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ABSTRACT
In this paper we introduce a new notion of distance between nodes
in a graph that we refer to as robust connectivity. Robust connectiv-
ity between a pair of nodes u and v is parameterized by a threshold
κ and intuitively captures the number of paths between u and v of
length at most κ. Using this new notion of distances, we show that
any black box algorithm for constructing a spanner can be used to
construct a spectral sparsifier. We show that given an undirected
weighted graph G, simply taking the union of spanners of a few
(polylogarithmically many) random subgraphs of G obtained by
sampling edges at different probabilities, after appropriate weight-
ing, yields a spectral sparsifier of G. We show how this be done in
Õ(m) time, producing a sparsifier with Õ(n/ε2) edges. While the
cut sparsifiers of Benczur and Karger are based on weighting edges
according to (inverse) strong connectivity, and the spectral sparsi-
fiers are based on resistance, our method weights edges using the
robust connectivity measure. The main property that we use is that
this new measure is always greater than the resistance when scaled
by a factor of O(κ) (κ is chosen to be O(logn)), but, just like re-
sistance and connectivity, has a bounded sum, i.e. Õ(n), over all
the edges of the graph.

1. INTRODUCTION
Large scale graphs are now a widely used tool for represent-

ing real world data. Many modern applications, such as search
engines or social networks, require supporting various queries on
large-scale graphs efficiently. An important primitive is maintain-
ing a succint representation that preserves certain properties of the
graph. In particular, one may be interested in supporting queries of
some notion of distance between nodes in the graph. Various no-
tions of distance between nodes of the graph have been considered
recently, e.g. shortest path distance, minimum cuts, effective resis-
tance etc. For all of these notions of ‘distance’ it is known how to
compress a graph to a small representation that allows to compute
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‘distance’ queries approximately from the compressed representa-
tion. For example, for shortest path distance this is provided by
the spanner construction algorithms of Thorup and Zwick[14] (see
also [15, 11, 2, 3, 4, 5]), for cuts this is given by sparsifiers of
Benczúr and Karger[7] (see also [9]) and for effective resistances
by spectral sparsifiers of Spielman and Srivastava [13] (see also
[6]). In fact, all of these methods for succint representation satisfy
a stronger guarantee – they support efficient queries of the corre-
sponding ‘distances’ between nodes. It should be noted here that
the latter two measures of distance essentially take into account the
set of paths between a pair of nodes in the graph as opposed to the
path of minimum length.

In this paper we introduce a new notion of distance between
nodes in a graph that we refer to as robust connectivity. Robust
connectivity between a pair of nodes u and v is parameterized by a
threshold κ and intuitively captures the number of paths between u
and v of length at most κ. Using this new notion of distances, we
show that any black box algorithm to construct a spanner can be
viewed as an algorithm to construct a sparsifier: Given a graph G,
simply take the spanners of a few (polylogarithmically many) ran-
dom subgraphs of G obtained by sampling edges at different proba-
bilities; the union of these spanners, appropriately weighted, is also
a sparsifier of G. While the cut sparsifiers of Benczur and Karger
were based on weighting edges according to (inverse) strong con-
nectivity, and the spectral sparsifiers were based on resistance, our
method weights edges using the robust connectivity measure. The
main property that we use is that this new measure is always greater
than the resistance when scaled by a factor of O(κ), but (just like
resistance and connectivity) – has a bounded sum (Õ(n)) over all
the edges of the graph. Our distance measure can be viewed as a
generlization of the affinity measure that was used in an experimen-
tal paper to study user behavior in social networks [12].

We now give an outline of our results. In order to simplify
presentation, we now define robust connectivities for unweighted
graphs. The definition for weighted graphs will be given in Sec-
tion 3. We stress here that even though we give the definition for
unweighted graphs now, we will prove all our results for weighted
graphs. Let G = (V,E) be an undirected graph. For a sampling
probability p ∈ (0, 1) denote by Gp the graph obtained by sam-
pling edges ofG with probability p. Let dG(u, v) denote the short-
est path distance between u and v in G. For a pair of nodes, the
κ-Robust Connectivity is the highest sampling probability at which
the they are at least distance κ apart inGp with constant probability.

DEFINITION 1 (ROBUST CONNECTIVITY). For a pair of nodes
(u, v) let the κ-robust connectivity qκ(u, v) denote the largest η ∈
(0, 1] such that Pr[dGη (u, v) ≥ κ] ≥ 1/2. For an edge e =
(u, v), we use qκ(e) to denote qκ(u, v).

We show that the robust connectivity upper bounds the resistance



(upto a O(κ) factor) and also has a bounded sum over all edges.

