
Graph Spanners by Sketching in Dynamic Streams and the

Simultaneous Communication Model

Arnold Filtser∗

Columbia University
Michael Kapralov†

EPFL
Navid Nouri‡

EPFL

January 12, 2021

Abstract

Graph sketching is a powerful technique introduced by the seminal work of Ahn, Guha and
McGregor’12 on connectivity in dynamic graph streams that has enjoyed considerable attention in
the literature since then, and has led to near optimal dynamic streaming algorithms for many fun-
damental problems such as connectivity, cut and spectral sparsifiers and matchings. Interestingly,
however, the sketching and dynamic streaming complexity of approximating the shortest path met-
ric of a graph is still far from well-understood. Besides a direct k-pass implementation of classical
spanner constructions (recently improved to bk2 c+1-passes by Fernandez, Woodruff and Yasuda’20)
the state of the art amounts to a O(log k)-pass algorithm of Ahn, Guha and McGregor’12, and a
2-pass algorithm of Kapralov and Woodruff’14. In particular, no single pass algorithm is known,
and the optimal tradeoff between the number of passes, stretch and space complexity is open.

In this paper we introduce several new graph sketching techniques for approximating the short-
est path metric of the input graph. We give the first single pass sketching algorithm for construct-
ing graph spanners: we show how to obtain a Õ(n

2
3 )-spanner using Õ(n) space, and in general

a Õ(n
2
3 (1−α))-spanner using Õ(n1+α) space for every α ∈ [0, 1], a tradeoff that we think may be

close optimal. We also give new spanner construction algorithms for any number of passes, simul-
taneously improving upon all prior work on this problem. Finally, we note that unlike the original
sketching approach of Ahn, Guha and McGregor’12, none of the existing spanner constructions
yield simultaneous communication protocols with low per player information. We give the first
such protocols for the spanner problem that use a small number of rounds.
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1 Introduction

Graph sketching, introduced by [AGM12a] in an influential work on graph connectivity in dynamic
streams has been a de facto standard approach to constructing algorithms for dynamic streams, where
the algorithm must use a small amount of space to process a stream that contains both edge insertions
and deletions. The main idea of [AGM12a] is to represent the input graph by its edge incident matrix,
and applying classical linear sketching primitives to the columns of this matrix. This approach seam-
lessly extends to dynamic streams, as by linearity of the sketch one can simply subtract the updates
for deleted edges from the summary being maintained: a surprising additional benefit is the fact that
such a sketching solution is trivially parallelizable: since the sketch acts on the columns of the edge
incidence matrix, the neighborhood of every vertex in the input graph is compressed independently. In
particular, this yields efficient protocols in the simultaneous communication model, where every vertex
knows its list of neighbors, and must communicate a small number of bits about this neighborhood
to a coordinator, who then announces the answer. Surprisingly, several fundamental problems such
as connectivity [AGM12a], cut [AGM12c] and spectral sparsification [AGM13, KLM+14, KMM+20]
admit sketch based simultaneous communication protocols with only polylogarithmic communication
overhead per vertex, which essentially matches existentially optimal bounds.1 The situation is entirely
different for the problem of approximating the shortest path metric of the input graph: it is not known
whether existentially best possible space vs approximation quality tradeoffs can be achieved using a
linear sketch. This motivates the main question that we study:

What are the optimal space/stretch/pass tradeoffs for approximating the shortest path
metric using a linear sketch?

Sketching and dynamic streams. Sketching is the most popular tool for designing algorithms
for the dynamic streaming model. Sketching solutions have been recently constructed for many graph
problems, including spanning forest computation [AGM12b], cut and spectral sparsifiers [AGM13,
KLM+14, KMM+20], spanner construction [AGM12c, KW14], matching and matching size approxi-
mation [AKLY16, AKL17], sketching the Laplacian [ACK+16, JS18] and many other problems. Also,
results showing universality of sketching for this application are known, at least under some restric-
tions on the stream. The result of [LNW14] shows such an equivalence under the assumption that the
stream length is at least doubly exponential in the size of the graph. The assumption on the stream
length was significantly relaxed for binary sketches, i.e., sketches over GF2, by [HLY19, KMSY18].
Very recently, it has been shown [KP20] that lower bounds on stream length are crucial for such
universality results: the authors of [KP20] exhibit a problem with a sketching complexity, which is
polynomial in the input size, that can be solved in polylogarithmic space on a short dynamic stream.

Spanners in the sketching model. A subgraph H = (V,E) of a graph G = (V,E) is a t-spanner
of G if for every pair u, v ∈ V one has

dG(u, v) ≤ dH(u, v) ≤ t · dG(u, v) ,

where dG stands for the shortest path metric of G and dH for the shortest path metric of H. We
assume in this paper that the input graph is unweighted, as one can reduce to this case using standard

1There is some overhead to using linear sketches, but it is only polylogarithmic in the number of vertices in the graph
– see [NY19].
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techniques at the expense of a small loss in space complexity.2 For every integer k ≥ 1, every graph
G = (V,E) with n vertices admits a (2k−1)-spanner with O(n1+1/k) edges, which is optimal assuming
the Erdős girth conjecture. The greedy spanner [ADD+93, FS20], which is sequential by nature, obtain
the optimal number of edges. The celebrated algorithm of Baswana and Sen [BS07] obtains (2k− 1)-
spanner with Õ(n1+1/k) edges. This algorithm consists of a sequence of k clustering steps, and as
observed by [AGM12c], can be implemented in k passes over the stream using the existentially optimal
Õ(n1+1/k) space. A central question is therefore whether it is possible to achieve the existentially
optimal tradeoff using fewer rounds of communication, and if not, what the optimal space vs stretch
tradeoff is for a given number of round of communication. Prior to our work this problem was studied
in [AGM12c] and [KW14]. The former showed how to construct a (klog2 5−1)-spanner in log2 k passes
using space Õ(n1+1/k), and the latter showed how to construct a (2k − 1)-spanner in two passes and
Õ(n1+1/k) space. In a single pass, the previously best known algorithm which uses n1+o(1) space is
simply to construct a spanning tree, guaranteeing distortion n− 1. Thus, our first question is:

In a single pass in the dynamic semi streaming model using Õ(n) space, is it possible to
construct an o(n) spanner?

We prove the following theorem in Section 4, as a corollary we obtain a positive answer to the question
above (as spectral sparsifier can be computed in a single dynamic stream pass [KLM+14]).

Theorem 1. Let G = (V,E) be an undirected, unweighted graph. For a parameter ε ∈ (0, 1
18 ], suppose

that H is a (1± ε)-spectral sparsifier of G. Then Ĥ is an Õ(n
2
3 )-spanner of G, where Ĥ is unweighted

version of H.

Corollary 1. There exists an algorithm that for any n-vertex unweighted graph G, the edges of which
arrive in a dynamic stream, using Õ(n) space, constructs a spanner with O(n) edges and stretch Õ(n

2
3 )

with high probability.

Additionally, for the same setting, using similar techniques, we prove stretch Õ(
√
m) (see Theorem 7).

One might think that the polynomial stretch is suboptimal, but we conjecture that this is close to
best possible, and provide a candidate hard instance for a lower bound in Appendix A. Specifically,

Conjecture 1. Any linear sketch from which one can recover an n2/3−Ω(1)-spanner with probability
at least 0.9 requires n1+Ω(1) space.

More generally, we give the following trade off between stretch and space in a single pass:

Corollary 2. Consider an n-vertex unweighted graph G, the edges of which arrive in a dynamic
stream. For every parameter α ∈ (0, 1), there is an algorithm using Õ(n1+α) space, constructs a

spanner with stretch Õ(n
2
3

(1−α)) with high probability.

Similarly, for the same setting, we prove stretch Õ(
√
m · n−α) (see Theorem 9).

Next, we consider the case when we are allowed to take more than one pass over the stream and ask
the following question:

2Specifically, one can partition the input edges into geometric weight classes and run our sketch based algorithm on
every class, paying a multiplicative loss in space bounded by the log of the ratio of the largest weight to the smallest
weight. See also [ES16, ADF+19].
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For positive integers k and s, what is the minimal fn(k, s) such that an fn(k, s)-stretch
spanner can be constructed using s passes over a dynamic stream of updates to the input

n-vertex graph using Õ(n1+ 1
k ) space?

We present two results, which together improve upon all prior work on the problem. At a high level
both results are based on the idea of repeatedly contracting low diameter subgraphs and running
a recursive spanner construction on the resulting supergraph. The main idea of the analysis is to
carefully balance two effects: (a) loss in stretch due to the contraction process and (b) the reduction
in the number of nodes in the supergraph. Since the number of nodes in the supergraphs obtained
through the contraction process is reduced, we can afford to construct better spanners on them and
still fit within the original stretch budget. A careful balancing of these two phenomena gives our
results. Our first result uses a construction based on a clustering primitive implicit in [KW14] (see
Lemma 6) and gives the best known tradeoff in at most log k passes:

Theorem 2. For every real k ∈ [1, log n], and integer g ∈ [1, log k], there is a g+1 pass dynamic stream

algorithm that given an unweighted, undirected n-vertex graph G = (V,E), uses Õ(n1+ 1
k ) space, and

computes w.h.p. a spanner H with Õ(n1+ 1
k ) edges and stretch 2 · (2d(

k+1
2

)
1/ge − 1)g − 1 < 2g·k

1/g · 2g+1.

Using the same algorithm, while replacing the aforementioned clustering primitive from Lemma 6
with a clustering primitive from [BS07] (see Lemma 7), we obtain the following result, which provides
the best known tradeoff for more than logk passes:

Theorem 3. For every real k ∈ [1, log n], and integer g ∈ [1, log k], there is a g ·
(⌈

(k+1
2 )1/g

⌉
− 1
)

+

1 < g · k1/g + 1 pass dynamic stream algorithm that given an unweighted, undirected n-vertex graph
G = (V,E), uses Õ(n1+ 1

k ) space, and computes w.h.p. a spanner H with Õ(n1+ 1
k ) edges and stretch

2 ·
(
2 ·
⌈
(k+1

2 )1/g
⌉
− 1
)g − 1 ≈ 2g · (k + 1).

The proofs of Theorem 2 and Theorem 3 are presented in Section 6. We present our improvements
over prior work in Table 1 below, where the results of Theorem 2 and Theorem 3 are present via
several corollaries, presented in Section 6.3.

Simultaneous communication model. We also consider the related simultaneous communication
model3, which we now define. In the simultaneous communication model every vertex of the input
graph G = (V,E), |V | = n, knows its list of neighbors (so that every e = (u, v) ∈ E is known to both
u and v), and all vertices have a source of shared randomness. Communication proceeds in rounds,
where in every round the players simultaneously post short messages on a common board for everyone
to see (note that equivalently, one could consider a coordinator who receives all the messages in a
given round, and then posts a message of unbounded length on the board). Note that a given player’s
message in any given round may only depend on their input and other players’ messages in previous
rounds. The content of the board at the end of the communication protocol must reveal the answer
with high constant probability. The cost of a protocol in the simultaneous communication model is
the length of the longest message communicated by any player.

Sketching algorithms for dynamic connectivity and cut/spectral approximations based on the idea of
applying a sketch to the edge incidence matrix of the input graph [AGM12a, KLM+14, KMM+20] im-
mediately yield efficient single pass simultaneous communication protocols with only polylogarithmic

3This model has also been referred to as distributed sketching in the literature (see e.g., [NY19]).
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#Passes Space Stretch Reference

1 Õ(n) Õ(n2/3) Corollary 1

1 Õ(n1+ 1
k ) Õ(n

2/3(1− 1
k

)) Corollary 2

2 Õ(n1+1/k) 2k − 1 [KW14]

2 Õ(n1+1/k) 2
k+3
2 − 3 Corollary 5

g + 1 Õ(n1+1/k) 2g·k
1/g · 2g+1 Theorem 2

log k Õ(n1+1/k) klog 5 − 1 [AGM12c]

log(k + 1) Õ(n1+1/k) 2 · klog 3 − 1 Corollary 7

g · k1/g + 1 Õ(n1+1/k) ≈ 2g · (k + 1) Theorem 3

k Õ(n1+1/k) 2k − 1 [BS07]

bk2c+ 1 Õ(n1+1/k) 2k − 1 Corollary 6, [FWY20]

n
2
3(1−

1
k )

1 2 3 4 log k 4k
1
4 3k

1
3
√
2k k

2
k

2k
[KW14]

2
k
2

2
√
2k

23k
1/3

klog 5

klog 3

8k
6k
4k

2k − 1

[AGM12]

[BS07][FWY20]

Figure 1: Trade-offs of various algorithms between stretch to number of passes. On the left summery
of previous and current results. In Theorem 2 and Theorem 3 g can be chosen to be any integer in
[1, log k]. On the right in blue is a plot of the results in this paper, while the previous results depicted

in red. All the results are for algorithms using Õ(n1+ 1
k ) space. The Y axis represents the stretch,

while the X axis is the number of passes. Some second order terms are neglected.

message length. We note, however, that existing sketch based algorithms for spanner construction
(except for our result in Corollary 1 and the trivial k-pass implementation of the algorithm of Baswana
and Sen [BS07]) do not yield low communication protocols. This is because they achieve reductions
in the number of rounds by performing some form of leader election and amortizing communication
over all vertices. See Remark 6 in Appendix D for more details. To illustrate the difference between
dynamic streaming and simultaneous communication model, consider the following artificial problem.
Suppose that we are given a graph with all but

√
n isolated vertices, and the task is to recover the

induced subgraph. Then using sparse recovery we can recover all the edges between the vertices us-
ing a single pass over a dynamic stream of updates. However, it is clear from information theoretic
considerations that a typical vertex will need to communicate Ω(

√
n) bits of information to solve this

problem.

The main result of Section 5.1 is the following theorem.

Theorem 4. For any integer g ≥ 1, there is an algorithm (see Algorithm 1) that in g rounds of

communication outputs a spanner with stretch min
{
Õ(n

g+1
2g+1 ), (12 + o(1)) · n2/g · log n

}
.

Note that when g = 1, the above theorem gives a Õ(n2/3) approximation using polylogarithmic com-
munication per vertex. We think that the n2/3 approximation is likely best possible in polylogarithmic
communication per vertex, and the same candidate hard instance from Appendix A that we propose
for Conjecture 1 can probably be used to obtain a matching lower bound. Analyzing the instance
appears challenging due to the fact that every edge is shared by the two players – exactly the feature of
our model that underlies our algorithmic results (this sharing is crucial for both connectivity and spec-
tral approximation via sketches). This model bears some resemblance to the number-on-the-forehead
(NOF) model in communication complexity (see, for example, [KMPV19], where a connection of
this form was made formal, resulting in conditional hardness results for subgraph counting in data
streams).

The proof of this theorem is presented in Section 5.1.
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Additionally, in Section 5.2 we first provide a trade off between size of the communication per player
and stretch in one round of communication.

