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Abstract

The online matching problem was introduced by Karp, Vazirani and Vazirani nearly three
decades ago. In that seminal work, they studied this problem in bipartite graphs with vertices
arriving only on one side, and presented optimal deterministic and randomized algorithms for
this setting. In comparison, more general arrival models, such as edge arrivals and general
vertex arrivals, have proven more challenging and positive results are known only for various
relaxations of the problem. In particular, even the basic question of whether randomization
allows one to beat the trivially-optimal deterministic competitive ratio of 1/2 for either of these
models was open. In this paper, we resolve this question for both these natural arrival models,
and show the following.

1. For edge arrivals, randomization does not help — no randomized algorithm is better than
1/2 competitive.

2. For general vertex arrivals, randomization helps — there exists a randomized (1/2+ Ω(1))-
competitive online matching algorithm.
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1 Introduction

Matching theory has played a prominent role in the area of combinatorial optimization, with many
applications [20, 22]. Moreover, many fundamental techniques and concepts in combinatorial op-
timization can trace their origins to its study, including the primal-dual framework [18], proofs
of polytopes’ integrality beyond total unimodularity [8], and even the equation of efficiency with
polytime computability [9].

Given the prominence of matching theory in combinatorial optimization, it comes as little sur-
prise that the maximum matching problem was one of the first problems studied from the point
of view of online algorithms and competitive analysis. In 1990, Karp, Vazirani, and Vazirani [17]
introduced the online matching problem, and studied it under one-sided bipartite arrivals. For such
arrivals, Karp et al. noted that the trivial 1/2-competitive greedy algorithm (which matches any
arriving vertex to an arbitrary unmatched neighbor, if one exists) is optimal among deterministic
algorithms for this problem. More interestingly, they provided an elegant randomized online al-
gorithm for this problem, called ranking, which achieves an optimal (1 − 1/e) competitive ratio.
(This bound has been re-proven many times over the years [2, 6, 7, 11, 12].) Online matching and
many extensions of this problem under one-sided bipartite vertex arrivals were widely studied over
the years, both under adversarial and stochastic arrival models. See recent work [5, 14, 15, 16] and
the excellent survey of ? ] for further references on this rich literature.

Despite our increasingly better understanding of one-sided online bipartite matching and its
extensions, the problem of online matching under more general arrival models, including edge
arrivals and general vertex arrivals, has remained staunchly defiant, resisting attacks. In particular,
the basic questions of whether the trivial 1/2 competitive ratio is optimal for the adversarial edge-
arrival and general vertex-arrival models have remained tantalizing open questions in the online
algorithms literature. In this paper, we answer both of these questions.

1.1 Prior Work and Our Results

Here we outline the most relevant prior work, as well as our contributions. Throughout, we say an
algorithm (either randomized or fractional) has competitive ratio α, or equivalently is α-competitive,
if the ratio of the algorithm’s value (e.g., expected matching size, or overall value,

∑
e xe) to OPT

is at least α 6 1 for all inputs and arrival orders. As is standard in the online algorithms literature
on maximization problems, we use upper bounds (on α) to refer to hardness results, and lower
bounds to positive results.

Edge Arrivals. Arguably the most natural, and the least restricted, arrival model for online
matching is the edge arrival model. In this model, edges are revealed one by one, and an online
matching algorithm must decide immediately and irrevocably whether to match the edge on arrival,
or whether to leave both endpoints free to be possibly matched later.

On the hardness front, the problem is known to be strictly harder than the one-sided vertex
arrival model of Karp et al. [17], which admits a competitive ratio of 1− 1/e ≈ 0.632. In particular,
Epstein et al. [10] gave an upper bound of 1

1+ln 2 ≈ 0.591 for this problem, recently improved by

Huang et al. [15] to 2−
√

2 ≈ 0.585. (Both bounds apply even to online algorithms with preemption;
i.e., allowing edges to be removed from the matching in favor of a newly-arrived edge.) On the
positive side, as pointed out by Buchbinder et al. [3], the edge arrival model has proven challenging,
and results beating the 1/2 competitive ratio were only achieved under various relaxations, including:
random order edge arrival [13], bounded number of arrival batches [19], on trees, either with or
without preemption [3, 23], and for bounded-degree graphs [3]. The above papers all asked whether
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there exists a randomized (1/2 + Ω(1))-competitive algorithm for adversarial edge arrivals (see also
Open Question 17 in Mehta’s survey [? ]).

In this work, we answer this open question, providing it with a strong negative answer. In
particular, we show that no online algorithm for fractional matching (i.e., an algorithm which
immediately and irrevocably assigns values xe to edge e upon arrival such that ~x is in the fractional
matching polytope P = {~x > ~0 |

∑
e3v xe 6 1 ∀v ∈ V }) is better than 1/2 competitive. As any

randomized algorithm induces a fractional algorithm with the same competitive ratio, this rules
out any randomized online matching algorithm which is better than deterministic algorithms.

Theorem 1.1. No fractional online algorithm is 1/2 + Ω(1) competitive for online matching under
adversarial edge arrivals, even in bipartite graphs.

This result shows that the study of relaxed variants of online matching under edge arrivals is
not only justified by the difficulty of beating the trivial bound for this problem, but rather by its
impossibility.

General Vertex Arrivals. In the online matching problem under vertex arrivals, vertices are
revealed one at a time, together with their edges to their previously-revealed neighbors. An online
matching algorithm must decide immediately and irrevocably upon arrival of a vertex whether
to match it (or keep it free for later), and if so, who to match it to. The one-sided bipartite
problem studied by Karp et al. [17] is precisely this problem when all vertices of one side of a
bipartite graph arrive first. As discussed above, for this one-sided arrival model, the problem is
thoroughly understood (even down to lower-order error terms [11]). Wang and Wong [24] proved
that general vertex arrivals are strictly harder than one-sided bipartite arrivals, providing an upper
bound of 0.625 < 1− 1/e for the more general problem, later improved by Buchbinder et al. [3] to

2
3+φ2

≈ 0.593. Clearly, the general vertex arrival model is no harder than the online edge arrival
model but is it easier? The answer is “yes” for fractional algorithms, as shown by combining our
Theorem 1.1 with the 0.526-competitive fractional online matching algorithm under general vertex
arrivals of Wang and Wong [24]. For integral online matching, however, the problem has proven
challenging, and the only positive results for this problem, too, are for various relaxations, such as
restriction to trees, either with or without preemption [3, 4, 23], for bounded-degree graphs [3], or
(recently) allowing vertices to be matched during some known time interval [14, 15].

We elaborate on the last relaxation above. In the model recently studied by Huang et al.
[14, 15] vertices have both arrival and departure times, and edges can be matched whenever both
their endpoints are present. (One-sided vertex arrivals is a special case of this model with all online
vertices departing immediately after arrival and offline vertices departing at ∞.) We note that any
α-competitive online matching under general vertex arrivals is α-competitive in the less restrictive
model of Huang et al. As observed by Huang et al., for their model an optimal approach might
as well be greedy; i.e., an unmatched vertex v should always be matched at its departure time if
possible. In particular, Huang et al. [14, 15], showed that the ranking algorithm of Karp et al. is
optimal in this model, giving a competitive ratio of ≈ 0.567. For general vertex arrivals, however,
ranking (and indeed any maximal matching algorithm) is no better than 1/2 competitive, as is
readily shown by a path on three edges with the internal vertices arriving first. Consequently, new
ideas and algorithms are needed.

The natural open question for general vertex arrivals is whether a competitive ratio of (1/2+Ω(1))
is achievable by an integral randomized algorithm, without any assumptions (see e.g., [24]). In this
work, we answer this question in the affirmative:

Theorem 1.2. There exists a (1/2 + Ω(1))-competitive randomized online matching algorithm for
general adversarial vertex arrivals.
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1.2 Our Techniques

Edge Arrivals. All prior upper bounds in the online literature [3, 10, 11, 15, 17] can be rephrased
as upper bounds for fractional algorithms; i.e., algorithms which immediately and irrevocably
assign each edge e a value xe on arrival, so that ~x is contained in the fractional matching polytope,
P = {~x > ~0 |

∑
e3v xe 6 1 ∀v ∈ V }. With the exception of [3], the core difficulty of these hard

instances is uncertainty about “identity” of vertices (in particular, which vertices will neighbor
which vertices in the following arrivals). Our hardness instances rely on uncertainty about the
“time horizon”. In particular, the underlying graph, vertex identifiers, and even arrival order are
known to the algorithm, but the number of edges of the graph to be revealed (to arrive) is uncertain.
Consequently, an α-competitive algorithm must accrue high enough value up to each arrival time
to guarantee a high competitive ratio at all points in time. As we shall show, for competitive ratio
1/2 + Ω(1), this goal is at odds with the fractional matching constraints, and so such a competitive
ratio is impossible. In particular, we provide a family of hard instances and formulate their prefix-
competitiveness and matching constraints as linear constraints to obtain a linear program whose
objective value bounds the optimal competitive ratio. Solving the obtained LP’s dual, we obtain
by weak duality the claimed upper bound on the optimal competitive ratio.

General Vertex Arrivals. Our high-level approach here will be to round online a fractional
online matching algorithm’s output, specifically that of Wang and Wong [24]. While this approach
sounds simple, there are several obstacles to overcome. First, the fractional matching polytope is
not integral in general graphs, where a fractional matching may have value,

∑
e xe, some 3/2 times

larger than the optimal matching size. (For example, in a triangle graph with value xe = 1/2 for
each edge e.) Therefore, any general rounding scheme must lose a factor of 3/2 on the competitive
ratio compared to the fractional algorithm’s value, and so to beat a competitive ratio of 1/2 would
require an online fractional matching with competitive ratio > 3/4 > 1−1/e, which is impossible. To
make matters worse, even in bipartite graphs, for which the fractional matching polytope is integral
and offline lossless rounding is possible [? ? ], online lossless rounding of fractional matchings is
impossible, even under one-sided vertex arrivals [5].

Despite these challenges, we show that a slightly better than 1/2-competitive fractional matching
computed by the algorithm of [24] can be rounded online without incurring too high a loss, yielding
(1/2 + Ω(1))-competitive randomized algorithm for online matching under general vertex arrivals.

To outline our approach, we first consider a simple method to round matchings online. When
vertex v arrives, we pick an edge {u, v} with probability zu = xuv/Pr[u free when v arrives], and
add it to our matching if u is free.

If
∑

u zu 6 1, this allows us to pick at most one edge per vertex and have each edge e = {u, v}
be in our matching with the right marginal probability, xe, resulting in a lossless rounding. Unfor-
tunately, we know of no better-than-1/2-competitive fractional algorithm for which this rounding
guarantees

∑
u zu 6 1.

However, we observe that, for the correct set of parameters, the fractional matching algorithm
of Wang and Wong [24] makes

∑
u zu close to one, while still ensuring a better-than-1/2-competitive

fractional solution. Namely, as we elaborate later in Section 3.3, we set the parameters of their
algorithm so that

∑
u zu 6 1+O(ε), while retaining a competitive ratio of 1/2+O(ε). Now consider

the same rounding algorithm with normalized probabilities: I.e., on v’s arrival, sample a neighbor
u with probability z′u = zu/max{1,

∑
u zu} and match if u is free. As the sum of zu’s is slightly

above one in the worst case, this approach does not drastically reduce the competitive ratio. But
the normalization factor is still too significant compared to the competitive ratio of the fractional
solution, driving the competitive ratio of the rounding algorithm slightly below 1/2.
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To account for this minor yet significant loss, we therefore augment the simple algorithm by
allowing it, with small probability (e.g., say

√
ε), to sample a second neighbor u2 for each arriving

vertex v, again with probabilities proportional to z′u2 : If the first sampled choice, u1, is free, we
match v to u1. Otherwise, if the second choice, u2, is free, we match v to u2. What is the marginal
probability that such an approach matches an incoming vertex v to a given neighbor u? Letting
Fu denote the event that u is free when v arrives, this probability is precisely

Pr[Fu] ·

(
z′u + z′u ·

√
ε ·
∑
w

z′w · (1− Pr[Fw | Fu])

)
. (1)

Here the first term in the parentheses corresponds to the probability that v matches to u via the
first choice, and the second term corresponds to the same happening via the second choice (which
is only taken when the first choice fails).

Ideally, we would like (1) to be at least xuv for all edges, which would imply a lossless rounding.
However, as mentioned earlier, this is difficult and in general impossible to do, even in much more
restricted settings including one-sided bipartite vertex arrivals. We therefore settle for showing
that (1) is at least xuv = Pr[Fu] · zu for most edges (weighted by xuv). Even this goal, however,
is challenging and requires a nontrivial understanding of the correlation structure of the random
events Fu. To see this, note that for example if the Fw events are perfectly positively correlated,
i.e., Pr[Fw | Fu] = 1, then the possibility of picking e as a second edge does not increase this edge’s
probability of being matched at all compared to if we only picked a single edge per vertex. This
results in e being matched with probability Pr[Fu] · z′u = Pr[Fu] · zu/

∑
w zw = xuv/

∑
w zw, which

does not lead to any gain over the 1/2 competitive ratio of greedy. Such problems are easily shown
not to arise if all Fu variables are independent or negatively correlated. Unfortunately, positive
correlation does arise from this process, and so we the need to control these positive correlations.

The core of our analysis is therefore dedicated to showing that even though positive correlations
do arise, they are by and large rather weak. Our main technical contribution consists of developing
techniques for bounding such positive correlations. The idea behind the analysis is to consider the
primary choices and secondary choices of vertices as defining a graph, and showing that after a
natural pruning operation that reflects the structure of dependencies, most vertices are most often
part of a very small connected component in the graph. The fact that connected components are
typically very small is exactly what makes positive correlations weak and results in the required
lower bound on (1) for most edges (in terms of x-value), which in turn yields our 1/2 + Ω(1)
competitive ratio.

2 Edge Arrivals

In this section we prove the asymptotic optimality of the greedy algorithm for online matching
under adversarial edge arrivals. As discussed briefly in Section 1, our main idea will be to provide
a “prefix hardness” instance, where an underlying input and the arrival order is known to the
online matching algorithm, but the prefix of the input to arrive (or “termination time”) is not.
Consequently, the algorithm must accrue high enough value up to each arrival time, to guarantee
a high competitive ratio at all points in time. As we show, the fractional matching constraints rule
out a competitive ratio of 1/2 + Ω(1) even in this model where the underlying graph is known.

