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Abstract. We give new lower bounds for randomized NNS data structures in the
cell probe model based on robust metric expansion for two metric spaces: l∞ and
Earth Mover Distance (EMD) in high dimensions. In particular, our results imply
stronger non-embedability for these metric spaces into l1. The main components
of our approach are a strengthening of the isoperimetric inequality for the distri-
bution on l∞ introduced by Andoni et al [FOCS’08] and a robust isoperimetric
inequality for EMD on quotients of the boolean hypercube.

1 Introduction

In the Nearest Neighbor Problem we are given a data set of n points x1, ..., xn lying
in a metric space V . The goal is to preprocess the data set into a data structure such
that when given a query point y ∈ V , it is possible to recover the data set point which
is closest to y by querying the data structure at most t times. The goal is to keep both
the querying time t and the data structure space m as small as possible. Nearest Neigh-
bor Search is a fundamental problem in data structures with numerous applications to
web algorithms, computational biology, information retrieval, machine learning, etc. As
such it has been researched extensively.

Natural metric spaces include the spaces <d equipped with the `1 or `2 distance
that have been extensively studied in terms of upper and lower bounds. But other met-
rics such as `∞, edit distance and earth mover distance may be more appropriate in
some settings [3, 9]. Naturally, the time space tradeoff of known solutions crucially de-
pend upon the underlying metric space. The known upper bounds exhibit the ‘curse of
dimensionality’: for d dimensional spaces either the space or time complexity is expo-
nential in d – thus encouraging research on approximate solutions. In the c-approximate
nearest neighbor version, one returns a neighbor that is at most distance c times that to
the nearest neighbor [10], [12], [9], [2] –for example there is an algorithm to obtain a
c-approximate near neighbor in time Õ(1) and space n1+O(1/c) using locality sensi-
tive hashing in the l1 metric; for the l2 metric the space drops to n1+O(1/c2) [2]. For
the `∞ metric Indyk [9] shows how to compute a O(log1/ε log d)-approximate NNS
using space nΩ(1/ε); most of these algorithms are randomized, while the algorithm of
Indyk [9] is deterministic. Our lower bounds for `∞ show that the space/approximation
tradeoff in [9] is essentially optimal even if randomization is allowed.
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There is a substantial body of work on lower bounds covering various metric spaces
and parameter settings many of which assume the algorithm to be deterministic. Most
previous papers are concerned with the Hamming distance over the d-dimensional hy-
percube. The cases of exact or deterministic algorithms were handled in a series of
papers[7], [6],[13], [5]. These lower bounds hold for any polynomial space. In contrast
the known upper bounds are both approximate and randomized, and with polynomial
space can retrieve the output with one query. Chakrabarti and Regev [8] allow for both
randomization and approximation, with polynomial space and show a tight bound for
the nearest neighbor problem. Patrascu and Thorup[18] showed lower bounds on the
query time of near neighbor problems with a stronger space restriction (near linear
space), although their bound holds for deterministic or exact algorithms. Traditionally,
cell probe lower bounds for data structures have been shown using communication com-
plexity arguments [15]. Patrascu and Thorup [18] use a direct sum theorem along with
the richness technique to obtain lower bounds for deterministic algorithms. Andoni,
Indyk and Patrascu [4] showed randomized lower bounds using communication com-
plexity lower bounds for Lopsided Set Disjointness. In [16, 17], a more direct geometric
argument was used to show lower bounds for randomized algorithms based on different
variants of expansion of the underlying metric space.

The metric `∞ is considered in an intriguing paper by Andoni et al.[1] who prove
a lower bound for deterministic algorithms. The paper uses the richness lemma though
the crux of the proof is an interesting isoperimetric bound on `∞ for a carefully chosen
measure. The lower bound they provide is tight for constant query time and matches
the upper bound from [9]. In this work we obtain lower bounds for randomized algo-
rithms for two new metric spaces: `∞ and Earth Movers Distance (EMD). For the `∞
metric we extend the tight lower bounds of [1] from deterministic to randomized algo-
rithms by computing the notion of ‘robust expansion’ introduced in [17]. Our’s is the
first work that looks at the hardness of NNS in EMD metric. Inspired from the Fourier
based techniques in the non-embeddability results from [11] we show hardness of NNS
in the EMD metric over point sets in the d-dimensional hamming cube. We prove the
following hardness guarantees for the case when cell size is no(1), where n is the num-
ber of points in the database. For a given distribution of points and query, a randomized
algorithm for (approximate) NNS is one that produces an (approximate) near neighbor
with probability at least 2/3.

