) Perhaps MAX-CUT has an approximation scheme in polylogarithmic
space? (2) Perhaps MAX-CUT admits a space-approximation tradeoff, i.e., for every α > 1, there is a
β < 1 such that an α-approximation can be computed in nβ space? (3) Perhaps there is an α < 2 and an
algorithm using nβ space for some β < 1 that can compute an α-approximation to MAX-CUT. (Note that
the scenarios are nested with (1)⇒ (2)⇒ (3).)

Previous works [KK15, KKS15] have ruled out scenario (1) above, making progress on an open question
from [Bera]. In particular, these works have showed that for every β < 1, there exists α > 1 such that
a streaming algorithm with space nβ cannot compute an α-approximation to MAX-CUT. The work of
[KKS15] also shows that β < 1/2 and α < 2 are not simutaneously achievable. These results still allow for
either scenario (2) or (3). Our result achieves the next level of understanding by ruling out scenario (2) as
well:

Theorem 1.1 (Main result) There exists ε∗ > 0 such that every randomized single-pass streaming algo-
rithm that yields a (1 + ε∗)-approximation to the MAX-CUT size with probability at least 9/10 must use
Ω(n) space, where n denotes the number of vertices in the input graph.

This step has also been suggested as an open problem in the Bertinoro workshop [Berb], though we settle
their question only partially since the question suggests a particular approach to proving the lower bound,
which we do not follow. Eventually we suspect that even scenario (3) is not achievable, but ruling this out
involves more technical challenges. Indeed, one of the hopes of this work is to introduce some techniques
that may be useful in the eventual resolution of this problem.

1Throughout this paper we use the notation Õ(f(n)) to denote the set ∪c>0O(f(n)(log(f(n))c)).
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Techniques. As with most lower bounds in streaming, ours is obtained by a reduction from a communi-
cation complexity problem. However, the communication problem and even communication model in this
paper are somewhat new, so we describe our model and then explain why the novelty is necessary and useful.

Roughly, our paper considers a T -player sequential communication game, that we call the Implicit
Hidden Partition Problem, where player Pi, for 1 ≤ i ≤ T , is given a set of edges Ei on vertex set [n],
and the players wish to determine whether ∪iEi forms a bipartite graph or is ε-far from being bipartite. (To
be more precise, in our actual game the players also get some “non-edges” Fi and they also need to verify
that (most of) the edges of Fi do not cross the bipartition, but we ignore this distinction here since it is
not conceptually significant.) The communication is one-way and player Pi is only allowed to broadcast a
message based on its own input and broadcast messages from players Pj for 1 ≤ j < i. We show that for
T = 3 and some ε > 0, there is a distribution on inputs for which this task requires Ω(n) communication.

The communication problems from previous works included an additional player P0 whose input was
a bipartition of the vertices of the graph, and later players needed to verify that the graph was bipartite
with respect to this bipartition. The presence of this additional player was essential to previous analyses.
These analyses roughly suggested that when the input graph is far from being bipartite, conditioned on not
discovering a violating edge, the information of the first i players is effectively dominated by the information
of P0 — i.e., knowledge of the partition subsumes all other knowledge. This suggests a reduction from the
T (or T + 1) player communication problem to several two-player games involving player P0 and Pi for
1 ≤ i ≤ T , and this two player game can be analyzed as in [GKK+08, VY11]. Implementing this reduction
does take technical work, but the intuition works!

For our purposes, the presence of the 0-th player poses an insurmountable obstacle—with this player,
there is a O(

√
n · poly(1/ε)) communication protocol (based on the “birthday paradox”) to distinguish

bipartite graphs that are ε-far from being bipartite! Indeed, one can just send information about the clas-
sification of about

√
n vertices with respect to the bipartition and check how many edges violate the bi-

partition. Harder communication complexity problems (e.g. the Boolean Hidden Hypermatching Problem
of [VY11]—see [KK15, KKS15]) have been considered, leading to stronger n1−O(ε) lower bounds on test-
ing ε-closeness to bipartite, but they still use an explicit candidate bipartition and admit n1−O(ε) protocols
for any constant ε. This forces us to remove the 0-th player, thereby leading to the (in retrospect, more
natural) “Implicit Hidden Partition” problem that we introduce explicitly in this paper.

The removal of the 0-th player, however, forces us to introduce new mechanisms to cope with the leakage
of information as the protocol evolves. We do so by changing the communication model to allow for some
“public inputs” and some “private inputs”. All inputs to player i are selected after the transmission of the
message of player i− 1, and the public input becomes known to all players while the private input is known
only to player i. (In our case, the public input is a superset of the edges Ei and the private input is the set
Ei.) This separation brings back a little flexibility into our analysis, but the task of bounding the flow of
relevant information as the protocol evolves remains challenging and, indeed, we are only able to carry out
such an analysis for T = 3, by a careful choice of input distributions and paramters.

One major challenge is the task of finding the right set of hard instances for the problem. Natural
candidates (for example the one suggested in [Berb]) would involve random bipartite graphs and random
graphs; however, the presence of vertices of degree larger than 2 in these graphs poses obstacles to our
analysis. So we pick a delicate distribution in which the graph formed by E1 ∪ E2 has no cycles and no
vertices of degree > 2 (so E1 ∪ E2 is a union of paths). Of course, this implies that the resulting graph
is bipartitite, thereby allowing the final edge set E3 to come into play. Our final edge set E3 is chosen to
be either a random graph consistent with this bipartition (the YES case), or a random sufficiently dense
graph (the NO case) so that the resulting graph (E1 ∪E2 ∪E3) is Ω(1)-far from being bipartite. The choice
of parameters is delicate—we need to ensure that the distributions of E3 in the YES and NO cases are
statistically close while still ensuring that E1∪E2∪E3 is far from bipartite in the case of NO instances.This
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combinatorial analysis is carried out in Section 5.
Finally, we are left with the task of actually analyzing the communication protocols aiming to solve the

communication problem on the aforementioned distribution. As with previous works [GKK+08], we make
use of Fourier analysis. We specifically analyze the set of bipartitions that are consistent with the set of public
inputs and messages broadcast thus far and then look at the Fourier coefficients of the indicator function of
this set. We employ relatively elementary methods (at least given previous works) to analyze this set after
the player P1 speaks. To analyze the set after player P2 speaks, we perform some combinatorial analysis
involving the special distributions on E1 and E2 and then incorporate this combinatorics into the Fourier
language, while finally combining the effects of the two steps using the convolution theorem in Fourier
analysis. While the use of this theorem is natural in our setting (involving a composition of many messages,
that corresponds to a product of various indicator functions), the fact that the convolved coefficients can be
subjected to spectral analysis appears somewhat novel, and we hope it will spur further progress on this and
other questions.

Related work. The past decade has seen an extensive body of work on understanding the space com-
plexity of fundamental graph problems in the streaming model; see, for instance, the survey by McGre-
gor [McG14]. It is now known that many fundamental problems admit streaming algorithms that only
require Õ(n) space (i.e. they do not need space to load the edge set of the graph into memory) – e.g., spar-
sifiers [AG09, KL11, AGM12b, KLM+14], spanning trees [AGM12a], matchings [AG11, AG13, GKK12,
Kap13, GO12, HRVZ15, Kon15, AKLY15], spanners [AGM12b, KW14]. Very recently it has been shown
that it is sometimes possible to approximate the cost of the solution without even having enough space to
load the vertex set of the graph into memory (e.g. [KKS14, EHL+15, CCE+15]). Our work contributes to
the study of streaming algorithms by providing a tight impossibility result for non-trivially approximating
MAX-CUT value in o(n) space.

Organization. We formally define our communication problem and describe its connection to streaming
algorithms for approximating MAX-CUT value in Section 2. We then state the main technical lemmas and
prove the main theorem in Section 3. The proof of the main technical lemma of our communication lower
bound is given in Section 4, and (an outline of) the gap analysis is given in Section 5.

2 Communication problem and hard distribution

In this section, we introduce a multi-player “sequential” communication problem and state our lower bound
for this problem. We first describe the general model in which this problem is presented.

We consider a sequential communication model where T players sequentially receive public inputs Mt

and private inputs wt, for t ∈ [T ]. A problem in this model is specified by an F (M1, . . . ,MT ;w1, . . . , wT )
and the goal of the players is to compute this function. A protocol for this problem Π is specified by
a sequence of functions Π = (r1, . . . , rt). At stage t ∈ [T ], the t-th player announces its message
at = rt(M1, . . . ,Mt; a1, . . . , at−1;wt), and the message aT is defined to be the output of the protocol
Π. The complexity of Π, denoted |Π|, is the maximum length of the messages {at}t∈[T ]. We consider
the distributional setting, i.e., where the inputs are drawn from some distribution µ and the error of the
protocol is the probability that its output does not equal F (M1, . . . ,MT ;w1, . . . , wT ). By Yao’s minmax
principle, we assume, without loss of generality, that the communication protocol is deterministic. Also, for
the remainder of the paper, addition over {0, 1}n and matrix multiplication occurs modulo 2.

We now describe the specific communication problem that we consider in this work.

Implicit Hidden Partition (IHP) Problem. The T -player Implicit Hidden Partition problem IHP(n) for
positive integer n is defined as follows: The public inputs are sets of edges, M1, . . . ,MT , on vertex set
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[n], while the private inputs w1, . . . , wT are {0, 1}-colorings of the corresponding sets of edges. The goal
is to distinguish the case in which the colorings are valid (i.e., there exists a cut such that every edge of
∪tMt is colored 1 if and only if it crosses the cut) from the case in which no such cut exists. A convenient
representation of the inputs will be to represent the edgesMt as incidence matricesMt ∈ {0, 1}mt×n and the
coloring by wt ∈ {0, 1}mt , for t ∈ [T ], where mt denotes the number of edges of Mt. In this representation
a coloring x ∈ {0, 1}n is valid if and only if Mtx = wt for every t ∈ [T ].

In the instances we use, we will set T = 3, while M1 and M2 will be (incidence matrices of) matchings
so that their rows sum to 2 and columns sum to at most 1. Also,M3 ∈ {0, 1}m3×n will be the edge incidence
matrix of a suitable cycle-free subgraph of an Erdős-Rényi graph below the threshold for emergence of a
giant component.

Distributional Implicit Hidden Partition (DIHP) Problem. In this work, we will actually deal with a
distributional version of IHP with T = 3 that we denote DIHP. DIHP has three parameters: a positive
even integer ∆, a positive integer n divisible by ∆, and a real number α with 0 < α < 1. DIHP(n,∆, α)
is defined to be IHP(n) on inputs chosen from a distribution D = 1

2(DY + DN ), where DY and DN are
defined as follows: In both the distributions DY and DN , the triples (M1,M2,M3) are chosen identically
from a process Pn,∆,α that we describe below shortly. In DY , the private inputs w1, w2, w3 are chosen by
sampling X∗ ∈ {0, 1}n uniformly and settting wt = MtX

∗ for t ∈ {1, 2, 3}. Note that the distribution
DY is supported on YES instances. In the distribution DN , the wt’s are uniformly random strings chosen
independently of each other. As we show later, the distribution DN is mostly supported on NO instances
that are, in fact, far from YES instances, where distance is measured in terms of the number of edges that
have to be removed in order to produce a valid coloring.

Although the notation Mt denotes an mt × n edge incidence matrix, we will often use Mt to denote
the corresponding graph as well. However, the sense in which Mt is used will be clear from context.
Furthermore, we will use Et to denote the set of edges specified by Mt.

Edge Sampling Process Pn,∆,α We now specify the process Pn,∆,α, which is used to sample the graphs
(edge incidence matrices) M1, M2, M3 in both DY and DN . The set M1 is a deterministic perfect matching
that matches vertex i to i + n/2 for every i ∈ [n/2]. The set M2 is a also a matching sampled as follows:
We sample a permutation π : [n/2] → [n/2] uniformly and then match the vertex π(i) to the vertex
π(i + 1) + n/2 for every i that is not divisible by ∆/2. (Note that by this process, the union of the graphs
M1 ∪M2 is a collection of disjoint paths, each of length ∆− 1.) Finally, we sample M3 in three steps:

Step 1. We first sample a random graphM ′3 from the Erdős-Rényi model with parameter α/n, i.e., every
possible edge is included independently with probably α/n.

Step 2. We remove all edges in M ′3 that have already been included in M1 ∪M2 to get a subgraph M ′′3 .
Step 3. We now consider the connected components of M ′′3 and, for every component that contains a

cycle, we remove all edges of that component. The resulting subgraph is M3.

Note that since α is close to 1, the graph M3 (or M ′3 for that matter) is subcritical and most of its
components are of constant size. At most a constant number of edges ofM ′3 appear in M1∪M2 and another
small constant appear in cycles. Thus, for all practical purposes, M3 behaves like M ′3. In particular, as we
show later, the fraction of invalidly colored edges in a random coloring of the edges remains nearly the same
in M1 ∪M2 ∪M3 as in M1 ∪M2 ∪M ′3.
The following theorem is the main technical contribution of the paper:

Theorem 2.1 There exist constants ∆∗ > 0 and 0 < α∗ < 1 such that for every even integer ∆ ≥ ∆∗ and
every α ∈ (α∗, 1), there exists c > 0 such that the following holds: For every sufficiently large integer n that
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is divisible by ∆, every protocol Π for DIHP(n,∆, α) that succeeds with probability at least 2/3 satisfies
|Π| ≥ cn.

We accompany the above theorem with a reduction from DIHP to MAX-CUT:

Theorem 2.2 (Reduction from DIHP to MAX-CUT) There exist constants ∆∗ > 0 and 0 < α∗ < 1 such
that for every even integer ∆ ≥ ∆∗ and every α ∈ (α∗, 1), there exists ε∗ > 0 such that the following holds:
If there exists a single-pass streaming (1+ ε∗)-approximation algorithm for MAX-CUT with space complex-
ity s(n) that succeeds with probability at least 9/10, then there exists a protocol Π for DIHP(n,∆, α) with
|Π| ≤ s(n) +O(log n) that succeeds with probability at least 2/3.

Central to both of the above theorems is a combinatorial analysis that establishes that DN is supported
mostly on NO instances and that, furthermore, these instances generate MAX-CUT instances (under the
reduction used in Theorem 2.2) whose optimum is bounded away from the total number of edges by a
constant fraction. The following definition gives the (simple) reduction which simply outputs the edges of
the DIHP instance that are labelled 1, and then the lemma establishes the above formally.

Definition 2.3 Given I = (M1,M2,M3;w1, w2, w3), the reduction R(I) outputs the stream containing
edges of M1 that are labelled 1 in w1, followed by the edges of M2 labelled 1 in w2, followed by the edges
of M3 labelled 1 in w3. (Within each Mt, the order of the edges in the stream is arbitrary.)

Lemma 2.4 There exist constants ∆∗ > 0 and 0 < α∗ < 1 such that for every α ∈ (α∗, 1) and even
integer ∆ ≥ ∆∗, there is a constant ε∗ > 0 for which the following conditions hold for the reduction R from
Definition 2.3:

(1) If I = (M1,M2,M3;w1, w2, w3) is sampled from DY of DIHP(n,∆, α), then R(I) is a bipartite
graph.

(2) If I is sampled from DN , then with probability at least 95/100, R(I) is a graph on m edges with
MAX-CUT value at most (1− ε∗)m.

Lemma 2.4 is proved in Section 5. Theorem 2.2 is simple to prove using Lemma 2.4. We devote the
rest of this section to providing this proof, as well as a proof of Theorem 1.1. The rest of the paper focuses
on proving Theorem 2.1.

Reduction from DIHP to MAX-CUT. We now provide a proof of Theorem 2.2.

Proof of Theorem 2.2: Let R be the reduction from Definition 2.3. Let α∗ and ∆∗ be the constants
guaranteed by Lemma 2.4. We fix an α ∈ (α∗, 1) as well as an even integer ∆ ≥ ∆∗. Let ε∗ > 0 be the
constant from Lemma 2.4 for this choice of α and ∆.

It is easy to see that for instances I sampled from DY , the MAX-CUT value of G = R(I) is m, the
number of edges of G since G is bipartite. Moreover, by Lemma 2.4, the MAX-CUT value of R(I) for
instances I sampled from DN is at most (1− ε∗)m with probability at least 95/100.

Now suppose ALG is a one-pass streaming algorithm with space complexity s(n) that produces a (1−
ε∗)-approximation to the MAX-CUT value with success probability at least 9/10. Consider the following
protocol Π for DIHP(n,∆, α), which makes use of ALG as a subroutine: Augment ALG with a counter
m for the total number of edges presented to it. This takes O(log n) additional bits of space for simple
input graphs on n vertices. Now, for each t ∈ {1, 2, 3}, let player t (1.) run (the augmented) ALG on the
state posted by player t− 1 with the stream of edges formed by enumerating all edges in Mt for which the
corresponding value in wt is 1 and, (2.) if t ∈ {1, 2}, pass on the resulting state of ALG to the next player.
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In other words, the players simulate ALG on the stream R(I). The last player then takes the ending state
of ALG and checks whether the output MAX-CUT value of ALG is at least m/(1 + ε∗). If so, the player
outputs YES; otherwise, the player outputs NO .

It is clear that the aforementioned simulation succeeds on DIHP(n,∆, α) with probability at least 2/3.
Moreover, the amount of communication |Π| in Π is at most the amount of space used for our augmented
ALG. Thus, |Π| ≤ s(n) +O(log n), as desired.

Given Theorem 2.2 and Theorem 2.1, our main theorem follows easily and the proof is included below for
completeness.

Proof of Theorem 1.1: Let α∗1 and ∆∗1 be the constants guaranteed by Theorem 2.1, and let α∗2 and ∆∗2
be the constants of Theorem 2.2. Let ∆ be the smallest even integer larger than max{∆∗1,∆∗2} and choose
α ∈ (max{α∗1, α∗2}, 1). Let ε∗ be the constant given by Theorem 2.2 for this choice of α and ∆.

Now, suppose there exists a randomized single-pass streaming algorithm ALG that yields a (1 + ε∗)-
approximation to MAX-CUT with probability at least 9/10. Let s(n) be the amount of space used by
ALG on input graphs with n nodes. By Theorem 2.2, there is a protocol Π for DIHP(n,∆, α) with |Π| ≤
s(n) +O(log n) such that Π succeeds with probability at least 2/3.

Now, Theorem 2.1 implies that |Π| ≥ c′n for some constant c′. Hence, s(n) ≥ c′n−O(log n) ≥ cn for
some constant c > 0 and sufficiently large n, which completes the proof.

3 Analysis of communication problem via Fourier techniques

In this section, we first review Fourier analysis on the boolean hypercube, then review relevant communica-
tion complexity techniques that were developed in prior work [GKK+08], explain why they do not suffice
for our result, and give an outline of our approach.

3.1 Fourier analysis on the boolean hypercube

Let p : {0, 1}n → R be a real valued function defined on the boolean hypercube. We use the following
normalization of the Fourier transform:

p̂(v) =
1

2n

∑
x∈{0,1}n

p(x) · (−1)x·v.

With this normalization, the inverse transform is given by

p(x) =
∑

v∈{0,1}n
p̂(v) · (−1)x·v.

We will use the relation between multiplication of functions in the time domain and convolution in the
frequency domain to analyze the Fourier spectrum of f1 ·f2. With our normalization of the Fourier transform
the convolution identity is

(̂p · q)(v) = (p̂ ∗ q̂)(v) =
∑

x∈{0,1}n
p̂(x)q̂(x+ v). (1)
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The main object of our analysis will be the Fourier transform of h2 = f1 · f2 (these functions are defined
later in Definition 3.2). By (1), we have ĥ2 = f̂1 ∗ f̂2. This identity will form the basis of our proof. We will
also need Parseval’s equality, which, with our normalization, takes the form

||p̂||2 =
∑

v∈{0,1}n
p̂(v)2 =

∑
v∈{0,1}n

 1

2n

∑
x∈{0,1}n

p(x) · (−1)x·v

2

=
1

2n

∑
x∈{0,1}n

p(x)2 =
1

2n
||p||2. (2)

Remark 3.1 If f(x) : {0, 1}n → {0, 1} is the indicator of a set A ⊆ {0, 1}n, we have ||f ||2 = |A|, so that
||f̂ ||2 = |A|

2n .