Theorem 2.1. There exists an infinite family of bipartite graphs with maximum degree n and edge

arrival order for which any online matching algorithm is at best
(
1
2 + 1

2n+2

)
-competitive.
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Proof. We will provide a family of graphs for which no fractional online matching algorithm has
better competitive ratio. Since any randomized algorithm induces a fractional matching algorithm,
this immediately implies our claim. The nth graph of the family, Gn = (U, V,E), consists of a
bipartite graph with |U | = |V | = n vertices on either side. We denote by ui ∈ U and vi ∈ V the
ith node on the left and right side of Gn, respectively. Edges are revealed in n discrete rounds.
In round i = 1, 2, . . . , n, the edges of a perfect matching between the first i left and right vertices
arrive in some order. I.e., a matching of u1, u2, . . . , ui and v1, v2, . . . , vi is revealed. Specifically,
edges (uj , vi−j+1) for all i > j arrive. (See Figure 1 for example.) Intuitively, the difficulty for
an algorithm attempting to assign much value to edges of OPT is that the (unique) maximum
matching OPT changes every round, and no edge ever re-enters OPT .

U V
u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

(a) round 1

U V
u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

(b) round 2

U V
u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

(c) round 3

U V
u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

(d) round 4

U V
u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

(e) round 5

Figure 1: G5, together with arrival order. Edges of current (prior) round are solid (dashed).

Consider some α-competitive fractional algorithm A. We call the edge of a vertex w in the
(unique) maximum matching of the subgraph of Gn following round i the ith edge of w. For i > j,
denote by xi,j the value A assigns to the ith edge of vertex uj (and of vi−j+1); i.e., to (uj , vi−j+1).
By feasibility of the fractional matching output by A, we immediately have that xi,j > 0 for all i, j,
as well as the following matching constraints for uj and vj . (For the latter, note that the ith edge
of vi−j+1 is assigned value xi,j = xi,i−(i−j+1)+1 and so the ith edge of vj is assigned value xi,i−j+1).

n∑
i=j

xi,j 6 1. (uj matching constraint) (2)

n∑
i=j

xi,i−j+1 6 1. (vj matching constraint) (3)

On the other hand, as A is α-competitive, we have that after some kth round – when the
maximum matching has cardinality k – algorithm A’s fractional matching must have value at
least α · k. (Else an adversary can stop the input after this round, leaving A with a worse than
α-competitive matching.) Consequently, we have the following competitiveness constraints.

k∑
i=1

i∑
j=1

xi,j > α · k ∀k ∈ [n]. (4)

Combining constraints (2), (3) and (4) together with the non-negativity of the xi,k yields the
following linear program, LP(n), whose optimal value upper bounds any fractional online matching
algorithm’s competitiveness on Gn, by the above.
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maximize α
subject to:

∑n
i=j xi,j 6 1 ∀j ∈ [n]∑n
i=j xi,i−j+1 6 1 ∀j ∈ [n]∑k
i=1

∑i
j=1 xi,j > α · k ∀k ∈ [n]

xi,j > 0 ∀i, j ∈ [n].

To bound the optimal value of LP(n), we provide a feasible solution its LP dual, which we denote
by Dual(n). By weak duality, any dual feasible solution’s value upper bounds the optimal value of
LP(n), which in turn upper bounds the optimal competitive ratio. Using the dual variables `j , rj
for the degree constraints of the jth left and right vertices respectively (uj and vj) and dual variable
ck for the competitiveness constraint of the kth round, we get the following dual linear program.
Recall here again that xi,i−j+1 appears in the matching constraint of vj , with dual variable rj , and
so xi,j = xi,i−(i−j+1)+1 appears in the same constraint for vi−j+1.)

minimize
∑n

j=1 (`j + rj)

subject to:
∑n

k=1 k · ck > 1
`j + ri−j+1 −

∑n
k=i ck > 0 ∀i ∈ [n], j ∈ [i]

`j , rj , ck > 0 ∀j, k ∈ [n].

We provide the following dual solution.

ck =
2

n(n+ 1)
∀k ∈ [n]

`j = rj =

{
n−2(j−1)
n(n+1) if j 6 n/2 + 1

0 if n/2 + 1 < j 6 n.

We start by proving feasibility of this solution. The first constraint is satisfied with equality.
For the second constraint, as

∑n
k=i ck = 2(n−i+1)

n(n+1) it suffices to show that `j + ri−j+1 > 2(n−i+1)
n(n+1)

for all i ∈ [n], j ∈ [i]. Note that if j > n/2 + 1, then `j = rj = 0 > n−2(j−1)
n(n+1) . So, for all j we

have `j = rj > n−2(j−1)
n(n+1) . Consequently, `j + ri−j+1 > n−2(j−1)

n(n+1) + n−2(i−j+1−1)
n(n+1) = 2(n−i+1)

n(n+1) for all

i ∈ [n], j ∈ [i]. Nonnegativity of the `j , rj , ck variables is trivial, and so we conclude that the above
is a feasible dual solution.

It remains to calculate this dual feasible solution’s value. We do so for n even,1 for which

n∑
j=1

(`j + rj) = 2 ·
n∑
j=1

`j = 2 ·
n/2+1∑
j=1

n− 2(j − 1)

n(n+ 1)
=

1

2
+

1

2n+ 2
,

completing the proof.

Remark 1. Recall that Buchbinder et al. [3] and Lee and Singla [19] presented better-than-
1/2-competitive algorithms for bounded-degree graphs and bounded number of arrival batches. Our
upper bound above shows that a deterioration of the competitive guarantees as the maximum
degree and number of arrival batches increase (as in the algorithms of [3, 19]) is inevitable.

Remark 2. Recall that the asymptotic competitive ratio of an algorithm is the maximum c
such that the algorithm always guarantees value at least ALG > c ·OPT − b for some fixed b > 0.
Our proof extends to this weaker notion of competitiveness easily, by revealing multiple copies of
the hard family of Theorem 2.1 and letting xik denote the average of its counterparts over all copies.

1The case of n odd is similar. As it is unnecessary to establish the result of this theorem, we omit it.
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3 General Vertex Arrivals

In this section we present a (1/2 + Ω(1))-competitive randomized algorithm for online matching
under general arrivals. As discussed in the introduction, our approach will be to round (online) a
fractional online matching algorithm’s output. Specifically, this will be an algorithm from the family
of fractional algorithms introduced in [24]. In Section 3.1 we describe this family of algorithms. To
motivate our rounding approach, in Section 3.2 we first present a simple lossless rounding method for
a 1/2-competitive algorithm in this family. In Section 3.3 we then describe our rounding algorithm
for a better-than-1/2-competitive algorithm in this family. Finally, in Section 3.4 we analyze this
rounding scheme, and show that it yields a (1/2 + Ω(1))-competitive algorithm.

3.1 Finding a fractional solution

In this section we revisit the algorithm of Wang and Wong [24], which beats the 1/2 competitiveness
barrier for online fractional matching under general vertex arrivals. Their algorithm (technically,
family of algorithms) applies the primal-dual method to compute both a fractional matching and
a fractional vertex cover – the dual of the fractional matching relaxation. The LPs defining these
dual problems are as follows.

Primal-Matching

maximize
∑

e∈E xe
subject to:

∑
u∈N(v) xuv 6 1 ∀u ∈ V

xe > 0 ∀e ∈ E

Dual-Vertex Cover

minimize
∑

u∈V yu
subject to: yu + yv > 1 ∀e = {u, v} ∈ E

yu > 0 ∀u ∈ V

Before introducing the algorithm of [24], we begin by defining the fractional online vertex cover
problem for vertex arrivals. When a vertex v arrives, if Nv(v) denotes the previously-arrived
neighbors of v, then for each u ∈ Nv(v), a new constraint yu + yv > 1 is revealed, which an
online algorithm should satisfy by possibly increasing yu or yv. Suppose v has its dual value set
to yv = 1− θ. Then all of its neighbors should have their dual increased to at least θ. Indeed, an
algorithm may as well increase yu to max{yu, θ}. The choice of θ therefore determines an online
fractional vertex cover algorithm. The increase of potential due to the newly-arrived vertex v is
thus 1 − θ +

∑
u∈Nv(v)(θ − yu)+.2 In [24] θ is chosen to upper bound this term by 1 − θ + f(θ)

for some function f(·). The primal solution (fractional matching) assigns values xuv so as to
guarantee feasibility of ~x and a ratio of β between the primal and dual values of ~x and ~y, implying
1
β -competitiveness of this online fractional matching algorithm, by feasibility of ~y and weak duality.
The algorithm, parameterized by a function f(·) and parameter β to be discussed below, is given
formally in Algorithm 1. In the subsequent discussion, Nv(u) denotes the set of neighbors of u that
arrive before v.

Algorithm 1 is parameterized by a function f and a constant β. The family of functions
considered by [24] are as follows.

Definition 3.1. Let fκ(θ) :=
(
1+κ
2 − θ

) 1+κ
2κ
(
θ + κ−1

2

)κ−1
2κ . We define W := {fκ | κ > 1}.

As we will see, choices of β guaranteeing feasibility of ~x are related to the following quantity.

Definition 3.2. For a given f : [0, 1] −→ R+ let β∗(f) := maxθ∈[0,1] 1 + f(1− θ) +
∫ 1
θ

1−t
f(θ) dθ.

2Here and throughout the paper, we let x+ := max{0, x} for all x ∈ R.
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Input : A stream of vertices v1, v2, . . . vn. At step i, vertex vi and Nvi(vi) are revealed.
Output: A fractional vertex cover solution ~y and a fractional matching ~x.

1 Let yu ← 0 for all u, let xuv ← 0 for all u, v.
2 foreach v in the stream do

3

maximize θ
subject to: θ 6 1∑

u∈Nv(v) (θ − yu)+ 6 f(θ)

4 foreach u ∈ Nv(v) do

5 xuv ←− (θ−yu)+
β

(
1 + 1−θ

f(θ)

)
.

6 yu ←− max{yu, θ}.
7 yv ←− 1− θ.

Algorithm 1: Online general vertex arrival fractional matching and vertex cover

For functions f ∈ W this definition of β∗(f) can be simplified to β∗(f) = 1 + f(0), due to the
observation (see [24, Lemmas 4,5]) that all functions f ∈W satisfy

β∗(f) = 1 + f(1− θ) +

∫ 1

θ

1− θ
f(θ)

dθ ∀θ ∈ [0, 1]. (5)

As mentioned above, the competitiveness of Algorithm 1 for appropriate choices of f and β is
obtained by relating the overall primal and dual values,

∑
e xe and

∑
v yv. As we show (and rely on

later), one can even bound individual vertices’ contributions to these sums. In particular, for any
vertex v’s arrival time, each vertex u’s contribution to

∑
e xe, which we refer to as its fractional

degree, xu :=
∑

w∈Nv(u) xuw, can be bounded in terms of its dual value by this point, yu, as follows.

Lemma 3.3. For any vertex u, v ∈ V , let yu be the potential of u prior to arrival of v. Then the
fractional degree just before v arrives, xu :=

∑
w∈Nv(u) xuw, is bounded as follows:

yu
β

6 xu 6
yu + f(1− yu)

β
.

Broadly, the lower bound on xu is obtained by lower bounding the increase xu by the increase
to yu/β after each vertex arrival, while the upper bound follows from a simplification of a bound
given in [24, Invariant 1] (implying feasibility of the primal solution), which we simplify using (5).
See Appendix B for a full proof.

Another observation we will need regarding the functions f ∈W is that they are decreasing.

Observation 3.4. Every function f ∈W is non-increasing in its argument in the range [0, 1].

Proof. As observed in [24], differentiating (5) with respect to z yields −f ′(1− z)− 1−z
f(z) = 0, from

which we obtain f(z) · f ′(1 − z) = z − 1. Replacing z by 1 − z, we get f(1 − z) · f ′(z) = −z, or
f ′(z) = − z

f(1−z) . As f(z) is positive for all z ∈ [0, 1], we have that f ′(z) < 0 for all z ∈ [0, 1].

The next lemma of [24] characterizes the achievable competitiveness of Algorithm 1.

Lemma 3.5 ([24]). Algorithm 1 with function f ∈W and β > β∗(f) = 1 + f(0) is 1
β competitive.

Wang and Wong [24] showed that taking κ ≈ 1.1997 and β = β∗(fκ), Algorithm 1 is ≈ 0.526
competitive. In later sections we show how to round the output of Algorithm 1 with fκ with
κ = 1 + 2ε for some small constant ε and β = 2− ε to obtain a (1/2 + Ω(1))-competitive algorithm.
But first, as a warm up, we show how to round this algorithm with κ = 1 and β = β∗(f1) = 2.
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3.2 Warmup: a 1/2-competitive randomized algorithm

In this section we will round the 1/2-competitive fractional algorithm obtained by running Algo-
rithm 1 with function f(θ) = f1(θ) = 1− θ and β = β∗(f) = 2. We will devise a lossless rounding
of this fractional matching algorithm, by including each edge e in the final matching with a proba-
bility equal to the fractional value xe assigned to it by Algorithm 1. Note that if v arrives after u,
then if Fu denotes the event that u is free when v arrives, then edge {u, v} is matched by an online
algorithm with probability Pr[{u, v} ∈M ] = Pr[{u, v} ∈M | Fu] ·Pr[Fu]. Therefore, to match each
edge {u, v} with probability xuv, we need Pr[{u, v} ∈ M | Fu] = xuv/Pr[Fu]. That is, we must
match {u, v} with probability zu = xuv/Pr[Fu] conditioned on u being free. The simplest way of
doing so (if possible) is to pick an edge {u, v} with the above probability zu always, and to match
it only if u is free. Algorithm 2 below does just this, achieving a lossless rounding of this fractional
algorithm. As before, Nv(u) denotes the set of neighbors of u that arrive before v.

Input : A stream of vertices v1, v2, . . . , vn. At step i, vertex vi and Nvi(vi) are revealed.
Output: A matching M .