Theorem 5. There is an algorithm that in 1 round of communication, where each player communi-
cates Õ(nα) bits, outputs a spanner with stretch

min
{
Õ(n(1−α) 2

3 ), Õ
(√
m · n−α

)}
.

Then, we also prove a similar trade off when more than one round of communication is allowed.

Theorem 6. For any integer g ≥ 1, there is an algorithm that in g rounds of communication, where
each player communicates Õ(nα) bits, outputs a spanner with stretch

min

{
(12 + o(1)) · n(1−α)· 2

g · log n , Õ

(
n

(g+1)(1−α)
2g+1

)}
.

Parallel work. Very recently, in a paper about the message-passing model, Fernandez et al. [FWY20]
implemented Baswana-Sen [BS07] algorithm in bk2c + 1 passes in the semi-streaming model. This is
the same as our Corollary 6 (which follows from Theorem 3 by setting g = 1). While writing this
paper, the authors were not aware of [FWY20] result.

The idea of recursively constructing a spanner by contracting clusters, which is the main idea leading
to our Theorems 2 and 3, was found and used concurrently and independently from us by Biswas et
al. [BDG+20] in the context of the massive parallel computation (MPC) model.

Related work. Streaming algorithms are well-studied with too many results to list and we refer the
reader to [McG14, McG17] for a survey of streaming algorithms. The idea of linear graph sketching
was introduced in a seminal paper of Ahn, Guha, and McGregror [AGM12b]. An extension of the
sketching approach to hypergraphs were presented in [GMT15]. The simultaneous communication
model has also been used for lower bounding the performance of sketching algorithms – see, e.g.
[AKLY16, KKP18].

Spanners are a fundamental combinatorial object. They have been extensively studied and have found
numerous algorithmic applications. We refer to the survey [ABS+20] for an overview. The most
relevant related work is on insertion only streams [Elk11, Bas08] where the focus is on minimizing
the processing time of the stream, and dynamic algorithms, where the goal is to efficiently maintain
a spanner while edges are continuously inserted and deleted [Elk11, BKS12, BFH19].

2 Preliminaries

All the logarithms in the paper are in base 2. We use Õ notation to suppress constants and poly-
logarithmic factors in n, that is Õ(f) = f · polylog(n).

We consider undirected, graphs G = (V,E), with a weight function w : E → R≥0. If we say that

a graph is unweighted, we mean that all the edges have unit weight. Ĝ = (V,E,1E) denotes the
unweighted version of G, i.e. the graph G where all edge weights are changed to 1. Sometimes we
abuse notation and write G instead of E. Given two subsets X,Y ⊆ V , EG(X,Y ) is the set of edges
from X to Y , wG(X,Y ) denotes the total weight of edges in EG(X,Y ) (number if G is unweighted).

5



We sometimes abuse notation and write instead EG(X × Y ) and wG(X × Y ) (respectively). For a
subset of vertices A ⊆ V , let G[A] denote the induced graph on A.

Let dG denote the shortest path metric in G. A subgraph H of G is a t-spanner of G if for every
u, v ∈ V , dH(u, v) ≤ t · dG(u, v) (note that as H is a subgraph of G, necessarily dG(u, v) ≤ dH(u, v)).
Following the triangle inequality, in order to prove that H is a t-spanner of G it is enough to show
that for every edge (u, v) ∈ E, dH(u, v) ≤ t · dG(u, v).

For an unweighted graph G = (V,E), such that |V | = n and |E| = m, let BG ∈ Rm×n denote the
vertex edge incidence matrix. The Laplacian matrix of G is defined as LG := B>GBG. Similarly, for a
weighted graph H = (V,E,w), we let W ∈ Rm×m be the diagonal matrix of the edge weights. The
Laplacian of the graph H is defined as LH := B>HWBH . H � G denotes that for every ~x ∈ Rn,
~xtLH~x ≤ ~xtLG~x. We say that a graph H is (1± ε)-spectral sparsifier of a graph G, if

(1− ε)H � G � (1 + ε)H .

Fact 1. Suppose that a graph H is a (1± ε)-spectral sparsifier of a graph G, then H is a (1± ε)-cut
sparsifier of G, i.e., for every set of vertices S ⊂ V , we have

(1− ε) · wH(S, V \ S) ≤ wG(S, V \ S) ≤ (1 + ε) · wG(S, V \ S) .

For any Laplacian matrix LG, we denote its Moore-Penrose pseudoinverse by L+
G. For any pair of

vertices u, v ∈ V , we denote their indicator vector by buv = χu − χv, where χu ∈ Rn is the indicator
vector of u, i.e., the entry corresponding to u is +1 and all other entries are zero. Also, for any edge
e = (u, v), we define its indicator vector as be := buv. We also define effective resistance of a pair of
vertices u, v ∈ V as

RGuv := b>uvL
+
Gbuv.

Fact 2. Given a (1± ε)-spectral sparsifier H of a G, for every u, v ∈ V it holds that

(1− ε)RGuv ≤ RHuv ≤ (1 + ε)RGuv.

The following fact is a standard fact about effective resistances (see e.g., [SS08])

Fact 3. In every n vertex graph G = (V,E,w) it holds that
∑

e∈E weR
G
e ≤ n− 1.4

Dynamic streams. In dynamic streams, there is a fixed set V of n vertices, unweighted edges arrive
in a streaming fashion, where they are both inserted and deleted.

`0-samplers.: Given integer vector in Rn in a dynamic stream, using s·polylog(n) space, we can sample
s different non-zero entries. In particular if the vector is s-sparse, we can reconstruct it. Furthermore,
given a stream of edges in an n-vertex graph G, using s ·polylog(n) samplers per vertex, we can create
a subgraph G̃ of H where each vertex has either at least s edges, or has all its incident edges from G.
This samplers are linear, therefore if we sum up the samplers of S vertices, we can sample an outgoing
edge.

Consider a vector ~v ∈ Rn, given a subset A ⊆ [n] of coordinates, we denote by ~v[A] the restriction of
~v to A.

4If graph G is connected, then the inequality is satisfied by equality.
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Lemma 1. Consider a vector ~v ∈ Rn that arrives in a dynamic stream via coordinate updates. The
coordinates [n] are partitioned into subsets A1, A2, . . . , Ar (the space required to represent this partition

is negligible). Let I =
{
i | ~v[Ai] 6= ~0

}
be the indices of the coordinate sets on which ~v is not zero.

Given A1, A2, . . . , Ar and a parameter s > 0, and a guarantee that |I| ≤ s, using s · polylog(n) space,
one can design a sketching algorithm recovering a set S ⊆ [n] such that

• For every j ∈ S, ~vj 6= 0.

• For every i ∈ I, Ai ∩ S 6= ∅.

The proof uses a technique commonly used in sketching literature, and is given in Appendix B.1 for
completeness.

Lemma 2. [Edge recovery] Consider an unweighted, undirected graph G = (V,E) that is received in
a dynamic stream. Given A,B ⊆ V such that A ∩ B = ∅, one can design a sketching algorithm that
using polylog(n) space in a single pass over the stream, with probability 1/poly(n), can either recover
an edge between A to B, or declare that there is no such edge.
Further, provided that there are at most m edges in A×B, using m ·polylog(n) space, with probability
1/poly(n) we can recover them all.

The proof is using the same techniques as in the proof of Lemma 1 and is deferred to Appendix B.1.

3 Technical Overview

We consider an n vertex unweighted graph G = (V,E).

A1 A2

u

A3 As

v

Spectral sparsifiers are spanners (Section 4). The tech-
nical part of the paper begins by proving the following fact: con-
sider a spectral sparsifier H of G. Consider an edge (u, v) ∈ E.
Denote the distance between its endpoints in Ĥ by d

Ĥ
(u, v) = s.

Divide the vertices V into the BFS layers w.r.t. u in Ĥ. That
is, Ai is the set of all vertices at distance i from u in Ĥ. In
particular v ∈ As. See illustration on the right. Let WG

i = wG(Ai × Ai+1) be the total weight of
the edges in EG(Ai, Ai+1). Similarly WH

i = wH(Ai ×Ai+1). Let H ′ be the graph created from H by
contracting all the vertices in each set Ai into a single vertex. The rough intuition is the following:

1
(a)

≥ RGu,v

(b)

& RHu,v
(c)

≥ RH
′

u,v
(d)
=

s−1∑
i=0

1

WH
i

(∗)
≈

s−1∑
i=0

1

WG
i

(e)

≥
s−1∑
i=0

1

|Ai||Ai+1|
(f)

≥ Ω

(
s3

n2

)
. (3.1)

Here (a) follows as the effective resistance between the endpoints of an edge is at most 1. (b) as H is
a spectral sparsifier of G. (c) as the effective resistance can only reduce by contracting vertices. (d)
as H ′ is a path graph. (e) as G is unweighted and thus WG

i is bounded by the number of edges in
Ai × Ai+1. And (f) as

∑
i |Ai| ≤ n and the function

∑s−1
i=0

1
|Ai||Ai+1| is minimized when |Ai| = Ω(ns )

for all i. The tricky part is the rough equality (*). Note that if Equation (3.1) holds, it will follow

that s = O(n
2
3 ), implying the desired stretch.

While H is a spectral sparsifier of G, WG
i does not represent the size of a cut in G. This is as there

might be edges in G crossing from Ai to ∪j>i+1Aj , or from Ai+1 to ∪j<iAj . Thus a priori there
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is no reason to expect that WH
i will approximate WG

i . Interestingly, we were able to show that
WG
i = WH

i ± ε · (WH
i−1 +WH

i +WH
i+1). That is, while we are not able to bound |WG

i −WH
i | using the

standard factor ε ·WH
i , we can bound this error once we take into account also the former and later

cuts in the BFS order! We use this fact to show that for most of the indices i, WH
i ≤ |Ai||Ai+1|. The

desired bound follows. See proof of Theorem 1 for more details.

Next, using similar analysis we show that in case where the graph G has m edges, the stretch of Ĥ is
bounded by O(

√
m) (see Theorem 7). Suppose that d

Ĥ
(u, v) = s. Intuitively, following Equation (3.1),

as
∑

iW
G
i ≤ m, it follows that 1 ≥ RGu,v &

∑s−1
i=0

1
WG
i

= Ω
(
s2

m

)
(as

∑s−1
i=0

1
WG
i

us minimized when

all WG
i ’s are equal), implying s = O(

√
m). Both bounds (O(n

2
3 ) and O(

√
m)) are tight. Essentially,

we construct the exact instance tightening all the inequalities in Equation (3.1). That is a graph

with Θ̃(n
2
3 ) layers, each one containing Θ̃(n

1
3 ) vertices, and all possible edges between layers (see

Section 4.2).

In Section 4.3, we show that using Õ(n1+α) space (instead of Õ(n)), the stretch can be reduced to

min{Õ(n
2
3

(1−α)), Õ(
√
m · n−α)}.

The idea is the following: randomly partition the graph G into Õ(n2α) induced subgraphs G1, G2, . . . ,
such that each Gi contains O(n1−α) vertices, and every pair of vertices u, v belong to some Gi.
Furthermore, the (expected) number of edges in each Gi is m · n−2α. Next, we construct a spectral
sparsifier for each graph Gi and take their union as our spanner. The stretch gurantee follows (see
Theorem 8, Corollary 2 and Theorem 9).

Simultaneous communication model (Section 5). In a single pass, one can construct a spectral
sparsifier and therefore obtain the exact same results as in the streaming model. However, as opposed
to streaming, no known approach can reduce the stretch in less than logarithmic number of rounds.
We propose a natural peeling algorithm (see Algorithm 1). Denote G1 = G. Given a desired stretch
parameter t, the algorithm computes a spectral sparsifier H1, and removes all the satisfied edges
(u, v) ∈ E where d

Ĥ1
(u, v) ≤ t, to obtain a graph G2. Generally, in the i’th round the algorithm

computes a spectral sparsifier Hi for the graph Gi, and removes all the satisfied edges to obtain Gi+1.
This procedure continues until all the edges are satisfied (that is Gi+1 = ∅). The resulting spanner is
Ĥ = ∪iĤi the union of (the unweighted version of) all the constructed sparsifiers. Notably, for every
parameter t ≥ 1 the algorithm will eventually halt, and return a t-spanner. The arising question is,
how many rounds are required to satisfy a specific parameter t?

We show that this procedure will halt after g steps for

t ≥ min{Õ(n
g+1
2g+1 ) , (12 + o(1)) · n2/g · log n}

(see Theorem 4). Interestingly, in g = log n rounds we can obtain stretch O(log n), which is asymptot-
ically optimal. That is, we present a completely new construction for a O(log n)-spanner with Õ(n)
edges. Interestingly, there are constructions of spectral sparsifiers which are based on taking a union
of poly-logarithmically many O(log n)-stretch spanners (see [KP12, KX16]). In a sense, here we obtain
the opposite direction. That is, by taking a union of log n sparsifiers, one can construct an O(log n)
stretch spanner. That is, sparsifiers and spanners are much more related from what one may initially
expect.

To show that the algorithm halts in g round for a specific t, we bound the number of edges in Gi,
which eventually will lead us to conclusion that Gg+1 = ∅:
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• Set t = Õ(n
g+1
2g+1 ). Here the analysis is based on the effective resistance. Using Equation (3.1),

one can see that after the first round, G2 will contain only edges with effective resistance at
least Ω( t

3

n2 ) (in G). As the sum of all effective resistances is bounded by n − 1, we conclude

|G2| ≤ Ω(n
3

t3
). In general, following the O(

√
m) upper bound on stretch, one can show that

Gi+1 contain only edges with effective resistance Ω( t2

|Gi|), implying |Gi+1| ≤ n
t2
|Gi|. t is chosen

so that |Gg| ≤ t2, hence a spectral sparsifier will have stretch at most
√
|Gg| = t for all the edge,

implying Gg+1 = ∅.

• Set t = O(n2/g · log n). Here the analysis is based on low diameter decomposition. In general, for
a weighted graph H and parameter φ = n−2/g, we construct a partition C of the vertices, such
that each cluster C ∈ C has hop-diameter O( logn

φ ) = t (i.e. w.r.t. Ĥ), and the overall fraction
of the weight of inter-cluster edges is bounded by φ. Following our peeling algorithm, when this
clustering is preformed w.r.t. Hi, Gi+1 will contain only inter-cluster edges from Gi. As Hi is a
spectral sparsifier of Gi, the size of all cuts are preserved. It follows that |Gi+1| . φ · |Gi|. In
particular, in log 1

φ
|G| ≤ g rounds, no edges will remain.

Interestingly, for this analysis to go through it is enough that each Hi will be a cut sparsifier of
Gi, rather than a spectral sparsifier. Oppositely, a single cut sparsifier H of G can have stretch
Ω̃(n) (see Remark 1).