Theorem 1. 1. For a O(log1/ε log d) approximate NNS in `∞, any (randomized) t-
probe data structure needs space at least nΩ(1/(εt))

2. There is distribution of sets from the Hamming cube {0, 1}d so that any (random-
ized) t-probe data structure for an α approximate NNS the EMD metric on this
set needs space at least eΩ(d/(αt)) (each set in the distribution can be specified
explicitly using O(d) bits).

It is interesting to note that approximate NNS for EMD under this distribution takes
exponential space for approximation O(d1−ε) for all constant ε > 0. Note that lower
bounds on NNS on a metric space are stronger than non-embeddability results as once
a metric space can be embedded into a well-studied metric space, the algorithms for
NNS from the latter will carry over with the appropriate distortion. Thus our results



automatically imply robust non-embeddibility results for these metric spaces. While it
was known that these metric spaces do not embed into l1 or l2 with constant distortion,
we now know that they are also not gap embeddable. In particular for the EMD metric
on point sets from a d-dimensional hypercube Khot et al[11] showed that it doesn’t
embed into the `1 metric with distortion less than d . Our bound generalizes this to
gap-inembeddibility:

Theorem 2. There is no embedding M from the EMD metric space induced by the
hamming metric on point sets over {0, 1}d to the l1 metric that satisfies the following
gap distortion guarantees.

EMD(u, v) ≤ ω(1) =⇒ |M(u)−M(v)|1 ≤ 1

EMD(u, v) = Ω(d) =⇒ |M(u)−M(v)|1 ≥ 2

We will now review the different notions of metric-expansion from [17] that pro-
duce lower bounds for different classes of algorithms, deterministic and randomized.
The bounds hold even for even in the average case when the points are chosen uni-
formly from a certain distribution.

1.1 Expansion and its relation to complexity of NNS

The results in [17] show a relation between the expansion of the metric space and the
complexity of NNS. It works with the version of the Near Neighbor version of the
problem that is parameterized by a search radius r. As in the Nearest Neighbor Search
Problem given a query point y the goal is to determine whether the data set contains a
point of distance at most r from y. Expansion can be used to consider the case when
points are chosen randomly from a distrubution and the query point is a random point
from a ball of radius r around one of the database points. Intuitively expansion is the
amount by which a set of points expands when we include points in their r neigh-
borhood. If distribution of points is such that the distance between any pair of database
points is at least cr then this lower bound also implies hardness for c-approximate NNS.

To compute the expansion we construct an undirected bipartite graphG = (U, V,E)
where U and V are all the points in the metric space and and edge is placed between
a pair of nodes from U and V if they are at most distance r apart. The data set comes
by choosing n points randomly from U and query is a random neighbor from V of
a random database point from U (these distrubutions may be non-uniform which we
specify in detail later).

Definition 1 (Vertex expansion). The δ−vertex expansion of the graph is defined as

Φv(δ) := min
A⊂V,|A|≤δ|U |

|N(A)|
|A|

.

Here N(A) denotes the neighborhood of the set A in G. For A ⊂ V , B ⊂ U , let
E(A,B) denote the set of edges between A and B in the bipartite graph G. Assume
that |A| = δ|U |. Observe that if E(A,B) = E(A,U) then |B| ≥ Φv(δ)|A|. In other



words Φv(δ) bounds the measure of the sets that cover all the edges incident on a set of
measure δ. The notion of robust expansion relaxes this by requiring B to cover at least
a γ-fraction of the edges incident on A. This idea is captured in the definition below.
For simplicity we assume that V = U and that G is regular. A more subtle definition
which takes into account other non-regular graphs is presented later.