1 Let yu ← 0 for all u, let xuv ← 0 for all u, v.
2 Let M ← ∅.
3 foreach v in the stream do
4 Update yu’s and xuv’s using Algorithm 1 with β = 2 and f = f1.
5 foreach u ∈ Nv(v) do
6 zu ← xuv

Pr[u is free when v arrives] . // zu is xuv/(1− yu) as shown later

7 Sample (at most) one neighbor u ∈ Nv(v) according to zu.
8 if a free neighbor u is sampled then
9 Add {u, v} to M .

Algorithm 2: Online vertex arrival warmup randomized fractional matching

Algorithm 2 is well defined if for each vertex v’s arrival, z is a probability distribution; i.e.,∑
u∈Nv(v) zu 6 1. The following lemma asserts precisely that. Moreover, it asserts that Algorithm 2

matches each edge with the desired probability.

Lemma 3.6. Algorithm 2 is well defined, since for every vertex v on arrival, z is a valid probability
distribution. Moreover, for each v and u ∈ Nv(v), it matches edge {u, v} with probability xe.

Proof. We prove both claims in tandem for each v, by induction on the number of arrivals. For the
base case (v is the first arrival), the set Nv(v) is empty and thus both claims are trivial. Consider
the arrival of a later vertex v. By the inductive hypothesis we have that each vertex u ∈ Nv(v) is
previously matched with probability

∑
w∈Nv(u) xwu. But by our choice of f(θ) = f1(θ) = 1− θ and

β = 2, if w arrives after u, then yu and θ at arrival of w satisfy xuw = (θ−yu)+
β ·

(
1 + 1−θ

f(θ)

)
= (θ−yu)+.

That is, xuw is precisely the increase in yu following arrival of w. On the other hand, when u arrived
we have that its dual value yu increased by 1− θ =

∑
v′∈Nu(u)(θ − yv′)

+ =
∑

v′∈Nu(u) xuv′ . To see
this last step, we recall first that by definition of Algorithm 1 and our choice of f(θ) = 1 − θ, the
value θ on arrival of v is chosen to be the largest θ 6 1 satisfying∑

∀u∈Nv(v)

(θ − yu)+ 6 1− θ. (6)

But the inequality (6) is an equality whether or not θ = 1 (if θ = 1, both sides are zero). We
conclude that yu =

∑
v′∈Nv(u) xuv′ just prior to arrival of v. But then, by the inductive hypothesis,
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this implies that Pr[u free when v arrives] = 1− yu (yielding an easily-computable formula for zu).
Consequently, by (6) we have that when v arrives z is a probability distribution, as∑

u∈Nv(v)

zu =
∑

u∈Nv(v)

(θ − yu)+

1− yu
6

∑
u∈Nv(v): yu6θ

(θ − yu)+

1− θ
=

∑
u∈Nv(v)

(θ − yu)+

1− θ
6 1.

Finally, for u to be matched to a latter-arriving neighbor v, it must be picked and free when v
arrives, and so {u, v} is indeed matched with probability

Pr[{u, v} ∈M ] =
xuv

Pr[u is free when v arrives]
· Pr[u is free when v arrives] = xuv.

In the next section we present an algorithm which allows to round better-than-1/2-competitive
algorithms derived from Algorithm 1.

3.3 An improved algorithm

In this section, we build on Algorithm 2 and show how to improve it to get a (1/2+Ω(1)) competitive
ratio.

There are two concerns when modifying Algorithm 2 to work for a general function from the
family W . The first is how to compute the probability that a vertex u is free when vertex v arrives,
in Line 6. In the simpler version, we inductively showed that this probability is simply 1−yu, where
yu is the dual value of u as of v’s arrival (see the proof of Lemma 3.6). With a general function f ,
this probability is no longer given by a simple formula. Nevertheless, it is easily fixable: We can
either use Monte Carlo sampling to estimate the probability of u being free at v’s arrival to a given
inverse polynomial accuracy, or we can in fact exactly compute these probabilities by maintaining
their marginal values as the algorithm progresses. In what follows, we therefore assume that our
algorithm can compute these probabilities exactly.

The second and more important issue is with the sampling step in Line 7. In the simpler algo-
rithm, this step is well-defined as the sampling probabilities indeed form a valid distribution: I.e.,∑

u∈Nv(v) zu 6 1 for all vertices v. However, with a general function f , this sum can exceed one,
rendering the sampling step in Line 7 impossible. Intuitively, we can normalize the probabilities to
make it a proper distribution, but by doing so, we end up losing some amount from the approxi-
mation guarantee. We hope to recover this loss using a second sampling step, as we mentioned in
Section 1.2 and elaborate below.

Suppose that, instead of β = 2 and f = f1 (i.e., the function f(θ) = 1 − θ), we use f = f1+2ε

and β = 2 − ε to define xuv and yu values. As we show later in this section, for an ε sufficiently
small, we then have

∑
u∈Nv(v) zu 6 1 + O(ε), implying that the normalization factor is at most

1 + O(ε). However, since the approximation factor of the fractional solution is only 1/2 + O(ε)
for such a solution, (i.e.,

∑
{u,v}∈E xuv > (1/β) ·

∑
u∈V yu), the loss due to normalization is too

significant to ignore.
Now suppose that we allow arriving vertices to sample a second edge with a small (i.e.,

√
ε)

probability and match that second edge if the endpoint of the first sampled edge is already matched.
Consider the arrival of a fixed vertex v such that

∑
u∈Nv(v) zu > 1, and let z′u denote the normalized

zu values. Further let Fw denote the event that vertex w is free (i.e, unmatched) at the arrival of v.
Then the probability that v matches u for some u ∈ Nv(v) using either of the two sampled edges is

Pr[Fu] ·

z′u + z′u
√
ε ·

∑
w∈Nv(v)

z′w · (1− Pr[Fw | Fu])

 , (7)
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which is the same expression from (1) from Section 1.2, restated here for quick reference. Recall
that the first term inside the parentheses accounts for the probability that v matches u via the first
sampled edges, and the second term accounts for the probability that the same happens via the
second sampled edge. Note that the second sampled edge is used only when the first one is incident
to an already matched vertex and the other endpoint of the second edge is free. Hence we have
the summation of conditional probabilities in the second term, where the events are conditioned
on the other endpoint, u, being free. If the probability given in (7) is xuv for all {u, v} ∈ E, we
would have the same guarantee as the fractional solution xuv, and the rounding would be lossless.
This seems unlikely, yet we can show that the quantity in (7) is at least (1− ε2) · xuv for most (not
by number, but by the total fractional value of xuv’s) of the edges in the graph, showing that our
rounding is almost lossless. We postpone further discussion of the analysis to Section 3.4 where we
highlight the main ideas before proceeding with the formal proof.

Input : A stream of vertices v1, v2, . . . , vn. At step i, vertex vi and Nvi(v) are revealed.
Output: A matching M .

1 Let yu ← 0 for all u, let xuv ← 0 for all u, v.
2 Let M ← ∅.
3 foreach v in the stream do
4 Update yu’s and xuv’s using Algorithm 1 with β = 2− ε and f = f1+2ε.
5 foreach u ∈ Nv(v) do

/* Compute Pr[u is free when v arrives] as explained in Section 3.3 */

6 zu ← xuv
Pr[u is free when v arrives] .

7 foreach u ∈ Nv(v) do

8 z′u ← zu/max
{

1,
∑

u∈Nv(v) zu

}
.

9 Pick (at most) one u1 ∈ Nv(v) with probability z′u1 .
10 if

∑
u∈Nv(v) zu > 1 then

11 With probability
√
ε, pick (at most) one u2 ∈ Nv(v) with probability z′u2 .

/* Probability of dropping edge {u, v} can be computed using (7). */

12 Drop u2 with minimal probability ensuring {u2, v} is matched with probability at
most xu2v.

13 if a free neighbor u1 is sampled then
14 Add {u1, v} to M .

15 else if a free neighbor u2 is sampled then
16 Add {u2, v} to M .

Algorithm 3: A randomized online matching algorithm under general vertex arrivals.

Our improved algorithm is outlined in Algorithm 3. Up until Line 6, it is similar to Algorithm 2
except that it uses β = 2 − ε and f = f1+2ε where we choose ε > 0 to be any constant small
enough such that the results in the analysis hold. In Line 8, if the sum of zu’s exceeds one we
normalize the zu to obtain a valid probability distribution z′u. In Line 9, we sample the first edge
incident to an arriving vertex v. In Line 11, we sample a second edge incident to the same vertex
with probability

√
ε if we had to scale down zu’s in Line 8. Then in Line 12, we drop the sampled

second edge with the minimal probability to ensure that no edge {u, v} is matched with probability
more than xuv. Since (7) gives the exact probability of {u, v} being matched, this probability of
dropping an edge {u, v} can be computed by the algorithm. However, to compute this, we need the
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conditional probabilities Pr[Fw | Fu], which again can be estimated using Monte Carlo sampling3.
In the subsequent lines, we match v to a chosen free neighbor (if any) among its chosen neighbors,
prioritizing its first choice.

For the purpose of analysis we view Algorithm 3 as constructing a greedy matching on a directed
acyclic graph (DAG) Hτ defined in the following two definitions.

Definition 3.7 (Non-adaptive selection graph Gτ ). Let τ denote the random choices made by the
vertices of G. Let Gτ be the DAG defined by all the arcs (v, u1), (v, u2) for all vertices v ∈ V . We
call the arcs (v, u1) primary arcs, and the arcs (v, u2) the secondary arcs.

Definition 3.8 (Pruned selection graph Hτ ). Now construct Hτ from Gτ by removing all arcs
(v, u) (primary or secondary) such that there exists a primary arc (v′, u) with v′ arriving before v.
We further remove a secondary arc (v, u) if there is a primary arc (v, u); i.e., if a vertex u has at
least one incoming primary arc, remove all incoming primary arcs that came after the first primary
arc and all secondary arcs that came after or from the same vertex as the first primary arc.

It is easy to see that the matching constructed by Algorithm 3 is a greedy matching constructed
on Hτ based on order of arrival and prioritizing primary arcs. The following lemma shows that the
set of matched vertices obtained by this greedy matching does not change much for any change in
the random choices of a single vertex v, which will prove useful later on. It can be proven rather
directly by an inductive argument showing the size of the symmetric difference in matched vertices
in Gτ and Gτ ′ does not increase after each arrival besides the arrival of v, whose arrival clearly
increases this symmetric difference by at most two. See Appendix A for details.

Lemma 3.9. Let Gτ and Gτ ′ be two realizations of the random digraph where all the vertices in the
two graphs make the same choices except for one vertex v. Then the number of vertices that have
different matched status (free/matched) in the matchings computed in Hτ and Hτ ′ at any point of
time is at most two.

3.4 Analysis

In this section, we analyze the competitive ratio of Algorithm 3. We start with an outline of the
analysis where we highlight the main ideas.

3.4.1 High-Level Description of Analysis

As described in Section 3.3, the main difference compared to the simpler 1/2-competitive algorithm
is the change of the construction of the fractional solution, which in turn makes the rounding
more complex. In particular, we may have at the arrival of a vertex v that

∑
u∈Nv(v) zu > 1.

The majority of the analysis is therefore devoted to such “problematic” vertices since otherwise,
if
∑

u∈Nv(v) zu 6 1, the rounding is lossless due to the same reasons as described in the simpler
setting of Section 3.2. We now outline the main ideas in analyzing a vertex v with

∑
u∈Nv(v) zu > 1.

Let Fw be the event that vertex w is free (i.e., unmatched) at the arrival of v. Then, as described
in Section 3.3, the probability that we select edge {u, v} in our matching is the minimum of xuv
(because of the pruning in Line 12), and

Pr[Fu] ·

z′u + z′u
√
ε ·

∑
w∈Nv(v)

z′w · (1− Pr[Fw | Fu])

 .

3It is also possible to compute them exactly if we allow the algorithm to take exponential time.
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By definition, Pr[Fu] · zu = xuv, and the expression inside the parentheses is at least zu (implying
Pr[{u, v} ∈M ] = xuv) if

1 +
√
ε ·

∑
w∈Nv(v)

z′w · (1− Pr[Fw | Fu]) >
zu
z′u
. (8)

To analyze this inequality, we first use the structure of the selected function f = f1+2ε and the
selection of β = 2 − ε to show that if

∑
u∈Nv(v) zu > 1 then several structural properties hold

(see Lemma 3.10 and Corollary 3.11 in Section 3.4.2). In particular, there are absolute constants
0 < c < 1 and C > 1 (both independent of ε) such that

1.
∑

u∈Nv(v) zu 6 1 + Cε;

2. zu 6 C
√
ε for every u ∈ Nv(v); and

3. c 6 Pr[Fw] 6 1− c for every w ∈ Nv(v).

The first property implies that the right-hand-side of (8) is at most 1+Cε; and the second property
implies that v has at least Ω(1/

√
ε) neighbors and that each neighbor u satisfies z′u 6 zu 6 C

√
ε.

For simplicity of notation, we assume further in the high-level overview that v has exactly 1/
√
ε

neighbors and each u ∈ Nv(v) satisfies z′u =
√
ε. Inequality (8) would then be implied by∑

w∈Nv(v)

(1− Pr[Fw | Fu]) > C . (9)

To get an intuition why we would expect the above inequality to hold, it is instructive to consider
the unconditional version: ∑

w∈Nv(v)

(1− Pr[Fw]) > c|Nv(v)| = c/
√
ε� C ,

where the first inequality is from the fact that Pr[Fw] 6 1 − c for any neighbor w ∈ Nv(v). The
large slack in the last inequality, obtained by selecting ε > 0 to be a sufficiently small constant,
is used to bound the impact of conditioning on the event Fu. Indeed, due to the large slack, we
have that (9) is satisfied if the quantity

∑
w∈Nv(v) Pr[Fw|Fu] is not too far away from the same

summation with unconditional probabilities, i.e.,
∑

w∈Nv(v) Pr[Fw]. Specifically, it is sufficient to
show ∑

w∈Nv(v)

(Pr[Fw|Fu]− Pr[Fw]) 6 c/
√
ε− C . (10)

We do so by bounding the correlation between the events Fu and Fw in a highly non-trivial manner,
which constitutes the heart of our analysis. The main challenges are that events Fu and Fw can
be positively correlated and that, by conditioning on Fu, the primary and secondary choices of
different vertices are no longer independent.