Next, similarly to the streaming case, we show that if each player can communicate a message of size
Õ(nα) in each round, then we can construct a spanner with stretch min{Õ(n

2
3

(1−α)), Õ(
√
m · n−α)}

in a single round, or stretch min

{
(12 + o(1)) · n(1−α)· 2

g · log n , Õ

(
n

(g+1)(1−α)
2g+1

)}
in g rounds (see

Theorem 5 and Theorem 6). The approach is the same as in the streaming case, and for the most
part, the analysis follows the same lines. However, the single round Õ(

√
m · n−α) bound is somewhat

more involved. Specifically, in the streaming version we’ve made the assumption that m ≤ n1+α, as
otherwise, using sparse recovery we can restore the entire graph. Unfortunately, sparse recovery is
impossible here. Instead, we show that in a single communication round we can partition the vertex
set V into V1, V2, such that all the incident edges of V1 are restored, while the minimum degree in
G[V2] is at least nα. The rest of the analysis goes through.

Pass-stretch trade-off (Section 6). Fix the allowed space of the algorithm to be Õ(n1+ 1
k ). Both

[BS07] and [KW14] algorithms are based on clustering. Specifically, they have k clustering phases,

where in the i’th phase there are about n1− i
k clusters. Eventually, after k − 1 phases the number

of clusters is n
1
k , and an edge from every vertex to every cluster could be added to the spanner. In

[BS07], each clustering phase takes a single dynamic stream pass, while the diameter of each i-level
cluster is bounded by 2i. On the other hand, in [KW14] all the clusters are constructed in a single
dynamic stream pass, while the diameter of each i-level clusters is only bounded by 2i+1 − 2.

Our basic approach is the following: execute either [BS07] or [KW14] clustering procedure for some i
steps. Then, construct a super graph G by contracting each cluster into a single vertex, and (recur-
sively) compute a spanner H for the super graph G with stretch k′ < k. Eventually, for each super
edge in H, we will add a representative edge into the resulting spanner H. The basic insight, is that
while the usage of a cluster graph instead of the actual graph increases the stretch by a multiplicative
factor of the clusters diameter, we are able to compute a spanner with stretch k′ considerably smaller
than k, and thus somewhat compensating for the loss in the stretch.

This phenomena has opposite effects when applying it on either [BS07] or [KW14] clustering schemes.
Specifically, applying this idea on [BS07] for g recursive steps, we will obtain stretch 2g · k (compared
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with 2k − 1 in [BS07]) while reducing the number of passes to g · k1/g (compared with k in [BS07]).
That is we get a polynomial reduction in the number of passes, while paying a constant increase in
stretch. From the other hand, applying this idea on [KW14] for g recursive steps, we will obtain

stretch 2g·k
1/g

(compared to 2k−1 in [KW14]) while reducing the number of passes to g+1 (compared
with 2 in [KW14]). Thus for each additional pass, we get an exponential reduction in the stretch.

Interestingly, the idea of recursively constructing a spanner by contracting clusters was found and
used concurrently and independently from us by Biswas et al. [BDG+20] in the context of the massive
parallel computation (MPC) model. They applied it only on [BS07] algorithm in order to construct
a spanner in small number of rounds.

4 Spectral Sparsifiers are Spanners

In this section, we show that spectral sparsifiers can be used to achieve low stretch spanners in one
pass over the stream. Our algorithm works as follows: first, given a graph G = (V,E), it generates a
(possibly weighted) spectral sparsifier H of G, using the sketches which can be stored in Õ(n) space
[KLM+14, KNST19, KMM+20]. Then, the weights of all edges are set to be equal to 1. We show

that the resulting graph Ĥ is a Õ(n
2
3 )-spanner of the original graph.

Theorem 1. Let G = (V,E) be an undirected, unweighted graph. For a parameter ε ∈ (0, 1
18 ], suppose

that H is a (1± ε)-spectral sparsifier of G. Then Ĥ is an Õ(n
2
3 )-spanner of G, where Ĥ is unweighted

version of H.

As [KLM+14] constructed (1± ε)-spectral sparsifier with O( n
ε2

) edges in a dynamic stream, by fixing
ε = 1

18 , we conclude:

Corollary 1. There exists an algorithm that for any n-vertex unweighted graph G, the edges of which
arrive in a dynamic stream, using Õ(n) space, constructs a spanner with O(n) edges and stretch Õ(n

2
3 )

with high probability.

Proof of Theorem 1. By triangle inequality, it is enough to prove that for every edges (u, v) ∈ E,

it holds that d
Ĥ

(u, v) = Õ(n
2
3 ). Our proof strategy is as follows: consider a pair of vertices u, v ∈ V

such that d
Ĥ

(u, v) = s. We will prove that RGu,v ≥ Ω̃( s
3

n2 ). As for every pair of neighboring vertices it

holds that RGu,v ≤ 1, the theorem will follow.

Consider a pair of vertices v, u ∈ V such that d
Ĥ

(v, u) = s. We partition V to sets A0, A1, . . . , As

where for i < s, Ai = {z ∈ V | d
Ĥ

(v, z) = i} are all the vertices at distance i from v in Ĥ.
As = {z ∈ V | d

Ĥ
(v, z) ≥ s} are all the vertices at distance at least s. Let WH

i = wH(Ai × Ai+1)
be the total weight in H (the weighted sparsifier) of all the edges between Ai to Ai+1. Similarly, set
WG
i = wG(Ai × Ai+1). We somewhat abused notation here, we treat non-existing edges as having

weight 0, while all the edges in the unweighted graph G have unit weight. For simplicity of notation
set also WH

−1 = WG
−1 = WH

s = WG
s = 0. Note that while WH

i denotes the size if a cut in H, it does
not correspond to a cut in G (as e.g. there might be edges from Ai to Ai+2). Thus, a priori there
should not be a resemblance between WG

i to WH
i . Nevertheless, we show that WH

i approximates WG
i .

However, the approximation will depend also on WH
i−1,W

H
i+1 rather than only on WH

i .

Claim 1. For every i, WH
i − ε · (WH

i−1 +WH
i +WH

i+1) ≤WG
i ≤WH

i + ε · (WH
i−1 +WH

i +WH
i+1).
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a

b

c

fe

d

Ai+1Ai
A>i+1A<i

Figure 2: An illustration of the diffferent edges sets, the weight of which is denoted in Equation (4.1). Note
that a = WG

i , e = WG
i−1, and f = WG

i+1.

Proof of Claim 1. For a fixed i, set

A<i = A0 ∪ · · · ∪Ai−1 A>i+1 = Ai+2 ∪ · · · ∪As

A≤i = A0 ∪ · · · ∪Ai A≥i+1 = Ai+1 ∪ · · · ∪As

In addition we denote the weight of several edge sets as follows, (see Figure 2 for illustration)

a = wG(Ai ×Ai+1) b = wG(Ai ×A>i+1) c = wG(A<i ×Ai+1)

d = wG(A<i ×A>i+1) e = wG(A<i ×Ai) f = wG(Ai+1 ×A>i+1)

(4.1)

Similarly by replacing wG with wH in Equation (4.1), we obtain the values a′, b′, c′, d′, e′, f ′ (e.g.
a′ = wH(Ai×Ai+1)). Note that by the definition of the sets A0, . . . , As, it holds that b′ = c′ = d′ = 0.
Using this notation, Claim 1 states that a′ − ε · (a′ + e′ + f ′) ≤ a ≤ a′ + ε · (a′ + e′ + f ′).

Note that any (1±ε)-spectral sparsifier is a (1±ε)-cut sparsifier. Thus, as H is a (1±ε)-spectral spar-
sifier of G, it preserves weights of all the cuts up to ε error factors. We derive the following inequalities:
(1− ε)a′ ≤ a+ b+ c+ d ≤ (1 + ε)a′ By (A≤i, A≥i+1)-cut
(1− ε)f ′ ≤ b+ d+ f ≤ (1 + ε)f ′ By (A≤i+1, A>i+1)-cut
(1− ε)e′ ≤ c+ d+ e ≤ (1 + ε)e′ By (A<i, A≥i)-cut
(1− ε)(a′ + e′ + f ′) ≤ a+ d+ e+ f ≤ (1 + ε)(a′ + e′ + f ′) By (A<i ∪Ai+1, Ai ∪A>i+1)-cut

Or equivalently

(1− ε)a′ ≤ a+ b+ c+ d ≤ (1 + ε)a′

−(1 + ε)f ′ ≤ −b− d− f ≤ −(1− ε)f ′
−(1 + ε)e′ ≤ −c− d− e ≤ −(1− ε)e′

(1− ε)(a′ + e′ + f ′) ≤ a+ d+ e+ f ≤ (1 + ε)(a′ + e′ + f ′)

By summing up these 4 inequalities, and dividing by 2, we get

a′ − ε · (a′ + e′ + f ′) ≤ a ≤ a′ + ε · (a′ + e′ + f ′) .

The claim now follows.
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Our next goal is to bound
∑s−1

i=0
1

WH
i

, as this quantity lower-bounds the resistance between u and v

in H. Since
∑s

i=0 |Ai| = n and WG
i ≤ |Ai| · |Ai+1|, one can bound

∑s−1
i=0

1
WG
i

by Ω
(
s3

n2

)
. However

relating this quantity to the effective resistances in G is not as straightforward as one might expect.

Claim 2.
∑s−1

i=0
1

WH
i
≥ Ω

(
s3

n2 ·
log2 1

ε

log2 n

)
.

Proof of Claim 2. For all i ∈ [s], set ai = |Ai|. Set

α := 10 log 1
6ε
n2 , (4.2)

and
I :=

{
i ∈ [s] | ai ≤

αn

s

}
.

It holds that |I| ≥
(
1− 1

α

)
s+1, as otherwise there are at least s

α indices i for which ai >
αn
s , implying∑

i ai > n, a contradiction, since A0, . . . , As forms a partition of V . Set

Ĩ :=
{
i | such that ∀j such that |i− j| ≤ α

10
, it holds that j ∈ I

}
.

Note that, since there are less than s
α indices i such that i /∈ I, then there are less than s

α ·
2α
10 ≤

s
5

indices out of Ĩ, implying ∣∣∣Ĩ∣∣∣ ≥ s

2
. (4.3)

Fix an index i0 ∈ Ĩ, we argue that WH
i0
≤ 2

(
αn
s

)2
. For every index j ∈

[
i0 − α

10 , i0 + α
10 − 1

]
, it

holds that WG
j = |EG(Aj , Aj+1)| ≤ aj · aj+1 ≤

(
αn
s

)2
. Assume for the sake of contradiction that

WH
i0
> 2

(
αn
s

)2
. We prove by induction that for 1 ≤ j ≤ α

10 , there is an index ij such that |ij − i0| ≤ j
and WH

ij
> 1

(6ε)j

(
αn
s

)2
. For the base case, by Claim 1,

WH
i0−1 +WH

i0 +WH
i0+1 ≥

1

ε

(
WH
i0 −W

G
i0

)
>

1

ε

(
2
(αn
s

)2
−
(αn
s

)2
)

=
1

ε

(αn
s

)2
.

The we can choose i1 ∈ {i0 − 1, i0, i0 + 1} such that WH
i1
> 1

3ε

(
αn
s

)2
> 1

6ε

(
αn
s

)2
.

For the induction step, suppose that there is an index ij such that |ij−i0| ≤ j < α
10 andWH

ij
> 1

(6ε)j

(
αn
s

)2
.

As |ij − i0| ≤ α
10 − 1, it follows that WG

ij
≤
(
αn
s

)2
. Hence

WH
ij−1 +WH

ij +WH
ij+1 ≥

1

ε

(
WH
ij −W

G
ij

)
≥ 1

ε

(
1

(6ε)j

(αn
s

)2
−
(αn
s

)2
)
>

1

2ε
· 1

(6ε)j

(αn
s

)2
.

Thus there is an index ij+1 ∈ {ij − 1, ij , ij + 1} such that WH
ij+1

> 1
(6ε)j+1

(
αn
s

)2
, as required.

We conclude that,

WH
i α
10

> (6ε)−
α
10

(αn
s

)2 (4.2)

≥ n2
(αn
s

)2
≥ n2 ,

where the last inequality follows as s ≤ n. This is a contradiction, as H is an (1± ε) spectral sparsifier

of the unweighted graph G, where the maximal size of a cut is n2

4 . We conclude that for every i ∈ Ĩ,
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it holds that WH
i ≤ 2

(
αn
s

)2
. The claim now follows as

s−1∑
i=0

1

WH
i

≥
∣∣∣Ĩ∣∣∣ · 1

2

(αn
s

)−2

≥ s3

4α2n2
By Equation (4.3)

= Ω

(
s3

n2
·

log2 1
ε

log2 n

)
By Equation (4.2) (4.4)

We are now ready to prove the theorem. Construct an auxiliary graph H ′ from H, by contracting all
the vertices inside each set Ai, and keeping multiple edges. Note that by this operation, the effective
resistance between u and v cannot increase. The graph H ′ is a path graph consisting of s vertices,
where the conductance between the i’th vertex to the i+ 1’th is WH

i . Using Claim 2, we conclude

(1 + ε)RGu,v ≥ RHu,v By Fact 2

≥ RH′u,v As explained above

=
s−1∑
i=0

1

WH
i

Since H ′ is a path graph

= Ω

(
s3

n2
·

log2 1
ε

log2 n

)
By Equation (4.4) (4.5)

As u, v are neighbors in the unweighted graph G, it necessarily holds that RGu,v ≤ 1, implying that

s = O

((
n2 · log2 n

log2 1
ε

) 1
3

)
= Õ

(
n

2
3

)
.

We state the following corollary, based on the last part of the proof of Theorem 1.

Corollary 3. Let G = (V,E) be an unweighted undirected graph, and let H be a (1 ± ε)-spectral
sparsifier of G for some small enough constant ε. Also, let Ĥ denote the unweighted H. If for a pair
of vertices u, v ∈ V we have s := d

Ĥ
(u, v), then

RGu,v = Ω̃

(
s3

n2

)
,

and

RHu,v = Ω̃

(
s3

n2

)
.

4.1 Sparse graphs

Suppose we are guaranteed that the graph G we receive in the dynamic stream has eventually at most
m edges. In Theorem 7 we show that the distortion guarantee of a sparsifier is at most Õ(

√
m), and

thus together with Theorem 1 it is Õ(min{
√
m,n2/3}). Later, in Section 5 we will use this to obtain

a two pass algorithm in the simultaneous communication model with distortion Õ(n3/5).
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Theorem 7. Let G = (V,E) be an undirected, unweighted such that |V | = n and |E| = m. For a
parameter ε ∈ (0, 1

18 ], suppose that H is a (1±ε)-spectral sparsifier of G. Then Ĥ is an Õ(
√
m)-spanner

of G, where Ĥ is the unweighted version of H.

The proof follows similar lines to the proof of Theorem 1 and is deferred to Appendix B.2. Theorem 7
implies a streaming algorithm using space Õ(n) that constructs a spanner with stretch Õ(

√
m). Notice

that the number of edges m, does not need to be known in advance.