Definition 2 (Robust expansion). G has robust-expansion Φr(δ, γ) if ∀A,B ⊆ V sat-
isfying |A| ≤ δ|V |, |B| ≤ Φ(δ, γ)|A|, it is the case that |E(A,B|

|E(A,V )| ≤ γ. Note that
Φr(δ, 1) = Φv(δ).

Lower bounds for NNS based on the above notions of expansion were proven
in [17]; the deterministic lower bounds use expansion and the randomized lower bounds
make use of robust-expansion We now state the bounds for randomized algorithms. For
technical reasons, it also assumes that the metric space satisfies a property called weak-
independence which simply means that two balls of radius r centered at randomly cho-
sen points are sufficiently disjoint with high probability 1 − o(1/n2). Here m denotes
the number of cells used by the algorithm where each cell can hold a word of size w
bits.

Theorem 3. [17] There exists an absolute constant γ such that the following holds. Any
randomized algorithm for a weakly-independent instance of Near Neighbor problem
which is correct with probability at least half (where the probability is taken over the
sampling of the input and the algorithm), satisfies the following inequalities:

mtw

n
≥ Φr

(
1

mt
,
γ

t

)
(1)

These theorems, combined with known isoperimetric inequalities yield most known
cell probe lower bounds for near neighbor problems. There is also some evidence that
the connection between expansion and hardness of NNS is tight for constant t – this has
been shown to hold for cases when the graph G is symmetric [17].

The bipartite graph G = (U, V,E) may be weighted by a a probability distribu-
tion e over the edges E. Let µ(u) = e(u, V ) =

∑
v∈V e(u, v) be the induced distri-

bution on U , and let ν(v) = e(U, v) be the induced distribution on V . For x ∈ U ,
we denote by νx the conditional distribution of the endpoints in V of edges incident
on u, i.e. νx(y) = e(x, y)/e(x, V ). Thus νy is a distribution over (or concentrated
over) the r-neighborhood of y. In this case we select n points x1, . . . , xn indepen-
dently from the distribution µ uniformly at random. This defines the database distri-
bution. To generate the query, we pick an i ∈ [n] uniformly at random, and sam-
ple y independently from νxi . The tuple (G, e) satisfies γ-weak independence (WI) if
Prx,z∼µ,y∼νx [(y, z) ∈ E] ≤ γ

n . Thus, weak independence ensures that with probability
(1− γ), for the instance generated as above, x is indeed the unique neighbor in G of y
in {x1, . . . , xn}. The following definition generalizes the notion of robust-expansion to
weighted bipartite graphs.

Definition 3. [17] [Robust Expansion] The γ-robust expansion of a set A ⊆ V is

φr(A, γ)
def
= min

B⊆U :e(B,A)≥γe(U,A)
µ(B)/ν(A).



2 Robust expansion of l∞

In this section we prove a bound on the robust expansion of l∞ under a variant of the
distribution introduced in [1]. Let Gd = (U, V,E) be the l∞ graph on U = V =
[1, . . . ,m]d, i.e. u ∈ U is connected to v ∈ V iff ||u − v||∞ ≤ 1. We now define a
distribution τ on the edges of Gd.

We start by defining the distribution for G1, the one-dimensional l1 graph (see
Fig. 1). The distribution on Gd for general d will be the product of distributions on
G1. We let

τ1i,j = 2−(1/ε)
i

if j = i+ 1 and i is odd

τ1i,j = 2−(1/ε)
j

if j = i− 1 and i is odd

τ11,0 = 1−
∑
i≥1

2−(1/ε)
i

, and τ1i,j = 0 o.w.

We denote the induced one-dimensional distributions by

µ1
u =

∑
v∈N1(u)

τ1(u,v), ν
1
v =

∑
u∈N1(v)

τ1(u,v).

1− (2−(1/ε) + . . .) 0 2−(1/ε) + 2−(1/ε)2 0 2−(1/ε)3 + 2−(1/ε)4

0 1− (2−(1/ε)2 + . . .) 0 2−(1/ε)2 + 2−(1/ε)3 0

Measure ν

Measure µ

1− (2−(1/ε) + . . .) 2−(1/ε)

2−(1/ε)2

2−(1/ε)3

Fig. 1. Distribution on G1

The d-dimensional distribution τd over edges is defined by τd(u,v) =
∏d
i=1 τ

1
ui,vi .