We overcome the last difficulty by replacing the conditioning on Fu by a conditioning on the
component in Hτ (at the time of v’s arrival) that includes u. As explained in Section 3.3, the
matching output by our algorithm is equivalent to the greedy matching constructed in Hτ and so
the component containing u (at the time of v’s arrival) determines Fu. But how can this component
look like, assuming the event Fu? First, u cannot have any incoming primary arc since then u would
be matched (and so the event Fu would be false). However, u could have incoming secondary arcs,
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u u

Figure 2: Two examples of the component of Hτ containing u. Vertices are depicted from right to
left in the arrival order. Primary and secondary arcs are solid and dashed, respectively. The edges
that take part in the matching are thick.

assuming that the tails of those arcs are matched using their primary arcs. Furthermore, u can have
an outgoing primary and possibly a secondary arc if the selected neighbors are already matched.
These neighbors can in turn have incoming secondary arcs, at most one incoming primary arc
(due to the pruning in the definition of Hτ ), and outgoing primary and secondary arcs; and so
on. In Figure 2, we give two examples of the possible structure, when conditioning on Fu, of u’s
component in Hτ (at the time of v’s arrival). The left example contains secondary arcs, whereas
the component on the right is arguably simpler and only contains primary arcs.

An important step in our proof is to prove that, for most vertices u, the component is of the
simple form depicted to the right with probability almost one. That is, it is a path P consisting of
primary arcs, referred to as a primary path (see Definition 3.13) that further satisfies:

(i) it has length O(ln(1/ε)); and

(ii) the total z-value of the arcs in the blocking set of P is O(ln(1/ε)). The blocking set is defined
in Definition 3.14. Informally, it contains those arcs that if appearing as primary arcs in Gτ
would cause arcs of P to be pruned (or blocked) from Hτ .

Let P be the primary paths of above type that appear with positive probability as u’s component in
Hτ . Further let EQP be the event that u’s component equals P . Then we show (for most vertices)
that

∑
P∈P Pr[EQP | Fu] is almost one. For simplicity, let us assume here that the sum is equal to

one. Then by the law of total probability and since
∑

P∈P Pr[EQP | Fu] = 1,

∑
w∈Nv(v)

(Pr[Fw | Fu]− Pr[Fw]) =
∑
P∈P

Pr[EQP | Fu]

 ∑
w∈Nv(v)

(Pr[Fw | Fu,EQP ]− Pr[Fw])


=
∑
P∈P

Pr[EQP | Fu]

 ∑
w∈Nv(v)

(Pr[Fw | EQP ]− Pr[Fw])

 ,

where the last equality is because the component P determines Fu. The proof is then completed
by analyzing the term inside the parentheses for each primary path P ∈ P separately. As we prove
in Lemma 3.15, the independence of primary and secondary arc choices of vertices is maintained
after conditioning on EQP .4 Furthermore, we show that there is a bijection between the outcomes
of the unconditional and the conditional distributions, so that the expected number of vertices

4To be precise, conditioning on a primary path P with a so-called termination certificate T , see Definition 3.13.
In the overview, we omit this detail and consider the event EQP,T (instead of EQP ) in the formal proof.
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that make different choices under this pairing can be upper bounded by roughly the length of the
path plus the z-value of the edges in the blocking set. So, for a path P as above, we have that
the expected number of vertices that make different choices in the paired outcomes is O(ln(1/ε))
which, by Lemma 3.9, implies that the expected number of vertices that change matched status is
also upper bounded by O(ln(1/ε)). In other words, we have for every P ∈ P that∑

w∈Nv(v)

(Pr[Fw|EQP ]− Pr[Fw]) 6
∑
w∈V

(Pr[Fw|EQP ]− Pr[Fw]) = O(ln(1/ε)),

which implies (10) for a small enough choice of ε. This completes the overview of the main steps
in the analysis. The main difference in the formal proof is that not all vertices satisfy that their
component is a short primary path with probability close to 1. To that end, we define the notion
of good vertices in Section 3.4.4, which are the vertices that are very unlikely to have long directed
paths of primary arcs rooted at them. These are exactly the vertices v for which we can perform the
above analysis for most neighbors u (in the proof of the “key lemma”) implying that the rounding
is almost lossless for v. Then, in Section 3.4.6, we show using a rather simple charging scheme that
most of the vertices in the graph are good. Finally, in Section 3.4.7, we put everything together
and prove Theorem 1.2.

3.4.2 Useful Properties of W Functions and Algorithm 3

For the choice of f = f1+2ε as we choose, we have f(θ) = (1 + ε− θ) ·
(

θ+ε
1+ε−θ

) ε
1+2ε

. In Appendix C

we give a more manageable upper bound for f(θ) which holds for sufficiently small ε. Based on
this simple upper bound on f and some basic calculus, we obtain the following useful structural
properties for the conditional probabilities, zu, of Algorithm 3. See Appendix C.

Lemma 3.10. (Basic bounds on conditional probabilities zu) There exist absolute constants c ∈
(0, 1) and C > 1/c > 1 and ε0 ∈ (0, 1) such that for every ε ∈ (0, ε0) the following holds: for every
vertex v ∈ V , if yu is the dual variable of a neighbor u ∈ Nv(v) before v’s arrival and θ is the value
chosen by Algorithm 1 on v’s arrival, then for zu as defined in Algorithm 3, we have:

(1) If θ 6∈ (c, 1− c), then
∑

u∈Nv(v) zu 6 1,

(2) If θ ∈ [0, 1], then
∑

u∈Nv(v) zu 6 1 + Cε,

(3) If
∑

u∈Nv(v) zu > 1, then zu 6 C
√
ε for every u ∈ Nv(v),

(4) If
∑

u∈Nv(v) zu > 1, then for every u ∈ Nv(v) such that zu > 0, one has yu ∈ [c/2, 1− c/2], and

(5) For all u ∈ Nv(v), one has zu 6 1/2 +O(
√
ε).

The following corollary will be critical to our analysis:

Corollary 3.11. There exist absolute constants c > 0 and ε0 > 0 such that for all ε ∈ (0, ε), on
arrival of any vertex v ∈ V , if z as defined in Algorithm 3 satisfies

∑
u∈Nv(v) zu > 1, then for every

u ∈ Nv(v) we have
c 6 Pr[u is free when v arrives] 6 1− c.

Proof. By Lemma 3.10, (1) and (4) we have that if
∑

u∈Nv(v) zu > 1, then θ ∈ (c, 1 − c) (c is the
constant from Lemma 3.10), and for every u ∈ Nv(v) one has

yu ∈ [c/2, 1− c/2]. (11)

15



On the other hand, by Lemma 3.3 one has

yu
β

6 xu 6
yu + f(1− yu)

β
, (12)

where xu is the fractional degree of u when v arrives.
We now note that by Lemma 3.10, (2), we have that Algorithm 3 matches every vertex u with

probability at least xu/(1 + Cε) (due to choices of primary arcs), and thus

Pr[u is free when v arrives] 6 1− xu
1 + Cε

6 1− yu
β(1 + Cε)

(by (12))

6 1− c/2

2(1 + Cε)
(by (11) and the setting β = 2− ε 6 2)

6 1− c/5,

as long as ε is sufficiently small.
For the other bound we will use two facts. The first is that the since f(y) is monotone decreasing

by Observation 3.4 and since we picked β > β∗(f) = 1+f(0), we have that for any y 6 1−c/2 6 1,

y + f(1− y) 6 1− c/2 + f(0) < β − c/2. (13)

Then, using the fact that by Line 12, Algorithm 3 matches every vertex u with probability at most
xu, we obtain the second bound, as follows.

Pr[u is free when v arrives] > 1− xu

> 1− yu + f(1− yu)

β
(by (12))

> 1− β − c/2
β

(by (11) and (13))

> c/5. (β = 2− ε < 2.5)

Choosing c/5 as the constant in the statement of the lemma, we obtain the result.

Finally, for our analysis we will rely on the competitive ratio of the fractional solution maintained
in Line 4 being 1/β. This follows by Lemma 3.5 and the fact that for our choices of β = 2− ε and
f = f1+2ε we have that β > β∗(f). See Appendix C for a proof of this fact.

Fact 3.12. For all sufficiently small ε > 0, we have that 2− ε > β∗(f1+2ε).

3.4.3 Structural Properties of Gτ and Hτ

In our analysis later, we focus on maximal primary paths (directed paths made of primary arcs) in
Hτ , in the sense that the last vertex along the primary path has no outgoing primary arc in Hτ .
The following definition captures termination certificates of such primary paths.

Definition 3.13 (Certified Primary Path). A tuple (P, T ) is a certified primary path in Hτ if P
is a directed path of primary arcs in Hτ and either

(a) the last vertex of P does not have an outgoing primary arc in Gτ and T = ∅, or
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(b) the last vertex u of P has an outgoing primary arc (u,w) in Gτ and T = (u′, w) is a primary
arc in Hτ such that u′ precedes u in the arrival order.

To elaborate, a certified primary path (P, T ) is made of a (directed) path P of primary arcs
in Hτ and T is a certificate of P ’s termination in Hτ that ensures the last vertex u in P has no
outgoing primary arc in Hτ , either due to u not picking a primary arc with T = ∅, or due to the
picked primary arc (u,w) being blocked by another primary arc T = (u′, w) which appears in Hτ .

As described, Gτ and Hτ differ in arcs (u,w) that are blocked by previous primary arcs to their
target vertex w. We generally define sets of arcs which can block an edge, or a path, or a certified
path from appearing in Hτ as in the following definition:

Definition 3.14 (Blocking sets). For an arc (u,w), define its blocking set

B(u,w) := {(u′, w) | {u′, w} is an edge and u′ arrived before u}

to be those arcs, the appearance of any of which as primary arc in Gτ blocks (u, v) from being in
Hτ . In other words, an arc (u, v) is in Hτ as primary or secondary arc if and only if (u, v) is in
Gτ and none of the arcs in its blocking set B(u, v) is in Gτ as a primary arc.

The blocking set of a path P is simply the union of its arcs’ blocking sets,

B(P ) :=
⋃

(u,v)∈P

B(u, v) .

The blocking set of a certified primary path (P, T ) is the union of blocking sets of P and T ,

B(P, T ) := B(P ∪ T ).

The probability of an edge, or path, or certified primary path appearing in Hτ is governed
in part by the probability of arcs in their blocking sets appearing as primary arcs in Gτ . As an
arc (v, u) is picked as primary arc by when v arrives with probability roughly zu (more precisely,
z′u ∈ [zvu/(1 +Cε), zvu], by Lemma 3.10), it will be convenient to denote by z(v, u) and z′(v, u) the
values zu and z′u when v arrives, and by z(S) =

∑
s∈S z(s) and z′(S) =

∑
s∈S z(s) the sum of z-

and z′-values of arcs in a set of arcs S.
Product distributions. Note that by definition the distribution over primary and secondary

arc choices of vertices are product distributions (they are independent). As such, their joint dis-
tribution is defined by their marginals. Let pw and sw denote the distribution on primary and
secondary arc choices of w, respectively. That is, for every u ∈ Nw(w), pw(u) is the marginal prob-
ability that w selects (w, u) as its primary arc, and sw(u) is the marginal probability that w selects
(w, u) as its secondary arc. Given our target bound (8), it would be useful to show that condition-
ing on Fu preserves the independence of these arc choices. Unfortunately, conditioning on Fu does
not preserve this independence. We will therefore refine our conditioning later on the existence of
primary paths in Hτ , which as we show below maintains independence of the arc choices.

Lemma 3.15. For a certified primary path (P, T ) let EQ(P,T ) be the event that the path P equals
a maximal connected component in Hτ and the termination of P is certified by T . Then the
conditional distributions of primary and secondary choices conditioned on EQ(P,T ) are product
distributions; i.e., these conditional choices are independent. Moreover, if we let p̃w and s̃w denote
the conditional distribution on primary and secondary choices of w, respectively, then

TV(pw, p̃w) 6 z(R(w)) and TV(sw, s̃w) 6 z(R(w)),
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where R(w) ⊆ {w} ×Nw(w) is the set of arcs leaving w whose existence as primary arcs in Gτ is
ruled out by conditioning on EQ(P,T ), and the union of these R(w), denoted by R(P, T ), satisfies

R(P, T ) :=
⋃
w

R(w) ⊆ B(P, T ) ∪ {(w, r) | r is root of P} ∪
⋃

w∈P∪{w:T=(w,w′)}

{w} ×Nw(w). (14)

Proof. We first bound the total variation distance between the conditional and unconditional dis-
tributions. For primary choices, conditioning on EQ(P,T ) rules out the following sets of primary
arc choices. For vertex w /∈ P arriving before the root r of P this conditioning rules out w picking
any edge in B(P, T ) as primary arc. For vertices w /∈ P with w arriving after the root r of P
this conditioning rules out picking arcs (w, r). Finally, this conditioning rules out some subset of
arcs leaving vertices in P ∪ {w : T = (w,w′)}. Taking the union over these supersets of R(w), we
obtain (14). Now, the probability of each ruled out primary choice (w, u) ∈ R(w) is zero under p̃w
and z′(w, u) under pw, and all other primary choices have their probability increase, with a total
increase of

∑
(w,u)∈R(w) z

′(w, u), from which we conclude that

TV(pw, p̃w) =
1

2

∑
u∈Nw(w)

|pw(u)− p̃w(u)| = z′(R(w)) 6 z(R(w)).

The proof for secondary arcs is nearly identical, the only differences being that the sets of ruled
out secondary arcs can be smaller (specifically, secondary arcs to w′ such that T = (u,w′) are not
ruled out by this conditioning), and the probability of any arc (w, u) being picked as secondary arc
of w is at most

√
ε · z′(w, u) 6 z(w, u).

Finally, we note that primary and secondary choices for different vertices are independent.
Therefore, conditioning on each vertex w not picking a primary arc in its ruled out set R(w) still
yields a product distribution, and similarly for the distributions over secondary choices.

It is easy to show that a particular certified primary path (P, T ) with high value of z(B(P, T ))
is unlikely to appear in Hτ , due to the high likelihood of arcs in its breaking set being picked as
primary arcs. The following lemma asserts that the probability of a vertex u being the root of any
primary certified path (P, T ) with high z(B(P, T )) value is low.

Lemma 3.16. For any k > 0 and any vertex u, we have the following

Pr[Hτ contains any certified primary path (P, T ) with P rooted at u and z(B(P, T )) > k] 6 e−k/2,

Pr[Hτ contains any primary path P rooted at u with z(B(P )) > k] 6 e−k/2.

Proof. We first prove the bound for certified primary paths. For a certified primary path (P, T )
where the last vertex of P is w, define P ∗ as follows:

P ∗ =

{
P if T = ∅
P ∪ {(w,w′′)} if T = (w′, w′′).

