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Abstract

We consider the problem of estimating the value of MAX-CUT in a graph in the streaming model
of computation. We show that there exists a constant €, > 0 such that any randomized streaming
algorithm that computes a (1 + ¢, )-approximation to MAX-CUT requires £2(n) space on an n vertex
graph. By contrast, there are algorithms that produce a (1 + €)-approximation in space O(n/€?) for
every € > 0. Our result is the first linear space lower bound for the task of approximating the max cut
value and partially answers an open question from the literature [Berbl]. The prior state of the art ruled
out (2 — €)-approximation in O(1/n) space or (1 + ¢)-approximation in n'~9(€) space, for any € > 0.

Previous lower bounds for the MAX-CUT problem relied, in essence, on a lower bound on the
communication complexity of the following task: Several players are each given some edges of a graph
and they wish to determine if the union of these edges is e-close to forming a bipartite graph, using one-
way communication. The previous works proved a lower bound of Q(+/n) for this task when e = 1/2,
and n'=9(©) for every € > 0, even when one of the players is given a candidate bipartition of the graph
and the graph is promised to be bipartite with respect to this partition or e-far from bipartite. This
added information was essential in enabling the previous analyses but also yields a weak bound since,
with this extra information, there is an n1~2(¢) communication protocol for this problem. In this work,
we give an )(n) lower bound on the communication complexity of the original problem (without the
extra information) for e = (1) in the three-player setting. Obtaining this £2(n) lower bound on the
communication complexity is the main technical result in this paper. We achieve it by a delicate choice
of distributions on instances as well as a novel use of the convolution theorem from Fourier analysis
combined with graph-theoretic considerations to analyze the communication complexity.
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1 Introduction

In this paper, we consider the space complexity of approximating MAX-CUT in the streaming model of
computation. We elaborate on these terms and describe our main result below.

The input to the MAX-CUT problem is an undirected graph, and the goal is to find a bipartition of the
vertices of this graph (or a cuf) that maximizes the number of edges that cross the bipartition. The size of a
MAX-CUT on graph G, denoted MAX-CUT(G), is the number of edges that cross the optimal bipartition.
An algorithm A is said to produce an c-approximation to the size of the MAX-CUT if for every graph G,
the algorithm’s output A(G) satisfies MAX-CUT(G)/a < A(G) < MAX-CUT(G).

In this paper, we study the space complexity of approximating MAX-CUT in the streaming model of
computation. The streaming model of computation, formally introduced in the seminal work of [AMS96]
and motivated by applications in processing massive datasets, is an extremely well-studied model for de-
signing sublinear space algorithms. For the MAX-CUT problem in this model, the edges of the input
graph G are presented as a stream to a (randomized) algorithm, which must output an a-approximation to
MAX-CUT(G). The complexity measure is the space complexity, namely, the number of bits of memory
used by the streaming algorithm, measured as a function of n, the number of vertices in G.

Our main result is a strong lower bound (optimal to within polylogarithmic factors) on the space required
for a strong approximation to the MAX-CUT size. Specifically, we show that there is an o > 1 such that
every a-approximation algorithm in the streaming model must use €2(n) space (see Theorem ?2?).

Context and Significance. There are two basic algorithmic results for MAX-CUT in the streaming model:
On the one hand, the trivial algorithm that counts the number, say m, of edges in G and outputs m /2
is a 2-approximation that uses O(logn) space. On the other hand, if one has O(n) spac one can get
an approximation scheme, i.e., a (1 + €)-approximation algorithm for every ¢ > 0, by building a “cut-
sparsifier” [BK96, [SSOS].

Given just the two algorithms above, it is possible to envision three possible scenarios for improving the
approximability of MAX-CUT: (1) Perhaps MAX-CUT has an approximation scheme in polylogarithmic
space? (2) Perhaps MAX-CUT admits a space-approximation tradeoff, i.e., for every o > 1, there is a
B < 1 such that an a-approximation can be computed in n® space? (3) Perhaps there is an o < 2 and an
algorithm using n” space for some 3 < 1 that can compute an a-approximation to MAX-CUT. (Note that
the scenarios are nested with (1) = (2) = (3).)

Previous works [KK15,IKKS15] have ruled out scenario (1) above, making progress on an open question
from [Bera]]. In particular, these works have showed that for every 5 < 1, there exists & > 1 such that
a streaming algorithm with space n® cannot compute an a-approximation to MAX-CUT. The work of
[KKST5]] also shows that 5 < 1/2 and « < 2 are not simutaneously achievable. These results still allow for
either scenario (2) or (3). Our result achieves the next level of understanding by ruling out scenario (2) as
well:

Theorem 1.1 (Main result) There exists € > 0 such that every randomized single-pass streaming algo-
rithm that yields a (1 + €*)-approximation to the MAX-CUT size with probability at least 9/10 must use
Q(n) space, where n denotes the number of vertices in the input graph.

This step has also been suggested as an open problem in the Bertinoro workshop [Berb], though we settle
their question only partially since the question suggests a particular approach to proving the lower bound,
which we do not follow. Eventually we suspect that even scenario (3) is not achievable, but ruling this out
involves more technical challenges. Indeed, one of the hopes of this work is to introduce some techniques
that may be useful in the eventual resolution of this problem.

'Throughout this paper we use the notation O(f(n)) to denote the set U.~oO(f(n)(log(f(n))%)).



Techniques. As with most lower bounds in streaming, ours is obtained by a reduction from a communi-
cation complexity problem. However, the communication problem and even communication model in this
paper are somewhat new, so we describe our model and then explain why the novelty is necessary and useful.

Roughly, our paper considers a T-player sequential communication game, that we call the Implicit
Hidden Partition Problem, where player P;, for 1 < ¢ < T, is given a set of edges F; on vertex set [n],
and the players wish to determine whether U; E; forms a bipartite graph or is e-far from being bipartite. (To
be more precise, in our actual game the players also get some “non-edges” F; and they also need to verify
that (most of) the edges of F; do not cross the bipartition, but we ignore this distinction here since it is
not conceptually significant.) The communication is one-way and player F; is only allowed to broadcast a
message based on its own input and broadcast messages from players P; for 1 < j < 7. We show that for
T = 3 and some € > 0, there is a distribution on inputs for which this task requires {2(n) communication.

The communication problems from previous works included an additional player Fy whose input was
a bipartition of the vertices of the graph, and later players needed to verify that the graph was bipartite
with respect to this bipartition. The presence of this additional player was essential to previous analyses.
These analyses roughly suggested that when the input graph is far from being bipartite, conditioned on not
discovering a violating edge, the information of the first ¢ players is effectively dominated by the information
of Py — i.e., knowledge of the partition subsumes all other knowledge. This suggests a reduction from the
T (or T' + 1) player communication problem to several two-player games involving player Fy and P; for
1 <4 < T, and this two player game can be analyzed as in [GKK ™08, VYT1]]. Implementing this reduction
does take technical work, but the intuition works!

For our purposes, the presence of the 0-th player poses an insurmountable obstacle—with this player,
there is a O(y/n - poly(1/€)) communication protocol (based on the “birthday paradox™) to distinguish
bipartite graphs that are e-far from being bipartite! Indeed, one can just send information about the clas-
sification of about /n vertices with respect to the bipartition and check how many edges violate the bi-
partition. Harder communication complexity problems (e.g. the Boolean Hidden Hypermatching Problem
of [VY11]—see [KK15, KKS15]) have been considered, leading to stronger n1=0(9) lower bounds on test-
ing e-closeness to bipartite, but they still use an explicit candidate bipartition and admit n'~°(© protocols
for any constant e. This forces us to remove the 0-th player, thereby leading to the (in retrospect, more
natural) “Implicit Hidden Partition” problem that we introduce explicitly in this paper.

The removal of the 0-th player, however, forces us to introduce new mechanisms to cope with the leakage
of information as the protocol evolves. We do so by changing the communication model to allow for some
“public inputs” and some “private inputs”. All inputs to player 7 are selected after the transmission of the
message of player ¢ — 1, and the public input becomes known to all players while the private input is known
only to player ¢. (In our case, the public input is a superset of the edges E; and the private input is the set
F;.) This separation brings back a little flexibility into our analysis, but the task of bounding the flow of
relevant information as the protocol evolves remains challenging and, indeed, we are only able to carry out
such an analysis for 7' = 3, by a careful choice of input distributions and paramters.

One major challenge is the task of finding the right set of hard instances for the problem. Natural
candidates (for example the one suggested in [Berb]]) would involve random bipartite graphs and random
graphs; however, the presence of vertices of degree larger than 2 in these graphs poses obstacles to our
analysis. So we pick a delicate distribution in which the graph formed by E; U E5 has no cycles and no
vertices of degree > 2 (so E; U FEjs is a union of paths). Of course, this implies that the resulting graph
is bipartitite, thereby allowing the final edge set F’3 to come into play. Our final edge set E3 is chosen to
be either a random graph consistent with this bipartition (the YES case), or a random sufficiently dense
graph (the NO case) so that the resulting graph (E7 U Eg U E3) is £2(1)-far from being bipartite. The choice
of parameters is delicate—we need to ensure that the distributions of F5 in the YES and NO cases are
statistically close while still ensuring that ;1 U E'o U E3 is far from bipartite in the case of NO instances.This



combinatorial analysis is carried out in Section [5

Finally, we are left with the task of actually analyzing the communication protocols aiming to solve the
communication problem on the aforementioned distribution. As with previous works [GKK™08]], we make
use of Fourier analysis. We specifically analyze the set of bipartitions that are consistent with the set of public
inputs and messages broadcast thus far and then look at the Fourier coefficients of the indicator function of
this set. We employ relatively elementary methods (at least given previous works) to analyze this set after
the player P; speaks. To analyze the set after player P» speaks, we perform some combinatorial analysis
involving the special distributions on E; and E5 and then incorporate this combinatorics into the Fourier
language, while finally combining the effects of the two steps using the convolution theorem in Fourier
analysis. While the use of this theorem is natural in our setting (involving a composition of many messages,
that corresponds to a product of various indicator functions), the fact that the convolved coefficients can be
subjected to spectral analysis appears somewhat novel, and we hope it will spur further progress on this and
other questions.

Related work. The past decade has seen an extensive body of work on understanding the space com-
plexity of fundamental graph problems in the streaming model; see, for instance, the survey by McGre-
gor [McGl14]. It is now known that many fundamental problems admit streaming algorithms that only
require O(n) space (i.e. they do not need space to load the edge set of the graph into memory) — e.g., spar-
sifiers [AG09, KL11,[AGM12b, KLM™ 14, spanning trees [AGM12a], matchings [AGTT, /AG13, IGKK12,
Kap13,IGO12, [HRVZ15, [Konl5, IAKLY 15], spanners [AGM12b, KW 14]. Very recently it has been shown
that it is sometimes possible to approximate the cost of the solution without even having enough space to
load the vertex set of the graph into memory (e.g. [KKST4, EHL ™15,/ CCE™15]]). Our work contributes to
the study of streaming algorithms by providing a tight impossibility result for non-trivially approximating
MAX-CUT value in o(n) space.

Organization. We formally define our communication problem and describe its connection to streaming
algorithms for approximating MAX-CUT value in Section[2] We then state the main technical lemmas and
prove the main theorem in Section (3| The proof of the main technical lemma of our communication lower
bound is given in Section ] and (an outline of) the gap analysis is given in Section [5]

2 Communication problem and hard distribution

In this section, we introduce a multi-player “sequential” communication problem and state our lower bound
for this problem. We first describe the general model in which this problem is presented.

We consider a sequential communication model where T' players sequentially receive public inputs M;
and private inputs wy, for t € [T]. A problem in this model is specified by an F'(My, ..., Mp;wy, ..., wr)
and the goal of the players is to compute this function. A protocol for this problem II is specified by
a sequence of functions IT = (r1,...,7). At stage t € [T], the ¢-th player announces its message
a; = r(My,...,My;ay,...,a.—1;wy), and the message ap is defined to be the output of the protocol
I1. The complexity of II, denoted |TI|, is the maximum length of the messages {a;}¢c[r). We consider
the distributional setting, i.e., where the inputs are drawn from some distribution p and the error of the
protocol is the probability that its output does not equal F'(My, ..., Mp;wi,...,wr). By Yao’s minmax
principle, we assume, without loss of generality, that the communication protocol is deterministic. Also, for
the remainder of the paper, addition over {0, 1}" and matrix multiplication occurs modulo 2.

We now describe the specific communication problem that we consider in this work.

Implicit Hidden Partition (IHP) Problem. The T'-player Implicit Hidden Partition problem THP (1) for
positive integer n is defined as follows: The public inputs are sets of edges, My, ..., M, on vertex set



[n], while the private inputs w1, ..., wr are {0, 1}-colorings of the corresponding sets of edges. The goal
is to distinguish the case in which the colorings are valid (i.e., there exists a cut such that every edge of
U¢ M, is colored 1 if and only if it crosses the cut) from the case in which no such cut exists. A convenient
representation of the inputs will be to represent the edges M as incidence matrices M; € {0, 1}™*"™ and the
coloring by w; € {0,1}™¢, for t € [T], where m; denotes the number of edges of M;. In this representation
a coloring x € {0, 1}" is valid if and only if Mz = w; for every t € [T].

In the instances we use, we will set 7' = 3, while M; and M5 will be (incidence matrices of) matchings
so that their rows sum to 2 and columns sum to at most 1. Also, M3 € {0, 1}"3*™ will be the edge incidence
matrix of a suitable cycle-free subgraph of an Erd6s-Rényi graph below the threshold for emergence of a
giant component.

Distributional Implicit Hidden Partition (DIHP) Problem. In this work, we will actually deal with a
distributional version of IHP with T' = 3 that we denote DIHP. DIHP has three parameters: a positive
even integer A, a positive integer n divisible by A, and a real number o with 0 < o < 1. DIHP(n, A, o)
is defined to be IHP(n) on inputs chosen from a distribution D = (DY + DY), where D and DV are
defined as follows: In both the distributions DY and DV, the triples (M7, Ms, Ms) are chosen identically
from a process Pj, A o that we describe below shortly. In DY, the private inputs wy, wa, w3 are chosen by
sampling X* € {0, 1}" uniformly and settting w; = M;X* for t € {1,2,3}. Note that the distribution
DY is supported on YES instances. In the distribution D¥, the w;’s are uniformly random strings chosen
independently of each other. As we show later, the distribution D” is mostly supported on NO instances
that are, in fact, far from YES instances, where distance is measured in terms of the number of edges that
have to be removed in order to produce a valid coloring.

Although the notation M; denotes an m; X n edge incidence matrix, we will often use M; to denote
the corresponding graph as well. However, the sense in which M; is used will be clear from context.
Furthermore, we will use E; to denote the set of edges specified by M.

Edge Sampling Process P, A . We now specify the process P, A o, Which is used to sample the graphs
(edge incidence matrices) My, Mo, Ms in both DY and DV . The set M is a deterministic perfect matching
that matches vertex ¢ to i + n/2 for every ¢ € [n/2]. The set My is a also a matching sampled as follows:
We sample a permutation 7 : [n/2] — [n/2] uniformly and then match the vertex 7 (i) to the vertex
(i + 1) + n/2 for every i that is not divisible by A /2. (Note that by this process, the union of the graphs
M; U My is a collection of disjoint paths, each of length A — 1.) Finally, we sample M3 in three steps:

Step 1. We first sample a random graph M from the Erd6s-Rényi model with parameter «/n, i.e., every
possible edge is included independently with probably a/n.

Step 2. We remove all edges in M that have already been included in M; U M to get a subgraph M.

Step 3. We now consider the connected components of MY and, for every component that contains a
cycle, we remove all edges of that component. The resulting subgraph is Ms.

Note that since « is close to 1, the graph M3 (or M} for that matter) is subcritical and most of its
components are of constant size. At most a constant number of edges of M3 appear in M; U M5 and another
small constant appear in cycles. Thus, for all practical purposes, M3 behaves like MJ. In particular, as we
show later, the fraction of invalidly colored edges in a random coloring of the edges remains nearly the same
in M7 U My U Ms as in M, UMQUMé.

The following theorem is the main technical contribution of the paper:

Theorem 2.1 There exist constants A* > 0 and 0 < o* < 1 such that for every even integer A > A* and
every a € (a*, 1), there exists ¢ > 0 such that the following holds: For every sufficiently large integer n that



is divisible by A, every protocol 11 for DIHP(n, A, «v) that succeeds with probability at least 2/3 satisfies
IIT| > cn.

We accompany the above theorem with a reduction from DIHP to MAX-CUT:

Theorem 2.2 (Reduction from DIHP to MAX-CUT) There exist constants A* > 0 and 0 < o < 1 such
that for every even integer A > A* and every o € (a*, 1), there exists €* > 0 such that the following holds:
If there exists a single-pass streaming (1 + €*)-approximation algorithm for MAX-CUT with space complex-
ity s(n) that succeeds with probability at least 9/10, then there exists a protocol 11 for DIHP(n, A, o) with
IIT| < s(n) + O(log n) that succeeds with probability at least 2/3.

Central to both of the above theorems is a combinatorial analysis that establishes that DY is supported
mostly on NO instances and that, furthermore, these instances generate MAX-CUT instances (under the
reduction used in Theorem [2.2) whose optimum is bounded away from the total number of edges by a
constant fraction. The following definition gives the (simple) reduction which simply outputs the edges of
the DIHP instance that are labelled 1, and then the lemma establishes the above formally.

Definition 2.3 Given T = (M, My, Ms; w1, we, ws), the reduction R(Z) outputs the stream containing
edges of M that are labelled 1 in w1, followed by the edges of My labelled 1 in wo, followed by the edges
of Ms labelled 1 in ws. (Within each M,, the order of the edges in the stream is arbitrary.)

Lemma 2.4 There exist constants A* > 0 and 0 < o* < 1 such that for every a € (a*,1) and even
integer A > A¥, there is a constant €* > 0 for which the following conditions hold for the reduction R from

Definition[2.3}

(1) IfT = (M, My, M3; w1, wa, w3) is sampled from DY of DIHP (n, A, «), then R(T) is a bipartite
graph.

(2) If T is sampled from DV, then with probability at least 95/100, R(T) is a graph on m edges with
MAX-CUT value at most (1 — €*)m.