We fist note that this induces a product distribution on the vertices u ∈ U , where
µd(u) =

∏d
i=1 µ1(ui). In what follows we will use the notation ed(A,B) =

∑
e∈E∩(A×B) τ

d
e .

We also omit superscripts in µd, νd, ed and τde whenever this does not cause confusion.
The main component of our lower bound is a strengthened isoperimetric inequality

for l∞ under the distribution that we just defined. The main technical lemma will be

Lemma 1. Let Gd = (U, V,E) denote the l∞ graph. For any A ⊆ U,B ⊆ V one has
e(A,B) ≤ (µ(A)ν(B))

1/(1+δ) for some δ = Θ(ε) and all sufficiently small ε.

A bound on robust expansion follows from Lemma 1 (details are deferred to the full
version):



Lemma 2. Let Gd = (U, V,E) denote the l∞ graph. For any A ⊆ U,B ⊆ V such that
e(B,A) ≥ γe(A, V ) one has ν(B) ≥ γ1+δ(µ(A))δ for some δ = Θ(ε) and sufficiently
small ε.

The proof Lemma 1 is by induction on the dimension, and we start by outlining the
proof strategy for the base case, i.e. d = 1. For d = 1, Lemma 1 turns into

Lemma 3. Let G1 denote the l∞ graph in dimension 1 with the measure τ defined as
above. There exist constants γ, ε∗ > 0 such that for every x, y ∈ RV+ for ε < ε∗ and
δ = γε one has

∑
(i,j)∈E(G1)

xiτi,jyj ≤

(∑
i

µix
1+δ
i

)1/(1+δ)(∑
i

νiy
1+δ
i

)1/(1+δ)

(2)

It will be convenient to make a substitution to ensure that the rhs is the product of
unweighted (1 + δ)-norms. Set ui = µ

1/(1+δ)
i xi, vi = ν

1/(1+δ)
i yi, so that (2) becomes∑

(i,j)∈E

uiµ
−1/(1+δ)
i τijν

−1/(1+δ)
j vj ≤ ||u||1+δ||v||1+δ. (3)

We prove the bound (3) in two steps. In particular, we break the graph G1 into two
pieces that overlap by one vertex, prove stronger versions of (3) for both subproblems,
and then piece them together to obtain (3).

In the first step we concentrate on the subgraph induced by vertices on both sides
with indices in [0 : 2]. This amounts to only considering distributions that are zero
outside of [0 : 2]. We prove in Lemma 4 that a strengthened version of (3) holds under
these restrictions. In particular, we show in the full version that

Lemma 4. There exist constants ε∗, γ > 0 such that for all v0, v2 ≥ 0 one has for all
ε < ε∗, δ = γε

τ10v0 + τ12v2 ≤
(
ν0v

1+δ
0 + (1−Ω(δ5))ν1v

1+δ
1

)1/(1+δ)
(4)

It should be noted that while (3) depends on both u and v, the inequality in (4)
only depends on u. This is because only the single vertex v1 has a nonzero weight
among vertices in [0 : 2], and hence can be cancelled from both sides. The 1 + O(δ5)
term multiplying u2 on the lhs represents the main strengthening, and will be crucially
important for combining the inequalities for different parts of the graph later.

In the second step we consider the subgraph of G1 induced by vertices with indices
in [2 : +∞]. This amounts to considering distributions that are zero on the the first two
vertices on each side of the graph. For this case we prove

Lemma 5. Let G1 denote the l∞ graph in dimension 1 with the measure τ defined as
above. There exist constants γ, ε∗ > 0 such that for every x, y ∈ RV+ for ε < ε∗ and
δ = γε one has

∑
(i,j)∈E(G1),i>1

xiτi,jyj ≤ 2−1/ε

(∑
i

µix
1+δ
i

)1/(1+δ)(∑
i

νiy
1+δ
i

)1/(1+δ)

(5)



The 2−1/ε term represents the strengthening with respect to (3) and will be crucial for
combining (4) and (5). Combining (4) and (5), we then get the result (essentially) by an
application of Cauchy-Schwarz and norm inequalities. One complication will be the fact
that (4) and (5) overlap by v2, but we will be able to handle this since the strengthened
inequalities ensure that v2 appears in (4) and (5) with weights that sum up to at most 1.
We now give

Proof of Lemma 5: We need to bound
∑

(i,j)∈E,i≥2 uiµ
−1/(1+δ)
i τijν

−1/(1+δ)
j vj .