3.2 The basic setup

We use the notation Xi:j to denote (Xi, Xi+1, . . . , Xj). Recall that the messages posted by the players are
denoted by at = rt(M1:t, a1:t−1, wt), whereMt are publicmt×n edge incidence matrices andwt are private
inputs to players. We use s to denote the maximum of the bit lengths of messages posted by the players. Our
goal is to show that if s� n, then the total variation distance between the distribution of the publicly shared
information (messages a1, a2, a3 and graphs M1,M2,M3) in the YES and NO cases is small. As we show,
this task can be simplified as follows. It suffices to consider the YES case only and show that if s� n, then
the distribution of wt = MtX

∗ conditional on the publicly posted content up to time t (namely, a1, . . . , at−1

and M1, . . . ,Mt) is close to the uniform distribution in total variation distance for t = 1, 2, 3 (recall that wt
is actually uniformly distributed in the NO case). Our proof of this fact relies on Fourier analytic techniques
for reasoning about the distribution of MtX

∗ conditioned on typical communication history.
More specifically, our goal is to show that the total variation distance between the distribution of

(M1:3, a1:3) for the YES and NO instances is vanishingly small. It suffices to consider the YES case only.
Fix t ∈ {1, 2, 3} and let X∗ ∈ {0, 1}n denote a uniform random vector conditioned on the graphs M1:t

and messages aY1:t−1. In Lemma 3.4, we show that it suffices to show that with high probability, for each
t = 1, 2, 3, the distribution of MtX

∗ is close to uniform in {0, 1}mt and is, hence, indistinguishable from
the NO case.

Conditioning on messages posted up to time t makes X∗ uniformly random over a certain subset of the
binary cube. We will analyze this subset of the hypercube or, rather, the Fourier transform of its indicator
function, and show that if communication is small, the distribution of X∗ conditional on typical history is
such that MtX

∗ is close to uniformly random in total variation distance.
We now define notation that lets us reason about the distribution of X∗ at each step t. Since we assume

that the protocol is deterministic and the prior distribution of X∗ is uniform over {0, 1}n, the distribution of
X∗ conditioned on the publicly posted content thus far is uniform over some set Bt ⊆ {0, 1}n. We prove the
desired claim by analyzing the Fourier spectrum of the indicator function of Bt. It turns out to be convenient
to represent Bt as the intersection of simpler subsets At of the hypercube, where each At essentially conveys
the information that the t-th player’s message gives about X∗. We give formal definitions below.

Definition 3.2 (Sets At,Bt and their indicator functions ft, ht) Fix α ∈ (0, 1) and integers n ≥ 1 and
t ∈ {1, 2, 3}. Consider a YES instance (M1:3, w1:3) of DIHP(n,∆, α) with X∗ being the (random) hidden
partition (so that wt = MtX

∗). Recall that at = rt(M1:t, a1:t−1, wt).
We define Areduced,t ⊆ {0, 1}mt as the set of possible values of wt = MtX

∗ that lead to the message
at, and we define At to be the set of values of X∗ ∈ {0, 1}n that correspond to Areduced,t. Formally, letting
gt(·) := rt(M1:t, a1:t−1, ·) : {0, 1}mt → {0, 1}s, we define

Areduced,t = g−1
t (at) ⊆ {0, 1}mt and At = {x ∈ {0, 1}n : Mtx ∈ Areduced,t}. (3)
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Moreover, for each t = 1, 2, 3, let ft : {0, 1}n → {0, 1} denote the indicator function of At, and let
ht = f1f2 · · · ft, so that ht is the indicator of Bt := A1 ∩ A2 ∩ . . . ∩ At. We let B0 := {0, 1}n for
convenience.

Our proof of near-uniformity ofMtX
∗ conditioned on a typical history of communication in DIHP(n,∆, α)

is inspired by the work of [GKK+08], which used Fourier analysis to give a communication lower bound on
the (explicit) hidden partition problem (where Alice is given X∗, Bob gets (M,w), and Bob needs to check
whether w = MX∗). In our setting, their results translate to showing that if X∗ is uniform in B ⊆ {0, 1}n,
where |B|/2n ≥ 2−s with s = O(

√
n), and the indicator function h of B satisifies(

2n

|B|

)2 ∑
v∈{0,1}n,|v|=2`

ĥt(v)2 ≤ (4
√

2s/`)2` ∀` ∈ [0 : s], (4)

where |v| denotes the Hamming weight of v, then the distribution of MX∗ is close to uniform for a random
sparse graph M (a random matching in [GKK+08]). This translates to a lower bound of Ω(

√
n) on the

communication complexity of the explicit hidden partition problem, but this is too weak for our purposes.
To improve this bound we need to replace the right hand side of the inequality above to a form (O(s)/`)`

from (O(s)/`)2`. Unfortunately, such an improvement is not possible for the explicit hidden partition prob-
lem, which stems from the fact that X∗ is known to Alice. In our case, X∗ is not known to any player, but
we need an analysis that can take advantage of this key fact. We now outline our approach for doing so.

Our first observation is that if the bound in (4) could be strengthened by replacing the exponent on the
righthand side with ` (i.e., reducing the exponent by a factor of 2), an Ω(n) lower bound would follow. This
observation is formalized in Lemma 3.3, which is stated below and proved formally in section 6.

Lemma 3.3 Let ∆ > 0 be an even integer. Then, for every 0 < α < 1, there exists a constant 0 < c < 1
such that for every δ ∈ (n−1/10, c), the following conditions hold if n is any sufficiently large multiple of ∆:

(1) Let B = A1, as defined in Definition 3.2. Then, for every choice of matchings M1,M2 sampled
according to Pn,∆,α, the distribution of M2x is uniform over {0, 1}m2 when x is uniformly random
in B.

(2) Let B ⊆ {0, 1}n, |B| = 2n−z for z ≤ δ4n, and let h : {0, 1}n → {0, 1} be the indicator of B.

If
(

2n

|B|

)2∑
v:|v|=2` ĥ(v)2 ≤

(
64δ4n
`

)`
holds for all ` ≤ δ4n, then the following conditions hold:

Let M1,M2,M3 be sampled according to Pn,∆,α. Then, with probability at least 1 − O(δ) over
the choice of M3, the total variation distance between the distribution of M3x, where x is uniformly
random in B, and the uniform distribution over {0, 1}m3 isO(δ/

√
1− α). In particular, one can take

c = min

{(
1−α
512

)1/4
,
(
e−α log2(32/(31+α))

32

)1/4
}

.

We note that such a strengthening of (4) is impossible for an indicator function f : {0, 1}n → {0, 1}
of an arbitrary subset B ⊆ {0, 1}n with |B| = 2n−z , z ≤ δ2n—a subcube of appropriate size shows that
(4) is essentially the best possible bound. Our improvement crucially uses the fact that unlike in the boolean
hidden matching problem, in DIHP, the players only have indirect access toX∗ via linear functionsMtX

∗.
In particular, the sets whose indicator functions we analyze are of a special form (see Definition 3.2).

If we could prove that the preconditions of Lemma 3.3 hold w.h.p. for h2, we would be done by
Lemma 3.3. It turns out that one can prove that these preconditions are satisfied for h1 = f1 rather directly
(see Theorem 4.6) using the fact that the compression function g1 (see Definition 3.2) is applied to the
parities of xa + xb, (a, b) ∈ M1. Proving a similar result for the function h2 = f1 · f2 is challenging, and
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this proof is the main technical contribution of our paper. In order to do that, we need to analyze the Fourier
transform h2 = f1 · f2, which we do using the convolution identity ĥ2 = f̂1 ∗ f̂2. Our main bound on the
Fourier transform of f1 · f2 is stated below.

Lemma 3.4 There existsC > 1 such that for every even integer ∆ > 2, γ > n−1/5 smaller than an absolute
constant, and α ∈ (0, 1), the following conditions hold for sufficiently large n divisible by ∆: Let Π be a
protocol for DIHP(n,∆, α) such that |Π| =: s, where s = s(n) = ω(

√
n) and s(n) ≤ 1

2048C∆2γ
5n. Then,

there exists an event E that only depends on X∗,M1,M2 and occurs with probability at least 1−O(γ) over
Pn,∆,α and the choice of X∗ ∈ {0, 1}n such that, conditioned on E , one has

(1) |B2|/2n ≥ 2−γ
4n.

(2)
(

2n

|B2|

)2∑
v∈{0,1}n,|v|=2` ĥ2(v)2 ≤ (C∆2γ4n/`)` for all ` ≤ γ4n.

Before we present the proof of Theorem 2.1, we require one simple lemma about total variation distance
of two probability distributions, which appears with proof in [KKS15].

Lemma 3.5 (Lemma 5.6 in [KKS15]) Let (X,Y 1), (X,Y 2) be random variables taking values on a finite
sample space Ω = Ω1×Ω2. For any x ∈ Ω1, let Y i

x , i = 1, 2 denote the conditional distribution of Y i given
X = x. Then,

‖(X,Y 1)− (X,Y 2)‖tvd = EX
[
‖Y 1

X − Y 2
X‖tvd

]
.

Proof of Theorem 2.1:
Suppose ∆ > 0 is an even integer and 0 < α < 1. Then, we choose δ ∈ (0, 1) as well as γ ∈ (0, 1)

such that γ < (64/C∆2)1/4δ. Moreover, we pick δ and γ to be sufficiently small such they obey the upper
bounds in the hypotheses of Lemmas 3.3 and 3.4. Also, assume n is a sufficiently large multiple of ∆
(in particular, n−1/10 < δ and n−1/5 < γ) so that δ and γ obey the lower bounds in the hypotheses of
Lemmas 3.3 and 3.4. Moreover, assume γ is sufficiently small so that the event E in Lemma 3.4 occurs with
probability greater than 1/2.

We now assume that Π is a protocol for DIHP(n,∆, α) that uses less than 1
2048C∆2γ

5n bits of commu-
nication, where C > 0 is the constant in Lemma 3.4.

Recall that the first player posts the message a1 = r1(M1, w1). We now consider the distribution of
(M1,M2, a1, w2). Let DY

1 and DN
1 be the distributions of (M1,M2, a1, w2) on YES and NO instances,

respectively. Thus, DY
1 = (M1,M2, a, pM1,M2,a), where pM1,M2,a is the distribution of M2x conditional

on r1(M1, x) = a. For any M1, M2, a, we let DY
(M1,M2,a) = pM1,M2,a and DN

(M1,M2,a) = UM2 denote the
distribution of w2 given the message a and edge incidence matrices M1,M2 for the YES and NO instances,
respectively. (Here, Ur denotes the uniform distribution on {0, 1}r.) Moreover, note that the distribution of
(M1,M2, a1) is identical in both the YES and NO cases. Thus, by Lemma 3.5 and part (1) of Lemma 3.3,
we have

‖DY
1 −DN

1 ‖tvd = EM1,M2,a

[
‖DY

(M1,M2,a) −D
N
(M1,M2,a)‖

]
= 0.

Moreoever, since a2 = r2(M1,M2, a1, w2), another simple application of Lemma 3.5 implies that∥∥DY
2 −DN

2

∥∥
tvd

= 0,

whereDY
2 andDN

2 denote the distributions of (M1,M2, a1, a2) for the YES and NO instances, respectively.
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v1 v2

v3 v4

v5 v6 v7 v8

v9 v10

Figure 1: Illustration of P ∗(v), where v = {v1, . . . , v10} (marked red). Edges of M1 are shown as solid
lines, edges of M2 as dashed lines. The set of paths P (v) is the set of edges between the marked nodes. The
paths v5 − v6, v7 − v8 and v9 − v10 consist only of an edge of M2, and hence are not grounded. Grounded
paths P ∗(v) are marked green (paths v1 − v2 and v3 − v4).

Now, let E be the event for the YES case that is guaranteed by Lemma 3.4. Recall that E occurs with
probability 1 − O(γ) over Pn,∆,α and the random choice of X∗ ∈ {0, 1}n. Moreover, Lemma 3.4 implies
that for any YES instance conditioned on E , we have that for all ` ≤ γ4n,(

2n

|B2|

)2 ∑
v∈{0,1}n
|v|=2`

ĥ2(v)2 ≤
(
C∆2γ4n

`

)`
≤
(

64δ4n

`

)`

where h2, B2 are defined as in Definition 3.2. Thus, letting qM1,M2,M3,a1,a2 denote the distribution on M3x
conditioned on r1(M1, x) = a1 and r2(M1,M2, a1) = a2, we see that part (2) of Lemma 3.3 implies that,
given the occurrence of E ,

‖qM1,M2,M3,a1,a2 − UM3‖tvd = O(δ/
√

1− α). (5)

with probability p ≥ 1 − O(δ)

Pr[E]
≥ 1 − O(δ) over the choice of M3 (since γ was chosen small enough to

guarantee that Pr[E ] ≥ 1/2). Therefore, since E only depends on X∗, M1, M2, Lemma 3.5 and (5) imply
that

‖DY
3 −DN

3 ‖tvd = Pr[E ] · EM1,M2,a1,a2|E [EM3 [‖qM1,M2,M3,a1,a2 − UM3‖tvd]] + Pr[E ] · 1
≤ Pr[E ] · EM1,M2,a1,a2|E

[
p ·O(δ/

√
1− α) + (1− p) · 1

]
+ Pr[E ]

≤ Pr[E ](1− p(1−O(δ/
√

1− α))) + (1− Pr[E ])

≤ 1− Pr[E ] · p(1−O(δ/
√

1− α))

≤ 1− (1−O(γ))(1−O(δ))(1−O(δ/
√

1− α))

= O(γ) +O(δ) +O(δ/
√

1− α),

where DY
3 and DY

3 denote the distribution of (M1,M2,M3, a1, a2, w3) in the YES and NO instances,
respectively. We choose δ, γ to be small enough so that the above total variation distance is less than 1/3.

Finally, observe that since a3 = r3(M1,M2,M3, a1, a2, w3), the total variation distance of the distri-
butions of (M1,M2,M3, a1, a2, a3) in the YES and NO cases is also less than 1/3, which means that Π
cannot distinguish the YES and NO cases with advantage more than 1/6 over random guessing, i.e., the
success probability of Π is less than 2/3.

Hence, it follows that any algorithm Π for DIHP that succeeds with probability at least 2/3 must use at
least cn bits of communication, for c = 1

2048C∆2γ
5. This completes the proof of the claim.
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4 Proof of main lemma (Lemma 3.4)

The main result of this section is a proof of Lemma 3.4. The main idea behind the proof is to use the
convolution identity to express the Fourier transform of h2 in terms of the Fourier transform of f1 and f2.
Specifically, for every v ∈ {0, 1}n, we have, by the convolution identity,

ĥ2(v) = f̂1 · f2(v) =
∑

w∈{0,1}n
f̂1(w) · f̂2(w + v). (6)

Besides the convolution identity, we use the structure of the Fourier transform of f1 and f2. Specifically,
we use the fact that f̂1 and f̂2 are supported on edges of M1 and M2, respectively (equivalently, they are
zero except on the column span of (M1;M2)). This allows us to classify the terms f̂1(w) · f̂2(w+ v) on the
rhs of (6) according to the weight of w and w + v. We would like to show that only very few large weight
coefficients f̂1(w) can contribute to ĥ2(v) for a low weight v. Note that this is intuitively necessary for the
proof, as according to our bounds the `22 mass of coefficients of f̂1 or f̂2 grows with the weight level. We
prove that a high weight coefficient is unlikely to appear on the rhs of (6) if the coefficient on the lhs is low
weight in section 4.1 (see Lemma 4.5). Then in section 4.2, we show how these bounds imply that not too
much `22 mass of f̂1 can be trasferred from high weight levels to low weight levels (see Lemma 4.9). Finally,
in section 4.3, we put the developed results together into a proof of Lemma 3.4.

4.1 Useful definitions and basic claims

The following definitions form the basis of our analysis.

Definition 4.1 Given matchings M1,M2 such that M1 ∪M2 is a union of paths, a vector v ∈ {0, 1}n is
called admissible with respect to M1,M2 if v has an even number of nonzeros on every path in M1 ∪M2.

Definition 4.2 (Path decomposition of admissible coefficients) Given M1,M2 such that M1 ∪ M2 is a
union of paths, for any v ∈ {0, 1}n admissible wrt M1,M2, let P (v) denote the unique set of vertex disjoint
paths in M1 ∪M2 whose endpoints are exactly the nonzeros of v.

Claim 4.3 The path decomposition is well defined for any admissible v ∈ {0, 1}n.

Proof: It suffices to show that for any admissible v the set of paths P (v) exists and is unique. Existence
follows immediately from definition of admissibility. Uniqueness follows since M1 ∪M2 is a collection of
simple vertex disjoint paths.

Definition 4.4 Given M1,M2 such that M1 ∪M2 is a union of paths, for any v ∈ {0, 1}n admissible wrt
M1,M2, let P ∗(v) ⊆ P (v) denote the set of paths in P (v) that contain at least one edge of M1. We refer to
P ∗(v) as the core of the path decomposition of v.

Note that paths in P (v) \ P ∗(v) are all of length one, i.e. edges of M2. See Fig. 1 for an illustration.
We will often associate matchings M with the sets of vertices that they match. For example, for w ∈

{0, 1}n, we will write w ⊆M1 to denote the fact that w is a subset of the vertices matched by M1. We will
say that w is supported on edges of M1 if for every e = {u, v} ∈ M1, one has either w ∩ {u, v} = ∅ or
w ∩ {u, v} = {u, v}. The following claim is crucial to our subsequent analysis:

Lemma 4.5 For every even integer ∆ > 2 and α ∈ (0, 1), if matchings M1,M2 are sampled from Pn,∆,α,
then the following conditions hold for every `, k ≥ 0. Conditioned on M1, for every subset w ⊆ M1 such
that |w| = 2k, we have the following:
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(1) PrM2 [∃M ′ ⊆M2 s.t. |P ∗(w +M ′)| = ` |M1] ≤ (O(∆))`
(n/2
`

)(n/2
k

)−1
.

(2) For every M ′ ⊆M2, one has |P ∗(w +M ′)| ≥ |w|/∆.

Proof: The second claim follows by recalling that our input distribution on matchings is such that M1 ∪M2

does not contain cycles, and the largest path length in the graph induced by M1 ∪M2 is not larger than ∆.
We now prove the first claim. We first upper bound the number of w ⊆M1 such that |P ∗(w+M ′)| = `

for some M ′ ⊆ M2, i.e. the core of w + M ′ contains ` paths. We then show that since the distribution of
M2 is invariant under permutation of edges of M1, this gives the result.

We now upper bound the number of sets of ` paths that each contain at least one edge of M1, given M1

and M2 (we refer to such paths as grounded). Given M1,M2, in order to select a grounded set of paths,
it suffices to first select ` edges from M1, one per path (at most

(n/2
`

)
choices). Then order these edges

arbitrarily, and for each t = 1, . . . , `,

• choose whether the path starts with an edge of M1 or an adjacent edge of M2 (three choices);

• choose a direction to go on the corresponding path in M1 ∪M2 (at most 2 choices);

• choose a number of steps to go for (at most 2∆ choices).

Putting the bounds above together, we get that for any M1,M2, the number of grounded sets of k paths is
bounded by (12∆)`

(n/2
`

)
.

Next, we recall that the matchings M1,M2 are generated as follows (our description here is somewhat
more detailed than in Section 2, and results in exactly the same distribution; this formulation is more conve-
nient for our analysis):

• Let M1 be a perfect matching that matches, for each i = 1, . . . , n/2, vertex i to vertex i+ n/2. Note
that edges of M1 are naturally indexed by [n/2]: the i-th edge matches i to i + n/2, for i ∈ [n/2] =
{1, 2, . . . , n/2}.

• Choose a permutation π of [n/2] = {1, 2, . . . , n/2} uniformly at random. Partition edges of M1 into
r = n/∆ sets S1, . . . , Sr with ∆/2 edges each, where ∆ is an even integer that divides n, by letting
for each j = 1, . . . , n/∆

Sj =

{
π

(
∆

2
· (j − 1) + 1

)
, π

(
∆

2
· (j − 1) + 2

)
, . . . , π

(
∆

2
· (j − 1) +

∆

2

)}
.

• For each j = 1, . . . , n/∆, let M2,j match, for each i = 1, . . . ,∆/2− 1, the node π
(

∆
2 · (j − 1) + i

)
to the node π

(
∆
2 · (j − 1) + i+ 1

)
+ n/2. Note that |M2,j | = ∆

2 − 1 for each j.

Let M1 :=
⋃r
j=1M1,j and M2 :=

⋃r
j=1M2,j .