Lemma [2.4]is proved in Section[5] Theorem [2.2]is simple to prove using Lemma [2.4] We devote the
rest of this section to providing this proof, as well as a proof of Theorem The rest of the paper focuses
on proving Theorem [2.1]

Reduction from DIHP to MAX-CUT. We now provide a proof of Theorem

Proof of Theorem Let R be the reduction from Definition Let o and A* be the constants
guaranteed by Lemma[2.4] We fix an o € (a*,1) as well as an even integer A > A*. Let €* > 0 be the
constant from Lemma [2.4] for this choice of « and A.

It is easy to see that for instances Z sampled from DY, the MAX-CUT value of G = R(Z) is m, the
number of edges of GG since G is bipartite. Moreover, by Lemma the MAX-CUT value of R(Z) for
instances Z sampled from D¥ is at most (1 — €*)m with probability at least 95/100.

Now suppose ALG is a one-pass streaming algorithm with space complexity s(n) that produces a (1 —
€*)-approximation to the MAX-CUT value with success probability at least 9/10. Consider the following
protocol IT for DIHP(n, A, o), which makes use of ALG as a subroutine: Augment ALG with a counter
m for the total number of edges presented to it. This takes O(logn) additional bits of space for simple
input graphs on n vertices. Now, for each t € {1, 2,3}, let player ¢ (1.) run (the augmented) ALG on the
state posted by player ¢ — 1 with the stream of edges formed by enumerating all edges in M, for which the
corresponding value in wy is 1 and, (2.) if ¢ € {1, 2}, pass on the resulting state of ALG to the next player.



In other words, the players simulate ALG on the stream R(Z). The last player then takes the ending state
of ALG and checks whether the output MAX-CUT value of ALG is at least m/(1 + €*). If so, the player
outputs YES; otherwise, the player outputs NO .

It is clear that the aforementioned simulation succeeds on DIHP(n, A, ) with probability at least 2/3.
Moreover, the amount of communication |II| in IT is at most the amount of space used for our augmented
ALG. Thus, |II| < s(n) + O(logn), as desired.

|

Given Theorem and Theorem [2.1} our main theorem follows easily and the proof is included below for
completeness.

Proof of Theorem Let o} and A7 be the constants guaranteed by Theorem and let o5 and Aj
be the constants of Theorem Let A be the smallest even integer larger than max{Aj, A5} and choose
o € (max{aj,ab},1). Let € be the constant given by Theorem [2.2)for this choice of a and A.

Now, suppose there exists a randomized single-pass streaming algorithm ALG that yields a (1 + €*)-
approximation to MAX-CUT with probability at least 9/10. Let s(n) be the amount of space used by
ALG on input graphs with n nodes. By Theorem [2.2} there is a protocol II for DIHP(n, A, a) with |II| <
s(n) + O(logn) such that IT succeeds with probability at least 2/3.

Now, Theorem[2.1]implies that [II| > ¢/n for some constant ¢’. Hence, s(n) > ¢/'n — O(logn) > cn for
some constant ¢ > 0 and sufficiently large n, which completes the proof. |

3 Analysis of communication problem via Fourier techniques

In this section, we first review Fourier analysis on the boolean hypercube, then review relevant communica-
tion complexity techniques that were developed in prior work [GKK™T08], explain why they do not suffice
for our result, and give an outline of our approach.

3.1 Fourier analysis on the boolean hypercube

Let p : {0,1}" — R be a real valued function defined on the boolean hypercube. We use the following
normalization of the Fourier transform:

po) = o Y plx)-(=1)""

ze€{0,1}m

With this normalization, the inverse transform is given by

ve{0,1}"

We will use the relation between multiplication of functions in the time domain and convolution in the
frequency domain to analyze the Fourier spectrum of f; - fo. With our normalization of the Fourier transform
the convolution identity is

P @) =@*DPw) = Y b@)g=z+v). 1)



The main object of our analysis will be Athe F(llrieL transform of hy = f1 - fo (these functions are defined
later in Definition . By (1)), we have hy = fi * fo. This identity will form the basis of our proof. We will
also need Parseval’s equality, which, with our normalization, takes the form

2

BIr= Y awr= Y (5 X s 0] =g S s =kl @

vef{0,1}n veq{0,1}n ze{0,1}m ze{0,1}m
Remark 3.1 If f(x) : {0,1}" — {0, 1} is the indicator of a set A C {0,1}", we have ||f||*> = |A]|, so that
1712 = 5
3.2 The basic setup
We use the notation Xj;.; to denote (X;, Xj41,...,X;). Recall that the messages posted by the players are

denoted by a; = r¢(M1.4, a1.t—1, wt), where My are public m; x n edge incidence matrices and wy are private
inputs to players. We use s to denote the maximum of the bit lengths of messages posted by the players. Our
goal is to show that if s < n, then the total variation distance between the distribution of the publicly shared
information (messages a1, as, az and graphs My, My, M3) in the YES and NO cases is small. As we show,
this task can be simplified as follows. It suffices to consider the YES case only and show that if s < n, then
the distribution of w; = M; X™* conditional on the publicly posted content up to time ¢ (namely, ay,...,a;—1
and My, ..., M,) is close to the uniform distribution in total variation distance for ¢ = 1, 2, 3 (recall that wy
is actually uniformly distributed in the NO case). Our proof of this fact relies on Fourier analytic techniques
for reasoning about the distribution of M; X ™ conditioned on typical communication history.

More specifically, our goal is to show that the total variation distance between the distribution of
(Mi.3,aq.3) for the YES and NO instances is vanishingly small. It suffices to consider the YES case only.
Fix t € {1,2,3} and let X* € {0, 1}" denote a uniform random vector conditioned on the graphs M.
and messages a%/;tq- In Lemma we show that it suffices to show that with high probability, for each
t = 1,2, 3, the distribution of M; X* is close to uniform in {0, 1}™* and is, hence, indistinguishable from
the NO case.

Conditioning on messages posted up to time ¢ makes X * uniformly random over a certain subset of the
binary cube. We will analyze this subset of the hypercube or, rather, the Fourier transform of its indicator
function, and show that if communication is small, the distribution of X* conditional on typical history is
such that M; X ™ is close to uniformly random in total variation distance.

We now define notation that lets us reason about the distribution of X* at each step . Since we assume
that the protocol is deterministic and the prior distribution of X* is uniform over {0, 1}", the distribution of
X* conditioned on the publicly posted content thus far is uniform over some set B; C {0, 1}". We prove the
desired claim by analyzing the Fourier spectrum of the indicator function of B,. It turns out to be convenient
to represent By as the intersection of simpler subsets A; of the hypercube, where each A; essentially conveys
the information that the ¢-th player’s message gives about X *. We give formal definitions below.

Definition 3.2 (Sets A;, B, and their indicator functions f;, ;) Fix o € (0,1) and integers n > 1 and
t € {1,2,3}. Consider a YES instance (Mi.3,w1.3) of DIHP(n, A, o) with X* being the (random) hidden
partition (so that wy = My X*). Recall that a; = ri(My.¢, a1.4—1,wy).

We define A ciucedr © {0,1}™ as the set of possible values of wy = My X™ that lead to the message
at, and we define A, to be the set of values of X* € {0,1}" that correspond to A ,cqyced - Formally, letting
gt(+) == re(Myg,a14-1,-) : {0,1}™ — {0, 1}*, we define

Areduced,t = ggl(at) C {07 1}mt and At = {ZL‘ € {0, 1}n : Mtx € Areduced,t}- (3)



Moreover, for each t = 1,2,3, let fi : {0,1}" — {0,1} denote the indicator function of A, and let
hit = fifa-- fi, so that h is the indicator of By := A1 N Aa N ...N Ay We let By := {0,1}" for

convenience.

Our proof of near-uniformity of M; X™* conditioned on a typical history of communication in DIHP(n, A, «)
is inspired by the work of [GKK™08], which used Fourier analysis to give a communication lower bound on
the (explicit) hidden partition problem (where Alice is given X*, Bob gets (M, w), and Bob needs to check
whether w = M X ™). In our setting, their results translate to showing that if X* is uniform in B C {0, 1}",
where |B|/2™ > 27° with s = O(y/n), and the indicator function h of B satisifies

<2”)2 3 he(v)? < (4v/2s/0)% WL € [0 5], “4)

B ve{0,1}",|v|=2¢

where |v| denotes the Hamming weight of v, then the distribution of M X* is close to uniform for a random
sparse graph M (a random matching in [GKK™08]). This translates to a lower bound of (/) on the
communication complexity of the explicit hidden partition problem, but this is too weak for our purposes.
To improve this bound we need to replace the right hand side of the inequality above to a form (O(s)/¢)*
from (O(s)/¢)?. Unfortunately, such an improvement is not possible for the explicit hidden partition prob-
lem, which stems from the fact that X* is known to Alice. In our case, X * is not known to any player, but
we need an analysis that can take advantage of this key fact. We now outline our approach for doing so.
Our first observation is that if the bound in (@) could be strengthened by replacing the exponent on the
righthand side with £ (i.e., reducing the exponent by a factor of 2), an Q2(n) lower bound would follow. This
observation is formalized in Lemma [3.3] which is stated below and proved formally in section [6]

Lemma 3.3 Let A > 0 be an even integer. Then, for every 0 < o < 1, there exists a constant 0 < ¢ < 1
such that for every § € (n_l/ 10 ¢), the following conditions hold if n is any sufficiently large multiple of A:

(1) Let B = Ay, as defined in Definition [3.2] Then, for every choice of matchings My, My sampled
according to Py A o, the distribution of Mox is uniform over {0, 1}™2 when x is uniformly random
in B.
(2) Let B C {0,1}",|B| = 2" % for z < §*n, and let h : {0,1}" — {0, 1} be the indicator of B.
N2 . ¢
If (%) ZU:M:% h(v)? < <%) holds for all ¢ < §*n, then the following conditions hold:
Let My, Mo, M3 be sampled according to Pp A «. Then, with probability at least 1 — O(0) over

the choice of Ms, the total variation distance between the distribution of Msx, where x is uniformly
random in B, and the uniform distribution over {0,1}"™3 is O(6/+/1 — «). In particular, one can take

¢ = min { (L), (e“logxg;/(glm)))l/zl}

We note that such a strengthening of () is impossible for an indicator function f : {0,1}" — {0,1}
of an arbitrary subset B C {0, 1}" with |B| = 2"7%, z < §?n—a subcube of appropriate size shows that
(@) is essentially the best possible bound. Our improvement crucially uses the fact that unlike in the boolean
hidden matching problem, in DIHP, the players only have indirect access to X * via linear functions M; X ™.
In particular, the sets whose indicator functions we analyze are of a special form (see Definition [3.2).

If we could prove that the preconditions of Lemma hold w.h.p. for hy, we would be done by
Lemma [3.3] It turns out that one can prove that these preconditions are satisfied for h; = fj rather directly
(see Theorem [4.6) using the fact that the compression function g; (see Definition [3.2) is applied to the
parities of x4, + y, (a,b) € M;. Proving a similar result for the function hy = fi - f is challenging, and




this proof is the main technical contribution of our paper. In order to do that, we need to analyze the Fourier
transform hy = fi - fo, which we do using the convolution identity ho = f1 * fo. Our main bound on the
Fourier transform of f; - fo is stated below.

Lemma 3.4 There exists C > 1 such that for every even integer A > 2,y > n~Y® smaller than an absolute
constant, and o € (0,1), the following conditions hold for sufficiently large n divisible by A: Let 11 be a
protocol for DIHP(n, A, o) such that |T11| =: s, where s = s(n) = w(y/n) and s(n) < m'fn. Then,
there exists an event & that only depends on X*, My, My and occurs with probability at least 1 — O(~y) over
Pr.A,q and the choice of X* € {0,1}" such that, conditioned on &, one has

1) |By|/2" > 277",
N2 ~
(2) (\]2372\) 2 vef0,1}m,Jo|=2¢ ha(v)? < (CA%YAn/0)E for all £ < ~*n.

Before we present the proof of Theorem[2.1] we require one simple lemma about total variation distance
of two probability distributions, which appears with proof in [KKS15]].

Lemma 3.5 (Lemma 5.6 in [KKS15]) Let (X,Y1'), (X, Y?) be random variables taking values on a finite
sample space Q = Qq x Qq. Forany x € Qy, let Y}, i = 1,2 denote the conditional distribution of Y* given
X = x. Then,

1Y) = (X, Y ) [ltwa = Ex [IYx — Y |tod] -

Proof of Theorem 2.1k

Suppose A > 0 is an even integer and 0 < « < 1. Then, we choose § € (0,1) as well as v € (0,1)
such that v < (64/CA?)Y/45. Moreover, we pick & and v to be sufficiently small such they obey the upper
bounds in the hypotheses of Lemmas and Also, assume n is a sufficiently large multiple of A
(in particular, n=/19 < § and n~Y/® < ~) so that § and ~ obey the lower bounds in the hypotheses of
Lemmas[3.3|and[3.4, Moreover, assume  is sufficiently small so that the event £ in Lemma 3.4 occurs with
probability greater than 1/2.

We now assume that I1 is a protocol for DIHP(n, A, a) that uses less than
nication, where C' > 0 is the constant in Lemma 3.4

Recall that the first player posts the message a; = r1(Mi,w;). We now consider the distribution of
(My, M, a1,ws). Let DY and DYV be the distributions of (M, Ma, a1, w2) on YES and NO instances,
respectively. Thus, DY = (M, Mo, a, DM, Ms,a)» Where pas, ar, o is the distribution of Max conditional
on r1(My,z) = a. For any My, Ms, a, we let Dé\/fl,Mz,a) = DM, , My, and D]\g/[hM%a = Uy, denote the
distribution of wy given the message a and edge incidence matrices M7, Mo for the YES and NO instances,
respectively. (Here, U, denotes the uniform distribution on {0, 1}".) Moreover, note that the distribution of
(M, M, aq) is identical in both the YES and NO cases. Thus, by Lemma and part (1) of Lemma
we have

m’fn bits of commu-

1DY = DY lwa = Eatyptoia [ ID6, a0 = Dbty ntzl]

=0.
Moreoever, since ay = ro(Mj, Ma, a1, w2), another simple application of Lemmaimplies that
Y N _
|D; = D3|, =0,

where D%/ and Dév denote the distributions of (M7, Mo, a1, ag) for the YES and NO instances, respectively.
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Figure 1: Mlustration of P*(v), where v = {v1,...,v10} (marked red). Edges of M; are shown as solid

lines, edges of M, as dashed lines. The set of paths P(v) is the set of edges between the marked nodes. The
paths vs — vg, v7 — vg and vg — vy consist only of an edge of M,, and hence are not grounded. Grounded
paths P*(v) are marked green (paths v; — v9 and v3 — vy).

Now, let £ be the event for the YES case that is guaranteed by Lemma Recall that £ occurs with
probability 1 — O(v) over Py, A o and the random choice of X* € {0,1}". Moreover, Lemma [3.4] implies
that for any YES instance conditioned on &£, we have that for all £ < 7471,

2\ ? ~ 5 CA2%v*n ¢ 645%n\ "
—_— <|——— <
() 32 o= (57) = (%)

ve{0,1}"
|v|=2¢

where ho, By are defined as in Definition Thus, letting gas, Mo, Ms,a;1 a0 denote the distribution on M3z
conditioned on 7 (M7, x) = a; and ro(M7, M2, a1) = ag, we see that part (2) of Lemma implies that,
given the occurrence of £,

HQM17M27M37(117(12 - UM3Htvd = 0(5/ V19— O‘)- &)
with probability p > 1 — % > 1 — O(0) over the choice of M3 (since y was chosen small enough to

guarantee that Pr[€] > 1/2). Therefore, since £ only depends on X*, M;, M>, Lemma 3.5]and (§) imply
that

IDY — DY |ltwa = Pr(€] - Enry My a1.an Bty [lans 0o 03,0102 — Unis |lewal] + Pr[E] - 1
< Prl€] - Eppy Myarazle [P O0/V1—a) + (1 —p) - 1] + Pr[€]
< Pr€](1 - p(1 - O(6/V1 —a))) + (1 — Pr[€])
<1-Pr[€]-p(1-0(5/V1 - )
<1-(1-0(7)1-0(6)(1-0(/V1-a))
=0(7) + 0(8) + O(5/V1 — a),

where D?; and D?; denote the distribution of (M, My, M3, aq,as,ws) in the YES and NO instances,
respectively. We choose d, v to be small enough so that the above total variation distance is less than 1/3.

Finally, observe that since a3 = r3(M7, Ma, M3, a1, az,ws), the total variation distance of the distri-
butions of (M7, Ma, M3, a1, a2, as3) in the YES and NO cases is also less than 1/3, which means that IT
cannot distinguish the YES and NO cases with advantage more than 1/6 over random guessing, i.e., the
success probability of IT is less than 2/3.

Hence, it follows that any algorithm II for DIHP that succeeds with probability at least 2/3 must use at
least cn bits of communication, for ¢ = myg’. This completes the proof of the claim. [ |
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4 Proof of main lemma (Lemma 3.4)

The main result of this section is a proof of Lemma [3.4l The main idea behind the proof is to use the
convolution identity to express the Fourier transform of A9 in terms of the Fourier transform of f; and fs.
Specifically, for every v € {0, 1}", we have, by the convolution identity,

haw)=Fi @)= Y fi(w)- fw+wv). (6)

we{0,1}"

Besides the convolution identity, we use the structure of the Fourier transform of f; and f,. Specifically,
we use the fact that f, and f2 are supported on edges of M; and My, respectively (equivalently, they are
zero except on the column span of (Mj; My)). This allows us to classify the terms f1(w) - fo(w + v) on the
rhs of (6) according to the weight of w and w + v. We would like to show that only very few large weight
coefficients fl( ) can contribute to h2( ) for a low weight v. Note that this is intuitively necessary for the
proof, as according to our bounds the ¢3 mass of coefficients of ]?1 or fg grows with the weight level. We
prove that a high weight coefficient is unlikely to appear on the rhs of (6) if the coefficient on the lhs is low
weight in sectlonlzl;f] (see Lemma.5)). Then in section #.2] we show how these bounds imply that not too
much £2 mass of f; can be trasferred from high weight levels to low weight levels (see Lemma . Finally,
in section[4.3] we put the developed results together into a proof of Lemma 3.4

4.1 Useful definitions and basic claims
The following definitions form the basis of our analysis.

Definition 4.1 Given matchings My, My such that My U My is a union of paths, a vector v € {0,1}" is
called admissible with respect to My, Ms if v has an even number of nonzeros on every path in My U Ma.