In order to do that, we decompose the edges of G1 restricted to [2 : +∞] into two
edge disjoint matchings M1 and M2: M1 = {(i, j) ∈ E(G1) : j = i − 1, i, j ≥ 2},
M2 = {(i, j) ∈ E(G1) : j = i+ 1, i, j ≥ 2}.

First, suppose that (i, j) ∈M1, i.e. j = i− 1 andi = 2k+1, where k ≥ 1 since we
are considering distributions restricted to [2 : +∞]. We have

µ
−1/(1+δ)
i τijν

−1/(1+δ)
j ≤ 2(1/ε)

(k+1)/(1+δ) · 2−(1/ε)
k+1

· 2(1/ε)
k/(1+δ) = 2(1/ε)

k(1−δ/ε)/(1+δ).

For δ ≥ 4ε and sufficiently small constant ε µ−1/(1+δ)i τijν
−(1−2ε)
j ≤ 2−2(1/ε)

k ≤
2−2/ε, where we used the fact that k ≥ 1. A similar argument shows that the same
holds for all (i, j) ∈M2. Thus, for r = 1, 2∑
(i,j)∈Mr

uiµ
−1/(1+δ)
i τijν

−1/(1+δ)
j vj ≤ 2−2/ε

∑
(i,j)∈E,i≥2

uivj ≤ 2−2/ε
√∑

i≥2

u2i

√∑
j≥2

v2j

by Cauchy-Schwarz. Since for all x one has ||x||p ≥ ||x||q when p ≤ q, we conclude
that for r = 1, 2

∑
(i,j)∈Mr

uiµ
−1/(1+δ)
i τijν

−1/(1+δ)
j vj ≤ 2−2/ε

∑
i≥2

u1+δi

1/(1+δ)∑
j≥2

v1+δj

1/(1+δ)

,

as required. Putting the estimates for M1 and M2 together, we get

∑
(i,j)∈E(G1),i≥2

xiτi,jyj ≤ 2−1/ε

(∑
i

µix
1+δ
i

)1/(1+δ)(∑
i

νiy
1+δ
i

)1/(1+δ)

.

ut
We now prove Lemma 3, and then use it as the base case for induction on dimension.
Proof of Lemma 3: By Lemma 4 we have∑

(i,j)∈E(G1),i,j≤2

xiτi,jyj ≤
(
µ1x

1+δ
1

)1/(1+δ) (
ν0y

1+δ
0 + (1−Ω(δ5))ν2y

1+δ
2

)1/(1+δ)
,

(6)
For convenience, letA :=

(
µ1x

1+δ
1

)1/(1+δ)
, B :=

(
ν1y

1+δ
1 + (1−Ω(δ5))ν2y

1+δ
2

)1/(1+δ)
.

Furthermore, by Lemma 5

∑
(i,j)∈E(G1),i≥2,j≥2

xiτi,jyj ≤ 2−1/ε

(∑
i

µix
1+δ
i

)1/(1+δ)(∑
i

νiy
1+δ
i

)1/(1+δ)

,

(7)



and we define for convenienceC :=
(∑

i µix
1+δ
i

)1/(1+δ)
andD := 2−1/ε

(∑
i νiy

1+δ
i

)1/(1+δ)
.

First, we get by combining (6) and (7) that∑
(i,j)∈E(G1)

xiτi,jyj ≤ A ·B + C ·D (8)

Applying Cauchy-Schwarz and norm inequalities to the rhs of (8), we get

A·B+C·D ≤
√
A2 + C2

√
B2 +D2 ≤

(
A1+δ + C1+δ

)1/(1+δ) (
B1+δ +D1+δ

)1/(1+δ)
.