By the derivation above, we have that for any permutation π, the number of grounded sets of k paths
in the union M1 ∪M2 generated by our process is bounded by (12∆)`

(n/2
`

)
. Denote this set by P`(π) and

note that for every P there exists a unique w ⊆ M1 such that |P ∗(w + M ′)| = ` for some M ′ ⊆ M2.
Specifically, w = P ∩M1 satisfies these constraints. Let S(π) := {P ∩M1 : P ∈ P(π)}. Thus, we
have |S(π)| = (12∆)`

(n/2
`

)
. We now note that S(id) is hence a fixed set of at most (12∆)`

(n/2
`

)
subsets of

edges. At the same time for every permutation π of [n/2] one has

S(π) = π−1(S(id)). (7)

Since π is uniformly random, we thus get for every w ∈ {0, 1}n with |w| = 2k
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Prπ[w ∈ S(π)] = Prπ[w ∈ π−1(S(id))] = Prπ[π(w) ∈ S(id)]

= |S(id)|/
(
n/2

k

)
= (12∆)`

(
n/2

`

)(
n/2

k

)−1

,
(8)

where we used the fact that π(w) is uniformly random in the set of unordered k-tuples of edges of M1 when
π is uniformly random. This completes the proof.

4.2 Bounds on expected transfer of Fourier mass

In this section, we use the convolution identity (6) to bound the contribution of Fourier transforms f̂1 and f̂2

to the Fourier transform ĥ2 of h2 = f1 ·f2 (see Definition 3.2). The main result of this section is Lemma 4.9.
The more basic bounds on the Fourier transform of f1 and f2 are provided by Theorem 4.6, stated below
and proved in section 7. Part (1) of the theorem shows that f̂1 and f̂2 are supported on edges of matchings
M1 and M2 respectively, while parts (2) and (3) use this fact to derive upper bounds of the form (O(s)/`)`

(i.e. with the improved exponent of ` as opposed to 2` that we are looking for) for the amount of mass on
weight level ` in f̂1 and f̂2, respectively.

Theorem 4.6 Let M ∈ {0, 1}m×n be the incidence matrix of a matching M , where the rows correspond to
edges e of M (Meu = 1 if e is incident on u and 0 otherwise). Let g : {0, 1}m → {0, 1}s for some s > 0.
Let a ∈ {0, 1}s and let Areduced := {z ∈ {0, 1}m : g(z) = a}. Further, let f : {0, 1}n → {0, 1} denote
the indicator of the set

A := {x ∈ {0, 1}n : g(Mx) = a}.

Suppose that |A| = 2n−d for some d ∈ [0, n].
Then

1. the only nonzero Fourier coefficients of f̂ are of the form f̂(MTw) for some w ∈ {0, 1}M ;

2. for all ` ∈ [0 : d] and every Q ⊆M

22d
∑

v∈{0,1}n,|v|=2`+|Q|
v⊇Q

f̂(v)2 ≤ 2|Q|(64d/`)`,

where |Q| denotes the number of vertices in Q;

3. 22d
∑

v∈{0,1}n f̂(v)2 = 2d (Parseval’s equality).

The proof of Theorem 4.6 is given in section 7.

Lemma 4.7 For any v ∈ {0, 1}n, one has ̂(f1 · f2)(v) = 0 if v is not admissible with respect to M1,M2,
and ̂(f1 · f2)(v) = f̂1(P (v) ∩M1) · f̂2(P (v) ∩M2) otherwise.

Proof: By the convolution identity (6) we have ̂(f1 · f2)(v) =
∑

x∈{0,1}n f̂1(x)f̂2(v+x). By Theorem 4.6,
(1) applied to the sets Ai, messages ai, functions gi, i ∈ {1, 2} (as per Definition 3.2) we also have that
f̂1(x) 6= 0 only if x is a union of edges of M1, and f̂2(v + x) 6= 0 if v + x is a union of edges of M2.
We can thus write ̂(f1 · f2)(v) =

∑
M ′1⊆M1,M ′2⊆M2

M ′1+M ′2=v

f̂1(M ′1)f̂2(M ′2). Since M1 and M2 are edge disjoint

and M1 ∪M2 is a union of paths, we have that for every admissible v ∈ {0, 1}n, there exists a unique pair
M ′1 ⊆M1,M

′
2 ⊆M2 such that v = M ′1 +M ′2.
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Lemma 4.8 For any w ⊆ M1 with |w| = 2k, the number of v ∈ {0, 1}n with |v| = 2` and |P ∗(v)| = `
such that v = w +M ′2 for some M ′2 ⊆M2 is upper bounded by 22k.

Proof: For each pathM1∪M2, designate one endpoint to be the left endpoint and the other to be the right
endpoint arbitrarily. Note that for each path, this fixes an ordering of vertices (left to right). We associate
two binary variables with each of the two endpoints of each edge e ∈ w. Denote these binary variables by
L(e) and R(e). Then for each v ∈ {0, 1}n and every e ∈ w, we let L(e) = 1 if P (v) extends beyond the
left endpoint of e, and 0 otherwise. Similarly, R(e) = 1 if P (v) extends beyond the right endpoint of e,
and 0 otherwise. Note that the collection of variables {(L(e), R(e))}e∈w uniquely determines P (v). On the
other hand, the number of possible assignments of L(e), R(e) for e ∈ w is upper bounded by 22k, proving
the lemma.

We now state and prove Lemma 4.9. For an event E , we let I[E ] denote the indicator function of E .

Lemma 4.9 For every even integer ∆ > 2, every α ∈ (0, 1), every s ≤ n/256, and any protocol Π for
DIHP(n,∆, α), the following conditions hold for sufficiently large n. If f1, f2 : {0, 1}n → {0, 1} are
indicator functions of A1 and A2, respectively, then for every 0 ≤ ` ≤ s, 0 ≤ k ≤ n/2, and w ∈ {0, 1}n
with |w| = 2k, the following conditions hold for every M1,A1.

(1) If k ≤ `, then

EM2

( 2n

|A2|

)2

· I
[
|A2|
2n
≥ 2−s

]
·
∑

v∈{0,1}n
|v|=2`

f̂2(w + v)2

∣∣∣∣∣∣∣∣M1,A1

 ≤ 4`(O(∆))k(64s/(`− k))`−k.

(2) If k ≥ `, then

EM2

( 2n

|A2|

)2

· I
[
|A2|
2n
≥ 2−s

]
·
∑

v∈{0,1}n
|v|=2`

f̂2(w + v)2

∣∣∣∣∣∣∣∣M1,A1

 ≤ (O(∆))`8k
(
k − `
n/2

)k−`
.

Proof: We classify elements v according to the size of the core P ∗(v). Let w = M ′1 ⊆ M1. For any
v ∈ {0, 1}n, |v| = 2` admissible wrt M1, M2, note that |P (v)| = `, as every path in P (v) contributes 2 to
the weight of v via its two endpoints. Note that P ∗(v) ⊆ P (v), so |P ∗(v)| is between 0 and `:

∑
v∈{0,1}n
|v|=2`

f̂2(w + v)2 =
∑̀
r=0

∑
v∈{0,1}n
|v|=2`
|P ∗(v)|=r

P ∗(v)∩M1=w

f̂2(w + v)2.

Since paths in P (v) \ P ∗(v) are all of length 1 and correspond to edges of M2, any admissible v can be
represented uniquely as v = v′ + x, where P ∗(v) = P ∗(v′) = P (v′) and x ⊆M2 is supported on edges of
M2 and is disjoint from P ∗(v) (see Fig. 1 for an illustration of P ∗(v)). Substituting this into the rhs of the
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equation above, we get

∑
v∈{0,1}n,|v|=2`

f̂2(w + v)2 =
∑̀
r=0

∑
v∈{0,1}n
|v|=2`
|P ∗(v)|=r

f̂2(w + v)2

=
∑̀
r=0

∑
v′∈{0,1}n
|v′|=2r
|P ∗(v′)|=r

P ∗(v′)∩M1=w

∑
x⊆M2

x∩P ∗(v′)=∅
|x|=`−r

f̂2(w + v′ + x)2 =: Y1.

By Theorem 4.6, (2) invoked with A = A2, f = f2, g = g2, M = M2, Q = P ∗(v′) ∩M2, k = `− r,
and d = log2

(
2n

|A2|

)
, we get

(
2n

|A2|

)2

· I
[
|A2|
2n
≥ 2−s

] ∑
x⊆M2

x∩P ∗(v′)=∅
|x|=`−r

f̂2(w + v′ + x)2 ≤ 2|Q|(64s/(`− r))`−r

≤ 22k(64s/(`− r))`−r,

(9)

where we have used the fact that |Q| ≤ 2` (the set P ∗(v′) is a disjoint union of edges of M1 and M2 that
form paths; the number of edges of M2 on each such path is no more than a factor of 2 larger than the
number of edges of M1). Putting the bounds above together, and taking expectation over M2 conditional on
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M1 and A1, we get that EM2 [Y1] is bounded from above by

EM2


(

2n

|A2|

)2

· I
[
|A2|
2n
≥ 2−s

]
·

min{k,`}∑
r=0

∑
v′∈{0,1}n
|v′|=2r
|P ∗(v′)|=r

P ∗(v′)∩M1=w

∑
x⊆M2

x∩P ∗(v′)=∅
|x|=`−r

f̂2(w + v′ + x)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
M1,A1



= EM2


min{k,`}∑
r=0

∑
v′∈{0,1}n
|v′|=2r
|P ∗(v′)|=r

P ∗(v′)∩M1=w

(
2n

|A2|

)2

· I
[
|A2|
2n
≥ 2−s

]
·

∑
x⊆M2

x∩P ∗(v′)=∅
|x|=`−r

f̂2(w + v′ + x)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
M1,A1



≤ EM2

22k ·
min{k,`}∑
r=0

(64s/(`− r))`−r ·
∑

v′∈{0,1}n
|v′|=2r
|P ∗(v′)|=r

I[P ∗(v′) ∩M1 = w]

∣∣∣∣∣∣∣∣∣∣∣
M1,A1


≤ EM2

22k · 22k ·
min{k,`}∑
r=0

(64s/(`− r))`−r · I[∃M ′2 ⊆M2 : |P ∗(w +M ′2)| = r]

∣∣∣∣∣∣M1,A1


= 24k ·

min{k,`}∑
r=0

(64s/(`− r))`−r · PrM2

[
∃M ′2 ⊆M2 : |P ∗(w +M ′2)| = r

∣∣M1,A1

]
=: Y2,

(10)

where I[E ] stands for the indicator of event E . We have used (9) to go from the second line to the third,
as well as Lemma 4.8 to conclude that

∑
v′∈{0,1}n
|v′|=2r
|P ∗(v′)|=r

I[P ∗(v′) ∩ M1 = w] ≤ 22k and obtain the fourth

line. Note that the summation above is over r between 0 and min{k, `}. To see that the size of the core
P ∗(w + M ′2) = P ∗(v) cannot be larger than 2`, note that each path in the core contributes two distinct
endpoints to the weight of v. To see that the size of the core P ∗(w+M ′2) = P ∗(v) cannot be larger than k,
note that every path in the core must contain at least one edge in M2 that belongs to w, and these edges are
disjoint.

We have by Lemma 4.5 that

Pr
[
∃M ′2 ⊆M2 : |P ∗(w +M ′2)| = r |M1

]
≤ (O(∆))r

(
n/2

r

)(
n/2

|w|/2

)−1

.
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Substituting this bound into the equation above, we get

Y2 ≤ 16k ·
min{k,`}∑
r=0

(64s/(`− r))`−r · Pr
[
∃M ′2 ⊆M2 : |P ∗(w +M ′2)| = r |M1

]
≤ 16k ·

min{k,`}∑
r=0

(64s/(`− r))`−r · (O(∆))r
(
n/2

r

)(
n/2

k

)−1

=: Y3.

(11)

We now consider two cases, depending on whether k ≤ ` or k ≥ ` (the cases overlap, giving us two rather
similar bounds for k = `).

Case 1: k ≤ `. Using the bound (n/k)k ≤
(
n
k

)
≤ (en/k)k in (11), we obtain

Y3 = 16k ·
min{k,`}∑
r=0

(64s/(`− r))`−r · (O(∆))r
(
n/2

r

)(
n/2

k

)−1

= 16k ·
k∑
r=0

(64s/(`− r))`−r · (O(∆))r
(
n/2

r

)(
n/2

k

)−1

≤ 16k · (64s/(`− k))`−k
k∑
r=0

(64s)k−r
[

(`− k)`−k

(`− r)`−r

]
· (O(∆))r(en/2r)r((n/2)/k)−k

≤ 4` · (O(∆))k(64s/(`− k))`−k
k∑
r=0

(128s/n)k−r · (`− k)`−k(k − r)k−r

(`− r)`−r
· kk

rr(k − r)k−r

=: Y4

(12)

We now note that aabb

(a+b)a+b = exp(a ln a+ b ln b− (a+ b) ln(a+ b)) ≤ 1 for all a ≥ 0, b ≥ 0, by convexity

of the function x lnx. Furthermore, for fixed a + b, the maximum of (a+b)a+b

aabb
is achieved when a = b and

equals 2a+b. Applying the first bound with a = `− k, b = k − r gives

(`− k)`−k(k − r)k−r

(`− r)`−r
≤ 1, (13)

and applying the second bound with a = r, b = k − r gives

kk

rr(k − r)k−r
≤ 2k. (14)

Substituting these bounds into (12) yields

Y4 = 4` · (O(∆))k(64s/(`− k))`−k
k∑
r=0

(128s/n)k−r · (`− k)`−k(k − r)k−r

(`− r)`−r
· kk

rr(k − r)k−r

≤ 4` · (O(∆))k(64s/(`− k))`−k
k∑
r=0

(128s/n)k−r · kk

rr(k − r)k−r
(by (13))

≤ 4` · (O(∆))k(64s/(`− k))`−k
k∑
r=0

(128s/n)k−r (by (14))

≤ 4`(O(∆))k(64s/(`− k))`−k.
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Substituting this into (11) and then in (10), we get the result for the case k ≤ ` (Case 1).

Case 2: k ≥ `. Using the bound (n/k)k ≤
(
n
k

)
≤ (en/k)k in (11), we obtain

Y3 = 16k ·
min{k,`}∑
r=0

(64s/(`− r))`−r · (O(∆))r
(
n/2

r

)(
n/2

k

)−1

= 16k · (O(∆))`
∑̀
r=0

(64s/(`− r))`−r ·
(
n/2

r

)(
n/2

k

)−1

≤ 16k(O(∆))`
∑̀
r=0

(64s/(`− r))`−r(n/2)r−kkk/rr

≤ 16k(O(∆))`
(
k − `
n/2

)k−`∑̀
r=0

(64s/(`− r))`−r(n/2)r−`
kk

rr(k − `)k−`

≤ 16k(O(∆))`
(
k − `
n/2

)k−`∑̀
r=0

(128s/n)`−r
kk

rr(k − `)k−`(`− r)`−r

≤ 16k(O(∆))`
(
k − `
n/2

)k−`∑̀
r=0

(128s/n)`−r
kk``

rr(`− r)`−r(k − `)k−```

≤ 16k(O(∆))`
(
k − `
n/2

)k−`∑̀
r=0

(128s/n)`−r
``

rr(`− r)`−r
kk

(k − `)k−```

=: Y5.

Again, by convexity arguments as in Case 1, we have ``

rr(`−r)`−r
kk

(k−`)k−``` ≤ 2`+k. Substituting this in the
derivation above, we get

Y5 = 16k(O(∆))`
(
k − `
n/2

)k−`∑̀
r=0

(128s/n)`−r
``

rr(`− r)`−r
kk

(k − `)k−```

≤ 16k(O(∆))`2`+k
(
k − `
n/2

)k−`∑̀
r=0

(128s/n)`−r

≤ 32k(O(∆))`
(
k − `
n/2

)k−`
,

since s < n/256, by assumption of the lemma.

4.3 Putting it together

We now present a proof of Lemma 3.4, which we restate here for convenience of the reader:

Lemma 3.4 There existsC > 1 such that for every even integer ∆ > 2, γ > n−1/5 smaller than an absolute
constant, and α ∈ (0, 1), the following conditions hold for sufficiently large n divisible by ∆: Let Π be a
protocol for DIHP(n,∆, α) such that |Π| =: s, where s = s(n) = ω(

√
n) and s(n) ≤ 1

2048C∆2γ
5n. Then,

there exists an event E that only depends on X∗,M1,M2 and occurs with probability at least 1−O(γ) over
Pn,∆,α and the choice of X∗ ∈ {0, 1}n such that, conditioned on E , one has
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(1) |B2|/2n ≥ 2−γ
4n.

(2)
(

2n

|B2|

)2∑
v∈{0,1}n,|v|=2` ĥ2(v)2 ≤ (C∆2γ4n/`)` for all ` ≤ γ4n.

Proof:
We denote

E1 :=
{
|A1|/2n ≥ 2−s−log2(2/γ)

}
E2 :=

{
|At|/2n ≥ 2−s−log2(2/γ) for t ∈ {1, 2}

}
(note that E2 ⊆ E1).

(15)

We will later show that for every t ∈ {1, 2},

Pr[Et] ≥ 1−O(γ). (16)

Note that neither E1 nor E2 coincides with the event E—we define E at the end of the proof as the intersection
of E2 and the success event for an application of Markov’s inequality (see Eq. (25) and Eq. (26)).

We prove that if matchings M1,M2 are selected according to the random process Pn,∆,α, then the
following conditions hold:

(1) |B2|
2n = |A1|

2n ·
|A2|
2n for all choices of M1,M2, f1, f2;

(2) Conditioned on E1 for all ` ∈ [1, 2s],(
2n

|B1|

)2 ∑
v∈{0,1}n
|v|=2`

f̂1(v)2 ≤ (128s/`)`.

(3) Conditioned on E2 for all ` ∈ [1, 2s],(
2n

|B2|

)2 ∑
v∈{0,1}n
|v|=2`

f̂1 · f2(v)2 ≤ (O(∆2/γ) · s/`)`.

We prove claims above, then put them together to get the proof of the lemma. Claims (1) and (2) are
simple, and the proof of the lemma from the claims is simple as well. The bulk of the proof is in (3). We
now give the proof of the lemma assuming the claims above.

We now combine (1)-(3) to obtain the result of the lemma. Recall that h2 = f1 · f2.
First, for ` ∈ [1, 2s], we have that (3) implies(

2n

|B2|

)2 ∑
v∈{0,1}n
|v|=2`

f̂1 · f2(v)2 ≤ (O(∆2/γ)s/`)` ≤ (C∆2γ4n/`)`

for sufficiently large C, since s ≤ 1
2048C∆2γ

5n by assumption of the lemma.
It remains to show that this bound holds for all ` ≤ γ4n, i.e., we need to consider ` in the range [2s, γ4n].

We note that, conditioned on E , one has

2n

|B2|
=

2n

|A1|
· 2n

|A2|
≤ (22s)2 ≤ 24s,
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where we have combined (1) with the fact that conditioned on E ⊆ E2, one has |At|/2n ≥ 2−s−log2(2/γ) ≥
2−2s for every t ∈ {1, 2} and sufficiently large n, since γ > n−1/5 and s = s(n) = ω(

√
n). Thus, by

Theorem 4.6, (3) (Parseval’s equality), we have(
2n

|Bt|

)2 ∑
v∈{0,1}n
|v|=2`

ĥt(v)2 ≤
(

2n

|Bt|

)2 ∑
v∈{0,1}n

ĥt(v)2 ≤ 2n

|Bt|
≤ 24s.

(17)

for t ∈ {1, 2} and all `.
We now show that the rhs above is dominated by (C∆2γ4n/`)` for ` ∈ [2s, γ4n], provided that C > 0

is a sufficiently large absolute constant. Indeed, recalling that ∆ is a positive integer, we note that as long as
C ≥ e, we have that (C∆2γ4n/`)` is monotonically increasing2 for ` ∈ [2s, γ4n]. Thus, the smallest value
is achieved when ` = 2s and equals

(C∆2γ4n/(2s))2s ≥ (4C∆2γ4n/(γ5n))2s ≥ (4C∆2/γ)2s ≥ 24s,

where we have used the assumption that s ≤ 1
2048C∆2γ

5n ≤ 1
8γ

5n. This establishes part (2) of the lemma
statement. Also, note that (1) of the lemma statement holds, since

|B2|
2n
≥ 2−4s ≥ 2−γ

4n,

since 4s ≤ 4 · (γ5n/2048C∆2) ≤ γ4n. This completes the proof of the lemma assuming claims (1)-(3)
above.