Definition 4.2 (Path decomposition of admissible coefficients) Given M, Ms such that My U Ms is a
union of paths, for any v € {0, 1}" admissible wrt My, Ms, let P(v) denote the unique set of vertex disjoint
paths in My U My whose endpoints are exactly the nonzeros of v.

Claim 4.3 The path decomposition is well defined for any admissible v € {0, 1}".

Proof: It suffices to show that for any admissible v the set of paths P(v) exists and is unique. Existence
follows immediately from definition of admissibility. Uniqueness follows since M7 U Ms is a collection of
simple vertex disjoint paths. u

Definition 4.4 Given My, My such that My U My is a union of paths, for any v € {0,1}" admissible wrt
My, My, let P*(v) C P(v) denote the set of paths in P(v) that contain at least one edge of My. We refer to
P*(v) as the core of the path decomposition of v.

Note that paths in P(v) \ P*(v) are all of length one, i.e. edges of M. See Fig.[I]for an illustration.

We will often associate matchings M with the sets of vertices that they match. For example, for w €
{0, 1}", we will write w C M to denote the fact that w is a subset of the vertices matched by M;. We will
say that w is supported on edges of M if for every e = {u,v} € Mj, one has either w N {u,v} = () or
w N {u,v} = {u,v}. The following claim is crucial to our subsequent analysis:

Lemma 4.5 For every even integer A > 2 and o € (0, 1), if matchings M, My are sampled from Py A q,
then the following conditions hold for every {,k > 0. Conditioned on M, for every subset w C M such
that lw| = 2k, we have the following:

11



-1
(1) Pryp[3M' C My st |P*(w + M')| = £ | My] < (O(A) (™) (") .
(2) Forevery M' C My, one has |P*(w + M'")| > |w|/A.

Proof: The second claim follows by recalling that our input distribution on matchings is such that M7 U My
does not contain cycles, and the largest path length in the graph induced by My U M5 is not larger than A.

We now prove the first claim. We first upper bound the number of w C M such that |[P*(w+ M')| = ¢
for some M’ C Mo, i.e. the core of w + M’ contains ¢ paths. We then show that since the distribution of
M is invariant under permutation of edges of M, this gives the result.

We now upper bound the number of sets of ¢ paths that each contain at least one edge of M7, given M,
and Mo (we refer to such paths as grounded). Given M, M>, in order to select a grounded set of paths,
it suffices to first select £ edges from M7, one per path (at most ("éz) choices). Then order these edges
arbitrarily, and foreacht =1,..., ¢,

e choose whether the path starts with an edge of M or an adjacent edge of M5 (three choices);
e choose a direction to go on the corresponding path in M; U M» (at most 2 choices);
e choose a number of steps to go for (at most 2A choices).

Putting the bounds above together, we get that for any M7, Ms, the number of grounded sets of & paths is
bounded by (12A)* (”42).

Next, we recall that the matchings M;, M are generated as follows (our description here is somewhat
more detailed than in Section 2] and results in exactly the same distribution; this formulation is more conve-
nient for our analysis):

e Let M; be a perfect matching that matches, for each i = 1,...,n/2, vertex i to vertex i + n/2. Note
that edges of M are naturally indexed by [n/2]: the i-th edge matches i to i + n/2, fori € [n/2] =

{1,2,...,n/2}.

e Choose a permutation 7 of [n/2] = {1,2,...,n/2} uniformly at random. Partition edges of M into
r =n/A sets S1,...,S, with A/2 edges each, where A is an even integer that divides 7, by letting
foreachj=1,...,n/A

s (e (200 (2o 0e2) (2o n 4 2))

e Foreach j =1,...,n/A, let M5 ; match, foreachi =1,...,A/2 — 1, the node © (% (G —1)+1)
to the node 7 (% (j —1)+1i+1) 4+ n/2. Note that [ My ;| = % — 1 for each j.

Let M7 = U;:l ML]' and My = U;:l MQJ.

By the derivation above, we have that for any permutation 7, the number of grounded sets of k paths
in the union M; U M, generated by our process is bounded by (12A)¢ (”42). Denote this set by P*() and
note that for every P there exists a unique w C M such that [P*(w + M')| = ¢ for some M’ C M.
Specifically, w = P N M; satisfies these constraints. Let S(7) := {P N M; : P € P(m)}. Thus, we
have |S(m)| = (12A)° (%2). We now note that S(id) is hence a fixed set of at most (12A)£("é2) subsets of
edges. At the same time for every permutation 7 of [n/2] one has

S(m) = 77 1(S(id)). @)

Since 7 is uniformly random, we thus get for every w € {0, 1}"™ with |w| = 2k

12



Pr.[w € S(r)] = Pryjw € 7~ 1(S(id))] = Pr[r(w) € S(id)]

= [S( )I/(n/2> = (12A)€<”22> (”£2>_1’ ®)

where we used the fact that 7(w) is uniformly random in the set of unordered k-tuples of edges of M; when
7 is uniformly random. This completes the proof. [ |

4.2 Bounds on expected transfer of Fourier mass

In this section, we use the convolution identity (6) to bound the contribution of Fourier transforms f1 and f
to the Fourier transform h2 of ho = f1- f2 (see Definition . The main result of this section is Lemma
The more basic bounds on the Fourier transform of f; and fg are provided by Theorem |4.6| stated below
and proved in section |7} Part (1) of the theorem shows that f1 and fg are supported on edges of matchmgs
M and My respectively, while parts (2) and (3) use this fact to derive upper bounds of the form (O(s) /)"
(i.e. with the improved exponent of ¢ as opposed to 2¢ that we are looking for) for the amount of mass on
weight level £ in J?l and fg respectively.

Theorem 4.6 Let M € {0, 1}™*" be the incidence matrix of a matching M, where the rows correspond to
edges e of M (M., = 1 if e is incident on u and 0 otherwise). Let g : {0,1}"™ — {0,1}* for some s > 0.
Let a € {0,1}® and let A, cquced == {z € {0,1}™ : g(2) = a}. Further, let f : {0,1}" — {0, 1} denote
the indicator of the set

A:={ze{0,1}": g(Mz) =a}.

Suppose that |A| = 2" for some d € [0, n].
Then

1. the only nonzero Fourier coefficients of]/‘\are of the form f(MTw)for some w € {0, l}M;

2. foralll € [0 : d] and every Q C M

22 > Fv)? < 2190(64d/0)",

ve{0,1}",|v|=20+|Q)|
v2Q

where |Q)| denotes the number of vertices in Q;
3. 22 > vef0,1}n ]?(v)2 = 2% (Parseval’s equality).
The proof of Theorem [.6]is given in section

Lemma 4.7 For any v € {0,1}", one has (fT\fQ)(U) = 0 if v is not admissible with respect to My, Mo,
and (f1 - f2)(v) = fi(P(v) N My) - fo( P(v) N My) otherwise.

Proof: By the convolution identity (6)) we have (m)(v) =D ze{o1}n fl(x)fg(v +z). By Theorem
(1) applied to the sets A;, messages a;, functions g;, i € {1,2} (as per Definition we also have that
fi(z) # 0 only if = is a union of edges of M, and fa(v + x) # 0 if v + = is a union of edges of M.

We can thus write (fT?g)(v) = D M{CMy, MyC M, ﬁ(M{)]?Q(Mé) Since M and M are edge disjoint

M{+M,=v
and M7 U M is a union of paths, we have that for every admissible v € {0, 1}", there exists a unique pair
M{ C My, M} C My such that v = M7 + M. [ |
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Lemma 4.8 For any w C M; with |w| = 2k, the number of v € {0,1}" with |v| = 2¢ and |P*(v)| = ¢
such that v = w + M} for some M} C M is upper bounded by 2%F.

Proof: For each path MU Ms, designate one endpoint to be the left endpoint and the other to be the right
endpoint arbitrarily. Note that for each path, this fixes an ordering of vertices (left to right). We associate
two binary variables with each of the two endpoints of each edge e € w. Denote these binary variables by
L(e) and R(e). Then for each v € {0,1}" and every e € w, we let L(e) = 1 if P(v) extends beyond the
left endpoint of e, and 0 otherwise. Similarly, R(e) = 1 if P(v) extends beyond the right endpoint of e,
and 0 otherwise. Note that the collection of variables {(L(e), R(e)) }ecw uniquely determines P(v). On the
other hand, the number of possible assignments of L(e), R(e) for e € w is upper bounded by 22*, proving
the lemma. |

We now state and prove Lemma[4.9] For an event &, we let I[£] denote the indicator function of £.

Lemma 4.9 For every even integer A > 2, every a € (0,1), every s < n/256, and any protocol 11 for
DIHP(n, A, «), the following conditions hold for sufficiently large n. If fi, fo : {0,1}" — {0,1} are
indicator functions of A1 and Ag, respectively, then for every 0 < £ < 5,0 < k <n/2, and w € {0,1}"
with |w| = 2k, the following conditions hold for every My, A;.

(1) Ifk <Y, then

n 2
En, <’i ‘) o | [‘§5| > 23:| . Z ‘]/"\Q(w+v)2 M, Ay| < 4E(O(A))k(645/(€_k))5*k'
? ve{0,1}"

|v|=2¢

Q) Ifk > ¢, then

E 2y 1| A2l s o Y R(w+v)?| My, Ar| < (0(A))'8F ko)
Mo ’AQ‘ on = 2(W v 1,81 > n/2 .
veq{0,1}™
|v|=2¢

Proof: We classify elements v according to the size of the core P*(v). Let w = M{ C M. For any

v € {0,1}",|v| = 2¢ admissible wrt M;, Mo, note that | P(v)| = ¢, as every path in P(v) contributes 2 to
the weight of v via its two endpoints. Note that P*(v) C P(v), so |P*(v)] is between 0 and

‘
Z fa(w +v)? = Z Z Fo(w + )2,

ve{0,1}"™ r=0 ve{0,1}™
|v|=2¢ |v|=2¢
|P*(v)|=r
P*(v)NMi=w

Since paths in P(v) \ P*(v) are all of length 1 and correspond to edges of M, any admissible v can be
represented uniquely as v = v’ 4 z, where P*(v) = P*(v') = P(v') and © C M is supported on edges of
M and is disjoint from P*(v) (see Fig. [1] for an illustration of P*(v)). Substituting this into the rhs of the
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equation above, we get

V4
Yo hw+0)?=Y" Y hw+v)?

ve{0,1}7,Jv]=2¢ r=0 ve{0,1}"
|v|=2¢
[P*(v)|=r
E —~
S Y% hwedrapon
r=0 ’UIE{O,].}n xC Mo

|v/|=2r zNP*(v')=0
|P*(v")|=r |z|=C—r
P*(v)NMi=w
By Theorem (2) invoked with A = As, f = fo,g =92, M = My, Q = P*(v')N Mo, k=0 —r,

and d = logy (&—2' , we get

on 2 ‘A2| _ ~ , 9 |Q‘ "

. > S < _ ,

(!A2> ! [ on =2 } > f(w+v +a)? <2964s/(0 - 1))
JEQMQ

zNP*(v')=0 9)

|z|=0—7r

< 2% (64s/(0 — 7)),

where we have used the fact that |Q| < 2/ (the set P*(v') is a disjoint union of edges of M; and My that
form paths; the number of edges of My on each such path is no more than a factor of 2 larger than the
number of edges of M7). Putting the bounds above together, and taking expectation over M conditional on
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M and A, we get that Ejy, [Y1] is bounded from above by

min{k,¢}
2" \* _[|Ag] _ -
E | >9275 .
i <A2\> [2n = ZO
min{k,¢} on 2
el y 2 ()
r=0 v e{0,1}"™
[v'|=2r
[P (v")|=r
L P*(v)NMi=w
min{k,¢}
<Eu, |22 (64s/(0— 1))
r=0
[ min{k,¢}
< En,
| r=0
min{k,¢}
— 9tk .

r=0

where I[€] stands for the indicator of event £. We have used (9) to go from the second line to the third,
to conclude that Y- vecpo 13n I[P*(v)) N My = w] < 22k and obtain the fourth

as well as Lemma {4

Z Z fa(w + o' + z)?
v e{0,1}"™ xC Mo
[v'|=2r zNP*(v')=0
|P*(v)|=r |z|=L—r
P*(v")NMi=w

’AQ, —s N ! 2
I[zn >277 - E fo(w 4+ v + x)
xC Mo
xNP*(v')=0
|z|=0—r

> IP() N My = w]| M, Ay

v'e{0,1}"
[v'|=2r
P )l=r

[v'|=2r

|P

line. Note that the summation above is over r between 0 and min{k, ¢}. To see that the size of the core
P*(w 4+ MJ}) = P*(v) cannot be larger than 2/, note that each path in the core contributes two distinct
endpoints to the weight of v. To see that the size of the core P*(w + M) = P*(v) cannot be larger than £,
note that every path in the core must contain at least one edge in M5 that belongs to w, and these edges are

disjoint.
We have by Lemma[4.5] that

(W)l=r

n/2

My, Ay

M17A1

2%k 9%k N (64s/(0— )T X[EAMG C My ¢ [PH(w + Mj)| = r]| My, Ay

Z (643/(£—T))£_r -Pl']w2 [HMé Q M2 : |P*(w+M£)\ = 7’| Ml,Al] = }/2,

Pr (304} € M 1P + 317 = r | 311 < o) (") (2 /2>_1.

r
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Substituting this bound into the equation above, we get

min{k,¢}
Yo <16 " (64s/(0— 1) Pr[3My C My : |P*(w + Mj)| =r | M)
mi:;)e} (11)
k ’ L—r r n/2 n/2 -
<ut Y G- o (") () =n
r=0

We now consider two cases, depending on whether k£ < £ or k > £ (the cases overlap, giving us two rather
similar bounds for k = /).

Case 1: k < (. Using the bound (n/k)* < (}) < (en/k)* in (TI)), we obtain

min{k,¢}

~1
Vs = 16F - (64s/(¢ — 1)) - (O(A))" n/2\ (n/2
P> ()(%)
b -1
=16~ (64s/(¢ — r))e_’" L (O(A))" n/2\ (n/2
» ()
k Nk (12)
<167 - (64s/(¢ — )Y "(64)F [M} A(O(A)) (en/2r) ((n)2) k)"
r=0
k - —Tr
R e Y e .
r=0

::}/4

We now note that W exp(alna+blnb—(a+b)In(a+0b)) < 1foralla > 0,b > 0, by convexity

. . atb | .
of the function x In z. Furthermore, for fixed a + b, the maximum of % is achieved when ¢ = b and

equals 2°1°. Applying the first bound with a = ¢ — k,b = k — r gives
(€ — k) F(k —r)kr

=T <1, (13)
and applying the second bound with @ = r,b = k — r gives
k* i
k= < 2% (14)
Substituting these bounds into (12)) yields
_ 4L )k - k) Rk =)k . K
Yy = 4% (O(A)¥(64s/(¢ Z 128s/n)*~ = e
- —r Kk
< 4" (O(A)F(64s/(0 — k) 2(1283/”)1C k)T (by (13))
r=0
k
<4 (O(A)F(64s/(£ — k)Y (128s/n)" " (by (T4))
r=0

< 4'(O(A)) (64s/ (€ — k)",
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Substituting this into and then in (10)), we get the result for the case k£ < ¢ (Case 1).

Case 2: k > (. Using the bound (n/k)* < (}) < (en/k)* in (TI), we obtain

k

_ 16" (0(1))" ZZ:(MS/(@_ )T (n/2> (n]£2>1

r
r=0

y4
< 168 (O(A)) S (64s/(€ 1) (/2 ~FkE /o

<1650 (F=L Hzg:(ms/(z ) [ AL
n/2 —r ’I“T(k — g)k:—f
< 168(0(A)! | — 12 e
O () S0 e
k¢ k—t £ kszﬁ
< k { l—r
o) () s g
k— 0\t ¢ Kk
<165(0(A)! | —= 12 b
o) (A7) D (=
=Y.
Again, by convexity arguments as in Case 1, we have e fj) e - gz_ ot < 26tk Substituting this in the

derivation above, we get

k- 0\t < . ¢ Kk
12 -
n/2 > Z( 8s/n) rT(0— 7)o (B — 0)k—tet

Ys = 164(0(A))! (
r=0

k— 0\ .
< 16%(0(A)) L2tk <n/2> ;(1285/7@)4

<oy (5

since s < n /256, by assumption of the lemma. [ |

4.3 Putting it together

We now present a proof of Lemma[3.4] which we restate here for convenience of the reader:

Lemma There exists C > 1 such that for every even integer A > 2, v > n~Y/® smaller than an absolute
constant, and o € (0, 1), the following conditions hold for sufficiently large n divisible by A: Let 11 be a
protocol for DIHP(n, A, o) such that |II| =: s, where s = s(n) = w(y/n) and s(n) < mv‘:’n. Then,
there exists an event & that only depends on X*, My, My and occurs with probability at least 1 — O(7y) over
Pr.A,o and the choice of X* € {0,1}" such that, conditioned on &, one has
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1) |By|/2" > 277",
2 ~
2) <‘B2‘) 2vef0,1}m,Jo|=2¢ ha(v)? < (CA%Y4n /) for all £ < ~*n.

Proof:
We denote

£ = {|A1’/2n > 2—5—10g2(2/7)}
(15)
& = {|Ad/2" > 2778 for te {1,2}}  (note that & C &),

We will later show that for every t € {1,2},
Pr(&] > 1—-0(y). (16)

Note that neither £1 nor & coincides with the event E—we define £ at the end of the proof as the intersection
of &£ and the success event for an application of Markov’s inequality (see Eq. and Eq. (26)).

We prove that if matchings M7, My are selected according to the random process Pj, A o, then the
following conditions hold:

1) ‘BQ‘ |§,}‘ . |1;f| for all choices of My, Mo, f1, fo;

(2) Conditioned on & forall £ € [1,2s],

() X fer <o

ve{0,1}"
|v|=2¢

(3) Conditioned on &; for all £ € [1, 2s],

n 2 .
<|f°>2\> Yo fi fa0)? <(0(A% ) 5/0)".

vef{0,1}"
|v|=2¢

We prove claims above, then put them together to get the proof of the lemma. Claims (1) and (2) are
simple, and the proof of the lemma from the claims is simple as well. The bulk of the proof is in (3). We
now give the proof of the lemma assuming the claims above.

We now combine (1)-(3) to obtain the result of the lemma. Recall that hy = f; - fo.