Observe that z(B(P ∗)) > k whenever z(B(P, T )) > k. This is trivial when T = ∅. To see this
for the case T = (w′, w′′), let w be the last vertex of P , and note that B(w′, w′′) ⊆ B(w,w′′), as w
arrives after w′. Also note that for (P, T ) to be in Hτ , we have that P ∗ must be in Gτ .

We say a directed primary path P ′ = u → u1 → · · · → u`−1 → u` is k-minimal if z(B(P ′)) >
k and z(B(P ′ \ {(u`−1, u`)})) < k. For such a path P ′, define B∗(P ′) as follows: Initially set

18



B∗(P ′) = B(P \ {(u`−1, u`)}). Then from B(u`−1, u`), the breaking set of the last arc of P ′, add
arcs to B∗(P ′) in reverse order of their sources’ arrival until z(B∗(P ′)) > k.

Consider a certified primary path (P, T ) with P rooted at u. If a k-minimal path rooted at u
which is not a prefix of P ∗ is contained in Gτ , then (P, T ) does not appear in Gτ , and therefore
it does not appear in Hτ . On the other hand, if z(B(P, T )) > k then for (P, T ) to appear in
Hτ , we must have that the (unique) k-minimal prefix P ′ of P ∗ must appear in Gτ , and that none
of the edges of B∗(P ′) appear in Gτ . Moreover, for any certified primary path with z(B(P, T )),
conditioning on the existence of P ′ in Gτ does not affect random choices of vertices with outgoing
arcs in B∗(P ′), as these vertices are not in P ′. Since by Lemma 3.10 each arc (w,w′) appears in
Gτ with probability z′(v, u) > z(v, u)/(1 + Cε) > z(v, u)/2, we conclude that for any k-minimal
primary path P ′ rooted at u, we have

Pr[Hτ contains any certified primary path (P, T ) with z(B(P, T )) > k | P ′ is in Gτ ]

6Pr[No edge in B∗(P ′) is in Gτ | P ′ is in Gτ ]

=
∏
w/∈P ′

(1− Pr[Some primary edge in B∗(P ′) ∩ ({w} ×Nw(w)) is in Gτ ])

6
∏
w/∈P ′

exp
(
−
∑

(w,w′)∈B(P,T )×Nw(w) z(w,w
′)/2

)
6 exp(−z(B∗(P ′))/2) 6 e−k/2.

Taking total probability Pu, the set of all k-minimal primary paths P ′ rooted at u, we get that
indeed, since u is the root of at most one k-minimal primary path in any realization of Gτ ,

Pr[Hτ contains a certified primary path (P, T ) rooted at u with z(B(P, T )) > k]

6
∑
P ′∈Pu

Pr[Hτ contains a (P, T ) with z(B(P, T )) > k | P ′ is in Gτ ]︸ ︷︷ ︸
6 e−k/2

·Pr[P ′ is in Gτ ] 6 e−k/2.

The proof for primary path is essentially the same as the above, taking P ∗ = P .

3.4.4 Analyzing Good Vertices

Consider the set of vertices that are unlikely to be roots of long directed paths of primary arcs in
Hτ . In this section, we show that Algorithm 3 achieves almost lossless rounding for such vertices,
and hence we call them good vertices. We start with a formal definition:

Definition 3.17 (Good vertices). We say that a vertex v is good if

Pr
τ

[Hτ has a primary path rooted at v of length at least 2000 · ln(1/ε)] 6 ε6.

Otherwise, we say v is bad.

As the main result of this section, for good vertices, we prove the following:

Theorem 3.18. Let v be a good vertex. Then

Pr[v is matched on arrival] > (1− ε2) ·
∑

u∈Nv(v)

xuv.
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Notational conventions. Throughout this section, we fix v and let z, z′ be as in Algorithm 3.
Moreover, for simplicity of notation, we suppose that the stream of vertices ends just before v’s
arrival and so quantities, such as Gτ and Hτ , refer to their values when v arrives. For a vertex u,
we let Fu denote the event that u is free (i.e., unmatched) when v arrives. In other words, Fu is
the event that u is free in the stream that ends just before v’s arrival.

To prove the theorem, first note that it is immediate if
∑

u∈Nv(v) zu 6 1: in that case, we have

z′ = z and so the probability to match v by a primary edge, by definition of zu, is simply∑
u∈Nv(v)

zu · Pr[Fu] =
∑

u∈Nv(v)

xuv.

From now on we therefore assume
∑

u∈Nv(v) zu > 1, which implies

(I)
∑

u∈Nv(v) z
′
u = 1,

and moreover, by Lemma 3.10 and Corollary 3.11, for every u ∈ Nv(v):

(II) zu 6 C
√
ε,

(III) zu 6 (1 + Cε) · z′u, and

(IV) c 6 Pr[Fu] 6 1− c ,

where c is the constant of Corollary 3.11 and C is the constant of Lemma 3.10.
We now state the key technical lemma in the proof of Theorem 3.18:

Lemma 3.19. Consider a neighbor u ∈ Nv(v) such that

Pr
τ

[Hτ has a primary path rooted at u of length at least 2000 · ln(1/ε) | Fu] 6 ε2 . (15)

Then, ∑
w∈Nv(v)

z′w · Pr[Fw | Fu]−
∑

w∈Nv(v)

z′w · Pr[Fw] 6 ε1/3 . (16)

Note that the above lemma bounds the quantity
∑

w∈Nv(v) z
′
w ·Pr[Fw | Fu], which will allow us

to show that (8) holds and thus the edge {u, v} is picked in the matching with probability very
close to xuv. Before giving the proof of the lemma, we give the formal argument why the lemma
implies the theorem.

Proof of Theorem 3.18. Define S to be the neighbors u in Nv(v) satisfying

Pr
τ

[Hτ has a primary path rooted at u of length at least 2000 · ln(1/ε) | Fu] > ε2 .

In other words, S is the set of neighbors of v that violate (15). As v is good, we have

ε6 > Pr
τ

[Hτ has a primary path rooted at v of length at least 2000 · ln(1/ε)]

>
∑

u∈Nv(v)

z′u · Pr[Fu] · Pr
τ

[Hτ has a primary path rooted at u of length at least 2000 · ln(1/ε)− 1 | Fu]

>
∑

u∈Nv(v)

z′u · Pr[Fu] · Pr
τ

[Hτ has a primary path rooted at u of length at least 2000 · ln(1/ε) | Fu]

>
∑
u∈S

z′u · Pr[Fu] · ε2.
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The second inequality holds because v selects the primary arc (u, v) with probability z′u and,
conditioned on Fu, u cannot already have an incoming primary arc, which implies that (u, v) is
present in Hτ . The last inequality follows from the choice of S.

By Property (III), zu 6 (1 + Cε) · z′u and so by rewriting we get∑
u∈S

xuv =
∑
u∈S

zu · Pr[Fu] 6 (1 + Cε) ·
∑
u∈S

z′u · Pr[Fu] 6 (1 + Cε) · ε4 6 ε3.

In other words, the contribution of the neighbors of v in S to
∑

u∈Nv(v) xuv is insignificant
compared to the contribution of all neighbors,∑

u∈Nv(v)

xuv =
∑

u∈Nv(v)

zu · Pr[Fu] > c, (17)

where the inequality follows by the assumption
∑

u∈Nv(v) zu > 1 and Pr[Fu] > c by Property (IV).
We proceed to analyze a neighbor u ∈ Nv(v) \ S. Recall that it is enough to verify (8) to

conclude that edge {u, v} is picked in the matching with probability xuv. We have that

1 +
√
ε
∑

w∈Nv(v)

z′w · (1− Pr[Fw | Fu])

> 1 +
√
ε
∑

w∈Nv(v)

z′w · (1− Pr[Fw])−
√
ε · ε1/3 (by Lemma 3.19)

> 1 +
√
ε
∑

w∈Nv(v)

z′w · c−
√
ε · ε1/3 (Pr[Fw] 6 1− c by (IV))

= 1 +
√
εc−

√
ε · ε1/3

 ∑
w∈Nv(v)

z′w = 1 by (I)


> 1 + Cε (for ε small enough)

> zu/z
′
u. (by (III))

Therefore, by definition of S and Lemma 3.19, we thus have that for every u ∈ Nv(v) \ S, the edge
{u, v} is taken in the matching with probability xuv. Thus, the probability that v is matched on
arrival is, as claimed, at least∑

u∈Nv(v)\S

xuv =
∑

u∈Nv(v)

xuv −
∑
u∈S

xuv >
∑

u∈Nv(v)

xuv − ε3 > (1− ε2)
∑

u∈Nv(v)

xuv ,

where the last inequality holds because we have
∑

u∈Nv(v) xuv > c, as calculated in (17).

3.4.5 Proof of the Key Lemma

It remains to prove the key lemma, Lemma 3.19, which we do here.

Proof of Lemma 3.19. For a certified primary path (P, T ) let EQ(P,T ) be the event as defined
in Lemma 3.15, and let IN(P,T ) be the event that P is a maximal primary path in Hτ and the
termination of P is certified by T . Further, let

C = {(P, T ) : (P, T ) is a certified primary path rooted at u with Pr[IN(P,T )] > 0}
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be the set of certified primary paths rooted at u that have a nonzero probability of being maximal in
Hτ . Then, by the law of total probability and since

∑
(P,T )∈C Pr[IN(P,T ) | Fu] = 1 (since conditioning

on Fu implies in particular that u has no incoming primary arc), we can rewrite the expression to
bound,

∑
w∈Nv(v) z

′
w · Pr[Fw | Fu]−

∑
w∈Nv(v) z

′
w · Pr[Fw], as

∑
(P,T )∈C

Pr[IN(P,T ) | Fu]

 ∑
w∈Nv(v)

z′w · Pr[Fw | Fu, IN(P,T )]−
∑

w∈Nv(v)

z′w · Pr[Fw]

 . (18)

We analyze this expression in two steps. First, in the next claim, we show that we can focus on the
case when the certified path (P, T ) is very structured and equals the component of u in Hτ . We
then analyze the sum in that structured case.

Claim 3.20. Let P ⊆ C contain those certified primary paths (P, T ) of C that satisfy: P has length
less than 2000 · ln(1/ε) and z(B(P, T )) 6 2 ln(1/ε). Then, we have

(18) 6
∑

(P,T )∈P

Pr[EQ(P,T ) | Fu]

 ∑
w∈Nv(v)

z′w · Pr[Fw | EQ(P,T )]−
∑

w∈Nv(v)

z′w · Pr[Fw]

+ ε1/3/2.

Proof. Define the following subsets of certified primary paths rooted at u:

C1 = {(P, T ) ∈ C | P is of length at least 2000 · ln(1/ε)}
C2 = {(P, T ) ∈ C \ C1 | z(B(P, T )) > 2 ln(1/ε)}

Note that P = C \ (C1 ∪ C2). Since u satisfies (15), we have that∑
(P,T )∈C1

Pr[IN(P,T ) | Fu] 6 ε2 6 ε1/3/6.

On the other hand, by Lemma 3.16 and Pr[Fu] > c (by Property (IV)), we have that∑
(P,T )∈C2

Pr[IN(P,T ) | Fu] 6 c−1 ·
∑

(P,T )∈C2

Pr[IN(P,T )] 6 c−1 · ε 6 ε1/3/6.

In other words, almost all probability mass lies in those outcomes where one of the certified paths
(P, T ) ∈ P is in Hτ . It remains to prove that, in those cases, we almost always have that the
component of u in Hτ equals the path P (whose termination is certified by T ). Specifically, let
EQ(P,T ) denote the complement of EQ(P,T ). We show

Pr
[
EQ(P,T ) | IN(P,T )

]
6 ε1/3/7 . (19)

To see this, note that by the definition of the event IN(P,T ), if we restrict ourselves to primary

edges then the component of u in Hτ equals P . We thus have that for the event EQ(P,T ) to be true
at least one of the vertices in P must have an incoming or outgoing secondary edge. Hence the

expression Pr
[
EQ(P,T ) | IN(P,T )

]
can be upper bounded by

Pr[a vertex in P has an incoming or outgoing secondary arc in Gτ | IN(P,T )] (20)
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Note that event IN(P,T ) is determined solely by choices of primary arcs. By independence of these
choices and choices of secondary arcs, conditioning on IN(P,T ) does not affect the distribution of
secondary arcs. So the probability that any of the nodes in P selects a secondary edge is at most√
ε. Thus, by union bound, the probability that any of the |P | 6 2000 · ln(1/ε) vertices in P pick

a secondary arc is at most
√
ε · 2000 · ln(1/ε). We now turn our attention to incoming secondary

arcs. First, considering the secondary arcs that go into u, we have

c 6 Pr[Fu] 6
∏

(w,u)∈B(v,u)

(1− z(w, u)/2) 6 exp(−z(B(v, u))/2),

because any arc (w, u) ∈ B(v, u) appears as a primary arc in Gτ independently with probability
at least z(w, u)/2 and the appearance of such an arc implies that u has an incoming primary arc
in Hτ and is therefore matched; i.e., the event Fu is false in this case. We thus have z(B(v, u)) 6
2 ln(1/c). Further, since (P, T ) 6∈ C2, we have z(B(P )) 6 z(B(P, T )) 6 2 ln(1/ε). Again using that
the conditioning on IN(P,T ) does not affect the distribution of secondary edges, we have that the
probability of an incoming secondary arc to any vertex in P is at most

√
ε · (2 ln(1/c) + 2 ln(1/ε)) .

Thus, by union bound, the probability that any vertex in P has an incoming or outgoing secondary
arc conditioned on IN(P,T ) is at most

√
ε · 2000 · ln(1/ε) +

√
ε · (2 ln(1/c) + 2 ln(1/ε)) 6 ε1/3/7,

for sufficiently small ε, which implies (19) via (20).
We now show how the above concludes the proof of the claim. We have shown that each one of

the two sets C1, C2 contributes at most ε1/3/6 to (18) (where we use that
∑

w∈Nv(v) z
′
w = 1). Hence,

(18) 6
∑

(P,T )∈P

Pr[IN(P,T ) | Fu]

 ∑
w∈Nv(v)

z′w · Pr[Fw | IN(P,T ), Fu]−
∑

w∈Nv(v)

z′w · Pr[Fw]

+ 2ε1/3/6.