(9)
Combining (8) and (9), we obtain

∑
(i,j)∈E(G1)

xiτi,jyj ≤

ν0y1+δ0 + ν2(1−Ω(δ5) + 2−(1+δ)/ε)y1+δ2 +
∑
j>2

νjy
1+δ
j

1/(1+δ)

·

(
µ1x

1+δ
1 +

∑
i>1

µix
1+δ
i

)1/(1+δ)

≤

∑
i≥0

µix
1+δ
i

 1
1+δ
∑
j≥0

νjy
1+δ
j

 1
1+δ

ut
Proof of Lemma 1: We use induction on d. The base case d = 1 is given by

Lemma 3. We now describe the inductive step d− 1→ d.
Let A ⊆ U,B ⊆ V . For each i let Ai = {u ∈ A : ui = i}, Bi = {u ∈ A : ui = i}.

Then by our definition of edge weights ed(A,B) =
∑

(i,j)∈E(G1)
τijed−1(Ai, Bj). By

the inductive hypothesis we have ed−1(Ai, Bj) ≤ (µd−1(Ai)µd−1(Bj))
1/(1+δ), and

hence
ed(A,B) ≤

∑
(i,j)∈E(G1)

τij(µd−1(Ai)µd−1(Bj))
1/(1+δ).

Now by Lemma 3 we have

∑
(i,j)∈E(G1)

τij(µd−1(Ai)µd−1(Bj))
1/(1+δ) ≤

∑
i

µ1
iµd−1(Ai)

∑
j

µ1
jµd−1(Bj)

1/(1+δ)

= (µd(A)µd(B))1/(1+δ).

ut

Theorem 4. O(log1/ε log d)-approximate NNS for l∞ requires space nΩ(1/(εt)) even
with randomization.

Proof. The proof follows by first showing that the distance between a pair of points
drawn from our distribution is Ω(log1/ε log d) and applying Theorem 3 together with
Lemma 2. The details are deferred to the full version.



3 Earth mover distance

In this section we derive lower bounds on the cell probe complexity of nearest neighbor
search for Earth mover distance (also known, as transportation cost metric) over Fd2.
Our approach is based on lower bounding the robust expansion of EMD over quotients
of Fd2 with respect to the dual of a random linear code. Quotients of Fd2 with respect
to random linear codes have been used in [11] to derive non-embeddability results for
EMD over Fd2 into l1. Here we extend these non-embeddability results to hardness of
nearest neighbor search. As a by-product of our approach, we also prove that EMD over
Fd2 is not gap-embeddable into l1 with distortion less than Ω(d).

Let (X, d) be a metric space. The earth mover distance between two setsA,B ⊆ X ,
such that |A| = |B| is defined by

EMD(A,B) = min
π:A→B

∑
x∈A

d(x, π(x)), (10)

where the minimum is taken over all bijective mappings π from A to B. For the
purposes of our lower bounds, the metric space (X, d) will be the binary hypercube
(Fd2, || · ||1) with Hamming distance as the metric, and A,B will be subsets of Fd2 of a
special form. In particular, A and B will be cosets of Fd2 with respect to the action of a
carefully chosen group (in fact, a linear code with large minimum distance).

Let C denote a linear code, i.e. a linear subspace of Fd2 of dimension Ω(d) and
minimum distance Ω(d). Such codes are known to exist [14]. In particular, it can be
seen that a random linear code of dimension Ω(d) satisfies this conditions with high
probability. We will use the notation for the dual code

C⊥ = {y ∈ Fd2 : (y, x) ≡ 0 mod 2,∀x ∈ C},

where (x, y) =
∑d
i=1 xiyi. For a vector u ∈ Fd2 we denote the coset of u with respect

to the dual code C⊥ by u = {w ∈ Fd2 : w − u ∈ C⊥}. Thus, u is the set of vectors in
Fd2 that can be obtained from u by translating it by an element of C⊥. In what follows
we consider EMD on such subsets u of the hypercube. The following simple property
of EMD restricted to cosets of Fd2 with respect to C⊥ will be very useful. Recall that
by (10) EMD(u,v) is the cost of the bijective mapping π from A to B that minimizes
total movement

∑
x∈A ||x − π(x)||1. We now show that when EMD is restricted to

cosets of C⊥, i.e. A = u, B = v for some u, v ∈ Fd2, the minimum over mappings π
is achieved for a mapping that simply translates each element of a coset u by a fixed
vector w to get v (the proof is deferred to the full version.):

Fact 5 For u,v ∈ Fd2/C⊥ one has EMD(u,v) = |C⊥| ·mina∈u,b∈v ||a− b||1.