First, for ¢ € [1, 2s|, we have that (3) implies

n o\ 2 .
(E |> > - RW) < (0(8%/7)s/0) < (CA*'n e
oy

for sufficiently large C, since s < m'y n by assumptlon of the lemma.
It remains to show that this bound holds for all £ < v#n, i.e., we need to consider ¢ in the range [2s, v*n].
We note that, conditioned on &, one has

gngn gn
Bo|  [A4] [As] T

(225) S 2457
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where we have combined (1) with the fact that conditioned on £ C &, one has |A4|/2" > 9—s~logy(2/7) >
2725 for every t € {1,2} and sufficiently large n, since v > n~%/® and s = s(n) = w(y/n). Thus, by
Theorem [.6] (3) (Parseval’s equality), we have

(2) 5 hors () % hers o
—_— U [
B L T AUBY ! —\ t| (17)
ve{0,1} ve{0,1}n

|v|=2¢
fort € {1,2} and all £.

We now show that the rhs above is dominated by (CA2y*n/¢)* for ¢ € [2s,v*n], provided that C > 0
is a sufficiently large absolute constant. Indeed, recalling that A is a positive integer, we note that as long as
C > e, we have that (CA2y*n/¢)* is monotonically increasingﬂ for ¢ € [2s,~*n]. Thus, the smallest value
is achieved when ¢ = 2s and equals

(CA*yin/(25))* > (4CA*y'n/(17n))* > (4CA? [7)* > 2%,

where we have used the assumption that s < m'yf’n < %'y%. This establishes part (2) of the lemma
statement. Also, note that (1) of the lemma statement holds, since

|Ba|
on

>2—45>2 vn

since 45 < 4 - (7°n/2048CA?) < ~4*n. This completes the proof of the lemma assuming claims (1)-(3)
above.

We now prove the claims.

First, we establish Claim (1), which follows from the fact that M; U M> does not contain cycles. Indeed,
by (6), we have

= > Aw) ) =AH0" RO+ Y Aw) - fa(w),

we{0,1}n we{0,1}m\0n

and by Theorem 1), allw € {0,1}™\ 0™ such that ﬁ(w) # 0 and fg(w) = 0 can be perfectly matched
by both M; and M. Let M] C M denote the set of edges of M; that perfectly match elements of w to
each other, and let M} C M, denote the set of edges of M that perfectly match elements of w to each other.
However, this implies that A/] U M) must be a union of cycles (note that M/ and M} do not share edges by
our construction), which is impossible as M; U M, does not contain cycles. Thus, the second term on the
rhs of the equation above is zero, and we get

B2| n n (nn
Bl )] = 1701207 =
as desired. This establishes Claim (1).

Let us now concentrate on Claim (2). Note that the claim only applies to £ > 1, which will be useful for
simplifying calculations somewhat below.

|A1] Az
on gn

Typical messages. First, note that for each ¢ € {1, 2}, the function g; induces a partition K}, K%, ... K%,
of {0,1}™, where s is the bit length of the message a; (recall that we assume wlog that messages are the
same length for all ¢). The number of points in {0, 1} that belong to sets K! of size less than 2™t~ is

2Since the function (ea/b)® is monotone increasing for any b € (0, b].
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bounded by 2° - 42™t7% < 2™t je., at least a 1 — ~ fraction of {0,1}"™* is contained in large sets Kf,
whose size is at least y2™¢ 5. We call a message m typical if |K!,| > 2™ ™5 Moreover, we say that
a; = gi(M;x) is typical if M;x is typical. We have that a; = g;(z) is not typical with probability at most y
if z is uniformly random in {0, 1}™. Letting d := log, (2" /|A1]), we now conclude that with probability
at least 1 — /2 over the choice of X* € {0,1}", one has d < s + logy(2/7). Since v > n~'/5 and
s = w(y/n) by assumption of the lemma, we have d < s+ log,(2/v) < 2s for sufficiently large n. We now
invoke Theorem (2) on the function f; with d < s + logy(2/v) < 2s, which establishes Claim (2).

Finally, we establish Claim (3). First note that by Lemma[3.3] (1) applied to A; and M>, we get that
M, X* is uniformly distributed over {0,1}"* when X* is uniformly distributed over A;. We thus have
that the argument on ‘typical’ sets from the above paragraph applies even when we condition on M; and
the first player’s message a; (equivalently, on the set A1). Thus, with probability 1 — O(~), we have that
logy (2" /]A2l) < s+ logy(2/7), which establishes (16).

Thus, assume &; holds. Recall that d = log, (2" /|A1|) < s+ logy(1/7v) < 2s. We now claim that for

every k < 2s,
2n 1\ ? -
<|A |> > AW < (128s/k)" (18)
1 we{0,1}"
|w|=2k
and

2 \? ~
(‘ > > Alw)? <ob (19)

A1| we{0,1}"

|w|>4s

Indeed, holds by Theorem4.6] (3):

on \ 2 _ -
(n) X AW ¥ Aw?

weq{0,1}" we{0,1}"
|w|>4s

= 2d
< 245‘

For (T8), note that if &£ < d, then Theorem 4.6} (2) implies that

n 2
( ji > Z ﬁ(w)Q < (64d/k)* < (128s/k)*,
| 1| wle‘fi()?l}n
w|=2k

as desired, while if d < k < 2s, then Theorem[§.6] (3) implies that

(,i,) S Riw? <2

we{0,1}"
|lw|=2k

< (128s/d)?
< (128s/k)¥,

since (128s/k)¥ is a monotonically increasing function in k for k < 2s. This establishes (T8).
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Next, by Lemma we have that for any v € {0,1}", (ﬂ)(v) = 0 if v is not admissible with
respect to My, Ms, while (f1 - f2)(v) = ﬁ(P(v) NM) - fg(P(U) N M>) otherwise. Thus, for any ¢ > 0,

SRR = 3 FL(P) N M1)? - fo(P(v) N My)?
el Vet

v admissible wrt M7, Mo

Z Z Fw)?- fo(w+v)%

ve{0,1}" we{0,1}n
|v|=2¢

Note that the second line follows from the first by letting w := P( )NM; (so that w+v = (P(v)NMp)+v =
P(v) N My and, thus, f1(w)?- fo(w+v)% = fi PQJ )N My)?% - fo(P(v) N M2)?) as well as noting that there
exists at most one w € {0, 1}" such that fl( )2 falw + v) # 0 (see the proof of Lemma .

We now further partition the set of w € {0, 1}" in the inner summation on the rhs above according to
weight and obtain

> fi- fo(v)? = oY AW)? Blw+v)?

ve{0,1}" ve{0,1}" we{0,1}"
|v|=2¢ |v\—2€
Y Y Aw? by
k=0 ve{0,1}" we{0,1}™ 20)

[v|=2¢ |w|=2k

AL
-3 Y @2 | S Falw+o)?

k=0 we{0,1}" ve{0,1}"
|lw|=2k |v|=2¢

Note that we have restricted the summation over k to the range [0, A - /] in line 3, as this is justified by
Lemma4.3] (2), which implies that | P*(w+ M")| > |w|/A for all M’ C My, and so, |v] = |w+ (v4w)| =
|lw+ M'| > |w|/A, or k = |w]/2 < A - £ for all v, w such that fi(w) f2(v +w) # 0.

Taking the expectation of with respect to Ms (conditional on M7, A1, and &), we obtain

2n \? —
B | () 3 FRGR|aAve:

ve{0,1}"
|v|=2¢
2" 2 on 2 .
- E Wl Th(0)?| My, AL E
(‘A1|> e <\A2\> anl fo(v)| M1, Ay, &
ve{0,1}
|v|=2¢

MD

2 2
on ,\ on ~
( ) E fl(’LU)Q‘E]\/[2 <A > E fg(w+v)2 Ml,Al,EQ
k=0 1‘ we{0,1}" | 2|

ve{0,1}"
|w|=2k |v|=2¢

In what follows, we apply Lemma to the inner summation on last line above. In order to reason
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about ‘typical’ messages as defined above, we let
A A.
'—I[|21| 2_25] and I} '——I[|22| 2_25] .

Note that A
> 1 [‘ ’ 2—s—log2(2/7)} and I5 > 1 [‘23’ > 2—8—10g2(2/7)} . 1)

Specifically, we have for that for any £ < 2s,

on \ 2 At ~ g \2 .
<m1’> Z Z fl(w)Q'EMg (m’) Z fz(w+v)2 My, Aq,&

k=0 we{0,1}" 27 vefoyn
[wl=2k jo|=2¢
on \2 &4 on ~ ;
< > Z Z fl EM2 I* I*<‘A ‘> Z f2(w—|—v) MlgAl,gQ
F=0we{0, 13" ve{0,1}"
|lw|=2k v]=2¢
27 \? on
= B I My, A
_<’A1’> | 5 Ty e <\A|> 2 lwt )| My, Ay
we{0,1} vef01}
|w|=2k v]=2¢
2m 1\ 2 Al o on \ 2 ~
_ * .
S(E) Y T A |(2) e N ol
F=0welo, 1) ve{0,1}"
|w|=2k v|=2¢

where we have used to conclude that both I7 and I3 equal 1 when &> occurs, as well as the fact that
Pr[&] = 1 — O(y) > 1/2 (when + is smaller than an absolute constant) by (16) and the fact that I7 is
independent of M.

We now apply Lemma[4.9]to the expectation over My in the last line above. Since Lemma[d.9| provides
two bounds (one for ¢ < k and another for £ > k), we split the summation into two and apply the respective
part of the lemma to each summation. Specifically, we have

2n . n \? ~
2<|A1> S TTN (|A|> Lo Y Bawtv)?| M A

k=0 we{0,1}" ve{0,1}"
|w|=2k |v|=2¢

on \ 2 ¢ R on \ 2 R
() X X A |(5) B X Ao
1 k=0 we{0,1}" 2 ve{0,1}"
|w|=2k [v]=2¢

+2(|A1> Z > fiw)? Eyg (|ZQ|> Y falw+v)?| My, Ay

k=0+1we{0,1}™ ve{0,1}"
|w|=2k |v|=2¢

= Sl +527
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where we let

on 2 ¢
51:2(| A1|) TS 4(0(A))F(64(25) (¢ Y A
k=0 we{0,1}"
|w|=2k
9 2 - AN ~
=2 () e 3 @ (SR) - 3
1 k=041 wle{lﬁ,ll];"
w|=2

We now proceed to bound the terms S and So separately.

Bounding S;. We have

o \2
slzz(w) SR SCEVECIERIT we{%nﬁ
|w|=2k

14

n o\ 2 ~
=2y a0t/ () X A

k=0 we{0,1}"
|w|=2k
<4 Z 5(64(25) /(€ — k)" 7F - (64(25) k)" (by Eq. (T8))
‘ (22)
= (O(A)* Y ((1285) /(£ — k)*~F - (1285) /k)*
k=0

V4 gf

= (O(A))e((mgs)/@f Z m
k=0
l

(a b)a+b

(O(A) ((1285)/0)¢) 2 (since < 2%t for all a, b > 0)

a®bb

i
o

(128s/0) (O(A))*

<
< (0(A)s/0)".

Note that we have absorbed the factor of 4! into (O(A))* crucially using the assumption that £ > 0.

Bounding S;. Observe that

Sy =T § (O(A))'8" (%)k_g.(‘i]f > Aw)?

k=(+1 we{0,1}7
|w|=2k

We split this summation further into two summations, one over k& € [¢ + 1,2s] and the other over k €
[2s, A - /] (assuming that the second range is nonempty).
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Casel: k € [{+1,2s]. We have

S O (B0 w(2) % A

1]

k=0+1 we{0,1}"
|w|=2k
s k—¢ k—¢
< ) (O(4)) 8t <n/2> -(64(25)/k)*  (by Eq. (18))
k=(+1
. ke — 0)k—tet
< (0(A)s/0)" Y (20485/71)'“_4(161 23)

k=041
s

< (0(A)s/0)* Z (20485 /n)F* (since a®b®/(a + b)?*° < 1forall a,b > 0)

k=(+1
s

< (0O(A)s/0)* Z (20485 /n)k—¢ (since s < n/4096 by assumption)
k=0+1
< (0(A)s/0)".

Case 2: k € [2s,A - {]. Note that increasing the upper limit in the summation to A - 2s > A - ¢ may

only increase the sum since the summands are non-negative. We upper bound the sum of k£ in this range as
follows:

2A-s k—¢ 2
bty (F= N e (20 7 (w
S @0 (20 g (1) 8 Aw

k=2s we{0,1}™
|lw|=2k
S eatiteon (K="
< > (0(A)'8 T3 -2 (by Eq. (T9)
k=2s
2A-s k_/ k—¢
< Y @) 0 (E20) T sasi
k=2s

where we have used the fact that

k 2s
() () e
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We now upper bound the expression on the last line above as follows:

2A-s _
> (0(2)) 80 (Z;)k L (ss/b)

k=2s

2A-s _ N\k—Lpt
< <0<A2>s/e>fZ;S(omwn)k-fW

© 24
< (0(A?%)s/0) Z (O(A)s/n)** (since a®b®/(a + b)*** < 1 forall a,b > 0) &9

k=2s
0

< (0(A%)s/0)" Y (O(A)s/n)k*
k=t+1
< (0(A%)s/6)f
Putting Eq. (22), Eq. (23) and Eq. (24) together, we get that for every 0 < ¢ < 2s,
Si+ 92 < (0(A)s/0)" + (0(A)s/0)" + (O(A%)s/0)" = (O(A%)s/0)",

where we again used the assumption that £ > 0 to absorb a constant factor into the O(A) term. Substituting
this bound in the derivations above, we note that for every 0 < ¢ < 2s,

o\ 2 —
Fars <|B) ST R RW?| My, ALE | = (0(A2)s/0).
27 eqoyn
|v|=2¢

Thus, Markov’s inequality implies that with probability at least 1 — O(~y), one has that for every 0 <
¢ < 2s, there exists an absolute constant K > 0 such that

on 1\ 2 —
Pry, () SRR > (K(A2)s/0f| M, Ay & | <4 @)
|B| vef{0,1}"
|v|=2¢

Therefore, by a union bound over 0 < ¢ < 2s,

n o\ 2 .
Pryy, <é|> Z fi- fa()? > (K(A2)~)s/0) for some £ € [1,2s]| My, A1, &

i @)

<Y A =00),

>1

since y is bounded from above by an absolute constant. We now define the event £ (promised by the
lemma) as the intersection of & and the success event for the application of Markov’s inequality above.
This completes the proof of Claim (3), as desired. [ ]
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5 Gap analysis (proof of Lemma 2.4)

In this section, we first give informal intuition about the existence of a MAX-CUT value gap in our instance
and then give the formal proof. Recall that in the YES case, the MAX-CUT value is exactly the number of
edges in the graph, as the graph is bipartite. The involved part of the argument consists of showing that our
input graph is Q(1)-far from bipartite in the NO case, with high _probability. Recall that our input MAX-
CUT instance in the NO case is the union M 1 U Mg U G where M 1, M 2, G are obtained by first generating
(M, My, G) from the distribution P, A o and then keeping each edge independently with probability 1/2.
Note that the graph G generated in this way is distributed as gm L(1—n)/n for a sufficiently small constant
n > 0, i.e., it is slightly below half of the threshold for emergence of a giant component.
At a high level, the proof that M; U M, U G is Q(1)-far from bipartite proceeds by showing that
M, U M, U G contains an Q(n) size connected component (giant component) and then showing that this
component is robust with respect to removal of a small positive fraction of the edges of the graph. To
see why a giant component exists in our graph, it is useful to first see why it does not exist in the graph
M1 U Mg U M3, where Ml, M2 are (nearly)-perfect matchings subsampled at rate 1/2 as above, and M3
is a yet another perfect matching subsampled at rate 1/2. Note that the number of edges in this graph is
very close to the number of edges in our graph My, U M, U G, as the expected degree of every vertex in
G is 5( ) just like in Ms. There is a subtle conditioning issue that precludes a giant component in
M1 U M,y U M3 The reason is that M7 U Mo U M3 is (almost) a 3-regular graph, and neighborhoods (of
small sets) in it expand by less than a factor of 2 (see Fig. |2} left panel), so subsampling at rate 1/2 pushes
the process slightly below the critical limit and destroys the growth. This is because a vertex can only be
incident to at most one edge of M;,i=1,2,3, as M; are matchings. We replace M3 with an Erdds-Rényi
graph, so that vertices can occasionally have degree more than 1 in it — and this pushes the process over the
critical limit, leading to a giant component! This is illustrated in Fig. [2] (right panel; note the extra dashed
edge on the right). In what follows we formally prove that the graph that we get in the NO case is €(1)-far
from bipartite.

) \ ' \g{ e \ 4 \5 .
\ 1 \ 1 e
\ 1 \ 1 . s
\ 1 \ 1 . ,
. P extrkge pushing over critical limit

Figure 2: Illustration of neighborhood growth in a random 3-regular graph M; U My U M3 (left) and our
instance My U M2 U Gy, (1—p) /-

Distributions on Graphs. We will use the following two related distributions on n-vertex graphs. For a
parameter p € (0, 1), we let G,, ,, denote the Erd6s-Rényi distribution with edge probability p. For every
integer m, we let Gy, ,,, denote the distribution on (multi)graphs with m edges, where a graph is selected by
choosing m edges e; = (u¢, v¢),t = 1,..., m independently and uniformly at random.

Recall that the process for generating our input random graph instance is as follows (see Section[2). We
restate the process here for convenience of the reader.

Edge Sampling Process P, A . Recall the process P, A o, which is used to sample the graphs (edge

incidence matrices) My, Mo, M3 in DIHP(n, A, o). We first describe how to generate M7, My and then
describe how to generate Ms3.
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Sampling the matchings M7, Ms. First, we generate the matchings M7, My as follows:

e Let M; be a perfect matching that matches, for each i = 1,...,n/2, vertex i to vertex i + n/2. Note
that edges of M are naturally indexed by [n/2]: the i-th edge matches i to i + n/2, fori € [n/2] =

{1,2,...,n/2}.

e Choose a permutation 7 of [n/2] = {1,2,...,n/2} uniformly at random. Partition the edges of M;
intor =n/A sets Si,...,S, with A/2 edges each by letting

Sj:{W<§_(j_1)+1>m<§.(j_1)+2>,...m(j(j—l)Jr?)}

foreachj =1,...,n/A.

e Foreachj =1,...,n/A let M, ; match, for eachi = 1,...,A/2 — 1, the node (5 - (j — 1) + )
to the node (5 - (j — 1) 4+ + 1) + n/2. Note that |M> j| = £ — 1 for all j.