This intuitively concludes the proof of the claim as (19) says that Pr[EQ(P,T )|IN(P,T )] is almost 1.
The formal calculations are as follows. Since the event EQ(P,T ) implies the event IN(P,T ), we have
that

Pr[EQ(P,T )] = Pr[EQ(P,T ) ∧ IN(P,T )] = Pr[IN(P,T )]− Pr[EQ(P,T ) ∧ IN(P,T )],

which by (19) implies

Pr[EQ(P,T )] = Pr[IN(P,T )]
(

1− Pr
[
EQ(P,T ) | IN(P,T )

])
> Pr[IN(P,T )]

(
1− ε1/3/7

)
. (21)

We use this to rewrite Pr[IN(P,T ) | Fu]
(∑

w∈Nv(v) z
′
w · Pr[Fw | IN(P,T ), Fu]−

∑
w∈Nv(v) z

′
w · Pr[Fw]

)
.

Specifically, by law of total probability, it can be rewritten as the sum of the expressions (22)
and (23) below:

Pr[EQ(P,T ) ∧ IN(P,T ) | Fu]

 ∑
w∈Nv(v)

z′w · Pr[Fw | EQ(P,T ), IN(P,T ), Fu]−
∑

w∈Nv(v)

z′w · Pr[Fw]


= Pr[EQ(P,T ) | Fu]

 ∑
w∈Nv(v)

z′w · Pr[Fw | EQ(P,T )]−
∑

w∈Nv(v)

z′w · Pr[Fw]

 (22)
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and

Pr[EQ(P,T ) ∧ IN(P,T ) | Fu]

 ∑
w∈Nv(v)

z′w · Pr[Fw | EQ(P,T ), IN(P,T ), Fu]−
∑

w∈Nv(v)

z′w · Pr[Fw]

 , (23)

where (23) can be upper bounded as follows:

(23) 6 Pr[EQ(P,T ) ∧ IN(P,T ) | Fu] (by
∑

w∈Nv(v)

z′w 6 1)

6 c−1 · Pr[EQ(P,T ) ∧ IN(P,T )] (by c 6 Pr[Fu])

= c−1 · Pr[IN(P,T )] · Pr
[
EQ(P,T ) | IN(P,T )

]
6 c−1 ·

Pr[EQ(P,T )]

1− ε1/3/7
· (ε1/3/7) (by (19) and (21))

6 Pr[EQ(P,T )] · ε1/3/6. (for ε small enough)

As at most one of the events {EQ(P,T )}(P,T )∈P is true in any realization of Gτ , we have that∑
(P,T )∈P Pr[EQ(P,T )∧ IN(P,T ) | Fu] 6

∑
(P,T )∈P

(
Pr[EQ(P,T )] · ε1/3/6

)
6 ε1/3/6. Thus, again using

that
∑

w∈Nv(v) zw 6 1, we have that

(18) 6
∑

(P,T )∈P

Pr[IN(P,T ) | Fu]

 ∑
w∈Nv(v)

z′w · Pr[Fw | IN(P,T ), Fu]−
∑

w∈Nv(v)

z′w · Pr[Fw]

+ 2ε1/3/6

6
∑

(P,T )∈P

Pr[EQ(P,T ) | Fu]

 ∑
w∈Nv(v)

z′w · Pr[Fw | EQ(P,T )]−
∑

w∈Nv(v)

z′w · Pr[Fw]

+ 3ε1/3/6,

as claimed.

The previous claim bounded the contribution of certified primary paths in C \ P to (18). The
following claim bounds the contribution of paths in P.

Claim 3.21. Let P ⊆ C contain those certified primary paths (P, T ) of C that satisfy: P has length
less than 2000 · ln(1/ε) and z(B(P, T )) 6 2 ln(1/ε). Then, we have

∑
(P,T )∈P

Pr[EQ(P,T )]

 ∑
w∈Nv(v)

z′w · Pr[Fw | EQ(P,T )]−
∑

w∈Nv(v)

z′w · Pr[Fw]

 6 ε1/3/2.

Proof. We prove the claim in two steps: first we construct a chain of distributions that interpolates
between the unconditional distribution of Hτ and its conditional distribution, and then bound the
expected number of vertices that change their matched status along that chain. For the remainder
of the proof we fix the certified primary path (P, T ).
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Constructing a chain of distributions. Let H
(0)
τ denote the unconditional distribution of Hτ

when v arrives, and let H
(n)
τ denote the distribution of Hτ conditioned on EQ(P,T ) when v arrives.

Here n = |V | is the number of vertices in the input graph. For every w ∈ V let F
(0)
w denote

the indicator of w being free when v arrives (unconditionally) and let F
(n)
w denote the indicator

variables of w being free when v arrives conditioned on EQ(P,T ). Note that F (0) is determined by

H
(0)
τ and F (n) is determined by H

(n)
τ . For t = 0, . . . , n, we define distributions H

(t)
τ that interpolate

between H
(0)
τ and H

(n+1)
τ as follows.

As in Lemma 3.15, for every w ∈ V we denote the unconditional distribution of its primary
choice by pw, and the unconditional distribution of its secondary choice by sw. Similarly, we
denote the conditional distribution given EQ(P,T ) of the primary choice by p̃w and the conditional
distribution of the secondary choice by s̃w. For every t = 0, . . . , n the primary choice of vertices
wj , j = 1, . . . , t are sampled independently from p̃wj , and the primary choices of vertices wj , j =
t+1, . . . , n are sampled independently from the unconditional distribution pwt . Similarly, secondary
choices of vertices wj , j = 1, . . . , t are sampled independently from s̃wj and secondary choices of

vertices wj , j = t + 1, . . . , n are sampled independently from swj . Note that H
(0)
τ is sampled

from the unconditional distribution of Hτ , and H
(n)
τ is sampled from the conditional distribution

(conditioned on EQ(P,T )), as required, due to the independence of the conditional probabilities p̃wj
and s̃wj , by Lemma 3.15. For t = 0, . . . , n let Mt denote the matching constructed by our algorithm

on H
(t)
τ , and let F

(t)
w be the indicator variable for w being free when v arrives in the DAG sampled

from H
(t)
τ .

Coupling the distributions of H
(t)
τ . We now exhibit a coupling between the H

(t)
τ , t = 0, . . . , n.

Specifically, we will show that for every such t the following holds.

E

∑
q∈V
|F (t+1)
q − F (t)

q |

 6 4z(R(wt+1)), (24)

where R(wt+1) is as defined in Lemma 3.15 with regard to the certified primary path R(P, T ).
Recall that z(R(wt+1)) is the total probability assigned to arcs leaving wt+1 which are ruled out
from being primary arcs in Gτ by conditioning on EQ(P,T ).

We construct the coupling by induction. The base case corresponds to t = 0 and is trivial. We
now give the inductive step (t→ t+ 1). We write w := wt+1 to simplify notation. Let Zp ∈ Nw(w)

denote the primary choice of w in H
(t)
τ , and let Zs ∈ Nw(w) denote the secondary choice of w in

Nw(w) (they are sampled according to the unconditional distributions pw and sw respectively). Let
Z̃p ∈ Nw(w) and Z̃s ∈ Nw(w) be sampled from the conditional distributions p̃w and s̃w respectively,
such that that the joint distributions (Zp, Z̃p) and (Zs, Z̃s) satisfy

Pr[Zp 6= Z̃p] = TV(pw, p̃w) and Pr[Zs 6= Z̃s] = TV(sw, s̃w). (25)

First, we note that if Zp = Z̃p and Zs = Z̃s, then w = wt+1 is matched to the same neighbor

under H
(t)
τ and H

(t+1)
τ , and so Mt = Mt+1, due to the greedy nature of the matching constructed.

Otherwise, by Lemma 3.9, at most two vertices have different matched status in Mt and Mt+1 in
the latter case (in the former case every vertex has the same matched status). To summarize, we
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have, for R(w) determined by (P, T ) as in Lemma 3.15, that

E

∑
q∈V
|F (t+1)
q − F (t)

q |

 6 2 · Pr[Zp 6= Z̃p or Zs 6= Z̃s]

6 2(TV(pw, p̃w) + TV(sw, s̃w)) (by (25) and union bound)

6 4z(R(w)). (by Lemma 3.15)

(26)

This concludes the proof of the inductive step, and establishes (24). In particular, we get

E

∑
q∈V
|F (n)
q − F (0)

q |

 6
n−1∑
t=0

E

∑
q∈V
|F (t+1)
q − F (t)

q |


6

n−1∑
t=0

4z(R(wt+1)) (by (26))

= 4z(R(P, T )),

(27)

by the definition of R(P, T ) =
⋃
w R(w) in Lemma 3.15.

We now finish the claim. First note that for any (P, T ) such that P has length at most 2000 ·
ln(1/ε) and z(B(P, T )) 6 2 ln(1/ε) one has

∑
w z(R(w)) = z(R(P, T )) = O(ln(1/ε)). Indeed, by

Lemma 3.15 and linearity of z, recalling that u is the root of P and that no vertex appears after v
(and thus B(v, u) = {(w, u) | w arrives between u and v}), we have

z(R(P, T )) 6 z(B(P, T )) + z(B(v, u)) +
∑

w∈P∪{w:T=(w,w′)}

z ({w} ×Nw(w)) . (28)

We now bound the contribution to the above upper bound on
∑

w z(R(w)) = z(R(P, T )) in (28).
First, we have that z(B(P, T )) 6 2 ln(1/ε) by assumption of the lemma. To bound the contribution
of z(B(v, u)), we note that by Property IV, we have

c 6 Pr[Fu] =
∏

e∈B(v,u)

(1− ze) 6 exp

− ∑
(w,u)∈B(v,u)

z(w, u)/2

 6 exp(−z(B(v, u))/2),

because any arc e = (w, u) appears as a primary arc in Gτ with probability z′(w, u) > z(w, u)/2,
independently of other such arcs, and the appearance of any such an edge implies that u has an
incoming primary edge in Hτ when v arrives and is therefore matched; i.e., the event Fu is false in
this case. We thus have z(B(v, u)) 6 2 ln(1/c). Finally, it remains to note that for every one of the
at most 2000 · ln(1/ε) + 1 vertices w ∈ P ∪ {w : T = (w,w′)} the contribution of z({w} ×Nw(w))
to the right hand side of (28) is at most 1 + Cε 6 2, by Lemma 3.10, (2). Putting these bounds
together, we get that for sufficiently small ε,

z(R(P, T )) 6 2 ln(1/ε) + 2 ln(1/c) + 2 · 2000 · ln(1/ε) + 2 = O(ln(1/ε)). (29)
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The term we wish to upper bound is at most∑
w∈Nv(v)

z′w · Pr[Fw | EQ(P,T )]−
∑

w∈Nv(v)

z′w · Pr[Fw]

6

(
max

w∈Nv(v)
z′w

)
·
∑

w∈Nv(v)

∣∣∣Pr[Fw | EQ(P,T )]− Pr[Fw]
∣∣∣

6C
√
ε ·

∑
w∈Nv(v)

∣∣∣Pr[Fw | EQ(P,T )]− Pr[Fw]
∣∣∣ (by Lemma 3.10, (3))

=C
√
ε ·E

 ∑
w∈Nv(v)

|F (n)
w − F (0)

w |

 (by definition of F (0) and F (n))

then, using (27) and (29), we find that the term we wish to upper bound is at most

6C
√
ε ·E

[∑
w∈V
|F (n)
w − F (0)

w |

]
6C
√
ε · z(R(P, T )) (by (27))

=O(
√
ε · log(1/ε)) (by (29))

6ε1/3/2,

completing the proof.

Finally, we obtain Lemma 3.19 by combining Claim 3.20 and Claim 3.21, to find that, as claimed

(18) 6
∑

(P,T )∈P

Pr[EQ(P,T ) | Fu]

 ∑
w∈Nv(v)

z′w · Pr[Fw | EQ(P,T )]−
∑

w∈Nv(v)

z′w · Pr[Fw]

+ ε1/3/2

6 ε1/3/2 + ε1/3/2 = ε1/3.

3.4.6 Bounding the Impact of Bad Vertices

In this section, we show that we can completely ignore the bad vertices without losing too much.
From the definition of good vertices, for a bad vertex v, we have that

Pr
τ

[Hτ has a primary path rooted at v of length at least 2000 · ln(1/ε)] > ε6.

As the main result of this section, we prove the following theorem:

Theorem 3.22. The number of bad vertices is at most ε3 ·
∑

e∈E xe.

To prove this, we first describe a charging mechanism in which, for each bad vertex, a charge of
one is distributed among a subset of other vertices. Then, using the following supplementary lemma,
we show that the total distributed charge over all vertices in the graph is at most ε3 ·

∑
(u,v)∈E xuv.

Lemma 3.23. We call a primary path P a primary predecessor path of v if it ends at v. That is,
P = v` → v`−1 → · · · → v1 = v. We have

Pr
τ

[v has any primary predecessor path P with z(B(P )) 6 20 · ln(1/ε) and |P | > 1000 · ln(1/ε)] 6 ε10.
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Proof. We use the principle of deferred decisions and traverse the path backwards. Let b be the
current vertex, which is initially set to v. Consider all incoming arcs to b, say (a1, b), . . . , (ak, b)
where we index a’s by time of arrival; i.e., ai arrives before aj if i < j (and b arrived before any ai).

First consider the random choice of a1 and see if it selected the arc (a1, b).

• If it does, then the path including b in Hτ will use the arc (a1, b).

• Otherwise, if a1 does not select the arc (a1, b), then go on to consider a2 and so on.

If no a1, . . . , ak selects b, then the process stops; i.e., the primary path starts at this vertex since
b has no incoming primary arc. Otherwise let i be the first index so that (ai, b) was selected.
Then (ai, b) is in the primary path ending at v in Hτ . Now, observe that no a1, . . . , ai−1 may be
in the path in this case, because these vertices arrived before ai and after b. Moreover, we have
not revealed any randomness regarding ai+1, . . . , ak that may appear later in the path. We can
therefore repeat the above process with b now set to ai and “fresh” randomness for all vertices we
consider, as the random choices of arcs of all vertices are independent. We now show that this
process, with good probability, does not result in a long predecessor path P of low z(B(P )) value.