We now prove the claims.
First, we establish Claim (1), which follows from the fact thatM1∪M2 does not contain cycles. Indeed,

by (6), we have

ĥ2(0) =
∑

w∈{0,1}n
f̂1(w) · f̂2(w) = f̂1(0n) · f̂2(0n) +

∑
w∈{0,1}n\0n

f̂1(w) · f̂2(w),

and by Theorem 4.6, (1), all w ∈ {0, 1}n \ 0n such that f̂1(w) 6= 0 and f̂2(w) 6= 0 can be perfectly matched
by both M1 and M2. Let M ′1 ⊆ M1 denote the set of edges of M1 that perfectly match elements of w to
each other, and letM ′2 ⊆M2 denote the set of edges ofM2 that perfectly match elements of w to each other.
However, this implies that M ′1 ∪M ′2 must be a union of cycles (note that M ′1 and M ′2 do not share edges by
our construction), which is impossible as M1 ∪M2 does not contain cycles. Thus, the second term on the
rhs of the equation above is zero, and we get

|B2|
2n

= |ĥ2(0n)| = |f̂1(0n)| · |f̂2(0n)| = |A1|
2n
· |A2|

2n
,

as desired. This establishes Claim (1).
Let us now concentrate on Claim (2). Note that the claim only applies to ` ≥ 1, which will be useful for

simplifying calculations somewhat below.

Typical messages. First, note that for each t ∈ {1, 2}, the function gt induces a partitionKt
1,K

t
2, . . . ,K

t
2s

of {0, 1}mt , where s is the bit length of the message at (recall that we assume wlog that messages are the
same length for all t). The number of points in {0, 1}mt that belong to sets Kt

i of size less than γ2mt−s is

2Since the function (ea/b)b is monotone increasing for any b ∈ (0, b].
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bounded by 2s · γ2mt−s < γ2mt , i.e., at least a 1 − γ fraction of {0, 1}mt is contained in large sets Kt
i ,

whose size is at least γ2mt−s. We call a message m typical if |Kt
m| ≥ γ2mt−s. Moreover, we say that

at = gt(Mtx) is typical if Mtx is typical. We have that at = gt(z) is not typical with probability at most γ
if z is uniformly random in {0, 1}mt . Letting d := log2 (2n/|A1|), we now conclude that with probability
at least 1 − γ/2 over the choice of X∗ ∈ {0, 1}n, one has d ≤ s + log2(2/γ). Since γ > n−1/5 and
s = ω(

√
n) by assumption of the lemma, we have d ≤ s+ log2(2/γ) ≤ 2s for sufficiently large n. We now

invoke Theorem 4.6, (2) on the function f1 with d ≤ s+ log2(2/γ) ≤ 2s, which establishes Claim (2).

Finally, we establish Claim (3). First note that by Lemma 3.3, (1) applied to A1 and M2, we get that
M2X

∗ is uniformly distributed over {0, 1}m2 when X∗ is uniformly distributed over A1. We thus have
that the argument on ‘typical’ sets from the above paragraph applies even when we condition on M1 and
the first player’s message a1 (equivalently, on the set A1). Thus, with probability 1 − O(γ), we have that
log2 (2n/|A2|) ≤ s+ log2(2/γ), which establishes (16).

Thus, assume E2 holds. Recall that d = log2 (2n/|A1|) ≤ s + log2(1/γ) ≤ 2s. We now claim that for
every k ≤ 2s, (

2n

|A1|

)2 ∑
w∈{0,1}n
|w|=2k

f̂1(v)2 ≤ (128s/k)k (18)

and (
2n

|A1|

)2 ∑
w∈{0,1}n
|w|≥4s

f̂1(w)2 ≤ 24s. (19)

Indeed, (19) holds by Theorem 4.6, (3):(
2n

|A1|

)2 ∑
w∈{0,1}n
|w|≥4s

f̂1(w)2 ≤ 22d
∑

w∈{0,1}n
f̂1(w)2

= 2d

≤ 24s.

For (18), note that if k ≤ d, then Theorem 4.6, (2) implies that(
2n

|A1|

)2 ∑
w∈{0,1}n
|w|=2k

f̂1(w)2 ≤ (64d/k)k ≤ (128s/k)k,

as desired, while if d < k ≤ 2s, then Theorem 4.6, (3) implies that(
2n

|A1|

)2 ∑
w∈{0,1}n
|w|=2k

f̂1(w)2 ≤ 2d

≤ (128s/d)d

≤ (128s/k)k,

since (128s/k)k is a monotonically increasing function in k for k ≤ 2s. This establishes (18).
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Next, by Lemma 4.7, we have that for any v ∈ {0, 1}n, ̂(f1 · f2)(v) = 0 if v is not admissible with
respect to M1,M2, while ̂(f1 · f2)(v) = f̂1(P (v) ∩M1) · f̂2(P (v) ∩M2) otherwise. Thus, for any ` ≥ 0,∑

v∈{0,1}n
|v|=2`

f̂1 · f2(v)2 =
∑

v∈{0,1}n
|v|=2`

v admissible wrt M1,M2

f̂1(P (v) ∩M1)2 · f̂2(P (v) ∩M2)2

=
∑

v∈{0,1}n
|v|=2`

∑
w∈{0,1}n

f̂1(w)2 · f̂2(w + v)2.

Note that the second line follows from the first by lettingw := P (v)∩M1 (so thatw+v = (P (v)∩M1)+v =
P (v)∩M2 and, thus, f̂1(w)2 · f̂2(w+ v)2 = f̂1(P (v)∩M1)2 · f̂2(P (v)∩M2)2) as well as noting that there
exists at most one w ∈ {0, 1}n such that f̂1(w)2 · f̂2(w + v)2 6= 0 (see the proof of Lemma 4.7).

We now further partition the set of w ∈ {0, 1}n in the inner summation on the rhs above according to
weight and obtain

∑
v∈{0,1}n
|v|=2`

f̂1 · f2(v)2 =
∑

v∈{0,1}n
|v|=2`

∑
w∈{0,1}n

f̂1(w)2 · f̂2(w + v)2

=

∆·∑̀
k=0

∑
v∈{0,1}n
|v|=2`

∑
w∈{0,1}n
|w|=2k

f̂1(w)2 · f̂2(w + v)2

=

∆·∑̀
k=0

∑
w∈{0,1}n
|w|=2k

f̂1(w)2 ·

 ∑
v∈{0,1}n
|v|=2`

f̂2(w + v)2

 .

(20)

Note that we have restricted the summation over k to the range [0,∆ · `] in line 3, as this is justified by
Lemma 4.5, (2), which implies that |P ∗(w+M ′)| ≥ |w|/∆ for allM ′ ⊆M2, and so, |v| = |w+(v+w)| =
|w +M ′| ≥ |w|/∆, or k = |w|/2 ≤ ∆ · ` for all v, w such that f̂1(w)f̂2(v + w) 6= 0.

Taking the expectation of (20) with respect to M2 (conditional on M1, A1, and E2), we obtain

EM2

( 2n

|B2|

)2 ∑
v∈{0,1}n
|v|=2`

f̂1 · f2(v)2

∣∣∣∣∣∣∣∣M1,A1, E2



=

(
2n

|A1|

)2

EM2

( 2n

|A2|

)2 ∑
v∈{0,1}n
|v|=2`

f̂1 · f2(v)2

∣∣∣∣∣∣∣∣M1,A1, E2



≤
∆·∑̀
k=0

(
2n

|A1|

)2 ∑
w∈{0,1}n
|w|=2k

f̂1(w)2 · EM2

( 2n

|A2|

)2 ∑
v∈{0,1}n
|v|=2`

f̂2(w + v)2

∣∣∣∣∣∣∣∣M1,A1, E2

 .
In what follows, we apply Lemma 4.9 to the inner summation on last line above. In order to reason
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about ‘typical’ messages as defined above, we let

I?1 := I

[
|A1|
2n
≥ 2−2s

]
and I?2 := I

[
|A2|
2n
≥ 2−2s

]
.

Note that

I?1 ≥ I

[
|A1|
2n
≥ 2−s−log2(2/γ)

]
and I?2 ≥ I

[
|A2|
2n
≥ 2−s−log2(2/γ)

]
. (21)

Specifically, we have for that for any ` ≤ 2s,

(
2n

|A1|

)2 ∆·∑̀
k=0

∑
w∈{0,1}n
|w|=2k

f̂1(w)2 · EM2

( 2n

|A2|

)2 ∑
v∈{0,1}n
|v|=2`

f̂2(w + v)2

∣∣∣∣∣∣∣∣M1,A1, E2



=

(
2n

|A1|

)2 ∆·∑̀
k=0

∑
w∈{0,1}n
|w|=2k

f̂1(w)2 · EM2

I?1 · I?2( 2n

|A2|

)2 ∑
v∈{0,1}n
|v|=2`

f̂2(w + v)2

∣∣∣∣∣∣∣∣M1,A1, E2



≤
(

2n

|A1|

)2 1

Pr[E2]

∆·∑̀
k=0

∑
w∈{0,1}n
|w|=2k

f̂1(w)2 · EM2

( 2n

|A2|

)2

· I?1 · I?2 ·
∑

v∈{0,1}n
|v|=2`

f̂2(w + v)2

∣∣∣∣∣∣∣∣M1,A1



= 2

(
2n

|A1|

)2

· I?1 ·
∆∑̀
k=0

∑
w∈{0,1}n
|w|=2k

f̂1(w)2 · EM2

( 2n

|A2|

)2

· I?2 ·
∑

v∈{0,1}n
|v|=2`

f̂2(w + v)2

∣∣∣∣∣∣∣∣M1,A1

 ,
where we have used (21) to conclude that both I?1 and I?2 equal 1 when E2 occurs, as well as the fact that
Pr[E2] = 1 − O(γ) ≥ 1/2 (when γ is smaller than an absolute constant) by (16) and the fact that I?1 is
independent of M2.

We now apply Lemma 4.9 to the expectation over M2 in the last line above. Since Lemma 4.9 provides
two bounds (one for ` ≤ k and another for ` ≥ k), we split the summation into two and apply the respective
part of the lemma to each summation. Specifically, we have

2

(
2n

|A1|

)2

· I?1 ·
∆∑̀
k=0

∑
w∈{0,1}n
|w|=2k

f̂1(w)2 · EM2

( 2n

|A2|

)2

· I?2 ·
∑

v∈{0,1}n
|v|=2`

f̂2(w + v)2

∣∣∣∣∣∣∣∣M1,A1



≤ 2

(
2n

|A1|

)2

· I?1 ·
∑̀
k=0

∑
w∈{0,1}n
|w|=2k

f̂1(w)2 · EM2

( 2n

|A2|

)2

· I?2 ·
∑

v∈{0,1}n
|v|=2`

f̂2(w + v)2

∣∣∣∣∣∣∣∣M1,A1



+ 2

(
2n

|A1|

)2

· I?1 ·
∆∑̀

k=`+1

∑
w∈{0,1}n
|w|=2k

f̂1(w)2 · EM2

( 2n

|A2|

)2

· I?2 ·
∑

v∈{0,1}n
|v|=2`

f̂2(w + v)2

∣∣∣∣∣∣∣∣M1,A1


= S1 + S2,
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where we let

S1 = 2

(
2n

|A1|

)2

· I?1 ·
∑̀
k=0

4`(O(∆))k(64(2s)/(`− k))`−k ·
∑

w∈{0,1}n
|w|=2k

f̂1(w)2

S2 = 2

(
2n

|A1|

)2

· I?1 ·
∆∑̀

k=`+1

(O(∆))`8k
(
k − `
n/2

)k−`
·
∑

w∈{0,1}n
|w|=2k

f̂1(w)2.

We now proceed to bound the terms S1 and S2 separately.

Bounding S1. We have

S1 = 2

(
2n

|A1|

)2

· I?1 ·
∑̀
k=0

4`(O(∆))k(64(2s)/(`− k))`−k ·
∑

w∈{0,1}n
|w|=2k

f̂1(w)2

= 2
∑̀
k=0

4`(O(∆))k(64(2s)/(`− k))`−k · I?1 ·
(

2n

|A1|

)2 ∑
w∈{0,1}n
|w|=2k

f̂1(w)2

≤ 4`+1
∑̀
k=0

(O(∆))k(64(2s)/(`− k))`−k · (64(2s)/k)k (by Eq. (18))

= (O(∆))`
∑̀
k=0

((128s)/(`− k))`−k · ((128s)/k)k

= (O(∆))`((128s)/`)`
∑̀
k=0

``

(`− k)`−kkk

= (O(∆))`((128s)/`)`
∑̀
k=0

2` (since
(a+ b)a+b

aabb
≤ 2a+b) for all a, b > 0)

≤ (128s/`)`(O(∆))`

≤ (O(∆)s/`)`.

(22)

Note that we have absorbed the factor of 4`+1 into (O(∆))` crucially using the assumption that ` > 0.

Bounding S2. Observe that

S2 = I?1 ·
∆·∑̀

k=`+1

(O(∆))`8k
(
k − `
n/2

)k−`
·
(

2n

|A1|

)2 ∑
w∈{0,1}n
|w|=2k

f̂1(w)2.

We split this summation further into two summations, one over k ∈ [` + 1, 2s] and the other over k ∈
[2s,∆ · `] (assuming that the second range is nonempty).
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Case 1: k ∈ [`+ 1, 2s]. We have

2s∑
k=`+1

(O(∆))`8`+(k−`)
(
k − `
n/2

)k−`
· I?1 ·

(
2n

|A1|

)2 ∑
w∈{0,1}n
|w|=2k

f̂1(w)2

≤
s∑

k=`+1

(O(∆))`8`+(k−`)
(
k − `
n/2

)k−`
· (64(2s)/k)k (by Eq. (18))

≤ (O(∆)s/`)`
s∑

k=`+1

(2048s/n)k−`
(k − `)k−```

kk

≤ (O(∆)s/`)`
s∑

k=`+1

(2048s/n)k−` (since aabb/(a+ b)a+b ≤ 1 for all a, b > 0)

≤ (O(∆)s/`)`
s∑

k=`+1

(2048s/n)k−` (since s < n/4096 by assumption)

≤ (O(∆)s/`)`.

(23)

Case 2: k ∈ [2s,∆ · `]. Note that increasing the upper limit in the summation to ∆ · 2s ≥ ∆ · ` may
only increase the sum since the summands are non-negative. We upper bound the sum of k in this range as
follows:

2∆·s∑
k=2s

(O(∆))`8`+(k−`)
(
k − `
n/2

)k−`
· I?1 ·

(
2n

|A1|

)2 ∑
w∈{0,1}n
|w|=2k

f̂1(w)2

≤
2∆·s∑
k=2s

(O(∆))`8`+(k−`)
(
k − `
n/2

)k−`
· 24s (by Eq. (19))

≤
2∆·s∑
k=2s

(O(∆))`8`+(k−`)
(
k − `
n/2

)k−`
· (8∆s/k)k,

where we have used the fact that(
8∆s

k

)k
≥
(

8∆s

2s

)2s

≥ (4∆)2s ≥ 24s.
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We now upper bound the expression on the last line above as follows:

2∆·s∑
k=2s

(O(∆))`8`+(k−`)
(
k − `
n/2

)k−`
· (8∆s/k)k

≤ (O(∆2)s/`)`
2∆·s∑
k=2s

(O(∆)s/n)k−`
(k − `)k−```

kk

≤ (O(∆2)s/`)`
∞∑
k=2s

(O(∆)s/n)k−` (since aabb/(a+ b)a+b ≤ 1 for all a, b > 0)

≤ (O(∆2)s/`)`
∞∑

k=`+1

(O(∆)s/n)k−`

≤ (O(∆2)s/`)`

(24)

Putting Eq. (22), Eq. (23) and Eq. (24) together, we get that for every 0 < ` ≤ 2s,

S1 + S2 ≤ (O(∆)s/`)` + (O(∆)s/`)` + (O(∆2)s/`)` = (O(∆2)s/`)`,

where we again used the assumption that ` > 0 to absorb a constant factor into the O(∆) term. Substituting
this bound in the derivations above, we note that for every 0 < ` ≤ 2s,

EM2

( 2n

|B2|

)2 ∑
v∈{0,1}n
|v|=2`

f̂1 · f2(v)2

∣∣∣∣∣∣∣∣M1,A1, E2

 = (O(∆2)s/`)`.

Thus, Markov’s inequality implies that with probability at least 1 − O(γ), one has that for every 0 <
` ≤ 2s, there exists an absolute constant K > 0 such that

PrM2

( 2n

|B2|

)2 ∑
v∈{0,1}n
|v|=2`

f̂1 · f2(v)2 > (K(∆2/γ)s/`)`

∣∣∣∣∣∣∣∣M1,A1, E2

 ≤ γ`. (25)

Therefore, by a union bound over 0 < ` ≤ 2s,

PrM2

( 2n

|B2|

)2 ∑
v∈{0,1}n
|v|=2`

f̂1 · f2(v)2 > (K(∆2/γ)s/`)` for some ` ∈ [1, 2s]

∣∣∣∣∣∣∣∣M1,A1, E2


≤
∑
`≥1

γ` = O(γ),

(26)

since γ is bounded from above by an absolute constant. We now define the event E (promised by the
lemma) as the intersection of E2 and the success event for the application of Markov’s inequality above.
This completes the proof of Claim (3), as desired.
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5 Gap analysis (proof of Lemma 2.4)

In this section, we first give informal intuition about the existence of a MAX-CUT value gap in our instance
and then give the formal proof. Recall that in the YES case, the MAX-CUT value is exactly the number of
edges in the graph, as the graph is bipartite. The involved part of the argument consists of showing that our
input graph is Ω(1)-far from bipartite in the NO case, with high probability. Recall that our input MAX-
CUT instance in the NO case is the union M̃1 ∪ M̃2 ∪ G̃, where M̃1, M̃2, G̃ are obtained by first generating
(M1,M2, G) from the distribution Pn,∆,α and then keeping each edge independently with probability 1/2.
Note that the graph G̃ generated in this way is distributed as Gn, 1

2
(1−η)/n for a sufficiently small constant

η > 0, i.e., it is slightly below half of the threshold for emergence of a giant component.
At a high level, the proof that M̃1 ∪ M̃2 ∪ G̃ is Ω(1)-far from bipartite proceeds by showing that

M̃1 ∪ M̃2 ∪ G̃ contains an Ω(n) size connected component (giant component) and then showing that this
component is robust with respect to removal of a small positive fraction of the edges of the graph. To
see why a giant component exists in our graph, it is useful to first see why it does not exist in the graph
M̃1 ∪ M̃2 ∪ M̃3, where M̃1, M̃2 are (nearly)-perfect matchings subsampled at rate 1/2 as above, and M̃3

is a yet another perfect matching subsampled at rate 1/2. Note that the number of edges in this graph is
very close to the number of edges in our graph M̃1 ∪ M̃2 ∪ G̃, as the expected degree of every vertex in
G̃ is 1

2(1 − η), just like in M̃3. There is a subtle conditioning issue that precludes a giant component in
M̃1 ∪ M̃2 ∪ M̃3. The reason is that M1 ∪M2 ∪M3 is (almost) a 3-regular graph, and neighborhoods (of
small sets) in it expand by less than a factor of 2 (see Fig. 2, left panel), so subsampling at rate 1/2 pushes
the process slightly below the critical limit and destroys the growth. This is because a vertex can only be
incident to at most one edge of M̃i, i = 1, 2, 3, as M̃i are matchings. We replace M̃3 with an Erdős-Rényi
graph, so that vertices can occasionally have degree more than 1 in it – and this pushes the process over the
critical limit, leading to a giant component! This is illustrated in Fig. 2 (right panel; note the extra dashed
edge on the right). In what follows we formally prove that the graph that we get in the NO case is Ω(1)-far
from bipartite.

extra edge pushing over critical limit

Figure 2: Illustration of neighborhood growth in a random 3-regular graph M1 ∪M2 ∪M3 (left) and our
instance M1 ∪M2 ∪Gn,(1−η)/n.

Distributions on Graphs. We will use the following two related distributions on n-vertex graphs. For a
parameter p ∈ (0, 1), we let Gn,p denote the Erdős-Rényi distribution with edge probability p. For every
integer m, we let Gn,m denote the distribution on (multi)graphs with m edges, where a graph is selected by
choosing m edges et = (ut, vt), t = 1, . . . ,m independently and uniformly at random.

Recall that the process for generating our input random graph instance is as follows (see Section 2). We
restate the process here for convenience of the reader.

Edge Sampling Process Pn,∆,α. Recall the process Pn,∆,α, which is used to sample the graphs (edge
incidence matrices) M1, M2, M3 in DIHP(n,∆, α). We first describe how to generate M1,M2 and then
describe how to generate M3.
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Sampling the matchings M1,M2. First, we generate the matchings M1,M2 as follows:

• Let M1 be a perfect matching that matches, for each i = 1, . . . , n/2, vertex i to vertex i+ n/2. Note
that edges of M1 are naturally indexed by [n/2]: the i-th edge matches i to i + n/2, for i ∈ [n/2] =
{1, 2, . . . , n/2}.