Let My := U;:1 M5 ;. Note that My U My is a union of n/A disjoint paths of length A — 1.

Sampling M3. Having sampled M; and My, we now sample the graph M3 in three steps:

(1) First, we sample an intermediate graph M3, which is taken to be an Erd6s-Rényi graph obtained by
including every edge between vertices in [n] independently with probability a/n (recall that o < 1;
we will choose « to be close to 1).

(2) Next, we form a graph M} by removing any edges of M} that are already in M; or Ms. This serves
the purpose of ensuring that our hard distribution is supported on simple graphs only. Note that the
number of edges excluded from M3 is at most a constant with high probability. This means, as we
show below, that this slight change in the distribution does not affect analysis of the gap between
MAX-CUT value in the YES and NO instances.

(3) Finally, we consider the connected components of the resulting graph M3. We remove all edges of
each component that contains a cycle. We call the resulting graph M3. Note that M3 is guaranteed to
contain no cycles.

Note that our input graph instance uses only the Erd6s-Rényi distribution G,, ,,. The distribution G,, ,,, is
used only in the proof. The main technical result of this section is the following lemma. As we show below,
it leads directly to a proof of Lemma [2.4]

Lemma 5.1 There exists n* > 0 such that for every A > 10* and every n € (0,1%), ¢ > 0, there exists
0 > 0 such that the following conditions hold for sufficiently large n: If My, My are generated according to
the process Pn A 1—n, M, ( resp. M) is obtained by sampling edges of M (resp. My) independently with
probability 1/2 G1 ~G, L) /m and G2 ~ Gn.cn, then M1 U Mg U G1 U G2 is 0-far from being bipartite

with probability at least 97/100

We now give a proof of Lemma[2.4] assuming Lemma (5.1 We restate Lemma [2.4] here for convenience
of the reader:
Lemma here exist constants A* > 0 and 0 < o < 1 such that for every o € (a*, 1) and even integer
A > A¥*, there is a constant € > 0 for which the following conditions hold for the reduction R from

Definition[2.3}
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(1) If T = (My, Mo, Ms;wy, we, ws) is sampled from DY of DIHP (n, A, «), then R(Z) is a bipartite
graph.

(2) If T is sampled from DY, then with probability at least 95/100, R(T) is a graph on m edges with
MAX-CUT value at most (1 — €*)m

The proof uses the following claim:

Claim 5.2 For any integer m > 1 and integers 1 < a < b < m, if X C [m)] is a uniformly random subset
of [m] of size a and' Y C [m] is a uniformly random subset of [m| of size b, then there exists a coupling
between X andY such that X C'Y with probability 1.

Proof: To construct the coupling, it suffices to first sample X C [m] of size a, then sample a uniformly
random subset of [m] \ X of size b —a andlet Y := X UY". To see that Y is uniformly random among all
subsets of [m] of size b, it suffices to note that for every pair S, S" C [m], |S| = |S’| = b one has

Pr[lY =S| =Pr[X CS]-Pr[Y/ =S\ X|X]=Pr[X C 5] -Pr[Y/' =5\ X|X]=Pr[Y = 9],
as the distributions of X and Y are invariant under permutations of [m] and [m] \ X respectively. [ |

Proof of Lemma 2.4}

In the YES case, the value of MAX-CUT is exactly m, the number of edges in the input graph, as the
graph is bipartite by construction (the sides of the bipartition are given by X* € {0, 1}™).

We now show that in the NO case, the value of MAX-CUT is (1—2(1))m. The proof proceeds over two
steps. In the first step, we show that if G ~ 91 L(1-n)/n Gy ~ Gn,cns G~G, o/(2n)> and o > 1—n+6c,

then M- 1 U Mg UG stochastically dominates M 1 U Mg U G1 U G2 on all but a vanishingly small fraction of
the probability space. Note that the former is the distribution that Lemma [5.1] reasons about, and the latter
is very close to our target distribution. Indeed, the distribution of Ms is only different from the distribution
of G in at most O(log2 n) edges with extremely high probability.

In the second step, we apply Lemma [5.1|to obtain the result.

Step 1. We first show that for every c € (0, 1), we have that with probability 1 — o(1) over the choice of the
edges of Go, (1) the graph G1 U Gy has no edges of multiplicity higher than two, and (2) the total number
of edges of multiplicity 2 is at most O(log n). Note that by the union bound, it suffices to show that both (1)
and (2) individually occur with probability 1 — o(1). We prove this below.

Proof of (1) w.h.p. Note that an edge appears with multiplicity higher than two if either (a) at least
three copies of the edge appear in Go, or (b) one copy of the edge appears in G1, while at least two copies
appear in Gs. Note that by the union bound, (a) occurs with probability at most

2
cn 1 < 3¢3
) \@) =
since there are (Cg) possible triples of distinct edge indices (i1, i2,43) in G, and the probability that all
three edges in a triple are copies of each other is (1/(}))?.

Meanwhile, note that by the Chernoff bound, (G; has at most 2n edges with probability 1 — o(1). Con-
ditioned on this event, (2) occurs with probability at most

cn 1 16¢2
2n - o | Tz < —.
G n
It follows that the graph G1 U Gy has no edges of multiplicity higher than two with probability 1 — o(1).
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Proof of (2) wh.p. Note that any edge that appears with multiplicity two must either (a) have both
copies in Gg, or (b) have one copy in G1 and one copy in 6‘2
First, consider 7', the number of edges of multiplicity two that obey (a). Let 17,715, . . ., T(n) be indicator
2

random variables such that 7} indicates whether edge 4 is sampled at least twice in Go. Note that T <
Th+To+--+ T(n) Moreover, for every i, the probability that T; = 1 is at most (%) - (1/(3))?. Thus,
2

E[T] < BTy + BTy + - + BTy < (Z) ‘ (;") . (6)2 <22,

2

Moreover, since 17,715, ... ,T(n) are negatively associated, it follows from the Chernoff bound that T' =
2

O(logn) with probability 1 — n~=1) =1 — o(1).
Next, consider edges of multiplicity two that obey (b). Note that the probability that any specific edge

in G also appears in Gy is
cn
1-— (1—}L> <1 eten 2
(2) n

Recall that, by the Chernoff bound, G1 has at most 2n edges with probability 1 — o(1). Conditioned on this
event, the expectation of 7”, the number of edges of G 1 that also occur in Gg, 18

4
E[T] < 2n- — = 8c.
n

Now, T” is the sum of indicator random variables for each edge of G1 (which indicate whether the cor-
responding edge also appears in (G3). Since these variables are negatively associated, one can apply the
Chernoff bound to 7" in order to deduce that 7/ = O(logn) with probability 1 — n=*1) = 1 — o(1), as
desired.

Thus, ignoring the multiplicities of edges of G'1 UGy leads to an additive error of no more than O(log n)
in any cut, and this is what we do in what follows—denote as G* the graph obtained from Gy U Go by
disregarding multiplicities. The expected number of edges in G is %(n — 1). Thus, it follows by stan-
dard concentration inequalities, along with the aforementioned argument about edge multiplicities, that the
number of edges in G* is at most (= L 4 ¢ + o(1))n with probability 1 — o(1). Furthermore, conditioned
on the number of edges in G* being equal to ¢ for some ¢, the edge set of G*isa uniformly random set of
edges of size ¢ in ([g]).

Similarly, it follows by concentration inequalities that the number of edges in G is at least (5 —o()n
with probability 1 — o(1). Furthermore, conditioned on the number of edges being equal to ¢, the set of
edges is a uniformly random set of size ¢ in ([’2‘]).

Claim 5.2 therefore implies that the graph M; U MyUG stochastically dominates the graph My U MU
G1 U Gy with respect to inclusion as long as § > % + ¢ + C' for an absolute constant C’ > 0. We now
let a* =1 —n*/2. Forevery a € (a*,1) we let n = n* and let ¢ = n* /12, so that

a 1—n 1—n*/2 1—n" n* ntoont ot
R (e > - Ty T T ST
4 < 1 +C>— 4 ( r te)c s T a W

as required.

Step 2. Now, by Lemma |5.1] n invoked with n = n* and ¢ = 7n*/12, as above, we get that the graph
My U Mo UGy UGy is Q(5)-far from bipartite for some § = €, (1) with probability at least 97/100. Since
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the graph M, UM, UG stochastically dominates My UM, UGy UG, by step 1 and both graphs contain
O(n) edges with high probability, the graph M; U My U G is also O(5)-far from being bipartite for some
d > 0 with probability 1 — o(1).

Finally, it remains to note that the actual graph M; generated in the NO case only differs from G in
O(log2 n) edges with probability 1 — o(1). It suffices to consider the edges that are removed from M} in
order to produce M3 in P, A . and show that this number is O(log? n) with probability 1 — o(1). Recall
that edges are removed in two stages. Consider the first stage, in which edges of M that are already in M
or My are removed in order to form M?’)’ . Since there are are n — n/A edges in M; U Ms, we have that
the expected number of edges M that are removed is (n — n/A) - a/n = (1 — 1/A) < 1. Thus, by the
Chernoff bound, the number of removed edges is O(logn) with probability 1 — n ),

Next, consider the second stage, in which edges are removed from M3 to form Ms. In order to bound

the number of such edges, we use the following facts, which appear in [Dur06]:

Fact 5.3 (follows from Theorem 2.3.1 in [Dur06l]) Suppose A < 1. Then, all connected components of
G\ /n are of size O(log n) with probability 1 — o(1).

Fact 5.4 (follows from Theorem 2.6.1 in [Dur06]]) Suppose A < 1, and let A < oo be a constant. Then,
consider all connected components of Gy, » /., with at most Alogn vertices. With probability 1 — o(1), there
are no complex components (i.e., components whose number of edges is at least 2 more than the number of
vertices).

Fact 5.5 (follows from Corollary 2.6.6 in [Dur06]) Suppose A\ < 1. Then, the expected number of uni-
cyclic components (i.e., components whose number of edges equals the number of vertices) in G, », is at
most a constant ¢ = ¢(\) (independent of n).

Now, recall that M3 is formed from M by removing all connected components that have cycles. Since
such components are either unicyclic or complex, the above facts as well as the fact that the edges of My are
a subset of the edges of M} imply that, with probability 1 — o(1), (1) there are no complex components in
MY, (2) the number of unicyclic components in MY is O(log n) (by Fact[5.5/and Markov’s inequality), and
(3) all connected components of MY have size O(logn). Thus, it follows that O(log? n) edges are removed
from MY .

Putting the bounds above together, we get that there exists a 1 + €, = 1 + Q(1) gap between YES and
NO instances with probability at least 97/100 + o(1) > 95/100 for sufficiently large 7.

|
The rest of the section is devoted to proving Lemma|5.1] The proof proceeds in two steps:

Step 1. We start by showing that the graph Ml U Mg U él, where él ~ G, L (1—n)/n> contains a giant
’2

component of size §2(n) with probability at least 99/100 if 7 > 0 is smaller than an absolute constant. This

proof is given in Section[5.1] The main result of that section is Lemma5.6

Step 2. We then condition on the existence of a giant component in M U M U G1 and show that the
addition of a ég ~ Gn,con to the graph makes the union Ml U Mg U él o-far from bipartite for some
constant § > 0, as long as co > 0 is a positive constant (so § depends on c2). This argument as well as a
proof of Lemma [5.T]are provided in section[5.2]

31



5.1 Existence of a giant component

The goal of this subsection is to establish the lemma below:

Lemma 5.6 There exists n* > 0 such that for every A > 10%, n € (0,7*) there exists Coy > 1 such that
the following conditions hold for sufficiently large n. If (M1, Mo, G) is generated according to the process
Pn,A1—n, and M, My, G are generated from My, My, G by sampling edges independently with probability
1/2, then with probability at least 99/100 the graph M, U M U G contains a connected component of size
at least n/Cy.

The Component Growing Process: We will analyze the following process for growing a giant component.
We will maintain at all times a partition of the vertex set V' into two sets D and U where D denotes the set
of vertices that have already been discovered, and U denotes the set of undiscovered vertices. We start with
an arbitrary seed vertex, say s, and grow a component by iteratively including vertices that are reachable
from s. Specifically, in the ith iteration, we start with a set A; of the active vertices; initially, Ag = {s}.
Let B; C U denote the set of vertices in U that are connected to some vertex in A; via edges in G. We
next include all vertices reachable from vertices in B; using edges in M 1 and Mg. Let C; denote this set of
vertices. We now set A;,1 = B; UC}, and add all vertices in the blocks of vertices in B; U C; to the set D of
discovered vertices; recall that the vertices are partitioned into blocks of size A. Finally, weset U = V' \ D.

We say that an iteration i succeeds if |A; 1| > gg | A;], and it fails otherwise. We terminate this growth
process if either an iteration fails or the size of the component has reached n/Cj. In the latter case, we are
done, but if the growth process terminates due to failure at some iteration, we start the entire component
growth process again starting with an arbitrary new seed vertex in U.

Overview of the Analysis: We will show that with probability at least 99/100, one of the invocations of
the component growth process described above reaches a connected component of size n/Cj. Let us first
focus on the analysis of a single invocation of the component growth process. It is clear that we will obtain
a connected component of size at least n/Cy after ©(logn) successive iterations without any failure. The
heart of the proof is to show the following lemma which bounds the probability of failure in any iteration to
be exponentially small in the number of active vertices.

Lemma 5.7 The probability that an iteration i succeeds is at least 1 — e~ 4l/K for some absolute constant
K > 0 whenever |U| > 9n/10 at the start of the iteration.

We now complete the analysis assuming the above lemma. First note that Lemma([5.7]implies that there
is a positive probability py that the component growth process succeeds for the first ©(log K) iterations
(since K is a constant), allowing the growth process to reach an iteration j with |A;| > 10K. Once the size
of the active set A; exceeds 10/, the probability that any subsequent iteration fails while |U| > 9n/10, can
now be bounded by

28 Aj —10
75 14 (%) —10 e -3
> e <Y e 10(E) Yoeln) = <107,
>0 >0 >0 L—e"2
Thus any single invocation of the component growth process finishes with a component of size at least
n/Cp with probability at least pg x 1073, provided we satisfy the condition |U| > 9n/10 during the growth
process. Note that any failed invocation of the component growth process removes at most (n/Cp) A vertices

from U. Since we start with |U| = n, we can invoke the component growth process at least I' = % =

0 A times before |U| falls below 9n/10. The probability that none of the first I' invocations succeeds in
growing a component of size at least n/Cj is at most
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provided we choose Cj to be any constant greater than 5 x (10*A) /po. This completes the overview of
our analysis assuming Lemma [5.7]

In the remainder of this section, we focus on establishing Lemma Letp = %(1 —n)/n denote the
probability of edge realization in the graph G. We will assume that 7 is chosen to be a fixed constant smaller

than 1072, ensuring that p > 16‘%. Our proof relies on the following two claims. We say that a vertex v is
well-placed in a block P if v is at least distance 10 away from either end-point of P.

Claim 5.8 Let A C V \ U be an arbitrary subset of vertices of size at most n/(103A), and let B C U
denote the set of vertices that are adjacent to at least one vertex in A via edges in G. Furthermore, let
B’ C B be any maximal subset of well-placed vertices such that B' contains at most one vertex from any
block in U. Then for any A > 10%, whenever |U| > 9n/10,

Pr [B’ > 2‘?'] >1— e AVEL

for some positive constant K.

Proof: For any vertex v € U, let ¢ denote the probability that v is adjacent to one of the vertices in A via
edges of GG. Then

g=1—-(1—-p)Al>1— M

21412 2
2p|A|—|2 (ase_gﬁgl—:n—{—% Vz > 0)
A A 1
> p|A] _nldl > 99p|4] (since p < %and\/ﬂ < 10%)

100 — 100

Let P, P, ..., P, denote the blocks inside U where k = |U|/A > (9n)/(10A). LetY = Y] + Y5 +
... + Y}, where Y; is a 0/1-random variable that takes value 1 iff B contains a well-placed vertex v in P;.
Clearly, | B'| =Y, and it suffices to analyze the variable Y. Now

PriVi=1]=1—(1—¢)* 20 >1—¢ 95720
(A -207 ’

> q(A — 20) > (ase*ffg1—x+% Yz > 0)

> g(A —20) — 9a—20) (¢(A —20))

> g - 20) - 12220 Al (A= 20))  (since g < plA)

> (A —20) - LA - 20) (20100> (since p < % and |A| < 1OT3LA)
> %44 (since A > 10%)

— 100
Thus
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A A
E[Y]> k- 99¢q > In ‘ 99¢q
100 10A 100
891n 891n  99p|A|
> g >
1000 1000 100
> ﬁ A‘.
100

An application of the standard Chernoff bound now suffices to conclude that Pr {Y > %} >1-

e~ 1AI/E1 for some positive constant K.
|

Claim 5.9 Suppose we are given a set B’ of { well-placed vertices in { distinct blocks, say Py, P, ..., Py.
Let C' be the set of new vertices that are reachable in UlePi from B’ when we sample the edges in each P;
with probability 1/2. Then for any A > 10%, we have

Y4
peic12 %] 21— s

for some positive constant K.

Proof: To analyze the number of vertices reachable in U/_, P; from B’ when we sample the edges in each P;
with probability 1/2, it suffices to analyze the sum of truncated geometric random variables of the following
form. Let Z1, Zs, ..., Zoy be identically distributed independent random variables where each Z; indicates
the number of successive heads seen when a fair coin is tossed 10 times. It is easy to see that the distribution
of |C| stochastically dominates the variable Z = Zfﬁl Z;. In what follows, we will show that

4
peficr2 %] 2 1-c0m

for some positive constant /5.