Similar to Corollary 3, using the last part of the proof of Theorem 7, we conclude the following:

Corollary 4. Let G = (V,E) be an unweighted undirected graph with m = |E|, and let H be a (1± ε)-
spectral sparsifier of G for some small enough constant ε. Also, let Ĥ denote the unweighted H. If
for a pair of vertices u, v ∈ V we have s := d

Ĥ
(u, v), then

RGu,v = Ω̃

(
s2

m

)
,

and

RHu,v = Ω̃

(
s2

m

)
.

4.2 Tightness of Theorem 1 and Theorem 7

In this section, we show that the stretch guarantees in Theorem 1 and Theorem 7 are tight up to
polylogarithmic factors.

Lemma 3 (Tightness of Theorem 1). For every large enough n, there exists an unweighted n vertex
graph G, and a spectral sparsifier H of G such that Ĥ has stretch Ω̃(n2/3) w.r.t. G.

Proof. As was shown by Spielman and Srivastava [SS08], one can create a sparsifier H of G (with
high probability) by adding each edge e of G to H with probability pe = min{ε−2 ·RGe · log n, 1} (and
weight 1/pe). This approach is known as spectral sparsification using effective resistance sampling.
We will construct a graph G and argue that for a random graph H sampled according to the scheme
above [SS08], the stretch of Ĥ will (likely) be Ω̃(n2/3).

For brevity, we will construct a graph with n + 2 vertices and ignore rounding issues. The graph

G = (V,E) is constructed as follows. Let N := n
2/3

c for c := log n. We partition the set of vertices,

V , into V0, V1, . . . , VN , VN+1, where for each i ∈ [1, N ], we have |Vi| = a = cn1/3, and V0 = {u},
VN+1 = {v} are singletons. For every i ∈ [0, N ], we connect all vertices in Vi to all vertices in Vi+1,
and furthermore, we connect u and v by an edge called e. That is,

E =
(
∪Ni=0Vi × Vi+1

)
∪ {(u, v)}.

See Figure 3 for illustration. Next, we calculate RGe , by observing the flow vector when one units of
flow is injected in v and is removed from u. Denote R := RGe . Then R units of flow is routed using
edge e, while (1 − R) units of flow is routed using the rest of the graph. By symmetry, for each cut
Vi×Vi+1 the flow will spread equally among the edges. Farther, the potential of all the vertices in each
set Vi is equal. Denote by Pi the potential of vertices in Vi. Thus 0 = P0 < P1 < · · · < PN+1 = R. For

i = 0, each edge in V0 × V1 carries (1−R)
a flow, thus P1 − P0 = (1−R)

a . Similarly, PN+1 − PN = (1−R)
a .
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V1 V2 VN−1 VNV0 VN+1

u v

e

Figure 3: An illustration of the graph G constructed during the proof of Lemma 3.

On the other hand, for i ∈ [1, N −1], each edge in Vi+1×Vi carries (1−R)
a2

flow, thus Pi+1−Pi = (1−R)
a2

.
We conclude

R = PN+1 − P0 =

N∑
i=0

(Pi+1 − Pi) = 2 · (1−R)

a
+

(1−R)

a2
· (N − 1) = (1−R) · 2a+ |N | − 1

a2

Thus,

RGe = R =
2a+ |N | − 1

a2 − 2a− |N |+ 1
=

2cn1/3 + n
2/3

c − 1

c2n2/3 − 2cn1/3 − n2/3

c + 1
=

1

c3
(1 + o(1)) = O(

1

log3 n
) .

Note that it is thus most likely that e will not belong to H (for large enough n). For a sampled graph
H excluding e, we will have d

Ĥ
(u, v) ≥ |N | = Ω̃(n2/3). From the other hand, as a graph H sampled in

this manner is a spectral sparsifier with high probability, it implies the existence of a spectral sparsifier
H of G with stretch Ω̃(n2/3), as required.

Lemma 4 (Tightness of Theorem 7). For every large enough m, there exists an unweighted graph G
with m edges, and a spectral sparsifier H of G such that Ĥ has stretch Ω̃(

√
m) w.r.t. G.

Proof. Fix n = ( m
2 logm)3/4. Note that the graph we constructed during the proof of Lemma 3 has

2a + (N − 1)a2 = 2cn1/3 + (n
2/3

c − 1) · c2n2/3 < 2c · n4/3 < m edges. We can complement it to exactly
m edges by adding some isolated component. Following Lemma 3, this graph has a sparsifier H, such
that Ĥ has stretch Ω̃(n2/3) = Ω̃(

√
m) w.r.t. G, as required.

Remark 1. Cut sparsifiers are somewhat weaker version of spectral sparsifiers. Specifically, a weighted
subgraph H of G is called a cut sparsifier if it preserves the size of all cuts (up to 1 ± ε factor). A
natural question is the following: given a cut sparsifier H of G, how good of a spanner is Ĥ?
The answer is: very bad. Specifically, consider the hard instance constructed during the proof of
Lemma 3. Construct the same graph G where we change the parameter N to equal Θ( n

logn) and a to

Θ(log n). There exist a cut sparsifier H of G excluding the edge e = (u, v). In particular, Ĥ will have
stretch Ω̃(n).

4.3 Stretch-Space trade-off

In this section, we first prove a result, which given an algorithm that uses Õ(n) space in the dynamic
streaming setting, converts it to an algorithm that uses Õ(n1+α) space and achieves a better stretch
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guarantee (see Theorem 8). Then, we apply this theorem to Corollary 1 and get a space-stretch trade
off. Next, in Theorem 9 we prove a similar trade off in terms of number of edges.

Theorem 8. Assume there is an algorithm, called Alg, that given a graph G = (V,E) in a dynamic
stream, with |V | = n, using Õ(n) space, outputs a spanner with stretch Õ(nβ) for some constant
β ∈ (0, 1) with failure probability n−c for some constant c. Then, for any constant α ∈ (0, 1), one can
construct an algorithm that uses Õ(n1+α) space and outputs a spanner with stretch Õ(nβ(1−α)) with
failure probability Õ(n(2+c)α−c).

Proof. Let P ⊂ 2[n] be a set of subsets of [n] such that: (1) |P| = O(n2α log n), (2) every P ∈ P is
of size |P | = O(n1−α), and (3) for every i, j ∈ [n] there is a set P ∈ P containing both i, j. Such a
collection P can be constructed by a random sampling. Denote V = {v1, . . . , vn}. For each P ∈ P,
set AP = {vi | i ∈ P}. For each P ∈ P, we use Alg independently to construct a spanner HP for
G[AP ] the induced graph on AP . The final spanner will be their union H = ∪P∈PHP .

The space (and also the number of edges in H) used by our algorithm is bounded by
∑

P∈P Õ(|P |) =

Õ(n2α · n1−α) = Õ(n1+α). From the other hand, for every vi, vj ∈ V such that i, j ∈ P , it holds that

dH(vi, vj) ≤ dHP (vi, vj) ≤ Õ(|P |β) ≤ Õ(nβ(1−α)) .

By union bound, the failure probability is bounded by Õ(n2α) ·O(n−c(1−α)) = Õ(n(2+c)α−c).

Combining Corollary 1 with Theorem 8, we conclude:

Corollary 2. Consider an n-vertex unweighted graph G, the edges of which arrive in a dynamic
stream. For every parameter α ∈ (0, 1), there is an algorithm using Õ(n1+α) space, constructs a

spanner with stretch Õ(n
2
3

(1−α)) with high probability.

Remark 2. We can reduce the number of edges in the spanner returned to O(n), by incurring ad-
ditional O(log n) factor to the stretch. This is done by computing additional spanner upon the one
returned by Corollary 2.

Following the approach in Theorem 8, we can also use more space to reduce the stretch parameterized
by the number of edges. Note that the Theorem 9 provides better result than Corollary 2 when
m ≤ n

4
3

+ 2
3
α.

Theorem 9. Consider an n-vertex unweighted graph G, the edges of which arrive in a dynamic stream.
For every parameter α ∈ (0, 1), there is an algorithm using Õ(n1+α) space, constructs a spanner with
stretch Õ(

√
m · n−α).

Proof. Similarly to Theorem 8, our goal here is to partition the vertices into ≈ n2α sets of similar size.
However, while in Theorem 8 we wanted to bound the number of vertices in each set, here we want
to bound the edges in each set. As the edge set is unknown, we cannot use a fixed partition. Rather,
in the preprocessing phase we will sample a partition that w.h.p. will be good w.r.t. arbitrary fixed
edge set.

Fix p = n−α. With no regard to the rest of the algorithm, during the stream we will sample Õ(n1+α) =
Õ(np ) edges from the stream using sparse recovery (Lemma 2), and add them to our spanner Ĥ. If

m ≤ np−1, we will restore the entire graph G, and thus will have stretch 1. The rest of the analysis
will be under the assumption that m > np−1.
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For every i ∈ [1, 8
p2

lnn], sample a subset Ai by adding each vertex with probability p. Consider a

single subset Ai sampled in this manner, and denote Gi = G[Ai] the graph it induces. We will compute
a sparsifier Hi for Gi. Our final spanner will be Ĥ = ∪iĤi a union of the unweighted versions of all
the sparsifiers (in addition to the random edges sampled above). The space we used for the algorithm
is
∑

i Õ(|Ai|). Note that with high probability, by Chernoff inequality
∑

i Õ(|Ai|) = Õ(n2α · n1−α) =

Õ(n1+α).

Next we bound the stretch. Consider a pair of vertices (u, v) ∈ E. Denote by ψi the event that both

u, v belong to Ai. Note that Pr[ψi] = p2. Denote by mi =
∣∣∣(Ai2 ) ∩ E∣∣∣ the number of edges in Gi. Set

µi = E [mi | ψi] ≤ 1 + p · (degG(v) + degG(u)) +mp2 < 1 + 2np+mp2 < 4mp2 ,

to be the expected number of edges in Gi provided that u, v ∈ A. The first inequality follows as (1)
(u, v) ∈ Gi, (2) every edge incident on u, v belongs to Gi with probability p, and (3) every other edge
belongs to Gi with probability p2. In the final inequality we used the assumption n < mp. Denote by
φi the event that mi ≤ 8mp2. By Markov we have

Pr [ψi ∧ φi] = Pr [ψi] · Pr [φi | ψi] ≥
1

2
p2 .

As {ψi ∧ φi}i are independent, we have that the probability that none of them occur is bounded by

Pr

[∧
i

(
ψi ∧ φi

)]
≤ (1− 1

2
p2)

8
p2

lnn
< e
− 1

2
p2· 8

p2
lnn

= n−4 .

Note that if both ψi, φi occurred, and Hi is an 1± ε sparsifier of Gi, by Theorem 1 we will have that

d
Ĥ

(u, v) ≤ d
Ĥi

(u, v) ≤ Õ(
√
mi) = Õ(

√
m · p) = Õ(

√
m · n−α)

By union bound, the probability that for every (u, v) ∈ E, there is some i such that ψi ∧ φi occurred
is at least 1− n−2. The probability that every Gi is a spectral sparsifier is 1− n−Ω(1). The theorem
follows by union bound.

5 Simultaneous Communication Model

In Section 4, we considered streaming model and proved results for the setting when one pass over
the stream was allowed. The remaining question is as follows: using small number of communication
rounds (but more than 1), can we improve the stretch of a spanner constructed in the simultaneous
communication model? A partial answer is given in the following subsections.

First, in Section 5.1 we present a single filtering algorithm that provides two different trade-offs
between stretch and number of communication rounds (see Algorithm 1 and Theorem 4). Basically,
the algorithm receives a parameter t > 1, in each communication round, an unweighted version of
a sparsifier is added to the spanner. Then, locally in each vertex, all the edges that already have
a small stretch in the current spanner are deleted (stop being considered), and another round of
communication begins.

In Theorem 4 we present two arguments. The first argument is based on effective resistance filtering,

which results in a spanner with Õ(n
g+1
2g+1 ) stretch in g communication rounds. The second argument,
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Algorithm 1: Spanners Using Filtering(G = (V,E), t, g)

input : Graph G = (V,E) (in simultaneous communication model), number of rounds g,
stretch parameter t

output: t-spanner of G with Õ(n · g) edges

1 ε← 1
18

2 Ĥ ← ∅ // Ĥ will be the output spanner

3 for i = 1 to g do
4 Ei ← {e = (u, v) ∈ Gi−1 such that d

Ĥ
(u, v) > t}

5 Gi ← (V,Ei)
6 Let Hi be a (1± ε)-spectral sparsifier of graph Gi.

7 Ĥ ← Ĥ ∪ Ĥi // Ĥi is the unweighted version of Hi

8 return Ĥ

which is based on low-diameter decomposition, results in a spanner with Õ
(
n

2
g

)
stretch in g commu-

nication rounds. The latter approach outputs a spanner with smaller stretch compared to the former
algorithm for g ≥ 4.

Finally, in Section 5.2 we generalize our results to the case where each player is allowed Õ(nα)
communication per round for some α ∈ (0, 1). In that section, we prove two results: (1) in Theorem 5
we give a space (communication per player) stretch trade off for one round of communication (2) in
Theorem 6 we give a similar trade off for more than one round of communication.

5.1 The filtering algorithm

The algorithm will receive a stretch parameter t. During the execution of the algorithm, we will hold in
each step a spanner Ĥ, and a subset of unsatisfied edges. As the algorithm proceeds, the spanner will
grow, while the number of unsatisfied edges will decrease. Initially, we start with an empty spanner
Ĥ, and the set of unsatisfied edges E0 = E is the entire edge set. In general, at round i, we hold a
set Ei of edges yet unsatisfied. We construct a spectral sparsifier Hi for the graph Gi = (V,Ei) over
thus edges. Ĥi, the unweighted version of Hi is added to the spanner Ĥ. Ei+1 is defined to be all the
edges (u, v) ∈ Ei, for which the distance in Ĥ is greater than t, that is d

Ĥ
(u, v) > t. Note that as the

sparsifier Hi, and hence the spanner Ĥ is known to all, each vertex locally can compute which of its
edges belong to Ei+1.

In addition, the algorithm will receive as an input parameter g to bound the number of communication
rounds. We denote by Eg+1 the set of unsatisfied edge by the end of the algorithm. That is edges
from (u, v) ∈ E for which d

Ĥ
(u, v) > t. Note that during the execution of the algorithm, Eg+1 ⊆

Eg ⊆ Eg−1 ⊆ · · · ⊆ E1 = E. Finally, if Eg+1 = ∅, it will directly imply that Ĥ is a t-spanner of G.
See Algorithm 1 for illustration.

Below, we state the theorem, which proves the round complexity and correctness of Algorithm 1.

Theorem 4. For any integer g ≥ 1, there is an algorithm (see Algorithm 1) that in g rounds of

communication outputs a spanner with stretch min
{
Õ(n

g+1
2g+1 ), (12 + o(1)) · n2/g · log n

}
.

Proof. For g = 1, the theorem holds due to Theorem 1, thus we will assume that g ≥ 2. We prove each
of the two upper-bounds on stretch separately. We prove the first bound using an effective resistance
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based argument. The latter upper-bound is proven using an argument based on filtering low-diameter
clusters.