• Choose a permutation π of [n/2] = {1, 2, . . . , n/2} uniformly at random. Partition the edges of M1

into r = n/∆ sets S1, . . . , Sr with ∆/2 edges each by letting

Sj =

{
π

(
∆

2
· (j − 1) + 1

)
, π

(
∆

2
· (j − 1) + 2

)
, . . . , π

(
∆

2
· (j − 1) +

∆

2

)}
for each j = 1, . . . , n/∆.

• For each j = 1, . . . , n/∆ let M2,j match, for each i = 1, . . . ,∆/2 − 1, the node π(∆
2 · (j − 1) + i)

to the node π(∆
2 · (j − 1) + i+ 1) + n/2. Note that |M2,j | = ∆

2 − 1 for all j.

Let M2 :=
⋃r
j=1M2,j . Note that M1 ∪M2 is a union of n/∆ disjoint paths of length ∆− 1.

Sampling M3. Having sampled M1 and M2, we now sample the graph M3 in three steps:

(1) First, we sample an intermediate graph M ′3, which is taken to be an Erdős-Rényi graph obtained by
including every edge between vertices in [n] independently with probability α/n (recall that α < 1;
we will choose α to be close to 1).

(2) Next, we form a graph M ′′3 by removing any edges of M ′3 that are already in M1 or M2. This serves
the purpose of ensuring that our hard distribution is supported on simple graphs only. Note that the
number of edges excluded from M ′3 is at most a constant with high probability. This means, as we
show below, that this slight change in the distribution does not affect analysis of the gap between
MAX-CUT value in the YES and NO instances.

(3) Finally, we consider the connected components of the resulting graph M ′′3 . We remove all edges of
each component that contains a cycle. We call the resulting graph M3. Note that M3 is guaranteed to
contain no cycles.

Note that our input graph instance uses only the Erdős-Rényi distribution Gn,p. The distribution Gn,m is
used only in the proof. The main technical result of this section is the following lemma. As we show below,
it leads directly to a proof of Lemma 2.4.

Lemma 5.1 There exists η∗ > 0 such that for every ∆ > 104 and every η ∈ (0, η∗), c > 0, there exists
δ > 0 such that the following conditions hold for sufficiently large n: If M1,M2 are generated according to
the process Pn,∆,1−η, M̃1 (resp. M̃2) is obtained by sampling edges of M1 (resp. M2) independently with
probability 1/2, G̃1 ∼ Gn, 1

2
(1−η)/n, and G̃2 ∼ Gn,cn, then M̃1 ∪ M̃2 ∪ G̃1 ∪ G̃2 is δ-far from being bipartite

with probability at least 97/100.

We now give a proof of Lemma 2.4, assuming Lemma 5.1. We restate Lemma 2.4 here for convenience
of the reader:
Lemma 2.4There exist constants ∆∗ > 0 and 0 < α∗ < 1 such that for every α ∈ (α∗, 1) and even integer
∆ ≥ ∆∗, there is a constant ε∗ > 0 for which the following conditions hold for the reduction R from
Definition 2.3:
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(1) If I = (M1,M2,M3;w1, w2, w3) is sampled from DY of DIHP(n,∆, α), then R(I) is a bipartite
graph.

(2) If I is sampled from DN , then with probability at least 95/100, R(I) is a graph on m edges with
MAX-CUT value at most (1− ε∗)m.

The proof uses the following claim:

Claim 5.2 For any integer m > 1 and integers 1 ≤ a ≤ b ≤ m, if X ⊆ [m] is a uniformly random subset
of [m] of size a and Y ⊆ [m] is a uniformly random subset of [m] of size b, then there exists a coupling
between X and Y such that X ⊆ Y with probability 1.

Proof: To construct the coupling, it suffices to first sample X ⊆ [m] of size a, then sample a uniformly
random subset of [m] \X of size b− a and let Y := X ∪ Y ′. To see that Y is uniformly random among all
subsets of [m] of size b, it suffices to note that for every pair S, S′ ⊆ [m], |S| = |S′| = b one has

Pr[Y = S] = Pr[X ⊆ S] · Pr[Y ′ = S \X|X] = Pr[X ⊆ S′] · Pr[Y ′ = S′ \X|X] = Pr[Y = S′],

as the distributions of X and Y ′ are invariant under permutations of [m] and [m] \X respectively.

Proof of Lemma 2.4:
In the YES case, the value of MAX-CUT is exactly m, the number of edges in the input graph, as the

graph is bipartite by construction (the sides of the bipartition are given by X∗ ∈ {0, 1}n).
We now show that in the NO case, the value of MAX-CUT is (1−Ω(1))m. The proof proceeds over two

steps. In the first step, we show that if G̃1 ∼ Gn, 1
2

(1−η)/n, G̃2 ∼ Gn,cn, G̃ ∼ Gn,α/(2n), and α∗ ≥ 1−η+6c,

then M̃1 ∪ M̃2 ∪ G̃ stochastically dominates M̃1 ∪ M̃2 ∪ G̃1 ∪ G̃2 on all but a vanishingly small fraction of
the probability space. Note that the former is the distribution that Lemma 5.1 reasons about, and the latter
is very close to our target distribution. Indeed, the distribution of M̃3 is only different from the distribution
of G̃ in at most O(log2 n) edges with extremely high probability.

In the second step, we apply Lemma 5.1 to obtain the result.

Step 1. We first show that for every c ∈ (0, 1), we have that with probability 1− o(1) over the choice of the
edges of G̃2, (1) the graph G̃1 ∪ G̃2 has no edges of multiplicity higher than two, and (2) the total number
of edges of multiplicity 2 is at most O(log n). Note that by the union bound, it suffices to show that both (1)
and (2) individually occur with probability 1− o(1). We prove this below.

Proof of (1) w.h.p. Note that an edge appears with multiplicity higher than two if either (a) at least
three copies of the edge appear in G̃2, or (b) one copy of the edge appears in G̃1, while at least two copies
appear in G̃2. Note that by the union bound, (a) occurs with probability at most(

cn

3

)
·

(
1(
n
2

))2

≤ 3c3

n
,

since there are
(
cn
3

)
possible triples of distinct edge indices (i1, i2, i3) in G̃2, and the probability that all

three edges in a triple are copies of each other is (1/
(
n
2

)
)2.

Meanwhile, note that by the Chernoff bound, G̃1 has at most 2n edges with probability 1− o(1). Con-
ditioned on this event, (2) occurs with probability at most

2n ·
(
cn

2

)
· 1(

n
2

)2 ≤ 16c2

n
.

It follows that the graph G̃1 ∪ G̃2 has no edges of multiplicity higher than two with probability 1− o(1).
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Proof of (2) w.h.p. Note that any edge that appears with multiplicity two must either (a) have both
copies in G̃2, or (b) have one copy in G̃1 and one copy in G̃2.

First, consider T , the number of edges of multiplicity two that obey (a). Let T1, T2, . . . , T(n2)
be indicator

random variables such that Ti indicates whether edge i is sampled at least twice in G̃2. Note that T ≤
T1 + T2 + · · ·+ T(n2)

. Moreover, for every i, the probability that Ti = 1 is at most
(
cn
2

)
· (1/

(
n
2

)
)2. Thus,

E[T ] ≤ E[T1] + E[T2] + · · ·+ E[T(n2)
] ≤

(
n

2

)
·
(
cn

2

)
·

(
1(
n
2

))2

≤ 2c2.

Moreover, since T1, T2, . . . , T(n2)
are negatively associated, it follows from the Chernoff bound that T =

O(log n) with probability 1− n−Ω(1) = 1− o(1).
Next, consider edges of multiplicity two that obey (b). Note that the probability that any specific edge

in G̃1 also appears in G̃2 is

1−

(
1− 1(

n
2

))cn ≤ 1− e−4c/n ≤ 4c

n
.

Recall that, by the Chernoff bound, G̃1 has at most 2n edges with probability 1− o(1). Conditioned on this
event, the expectation of T ′, the number of edges of G̃1 that also occur in G̃2, is

E[T ′] ≤ 2n · 4c

n
= 8c.

Now, T ′ is the sum of indicator random variables for each edge of G̃1 (which indicate whether the cor-
responding edge also appears in G̃2). Since these variables are negatively associated, one can apply the
Chernoff bound to T ′ in order to deduce that T ′ = O(log n) with probability 1 − n−Ω(1) = 1 − o(1), as
desired.

Thus, ignoring the multiplicities of edges of G̃1∪ G̃2 leads to an additive error of no more thanO(log n)
in any cut, and this is what we do in what follows—denote as G̃∗ the graph obtained from G̃1 ∪ G̃2 by
disregarding multiplicities. The expected number of edges in G̃1 is 1−η

4 (n − 1). Thus, it follows by stan-
dard concentration inequalities, along with the aforementioned argument about edge multiplicities, that the
number of edges in G̃∗ is at most (1−η

4 + c + o(1))n with probability 1 − o(1). Furthermore, conditioned
on the number of edges in G̃∗ being equal to t for some t, the edge set of G̃∗ is a uniformly random set of
edges of size t in

(
[n]
2

)
.

Similarly, it follows by concentration inequalities that the number of edges in G̃ is at least (α4 − o(1))n
with probability 1 − o(1). Furthermore, conditioned on the number of edges being equal to t, the set of
edges is a uniformly random set of size t in

(
[n]
2

)
.

Claim 5.2 therefore implies that the graph M̃1 ∪ M̃2 ∪ G̃ stochastically dominates the graph M̃1 ∪ M̃2 ∪
G̃1 ∪ G̃2 with respect to inclusion as long as α

4 >
1−η

4 + c + C ′ for an absolute constant C ′ > 0. We now
let α∗ = 1− η∗/2. For every α ∈ (α∗, 1) we let η = η∗ and let c = η∗/12, so that

α

4
−
(

1− η
4

+ c

)
≥ 1− η∗/2

4
−
(

1− η∗

4
+
η∗

12

)
≥ η∗

4
− η∗

8
− η∗

12
=
η∗

24
= Ω(1),

as required.

Step 2. Now, by Lemma 5.1 invoked with η = η∗ and c = η∗/12, as above, we get that the graph
M̃1 ∪ M̃2 ∪ G̃1 ∪ G̃2 is Ω(δ)-far from bipartite for some δ = Ωη∗(1) with probability at least 97/100. Since
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the graph M̃1 ∪ M̃2 ∪ G̃ stochastically dominates M̃1 ∪ M̃2 ∪ G̃1 ∪ G̃2 by step 1 and both graphs contain
Θ(n) edges with high probability, the graph M̃1 ∪ M̃2 ∪ G̃ is also O(δ)-far from being bipartite for some
δ > 0 with probability 1− o(1).

Finally, it remains to note that the actual graph M̃3 generated in the NO case only differs from G̃ in
O(log2 n) edges with probability 1 − o(1). It suffices to consider the edges that are removed from M ′3 in
order to produce M3 in Pn,∆,α and show that this number is O(log2 n) with probability 1 − o(1). Recall
that edges are removed in two stages. Consider the first stage, in which edges of M ′3 that are already in M1

or M2 are removed in order to form M ′′3 . Since there are are n − n/∆ edges in M1 ∪M2, we have that
the expected number of edges M ′3 that are removed is (n − n/∆) · α/n = α(1 − 1/∆) ≤ 1. Thus, by the
Chernoff bound, the number of removed edges is O(log n) with probability 1− n−Ω(1).

Next, consider the second stage, in which edges are removed from M ′′3 to form M3. In order to bound
the number of such edges, we use the following facts, which appear in [Dur06]:

Fact 5.3 (follows from Theorem 2.3.1 in [Dur06]) Suppose λ < 1. Then, all connected components of
Gn,λ/n are of size O(log n) with probability 1− o(1).

Fact 5.4 (follows from Theorem 2.6.1 in [Dur06]) Suppose λ < 1, and let A < ∞ be a constant. Then,
consider all connected components of Gn,λ/n with at most A log n vertices. With probability 1− o(1), there
are no complex components (i.e., components whose number of edges is at least 2 more than the number of
vertices).

Fact 5.5 (follows from Corollary 2.6.6 in [Dur06]) Suppose λ < 1. Then, the expected number of uni-
cyclic components (i.e., components whose number of edges equals the number of vertices) in Gn,λ/n is at
most a constant c = c(λ) (independent of n).

Now, recall that M3 is formed from M ′′3 by removing all connected components that have cycles. Since
such components are either unicyclic or complex, the above facts as well as the fact that the edges ofM ′′3 are
a subset of the edges of M ′3 imply that, with probability 1 − o(1), (1) there are no complex components in
M ′′3 , (2) the number of unicyclic components in M ′′3 is O(log n) (by Fact 5.5 and Markov’s inequality), and
(3) all connected components of M ′′3 have size O(log n). Thus, it follows that O(log2 n) edges are removed
from M ′′3 .

Putting the bounds above together, we get that there exists a 1 + ε∗ = 1 + Ω(1) gap between YES and
NO instances with probability at least 97/100 + o(1) ≥ 95/100 for sufficiently large n.

The rest of the section is devoted to proving Lemma 5.1. The proof proceeds in two steps:

Step 1. We start by showing that the graph M̃1 ∪ M̃2 ∪ G̃1, where G̃1 ∼ Gn, 1
2

(1−η)/n, contains a giant
component of size Ω(n) with probability at least 99/100 if η > 0 is smaller than an absolute constant. This
proof is given in Section 5.1. The main result of that section is Lemma 5.6.

Step 2. We then condition on the existence of a giant component in M̃1 ∪ M̃2 ∪ G̃1 and show that the
addition of a G̃2 ∼ Gn,c2n to the graph makes the union M̃1 ∪ M̃2 ∪ G̃1 δ-far from bipartite for some
constant δ > 0, as long as c2 > 0 is a positive constant (so δ depends on c2). This argument as well as a
proof of Lemma 5.1 are provided in section 5.2.
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5.1 Existence of a giant component

The goal of this subsection is to establish the lemma below:

Lemma 5.6 There exists η∗ > 0 such that for every ∆ ≥ 104, η ∈ (0, η∗) there exists C0 ≥ 1 such that
the following conditions hold for sufficiently large n. If (M1,M2, G) is generated according to the process
Pn,∆,1−η, and M̃1, M̃2, G̃ are generated from M1,M2, G by sampling edges independently with probability
1/2, then with probability at least 99/100 the graph M̃1 ∪ M̃2 ∪ G̃ contains a connected component of size
at least n/C0.

The Component Growing Process: We will analyze the following process for growing a giant component.
We will maintain at all times a partition of the vertex set V into two sets D and U where D denotes the set
of vertices that have already been discovered, and U denotes the set of undiscovered vertices. We start with
an arbitrary seed vertex, say s, and grow a component by iteratively including vertices that are reachable
from s. Specifically, in the ith iteration, we start with a set Ai of the active vertices; initially, A0 = {s}.
Let Bi ⊆ U denote the set of vertices in U that are connected to some vertex in Ai via edges in G̃. We
next include all vertices reachable from vertices in Bi using edges in M̃1 and M̃2. Let Ci denote this set of
vertices. We now setAi+1 = Bi∪Ci, and add all vertices in the blocks of vertices inBi∪Ci to the setD of
discovered vertices; recall that the vertices are partitioned into blocks of size ∆. Finally, we set U = V \D.

We say that an iteration i succeeds if |Ai+1| ≥ 28
25 |Ai|, and it fails otherwise. We terminate this growth

process if either an iteration fails or the size of the component has reached n/C0. In the latter case, we are
done, but if the growth process terminates due to failure at some iteration, we start the entire component
growth process again starting with an arbitrary new seed vertex in U .

Overview of the Analysis: We will show that with probability at least 99/100, one of the invocations of
the component growth process described above reaches a connected component of size n/C0. Let us first
focus on the analysis of a single invocation of the component growth process. It is clear that we will obtain
a connected component of size at least n/C0 after Θ(log n) successive iterations without any failure. The
heart of the proof is to show the following lemma which bounds the probability of failure in any iteration to
be exponentially small in the number of active vertices.

Lemma 5.7 The probability that an iteration i succeeds is at least 1− e−|Ai|/K for some absolute constant
K > 0 whenever |U | ≥ 9n/10 at the start of the iteration.

We now complete the analysis assuming the above lemma. First note that Lemma 5.7 implies that there
is a positive probability p0 that the component growth process succeeds for the first Θ(logK) iterations
(since K is a constant), allowing the growth process to reach an iteration j with |Aj | ≥ 10K. Once the size
of the active set Aj exceeds 10K, the probability that any subsequent iteration fails while |U | ≥ 9n/10, can
now be bounded by

∑
`≥0

e−
( 28

25)
`
|Aj |

K ≤
∑
`≥0

e−10( 28
25)

`

≤ e−10
∑
`≥0

e(−
28
25)

`

=
e−10

1− e−
28
25

≤ 10−3.

Thus any single invocation of the component growth process finishes with a component of size at least
n/C0 with probability at least p0× 10−3, provided we satisfy the condition |U | ≥ 9n/10 during the growth
process. Note that any failed invocation of the component growth process removes at most (n/C0)∆ vertices
from U . Since we start with |U | = n, we can invoke the component growth process at least Γ = (n/10)

(n/C0)∆ =
C0

10∆ times before |U | falls below 9n/10. The probability that none of the first Γ invocations succeeds in
growing a component of size at least n/C0 is at most
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(
1− p0

103

)Γ
≤ e−

p0Γ

103 = e−
p0C0
104∆ ≤ 1

100
,

provided we choose C0 to be any constant greater than 5× (104∆)/p0. This completes the overview of
our analysis assuming Lemma 5.7.

In the remainder of this section, we focus on establishing Lemma 5.7. Let p = 1
2(1 − η)/n denote the

probability of edge realization in the graph G̃. We will assume that η is chosen to be a fixed constant smaller
than 10−2, ensuring that p ≥ 49

100n . Our proof relies on the following two claims. We say that a vertex v is
well-placed in a block P if v is at least distance 10 away from either end-point of P .

Claim 5.8 Let A ⊆ V \ U be an arbitrary subset of vertices of size at most n/(103∆), and let B ⊆ U
denote the set of vertices that are adjacent to at least one vertex in A via edges in G̃. Furthermore, let
B′ ⊆ B be any maximal subset of well-placed vertices such that B′ contains at most one vertex from any
block in U . Then for any ∆ ≥ 104, whenever |U | ≥ 9n/10,

Pr
[
|B′| > 2|A|

5

]
≥ 1− e−|A|/K1 ,

for some positive constant K1.

Proof: For any vertex v ∈ U , let q denote the probability that v is adjacent to one of the vertices in A via
edges of G̃. Then

q = 1− (1− p)|A| ≥ 1− e−p|A|

≥ p|A| − p2|A|2

2
(as e−x ≤ 1− x+

x2

2
∀x ≥ 0)

≥ p|A| − p|A|
100

≥ 99p|A|
100

(since p ≤ 1

2n
and |A| ≤ n

103∆
).

Let P1, P2, ..., Pk denote the blocks inside U where k = |U |/∆ ≥ (9n)/(10∆). Let Y = Y1 + Y2 +
... + Yk where Yi is a 0/1-random variable that takes value 1 iff B contains a well-placed vertex v in Pi.
Clearly, |B′| = Y , and it suffices to analyze the variable Y . Now

Pr[Yi = 1] = 1− (1− q)∆−20 ≥ 1− e−q(∆−20)

≥ q(∆− 20)− q2(∆− 20)2

2
(as e−x ≤ 1− x+

x2

2
∀x ≥ 0)

≥ q(∆− 20)− q(∆− 20)

2
· (q(∆− 20))

≥ q(∆− 20)− q(∆− 20)

2
· (p|A| · (∆− 20)) (since q ≤ p|A|)

≥ q(∆− 20)− q(∆− 20)

2
·
(

1

2000

)
(since p ≤ 1

2n
and |A| ≤ n

103∆
)

≥ 99q∆

100
(since ∆ ≥ 104)

Thus
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E[Y ] ≥ k · 99q∆

100
≥ 9n

10∆
· 99q∆

100

≥ 891n

1000
· q ≥ 891n

1000
· 99p|A|

100

≥ 43

100
|A|.

An application of the standard Chernoff bound now suffices to conclude that Pr
[
Y > 2|A|

5

]
≥ 1 −

e−|A|/K1 for some positive constant K1.