To show this, we view each variable Z; as sum of 0/1 random variables, Zz-(l), Z7;(2)7 - ZZOO) where

the variable Zi(j ) is 1 iff Z; > j. Thus Pr[Zi(j ) = 1] = 277, and moreover, for any j, the variables
Z}J ), Zéj ), ces Zé%) are independent and identically distributed. Let ZU) = Z?£1 ZZ(] ). Since (Zz0)] =
(2¢)/27, an application of the standard Chernoff bound implies that

prlz0) < 9 2| aw)
100 <27 ] =

By taking the union bound over all j € [1..10], we conclude that with probability at least 1 — e~*2(¢/ 29,
we have Z() > 99 x g—f forall j € [1..10]. Hence

99 1 1 1 —QﬁQlO
Since % x 20 (3 + 25 + ... + 515) = 5 x 20 (1 — 5k5) > %, it follows that
Pr [Zz gﬂ < e UKz,

for a suitably large constant K as desired. [ |
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Proof of Lemma [5.7; We now complete the proof of Lemma using the above claims. Consider any
iteration 7 in the component growth process such that |UU| > 9n/10. Let A; be the set of active vertices at
the start of the iteration, and suppose that |4;| < n/(103A) (otherwise, we already have a component of
desired size). Let B; C U denote the set of vertices in U that are adjacent to some vertex in A; via edges
in G. Furthermore, let B! C B; be any maximal subset of well-placed vertices such that B’ contains at
most one vertex from any block in U. Then by Claim [5.8] the size of the set B! is at least (2| 4;])/5 with
probability at least 1 — e~ |4il/K1 Let us denote this event by &;. Now let C; denote the set of vertices that
are reachable from vertices in B! in the blocks containing them when we sample the edges in each block

with probability 1/2. By Claim we have that |C;| > ‘B | with probability at least e~ Bil/ K2,
Thus assuming that each of the events £; and &, occur, we have
9|B!| B 14|Bf| 28
5 ~ 5 —%

|Aip1] = |Bi| + |Ci| > |Bj| + 5 [Ail-

Finally, we observe that

Pr[é’l A 52] = Pl‘[gl]Pl‘[gQ | 51]
> (1 _ e—\Az‘VKl)(l _ e—\B§|/K2)
Z (1 _ e—‘Al|/K1)(1 _ 6—2|A1|/5K2)

—|A;|/ K
> 1 e lAl/E

for a suitably large constant K as desired.

5.2 Distance to bipartiteness

The goal of this section is to establish Lemma[5.1] which we restate here for convenience of the reader:
Lemma (Restated) There exists n* > 0 such that for every A > 10* and every n € (0,7%),¢ > 0
there exists 0 > 0 such that the following conditions hold for sufficiently large n. If My, My are generated
according to the process Pp A 1-n, M, My obtained by sampling edges of M, (resp. My) independently
with probability 1/2, Gy ~ g, A(1-n)/n and Gg ~ Gn.cn, then M; U Mg UGl U GQ is d-far from being
bipartite with probability at least 97/100.

We start with an overview of the analysis. Since Lemma[5.6] (see Section [5.1]) guarantees the existence
of a giant component of Q(n) size in M 1U M. 2 U G 1, it suffices to argue that the addition of a random graph
GQ ~ Gn.cn to the giant component in M- 1 U M2 U G1 results in a graph that is {2(1)-far from bipartite with
high probability. Our analysis in this section is completely oblivious to the process that generates the giant
component: we will prove that the addition of G5 to any graph with an €2(n) size connected component
that additionally exhibits certain regularity of vertex degrees makes this graph €2(1)-far from bipartite with
high probability. Specifically, we show that the addition of a random graph G2 ~ G,, , to any tree 1" of
size n/Cy for a constant Cy > 1 with balanced vertex degrees (see Deﬁnition results in a graph that is
0-far from bipartite for a constant § with high probability. The proof proceeds over three steps.

Step 1 We show that if ¢ is small enough, the removal of dn edges from a tree T  on at least n/C| vertices
most of whose vertices have small degree results in a forest (denoted by F’) that can be partitioned into a
large number of rather large connected components (see Lemma|[5.13|below). The formal definition of what
it means for the tree to consist mostly of nodes of bounded degree is given in Definition |5.10 [5.10] It is easy to
see that the giant component in M1 U Mg U G1 satisfies these conditions: we show in Clalmthat G1
satisfies these conditions (by a simple Chernoff bound), and addition of matchings M, M> only leads to a
slight change in parameters.
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Step 2 After partitioning the forest F' into connected components of size at least r, we contract these
components into supernodes (denote the resulting graph by H). We then show that for any ¢ > 0, if r
is substantially larger than c, the effect of this is that the addition of the graph G ~ Gn,en to H essentially
amounts to sampling an Erd6s-Rényi graph well above the threshold for emergence of a giant component
on the supernodes H and hence makes H U G non- -bipartite with extremely high probability. This argument
proceeds in two steps. We first write G = G1 U G, where G, Gy ~ Gn,(c/2)n are sampled independently.
We then show by a simple union bound over all sufficiently large cuts in H that H UG contains a linear size
connected component with extremely high probability. This connected component has a unique bipartition,
which the second graph G+ destroys with high probability. The details of the proof are given in Lemma-

Step 3 Finally, the proof of Lemmaﬂ is obtained by a union bound over at most O(J)n edges removed
from G2 and the result of Lemma[5.16]

Definition 5.10 We say that a graph G = (V, E) has (D, T)-bounded degrees if there exists a subset V* C
V' of vertices such that

1. vertex degrees in G* = (V*, E N (V* x V*)) are upper bounded by D;
2. [EN(V*xV*)| > |E| - T|V|

Theorem 5.11 (Chernoff bound) If X1, ..., X, are independent 0/1 random variables, X = > " | X;
and y = E[X], then for any § > 1 one has Pr[X > (1 + 0)p] < e~ 01/3,

Claim 5.12 (Degree based pruning) Let G = (V, E) be a graph sampled from G, ,, distribution with p <
%. Then for every X > 4 with probability at least 99/100 the graph G is (X, 100e=*/%)-bounded (as per

Definition [5.10)).

Proof:
We need to argue the existence of a set V* C V such that

1. vertex degrees in G* = (V*, EN (V* x V*)) are upper bounded by A;
2. [EN(V* x V)| > |E| — (100 - e 6)|V].

Welet V* := {u € V : degp(u) < A} and show that V* satisfies both conditions above with probability at
least 99/100. First for each u € V' define

X, ::{ 1 ifdegg(u) > A
0 0.W.

We now bound the expected number of edges incident on vertices with degrees larger than A in G. For
each fixed v € V one has degp(u) = ZweV\ {u} Y., where Y,, is a 0/1 Bernoulli random variable with on
probability p. For every z € V one has

Pr{(u, z) € E and degg(u) > ] = Pr[(u, z_) € E] - Pr[degg(u) > A(u, z) € E]

IN
SRS

Pr| ) Yu>A-1
_wEV\{u,z}

IN
SRS

-Pr Z Y > A\/2 (since A > 4)
| weV\{u,z}
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Onehas E[}, c\1\ (4,2} Y] < p(n —1) =: p, and hence by Theorem (Chernoff bound)

Pr Z Yo > 1+l < e Om/3,
weV\{u,z}

for every 6 > 1. Weset 6 := A\/u — 1. Since A > 4 and p = p(n — 1) < 1 by assumption, we have
d=(N/2)/u—12> X/(4p) > 1. This gives

Pr| Z Yy > A/2] < e~/ Cuu/3 — M6,
weV\{u,z}

and hence

Pr((u,z) € E and degp(u) > \] < —e 5.

S|~

We have, using the analysis above
E[|{(u,z) € E : degp(u) > A}|] < ne™°,
By Markov’s inequality we thus have
Pr|V \ V*| > 100 - ne=*%] < 1/100,
as required. [ |

Claim 5.13 For any forest F = (V, Ep) with vertex degrees bounded by D > 1 and any r > 1, if all
connected components in F' have size at least r, then there exists a partitioning of V. =Vo UV U ... U Vg
such that

1. |\Vj| >rforallj € [1: K]J;
2. K > |Ep|/(2rD).

Proof: We prove the bound for the case when F' is a tree, and the desired result then follows by applying
the bound to every tree in F.

Consider a tree ' = (Vp, E7) with at least 7 nodes. Consider the following iterative procedure. Start
by letting T° < T, and letting ¢ + 0. Then for every ¢ > 0, repeat the following until 79 contains fewer
than 7 nodes. Root 77 arbitrarily, and let u, € V7q be the furthest node from the root of 7' whose subtree
T{j’q contains at least r nodes. Remove the subtree Tﬁq from 79, denote the remaining tree by 79%! and
repeat. This is formalized as Algorithm [T] below, where we denote the number of iterations that the loop
runs for by ). Note that a choice of the node u, always exists, since the root itself satisfies the condition.
Also note that the maximum degree in 79 is upper bounded by D for all ¢ (79 is a subtree of the original
tree 7Y, which satisfies this condition by assumption of the lemma). Also note that since uq is the furthest
node whose subtree contains at least r nodes, it must be that

T <1+ T.|<1+D- ma T.|<(r—1)D+1<rD,
| Uq’ B ceTuq:;hildofuq = CeTuq:CChﬁdOf“q‘ A= ) B

where we used the fact that u,’s children are strictly further from the root than u, (and hence their subtrees
contain fewer than r nodes) and the fact that maximum degree in 77 is upper bounded by D.
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To prove the result of the lemma for trees, we note that

Q-1 Q-1
Vol < Y ITL [+ (T <> T8 [+r—1
q=0 q=0

Q-1
<2 Z T34 | (since [T} | > rforallg € [0: Q —1]and @ > 1)
q=0

Since |T3,| < rD for every ¢, and Q@ > 1 since |T°| > r, we thus get @ — 1 > |V|/(2rD), and hence
Q> |Vr|/(2rD) +1 > |E7|/(2rD).

Algorithm 1 Partitioning a tree into components of large size
1: procedure PARTITIONTREE(T', r)

2: T T,q+0
3: C« 10 > Initialize collection of components to empty
4: while |79 > r do
5: R < root of T' (arbitrarily chosen)
6: uq < furthest node from R such that |T}{| > r > Note that |T}A| > r by loop condition, so u
exists
7: Tt < T9\ T
8: C+ CU{TL} > Add subtree to collection of components
9: q+—q+1
10: end while
11: Q<+q
12: return C

13: end procedure

Lemma 5.14 For every Cy > 2, v > 1, 6 < 1/(8Cyr), and every A > 3log(1600Cyr) the following
conditions hold for sufficiently large n.

For every tree T = (Vp, Ex) with Vi >V, |Vip| > n/Cy such that Er is (2X,100e=*/6)-bounded, for
every E* C Erp with |E*| < on there exists E** C Er such that the forest F :== (Vp, Ep \ (E* U E**))
consists of at least n/(8Cy - \r) components of size > r each.

Proof: Since the tree T'is (2, 100/ 6) bounded by assumption, there exists a subset V* of vertices in F’
such that vertex degrees in F'N (V* x V*) are bounded by 2) and |Er N (V* x V)| > |Ep| — 100~ n,
Let

Ep = (Ep\ E)N(V* x V*).

Note that since E}, C Ep, vertex degrees in E'. are bounded by 2.
By assumption of the lemma we have |Ep| = |[Vp| —1 > n/Cy — 1 and |E*| < dn, so

|EL| > n/Co—1— (6n+100e0n) = N — 2C(8N + 100e MON) = N(1 — 2Co6 + 200Coe /%),

where we let N := n/Cj to simplify notation.
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We now would like to invoke Lemma on the set E'.. Before we apply the lemma, however, we
need to remove components of size below r from E’.. Let E** denote the set of edges of E'. that belong to
connected components of size at most . We have

|E*| < r-2Co(6N + 100eON),

as (1) every such component contains an edge from E* or Ep \ (V* x V*) and (2) every such component
contains at most r — 1 edges. Using the assumption that § < 1/(8Cyr) and A > 31log(1600Cjr) made in
the claim, we get

7+ 2C0(6N + 100e MON) < (2Cor(1/(8Cor) +1/(8Cor)))N < (1/4+ 1/4)N < %N. 27)

Let B}, := Ep \ (E* U E**) denote the set of edges in E, that belong to a connected component of size
> r inEY, and note that |E7| > N/2 by 7).

We now apply Claim to E7. with parameter r. Since all components in E’. have size > r by
construction and degrees are upper bounded by 2, we get that E. can be partitioned into > (N/2)/(4Ar)
components of size at least r each. Since N > n/Cy, this gives the result of the lemma. [ |

Claim 5.15 For every graph H = (Vi, Err), N = |V |, if every cut in H with at least N/3 vertices on
each side is non-empty, then the graph H contains a connected component of size at least N /3.

Proof: The proof is by contradiction. We show that if all connected components in H are of size less than
N/3, then there exists an empty cut in H with at least [N/3 vertices on each side.

Let connected component sizes be s; < ... < sk, where 1 < K < N is the number of connected
components in H. Let k be the smallest such that Z?:l s; > N/3. Since Zf;ll sj < N/3 by definition of
k,and s; < N/3forall j =1,..., K, we have Z§=1 55 = Zf;ll sj+sp < N/3+ N/3 <2N/3. But
in this case the graph contains a cut with at least N/3 vertices on one side which is empty. Indeed, take all
of components [1 : k] on one side, and other vertices in H on the other side. The number of vertices on one
size of this cutis Z?Zl s; € [N/3,2N/3), leading to a contradiction. This completes the proof. [ |

Lemma 5.16 For every Cy > 1 and every ¢ > 0 there exists r > 1 and A > 31og(1600Cyr) such that for
every forest F with at least n/(8 - Cy - A\r) components of size > r each, the graph F'U G’ with G’ ~ G, ¢n,
is not bipartite with probability at least 1 — exp (—Q(n - ¢/(Cy - Ar)?)).

Proof: Let Vg denote the set of nodes obtained from F' by contracting each connected component into
a supernode, and let N denote the number of resulting supernodes (i.e. |Vy| = N). We have N >
n/(8 - Cy - Ar) by assumption of the lemma. It is also convenient two write G’ ~ G, o, as G’ = G} U G,
where Gy, G ~ Gy, e /2.

The proof proceeds in two steps. In step 1 we show that every cut in H with at least N/3 nodes on each
side is nonempty with very high probability, which implies that H contains a connected component of size
at least V/3. In step 2 we show that this implies that addition of the G,, .,, graph turns H into a non-bipartite
graph with high probability, as long as the parameter r is chosen large enough (depending on c¢). We then
show that such a choice indeed exists for every Cj, proving the claim.

Step 1. First note that for every pair of supernodes a, b we have that the expected number of edges in
G', between a and b is > r2c/(2n). The smallest number of edge slots going across a cut with at least N/3
supernodes on each side is (IV/3)(2/N/3). Since each edge slot between a pair of supernodes corresponds
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to at least 72 edge slots in the original graph G ~ On,en/2. We get that a fixed such cut is empty with
probability at most

2/9)N2 - 12\ @enta?
(1 _ (/9)27“> <e w2 (sincel —z < e *forz > 0)
n

2,2
_ e (e/) B

Taking a union bound over at most 2V cuts, we get using the relation n < 8 - CoN\r

2
oV . o~(e/D B N o (N_ (¢/2)(2/9)N -7 >

n
n

exp < N (6/2)(2/9)(71/(:Lg -Cy - 1)) '7'2) (since N > n/(8C - Cy - Ar))
r(c/2)(2/9)

exp( N W)

exp( N.72-Co-)\>

< (2/e)"
(28)

as long as r > @
We now exhibit a setting of r and A that satisfies this and the constraints of the lemma. Specifically, we
need to show that there exists a setting of integer r and A > 2 such that

> 72 - CoA

. and A > 31log(1600Cyr).

Equivalently (after exponentiating both sides of the second inequality above), we need to ensure that

c 1600

For every Cp > 1 and ¢ > 0 we let A be a sufficiently large constant so that

72 - CoA 72 - CoA 1

1< d 1< ——Cytes.
ST M T T S0 0 ¢
Such a value of A exists since ﬁCa LeA/6 s grows asymptotically faster with A than @. Setting
A sufficiently large so that the interval [72 go)‘, 161000 LN 5] contains an integer and letting  equal this

integer satisfies all the constraints above.
Finally, it remains to recast the upper bound on failure probability from (28) in terms of n. We have,
using the assumption that N > n/(8 - Cp - Ar)

(2/6)N < (2/@)”/(8'Co~)\r)

as required.

Step 2. By Step 1 with probability at least 1 — (2/¢)™/(8:C0:A") gver the choice of G, no cutin H U G}
with at least N/3 supernodes on each side in H is empty. By Claim m this also implies that H U G
contains a connected component with > N/3 supernodes. Denote the success event by &;. Let C' C [n]
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denote the set of nodes in this component (i.e. expanding the supernodes of H to the nodes that they
represent). This connected component has a unique bipartition. Denote the sides of the bipartition by
A, B C [n]. Note that |A| + |B| > r - N/3, as each of the supernodes contains at least  nodes. We thus
have min{|A|, |B|} > rN/6. We now show that with overwhelming probability at least one of the edges of
, connects two nodes belonging to the same side of the bipartition AU B of the large connected component
in H U G, thereby making H U G} U G% non-bipartite.
Recall that G ~ G, (c/2), is obtained by selecting (c/2)n edges uniformly at random from ([Z]). We
thus have that a single such edge has both endpoints on the larger side of the bipartition with probability at
least

162/ (3) = 2rvjep

as long as n > 2. The probability that none of the (¢/2)n sampled edges of G, have both endpoints in the
larger side of the bipartition is upper bounded by

(1= 2(rN/6)2 /1) /2 < exp(—2(rN/6)* fn - (c/2)n)
< exp(—c(rN/6)?/n) (since N >n/(8-Cp - Ar))
< exp(—(c/(Cp-48 - )\)Q)n)

We thus get that, conditioned on &;, the graph H U G} U G} is bipartite with probability at most
exp(—(c/(Cp - 48 - \)%)n). Hence, H U G} U G is not bipartite conditioned on & N &, which satis-
fies

Pl‘[gl N 52} >1-— PI‘G/1 [51] — Prc;/Q [52‘51]
> 11— (2/e)"/ B0 —exp (—Q(n - ¢/(Co - A)?))
>1—exp (—Qn-c/(Co-Ar)?))

as required.
|

We now prove Lemma/5.1] the main result of this section:
Proof of Lemma Let n* and Cj denote the constants whose existence is guaranteed by Lemma
Denote the graph M; U M, U Gy by H = (V, Ey). By Lemma [5.6| with probability at least 99/100 the
graph H contains a giant component V. C V of size at least n/Cy (denote the success event by £,.). We
condition on &, in what follows. Let T" := (V, Er), where Er is an arbitrarily chosen spanning tree of Ve
in & H.

We prove:

(*) There exists 6 > 0 that depends only on ¢ and Cj such that for any subset £* C Ep wiNth
|E*| < dn the following conditions hold for I := (V, Ef), Er = E7\ EY, then the graph FUG»
is 0-far from bipartite with probability at least 98/100 over the choice of Ga ~ Gy, cn, G2 =
(V, E2).

Claim (*) implies the required result after a union bound over the failure event from (*) and é_’gc, leading
to 97/100 success probability overall.