Effective resistance argument: We execute Algorithm 1 with parameter g, and t = Õ(n
g+1
2g+1 ).

Consider an edge e = (u, v) ∈ E1. If e ∈ E2, then it follows from Corollary 3 that RH1
u,v = Ω̃

(
t3

n2

)
. Set

a1 = Ω̃
(
t3

n2

)
. Then

|E2| ≤
1

a1

∑
e∈E1

RH1
e ≤

1 + ε

a1

∑
e∈Ei

RG1
e ≤

1 + ε

a1
· (n− 1) ≤ Ω̃

(
n3

t3

)
, (5.1)

where the first inequality follows as a1 ≤ RH1
e for e ∈ E2, the second inequality is by Fact 2, and the

third inequity follows by Fact 3, as Gi−1 is unweighted. In general, for i ≥ 2, we argue by induction

that |Ei| = Õ
(
ni+1

t2i−1

)
. Indeed, consider an edge e ∈ Ei+1. Using the induction hypothesis, it follows

from Corollary 4 that

RHiu,v = Ω̃

(
t2

|Ei|

)
= Ω̃

(
t2(i+1)−1

ni+1

)

Set ai = Ω̃
(
t2(i+1)−1

ni+1

)
. Using the same arguments as in Equation (5.1), we get

|Ei+1| ≤
1

ai

∑
e∈Ei

RHie ≤
1 + ε

ai

∑
e∈Ei

RGie ≤
1 + ε

ai
· (n− 1) ≤ Õ

(
n(i+1)+1

t2(i+1)−1

)
.

Finally, for every e ∈ Eg, following Theorem 7, it holds that

d
Ĥ

(u, v) ≤ d
Ĥg

(u, v) ≤ Õ
(√

Eg

)
= Ω̃

(√
ng+1

t2g−1

)
≤ t ,

where the last inequality holds for t = Ω̃(n
g+1
2g+1 ). We conclude that Eg+1 = ∅. The theorem follows.

Low diameter decomposition argument: Fix φ = 1
3n
−2/g. We will execute Algorithm 1 with

parameter g and t = 4+o(1)
φ · lnn. We argue that for every i ∈ [2, g+ 1], |Ei+1| ≤ 3φ|Ei|. As |E1| < n2,

it will follow that Eg+1 = ∅, as required.

Consider the unweighted graph Gi, and the sparsifier Hi we computed for it. We will cluster Gi
based on cut sizes in Hi. The clustering procedure is iterative, where in phase j we holds an induced
subgraph Hi,j of Hi, create a cluster Cj , remove it from the graph Hi,j to obtain an induced subgraph
Hi,j+1, and continue. The procedure stops once all the vertices are clustered. Specifically, in phase
j, we pick an arbitrary unclustered center vertex vj ∈ Hi,j , and create a cluster by growing a ball
around vj . Set Br = BĤi,j (vj , r) to be the radius r ball around vj in the unweighted version of Hi,j .

That is Br+1 = Br ∪ N(Br), where N(Br) are the neighbors of Br in Hi,j . Let rj be the minimal
index r such that

∂Hi,j (Br) < φ ·VolHi,j (Br) . (5.2)

Here ∂Hi,j (Br) denotes the total weight of the outgoing edges from Br, while VolĤi,j (Br) =∑
u∈Br degĤi,j (u) denotes the sum of the weighted degrees of all the vertices in Br. Note that while Br
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is defined w.r.t. an unweighted graph Ĥi,j , ∂Hi,j and VolHi,j are defined w.r.t. the weighted sparsifier.
For every r, it holds that VolĤi,j (Br+1) ≥ VolĤi,j (Br) + ∂Ĥi,j (Br). We argue that rj ≤ 2(1 + ε) ·

(
n
2

)
.

If vj is isolated in Hi,j , then Equation (5.2) holds for r = 0 and we are note. Else, as the minimal
weight of an edge in a sparsifier is 1,5 it holds that VolHi,j (B0) = degHi,j (vj) ≥ 1. We conclude that
for rj , the minimal index for which Equation (5.2) holds, we have that

VolHi,j (Brj ) ≥ (1 + φ)VolHi,j (Br−1) ≥ · · · ≥ (1 + φ)rjVolHi,j (B0) ≥ (1 + φ)rj ,

On the other hand, as Hi is a (1 + ε) spectral sparsifier of an unweighted graph Gi, we have

VolHi,j (Brj ) ≤ VolHi,j (Hi,j) ≤ 2(1 + ε) · |E| ≤ 2(1 + ε) ·
(
n

2

)
.

Therefore, it must holds that (1 + φ)rj ≤ 2(1 + ε)
(
n
2

)
, which implies

rj ≤
ln((1 + ε)n2)

ln(1 + φ)
=

2 + o(1)

φ
· lnn .

We set Cj = Brj and continue to construct Cj+1. Overall, we found a partition of the vertex set V
into clusters C1, C2, . . . such that each cluster satisfies Equation (5.2), and has (unweighted) diameter

at most 4+o(1)
φ · lnn = t. In particular, for every edge e = (u, v) ∈ Ei, if u, v are clustered to the

same Ci, then the distance between them in Ĥ will be bounded by t. Thus Ei+1 will be a subset
∂Hi(C1, C2, . . .), the set of inter-cluster edges. It holds that

∂Hi(C1, C2, . . .) =
∑
j≥1

∂Hi,j (Cj) ≤ φ ·
∑
j≥1

VolHi,j (Cj) ≤ φ ·VolHi(V ) , (5.3)

where the first inequality holds as each edge counted exactly once. For example the edge (u, v) ∈
E(Ca, Cb), where a < b counted only at ∂Ĥi,a(Ca). Hence,

|Ei+1| ≤ ∂Gi(C1, C2, . . .) ≤ (1 + ε)∂Hi(C1, C2, . . .) By Fact 1

≤ (1 + ε)φ ·VolHi(V ) By Equation (5.3)

≤ φ(1 + ε)

1− ε
·VolGi(V ) By Fact 1

= φ ·
(

1 +
2ε

1− ε

)
· 2|Ei| < 3φ · |Ei| .

Remark 3. Note that in fact for the low diameter decomposition argument, it is enough to use in
Algorithm 1 cut sparsifiers rather than spectral sparsifiers.

5.2 Stretch-Communication trade-off

We note that if more communication per round is allowed, then we can obtain the following.

Theorem 5. There is an algorithm that in 1 round of communication, where each player communi-
cates Õ(nα) bits, outputs a spanner with stretch

min
{
Õ(n(1−α) 2

3 ), Õ
(√
m · n−α

)}
.

Proof. We prove the stretch bounds, one by one.

5Since we are producing spectral sparsifiers by effective resistance sampling method using corresponding sketches,
each edge e is reweighted by 1

pe
where pe is the probability that edge e is sampled, and hence the weights are at least 1.
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Proving Õ(n(1−α) 2
3 ): Basically, the claim follows by Corollary 1. More specifically, we work on

graphs induces on O(n1−α) sized set of vertices. For each such subgraph, we can construct sparsifiers
using O(polylog(n)) sized sketches communicated by each vertex involved. Since each vertex is in-
volved in Õ(nα) subgraphs, then communication per vertex is Õ(nα). And by Corollary 3, the stretch

is Õ(n(1−α) 2
3 ).

Proving Õ (
√
m · n−α): First, the reader should note that we cannot directly use Corollary 4 for

this part. The reason is that during the proof of Theorem 9, for the special case where m ≤ n1+α, we
simply used a sparse recovery procedure to recover the entire graph. However, as the graph G might
contain a dense subgraph, sparse recovery is impossible in the simultaneous communication model.
Instead, we use a procedure, called peeling low degree vertices, where using Õ(nα) bits of information
per vertex, we can partition the vertices into two sets, V1 and V2, where all edges incident on V1 are
recovered and minimum degree in G[V2] is at least n−α. We present this procedure in Algorithm 2
and its guarantees are proved in Lemma 5 below.

Lemma 5 (Peeling low-degree vertices). In a simultaneous communication model, where communi-
cation per player is Õ(s), there is an algorithm that each vertex can locally run and output a partition
of the vertices into V1, V2 such that:

1. All the incident edges of V1 are recovered.

2. The min-degree in the induce graph G[V2] is at least s.

Furthermore, the partitions output by all vertices are identical, due to the presence of shared random-
ness.

Proof. First, we argue that using s-sparse recovery procedure on the neighborhood of vertices, one
can find a set V1 ⊆ V such that all the vertices in V \V1 have degree more than s. This is done in the
following way: each vertex prepares an s-sparse recovery sketch for its neighborhood, and in the first
round of communication writes its sketch alongside its degree on the board. Then, each vertex runs
Algorithm 2 locally. Note that the output is identical in all vertices since they have access to shared
randomness.

Now, we argue the correctness of Algorithm 2. First, we let Recover be a s-sparse recovery algorithm.
More specifically, the following fact holds.

Fact 4. For any integer s, given S, a Õ(s)-bit sized linear s-sparse recovery sketch of a vector ~b,
such that Support(~b) ≤ s, algorithm Recover(S) outputs the non-zero elements of ~b, with high
probability.

Consider the execution of Algorithm 2. If in the beginning there does not exist a low-degree vertex,
we are done. Otherwise, there exists a vertex u with degree ≤ s. Now, when we call Recover(Su)
it is guaranteed that the support of the vector is bounded by s (see Line 3 of Algorithm 2). In
that case, Recover(Su) succeeds with high probability. Note that in case of success, the output of
Recover(Su) is deterministic- that is depend only the graph and not on the random coins. Then,
we delete vertex u alongside its incident edges. The sketches for the rest of the graph can be updated
accordingly, since the sketches are linear. Thus, we can use the updated sketches in the next round to
recover the neighborhood of another low-degree vertex (in the updated graph), without encountering
dependency issues (as the series of events we should succeed upon is predetermined). We repeat this
procedure until no vertex with degree ≤ s remains. Furthermore, we call Recover at most n times
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Algorithm 2: Low-Degree Peeling({Su}u∈V , s)
input : A parameter s, linear s-sparse recovery sketches (denoted by Su for each vertex u)
output: A partition of vertices into two sets, V1 and V2, with the guarantees mentioned in

Lemma 5

1 V1 ← ∅
2 V2 ← V
3 while ∃ a vertex u with degree ≤ s do
4 u← a vertex with degree ≤ s // Using a universal ordering, and degrees in G[V2]

5 Eu ← Recover(Su) // See Fact 4

6 Remove Eu from the sketches and update degrees. // Sketches are linear

7 V1 ← V1 ∪ {u}.
8 V2 ← V2 \ {u}.
9 return (V1, V2)

per vertex (since we can delete at most n vertices), in total, using union bound, the algorithm succeeds
with high probability. 6

We use Algorithm 2 with s = nα. In the same time, we use the algorithm from Theorem 9. That
is, partition the vertices into Õ(n2α) sets such that each vertex belong to each set with probability
n−α. Than compute a sparsifier H for each set and take their union. It follows that the total required
communication is Õ(nα) per vertex. Note that the algorithm of Theorem 9 is linear. Hence after
using Lemma 5, we can add all the edges incident on V1 to the spanner, and update the algorithm
from Theorem 9 accordingly. That is we will use it only on G[V2].

Note that we have |E(G[V2])| ≥ |V2| · nα, and consequently we can use the argument in the proof of
Theorem 9. In total from one hand we will obtain stretch 1 on edges incident to V1, and from the
other hand, for edges inside G[V2] we will have stretch of Õ(

√
|E(G[V2])| · nα) ≤ Õ(

√
m · nα).

Theorem 6. For any integer g ≥ 1, there is an algorithm that in g rounds of communication, where
each player communicates Õ(nα) bits, outputs a spanner with stretch

min

{
(12 + o(1)) · n(1−α)· 2

g · log n , Õ

(
n

(g+1)(1−α)
2g+1

)}
.

Proof. We use the same set of subsets of vertices as in Theorem 8, i.e., let P ⊂ 2[n] be a set of subsets
of [n] such that: (1) |P| = O(n2α log n), (2) every P ∈ P is of size |P | = O(n1−α), and (3) for every
i, j ∈ [n] there is a set P ∈ P containing both i, j. Such a collection P can be constructed by a random
sampling. Denote V = {v1, . . . , vn}. For each P ∈ P, set AP = {vi | i ∈ P}. For each P ∈ P, we use
Algorithm 1 independently on each subgraph. Then, using Theorem 4 on each subgraph, since the
size of each subgraph is O(n1−α) and since for each edge we have a subgraph that this edge is present,
the claim holds.

6 Pass-Stretch trade-off: smooth transition

In this section we study the trade-off between the stretch and the number of passes in the semi-
streaming model. Our contribution here is a smooth transition between the spanner of [BS07] (The-

6A similar argument is also given in [KMM+19].
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orem 10) and that of [KW14] (Theorem 11), achieving a general trade-off between number of passes
and stretch (while the space/number of edges is fixed).

6.1 Previous algorithms

We will use the clusters created in the algorithms of [BS07] and [KW14] as a black box. For complete-
ness in Appendix C and Appendix D we provide the construction and proof of [BS07] and [KW14],
respectively. The properties of the clustering procedure is described in Lemma 7 and Lemma 6. See
Appendix C and Appendix D for a discussion of how exactly they follow.

P ⊆ 2V is called a partial partition of V if ∪P ⊆ V , and for every P, P ′ ∈ P, P ∩ P ′ = ∅. We denote
by B(n, p) the binomial distribution, where we have n biased coins, each with probability p for head,
and we count the total number of heads.

Lemma 6 ([KW14] clustering). Given an unweighted, undirected n-vertex graph G = (V,E) in a
streaming fashion, for every parameters p ∈ (0, 1] and integer i ≤ log 1

p
n, there is a 2 pass algorithm

that uses Õ(|V |/p) space, and returns a partial partition P of V , and a subgraph H (where |H| =
Õ(|V |/p)) such that:

• P is known at the end of the first pass, and |P| is distributed according to B(|V |, pi).
• Each cluster P ∈ P has diameter at most 2i+1 − 2 w.r.t. H.
• For every edge (u, v) such that at least one of u, v is not in ∪P, it holds that dH(u, v) ≤ 2i− 1.

Lemma 7 ([BS07] clustering). Given an unweighted, undirected n-vertex graph G = (V,E) in a
streaming fashion, for every parameters p ∈ (0, 1] and integer i ≤ log 1

p
n, there is an i + 1 pass

algorithm that uses Õ(|V |/p) space, and returns a partial partition P of V , and a subgraph H (where
|H| = Õ(|V |/p)) such that:

• P is known at the end of the i‘th pass, and |P| is distributed according to B(|V |, pi).
• Each cluster P ∈ P has diameter at most 2i w.r.t. H.
• For every edge (u, v) such that at least one of u, v is not in ∪P, it holds that dH(u, v) ≤ 2i− 1.