Claim 5.9 Suppose we are given a set B′ of ` well-placed vertices in ` distinct blocks, say P1, P2, ..., P`.
Let C be the set of new vertices that are reachable in ∪`i=1Pi from B′ when we sample the edges in each Pi
with probability 1/2. Then for any ∆ ≥ 104, we have

Pr
[
|C| ≥ 9`

5

]
≥ 1− e−`/K2 ,

for some positive constant K2.

Proof: To analyze the number of vertices reachable in ∪`i=1Pi fromB′ when we sample the edges in each Pi
with probability 1/2, it suffices to analyze the sum of truncated geometric random variables of the following
form. Let Z1, Z2, ..., Z2` be identically distributed independent random variables where each Zi indicates
the number of successive heads seen when a fair coin is tossed 10 times. It is easy to see that the distribution
of |C| stochastically dominates the variable Z =

∑2`
i=1 Zi. In what follows, we will show that

Pr
[
|C| ≥ 9`

5

]
≥ 1− e−`/K2 ,

for some positive constant K2.
To show this, we view each variable Zi as sum of 0/1 random variables, Z(1)

i , Z
(2)
i , ..., Z

(10)
i where

the variable Z(j)
i is 1 iff Zi ≥ j. Thus Pr[Z

(j)
i = 1] = 2−j , and moreover, for any j, the variables

Z
(j)
1 , Z

(j)
2 , ..., Z

(j)
2` are independent and identically distributed. Let Z(j) =

∑2`
i=1 Z

(j)
i . Since E[Z(j)] =

(2`)/2j , an application of the standard Chernoff bound implies that

Pr
[
Z(j) <

99

100
× 2`

2j

]
≤ e−Ω(`/2j).

By taking the union bound over all j ∈ [1..10], we conclude that with probability at least 1− e−Ω(`/210),
we have Z(j) ≥ .99× 2`

2j
for all j ∈ [1..10]. Hence

Pr
[
Z ≥ 99

100
× 2`

(
1

2
+

1

22
+ ...+

1

210

)]
≥ 1− e−Ω(`/210).

Since 99
100 × 2`

(
1
2 + 1

22 + ...+ 1
210

)
= 99

100 × 2`
(
1− 1

210

)
≥ 9`

5 , it follows that

Pr
[
Z ≥ 9`

5

]
≤ e−`/K2 ,

for a suitably large constant K2 as desired.
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Proof of Lemma 5.7: We now complete the proof of Lemma 5.7 using the above claims. Consider any
iteration i in the component growth process such that |U | ≥ 9n/10. Let Ai be the set of active vertices at
the start of the iteration, and suppose that |Ai| ≤ n/(103∆) (otherwise, we already have a component of
desired size). Let Bi ⊆ U denote the set of vertices in U that are adjacent to some vertex in Ai via edges
in G̃. Furthermore, let B′i ⊆ Bi be any maximal subset of well-placed vertices such that B′ contains at
most one vertex from any block in U . Then by Claim 5.8, the size of the set B′i is at least (2|Ai|)/5 with
probability at least 1− e−|Ai|/K1 . Let us denote this event by E1. Now let Ci denote the set of vertices that
are reachable from vertices in B′i in the blocks containing them when we sample the edges in each block
with probability 1/2. By Claim 5.9, we have that |Ci| ≥

9|B′i|
5 with probability at least e−|B

′
i|/K2 .

Thus assuming that each of the events E1 and E2 occur, we have

|Ai+1| = |Bi|+ |Ci| ≥ |B′i|+
9|B′i|

5
=

14|B′i|
5
≥ 28

25
|Ai|.

Finally, we observe that

Pr[E1 ∧ E2] = Pr[E1]Pr[E2 | E1]

≥ (1− e−|Ai|/K1)(1− e−|B′i|/K2)

≥ (1− e−|Ai|/K1)(1− e−2|Ai|/5K2)

≥ 1− e−|Ai|/K ,

for a suitably large constant K as desired.

5.2 Distance to bipartiteness

The goal of this section is to establish Lemma 5.1, which we restate here for convenience of the reader:
Lemma 5.1 (Restated) There exists η∗ > 0 such that for every ∆ > 104 and every η ∈ (0, η∗), c > 0
there exists δ > 0 such that the following conditions hold for sufficiently large n. If M1,M2 are generated
according to the process Pn,∆,1−η, M̃1, M̃2 obtained by sampling edges of M1 (resp. M2) independently
with probability 1/2, G̃1 ∼ Gn, 1

2
(1−η)/n and G̃2 ∼ Gn,cn, then M̃1 ∪ M̃2 ∪ G̃1 ∪ G̃2 is δ-far from being

bipartite with probability at least 97/100.
We start with an overview of the analysis. Since Lemma 5.6 (see Section 5.1) guarantees the existence

of a giant component of Ω(n) size in M̃1 ∪ M̃2 ∪ G̃1, it suffices to argue that the addition of a random graph
G̃2 ∼ Gn,cn to the giant component in M̃1 ∪ M̃2 ∪ G̃1 results in a graph that is Ω(1)-far from bipartite with
high probability. Our analysis in this section is completely oblivious to the process that generates the giant
component: we will prove that the addition of G2 to any graph with an Ω(n) size connected component
that additionally exhibits certain regularity of vertex degrees makes this graph Ω(1)-far from bipartite with
high probability. Specifically, we show that the addition of a random graph G2 ∼ Gn,cn to any tree T of
size n/C0 for a constant C0 > 1 with balanced vertex degrees (see Definition 5.10) results in a graph that is
δ-far from bipartite for a constant δ with high probability. The proof proceeds over three steps.

Step 1 We show that if δ is small enough, the removal of δn edges from a tree T on at least n/C0 vertices
most of whose vertices have small degree results in a forest (denoted by F ) that can be partitioned into a
large number of rather large connected components (see Lemma 5.13 below). The formal definition of what
it means for the tree to consist mostly of nodes of bounded degree is given in Definition 5.10. It is easy to
see that the giant component in M̃1 ∪ M̃2 ∪ G̃1 satisfies these conditions: we show in Claim 5.12 that G1

satisfies these conditions (by a simple Chernoff bound), and addition of matchings M̃1, M̃2 only leads to a
slight change in parameters.
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Step 2 After partitioning the forest F into connected components of size at least r, we contract these
components into supernodes (denote the resulting graph by H). We then show that for any c > 0, if r
is substantially larger than c, the effect of this is that the addition of the graph G̃ ∼ Gn,cn to H essentially
amounts to sampling an Erdős-Rényi graph well above the threshold for emergence of a giant component
on the supernodes H and hence makes H ∪ G̃ non-bipartite with extremely high probability. This argument
proceeds in two steps. We first write G̃ = G̃1 ∪G2, where G̃1, G̃2 ∼ Gn,(c/2)n are sampled independently.
We then show by a simple union bound over all sufficiently large cuts inH thatH∪G̃1 contains a linear size
connected component with extremely high probability. This connected component has a unique bipartition,
which the second graph G̃2 destroys with high probability. The details of the proof are given in Lemma 5.16.

Step 3 Finally, the proof of Lemma 5.1 is obtained by a union bound over at mostO(δ)n edges removed
from G2 and the result of Lemma 5.16.

Definition 5.10 We say that a graph G = (V,E) has (D, τ)-bounded degrees if there exists a subset V ∗ ⊆
V of vertices such that

1. vertex degrees in G∗ = (V ∗, E ∩ (V ∗ × V ∗)) are upper bounded by D;

2. |E ∩ (V ∗ × V ∗)| ≥ |E| − τ |V |.

Theorem 5.11 (Chernoff bound) If X1, . . . , Xn are independent 0/1 random variables, X =
∑n

i=1Xi

and µ = E[X], then for any δ > 1 one has Pr[X > (1 + δ)µ] ≤ e−δµ/3.

Claim 5.12 (Degree based pruning) Let G = (V,E) be a graph sampled from Gn,p distribution with p <
1
n . Then for every λ > 4 with probability at least 99/100 the graph G is (λ, 100e−λ/6)-bounded (as per
Definition 5.10).

Proof:
We need to argue the existence of a set V ∗ ⊆ V such that

1. vertex degrees in G∗ = (V ∗, E ∩ (V ∗ × V ∗)) are upper bounded by λ;

2. |E ∩ (V ∗ × V ∗))| ≥ |E| − (100 · e−λ/6)|V |.

We let V ∗ := {u ∈ V : degE(u) ≤ λ} and show that V ∗ satisfies both conditions above with probability at
least 99/100. First for each u ∈ V define

Xu :=

{
1 if degE(u) > λ
0 o.w.

We now bound the expected number of edges incident on vertices with degrees larger than λ in G. For
each fixed u ∈ V one has degE(u) =

∑
w∈V \{u} Yw, where Yw is a 0/1 Bernoulli random variable with on

probability p. For every z ∈ V one has

Pr[(u, z) ∈ E and degE(u) > λ] = Pr[(u, z) ∈ E] · Pr[degE(u) > λ|(u, z) ∈ E]

≤ p

n
· Pr

 ∑
w∈V \{u,z}

Yw > λ− 1


≤ p

n
· Pr

 ∑
w∈V \{u,z}

Yw > λ/2

 (since λ > 4)
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One has E[
∑

w∈V \{u,z} Yw] ≤ p(n− 1) =: µ, and hence by Theorem 5.11 (Chernoff bound)

Pr

 ∑
w∈V \{u,z}

Yw ≥ (1 + δ)µ

 ≤ e−δµ/3.
for every δ ≥ 1. We set δ := λ/µ − 1. Since λ > 4 and µ = p(n − 1) < 1 by assumption, we have
δ = (λ/2)/µ− 1 ≥ λ/(4µ) > 1. This gives

Pr[
∑

w∈V \{u,z}

Yw > λ/2] ≤ e−(λ/(2µ))µ/3 = e−λ/6,

and hence
Pr[(u, z) ∈ E and degE(u) > λ] ≤ 1

n
e−λ/6.

We have, using the analysis above

E[|{(u, z) ∈ E : degE(u) > λ}|] ≤ ne−λ/6.

By Markov’s inequality we thus have

Pr[|V \ V ∗| > 100 · ne−λ/6] ≤ 1/100,

as required.

Claim 5.13 For any forest F = (V,EF ) with vertex degrees bounded by D ≥ 1 and any r ≥ 1, if all
connected components in F have size at least r, then there exists a partitioning of V = V0 ∪ V1 ∪ . . . ∪ VK
such that

1. |Vj | ≥ r for all j ∈ [1 : K];

2. K ≥ |EF |/(2rD).

Proof: We prove the bound for the case when F is a tree, and the desired result then follows by applying
the bound to every tree in F .

Consider a tree T = (VT , ET ) with at least r nodes. Consider the following iterative procedure. Start
by letting T 0 ← T , and letting q ← 0. Then for every q ≥ 0, repeat the following until T q contains fewer
than r nodes. Root T q arbitrarily, and let uq ∈ VT q be the furthest node from the root of T q whose subtree
T quq contains at least r nodes. Remove the subtree T quq from T q, denote the remaining tree by T q+1 and
repeat. This is formalized as Algorithm 1 below, where we denote the number of iterations that the loop
runs for by Q. Note that a choice of the node uq always exists, since the root itself satisfies the condition.
Also note that the maximum degree in T q is upper bounded by D for all q (T q is a subtree of the original
tree T 0, which satisfies this condition by assumption of the lemma). Also note that since uq is the furthest
node whose subtree contains at least r nodes, it must be that

|T quq | ≤ 1 +
∑

c∈Tuq :c child of uq

|Tc| ≤ 1 +D · max
c∈Tuq :c child of uq

|Tc| ≤ (r − 1)D + 1 ≤ rD,

where we used the fact that uq’s children are strictly further from the root than uq (and hence their subtrees
contain fewer than r nodes) and the fact that maximum degree in T q is upper bounded by D.
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To prove the result of the lemma for trees, we note that

|VT | ≤
Q−1∑
q=0

|T quq |+ |T
Q| ≤

Q−1∑
q=0

|T quq |+ r − 1

≤ 2

Q−1∑
q=0

|T quq | (since |T quq | ≥ r for all q ∈ [0 : Q− 1] and Q ≥ 1)

Since |T quq | ≤ rD for every q, and Q ≥ 1 since |T 0| ≥ r, we thus get Q − 1 ≥ |VT |/(2rD), and hence
Q ≥ |VT |/(2rD) + 1 ≥ |ET |/(2rD).

Algorithm 1 Partitioning a tree into components of large size
1: procedure PARTITIONTREE(T , r)
2: T 0 ← T , q ← 0
3: C ← ∅ . Initialize collection of components to empty
4: while |T q| ≥ r do
5: R← root of T (arbitrarily chosen)
6: uq ← furthest node from R such that |T qu | ≥ r . Note that |T qR| ≥ r by loop condition, so u

exists
7: T q+1 ← T q \ T qu
8: C ← C ∪ {T quq} . Add subtree to collection of components
9: q ← q + 1

10: end while
11: Q← q
12: return C
13: end procedure

Lemma 5.14 For every C0 > 2, r ≥ 1, δ < 1/(8C0r), and every λ ≥ 3 log(1600C0r) the following
conditions hold for sufficiently large n.

For every tree T = (VT , ET ) with VT ≥ V , |VT | ≥ n/C0 such that ET is (2λ, 100e−λ/6)-bounded, for
every E∗ ⊆ ET with |E∗| ≤ δn there exists E∗∗ ⊆ ET such that the forest F̃ := (VT , EF \ (E∗ ∪ E∗∗))
consists of at least n/(8C0 · λr) components of size ≥ r each.

Proof: Since the tree T is (2λ, 100e−λ/6) bounded by assumption, there exists a subset V ∗ of vertices in F
such that vertex degrees in F ∩ (V ∗ × V ∗) are bounded by 2λ and |EF ∩ (V ∗ × V )| ≥ |EF | − 100e−λ/6n.
Let

E′F := (EF \ E∗) ∩ (V ∗ × V ∗).

Note that since E′F ⊆ EF , vertex degrees in E′F are bounded by 2λ.
By assumption of the lemma we have |ET | = |VT | − 1 ≥ n/C0 − 1 and |E∗| ≤ δn, so

|E′F | ≥ n/C0 − 1− (δn+ 100e−λ/6n) = N − 2C0(δN + 100e−λ/6N) = N(1− 2C0δ + 200C0e
−λ/6),

where we let N := n/C0 to simplify notation.
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We now would like to invoke Lemma 5.13 on the set E′F . Before we apply the lemma, however, we
need to remove components of size below r from E′F . Let E∗∗ denote the set of edges of E′F that belong to
connected components of size at most r. We have

|E∗∗| ≤ r · 2C0(δN + 100e−λ/6N),

as (1) every such component contains an edge from E∗ or ET \ (V ∗ × V ∗) and (2) every such component
contains at most r − 1 edges. Using the assumption that δ < 1/(8C0r) and λ ≥ 3 log(1600C0r) made in
the claim, we get

r · 2C0(δN + 100e−λ/6N) ≤ (2C0r(1/(8C0r) + 1/(8C0r)))N ≤ (1/4 + 1/4)N ≤ 1

2
N. (27)

Let E′′F := ET \ (E∗ ∪ E∗∗) denote the set of edges in E′F that belong to a connected component of size
≥ r inE′F , and note that |E′′F | ≥ N/2 by (27).

We now apply Claim 5.13 to E′′F with parameter r. Since all components in E′′F have size ≥ r by
construction and degrees are upper bounded by 2λ, we get that E′′F can be partitioned into ≥ (N/2)/(4λr)
components of size at least r each. Since N ≥ n/C0, this gives the result of the lemma.

Claim 5.15 For every graph H = (VH , EH), N = |VH |, if every cut in H with at least N/3 vertices on
each side is non-empty, then the graph H contains a connected component of size at least N/3.

Proof: The proof is by contradiction. We show that if all connected components in H are of size less than
N/3, then there exists an empty cut in H with at least N/3 vertices on each side.

Let connected component sizes be s1 ≤ . . . ≤ sK , where 1 ≤ K ≤ N is the number of connected
components in H . Let k be the smallest such that

∑k
j=1 sj ≥ N/3. Since

∑k−1
j=1 sj < N/3 by definition of

k, and sj < N/3 for all j = 1, . . . ,K, we have
∑k

j=1 sj =
∑k−1

j=1 sj + sk < N/3 + N/3 < 2N/3. But
in this case the graph contains a cut with at least N/3 vertices on one side which is empty. Indeed, take all
of components [1 : k] on one side, and other vertices in H on the other side. The number of vertices on one
size of this cutis

∑k
j=1 sj ∈ [N/3, 2N/3), leading to a contradiction. This completes the proof.

Lemma 5.16 For every C0 > 1 and every c > 0 there exists r ≥ 1 and λ ≥ 3 log(1600C0r) such that for
every forest F with at least n/(8 ·C0 · λr) components of size ≥ r each, the graph F ∪G′ with G′ ∼ Gn,cn
is not bipartite with probability at least 1− exp

(
−Ω(n · c/(C0 · λr)2)

)
.

Proof: Let VH denote the set of nodes obtained from F by contracting each connected component into
a supernode, and let N denote the number of resulting supernodes (i.e. |VH | = N ). We have N ≥
n/(8 · C0 · λr) by assumption of the lemma. It is also convenient two write G′ ∼ Gn,cn as G′ = G′1 ∪G′2,
where G′1, G

′
2 ∼ Gn,cn/2.

The proof proceeds in two steps. In step 1 we show that every cut in H with at least N/3 nodes on each
side is nonempty with very high probability, which implies that H contains a connected component of size
at leastN/3. In step 2 we show that this implies that addition of the Gn,cn graph turnsH into a non-bipartite
graph with high probability, as long as the parameter r is chosen large enough (depending on c). We then
show that such a choice indeed exists for every C0, proving the claim.

Step 1. First note that for every pair of supernodes a, b we have that the expected number of edges in
G′1 between a and b is ≥ r2c/(2n). The smallest number of edge slots going across a cut with at least N/3
supernodes on each side is (N/3)(2N/3). Since each edge slot between a pair of supernodes corresponds
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to at least r2 edge slots in the original graph G′1 ∼ Gn,cn/2, we get that a fixed such cut is empty with
probability at most(

1− (2/9)N2 · r2

n2

)cn/2
≤ e−

(2/9)N2·r2

n2 ·cn/2 (since 1− x ≤ e−x for x ≥ 0)

= e−(c/2)
(2/9)N2·r2

n .

Taking a union bound over at most 2N cuts, we get using the relation n ≤ 8 · C0Nλr

2N · e−(c/2)
(2/9)N2·r2

n = 2N · exp

(
−N · (c/2)(2/9)N · r2

n

)
≤ 2N · exp

(
−N · (c/2)(2/9)(n/(8 · C0 · λr)) · r2

n

)
(since N ≥ n/(8C · C0 · λr))

= 2N · exp

(
−N · r(c/2)(2/9)

8 · C0 · λ

)
= 2N · exp

(
−N · rc

72 · C0 · λ

)
≤ (2/e)N

(28)

as long as r ≥ 72·C0λ
c .

We now exhibit a setting of r and λ that satisfies this and the constraints of the lemma. Specifically, we
need to show that there exists a setting of integer r and λ > 2 such that

r ≥ 72 · C0λ

c
and λ ≥ 3 log(1600C0r).

Equivalently (after exponentiating both sides of the second inequality above), we need to ensure that

r ≥ 72 · C0λ

c
and r ≤ 1

1600
C−1

0 eλ/6.

For every C0 > 1 and c > 0 we let λ be a sufficiently large constant so that

1 ≤ 72 · C0λ

c
and

72 · C0λ

c
+ 1 ≤ 1

1600
C−1

0 eλ/6.

Such a value of λ exists since 1
1600C

−1
0 eλ/6 is grows asymptotically faster with λ than 72·C0λ

c . Setting
λ sufficiently large so that the interval [72·C0λ

c , 1
1600C

−1
0 eλ/6] contains an integer and letting r equal this

integer satisfies all the constraints above.
Finally, it remains to recast the upper bound on failure probability from (28) in terms of n. We have,

using the assumption that N ≥ n/(8 · C0 · λr)

(2/e)N ≤ (2/e)n/(8·C0·λr)

as required.
Step 2. By Step 1 with probability at least 1− (2/e)n/(8·C0·λr) over the choice of G′1 no cut in H ∪G′1

with at least N/3 supernodes on each side in H is empty. By Claim 5.15 this also implies that H ∪ G′1
contains a connected component with ≥ N/3 supernodes. Denote the success event by E1. Let C ⊆ [n]
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denote the set of nodes in this component (i.e. expanding the supernodes of H to the nodes that they
represent). This connected component has a unique bipartition. Denote the sides of the bipartition by
A,B ⊆ [n]. Note that |A| + |B| ≥ r · N/3, as each of the supernodes contains at least r nodes. We thus
have min{|A|, |B|} ≥ rN/6. We now show that with overwhelming probability at least one of the edges of
G′2 connects two nodes belonging to the same side of the bipartitionA∪B of the large connected component
in H ∪G′1, thereby making H ∪G′1 ∪G′2 non-bipartite.