We prove (*) using a union bound over all choices of £** C FE5. Formally, recall that ég contains
m = cn edges ey, ..., e, where each e; is independently chosen from (g) (we say that the corresponding
edge has index 7). For each J C {1,2,...,m} we let Go(J) = (V, E2 \ E(J)) denote the random graph
obtained from G by removing edges with indices in J. Our proof proceeds by a union bound over the
choices of J C [cn], as we describe next.
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For any fixed J C {1,2,...,m} the graph Go(V, Ey \ J) is distributed as Gnm—|J|- We assume that
§ < ¢/2, so that G,, ,,, | stochastically dominates G,, (./2),,- Let Go(J) := Go(V, Ey \ E(J)). We now
show that H UGy(.J) is non-bipartite with extremely high probability for any fixed .J C [cn], and then apply
a union bound over all J C [cn] to conclude the result.

Step 1. First note that by Claimone has for any \ > 4 the graph G/ is (A, 100e/ 6)-bounded with
probability at least 99/100. Since H = Ml U Mg U él, where Ml and Mg are matchings, and A > 4, we
thus have that H is (2., 100~/ 6) bounded with probability at least 99/100. Denote this event by Eppunded-

Step 2. Now by Lemma [5.14] we have for every r > 1, A > 31log(1600Cor) and § < 1/(8Cqr) for
every E5 C Eg with |E3| < n there exists E3* C Ep such that F := (Vp, Ep \ (E3 U E4*)) consists of
at least n/(8Cy - Ar) components of size > r each.

Step 3. Then by Lemma there exists > 1 and A > 3log(1600Cyr) such that the graph F' U G’
with G’ ~ Gn,(c/2)n 18 Not bipartite with probability at least 1 — e~ U(e/(CoAr)*)n.

Steps 1-3 above show that for any fixed J C {1,2,...,m} the graph H U G5(.J) is non-bipartite with
probability at least 1 — e—((¢/ (GoAr)*)n To obtain the final result, we take a union bound over possible
choices of the set J C {1,2,...,m}. The number of such choices is bounded by (") < (e - ¢/5)’" =
e(0In(ec/0))n  Using the fact that § In(ec/d) is increasing in § for § € (0,1/10), we can choose & to be a
sufficiently small constant so that

e(0In(ee/Bn . o=(e/(Corr))n 1 /10,

Note that A and 7 we chosen as functions of Cy only, so d depends only on c and Cy, as required by (*).
We have shown that conditioned on &y the probability of H U G'> being d-close to bipartite is upper
bounded by 1/100 + Pr[€sounded) < 2/100. This proves (¥) and completes the proof.
|

6 Proof of Lemma [3.3| (distance to uniformity)

In this section, we prove Lemma[3.3] which we restate below.

Lemma [3.3|Let A > 0 be an even integer. Then, for every 0 < o < 1, there exists a constant 0 < ¢ < 1
such that for every § € (nil/ 10 ¢), the following conditions hold if n is any sufficiently large multiple of A:

(1) Let B = A, as defined in Definition [3.2] Then, for every choice of matchings M, Mo sampled
according to Pp A o, the distribution of Max is uniform over {0, 1}™2 when x is uniformly random
in B.

(2) Let B C {0,1}",|B| = 2" % for = < §*n, and let h : {0,1}" — {0,1} be the indicator of B.
W\ 2 . ¢

If (‘%) Euzmzze h(v)? < <%) holds for all ¢ < §*n, then the following conditions hold:

Let My, My, M3 be sampled according to Py A . Then, with probability at least 1 — O(0) over

the choice of Ms, the total variation distance between the distribution of Msx, where x is uniformly
random in B, and the uniform distribution over {0,1}"™3 is O(6/+/1 — «). In particular, one can take

¢ = min { (o), (ealog2<§§/<31+a>))1/4}'

In order to establish Lemma [3.3] we will require the following lemmas, which we prove later.

42



Lemma 6.1 Let n > 2, and let A > 0 be any even integer such that A divides n. Then, for every fixed
constant 0 < « < 1, the following statement holds: Suppose My and My are sampled according to Py A q.

Ifv € {0,1}" such that v # 0" and a(v) # 0, then
[{s € {0,1}™ : v = M] s}| = 0.

Lemma 6.2 Let n > 2, and let A > 0 be any even integer such that A divides n. Then, for every fixed
constant 0 < a < 1, the following statement holds: Assume that My and My have been sampled according
10 Py.Aa- Then, ifv € {0,1}" has even weight {, we have

Eug [|s € {0,1}™ 1 s # 0™, v = M]'s|] < 25(¢/2)!(a/(1 — a)n)*/2,

Note that the lemma appears almost exactly in [KKS15], except that instead of sampling the Erdds-
Rényi graph G,, , /,, we sample all individual edges except those in M7, M3 with probability a/n. However,
leaving out the edges of M, My can only cause the expectation on the left-hand side to decrease. Hence,
the proof is similar.

Fact 6.3 Letn > 2, and let A > 0 be any even integer such that A divides n. Then, for every fixed constant
0 < a < 1, the following statement holds: Let M3 be sampled according to Py a . Then, for every
v € {0,1}", there exists at most one s € {0,1}™ such that M s = v.

In light of the above fact, it is also clear that there exists an s such that M:;f s = v if and only if the
intersection of the support of v with each component of M3 has even size.

Lemma 6.4 Let A > 0 be any even integer. Then, for every choice of fixed constants 0 < «, 3,¢ < 1, the
following statement holds for b = clogy(1/(1 — 3))/2 and sufficiently large n > 2 divisible by A: Let M3
be sampled according to Py A «, and let S be the random variable denoting the set of all vertices u such
that {u} is a connected component of Ms. Also, let V' C {1,2,...,n} be a uniformly random set of nodes
such that |V'| = £, where £ > n. Then, if | S| > cn, we have Pry [V N S = ()] < 270,

Lemma 6.5 Let A > 0 be any even integer. Then, for every choice of fixed constants 0 < «, 3 < 1, the
following statement holds for b = e~ “logy(1/(1 — 3))/16 and sufficiently large n > 2 divisible by A: Let
M3 be sampled according to Py, A o. There exists an event € (depending on Ms) with Pryz,[E] > 1 —6n~1/3
such that for every v € {0, 1}" with |v| > fn,

En, [[{s € {0,1}™ :v= MIs}|| €] <27
Now, we prove Lemma @] assuming the validity of the aforementioned lemmas and facts.

Proof of Lemma[3.3; Let 8 = (1 — «)/32, and let b = e~ log,(1/(1 — 3))/16 be the constant guaranteed
by Lemma 6.5| for our choice of ar, 3. We will choose ¢ = min{((1 — «)/512)/%,(b/2)'/*}. For the
remainder of the proof, we assume that § € (n=1/19, ¢).

Now, for any z € {0,1}"™ and m x n edge incidence matrix M of a graph on n vertices, we let

~ H{reB: Mz =z}

pu(e) B

Later in the proof, we will instantiate M as My and M3. Note that pj/(2) is a function of B. We will supress

this dependence in what follows to simplify notation. This will not cause any ambiguity since B is fixed as
a typical large set arising from Alice’s partition. We would like to prove that py;(z) is close to uniform. We
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will do that by bounding the Fourier mass in positive weight coefficients of pys(z). By the same calculation
asin [GKK™08] (Lemma 10), we have

1

Phi(s) =5 D pu(x)(=DT
z€{0,1}m
- |B]12m ({zeB: (Mz)-s=0} —|{zr € B: (Mz)-s=1})
:yByl2m(!{weB:w-(MTs>=0}!—|{xeB;m-<MTs)=1}l)
o X ) (0
z€{0,1}7
2n
ﬁgﬁggh(ﬂfT s),

where h is the indicator function of B, and

Ipar = Urlloa < 2™lpar = Urlf3

:22m Z ]9/]\\4(8)2

s€{0,1}™
s#£0

- : 3 e (9)

= Z h(v)?-|{s € {0,1}™:s#£ 0,0 = MTs}|.

Here, the first transition in holds by Cauchy-Schwarz, the subsequent equality is a result of Parseval’s
equality, and U, is the uniform distribution over {0, 1}™.

Now, let us prove part (1) of the lemma statement. We fix a perfect matching M;. Recall that we are
interested in the distribution of Mz, where z is uniformly random in B. Then, by (29) and Lemmal[6.1] we
have

2271 P T
HpM2 - UTH?Ud < |B|2 Z h’l(MZ 5)2
s€{0,1}™m2
s#£0™2

B 2 M l{se {01} i =M}
UE{O 1}
vF£O™

(30)

=0,

which proves the claim.
Next, we prove part (2) of the statement of Lemma [3.3] Suppose that M; and M, have already been
sampled according to P, A o. Then, let £ be the event guaranteed by Lemma (6.5} E Note that Pr[€] >
—6n"1/3 >1-66%

44



By (29), we have

22n

B (lovs ~ Urliha | €] < pBan | 0 Ra(Mf's)? | €
s€{0,1}3
s#0™3
22n /\ ) .
—iBp 2 M0 B [l{s € (0.1 55 £ 0™ 0 = M5} | €]
ve{0,1}n
22n

= Bp 2 2 P B [{s € {01} s £ 070 = M s} €]
0<t<nve{0,1}"
even{  |y|=¢

(€29)

Note that in the above sum, ¢ is restricted to be even, since the fact that all rows of M3 have even weight
implies that any v in the row space of M3 must also have even weight.

Now, we split into three sums S1, So, S3 over different ranges of ¢. In particular, S1, S2, and S3
will be the sums over the ranges ¢ € [0, §%n], £ € (6*n, Bn), and £ € [Bn,n], respectively.

Bounding S;. First, note that by Lemma|6.2] we have

2271

S1 = B2 ST00>T ha()? B [[{s € {0,1)™ 1 s £ 0™ v = MY s}| | €]
0<¢<8%n ve{0,1}"
even ¢ |v|=¢

L ot (- v Tia ()2
> e </>.((1_a)n) 0

0<<é%n ve{0,1}"
even ¢ [v|=¢

< ) 2-2‘(6/2)!((1_<)‘a)n)”2 <64é(/5;n>6/2

0<0<5%n
even

256004\ ¥/
<2.
<2 ¥ (B
0<t<é*n
even £

— 0 (51— ), (32)

22n
<
~ B

since § < ¢ < ((1 —«)/512)1/4.
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Bounding S;. Next, we bound S5 as follows, again using Lemma[6.2}

22n —
S=mpp 2 2. M0 B[l (01" s £0m 0= M5 | €]
sn<l<pBnve{0,1}"
even ¢ |v|=¢
22n Py 1 [0 ¢2
< 2 holl?- 202 | ——
even £
2n
= — max 2. (2a 1—an€/2}
B 54n<£<fn{ (204/(1 - a)n)
<25 max 4aB/(1 — a))¥/?
< 64n<z<eﬁn{< B/(1— a2}
even

< 25471 . 8—54n/2

_ 279(6471)
since 4af/(1 —a) = a/8 < 1/8.
Bounding S3. Finally, by Lemma[6.5] we can bound S5 as follows:

2n —
Si=tgr X > M B s 0.7 0= Ms} | €]

Bn<t<nve{0,1}"
even £ |v|=¢

Z Z ?L;(U)Q . 2—bn

Bn<L<nve{0,1}"
even £ lv|=¢

2n P
<Ep?" Y X R

Bn<l<nve{0,1}"

2271

<
- BP?

even £ |v|=£
2
< 2"yt 1B
— |B|2 AL
< 254n—bn
—Q(8*
< 2790,

where the final step uses the fact that b > 254,

Now, we can combine (31)), (32)), (33), and (34) to obtain

Eng [Hng - Ur”?yd | 5] <51+ 8+ 53
::O(&V(l__a»_+2—Q®%U_F2—Qw%w

=0(6"/(1 - a)),

where we use the fact that § > n~1/10,
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Finally, recall that Pr[€] > 1 — 6n~'/3 > 1 — 652. Since ||par, — Uy ||svq is always at most 1, we have
that

Eng, [llpar, = Urllioa] < Ea [lloar, = Urllfa | €] - Pr(E] + Pr(€]
< EM3 [Hng - UTH?’UC[ ‘ E] + 0(5)
<O@*/(1 - )+ 0(5?)
— 0(5%/(1 - a)).

Thus,
Ms [|[PMs — Urlltvd] = M [[IPMs — Urllityd
Eng [| Urlltwa) < \/Ensg [l Urll?,4]
= 0(5/ v1-— Oé),
as desired. [ ]

We now prove the supporting lemmas and facts:

Proof of Lemma Note that by part (1) of Theorem a(v) # 0 implies that v is supported on edges
of Mj. Now, consider any v # 0™ for which a(v) 2 0. Then by part (2) of Lemma we have that for
every w € {0, 1}" supported on the edges of My, |v + w| > 0. Thus, v is not in the column space of M,
which proves the claim. n

Proof of Lemma Note that any s satisfying Mg s = v must consist of a union of edge-disjoint paths
connecting endpoints in the support of v and cycles. Since M3 does not have any cycles, by definition, it
follows that such an s must simply be a union of paths.

Let s be the union of paths Py, P, ..., P/ connecting nonzero coordinates of v. Fix a pairing of the
¢ nonzero coordinates of v. Then, for any single path P;, we have Pr[P; C M3] = (a/n)9, where ¢ is the
length of P;. Thus, by a union bound over all path lengths ¢ > 1 and all paths connecting the (2i — 1)-st
nonzero coordinate of v to the 2:-th nonzero coordinate, we have

(0}

Pr(P, C M) <) ni™" - (a/n)? < o

g1
Since Py, Ps, ..., Py are edge disjoint, we have
/2

Pr(P; C Msforalli=1,....0/2] < [[Pr(P C Ms] < (a/(1 — a)n)">.
=1

Finally, since there are at most

% ways to pair up the ¢ nonzero coordinates of v, it follows that

Eus [|s € {0,1}™ 1 s £ 0™, 0 = MY s|] (o) (1 = a)n)"/?

o
= 27(0/2)!
< 2°(4/2)(a/ (1 = )n)" /2,

as desired. [ ]

Proof of Fact Any s satisfying M s = v must correspond to an edge-disjoint union of paths connecting
pairs of nodes in the support of v along with cycles. Since M3 is, by design, guaranteed to contain no cycles,
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we have that such an s must consist of an edge-disjoint union of paths. Moreover, since each connected
component of Ms is a tree, there exists a unique (if at all) selection of edges in each component that can be
contained in s. Thus, the desired claim follows. [ |

Proof of Lemma [6.4: Consider a subset W of the n vertices chosen as follows: For each vertex, we
independently include it in W with probability p = ¢/n and exclude it with probability 1 — p.
It is apparent that

Pry[W NS =0] < (1—p)¥ < (1—p)™ < (1 - B

Now, we pass from the sampling process for W to V. Note that V' is precisely the random variable obtained
by conditioning W on the event |IW| = £. Moreover,

Py [[W] = (] = (Z)pg(l -p)"

T

pn
1
> .
“n+1l
Therefore,
1-=8)">Priy[WnNS =0
> Prw[|W| = E] . Prw[Wﬂ S=10 | W] = E]
1
>—P =
] I'V[V ns mv
which implies that for sufficiently large n, Pry [VNS = ] < (n+1)(1—3)" < 27" forb = clogy(1/(1—
B))/2, as desired. [ |

Proof of Lemma Recall that M3 is formed by first sampling M and removing edges. Let 7] be the
random variable equal to the number of connected components of M that consist of a single vertex. Then,
let £ = £(«) denote the event that 77 > cn, where ¢ = e~*/8 is a constant depending on «.

We now show that for sufficiently large n, event £ occurs with high probability, namely,

Pr[€] > 1—6n"'/3 (35)

The proof follows the proof of the more general Theorem 2.6.3 in [DurQ6l], but we reproduce it here with
our choice of parameters for the sake of completeness.
First, let us calculate the expected value of 7. Observe that the probability that any given vertex lies in

a connected component by itself is (1 — %)nil. Thus,

-1
Ea (1] =n (1-2)"
n

This implies that lim,,_,oc Epz, [T7]/n = e~

Now, we establish concentration to the mean. Let us count the number of ordered pairs (uy,u2) of
distinct vertices u1, ug that each lie in a connected component by themselves. The expected number of such

pairs is
n (1 - 9)"_1 (n—1) (1 - %)"_2 < (Ean[T7))? (1 - g)—l

n n
< (Eag,[T{]) /™.
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Thus, we can now compute the variance of 77:
A 2 12 ! (! / 112
var(Ty) = Eng [T17] — Eas[T1]7 = Ean[T1 (T — 1)] + Eag [T1] — Eas[T1]
< (2" = 1) Bag[T7]2 + Eagy [17].

It now follows from Chebyshev’s Inequality that

var (1Y)
(n2/3)2
(e 1) Eag [T 1 Eag 1]
= nA/3
(2a/n) - (2e7%n)? + 2e%n
<
= nA/3
< 6n"1/3,

Prag, [|T] - Eag [T]| = n?/%] <

for sufficiently large n. Moreover, if | T} — Ejz,[T}]] < n?/3, then

T > Epg[T]] — n*/?
> (e7%/2)n — n?/3

>cn

for sufficiently large n. This establishes (35).

Let S’ denote the set of vertices u such that {u} is a connected component of M}. Similarly, we define
S to be the set of vertices u such that {u} is a connected component of M3. Note that by Fact 6.3} if
|v| = £ > Pn, then

Ens, [[{s € {0,1}™ : v = M] s}| | €] < Prag,[supp(v) NS =0 | €]
< Pryy [supp(v) N S" =0 | &], (36)

where the second inequality follows from the fact that S’ C S. Since the distribution of S’ is invariant with
respect to permutations of the vertices, it follows from symmetry that if v, v’ € {0, 1} with |v| = |v'|, then

Pry[supp(v) N S" =0 | €] = Pryy[supp(v’) NS =0 | €]
Thus, letting V' be a uniformly random set of ¢ vertices, we see that Lemma [6.4]implies
Pryy [supp(v) NS =0 | E] =Pryy y[VNS' =0]€] < 9~bn

for b = clogy(1/(1 — B))/2 = e “logy(1/(1 — 3))/16 and sufficiently large n. Combining this with (36)
yields
Eug [[{s € {0,1}™ v = MTs}| | €] <27,

as desired. [ |

7 Basic bounds on Fourier mass

In this section we prove some useful properties of Fourier coefficients of boolean functions that arise in
our analysis. We start by recalling notation, and then proceed to the proofs. As before, we denote the
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message posted on the board by player ¢,t € {0, 1,2} by m;, where my = 0 for convenience. Similarly, the

matchings M;,t = 1, 2 are made available to all players. This means that for each ¢ the ¢-th player chooses

a function g; : {0,1}M¢ — {0,1}* that depends on the messages my, ...,m;_1 as well as the matchings

Mi, ..., M;. Then the player computes m; = g;(M;z). The space {0,1}Mt will be referred to as the

reduced space (as opposed to the space {0, 1}" from which a partition x is drawn uniformly at random).
Let A; C {0,1}: ¢t =1,...,T be typical messages in the reduced space for round ¢. Let

B; = {(I,' S {0, 1}” : gt(Mt.’B) S At}

be the typical messages in the full space for rounds ¢ = 1,2. Let f; : {0,1}" — {0, 1} denote indicator
functions of the sets A;. Note that f; - fs is the indicator of By = A1 N Ay (the indicator of By = A is

f1).