6.2 Algorithms

We begin with a construction based on Lemma 6. In this regime we are interested in at most log k
passes.

Theorem 2. For every real k ∈ [1, log n], and integer g ∈ [1, log k], there is a g+1 pass dynamic stream

algorithm that given an unweighted, undirected n-vertex graph G = (V,E), uses Õ(n1+ 1
k ) space, and

computes w.h.p. a spanner H with Õ(n1+ 1
k ) edges and stretch 2 · (2d(

k+1
2

)
1/ge − 1)g − 1 < 2g·k

1/g · 2g+1.

Proof. Fix r =
⌈
(k+1

2 )1/g
⌉
− 1. For i ∈ [1, g + 1] set d1 = 1

k and in general di = 1
k + r

∑i−1
q=1 dq. By

induction it holds that di = (r+1)i−1

k , as

ds+1 =
1

k
+ r

s∑
q=1

dq = r · ds +
1

k
+ r

s−1∑
q=1

dq = (r + 1) · ds =
(r + 1)s

k
.

In addition, set pi = n−di . Our algorithm will work as follows, In the first pass we use Lemma 6 with
parameter p1 and r to obtain a spanner H1 and partial partition P1. We construct a super graph G1
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of G by contracting all internal edges in P1, and deleting all vertices out of ∪P1. As P1 is known after
a single pass, the construction of G1 takes a single pass.

Generally, after i iterations, which took us i passes, we will have spanners H1, . . . ,Hi, partition Pi of
V and a super graph Gi which was constructed by contracting the clusters in Pi, and deleting vertices
out of ∪Pi. We invoke Lemma 6 with parameters pi and r to obtain a spanner Hi+1, and partition
Pi+1. In Remark 5, we explain how to use Lemma 6 on a super graph Gi rather than on G. Farther,
instead of obtaining spanner Hi+1 of Gi, we can obtain a spanner Hi+1 of G such that for every edge
ẽ = (C,C ′) ∈ Hi+1, Hi+1 contains a representative edge e ∈ E(C,C ′). Then, we create a super graph
Gi+1 out of Gi by contracting the clusters in Pi+1, and deleting clusters out of ∪Pi+1. Finally, after g
passes, we will have a partition Pg of V . In the g + 1’th pass, for every pair of clusters C,C ′ ∈ Pg,
we try to sample a single edge from E(C,C ′) using Lemma 2. All the sampled edges will be added to
a spanner Hg+1. Note that |Hg+1| ≤

(|Pg |
2

)
. The final spanner H = ∪g+1

i=1Hi will be constructed as a
union of all the g + 1 spanners we constructed.

Next, we turn to analyzing the algorithm. First for the number of passes, note that the construction
of Pi is done at the i’th pass, while we finish constructing Hi only in the i+ 1’th pass. In particular,
in the i+1’th pass we will simultaneously construct Hi and Pi+1. This is possible as Pi (and therefore
Gi) is already known by the end of the i’th pass. An exception is Hg+1 which is computed in a single
g + 1’th pass (where we also simultaneously construct Hg).

It follows from Lemma 6, that for every j, |Pj | is distributed according to B(n, pr1 · pr2 · · · prj), thus

E [|Pi|] = n ·Πj
q=1pq−1 = n1−r

∑j
q=1 dq = n1+ 1

k
−dj+1 .

In particular, using Chernoff inequality (see e.g., thm. 7.2.9. here)

Pr
[
|Pj | ≥ 2 · n1+ 1

k
−dj+1

]
≤ exp

(
−1

4
n1+ 1

k
−dj+1

)
.

Thus w.h.p. for every j, |Pj | = O(n1+ 1
k
−dj+1). The rest of the analysis is conditioned on this bound

holding for every j. According to Lemma 6, for every j it holds that

|Hj | ≤ Õ(
|Pj−1|
pj

) = Õ(n1+ 1
k
−dj · ndj ) = Õ(n1+ 1

k ) .

Furthermore,

|Hg+1| ≤ |Pg|2 = O(n2(1+ 1
k
−dg+1)) = O(n2(1+ 1

k
− (r+1)g

k
)) ≤ O(n1+ 1

k )

where the last inequality follows as 1 + 1
k −

(r+1)g

k ≤ 1 + 1
k −

k+1
2k = 1

2(1 + 1
k ). We conclude the we

return a spanner of size |H| = Õ(n1+ 1
k ), and used Õ(n1+ 1

k ) space in every pass.

Finally, we analyze stretch. Denote by Di the maximal diameter of a cluster in Pi w.r.t to G. Here
P0 = V and thus D0 = 0. By Lemma 6, the diameter of each cluster in Pi w.r.t. Gi−1 is bounded
by α = 2r+1 − 2. As every path inside an Gi cluster will use at most α edges from Hi, and will go
through at most α + 1 different clusters in Gi−1, it follows that Di+1 ≤ α + (α+ 1)Di. As D0 = 0
(singleton clusters), solving this recursion yields

Di = (α+ 1)i − 1 = (2r+1 − 1)i − 1 .

Consider a pair of neighboring vertices u, v. If there is some cluster at some level i ≤ g containing both
u, v, then dH(u, v) ≤ (2r+1− 1)g− 1. Else, let i ∈ [1, g] be the minimal index i such that {u, v} * ∪Pi
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(denote Pg+1 = ∅). If i ≤ g, then there is a path in Hi of length 2r − 1 between the clusters in Pi−1

containing u, v. It thus holds that

dH(u, v) ≤ (2r − 1) + 2r ·Di−1 = 2r ·
(
1 + (2r+1 − 1)i−1 − 1

)
− 1

= 2r · (2r+1 − 1)i−1 − 1 ≤ 2r · (2r+1 − 1)g−1 − 1

Otherwise, if i = g + 1, then there is an edge in Hg+1 between two Pg clusters containing u and v. It
follows that

dH(u, v) ≤ 1 + 2 ·Dg = 1 + 2 ·
(
(2r+1 − 1)g − 1

)
= 2 · (2d(

k+1
2

)
1/ge − 1)g − 1 < 2g·k

1/g · 2g+1 , (6.1)

which is the maximum among the three bounds. The theorem follows.

Using the same algorithm, while replacing Lemma 6 with Lemma 7, we obtain the following,

Theorem 3. For every real k ∈ [1, log n], and integer g ∈ [1, log k], there is a g ·
(⌈

(k+1
2 )1/g

⌉
− 1
)

+

1 < g · k1/g + 1 pass dynamic stream algorithm that given an unweighted, undirected n-vertex graph
G = (V,E), uses Õ(n1+ 1

k ) space, and computes w.h.p. a spanner H with Õ(n1+ 1
k ) edges and stretch

2 ·
(
2 ·
⌈
(k+1

2 )1/g
⌉
− 1
)g − 1 ≈ 2g · (k + 1).

Proof. We proceed in the same manner as in Theorem 2, where the only difference is that we use
Lemma 7 instead of Lemma 6. In particular, we use the same parameters r =

⌈
(k+1

2 )1/g
⌉
− 1, and

dj , pj as before, for g iterations. See Remark 4 for why we can use Lemma 7 over a super graph Gi in
this case. Similarly, in the last pass we will add an edge between every pair of Pg clusters. It follows

from the analysis of Theorem 2 that we are using Õ(n1+ 1
k ) space and return a spanner with Õ(n1+ 1

k )
edges. To analyze the number of passes used, note that in each of the g iterations we need only r
passes, where the r+ 1’th pass can be done simultaneously to the first pass in the next iteration. We
will also execute the last special pass at the end (together with the r+ 1’th pass of the g’th iteration).
Thus in total g · r + 1 = g ·

(⌈
(k+1

2 )1/g
⌉
− 1
)

+ 1 < g · k1/g + 1 passes.

To bound the stretch, we will first analyze the maximal diameter Di of the cluster constituting Gi.
It holds that D0 = 0, while by Lemma 7 each cluster in Gi has diameter 2r w.r.t. Gi−1. Thus
Di ≤ 2r + (2r + 1)Di−1. Solving this recursion we obtain

Di ≤ (2r + 1)i − 1 .

Consider a pair of neighboring vertices u, v. If there is some cluster at some level i ≤ g containing
both u, v, then dH(u, v) ≤ (2r + 1)g − 1. Else, let i ∈ [1, g + 1] be the minimal index i such that
{u, v} * ∪Pi (denote Pg+1 = ∅). If i ≤ g, then there is a path in Hi of length 2r − 1 between the
Pi−1 clusters containing u, v. It thus holds that

dH(u, v) ≤ 2r − 1 + 2r ·Di−1 = 2r · (2r + 1)i−1 − 1 < (2r + 1)g

Otherwise, if i = g + 1, then there is an edge in Hg+1 between two Pg clusters containing u and v. It
follows that

dH(u, v) ≤ 1 + 2 ·Dg = 1 + 2 · ((2r + 1)g − 1)

= 2 ·
(

2 ·
⌈

(
k + 1

2
)
1/g

⌉
− 1

)g
− 1 ≈ 2g · (k + 1) (6.2)

which is the maximum among the three bounds. The theorem follows.
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6.3 Corollaries

In this subsection we emphasize some cases of special interest that follow from Theorem 2 and The-
orem 3. In all the corollaries and the discussion above we discuss a dynamic stream algorithms over
an n vertex graphs, that use Õ(n1+ 1

k ) space and w.h.p. return a spanner with Õ(n1+ 1
k ) edges. The

performance of the different algorithms is illustrated in Table 1 for some specific parameter regimes.

First, surprisingly we obtain a direct improvement over [KW14] and [BS07]. Specifically, in Corollary 5
we obtain a quadratic improvement in the stretch, while still using only 2 passes. Then, in Corollary 6,
for the case where k is an odd integer, we achieve the exact same parameters as [BS07], while using only
half the number of passes. Next, we treat the case where we are allowed log k passes. Interestingly, for
this case, Theorem 2 and Theorem 3 coincide, and obtain stretch ≈ klog 3, a polynomial improvement
over the klog 5−1 stretch in log k passes by Ahn, Guha, and McGregor [AGM12c]. Another interesting
case is that of 3 passes. In Corollary 8 we show that using a single additional pass compared to [KW14]
(and Corollary 5), we obtain an exponential improvement in the stretch. Finally, when one wishes
to get close to optimal stretch, in Corollary 9 we show that compared to [BS07], we can reduce the
number of passes quadratically, while paying only additional factor of 2 in the stretch.

Corollary 5. There is a 2 pass algorithm that obtains stretch 2d
k+1
2 e+1 − 3.

Proof. Fix g = 1, then by Theorem 2 in two passes we obtain stretch 2 · (2d
k+1
2 e −1)−1 = 2d

k+1
2 e+1−

3.

Corollary 6. For an odd integer k ≥ 3, there is a k+1
2 -pass algorithm that obtains stretch 2k − 1.

Proof. Fix g = 1, then by Theorem 3 there is a
⌈
k+1

2

⌉
= k+1

2 pass algorithm that obtain stretch

2 ·
(
2 · (k+1

2 )− 1
)
− 1 = 2k − 1.

Corollary 7. There is an dlog(k+1)e pass algorithm that obtains stretch 2·3dlog k+1
2
e−1 ≤ 2·klog 3−1.

Proof. Set g = dlog k+1
2 e, then using we are using dlog k+1

2 e + 1 = dlog(k + 1)e passes while having

stretch 2 · (2d(
k+1
2

)
1/ge − 1)g − 1 = 2 · 3dlog k+1

2
e − 1 ≤ 2 · klog 3 − 1.

Interestingly, using the same g in Theorem 3, we will also obtain the exact same result! Specif-
ically, a spanner in g ·

(⌈
(k+1

2 )1/g
⌉
− 1
)

+ 1 = dlog k+1
2 e + 1 = dlog(k + 1)e passes, with stretch

2 ·
(
2 ·
⌈
(k+1

2 )1/g
⌉
− 1
)g − 1 = 2 · 3dlog k+1

2
e − 1.

Following the proof of Theorem 2, set g = dlog k+1
2 e ≤ log k. Then

⌈
(k+1

2 )1/g
⌉

= 2. By Theorem 2 we

obtain stretch 2 · (2d(
k+1
2

)
1/ge − 1)g − 1 = 2 · 3dlog k+1

2
e − 1 ≤ 2 · klog 3 − 1, while the number of passes is

g + 1 = dlog(k + 1)e.
Interestingly, using the same g in Theorem 3, we will also obtain the exact same result! Specifically, a
spanner in g ·r+1 = g+1 = dlog(k+1)e passes, while the stretch will be 2 ·

(
2 ·
⌈
(k+1

2 )1/g
⌉
− 1
)g−1 =

2 · 3g − 1.

Note that for k = 3, both Corollary 5, Corollary 6 and Corollary 7 obtain the best stretch possible:
5, while using only two passes.

Corollary 8. There is a 3 pass algorithm that obtains stretch 2 · (2
⌈√

k+1/2
⌉
− 1)2 − 1 < 2

√
2k+2+3.

Proof. Fix g = 2, then by Theorem 2 we have a 3 pass algorithm with stretch 2 · (2d
√
k+1/2e−1)2−1 <

2
√

2k+2+3.
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Corollary 9. There is a
√

2(k + 1) + 1 pass algorithm that obtains stretch

8
⌈√

k+1/2

⌉
(
⌈√

k+1/2

⌉
− 1) + 1 ≈ 4k.

Proof. Fix g = 2, then by Theorem 3 there is a 2 · d
√
k+1/2e − 1 pass algorithm that obtains stretch

2 · (2 · d
√
k+1/2e − 1)2 − 1 = 8d

√
k+1/2e · (d

√
k+1/2e − 1) + 1.