Our estimates of robust expansion of EMD on Fd2/C⊥ will use Fourier analysis on
the hypercube, so we give the necessary definitions now. The Fourier basis is given by
Walsh functions WA : Fd2 → R, A ⊆ {1, . . . , d} is denoted by

WA(x) = (−1)
∑
j∈A xj , x = (x1, . . . , xd) ∈ Fd2.

Thus, {WA : A ⊆ {1, . . . , d}} is an orthonormal basis of L2(Fd2, σ), where σ(x) =
2−d, x ∈ Fd2 is the uniform measure on Fd2. For each f : Fd2 → R one has f =



∑
A⊆{1,...,d} f̂(A)WA, where f̂(A) =

∫
Fd2
f(x)WA(x)dσ(x). Parseval’s indentity states

that ∫
Fd2
f(x)g(x)dσ(x) =

∑
A⊆{1,...,d}

f̂(A)ĝ(A)

for all f, g ∈ L2(Fd2, σ). We will often use the notation (f, g) =
∫
Fd2
f(x)g(x)dσ(x).

We will also use the non-uniform measure σε(x) = ε
∑d
i=1 xi(1− ε)d−

∑d
i=1 xi .

We now define the distribution on inputs that we will use for our lower bounds. For
r ∈ (0, d) let G = (U, V,E), where U = V = Fd2/C⊥ denote the complete bipartite
graph. We now define distributions on U, V and the edges of G. Let µ and ν denote the
uniform distribution on U and V respectively. The distribution on pairs is given first
sampling u ∈ U uniformly, and then letting

v = u+ Z, (11)

where Pr[Z = z] = σr/d(z), i.e. Z is a point in Fd2 obtained by setting each coordinate
independently to 1 with probability r/d and 0 with probability 1−r/d. Here for a coset
u and a point z ∈ Fd2 we write u + z to denote the coset obtained from u by adding z
to each u ∈ u. We note that this is equivalent to sampling a uniformly random u, then
sampling a uniformly random point u ∈ u, letting v = u+Z and declaring v to be the
resulting coset. In particular, this yield the following distribution on edges;

τu,v =
1

2d

∑
u∈u,v∈τ

σr/d(u− v). (12)

The distance between u and v sampled according to this distribution is O(r) with high
probability: Pr(u,v)∈E [EMD(u,v) > γr] ≤ e−Ω((γ−1)r), i.e. pairs sampled from our
distribution are nearby with high probability. On the other hand, two uniformly random
cosets are at distance Ω(d) with high probability:

Lemma 6. Let u,v denote uniformly random points in Fd2/C⊥. Then Pr[EMD(u,v) >
c′d] ≥ 1− 2−Ω(d) for a constant c′ > 0.

We now turn to lower bounding the robust expansion. It will be convenient to use the
following notation. For A ∈ Fd2/C⊥ we will write 1A to denote the indicator function
of A lifted to Fd2, i.e. 1A(x) equals 1 if x mod C⊥ = A and 0 otherwise. Our main
lemma relies on the following crucial property of functions that are constant on cosets
of C⊥, proved in [11]. In particular, any such function necessarily has zero Fourier
coefficients corresponding to non-empty sets of small size:

Lemma 7. [11] Assume that f : Fd2 → R satisfies for every x ∈ Fd2 and for all y ∈ C⊥,
f(x + y) = f(x). Suppose that the minimum distance of C is d0. Then f̂(S) = 0 for
all |S| < d0, S 6= ∅.

The function 1A(x) satisfies the preconditions of Lemma 7 for A ∈ Fd2/C⊥, and hence
we have 1̂A(S) = 0 for |S| ≤ c′d, S 6= ∅.