Recall that G′2 ∼ Gn,(c/2)n is obtained by selecting (c/2)n edges uniformly at random from
(

[n]
2

)
. We

thus have that a single such edge has both endpoints on the larger side of the bipartition with probability at
least

(rN/6)2/

(
n

2

)
≥ 2(rN/6)2/n2

as long as n ≥ 2. The probability that none of the (c/2)n sampled edges of G′2 have both endpoints in the
larger side of the bipartition is upper bounded by

(1− 2(rN/6)2/n2)(c/2)n ≤ exp(−2(rN/6)2/n2 · (c/2)n)

≤ exp(−c(rN/6)2/n) (since N ≥ n/(8 · C0 · λr))

≤ exp(−(c/(C0 · 48 · λ)2)n)

We thus get that, conditioned on E1, the graph H ∪ G′1 ∪ G′2 is bipartite with probability at most
exp(−(c/(C0 · 48 · λ)2)n). Hence, H ∪ G′1 ∪ G′2 is not bipartite conditioned on E1 ∩ E2, which satis-
fies

Pr[E1 ∩ E2] ≥ 1− PrG′1 [Ē1]− PrG′2 [Ē2|E1]

≥ 1− (2/e)n/(8·C0·λr) − exp
(
−Ω(n · c/(C0 · λ)2)

)
≥ 1− exp

(
−Ω(n · c/(C0 · λr)2)

)
as required.

We now prove Lemma 5.1, the main result of this section:
Proof of Lemma 5.1: Let η∗ and C0 denote the constants whose existence is guaranteed by Lemma 5.6.
Denote the graph M̃1 ∪ M̃2 ∪ G̃1 by H = (V,EH). By Lemma 5.6 with probability at least 99/100 the
graph H contains a giant component Vgc ⊆ V of size at least n/C0 (denote the success event by Egc). We
condition on Egc in what follows. Let T := (V,ET ), where ET is an arbitrarily chosen spanning tree of Vgc
in EH .

We prove:

(*) There exists δ > 0 that depends only on c and C0 such that for any subset E∗ ⊆ ET with
|E∗| ≤ δn the following conditions hold for F := (V,EF ), EF = ET \E∗1 , then the graph F∪G̃2

is δ-far from bipartite with probability at least 98/100 over the choice of G̃2 ∼ Gn,cn, G̃2 =
(V,E2).

Claim (*) implies the required result after a union bound over the failure event from (*) and Ēgc, leading
to 97/100 success probability overall.

We prove (*) using a union bound over all choices of E∗∗ ⊆ E2. Formally, recall that G̃2 contains
m = cn edges e1, . . . , em, where each ei is independently chosen from

(
V
2

)
(we say that the corresponding

edge has index i). For each J ⊆ {1, 2, . . . ,m} we let G̃2(J) = (V,E2 \ E(J)) denote the random graph
obtained from G̃2 by removing edges with indices in J . Our proof proceeds by a union bound over the
choices of J ⊆ [cn], as we describe next.
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For any fixed J ⊆ {1, 2, . . . ,m} the graph G̃2(V,E2 \ J) is distributed as Gn,m−|J |. We assume that
δ < c/2, so that Gn,m−|J | stochastically dominates Gn,(c/2)n. Let G̃2(J) := G2(V,E2 \ E(J)). We now
show thatH∪G̃2(J) is non-bipartite with extremely high probability for any fixed J ⊆ [cn], and then apply
a union bound over all J ⊆ [cn] to conclude the result.

Step 1. First note that by Claim 5.12 one has for any λ > 4 the graph G̃1 is (λ, 100e−λ/6)-bounded with
probability at least 99/100. Since H = M̃1 ∪ M̃2 ∪ G̃1, where M̃1 and M̃2 are matchings, and λ ≥ 4, we
thus have thatH is (2λ, 100e−λ/6) bounded with probability at least 99/100. Denote this event by Ebounded.

Step 2. Now by Lemma 5.14 we have for every r ≥ 1, λ ≥ 3 log(1600C0r) and δ < 1/(8C0r) for
every E∗2 ⊆ EH with |E∗2 | ≤ δn there exists E∗∗2 ⊆ ET such that F̃ := (VT , EF \ (E∗2 ∪ E∗∗2 )) consists of
at least n/(8C0 · λr) components of size ≥ r each.

Step 3. Then by Lemma 5.16 there exists r ≥ 1 and λ ≥ 3 log(1600C0r) such that the graph F̃ ∪ G′
with G′ ∼ Gn,(c/2)n is not bipartite with probability at least 1− e−Ω((c/(C0λr)2)n.

Steps 1-3 above show that for any fixed J ⊆ {1, 2, . . . ,m} the graph H ∪ G̃2(J) is non-bipartite with
probability at least 1 − e−Ω((c/(C0λr)2)n. To obtain the final result, we take a union bound over possible
choices of the set J ⊆ {1, 2, . . . ,m}. The number of such choices is bounded by

(
cn
δn

)
≤ (e · c/δ)δn =

e(δ ln(ec/δ))n. Using the fact that δ ln(ec/δ) is increasing in δ for δ ∈ (0, 1/10), we can choose δ to be a
sufficiently small constant so that

e(δ ln(ec/δ))n · e−Ω((c/(C0λr)2)n < 1/100.

Note that λ and r we chosen as functions of C0 only, so δ depends only on c and C0, as required by (*).
We have shown that conditioned on Egc the probability of H ∪ G̃2 being δ-close to bipartite is upper

bounded by 1/100 + Pr[Ēbounded] ≤ 2/100. This proves (*) and completes the proof.

6 Proof of Lemma 3.3 (distance to uniformity)

In this section, we prove Lemma 3.3, which we restate below.

Lemma 3.3 Let ∆ > 0 be an even integer. Then, for every 0 < α < 1, there exists a constant 0 < c < 1
such that for every δ ∈ (n−1/10, c), the following conditions hold if n is any sufficiently large multiple of ∆:

(1) Let B = A1, as defined in Definition 3.2. Then, for every choice of matchings M1,M2 sampled
according to Pn,∆,α, the distribution of M2x is uniform over {0, 1}m2 when x is uniformly random
in B.

(2) Let B ⊆ {0, 1}n, |B| = 2n−z for z ≤ δ4n, and let h : {0, 1}n → {0, 1} be the indicator of B.

If
(

2n

|B|

)2∑
v:|v|=2` ĥ(v)2 ≤

(
64δ4n
`

)`
holds for all ` ≤ δ4n, then the following conditions hold:

Let M1,M2,M3 be sampled according to Pn,∆,α. Then, with probability at least 1 − O(δ) over
the choice of M3, the total variation distance between the distribution of M3x, where x is uniformly
random in B, and the uniform distribution over {0, 1}m3 isO(δ/

√
1− α). In particular, one can take

c = min

{(
1−α
512

)1/4
,
(
e−α log2(32/(31+α))

32

)1/4
}

.

In order to establish Lemma 3.3, we will require the following lemmas, which we prove later.
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Lemma 6.1 Let n ≥ 2, and let ∆ > 0 be any even integer such that ∆ divides n. Then, for every fixed
constant 0 < α < 1, the following statement holds: Suppose M1 and M2 are sampled according to Pn,∆,α.
If v ∈ {0, 1}n such that v 6= 0n and ĥ1(v) 6= 0, then

|{s ∈ {0, 1}m2 : v = MT
2 s}| = 0.

Lemma 6.2 Let n ≥ 2, and let ∆ > 0 be any even integer such that ∆ divides n. Then, for every fixed
constant 0 < α < 1, the following statement holds: Assume that M1 and M2 have been sampled according
to Pn,∆,α. Then, if v ∈ {0, 1}n has even weight `, we have

EM3

[
|s ∈ {0, 1}m3 : s 6= 0m3 , v = MT

3 s|
]
≤ 2`(`/2)!(α/(1− α)n)`/2.

Note that the lemma appears almost exactly in [KKS15], except that instead of sampling the Erdős-
Rényi graph Gn,α/n, we sample all individual edges except those inM1,M2 with probability α/n. However,
leaving out the edges of M1,M2 can only cause the expectation on the left-hand side to decrease. Hence,
the proof is similar.

Fact 6.3 Let n ≥ 2, and let ∆ > 0 be any even integer such that ∆ divides n. Then, for every fixed constant
0 < α < 1, the following statement holds: Let M3 be sampled according to Pn,∆,α. Then, for every
v ∈ {0, 1}n, there exists at most one s ∈ {0, 1}m3 such that MT

3 s = v.

In light of the above fact, it is also clear that there exists an s such that MT
3 s = v if and only if the

intersection of the support of v with each component of M3 has even size.

Lemma 6.4 Let ∆ > 0 be any even integer. Then, for every choice of fixed constants 0 < α, β, c < 1, the
following statement holds for b = c log2(1/(1− β))/2 and sufficiently large n ≥ 2 divisible by ∆: Let M3

be sampled according to Pn,∆,α, and let S be the random variable denoting the set of all vertices u such
that {u} is a connected component of M3. Also, let V ⊆ {1, 2, . . . , n} be a uniformly random set of nodes
such that |V | = `, where ` ≥ βn. Then, if |S| ≥ cn, we have PrV [V ∩ S = ∅] ≤ 2−bn.

Lemma 6.5 Let ∆ > 0 be any even integer. Then, for every choice of fixed constants 0 < α, β < 1, the
following statement holds for b = e−α log2(1/(1− β))/16 and sufficiently large n ≥ 2 divisible by ∆: Let
M3 be sampled according toPn,∆,α. There exists an event E (depending onM3) with PrM3 [E ] ≥ 1−6n−1/3

such that for every v ∈ {0, 1}n with |v| ≥ βn,

EM3

[
|{s ∈ {0, 1}m3 : v = MT

3 s}| | E
]
≤ 2−bn.

Now, we prove Lemma 3.3 assuming the validity of the aforementioned lemmas and facts.

Proof of Lemma 3.3: Let β = (1−α)/32, and let b = e−α log2(1/(1−β))/16 be the constant guaranteed
by Lemma 6.5 for our choice of α, β. We will choose c = min{((1 − α)/512)1/4, (b/2)1/4}. For the
remainder of the proof, we assume that δ ∈ (n−1/10, c).

Now, for any z ∈ {0, 1}m and m× n edge incidence matrix M of a graph on n vertices, we let

pM (z) =
|{x ∈ B : Mx = z}|

|B|
.

Later in the proof, we will instantiateM asM2 andM3. Note that pM (z) is a function of B. We will supress
this dependence in what follows to simplify notation. This will not cause any ambiguity since B is fixed as
a typical large set arising from Alice’s partition. We would like to prove that pM (z) is close to uniform. We
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will do that by bounding the Fourier mass in positive weight coefficients of pM (z). By the same calculation
as in [GKK+08] (Lemma 10), we have

p̂M (s) =
1

2m

∑
z∈{0,1}m

pM (z)(−1)z·s

=
1

|B|2m
(|{x ∈ B : (Mx) · s = 0}| − |{x ∈ B : (Mx) · s = 1}|)

=
1

|B|2m
(
|{x ∈ B : x · (MT s) = 0}| − |{x ∈ B : x · (MT s) = 1}|

)
=

1

|B|2m
∑

x∈{0,1}n
h(x) · (−1)x·(M

T s)

=
2n

|B|2m
ĥ(MT s),

where h is the indicator function of B, and

||pM − Ur||2tvd ≤ 2m||pM − Ur||22
= 22m

∑
s∈{0,1}m
s6=0

p̂M (s)2

=
22n

|B|2
∑

s∈{0,1}m
s 6=0

ĥ(MT s)2

=
22n

|B|2
∑

v∈{0,1}n
ĥ(v)2 · |{s ∈ {0, 1}m : s 6= 0, v = MT s}|.

(29)

Here, the first transition in (29) holds by Cauchy-Schwarz, the subsequent equality is a result of Parseval’s
equality, and Ur is the uniform distribution over {0, 1}m.

Now, let us prove part (1) of the lemma statement. We fix a perfect matching M1. Recall that we are
interested in the distribution of M2x, where x is uniformly random in B. Then, by (29) and Lemma 6.1, we
have

‖pM2 − Ur‖2tvd ≤
22n

|B|2
∑

s∈{0,1}m2

s 6=0m2

ĥ1(MT
2 s)

2

=
22n

|B|2
∑

v∈{0,1}n
v 6=0n

ĥ1(v)2 · |{s ∈ {0, 1}m2 : v = MT
2 s}|

= 0,

(30)

which proves the claim.
Next, we prove part (2) of the statement of Lemma 3.3. Suppose that M1 and M2 have already been

sampled according to Pn,∆,α. Then, let E be the event guaranteed by Lemma 6.5. Note that Pr[E ] ≥
1− 6n−1/3 ≥ 1− 6δ2.
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By (29), we have

EM3

[
‖pM3 − Ur‖2tvd | E

]
≤ 22n

|B|2
EM3

 ∑
s∈{0,1}m3

s 6=0m3

ĥ2(MT
3 s)

2
∣∣∣ E


=
22n

|B|2
∑

v∈{0,1}n
ĥ2(v)2 · EM3

[
|{s ∈ {0, 1}m3 : s 6= 0m3 , v = MT

3 s}| | E
]

=
22n

|B|2
∑

0≤`≤n
even `

∑
v∈{0,1}n
|v|=`

ĥ2(v)2 · EM3

[
|{s ∈ {0, 1}m3 : s 6= 0m3 , v = MT

3 s}| |E
]
.

(31)

Note that in the above sum, ` is restricted to be even, since the fact that all rows of M3 have even weight
implies that any v in the row space of M3 must also have even weight.

Now, we split (31) into three sums S1, S2, S3 over different ranges of `. In particular, S1, S2, and S3

will be the sums over the ranges ` ∈ [0, δ4n], ` ∈ (δ4n, βn), and ` ∈ [βn, n], respectively.

Bounding S1. First, note that by Lemma 6.2, we have

S1 =
22n

|B|2
∑

0≤`≤δ4n
even `

∑
v∈{0,1}n
|v|=`

ĥ2(v)2 · EM3

[
|{s ∈ {0, 1}m3 : s 6= 0m3 , v = MT

3 s}| | E
]

≤ 22n

|B|2
∑

0≤`≤δ4n
even `

1

Pr[E ]
· 2`(`/2)!

(
α

(1− α)n

)`/2 ∑
v∈{0,1}n
|v|=`

ĥ2(v)2

≤
∑

0≤`≤δ4n
even `

2 · 2`(`/2)!

(
α

(1− α)n

)`/2(64δ4n

`/2

)`/2

≤ 2 ·
∑

0≤`≤δ4n
even `

(
256αδ4

1− α

)`/2
= O

(
δ4/(1− α)

)
, (32)

since δ < c < ((1− α)/512)1/4.
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Bounding S2. Next, we bound S2 as follows, again using Lemma 6.2:

S2 =
22n

|B|2
∑

δ4n<`<βn
even `

∑
v∈{0,1}n
|v|=`

ĥ2(v)2 · EM3

[
|{s ∈ {0, 1}m3 : s 6= 0m3 , v = MT

3 s}| | E
]

≤ 22n

|B|2
· ‖ĥ2‖2 · max

δ4n<`<βn
even `

{
1

Pr[E ]
· 2`(`/2)!

(
α

(1− α)n

)`/2}

=
2n

|B|
max

δ4n<`<βn
even `

{
2 · (2α`/(1− α)n)`/2

}
≤ 2δ

4n · max
δ4n<`<βn

even `

{
(4αβ/(1− α))`/2

}
≤ 2δ

4n · 8−δ4n/2

= 2−Ω(δ4n), (33)

since 4αβ/(1− α) = α/8 < 1/8.

Bounding S3. Finally, by Lemma 6.5, we can bound S3 as follows:

S3 =
22n

|B|2
∑

βn≤`≤n
even `

∑
v∈{0,1}n
|v|=`

ĥ2(v)2 · EM3

[
|{s ∈ {0, 1}m : v = MT

3 s}| | E
]

≤ 22n

|B|2
∑

βn≤`≤n
even `

∑
v∈{0,1}n
|v|=`

ĥ2(v)2 · 2−bn

≤ 22n

|B|2
· 2−bn

∑
βn≤`≤n

even `

∑
v∈{0,1}n
|v|=`

ĥ2(v)2

≤ 22n

|B|2
· 2−bn · |B|

2n

≤ 2δ
4n−bn

≤ 2−Ω(δ4n), (34)

where the final step uses the fact that b > 2δ4.

Now, we can combine (31), (32), (33), and (34) to obtain

EM3

[
‖pM3 − Ur‖2tvd | E

]
≤ S1 + S2 + S3

= O(δ4/(1− α)) + 2−Ω(δ4n) + 2−Ω(δ4n)

= O(δ4/(1− α)),

where we use the fact that δ > n−1/10.
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Finally, recall that Pr[E ] ≥ 1 − 6n−1/3 ≥ 1 − 6δ2. Since ‖pM3 − Ur‖tvd is always at most 1, we have
that

EM3

[
‖pM3 − Ur‖2tvd

]
≤ EM3

[
‖pM3 − Ur‖2tvd | E

]
· Pr[E ] + Pr[Ē ]

≤ EM3

[
‖pM3 − Ur‖2tvd | E

]
+O(δ)

≤ O(δ4/(1− α)) +O(δ2)

= O(δ2/(1− α)).

Thus,

EM3 [‖pM3 − Ur‖tvd] ≤
√

EM3

[
‖pM3 − Ur‖2tvd

]
= O(δ/

√
1− α),

as desired.

We now prove the supporting lemmas and facts:

Proof of Lemma 6.1: Note that by part (1) of Theorem 4.6, ĥ1(v) 6= 0 implies that v is supported on edges
of M1. Now, consider any v 6= 0n for which ĥ1(v) 6= 0. Then by part (2) of Lemma 4.5, we have that for
every w ∈ {0, 1}n supported on the edges of M2, |v + w| > 0. Thus, v is not in the column space of MT

2 ,
which proves the claim.

Proof of Lemma 6.2: Note that any s satisfying MT
3 s = v must consist of a union of edge-disjoint paths

connecting endpoints in the support of v and cycles. Since M3 does not have any cycles, by definition, it
follows that such an s must simply be a union of paths.

Let s be the union of paths P1, P2, . . . , P`/2 connecting nonzero coordinates of v. Fix a pairing of the
` nonzero coordinates of v. Then, for any single path Pi, we have Pr[Pi ⊆ M3] = (α/n)q, where q is the
length of Pi. Thus, by a union bound over all path lengths q ≥ 1 and all paths connecting the (2i − 1)-st
nonzero coordinate of v to the 2i-th nonzero coordinate, we have

Pr[Pi ⊆M3] ≤
∑
q≥1

nq−1 · (α/n)q ≤ α

(1− α)n
.

Since P1, P2, . . . , P`/2 are edge disjoint, we have

Pr[Pi ⊆M3 for all i = 1, . . . , `/2] ≤
`/2∏
i=1

Pr[Pi ⊆M3] ≤ (α/(1− α)n)`/2 .

Finally, since there are at most `!
2`/2(`/2)!

ways to pair up the ` nonzero coordinates of v, it follows that

EM3

[
|s ∈ {0, 1}m : s 6= 0m, v = MT

3 s|
]
≤ `!

2`/2(`/2)!
· (α/(1− α)n)`/2

≤ 2`(`/2)!(α/(1− α)n)`/2,

as desired.

Proof of Fact 6.3: Any s satisfyingMT
3 s = v must correspond to an edge-disjoint union of paths connecting

pairs of nodes in the support of v along with cycles. SinceM3 is, by design, guaranteed to contain no cycles,
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we have that such an s must consist of an edge-disjoint union of paths. Moreover, since each connected
component of M3 is a tree, there exists a unique (if at all) selection of edges in each component that can be
contained in s. Thus, the desired claim follows.

Proof of Lemma 6.4: Consider a subset W of the n vertices chosen as follows: For each vertex, we
independently include it in W with probability p = `/n and exclude it with probability 1− p.