Ref Space #Passes Stretch

k = 7

[BS07] Õ(n1+ 1
7 ) 7 13

Corollary 6 Õ(n1+ 1
7 ) 4 13

Corollary 9 Õ(n1+ 1
7 ) 3 17

[AGM12c] Õ(n1+ 1
7 ) 3 90

Corollary 7 Õ(n1+ 1
7 ) 3 17

Corollary 8 Õ(n1+ 1
7 ) 3 17

[KW14] Õ(n1+ 1
7 ) 2 127

Corollary 5 Õ(n1+ 1
7 ) 2 29

k = 31

[BS07] Õ(n1+ 1
31 ) 31 61

Corollary 6 Õ(n1+ 1
31 ) 16 61

Corollary 9 Õ(n1+ 1
31 ) 9 97

[AGM12c] Õ(n1+ 1
31 ) 5 2901

Corollary 7 Õ(n1+ 1
31 ) 5 161

Corollary 8 Õ(n1+ 1
31 ) 3 449

[KW14] Õ(n1+ 1
31 ) 2 231 − 1

Corollary 5 Õ(n1+ 1
31 ) 2 217 − 3

k = 71

[BS07] Õ(n1+ 1
71 ) 71 141 ≈ 27.1

Corollary 6 Õ(n1+ 1
71 ) 36 141 ≈ 27.1

Corollary 9 Õ(n1+ 1
71 ) 13 241 ≈ 27.9

[AGM12c] Õ(n1+ 1
71 ) 7 19882 ≈ 214.3

Corollary 7 Õ(n1+ 1
71 ) 7 1457 < 210.5

Corollary 8 Õ(n1+ 1
71 ) 3 7937 < 213

[KW14] Õ(n1+ 1
71 ) 2 271 − 1

Corollary 5 Õ(n1+ 1
71 ) 2 237 − 3

Table 1: An illustration of various trade-offs between stretch to the number of passes, for k = 7, 31, 71
achieved by different algorithms while using the same space. The parameter 7, 31, 71 were chosen to

be representatives so that
√

k+1
2 will be an integer.
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Appendix

A Conjectured hard input distribution

Let π : [n] → [n] be a uniformly random permutation. Let d > 1 be an integer parameter. Define
the distribution D′ on graphs G = (V,E), V = [n] as follows. For every pair (i, j) ∈ [n] such that
‖π(i) − π(j)‖◦ ≤ d include an edge (i, j) in E with probability 1/2, where ‖i − j‖◦ is the circular
distance on a cycle of length n. Define the distribution D on graphs G = (V,E) as follows. First sample
G′ = (V,E′) ∼ D′, and pick two edges (a, b), (c, d) ∼ Unif(E′) independently without replacement,
and let

E = (E′ ∪ {(a, c), (b, d)}) \ {(a, b), (c, d)}.
Let G = (V,E) be a sample from D. Note that with constant probability over the choice of G ∼ D one
has that the distance between G from a to c in E \ {(a, c), (b, d)} is Ω(n/d) and the distance between
c and d in E \ {(a, c), (b, d)} is Ω(n/d) (see Figure 4 for an illustration). Thus, every k-spanner with
k � n/d must contain both of these edges. We conjecture that recovering these edges from a linear
sketch of the input graph G sampled from D requires n1+Ω(1) space when d = n1/3+Ω(1). Note that the
diameter of the graph is (up to polylogarithmic factors) equals n/d, and hence this would in particular
imply that obtaining an n2/3−Ω(1) spanner using a linear sketch requires n1+Ω(1) bits of space, and
therefore imply Conjecture 1.

a b

c

d

(a) Graph G′

a b

c

d

(b) Graph G

Figure 4: Illustration of the conjectured hard input distribution

B Omitted Proofs

B.1 Omitted proofs from Section 2

Proof of Lemma 1. First, we start by the following well-known fact about `0-sampling sketching
algorithms.

Fact 5 (See e.g., [JST11, KNP+17]). For any vector ~a ∈ Rn that

• receives coordinate updates in a dynamic stream,
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• and each entry is bounded by O(poly(n)),

one can design an `0-sampler procedure, which succeeds with high probability, by storing a vector
~b ∈ Rpolylog(n), where

• (Bounded entries) each entry of ~b is bounded by O(poly(n)),

• (Linearity) there exists a matrix Π (called sketching matrix) such that ~b = Π · ~a.

Now, we use Fact 5 to prepare a data structure for `0 sampling of Ai for each i ∈ [r].7 Thus, we are
going to have r vectors, ~b1, . . . ,~br, where for each i ∈ [r] the entries of ~bi are bounded by O(poly(n)).
However, our space is limited to s·polylogn, so we cannot store these vectors. Define~b as concatenation
of ~b1, . . . ,~br. At this point, the reader should note that by assumption |I| ≤ s, which implies that at
most s · polylog(n) of entries of ~b are non-zero at the end of the stream.8 Now, we need to prepare a
Õ(s)-sparse recovery primitive for ~b. We apply the following well-known fact about sparse recovery
sketching algorithms.

Fact 6 (Sparse recovery). For any vector ~b ∈ Rn that

• receives coordinate updates in a dynamic stream,

• and each entry is bounded by O(poly(n)),

one can design a s-sparse recovery sketching procedure, by storing a vector ~w ∈ Rs·polylog(n), where

• (Bounded entries) each entry of ~w is bounded by O(poly(n)),

• (Linearity) there exists a matrix Π (called sketching matrix), where ~w = Π ·~b,

such that if Support(~b) ≤ s, then it can recover all non-zero entries of ~b.

Using Fact 6, we can store a sketch of ~b, in Õ(s) bits of space and recover the non-zero entries of ~b at
the end of the stream, which in turn recovers a non-zero element from each Ai, in ~v. In other words,
one can see this procedure as the following linear operation

~w = Π1Π2~v

where matrix Π2 ∈ Rr·polylog(n)×n is in charge of `0 sampling for each Ai and concatenation of vectors,
and Π1 ∈ R(s·polylog(n))×(r·polylog(n)) is responsible for the sparse recovery procedure.

Proof of Lemma 2. Let vector ~b be an indicator vector for edges in A × B, i.e., each entry corre-
sponds to a pair of vertices in A×B and is 1 if the edge is in the graph, and is 0 otherwise. Now, by
applying Fact 5 to this vector, one can recover an edge using space O(polylog(n)). Also, using Fact 6
with s = m, we can recover all m edges using space m · polylog(n).

7Note that we do not need to sample uniformly over the non-zero entries, and just recovering a non-zero element is
enough for our purpose, however, we still use a `0-sampling procedure.

8However, at some time during the stream, you may have more than s · polylog(n) non-zeroes, so it is not possible to

store ~b explicitly.
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B.2 Omitted proofs from Section 4

Proof of Theorem 7. Consider an edge (u, v) ∈ E. Similarly to the proof of Theorem 1, fix s :=
dĤ(u, v), and Ai := {z ∈ V | dĤ(v, z) = i} for i ∈ [0, s− 1] be all the vertices at distance i from v in

Ĥ. Set As := {z ∈ V | dĤ(v, z) ≥ s} to be all the vertices at distance at least s from v. In addition
set WH

i = wH(Ai×Ai+1) and WG
i = wG(Ai×Ai+1). Also recall that WH

−1 = WG
−1 = WH

s = WG
s = 0.

We will follow steps similar to those in Claim 2. Set

α = Θ(ε log n) such that α ≥ 10 log 1
6ε

2s

α
, (B.1)

and I =
{
i ∈ [0, s− 1] |WG

i ≤ αm
s

}
. It holds that |I| ≥

(
1− 1

α

)
s + 1, as otherwise there are more

than s
α indices i for which WG

i > αm
s , implying

∑
iW

G
i > m, a contradiction, since {WG

i }i represent
the number of elements in disjoint sets of edges. Set

Ĩ =
{
i | such that ∀j, |i− j| ≤ α

10
it holds that j ∈ I

}
.

Then there are less than s
α ·

2α
10 <

s
2 indices out of Ĩ, implying∣∣∣Ĩ∣∣∣ ≥ s

2
. (B.2)

For any index i ∈ Ĩ and any index j ∈
[
i− α

10 , i+ α
10 − 1

]
, by Claim 1,

WH
i−1 +WH

i +WH
i+1 ≥

1

ε

(
WH
i −WG

i

)
≥ 1

ε

(
WH
i −

αm

s

)
.

Assume for contradiction that WH
i > 2 · αms . Then,

WH
i−1 +WH

i +WH
i+1 >

1

ε

(αm
s
− αm

s

)
=

1

ε
· αm
s

.

Let i1 ∈ {i− 1, i, i+ 1} such that WH
i1
≥ 1

3ε ·
αm
s ≥

1
6ε ·

αm
s . Using the same argument,

WH
i1−1 +WH

i1 +WH
i1+1 ≥

1

ε

(
WH
i1 −

αm

s

)
>

1

2ε
· 1

6ε
· αm
s

.

Choose i2 ∈ {i1 − 1, i1, i1 + 1} such that WH
i2
> 1

(6ε)2
· αms . As i ∈ Ĩ, we can continue this process for

α
10 steps, where in the j step we have WH

ij
> 1

(6ε)j
· αms . In particular

WH
i α
10

> (6ε)−
α
10
αm

s
≥ 2m,

a contradiction, as H is an (1± ε)-spectral sparsifier of the unweighted graph G, where the maximal
size of a cut is m. We conclude that for every i ∈ Ĩ it holds that WH

i ≤ 2 · αms . It follows that

s−1∑
i=0

1

WH
i

≥
∣∣∣Ĩ∣∣∣ · s

2αm

≥ s2

4αm
By Equation (B.2)

= Ω̃

(
s2

m

)
By setting of α in Equation (B.1) (B.3)
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Construct an auxiliary graph H ′ from H, by contracting all the vertices inside each set Ai, and keeping
multiple edges. Note that by this operation, the effective resistance between u and v can only decrease.
The graph H ′ is a path graph consisting of s vertices, where the conductance between the i’th vertex
to the i+ 1’th is WH

i . We conclude

(1 + ε)RGu,v ≥ RHu,v By Fact 2

≥ RH′u,v As explained above

=
s−1∑
i=0

1

WH
i

Since H ′ is a path graph

= Ω̃

(
s2

m

)
By Equation (B.3) (B.4)

As u, v are neighbors in the unweighted graph G, it necessarily holds that RGu,v ≤ 1, implying that

s = Õ (
√
m).

C Baswana-Sen [BS07] spanner

Originally Baswana and Sen constructed 2k−1 spanners with Õ(n1+ 1
k ) edges in the sequential setting.

Assuming Erdős girth conjecture, this construction is optimal up to second order terms. Ahn et al.
[AGM12c] adapted the spanner of [BS07] to the dynamic-stream framework using Õ(n1+ 1

k ) space and
k passes. We begin this section with the sequential algorithm of [BS07]. Then, we will provide it’s
streaming implementation by [AGM12c], with a proof sketch. Afterwards, we will state the clustering
Lemma 7 that follows from the analysis of this algorithm, with some discussion. Interestingly, for odd
integers k, in Corollary 6, using the same clustering technique we obtain a spanner with the same
performance as [BS07], while using only half the number of passes.

Theorem 10 ([BS07]+[AGM12c]). Given an integer k ≥ 1, there is a k-pass algorithm, that given

the edges of an n-vertex graph in a dynamic stream fashion, using Õ(n1+ 1
k ) space, w.h.p. constructs

a 2k − 1-spanner with Õ(n1+ 1
k ) edges.

Proof. We will start with a sequential description of the algorithm, which is also illustrated in Algo-
rithm 3. Afterwards, we will explain how to implement this algorithm is the streaming model, and
we will finish with an analysis of its performance.

Sequential spanner construction. Initially H = ∅. The algorithm runs in k steps. We have k+1
sets V = N0 ⊇ N1 ⊇ · · · ⊇ Nk−1 ⊇ Nk = ∅. For i < k, each vertex v ∈ Ni−1, joins Ni with probability

p = n−
1
k . In each stage we will have set of clusters, rooted in Ni. Initially we have n singleton clusters.

For v ∈ Ni, it will be the root of clusters (or trees) Tv,0 ⊆ Tv,1 ⊆ · · · ⊆ Tv,i. In stage i, for each vertex
v ∈ Tu,i−1 that belong to an i−1 cluster do as follows: If u ∈ Ni, that is v also belongs to an i cluster,
do nothing. Else (u ∈ Ni−1 \ Ni), look for an edge from v towards ∪z∈NiTz,i−1, that is towards an
i− 1 cluster that becomes an i cluster. If there is such an edge ev, towards Tz,i, v joins Tz,i and ev is
added to H. Otherwise, go over all the clusters {Tz,i−1}z∈Ni , and add a single crossing edge from v
to each one of them (if exist). Note that if v did not belong to any i− 1 cluster we do nothing.
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Algorithm 3: Sequential spanner construction: ala [BS07]

input : n vertex graph G = (V,E), parameter k

output: 2k − 1 spanner H with Õ(n1+ 1
k ) edges

1 Set N0 = V and Nk = ∅. For every v ∈ N0 set Tv,0 ← {v}
2 for i = 1 to k − 1 do
3 Ni ← ∅
4 foreach v ∈ Ni−1 do

5 i.i.d. with probability n−1/k add v to Ni

6 for i = 1 to k do
7 foreach v ∈ Ni do
8 Set Tv,i ← Tv,i−1

9 foreach v ∈ (∪u∈Ni−1Tu,i−1) \ (∪u∈NiTu,i−1) do
10 Sample an edge ev = (v, y) ∈ {v} × ∪u∈NiTu,i−1

11 if ev 6= ∅ then
12 Add ev to H
13 Let u ∈ Ni s.t. y ∈ Tu,i−1, add v to Tu,i

14 else
15 foreach u ∈ Ni−1 do
16 Sample an edge ev ∈ {v} × Tu,i−1

17 if ev 6= ∅ then add ev to H

18 return H

Streaming implementation. Each step of the algorithm is implemented in a single streaming
pass. In the i’th pass, for every vertex v ∈ ∪z∈Ni−1\NiTz,i−1, using Lemma 2 we will sample an edge
ev = (v, y) ∈ {v}×∪z∈NiTz,i−1. This will determine whether v joins an i-cluster. In addition, for each

such vertex v ∈ ∪z∈Ni−1\NiTz,i−1, we will sample Õ(n
1
k ) edges from the star graph Gv,i−1 defined as

follows: the set of nodes will be {v} ∪Ni−1 where there is an edge from v to z ∈ Ni−1 in Gv,i−1 iff in
G there is an edge from v to a vertex in Tz,i−1. Note that we can interpret the edge stream for G as
an edge stream for Gv,i−1 (by ignoring all non-relevant edges). Thus we can use Lemma 2. In case
v did not joined i cluster, next in the i + 1 pass, for every sampled edge (v, z) from Gv,i−1, we will
sample an edge ev,z from {v} × Tz,i−1 using Lemma 2 and add it to H.
For the last stage, Nk = ∅, for each vertex v ∈ ∪z∈Nk−1

Tz,k−1, instead of looking for an neighbor in
an k cluster, we will simply sample a single edge from v the each cluster in {Tz,k−1}z∈Nk−1

(using
Lemma 2), and add it to H.

Analysis. We start by bounding the space, and number of edges. First note than perhaps for the
last round, according to Lemma 2 we are using at most Õ(n

1
k ) space per vertex per round, and thus

a total of Õ(n1+ 1
k ). Considering the last round, set µ = E[|Nk−1|] = n1− k−1

k = n
1
k , by Chernoff

inequality (see e.g. thm. 7.2.9. here), Pr[||Nk−1| − µ| ≥ µ + O(log n)] = poly( 1
n). Hence w.h.p.

|Nk−1| = Õ(n
1
k ). If this event indeed occurred, in the last k’th round we will be using additional

Õ (n · |Nk|) = Õ
(
n1+ 1

k

)
space to sample edges towards the last level clusters.