We now bound the robust expansion of EMD under our distribution. Similarly to
section 2, we first bound the weight of edges going between a pair of sets A,B. As



before, we use the notation e(A,B) =
∑

u∈A,v∈B τu,v. It will be convenient to express
e(A,B) in terms of the Bonami-Beckner operator Tρ : L2(Fd2, σ) → L2(Fd2, σ). For
a function f ∈ L2(Fd2, σ) one has Tρf(x) = Ez∼σ1−2ρ [f(x + z)], where we will use
ρ = 1− 2r/d. The proof of the following claim is given in the full version:

Claim 6 For any A,B ∈ Fd2/C⊥ one has e(A,B) = (Tρ1A,1B), where (f, g) =∫
Fd2
f(x)g(x)σ(x).

Our main lemma, which bounds the weight of edges going between a pair A,B ∈ V is

Lemma 8. Let C be a linear code of dimension Ω(d) and minimum distance Ω(d). Let
Fd2/C⊥ denote the quotient of Fd2 with respect to the dual code C⊥, and consider the
distribution over edges given by the noise operator with parameter ρ = 1− 2r/d as in
(11). Then for any r < d/4 one has e(A,B) ≤ µ(A)µ(B) + e−Ω(r)

√
µ(A)µ(B).

Proof. Consider any two sets A,B ⊆ Fd2/C⊥. By Claim 6, we have e(A,B) =
(Tρ1A,1B). We now use the fact that 1A is constant on quotients of C⊥, and hence
by Lemma 7 one has 1̂A(S) = 0 for all S ⊆ {0, 1}n, S 6= ∅, with |S| ≤ cd. Since

Tρ1A =
∑

S⊆{0,1}d
(1− 2ρ)|S|1̂A(S)WS , (13)

we have ||Tρf || ≤ e−cr||f || for all f ∈ L2(Fd2, σ), such that (f,11) = 0. Here we
denote the constant function equal to 1 by 1. We also use the fact that if (f,1) = 0,
then (Tρf,1) = 0, as can be seen directly from (13). For A ⊂ Fd2/C⊥ we will write
|1A| to denote l1-norm of 1A (in particular, |1A| = |C⊥| · |A|), where |A| is the number
of elements in A. We now have

(Tρ1A,1B) =

(
|1A|
2d

1+ Tρ(1A −
|1A|
2d

1),
|1B |
2d

1+ (1B −
|1B |
2d

1)

)
=

(
|1A|
2d

1,
|1B |
2d

1

)
+

(
Tρ(1A −

|1A|
2d

1),1B −
|1B |
2d

1

)
since the cross terms cancel due to orthogonality. Thus,

(Tρ1A,1B) ≤ 2−2d|1A||1B |+ e−2ρcd||1A −
|1A|
2d

1||||1B −
|1B |
2d

1||,

and since ρd = r, we get

e(A,B) ≤ |1A|
2d
· |1B |

2d
+ e−2ρcd

√
|1A|
2d
· |1B |

2d
≤ µ(A)µ(B) + e−Ω(r)

√
µ(A)µ(B).

Using Lemma 8 we can now bound the robust expansion of EMD over Fd2/C⊥:

Lemma 9. Let C be a linear code of dimension d/4 such that the distance of C⊥ is at
least c′d for some constant c > 0. Then the γ-robust expansion of EMD over Fd2/C⊥ at
distance r is at least (γ/2)2eΩ(r).



Theorem 7. α-approximate NNS with t probes for d-dimensional EMD requires eΩ(d/(αt))

space, even with randomization.

Proof. Set r = Θ(d/α). By Lemma 6 the distance between points is Ω(d) whenever
d ≥ c log n for a sufficiently large c > 0, which gives the weak independence property.
The distance to the near point isΘ(r) with probability 1−n−Ω(1). The robust expansion
is at least (γ/2)2eΩ(r) by Lemma 9, so the result follows by Theorem 3.

Proof of Theorem 2: Suppose that such an embedding exists. Then one can build
a NNS data structure of size nO(1) to solve 3/2-approximate NNS in l1, implying a
o(d)-approximate NNS for EMD. However, this would contradict Theorem 7 when
d = Ω(log n). ut
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