It is apparent that

PrW [W ∩ S = ∅] ≤ (1− p)|S| ≤ (1− p)cn ≤ (1− β)cn.

Now, we pass from the sampling process for W to V . Note that V is precisely the random variable obtained
by conditioning W on the event |W | = `. Moreover,

PrW [|W | = `] =

(
n

`

)
p`(1− p)n−`

=

(
n

pn

)
ppn(1− p)(1−p)n

≥ 1

n+ 1
.

Therefore,

(1− β)cn ≥ PrW [W ∩ S = ∅]
≥ PrW [|W | = `] · PrW [W ∩ S = ∅ | |W | = `]

≥ 1

n+ 1
· PrV [V ∩ S = ∅],

which implies that for sufficiently large n, PrV [V ∩S = ∅] ≤ (n+1)(1−β)cn ≤ 2−bn for b = c log2(1/(1−
β))/2, as desired.

Proof of Lemma 6.5: Recall that M3 is formed by first sampling M ′3 and removing edges. Let T ′1 be the
random variable equal to the number of connected components of M ′3 that consist of a single vertex. Then,
let E = E(α) denote the event that T ′1 ≥ cn, where c = e−α/8 is a constant depending on α.

We now show that for sufficiently large n, event E occurs with high probability, namely,

Pr[E ] ≥ 1− 6n−1/3. (35)

The proof follows the proof of the more general Theorem 2.6.3 in [Dur06], but we reproduce it here with
our choice of parameters for the sake of completeness.

First, let us calculate the expected value of T ′1. Observe that the probability that any given vertex lies in
a connected component by itself is

(
1− α

n

)n−1. Thus,

EM3 [T ′1] = n
(

1− α

n

)n−1
,

This implies that limn→∞ EM3 [T ′1]/n = e−α.
Now, we establish concentration to the mean. Let us count the number of ordered pairs (u1, u2) of

distinct vertices u1, u2 that each lie in a connected component by themselves. The expected number of such
pairs is

n
(

1− α

n

)n−1
· (n− 1)

(
1− α

n

)n−2
≤ (EM3 [T ′1])2

(
1− α

n

)−1

≤ (EM3 [T ′1])2eα/n.
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Thus, we can now compute the variance of T ′1:

var(T ′1) = EM3 [T ′21 ]− EM3 [T ′1]2 = EM3 [T ′1(T ′1 − 1)] + EM3 [T ′1]− EM3 [T ′1]2

≤
(
eα/n − 1

)
EM3 [T ′1]2 + EM3 [T ′1].

It now follows from Chebyshev’s Inequality that

PrM3

[∣∣T ′1 − EM3 [T ′1]
∣∣ ≥ n2/3

]
≤ var(T ′1)

(n2/3)2

≤
(
eα/n − 1

)
EM3 [T ′1]2 + EM3 [T ′1]

n4/3

≤ (2α/n) · (2e−αn)2 + 2e−αn

n4/3

≤ 6n−1/3.

for sufficiently large n. Moreover, if |T ′1 − EM3 [T ′1]| < n2/3, then

T ′1 > EM3 [T ′1]− n2/3

> (e−α/2)n− n2/3

> cn

for sufficiently large n. This establishes (35).
Let S′ denote the set of vertices u such that {u} is a connected component of M ′3. Similarly, we define

S to be the set of vertices u such that {u} is a connected component of M3. Note that by Fact 6.3, if
|v| = ` ≥ βn, then

EM3

[
|{s ∈ {0, 1}m : v = MT

3 s}| | E
]
≤ PrM3 [supp(v) ∩ S = ∅ | E ]

≤ PrM ′3 [supp(v) ∩ S′ = ∅ | E ], (36)

where the second inequality follows from the fact that S′ ⊆ S. Since the distribution of S′ is invariant with
respect to permutations of the vertices, it follows from symmetry that if v, v′ ∈ {0, 1}n with |v| = |v′|, then

PrM ′3 [supp(v) ∩ S′ = ∅ | E ] = PrM ′3 [supp(v′) ∩ S′ = ∅ | E ]

Thus, letting V be a uniformly random set of ` vertices, we see that Lemma 6.4 implies

PrM ′3 [supp(v) ∩ S′ = ∅ | E ] = PrM ′3,V [V ∩ S′ = ∅ | E ] ≤ 2−bn

for b = c log2(1/(1− β))/2 = e−α log2(1/(1− β))/16 and sufficiently large n. Combining this with (36)
yields

EM3

[
|{s ∈ {0, 1}m : v = MT

3 s}| | E
]
≤ 2−bn,

as desired.

7 Basic bounds on Fourier mass

In this section we prove some useful properties of Fourier coefficients of boolean functions that arise in
our analysis. We start by recalling notation, and then proceed to the proofs. As before, we denote the
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message posted on the board by player t, t ∈ {0, 1, 2} by mt, where m0 = 0 for convenience. Similarly, the
matchings Mt, t = 1, 2 are made available to all players. This means that for each t the t-th player chooses
a function gt : {0, 1}Mt → {0, 1}s that depends on the messages m1, . . . ,mt−1 as well as the matchings
M1, . . . ,Mt. Then the player computes mt = gt(Mtx). The space {0, 1}Mt will be referred to as the
reduced space (as opposed to the space {0, 1}n from which a partition x is drawn uniformly at random).

Let At ⊆ {0, 1}Mt , t = 1, . . . , T be typical messages in the reduced space for round t. Let

Bt = {x ∈ {0, 1}n : gt(Mtx) ∈ At}

be the typical messages in the full space for rounds t = 1, 2. Let ft : {0, 1}n → {0, 1} denote indicator
functions of the sets At. Note that f1 · f2 is the indicator of B2 = A1 ∩A2 (the indicator of B1 = A1 is
f1).

The bounds that we prove in this section can be summarized as follows. First, we show that the Fourier
transform of ft is supported only on sets of vertices that can be perfectly matched byMt, t ∈ {1, 2}. Second,
we show that the `2 mass cannot be to concentrated in every subcube in the Fourier space. The bounds are
summarized formally in Theorem 4.6. The first bound is proved in Lemma 7.4, and the second bound is
proved in Lemma 7.3.

We will use

Lemma 7.1 ([KKL88]) Let f be a function f : {0, 1}n → {−1, 0, 1}. Let A = {x ∈ {0, 1}n : f(x) 6= 0}.
Let |s| denote the Hamming weight of s ∈ {0, 1}n. Then for every δ ∈ [0, 1]

∑
s∈{0,1}n

δ|s|f̂(s)2 ≤
(
|A|
2n

) 2
1+δ

.

Our main result in this section is
Theorem 4.6 (Restated) Let M ∈ {0, 1}m×n be the incidence matrix of a matching M , where the rows
correspond to edges e of M (Meu = 1 if e is incident on u and 0 otherwise). Let g : {0, 1}m → {0, 1}s for
some s > 0. Let a ∈ {0, 1}s and let Areduced := {z ∈ {0, 1}m : g(z) = a}. Further, let f : {0, 1}n →
{0, 1} denote the indicator of the set

A := {x ∈ {0, 1}n : g(Mx) = a}.

Suppose that |A| = 2n−d for some d ∈ [0, n].
Then

1. the only nonzero Fourier coefficients of f̂ are of the form f̂(MTw) for some w ∈ {0, 1}M ;

2. for all ` ∈ [0 : d] and every Q ⊆M

22d
∑

v∈{0,1}n,|v|=2`+|Q|
v⊇Q

f̂(v)2 ≤ 2|Q|(64d/`)`,

where |Q| denotes the number of vertices in Q;

3. 22d
∑

v∈{0,1}n f̂(v)2 = 2d (Parseval’s equality).

Remark 7.2 Note that Theorem 4.6 has two parameters related to the size of the set A: s and d. The first
parameter is the dimensionality of the binary cube that the function g maps to. The second parameter is d
gives the size of the set Afull. For a ‘typical’ set Afull we expect that Afull occupies a 2−s fraction of the
hypercube 2n, i.e. d = s±O(1).
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The proof of Theorem 4.6 relies on Lemma 7.3 (stated below), whose proof is given in section 7.2. The
lemma provides a natural extension of the KKL-based bounds used in previous works. It shows that `2 mass
of an indicator function of a large subset of the boolean cube cannot be too concentrated on low weight
coefficients of subcubes:

Lemma 7.3 Let A ⊆ {0, 1}n be a set such that |A|/2n = 2−d. Let f : {0, 1}n → {0, 1} be the indicator
of A. Then for every set S ⊆ [n] and every k ∈ {1, 2, . . . , d} one has

22d
∑

v∈{0,1}n,wt(v)=k+|S|,S⊆v

f̂(v)2 ≤ 22|S|(64d/k)k.

We note that the case |S| = ∅ corresponds to Lemma 6 in [GKK+08]. Lemma 6 in [GKK+08] shows
that (appropriately normalized) Fourier transform of the indicator function of a large subset of the boolean
cube cannot have too much mass on the low weight coefficients. Lemma 7.3 shows that the normalized
Fourier mass cannot be too concentrated on low weight Fourier coefficients inside a fixed subcube.

We will also need Lemma 7.4, stated below:

Lemma 7.4 Let M ∈ {0, 1}m×n be the incidence matrix of a matching M , where the rows correspond to
edges e ofM (Meu = 1 if e is incident on u and 0 otherwise). Let g : {0, 1}m → {0, 1}s for some s > 0. Let
a ∈ {0, 1}s and let q : {0, 1}m → {0, 1} be the indicator of the set Areduced := {z ∈ {0, 1}m : g(z) = a}.
Further, let f : {0, 1}n → {0, 1} denote the indicator of the set

Afull := {x ∈ {0, 1}n : g(Mx) = a}.

Then for every v ∈ {0, 1}n

f̂(v) =

{
0, if v cannot be perfectly matched via edges of M
q̂(w), w the perfect matching of v using edges of M o.w.

(37)

Furthermore, the perfect matching of v, when it exists, is unique. The second condition above is equivalent
to the existence of w ∈ {0, 1}m = {0, 1}M such that v = MTw. Thus, Fourier coefficients of f are
indexed by sets of edges ofM . Note that nonzero weight k coefficients of ĝ are in one to one correspondence
with nonzero weight 2k coefficients of f̂ , i.e. the only nonzero Fourier coefficients of f̂ are of the form
f̂(MTw) = ĝ(w) for some w ∈ {0, 1}M .

Given these two lemmas, the proof of Theorem 4.6 follows:
Proof of Theorem 4.6: By Lemma 7.4 nonzero Fourier coefficients of f are of the form f̂(MT r) =
ĝ(r), r ∈ {0, 1}M , and in particular |MT r| = 2|r|. By Lemma 7.3 applied to q : {0, 1}m → {0, 1} with S
as the set of edges of M that perfectly match all nodes in Q we have

22d
∑

v∈{0,1}n,wt(v)=k+|S|,S⊆v

q̂(v)2 ≤ 22|S|(64d/k)k

for every k ≤ d. Putting these two facts together and using the fact that |Q| = 2|S| gives

22d
∑

v∈{0,1}n,wt(v)=2k+|Q|,Q⊆v

f̂(v)2 ≤ 2|Q|(64d/k)k

for every k ≤ d, as required.
In the remainder of this section we prove Lemma 7.4 in section 7.1, then prove Lemma 7.3 in section 7.2.
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7.1 Properties of Fourier transform of ft
First, we prove
Lemma 7.4 Let M ∈ {0, 1}m×n be the incidence matrix of a matching M , where the rows correspond to
edges e ofM (Meu = 1 if e is incident on u and 0 otherwise). Let g : {0, 1}m → {0, 1}s for some s > 0. Let
a ∈ {0, 1}s and let q : {0, 1}m → {0, 1} be the indicator of the set Areduced := {z ∈ {0, 1}m : g(z) = a}.
Further, let f : {0, 1}n → {0, 1} denote the indicator of the set

Afull := {x ∈ {0, 1}n : g(Mx) = a}.

Then for every v ∈ {0, 1}n

f̂(v) =

{
0, if v cannot be perfectly matched via edges of M
q̂(w), w the perfect matching of v using edges of M o.w.

(38)

Furthermore, the perfect matching of v, when it exists, is unique. The second condition above is equivalent
to the existence of w ∈ {0, 1}m = {0, 1}M such that v = MTw. Thus, Fourier coefficients of f are
indexed by sets of edges ofM . Note that nonzero weight k coefficients of ĝ are in one to one correspondence
with nonzero weight 2k coefficients of f̂ , i.e. the only nonzero Fourier coefficients of f̂ are of the form
f̂(MTw) = ĝ(w) for some w ∈ {0, 1}M .

Proof: We compute the Fourier transform of g(x). For z ∈ {0, 1}m let x(z) be defined by setting, for
each edge (u, v) ∈M ,

x(z)u = ze and x(z)v = 0

and x(z)w = 0 if w is not matched by M . Note that x(z) is a particular solution of Mx = z. Note that the
set of solutions is given by

{x(z) +Ns : s ∈ {0, 1}n−m}, (39)

where N is a basis for the nullspace of M . Without loss of generality suppose that M contains the edges
(2i− 1, 2i), i = 1, . . . ,m. Then the matrix N ∈ {0, 1}n×(n−m) may be taken as

1 0 0 . . . 0 0 . . . 0
1 0 0 . . . 0 0 . . . 0
0 1 0 . . . 0 0 . . . 0
0 1 0 . . . 0 0 . . . 0
...

...
...

...
...

...
...

...
0 0 1 . . . 0 0 0 0
0 0 1 . . . 0 0 0 0
0 0 0 . . . 1 0 0 0
0 0 0 . . . 0 1 0 0

0 0 0 . . . 0 0
. . . 0

0 0 0 . . . 0 0 0 1



,

where the bottom right submatrix is an (n−m)× (n−m) identity and the top left is MT .

52



The Fourier transform of f at v ∈ {0, 1}n is given by

f̂(v) =
1

2n

∑
x∈{0,1}n

f(x) · (−1)x·v

=
1

2n

∑
z∈Areduced

∑
s∈{0,1}n−m

(−1)(x(z)+Ns)·v

=
1

2n

∑
z∈Areduced

(−1)x(z)·v
∑

s∈{0,1}n−m
(−1)(vTN)·s

First note that ∑
s∈{0,1}n−m

(−1)(vTN)·s = 1vTN=0 · 2n−m,

so f̂(v) = 0 unless vTN = 0. Note that all such v are of the form v = MT r for some r ∈ {0, 1}m.
Thus,

f̂(MT r) =
2n−m

2n

∑
z∈Areduced

(−1)x(z)·MT r =
2n−m

2n

∑
z∈Areduced

(−1)z·r = q̂(r)

and f̂(v) = 0 for all v not of the form MT r. Note that we use the fact that x(z) ·MT r = z · r for all z and
r.

Note that Fourier coefficients of f only have even weight and weight k Fourier coefficients of g are in
direct correspondence with weight k/2 coefficients of f (since |MT r| = 2|r| for all r ∈ {0, 1}m).

7.2 KKL on subcubes

Proof of Lemma 7.3:
We use the notation [n] for the set of elements {1, 2, . . . , n}.For a vector x ∈ {0, 1}n we write supp(x)

to denote the set of nonzeros in x. For a vector x ∈ {0, 1}n and a set S ⊆ [n] we write xS ∈ {0, 1}S to
denote the restriction of x to coordinates in S.

Let f denote the indicator of A, |A|/2n = 2−d. For α ∈ {0, 1}n with supp(α) ⊆ S let

Bα := {x ∈ A : xS = αS},

and let gα(x) denote the indicator of Bα. Note that

gα(x) = f(x) · 1xS=αS (x), (40)

where 1xS=αS is the indicator of the set {x ∈ {0, 1}n : xS = αS}.
The proof proceeds as follows. We first relate energy of the Fourier transform of gα for a random α to

the energy of the Fourier transform of f (see Eq. (46)). This relation shows that the expected energy of gα
contributed by weight k Fourier coefficients lower bounds the sum of energies of Fourier coefficients of f
that have weight k + |S| and contain the set S (this is the rhs of the inequality that we would like to prove).
By an averaging argument there exists α∗ such that the sum of Fourier coefficients of gα∗ provides the same
lower bound (see Eq. (47)). We then apply KKL to gα∗ , obtaining the required bound (see Eq. (48)).

By Eq. (40) together with Eq. (1) the Fourier transform of gα for all v ∈ {0, 1}n equals

ĝα(v) =
∑

w∈{0,1}n
f̂(v + w)1̂xS=αS (w) (41)
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One has, for every w ∈ {0, 1}n,

1̂xS=αS (w) =
1

2n

∑
x∈{0,1}n,xS=αS

(−1)x·w = 1supp(w)⊆S · (−1)α·w2−|S| (42)

Thus,

ĝα(v) = 2−|S|
∑

w∈{0,1}n,supp(w)⊆S

f̂(v + w)(−1)α·w (43)

We now define a useful distribution over vectors in {0, 1}n. We say that a vector α ∈ {0, 1}n is sampled
from DS if αS is uniformly random in {0, 1}S and all other entries of α are zero. Note that for every
x ∈ {0, 1}n one has

Eα∼DS [(−1)α·x] =

{
1 if xS = 0
0 o.w.

(44)

We have for every v ∈ {0, 1}n

Eα∼DS [ĝα(v)2] = Eα

2−|S|
∑

w∈{0,1}n,supp(w)⊆S

f̂(v + w)(−1)α·w

2

= 2−2|S|Eα∼DS

 ∑
w,w′∈{0,1}n,

supp(w)⊆S,supp(w′)⊆S

f̂(v + w)f̂(v + w′)(−1)α·(w+w′)


= 2−2|S|

∑
w,w′∈{0,1}n,

supp(w)⊆S,supp(w′)⊆S

f̂(v + w)f̂(v + w′)Eα∼DS
[
(−1)α·(w+w′)

]

= 2−2|S|
∑

w∈{0,1}n,supp(w)⊆S

f̂(v + w)2 (by (44) applied to w + w′)

(45)

In particular, for every k ≥ 1

Eα∼DS [
∑

v∈{0,1}n:supp(v)∩S=∅,
wt(v)=k

ĝα(v)2] = 2−2|S|
∑

v∈{0,1}n:supp(v)∩S=∅,
wt(v)=k

∑
w∈{0,1}n,
supp(w)⊆S

f̂(v + w)2

≥ 2−2|S|
∑

v∈{0,1}n:supp(v)∩S=∅,
wt(v)=k

∑
w∈{0,1}n,supp(w)⊆S,

wS=1S

f̂(v + w)2

= 2−2|S|
∑

v∈{0,1}n:S⊆supp(v),
wt(v)=k+|S|

f̂(v)2

(46)

By Eq. (46) there exists α∗ ∈ {0, 1}n, supp(α∗) ⊆ S such that∑
v:wt(v)=k

ĝα∗(v)2 ≥ 2−2|S|
∑

v∈{0,1}n,S⊆v:wt(v)=k+|S|

f̂(v)2
(47)

Recall that gα∗(x) is the indicator of Bα∗ ⊆ {0, 1}n. By Lemma 7.1 we have for all δ ∈ [0, 1]∑
v∈{0,1}n

δ|v|ĝα∗(v)2 ≤ (|Bα∗ |/2n)
2

1+δ .
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Thus, for every k ≥ 1 we have∑
v∈{0,1}n:wt(v)=k

ĝα∗(v)2 ≤ δ−k(|Bα∗ |/2n)
2

1+δ ≤ δ−k(|A|/2n)
2

1+δ ,

where we used the fact that |Bα| ≤ |A| for all α.
Putting this together with Eq. (47) yields

2−2|S|
∑

v∈{0,1}n,S⊆v
wt(v)=k+|S|

f̂(v)2 ≤ δ−k(|A|/2n)
2

1+δ . (48)

We now set δ = k/(2d). This is valid, i.e. δ ∈ (0, 1), since k ≤ d by assumption of the lemma.
Simplifying the rhs of Eq. (48) with this setting of δ, we get

δ−k(|A|/2n)
2

1+δ =

(
k

2d

)−k
2
− 2d

1+k/(2d) = 2−2d

(
k

2d

)−k
2
−2d

(
1

1+k/(2d)
−1

)

Since 1
1+k/(2d) − 1 = − k/(2d)

1+k/(2d) ≥ −k/(2d), we conclude that the rhs is bounded by

2−2d(k/(2d))−k2k = 2−2d(4d/k)k ≤ 2−2d(64d/k)k.

Substituting this into Eq. (48), we get

22d
∑

v∈{0,1}n,S⊆v:wt(v)=k+|S|

f̂(v)2 ≤ 2−2|S|(64d/k)k

as required.
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