For a vertex z, if Gz,i−1 contains Ω(n
1
k log n) vertices (in other words there are at least Ω(n

1
k log n)
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i − 1 cluster containing a neighbor of z), then the probability that z will fail to join an i cluster is

bounded by (1−n−
1
k )Ω(n

1
k logn) = n−Ω(1). Thus we will assume that for every level i ≤ k−1 and vertex

z such that Gz,i−1 contains Ω(n
1
k log n), z will have an edge towards an i cluster. By Lemma 2 w.h.p.

we will sample such an edge. In the other case, by Lemma 2 again w.h.p. we will manage to sample
all the edges in Gz,i−1. It follows that using Õ(n1+ 1

k ) space we manage to implement Algorithm 3

fatefully. In particular H contains Õ(n1+ 1
k ) edges.

It remains to analyze the stretch. By induction, it easily follows that for each i cluster Tv,i has radius
at most i w.r.t. v in H. Consider an edge (x, y) in G. Suppose that the highest level cluster x
(resp. y) belongs to is Tv,i (resp. Tu,j) where w.l.o.g i ≤ j. If Tv,i = Tu,j then by the radius bound
dH(x, y) ≤ dH(x, v) + dH(v, y) ≤ 2i ≤ 2k− 2. Else, we added an edge from x to a vertex y′ belonging
to an i cluster Tu′,i containing y. Thus

dH(x, y) ≤ dH(x, y′) + dH(y′, u′) + dH(u′, y) ≤ 1 + 2 · i ≤ 1 + 2 · (k − 1) = 2k − 1 . (C.1)

[BS07] clustering We can stop the running of Algorithm 3 after i+ 1 iterations for some i < k. In
fact, we can do this even if k ≥ 1 is not integer. we conclude:

Lemma 7 ([BS07] clustering). Given an unweighted, undirected n-vertex graph G = (V,E) in a
streaming fashion, for every parameters p ∈ (0, 1] and integer i ≤ log 1

p
n, there is an i + 1 pass

algorithm that uses Õ(|V |/p) space, and returns a partial partition P of V , and a subgraph H (where
|H| = Õ(|V |/p)) such that:

• P is known at the end of the i‘th pass, and |P| is distributed according to B(|V |, pi).
• Each cluster P ∈ P has diameter at most 2i w.r.t. H.
• For every edge (u, v) such that at least one of u, v is not in ∪P, it holds that dH(u, v) ≤ 2i− 1.

Proof sketch. We run the algorithm of Theorem 10 for i+ 1 rounds, where each vertex v ∈ Nj−1 joins
Nj with probability p. Here P = {Tv,i}v∈Ni . Thus indeed |P| distributed according to B(|V |, pi). It
follows from the analysis of Theorem 10, that each cluster in Tv,i ∈ P has radius i, and thus diameter
2i. Finally, according to eq. (C.1), if x /∈ ∪P, then for every y, dH(x, y) ≤ 1 + 2(i− 1) = 2i− 1.

Remark 4. [Super graph clustering] During the algorithm of Theorem 3, we actually use Lemma 7
for a super graph G of G rather than for the actual graph. Specifically, there is a partial partition of
G into clusters C, and there is an edge between clusters C,C ′ ∈ C in G if and only if E(C,C ′) 6= ∅.
We argue that Lemma 7 can be used in this regime as well. First, given such a representation of a
super graph using partial partition C, we can treat a stream of edges for G as a stream of edges for
G. Specifically, when seeing an insertion/deletion of an edge e = (u, v): if either u, v belong to the
same cluster, or one of them doesn’t belong to a cluster at all- simply ignore e. Otherwise, simulate
insertion/deletion the edge ẽ = (C1, C2), where C1, C2 ∈ C are the clusters containing u, v.
Second, even though initially we suppose to receive a spanner H of G, we can actually instead obtain for
every edge ẽ = (C,C ′) ∈ H, a representative edge e ∈ E(C,C ′). To see this, note that in Algorithm 3
there are two types of edges added to H. Consider C ∈ TC̃,j−1. Then in the j’th pass, C “will try”

to join a j cluster, specifically we sample a single edge from C towards ∪C′∈NjTC′,j−1, and also Õ(1
p)

edges in the auxiliary graph GC,j−1. If we manage to sample an edge towards ∪C′∈NjTC′,j−1, than we
can sample a representative in G for this edge in the next j + 1’th pass. Else, in the j + 1’th pass
the algorithm will sample a representative for each edge in GC,j−1. Observe, that as the algorithm
samples a representative edges between clusters in G, say from C to TC′,j−1 we actually can instead
sample an edge between the actual clusters in G, C,

⋃
TC′,j−1 ⊂ V .
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Algorithm 4: [KW14] sequential spanner construction

input : n vertex graph G = (V,E), parameter k

output: 2k − 1 spanner H with Õ(n1+ 1
k ) edges

1 Set H = ∅, N0 = V and Nk = ∅
2 for i = 1 to k − 1 do
3 Ni = ∅
4 for v ∈ V do

5 With probability n−
i
k , add v to Ni, and set Tv,i = {v}

6 for i = 1 to k do
7 foreach v ∈ Ni−1 do
8 Sample an edge ev = {x, u} ∈ Tv,i−1 ×Ni

9 if ev 6= ∅ then
10 Add ev to H
11 Tu,i ← Tu,i ∪ Tv,i−1

12 else
13 foreach vertex z ∈ N (Tv,i−1) do
14 Sample an edge ez ∈ Tv,i−1 × {z}, add ev to H.

15 return H

D Kapralov-Woodruff [KW14] Spanner

Kapralov and Woodruff constructed a spanner in 2 passes of a dynamic stream, with stretch 2k − 1
using Õ(n1+ 1

k ) space. Their basic approach is similar to [BS07], where the difference is that all the
clustering steps are done in a single pass, using the linear nature of `0 samplers. As a result, the
diameter of an i-level cluster is blown up from 2i to 2i+1 − 2. We begin this section by providing
the details of [KW14] algorithm. Afterwards, we will state the clustering Lemma 6 that follows from
the analysis of this algorithm, with some discussion. Surprisingly, in Corollary 5, using the same
clustering technique, in 2 passes only using the same space, we obtain a quadratic improvement in
the stretch compared to [KW14].

Theorem 11 ([KW14]). For every integer k ≥ 1, there is a 2 pass dynamic stream algorithm that

given an unweighted, undirected n-vertex graph G = (V,E), uses Õ(n1+ 1
k ) space, and computes w.h.p.

a spanner H with Õ(n1+ 1
k ) edges and stretch 2k − 1.

Proof. We begin by providing a sequential version of [KW14] algorithm, which is also illustrated in
Algorithm 4. Then we will show how to implement it in 2 passes of a dynamic stream and sketch
the analysis. Given a cluster C ⊆ V , we denote by N (C) = {u ∈ V \ C | E ∩ (u× C) 6= ∅} the set of
vertices out of C with a neighbor in C.

Sequential spanner construction. There are two steps: clustering, and adding edges between
clusters. Initially H = ∅. Sample sets N0, N1, . . . , Nk−1, Nk as follows: N0 = V and Nk = ∅. Each

vertex v ∈ V joins Ni i.i.d. with probability n−
i
k . Note that the sets are not necessarily nested.

For v ∈ Ni set Tv,i = {v}. We will have k − 1 clustering steps. Initially each vertex v belongs to
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a 0-level singleton cluster Tv,0. In general, for level i we will have a collection of i − 1-level clusters
{Tv,i−1}v∈Ni−1 , and will construct i-level clusters. Ni will be the centers of this clusters. For each
v ∈ Ni−1, we will pick a random edge ev = (x, u) ∈ Tv,i × Ni+1 (if exist, if v ∈ Ni it can also pick
itself). Then ev will be added to H, and all the vertices in Tv,i−1 will join Tu,i. If no such edge exist,
we say that Tv,i−1 is a terminal cluster. Denote by Ii−1 ⊆ Ni−1 the set of centers of terminal clusters.
For each v ∈ Ii−1, add to H a single edge from Tv,i−1 to every vertex in N (Tv,i), the neighbors of Tv,i.
Note that every k − 1 cluster, is a terminal cluster, thus Ik−1 = Nk−1. See Algorithm 4.

Streaming implementation There will be two passes. In the first we will create the clusters of
all the levels. In the second pass we will add edge from the terminal clusters to their neighbors. The
sets N1, N2, . . . , Nk−1 are sampled before the first pass. During the first pass we will maintain an `0
sampler from each vertex v to each set Ni, i.e. for the sets v ×N1, v ×N2, . . . , v ×Nk−1. Due to the
linear nature of `0 samplers, consider an i − 1-cluster Tv,i−1, given samplers for {u × Ni}u∈Tv,i−1 we
can sample w.h.p. an edge from Tv,i−1 × Ni (see Fact 5). In particular, either Tv,i−1 will join an i
level cluster, or v will join Ii−1. We can preform all the k − 1 steps of clustering after the first pass.

During the second pass, for every index i ∈ [0, k − 1], and every v ∈ Ii we will use Lemma 1 with

parameter s = Õ(n
i+1
k ) to sample edges from Tv,i to every neighbor in N (Tv,i). Specifically, we can

think on edges as a vector ~v ∈ R|Tv,i|×|V \Tv,i| where every pair in Tv,i × (V \ Tv,i) has a representative
coordinate. This coordinates are divided to |V \Tv,i| sets in the natural way, where the goal is to sample
a non empty coordinate (i.e. edge) from each non-empty set of coordinates. The edges corresponding
to the sampled coordinates will be added to the spanner.

Analysis sketch. Using Chernoff bound (see e.g. thm. 7.2.9. here), w.h.p. for every index

i ∈ [1, k − 1], |Ni| = Õ(n1− i
k ). The number `0 samplers used during the first pass is n · k, thus the

overall space used is Õ(n). For a cluster Tv,i, if N (Tv,i) then w.h.p. (again using Chernoff) v /∈ Ii
(as each vertex in N (Tv,i) joins Ni+1 independently with probability |Ni| = O(n−

i
k )). Hence using

Lemma 1 we will indeed succeed in recovering an edge to each neighbor in N (Tv,i). We conclude that
the streaming algorithm faithfully implemented Algorithm 4. The total space (and hence also number
of edges) used in the second pass is bounded by

k−1∑
i=0

|Ii| · Õ(n
i+1
k ) ≤

k−1∑
i=0

|Ni| · Õ(n
i+1
k ) =

k−1∑
i=0

·Õ(n1− i
k ) · Õ(n

i+1
k ) = Õ(n1+ 1

k ) .

Regarding stretch, we argue by induction that the radius of Tv,i in H w.r.t. v is bounded by 2i − 1.
Indeed it holds for i = 0 as each Tv,0 is a singleton. For the induction step, consider a cluster Tv,i, and
let z ∈ Tv,i be some vertex. If v ∈ Ni−1 and z ∈ Tv,i the bound follows from the induction hypothesis.
Otherwise, there is some center u ∈ Ni−1 such that z ∈ Tu,i−1, and H contains an edge from some
vertex x ∈ Tu,i−1 to v. We conclude dH(z, v) ≤ dH(z, u)+dH(u, x)+dH(x, v) ≤ 2(2i−1−1)+1 = 2i−1.
Next consider an edge (x, y) in G. If there is some terminal cluster Tv,i containing both x, y then
dH(x, y) ≤ dH(x, v) + dH(v, y) ≤ 2 · (2i − 1) ≤ 2k − 2. Else, let i be the minimal number such that
either x or y belong to a terminal cluster. By minimality there are vx, vy ∈ Ni such that x ∈ Tvx,i
and y ∈ Tvy ,i. W.l.o.g. Tvx,i is a terminal cluster. In particular the algorithm adds an edge towards y
from some vertex z ∈ Tvx,i. We conclude,

dH(x, y) ≤ dH(x, vx) + dH(vx, z) + dH(z, y) ≤ 2(2i − 1) + 1 = 2i+1 − 1 ≤ 2k − 1 . (D.1)
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For our construction, we will run [KW14] algorithm for i steps only. The result is the following:

[KW14] clustering We can stop the running of Algorithm 4 after i+ 1 iterations for some i < k.
In fact, we can do this even if k ≥ 1 is not integer. we conclude:

Lemma 6 ([KW14] clustering). Given an unweighted, undirected n-vertex graph G = (V,E) in a
streaming fashion, for every parameters p ∈ (0, 1] and integer i ≤ log 1

p
n, there is a 2 pass algorithm

that uses Õ(|V |/p) space, and returns a partial partition P of V , and a subgraph H (where |H| =
Õ(|V |/p)) such that:

• P is known at the end of the first pass, and |P| is distributed according to B(|V |, pi).
• Each cluster P ∈ P has diameter at most 2i+1 − 2 w.r.t. H.
• For every edge (u, v) such that at least one of u, v is not in ∪P, it holds that dH(u, v) ≤ 2i− 1.

Proof sketch. We run the first pass in the algorithm of Algorithm 4 for i rounds, where each vertex
v ∈ Nj−1 joins Nj with probability p. Here P = {Tv,i}v∈Ni . Thus indeed |P| distributed according to
B(|V |, pi). It follows from the analysis of Theorem 11, that each cluster in Tv,i ∈ P has radius 2i − 1,
and thus diameter 2i+1−2. Finally, if x /∈ ∪P, then x belongs to an i−1-level terminal cluster. Hence
according to eq. (D.1), for every neighbor y of x in G, dH(x, y) ≤ 2(i−1)+1 − 1 = 2i − 1.

Remark 5. [Super graph clustering] Similarly to our usage of Lemma 7 discusses in Remark 4, here
as well during the algorithm of Theorem 2, we actually use Lemma 6 for a super graph G of G rather
than for the actual graph. Specifically, there will be a partial partition of G into clusters C, and G will
be defined over C, where there is an edge between clusters C,C ′ ∈ C in G if and only if E(C,C ′) 6= ∅.
See Remark 4 for an explanation of why we can treat a stream of edges over G, as a stream over G.
Note that even though initially we suppose to receive a spanner H of G, we can actually instead obtain
for every edge ẽ = (C,C ′) ∈ H, a representative edge e ∈ E(C,C ′). For edges add to the spanner
during the first pass, we can simply sample a representations in the second pass. During the second pass
for each terminal cluster TC,i we added an edges towards every neighbor in N (TC,i) using Lemma 1.
Specifically we have the sets {TC,i × {C ′}}C′∈C\TC,i and sampled a single G edge from each non-empty
set. But this just correspond to edges between actual clusters in G. Thus instead we can use Lemma 1
to sample a single G edge from each non-empty set {(

⋃
TC,i)× C ′}C′∈C\TC,i.

Remark 6. While Algorithm 4 can be implemented in the dynamic steaming model in two passes
using Õ(n1+ 1

k ) space, it is impossible to do so in the simultaneous communication model where each

player can send only Õ(n
1
k ) size message in each communication round. Specifically, the problem is

that there is no equivalent to Lemma 1 in the simultaneous communication model. In more detail,

note that for each terminal cluster Tv,i ∈ N (Tv,i) the algorithm might restore Ω(n
i+1
k ) outgoing edges

from Tv,i. In particular, all this edges might be incident on small number of vertices (even one). In
the simultaneous communication model it will be impossible to restore them all.
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