Recall from Lemma 3.10, (5), that z(u, v) 6 3/5 for all (u, v) ∈ V × V . Suppose that∑k
i=1 z(ai, b) > 4/5. Let j be the first index such that

∑j
i=1 z(ai, b) > 1/5. Thus

∑j
i=1 z(ai, b) 6

4/5, and hence the probability that none of the first j vertices select b is at least
∏j
i=1(1−z(ai, b)) >

1−
∑j

i=1 z(ai, b) > 1/5. Consequently, with probability at least 1/5, vertex b either has no prede-
cessor or the increase to z(B(P )) is at least 1/5.

In the other case, we have
∑k

i=1 z(ai, b) 6 4/5. Then the probability that b has no predecessor

is
∏k
i=1(1− z(ai, b)) > 1−

∑k
i=1 z(ai, b) > 1/5.

Therefore, at any step in the above random process, with probability at least 1/5, we either
stop or increase z(B(P )) by 1/5. Let Zi be an indicator variable for the random process either
stopping or increasing z(B(P )) by at least 1/5 at step i, and notice that according to the above
random process, each Zi is lower bounded by an independent Bernoulli variable with probability
1/5. Thus if we define Z =

∑
i∈[1000·ln(1/ε)] Zi, we have E[Z] > 200 · ln(1/ε), and thus by standard

coupling arguments and Chernoff bounds, we have that

Pr[Z 6 100 · ln(1/ε)] 6 Pr [Z 6 (1− 1/2) ·E[Z]] 6 e−(1/2)·(1/2)
2·200·ln(1/ε) 6 ε10.

But if the path does not terminate within 1000 · ln(1/ε) steps and Z > 100 · ln(1/ε), then z(B(P )) >
20 · ln(1/ε).

We now prove Theorem 3.22.

Proof of Theorem 3.22. By Lemma 3.16, the probability that Hτ has a primary path P with
z(B(P )) > 20 · ln(1/ε) starting at v is at most ε10. Thus, for a bad vertex u, the probability
that Hτ has some primary path P rooted at u with |P | > 2000 · ln(1/ε) and z(B(P )) 6 20 · ln(1/ε)
is at least ε6 − ε10 > ε6/2.

Let k = 20 · ln(1/ε) and ` = 2000 · ln(1/ε). Let Pu be the set of all primary paths P rooted at
u such that z(B(P )) 6 k and |P | = ` starting at u. Since all such primary paths with length more
than ` are extensions of those with length exactly `, we have

∑
P∈Pu Pr[P is in Hτ ] > ε6/2. For

each such path P ∈ Pu, consider the two vertices wP` and wP`−1 at distances ` and `−1 respectively

from u. For each such vertex wPj (j ∈ {` − 1, `}), charge (2/ε6) · Pr[P is in Hτ ] · ywPj . Then the

sum of these charges is∑
P∈Pu

(2/ε6) · Pr[P is in Hτ ] · (ywP` + ywP`−1
)︸ ︷︷ ︸

>1

> (2/ε6) ·
∑
P∈Pu

Pr[P is in Hτ ] > 1.
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Notice that the fact (ywP`
+ ywP`−1

) > 1 follows because yw’s form a feasible dual solution (to the

vertex cover problem).
On the other hand, consider how many times each vertex is charged. For this, for every vertex

w, let Qw be the set of primary predecessor paths Q of u such that |Q| = `− 1 and z(B(P )) 6 k.
As |Q| = `− 1 > 1000 · ln(1/ε) for all Q ∈ Qw, by Lemma 3.23,

∑
Q∈Qw Pr[Q is in Hτ ] 6 ε10 . For

a primary predecessor path Q ∈ Qw (or one of its extensions), the vertex w can be charged at most
twice according to the above charging mechanism. Since any predecessor path of w with length
more than ` − 1 must be an extension of one with length exactly ` − 1, we have that the amount
w is charged is at most∑

Q∈Qw

2 · 2 · Pr[Q is in Hτ ] · yw/ε6 6 4 · (ε10/ε6) · yw 6 4 · ε4 · yw.

Summing over all w ∈ V and using Lemma 3.3, the total charge is at most∑
w∈v

4 · ε4 · yw 6 4 · ε4 · β ·
∑
e∈E

xe 6 ε3
∑
e∈E

xe.

3.4.7 Calculating the Competitive Ratio of Algorithm 3

We now show that the competitive ratio of Algorithm 3 is indeed (1/2 + α) competitive for some
sufficiently small absolute constant α > 0, thus proving Theorem 1.2. This essentially combines
the facts that for good vertices, the matching probability is very close to the fractional values of
incident edges, and that the number of bad vertices is very small compared to the total value of
the fractional algorithm (over the entire graph).

Proof of Theorem 1.2. Let OPT denote the size of the maximum cardinality matching in the input
graph G. Then, by Lemma 3.5 and our choice of f = f1+2ε and β = 2 − ε > β∗(f1+2ε), we have
that

∑
e xe > (1/β) ·OPT > (1/2+ε/4) ·OPT, where the xe’s are the fractional values we compute

in Algorithm 3.
Now let M be the matching output by Algorithm 3. We have

E[|M |] =
∑
e∈E

Pr[e is matched]

>
∑

good v∈V
(1− ε2) ·

∑
u∈Nv(v)

xuv (By Theorem 3.18)

> (1− ε2) ·

∑
e∈E

xe −
∑

bad v∈V

∑
u∈Nv(v)

xuv


> (1− ε2) ·

(∑
e∈E

xe −
∑

bad v∈V
1

)
(
∑

u∈Nv(v)

xuv 6 1)

> (1− ε2) ·

(∑
e∈E

xe − ε3
∑
e∈E

xe

)
(By Theorem 3.22)

> (1− 2ε2) ·
∑
e∈E

xe

> (1− 2ε2) · (1/2 + ε/4) ·OPT

> (1/2 + ε/5) ·OPT,

where the last line holds for a sufficiently small constant ε > 0.
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Appendix

A Deferred Proofs of Section 3.3

Here we prove that a change of the realized arc choices of any vertex does not change the matched
status of more than two vertices (at any point in time). This is Lemma 3.9, restated below.

Lemma 3.9. Let Gτ and Gτ ′ be two realizations of the random digraph where all the vertices in the
two graphs make the same choices except for one vertex v. Then the number of vertices that have
different matched status (free/matched) in the matchings computed in Hτ and Hτ ′ at any point of
time is at most two.

Proof. We consider the evolution, following each vertex arrival, of the matchings Mτ and Mτ ′

computed in Hτ and Hτ ′ , respectively, as well as the set of vertices with different matched status
in these matchings, denoted by D := (Mτ \Mτ ′)∪ (Mτ ′ \Mτ ). The set D is empty before the first
arrival and remains empty until the arrival of v, as all earlier vertices than v have the same primary
and secondary arcs and have the same set of free neighbors in Hτ and Hτ ′ (as D = ∅, by induction).
Now, if immediately after v arrives it remains free in both Mτ and Mτ ′ , or it is matched to the
same neighbor in both matchings, then clearly D remains empty. Otherwise, either v is matched to
different neighbors in Mτ and Mτ ′ , or v is matched in one of these matchings but not in the other.
Both these cases result in |D| = 2. We now show by induction that the cardinality of D does not
increase following subsequent arrivals, implying the lemma.

Let u be some vertex which arrives after v. If when u arrives u is matched to the same neighbor
w in Mτ and Mτ ′ or if u remains free in both matchings, then D is unchanged. If u is matched
to some w on arrival in Mτ , but not in Mτ ′ , then since the arcs of u are the same in Gτ and Gτ ′ ,
this implies that w must have been free in Mτ but not in Mτ ′ , and so D 3 w. Therefore, after u
arrives, we have D ← (D \{w})∪{u}, and so D’s cardinality is unchanged. Finally, if u is matched
to two distinct neighbors, denoted by w and w′, respectively, then one of (u,w) and (u,w′) must
be the primary arc of u in both Gτ and Gτ ′ . Without loss of generality, say (u,w) is this primary
arc. Since u is matched to w in Mτ but not in Mτ ′ , then w must be free in Mτ when u arrives, but
not in Mτ ′ , and so D 3 w. Consequently, we have that after u arrives we have D ← S for some set
S ⊆ (D \ {w}) ∪ {w′}, and so D’s cardinality does not increase.

B Deferred Proofs of Section 3.1

Here we prove the bound on the fractional degree xu in terms of its dual value, restated below.

Lemma 3.3. For any vertex u, v ∈ V , let yu be the potential of u prior to arrival of v. Then the
fractional degree just before v arrives, xu :=

∑
w∈Nv(u) xuw, is bounded as follows:

yu
β

6 xu 6
yu + f(1− yu)

β
.

Proof. Let y0 be u’s potential after u’s arrival. For the lower bound, note that it suffices to prove
that every increase in the fractional degree is bounded below by the increase in the potential divided
by β. When vertex u first arrived, we consider two cases.

1. y0 > 0 (thus y0 = 1− θ > 0, and so θ < 1), then the increase in u’s fractional degree was:∑
v∈Nu(u)

(θ − yv)+

β

(
1 +

1− θ
f(θ)

)
=
f(θ) + 1− θ

β
=
f(1− y0) + y0

β
>
y0
β
.
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2. y0 = 0 (thus θ = 1), then the increase in u’s fractional degree was:∑
v∈Nu(u)

(θ − yv)+

β

(
1 +

1− θ
f(θ)

)
=

∑
v∈Nu(u)

(θ − yv)+

β
> 0 =

y0
β
.

For every subsequent increase of the fractional degree due to a newly-arrived vertex we have that:

(θ − yoldu )+

β

(
1 +

1− θ
f(θ)

)
>

(θ − yoldu )+

β
,

Which concludes the proof for the lower bound.
For the upper bound, by [24, Invariant 1], we have that

β · xu 6 yc + f(1− y0) +

∫ yc

y0

1− x
f(x)

dx. (30)

This upper bound can be simplified by using Equation (5), as follows. Taking (30), adding and
subtracting 1 + f(1 − yu) and writing the integral

∫ yu
y0

1−x
f(x) dx as the difference of two integrals∫ 1

y0
1−x
f(x) dx -

∫ 1
yu

1−x
f(x) dx, and relying on Equation (5), we find that

β · xu 6 yc + f(1− y0) +

∫ yc

y0

1− x
f(x)

dx

=

(
1 + f(1− y0) +

∫ 1

y0

1− x
f(x)

dx

)
− 1 + yc +

∫ yc

1

1− x
f(x)

dx

= β∗(f) + yc −
(

1 + f(1− yc) +

∫ 1

yc

1− x
f(x)

dx

)
+ f(1− yc)

= β∗(f) + yc − β∗(f) + f(1− yc)
= yc + f(1− yc),

from which the lemma follows.

C Deferred Proofs of Section 3.4.2

In this section we present the proofs deferred from Section 3.4.2. We start by presenting a more
manageable form for the function f = f1+2ε which we use.

A function in the WW family is determined by a parameter k > 1 and takes the following form

fκ(θ) =

(
1 + κ

2
− θ
) 1+κ

2κ
(
θ +

κ− 1

2

)κ−1
2κ

.

Letting κ = 1 + 2ε, we get that f := fκ is of the form

f(θ) = (1 + ε− θ)
1+ε
1+2ε · (θ + ε)

ε
1+2ε

= (1 + ε− θ) ·
(

θ + ε

1 + ε− θ

) ε
1+2ε

.

Clearly this is water filling when ε = 0 and otherwise we have that the first term is like water filling
and then the second term is less than 1 for z 6 1/2 and greater than 1 if z > 1/2.

By Taylor expansion, we obtain the following more manageable form for f .
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Lemma C.1. There exists ε0 ∈ (0, 1) such that for every ε ∈ (0, ε0) and every θ ∈ [0, 1], we have

f(θ) 6 (1− θ)
(

1 + ε ln

(
θ + ε

1 + ε− θ

))
+ 1.01ε.

Proof. Taking the Taylor expansion of ex, we find that

f(θ) = (1 + ε− θ) ·
(

θ + ε

1 + ε− θ

) ε
1+2ε

= (1 + ε− θ) ·
∞∑
i=0

(
ln
(

θ+ε
1+ε−θ

)
· ε
1+2ε

)i
i!

= (1 + ε− θ)
(

1 + ln

(
θ + ε

1 + ε− θ

)
· ε

1 + 2ε

)
+ o(ε)

= (1 + ε− θ) + (1− θ) ln

(
θ + ε

1 + ε− θ

)
· ε

1 + 2ε
+ o(ε)

= (1 + ε− θ) + (1− θ)ε ln

(
θ + ε

1 + ε− θ

)
+ o(ε)

= (1− θ)
(

1 + ε ln

(
θ + ε

1 + ε− θ

))
+ ε+ o(ε).

To be precise, for θ ∈ [0, 1] and 0 < ε 6 ε0 6 1 (implying for example θ+ε
1+ε−θ 6 2

ε ), we will show that

terms dropped in the third, fourth and fifth lines are all at most some O((ln(1ε ) · ε)2) = o(ε), from
which the lemma follows as the sum of these terms is at most 0.01ε for ε 6 ε0 and ε0 sufficiently
small.

Indeed, in the third line, we dropped

(1 + ε− θ) ·
∞∑
i=2

(
ln
(

θ+ε
1+ε−θ

)
· ε
1+2ε

)i
i!

6 2 ·
∞∑
i=2

(ln(2ε ) · ε)i

i!
6 ·

∞∑
i=2

(
ln
(
2
ε

)
· ε
)i

i2
= O((ln(1/ε) · ε)2),

where the last step used that ln(1/ε) · ε 6 1 holds for all ε > 0. In the fourth line, we dropped

ε · ln
(

θ + ε

1 + ε− θ

)
· ε

1 + 2ε
6 ε2 · ln (2/ε) = O((ln(1/ε) · ε)2).

Finally, in the fifth line, we dropped

(1− z) ·
(
ε− ε

1 + 2ε

)
· ln
(

θ + ε

1 + ε− θ

)
6 1 · (ε2/(1 + 2ε)) · ln (2/ε) = O((ln(1/ε) · ε)2).

Given this more manageable form for f , we can now turn to prove Lemma 3.10, restated below.