The bounds that we prove in this section can be summarized as follows. First, we show that the Fourier
transform of f; is supported only on sets of vertices that can be perfectly matched by M, t € {1,2}. Second,
we show that the ¢, mass cannot be to concentrated in every subcube in the Fourier space. The bounds are
summarized formally in Theorem .6] The first bound is proved in Lemma and the second bound is
proved in Lemma

We will use

Lemma 7.1 ([KKL88]) Let f be a function f : {0,1}" — {—1,0,1}. Let A = {x € {0,1}" : f(z) # 0}.
Let |s| denote the Hamming weight of s € {0, 1}". Then for every 6 € [0, 1]

_2
> aier < ()"
se{0,1}"

Our main result in this section is
Theorem (Restated) Let M € {0,1}™*"™ be the incidence matrix of a matching M, where the rows
correspond to edges e of M (M, = 1 if e is incident on u and 0 otherwise). Let g : {0,1}"™ — {0, 1}* for
some s > 0. Let a € {0,1}* and let A cquced == {z € {0,1}" : g(2) = a}. Further, let f : {0,1}" —
{0, 1} denote the indicator of the set

A :={ze{0,1}": g(Mz) =a}.

Suppose that |A| = 2"~4 for some d € [0,n)].
Then

1. the only nonzero Fourier coefficients of fare of the form f(M Taw) for some w € {0,1}M;

2. forall ¢ € [0 : d] and every Q C M

20 3 J)? <2¥e4d)ey,
UE{O,].}”,‘U|:2£+‘Q|
v2Q
where |Q)| denotes the number of vertices in Q;
3. 22 2 vef0,1}n ]?(v)2 = 24 (Parseval’s equality).

Remark 7.2 Note that Theorem has two parameters related to the size of the set A: s and d. The first
parameter is the dimensionality of the binary cube that the function g maps to. The second parameter is d

gives the size of the set A py. For a ‘typical’ set Aty we expect that A g,y occupies a 27° fraction of the
hypercube 2™, i.e. d = s + O(1).
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The proof of Theorem §.6|relies on Lemma [7.3](stated below), whose proof is given in section[7.2] The
lemma provides a natural extension of the KKL-based bounds used in previous works. It shows that /> mass
of an indicator function of a large subset of the boolean cube cannot be too concentrated on low weight
coefficients of subcubes:

Lemma 7.3 Let A C {0,1}" be a set such that |A|/2" = 2% Let f : {0,1}" — {0,1} be the indicator
of A. Then for every set S C [n] and every k € {1,2,...,d} one has

2% > f(v)? < 225(64d k)"

ve{0,1}",wt(v)=k+|S|,SCv

We note that the case |S| = () corresponds to Lemma 6 in [GKK™08]. Lemma 6 in [GKK™08] shows
that (appropriately normalized) Fourier transform of the indicator function of a large subset of the boolean
cube cannot have too much mass on the low weight coefficients. Lemma shows that the normalized
Fourier mass cannot be too concentrated on low weight Fourier coefficients inside a fixed subcube.

We will also need Lemma([7.4] stated below:

Lemma 7.4 Let M € {0,1}™*™ be the incidence matrix of a matching M, where the rows correspond to
edges e of M (M, = 1 if e is incident on u and 0 otherwise). Let g : {0,1}"™ — {0, 1}* for some s > 0. Let
a € {0,1}% and let q : {0,1}™ — {0, 1} be the indicator of the set A cquced == {z € {0,1}" : g(z) = a}.
Further, let f : {0,1}" — {0, 1} denote the indicator of the set

Apy ={2 € {0,1}" : g(Mz) = a}.

Then for every v € {0,1}"

A { 0, if v cannot be perfectly matched via edges of M 37)

) = G(w), w the perfect matching of v using edges of M o.w.

Furthermore, the perfect matching of v, when it exists, is unique. The second condition above is equivalent
to the existence of w € {0,1}™ = {0,13M such that v = MTw. Thus, Fourier coefficients of f are
indexed by sets of edges of M. Note that nonzero weight k coefficients of g are in one to one correspondence
with nonzero weight 2k coefficients of f i.e. the only nonzero Fourier coefficients of f are of the form
FMTw) = G(w) for some w € {0,1}M.

Given these two lemmas, the proof of Theorem [§.6|follows:
Proof of Theorem By Lemma nonzero Fourier coefficients of f are of the form fA'(M Try =
g(r),r € {0,1}M and in particular |[M”r| = 2|r|. By Lemma(7.3|applied to ¢ : {0,1}™ — {0,1} with S
as the set of edges of M that perfectly match all nodes in () we have

9% > G(v)? < 2291 (64d/k)*
ve{0,1}",wt(v)=k+|S|,SCv

for every k < d. Putting these two facts together and using the fact that |Q| = 2|5| gives

22 > fw)? < 219(64d k)"

ve{0,1}™wt(v)=2k+|Q[,QCv

for every k < d, as required. |
In the remainder of this section we prove Lemma(7.4]in section[7.1] then prove Lemma([7.3|in section[7.2]
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7.1 Properties of Fourier transform of f;

First, we prove

Lemma Let M € {0,1}™*™ be the incidence matrix of a matching M, where the rows correspond to
edges e of M (M, = 1 ifeis incident on u and 0 otherwise). Let g : {0,1}" — {0,1}* for some s > 0. Let
a €{0,1}%andlet q : {0,1}"™ — {0, 1} be the indicator of the set A, equced := {z € {0,1}" : g(z) = a}.
Further, let f : {0,1}" — {0, 1} denote the indicator of the set

Apyi={z € {0,1}": g(Mx) = a}.
Then for every v € {0,1}"

A { 0, if v cannot be perfectly matched via edges of M

) = G(w), w the perfect matching of v using edges of M o.w. (38)

Furthermore, the perfect matching of v, when it exists, is unique. The second condition above is equivalent
to the existence of w € {0,1}™ = {0,13M such that v = MTw. Thus, Fourier coefficients of f are
indexed by sets of edges of M. Note that nonzero weight k coefficients of g are in one to one correspondence
with nonzero weight 2k coefficients of f i.e. the only nonzero Fourier coefficients of J?are of the form
FIMTw) = G(w) for some w € {0,1}M.

Proof: We compute the Fourier transform of g(z). For z € {0, 1} let z(z) be defined by setting, for
each edge (u,v) € M,

2(2)y = zeand 2(2), = 0

and x(z),, = 0 if w is not matched by M. Note that z(z) is a particular solution of Mx = z. Note that the

set of solutions is given by
{z(2) + Ns:se€{0,1}" ™}, (39)

where N is a basis for the nullspace of M. Without loss of generality suppose that M contains the edges
(20 —1,2i),5 = 1,...,m. Then the matrix N € {0, 1}"*("=™) may be taken as

1 00 0 0 .0
1 00 0 0 .0
010 0 0 .0
010 0 0 .0
0 01 000 0],
0 01 000 O
0 00 100 O
0 00 010 O
0 00 00 . 0
0 00 000 1

where the bottom right submatrix is an (n —m) x (n — m) identity and the top left is M*.
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The Fourier transform of f atv € {0,1}" is given by

fo) =g 3 f@)- (-1

z€{0,1}"

—i _ 1\(z(2)+Ns)wv
T 9n Z Z ( 1) o

2€A rcduced 56{0,1}”’_"7’

_ 2% Z (_1)ac(z)~v Z (_1)(’UTN)'S

2€A cduced Se{o7l}nf'm

First note that

Z (_1)(1)TN)'S =1lry_o 2",
se{0,1}n—m

50 f(v) = 0 unless vT N = 0. Note that all such v are of the form v = M”r for some r € {0,1}".
Thus,

farn <20 Sy S B S o= g

ZeAreduced ZeAreduced

and f(v) = 0 for all v not of the form M7'r. Note that we use the fact that 2(z) - MTr = z - r for all z and
T.

Note that Fourier coefficients of f only have even weight and weight k Fourier coefficients of g are in
direct correspondence with weight k /2 coefficients of f (since |[MTr| = 2|r| for all € {0,1}™). [ |

7.2 KKL on subcubes

Proof of Lemma [7.3:

We use the notation [n] for the set of elements {1, 2, ...,n}.For a vector x € {0, 1}" we write supp(x)
to denote the set of nonzeros in z. For a vector 2 € {0,1}" and a set S C [n] we write z5 € {0,1}° to
denote the restriction of x to coordinates in S.

Let f denote the indicator of A, |A|/2" = 279, For a € {0, 1}" with supp(c) C S let

B, ={r € A:zg5=ag},
and let g, (z) denote the indicator of B,. Note that

ga(x) = f(*r) : 1xs=a5 (.’L‘), (40)

where 1, ,— is the indicator of the set {z € {0,1}" : zg = ag}.

The proof proceeds as follows. We first relate energy of the Fourier transform of g,, for a random « to
the energy of the Fourier transform of f (see Eq. (46)). This relation shows that the expected energy of g,
contributed by weight k Fourier coefficients lower bounds the sum of energies of Fourier coefficients of f
that have weight k£ + | S| and contain the set S (this is the rhs of the inequality that we would like to prove).
By an averaging argument there exists o™ such that the sum of Fourier coefficients of g,+ provides the same
lower bound (see Eq. (47))). We then apply KKL to g+, obtaining the required bound (see Eq. (48)).

By Eq. together with Eq. () the Fourier transform of g,, for all v € {0, 1}" equals

Ja(v) = Z flv+ w)lx/sgs(w) 41)

we{0,1}7
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One has, for every w € {0,1}",
_— 1 ) We—
1xs=as (w) = 27 Z (_1)9“0 = 1supp(w)§5’ : (_1)aw2 151 (42)
z€{0,1}" z5=a5
Thus,
W0 =25 S frwe -
we{0,1}7 supp(w)CS

We now define a useful distribution over vectors in {0, 1}". We say that a vector o € {0, 1}" is sampled
from Dy if ag is uniformly random in {0,1}° and all other entries of o are zero. Note that for every
x € {0,1}" one has

o 1 ifzg=0
Bansl(-17 = { 25 @
We have for every v € {0,1}"
2
EOLNDS [goc (U)z] =Eq 27|S| Z f(v + w)(_l)a-w
we{0,1}™,supp(w)CS
= 2*2|S|Ea~ps Z flo+w)f(v+ w’)(—l)a'(ww’)
w,w’e€{0,1}", (45)
supp(w)C.S,supp(w’)CS
= 2725l Z fv+w)f(v+ (00) (—1)‘”'(w+w/)]
w,w’e€{0,1}7,
supp(w) CS,supp(w’)CS
= 9725l Z f(v+w)?  (by @) applied to w + w')
we{0,1}7,supp(w)CS
In particular, for every k > 1
Eon| > Ja(v)?] =272 > > ftw?
v€{0,1}":supp(v)NS=0, v€{0,1}™:supp(v)NS=0, we{0,1}",
wt(v)=k wt(v)=k supp(w)CS
> 9-2I8| 3 > flo+w)?
v€{0,1}":supp(v)NS=0, we{0,1}",supp(w)CS, (46)
wt(v)=k ws=1g
N
v€{0,1}™:SCsupp(v),
wt(v)=k+|S|
By Eq. (46) there exists o* € {0,1}", supp(a*) C S such that
Z Jor(v)? > 225 Z ]E(U)2 47)
viwt(v)=k v€e{0,1}",SCu:wt(v)=k+|S5]|

Recall that go+(2) is the indicator of Bo+ C {0, 1}". By Lemma[7.1] we have for all § € [0, 1]
2
> 8" (1) < (Ba|/2) 5.

ve{0,1}n
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Thus, for every £ > 1 we have
S Ger(®)? <6H(Bael/2) T < 57R(A]/2) T,
ve{0,1}:wt(v)=k

where we used the fact that |B,| < |A| for all .
Putting this together with Eq. (7) yields

27251 N fu)? < R(Al2m . (48)
ve{0,1}",SCv
wt(v)=k+|S|

We now set § = k/(2d). This is valid, i.e. § € (0,1), since & < d by assumption of the lemma.
Simplifying the rhs of Eq. with this setting of 0§, we get

—k —k
—k ik — (F e g2 ( ~24( 55 1)
57k(|A]/2m) T+ <2d> 2 27 (=) 2

Since —1=-—MeD 5 /(2d), we conclude that the rhs is bounded by

1+k}(2d) T 14k/(2d) <=
2724(k/(2d)) %2k = 272 (4d /k)F < 2724 (64d/k)".
Substituting this into Eq. {8)), we get

9%d > f(0)? < 27250(64d k)"

ve{0,1}",SCv:wt(v)=k+|S]|

as required.

References

[AGO09] K. Ahn and S. Guha. Graph sparsification in the semi-streaming model. /ICALP, pages 328-338,
2009.

[AG11] K. Ahn and S. Guha. Linear programming in the semi-streaming model with application to the
maximum matching problem. ICALP, pages 526-538, 2011.

[AG13] K. Ahn and S. Guha. Access to data and number of iterations: Dual primal algorithms for
maximum matching under resource constraints. CoRR, abs/1307.4359, 2013.

[AGM12a] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via linear
measurements. SODA, pages 459—-467, 2012.

[AGM12b] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketching: Sparsification, span-
ners, and subgraphs. PODS, 2012.

[AKLY15] Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Tight bounds for linear
sketches of approximate matchings. CoRR, 2015.

[AMS96] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. In STOC, pages 20-29, 1996.

55



[Bera]
[Berb]

[BK96]

[CCE*15]

[Dur06]

[EHL*15]

[GKK108]

[GKK12]

[GO12]

[HRVZ15]

[Kap13]

[KK15]

[KKL88]

[KKS14]

[KKS15]

[KL11]

[KLM™14]

[Kon15]

Bertinoro workshop 2011, problem 45, http://sublinear.info/45.
Bertinoro workshop 2014, problem 67, http://sublinear.info/67.

Andris A. Bencziir and David R. Karger. Approximating s-f minimum cuts in O(n?) time.
Proceedings of the 28th annual ACM symposium on Theory of computing, pages 47-55, 1996.

Rajesh Hemant Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi,
Andrew McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via sampling
with applications to dynamic graph streams. CoRR, abs/1505.01731, 2015.

Rick Durrett. Random Graph Dynamics (Cambridge Series in Statistical and Probabilistic
Mathematics). Cambridge University Press, New York, NY, USA, 2006.

Hossein Esfandiari, Mohammad Taghi Hajiaghayi, Vahid Liaghat, Morteza Monemizadeh, and
Krzysztof Onak. Streaming algorithms for estimating the matching size in planar graphs and
beyond. SODA, 2015.

Dmitry Gavinsky, Julia Kempe, lordanis Kerenidis, Ran Raz, and Ronald de Wolf. Exponential
separation for one-way quantum communication complexity, with applications to cryptography.
SIAM J. Comput., 38(5):1695-1708, 2008.

A. Goel, M. Kapralov, and S. Khanna. On the communication and streaming complexity of
maximum bipartite matching. SODA, 2012.

Venkatesan Guruswami and Krzysztof Onak. Superlinear lower bounds for multipass graph
processing. CCC, 2012.

Zengfeng Huang, Bozidar Radunovié¢, Milan Vojnovié, and Qin Zhang. Communication com-
plexity of approximate maximum matching in distributed graph data. STACS, 2015.

Michael Kapralov. Better bounds for matchings in the streaming model. SODA, 2013.
Dmitry Kogan and Robert Krauthgamer. Sketching cuts in graphs and hypergraphs. ITCS, 2015.

Jeff Kahn, Gil Kalai, and Nathan Linial. The influence of variables on boolean functions (ex-
tended abstract). 29th Annual Symposium on Foundations of Computer Science, White Plains,
New York, USA, 24-26 October 1988, pages 68—80, 1988.

Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size from
random streams. In 25th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2014.

Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Streaming lower bounds for approxi-
mating MAX-CUT. In 26th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2015.

Jonathan A. Kelner and Alex Levin. Spectral sparsification in the semi-streaming setting.
STACS, pages 440-451, 2011.

Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, and Aaron Sidford. Sin-
gle pass spectral sparsification in dynamic streams. FOCS, 2014.

Christian Konrad. Maximum matching in turnstile streams. CoRR, abs/1505.01460, 2015.

56


http://sublinear.info/45
http://sublinear.info/67

[KW14]  Michael Kapralov and David Woodruff. Spanners and sparsifiers in dynamic streams. PODC,
2014.

[McG14]  Andrew McGregor. Graph stream algorithms: a survey. SIGMOD Record, 43(1):9-20, 2014.

[SSO08] D.A. Spielman and N. Srivastava. Graph sparsification by effective resistances. STOC, pages
563-568, 2008.

[VY11] Elad Verbin and Wei Yu. The streaming complexity of cycle counting, sorting by reversals, and
other problems. SODA, pages 11-25, 2011.

57



	1 Introduction
	2 Communication problem and hard distribution
	3 Analysis of communication problem via Fourier techniques
	3.1 Fourier analysis on the boolean hypercube
	3.2 The basic setup

	4 Proof of main lemma (Lemma 3.4)
	4.1 Useful definitions and basic claims
	4.2 Bounds on expected transfer of Fourier mass
	4.3 Putting it together

	5 Gap analysis (proof of Lemma 2.4)
	5.1 Existence of a giant component
	5.2 Distance to bipartiteness

	6 Proof of Lemma 3.3 (distance to uniformity)
	7 Basic bounds on Fourier mass
	7.1 Properties of Fourier transform of ft
	7.2 KKL on subcubes

	References