Lemma 3.10. (Basic bounds on conditional probabilities zu) There exist absolute constants c ∈
(0, 1) and C > 1/c > 1 and ε0 ∈ (0, 1) such that for every ε ∈ (0, ε0) the following holds: for every
vertex v ∈ V , if yu is the dual variable of a neighbor u ∈ Nv(v) before v’s arrival and θ is the value
chosen by Algorithm 1 on v’s arrival, then for zu as defined in Algorithm 3, we have:

(1) If θ 6∈ (c, 1− c), then
∑

u∈Nv(v) zu 6 1,

(2) If θ ∈ [0, 1], then
∑

u∈Nv(v) zu 6 1 + Cε,
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(3) If
∑

u∈Nv(v) zu > 1, then zu 6 C
√
ε for every u ∈ Nv(v),

(4) If
∑

u∈Nv(v) zu > 1, then for every u ∈ Nv(v) such that zu > 0, one has yu ∈ [c/2, 1− c/2], and

(5) For all u ∈ Nv(v), one has zu 6 1/2 +O(
√
ε).

Proof. We begin by getting a generic upper bound for zu. We note that each edge e is matched by
Algorithm 3 with probability at most xe by Line 12. Therefore, u is matched before v arrives with
probability at most xu :=

∑
w∈Nv(u)\{v} xwu, the fractional degree of u before v arrives. Therefore,

by Lemma 3.3, the probability that u is free is at least

Pr[u free when v arrives] > 1− xu > 1− yu + f(1− yu)

β
, (31)

from which, together with the definition of xuv = 1
β (θ − yu)+

(
1 + 1−θ

f(θ)

)
, we obtain the following

upper bound on zu:

zu =
xuv

Pr[u is free when v arrive]
6

1
β (θ − yu)+

(
1 + 1−θ

f(θ)

)
1− yu+f(1−yu)

β

=
(θ − yu)

(
1 + 1−θ

f(θ)

)
β − (yu + f(1− yu))

. (32)

We start by upper bounding
∑

u∈Nv(v) zu, giving a bound which will prove useful in the proofs
of both (1) and (2). Recall that θ is defined as the largest θ 6 1 such that∑

u∈Nv(v)

(θ − yu)+ 6 f(θ). (33)

Summing (32) over all u ∈ Nv(v), we find that

∑
u∈Nv(v)

zu 6
∑

u∈Nv(v)

(θ − yu)+ · (1 + 1−θ
f(θ))

β − (θ + f(1− θ))
(f(·) is non-increasing, by Observation 3.4)

6
f(θ) + 1− θ

β − (θ + f(1− θ))
(by (33) and β > β∗(f) = 1 + f(0) > θ + f(1− θ))

We therefore wish to upper bound f(θ)+1−θ
β−θ−f(1−θ) . To this end let γ(θ, ε) := ε ln

(
θ+ε

1+ε−θ

)
. Before

proceeding to the proof, it would be useful to summarize some properties of the function γ(θ, ε).

1. γ(θ, ε) = −γ(1− θ, ε) for all θ ∈ [0, 1] .

2. For c, ε0 sufficiently small we have for all θ ∈ [0, c) that γ(θ, ε) 6 ε ln
(

c+ε
1+ε−c

)
6 −20 · ε, and

for all θ ∈ (1− c, 1] that γ(θ, ε) > ε ln
(

1−c+ε
1+ε−(1−c)

)
> 20 · ε.

3. γ(θ, ε) · (1− 2θ) 6 0 for θ ∈ [0, 1], since γ(θ, ε) 6 0 for θ 6 1/2 and γ(θ, ε) > 0 for θ > 1/2.

4. θ · γ(θ, ε) > −ε for all θ ∈ [0, 1].

The last property follows from ln
(
1+ε−θ
θ+ε

)
6 ln

(
1+ε+θ
θ+ε

)
6 ln

(
1 + 1

θ+ε

)
6 1

θ+ε 6 1
θ , which

implies in particular that θ · γ(θ, ε) = θ · ε ·
(
− ln

(
1+ε−θ
θ+ε

))
> −ε.

33



We will use γ as shorthand for γ(θ, ε). Recalling that β = 2−ε and using Lemma C.1, we have:

f(θ) + 1− θ
β − (θ + f(1− θ))

6
(1− θ)

(
1 + ε ln

(
θ+ε

1+ε−θ

))
− θ + 1 + 1.01ε

2− ε− θ − θ
(

1 + ε ln
(
1−θ+ε
θ+ε

))
− 1.01ε

6
(1− θ)(2 + γ) + 2ε

2− 2θ + θγ − 3ε

= 1 +
γ(1− 2θ) + 5ε

2− 2θ + θγ − 3ε
.

(34)

We will continue by proving that the second term is negative. First we prove that the de-
nominator is positive. To this end, first consider the case when θ ∈ [0, c). In this case for ε0, c
sufficiently small one has that: 2 − 2θ + θγ − 2ε > 2 − 2θ − ε − 2ε > 0 from Item 4. More-
over, when θ ∈ (1 − c, 1] one has that θ > 1

2 (since c is small) and γ > 20ε from Item 2. Thus
2− 2θ + θγ − 2ε > θγ − 2ε > 1

2 · 20ε− 3ε = 7ε > 0. Now, it remains to prove that the numerator
is always negative. When θ ∈ [0, c) we have that 1− 2θ > 3/4(since c is small) and γ 6 −20ε from
Item 2, therefore γ(1 − 2θ) + 5ε 6 γ · 34 + 5 · (− γ

20) = γ
2 < 0. In the case where θ ∈ (1 − c, 1],

we have that 1 − 2θ < −3/4, and θ > 1/2 (since c is small), and γ > 20ε from Item 2, thus
γ(1− 2θ) + 5ε 6 −3

4 · 20ε+ 5ε = −10ε < 0.
We now turn to (2). We assume that θ ∈ (c, 1− c), since otherwise the claim is trivial, by (1).

We have by (34) that f(θ)+1−θ
β−(θ−f(1−θ)) 6 1+ γ(1−2θ)+5ε

2−2θ+θγ−3ε . We have that γ(1−2θ)+5ε 6 5ε from Item 3.
Furthermore, using Item 4 we have that 2− 2θ+ θγ− 3ε > 2c+−4ε > c for a sufficiently small ε0.
Overall, the second term is bounded above by 5

c · ε < C · ε, for C > 5
c >

1
c as required.

We now prove (3). Note that by (1),
∑

u∈Nv(v) zu > 1 implies that θ ∈ (c, 1 − c). Now, for

every u ∈ Nv(v), let αu := (θ−yu)+
f(θ) , so that yu = θ − f(θ) · αu if yu 6 θ. We also note that by

definition of αu and our choice of θ, we have
∑

u∈Nv(v) αu =
∑

u∈Nv(v)
(θ−yu)+
f(θ) 6 1. In the proof

of (3) and (4) we will assume for notational simplicity that all u ∈ Nv(v) have yu 6 θ, implying
zu > 0. Summing up (32) over all u ∈ Nv(v) and substituting in αu, we thus find that

∑
u∈Nv(v)

zu 6
∑

u∈Nv(v)

(θ − yu)+(1 + 1−θ
f(θ))

β − (yu + f(1− yu))

=
∑

u∈Nv(v)

αu ·
f(θ) + 1− θ

β − (yu + f(1− yu))

6
∑

u∈Nv(v)

αu ·
f(θ) + 1− θ

2− yu − f(1− yu)− 2.01ε
(by Lemma C.1 and β = 2− ε)

6
∑

u∈Nv(v)

αu ·
f(θ) + 1− θ
2− 4ε− 2yu

,

In the last transition we used again (as in Item 4) that yu · ε ln
(
1−yu+ε
yu+ε

)
6 ε, which implies

f(θ) 6 1 − θ + ε for all θ ∈ [0, 1]. Substituting yu = θ − f(θ) · αu into the above upper bound on
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∑
u∈Nv(v) zu, we get

∑
u∈Nv(v)

zu 6
∑

u∈Nv(v)

αu ·
f(θ) + 1− θ

2− 4ε− 2θ + 2f(θ) · αu

=
∑

u∈Nv(v)

αu ·
f(θ) + 1− θ
2− 4ε− 2θ

−
∑

u∈Nv(v)

(f(θ) + 1− θ) · 2f(θ) · α2
u

(2− 4ε− 2θ) · (2− 4ε− 2θ + 2f(θ) · αu)
, (35)

using the elementary identity 1
a+b = 1

a −
b

a(a+b) for appropriate a and b. Now, both terms in the

last line of (35) can be significantly simplified, as follows. For the former term, again using that
f(θ) 6 1− θ + ε, together with

∑
u∈Nv(v) αu 6 1 noted above, we find that

∑
u∈Nv(v)

αu ·
f(θ) + 1− θ
2− 4ε− 2θ

6
∑

u∈Nv(v)

αu ·
2 + ε− 2θ

2− 4ε− 2θ
=

∑
u∈Nv(v)

αu ·
(

1 +
5ε

2− 4ε− 2θ

)
6 1 +O(ε),

(36)

where in the last step we used that θ 6 1− c and c is some fixed constant. For the second term in
the last line of (35), we note that

∑
u∈Nv(v)

(f(θ) + 1− θ) · 2f(θ) · α2
u

(2− 4ε− 2θ) · (2− 4ε− 2θ + 2f(θ) · αu)
= Ω(1) ·

 ∑
u∈Nv(v)

α2
u

 . (37)

To see this, first note that for θ ∈ (c, 1− c), the numerator of each summand of the LHS is at least
2f(c)2 · α2

u > Ω(α2
u), since f is decreasing by Observation 3.4 and f(c) > 1

2 · (1 + ε − c) > Ω(1)
for c and ε sufficiently small. To verify the first inequality of this lower bound for f(c), recall that

f(c) = (1 + ε− c) ·
(

c+ε
1+ε−c

) ε
1+2ε

. Now, for ε tending to zero and c < 1/2, the term
(

θ+ε
1+ε−θ

) ε
1+2ε

tends to one as ε tends to zero. Therefore for ε sufficiently small we have f(c) > 1
2 · (1 + ε − c)

for all c < 1/2. We now turn to upper bounding the denominator of each summand in the LHS of
Equation (37). Indeed, substituting yu = θ − f(θ) · αu, we find that each such denominator is at
most (2−4ε−2θ) · (2−4ε−2θ+2f(θ) ·αu) 6 (1/2) · (2−4ε−2yu) 6 (1/2) · (2−4ε−2c) 6 O(1) for
c and ε sufficiently small. Note that both numerator and denominator are positive for sufficiently
small c and ε0. Substituting the bounds of (36) and (37) into (35), we obtain

∑
u∈Nv(v)

zu 6 1 +O(ε)− Ω(1) ·

 ∑
u∈Nv(v)

α2
u

 . (38)

From Eq. (38) and
∑

u∈Nv(v) zu > 1 by assumption of (3), we get that∑
u∈Nv(v)

α2
u 6 C

′
ε (39)
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for an absolute constant C
′
> 1, since otherwise

∑
u∈Nv(v) zu 6 1. Finally, it remains to note that

∑
u∈Nv(v)

z2u =
∑

u∈Nv(v)

(
αu · (f(θ) + 1− θ)
β − (yu + f(1− yu))

)2

6

 ∑
u∈Nv(v)

α2
u

 · ( f(θ) + 1− θ
β − (θ + f(1− θ))

)2

(by Observation 3.4 and yu 6 θ)

6

 ∑
u∈Nv(v)

α2
u

 · ( f(θ) + 1− θ
β − (1− c+ f(c))

)2

(by Observation 3.4 and θ 6 1− c)

6

 ∑
u∈Nv(v)

α2
u

 · ( 1− θ + ε+ 1− θ
β − (1− c+ 1− c+ ε)

)2

(f(c) 6 1− c+ ε)

6

 ∑
u∈Nv(v)

α2
u

 · 2

2c− 2ε

6 Cε,

for some constant C > 2
2c−2ε . Thus z2u 6

∑
u∈Nv(v) zu 6 Cε and so zu 6

√
C · ε 6 C

√
ε, as claimed.

We now prove (4). Since
∑

u∈Nv(v) zu > 1 implies θ ∈ (c, 1− c) by (1), using the definition of

αu’s from the proof of (3) together with the fact that αu 6 C
′√
ε for every u ∈ Nv(v) by (39) and

the fact that f(θ) 6 2 for all θ ∈ [0, 1] (by Lemma C.1), we get that

yu = θ − f(θ) · αu ∈ [c−O(
√
ε), 1− c] ⊆ [c/2, 1− c/2],

for sufficiently small ε0 > 0, as required.
As for (5), simplifying (32) and using the fact that θ − yu 6 f(θ), we get

zu 6
θ − yu + 1− θ

β − yu − f(1− yu)
=

1− yu
β − yu − f(1− yu)

.

Recall from Lemma C.1 that for all θ ∈ [0, 1], we have f(θ) 6 (1−θ)
(

1 + ε ln
(

θ+ε
1+ε−θ

))
+1.01ε,

which implies the following:

1. For all θ ∈ [0, 1], we have f(θ) 6 1− θ +
√
ε, and

2. For θ < e−10, we have f(θ) 6 (1− θ)(1 + ε(ln((e−10 + ε)/(1− e−10 + ε)) + 1.01ε 6 1− θ− 2ε.

Suppose that yu 6 1− e−10. Then using Item 1, we have

zu 6
1− yu

β − yu − f(1− yu)
6

1− yu
2− ε− yu − yu −

√
ε

6
1− yu

2(1− yu)− 2
√
ε
6 1/2 +

2
√
ε

2e−10 − 2
√
ε
6 1/2 +O(

√
ε).

Now suppose that yu > 1− e−10. Then 1− yu < e−10, and so by Item 2, f(1− yu) 6 1− yu − 2ε.
Thus we have

zu 6
1− y

β − yu − f(1− yu)
6

1− yu
2− ε− yu − (yu − 2ε)

=
1− yu

2(1− yu) + ε
6 1/2,

completing the proof.
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Finally, we rely on Lemma C.1 to prove that the fractional solution maintained by Line 4 is
1/β competitive, as implied by Lemma 3.5 and the following restated fact.

Fact 3.12. For all sufficiently small ε > 0, we have that 2− ε > β∗(f1+2ε).

Proof. Let us denote as before f = f1+2ε. Recall that β∗(f) = 1 + f(0). By Lemma C.1, this is at

most 1+f(0) 6 1+
(

1 + ε ln
(

ε
1+ε

))
+1.01ε. But for small enough ε, we have that ln

(
ε

1+ε

)
6 −2.01,

implying that 1 + f(0) 6 2− ε, as claimed.
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