LEMMA 2. For all e ∈ E

qκ(e) ≥ Re/(2κ).

and ∑
e∈E

qκ(e) ≤ 2n1+O(1/κ)

Further, based on distance oracles, which support approximate
shortest path distance queries efficiently, one can construct an or-
acle that supports queries of approximate - robust connectivities
between any pair of nodes.

LEMMA 3. For a fixed graph G, there is a oracle that for any
pair of nodes (u, v), can be used to query an estimate q̂κ(u, v) of
κ-robust connectivity. The estimate satisfies the (slightly weaker)
conditions: for all e ∈ E

q̂κ(e) ≥ Re/(2κ2).

and ∑
e∈E

q̂κ(e) ≤ O(n1+O(1/κ))

If κ = Ω(logn), the oracle can be constructed in time Õ(m),
stores a sketch of size Õ(1) per node, and each query takes Õ(1)
time.

We note that Lemma 3 immediately yields a simple Õ(m) time
algorithm for spectral sparsification.

Let S be any black box algorithm spanner construction algo-
rithm, that on input G outputs a spanner S(G). Assume that the
distances between all pairs of nodes in S(G) are within factor
O(logn) of the true distance in G. Existing spanner construction
algorithms produce such spanners with O(n) edges in time Õ(m).
We show

THEOREM 4. Let {Gi,j : 1 ≤ i ≤ O
(

log 1
1−ε

(
n4wmax
wmin

))
,

1 ≤ j ≤ O(log3 n/ε3)} be a collection of random subgraphs of
G, where Gi,j is an independent copy of Gp for p = 1

wmin
(1 −

ε)i. Then there is a weighting of the edges of the subgraph H =
∪i,jS(Gi,j) such that it is a (1±ε)-sparsifier ofG. Moreover, such
a weighting can be constructed in Õ(m) time.

Organization.
We start by introducing definitions related to spectral sparsifica-

tion and spanners in section 2. In section 3 we give the definition
of robust connectivities and prove Lemma 2 and Lemma 3, thus
obtaining a simple algorithm for spectral sparsification. Finally, in
section 4 we prove Theorem 4.

2. BACKGROUND AND NOTATION
For a weighted undirected graph G = (V,E,w) the Laplacian

matrix of G is the matrix defined as

LG(i, j) = −w(i,j) and LG(i, i) =
∑
j 6=i

wij

DEFINITION 5 (SPECTRAL ORDERING OF GRAPHS). We de-
fine a partial ordering ≺ on graphs by letting

G ≺ H if and only if xTLGx ≤ xTLHx ∀x ∈ R|V |.

A weighted undirected graphG can be associated with an electri-
cal network with link e having conductance we (i.e. corresponding
to a resistor of resistance 1/we). Then the effective resistance Re
across an edge e is the potential difference induced across it when
a unit current is injected at one end of e and extracted at the other
end of e. We will use the following

THEOREM 6 (SPECTRAL SPARSIFICATION, [13]). Let H be
obtained by sampling edges of G independently with probability
pe = Θ(weRe logn/ε2) for some ε > 1/

√
n and giving each

sampled edge weight 1/pe. Then whp

(1− ε)G ≺ H ≺ (1 + ε)G.

The following corollary is well-known (see, e.g.[10]):

COROLLARY 7 (OVERSAMPLING). LetH be obtained by sam-
pling edges ofG independently with probability pe ≥ cweRe logn/ε2

for some ε > 1/
√
n and a sufficiently large constant c > 0, and

giving each sampled edge weight 1/pe. Then whp

(1− ε)G ≺ H ≺ (1 + ε)G.

We will also need definitions related to spanners.

DEFINITION 8 (t-SPANNER). A t-spanner of a weighted undi-
rected graph G is a subgraph H of G such that the distances in H
are stretch t estimates of the distances in G, i.e. for all u, v ∈ V
one has

dG(u, v) ≤ dH(u, v) ≤ t · dG(u, v).

3. ROBUST CONNECTIVITIES
In this section we define robust connectivities, prove their main

properties and give an efficient algorithm for approximating them.
These results together with Corollary 7 imply a simple algorithm
for spectral sparsification.

Let G = (V,E) be a weighted undirected graph with edge
weights we. For a sampling parameter p ∈ R+ denote by Gp the
unweighted random graph obtained by sampling each edge e ∈ E
independently with probability min{wep, 1}. For a graph H we
denote the shortest path distance between nodes u and v in H by
dH(u, v). We start by defining robust connectivities, for which we
need an auxiliary definition.

DEFINITION 9. LetG = (V,E) be a weighted undirected graph.
For η ∈ R+ and e ∈ E let pκ(e, η) = Pr[dGη (u, v) > κ].

Note that when G is an unweighted graph, it is sufficient to con-
sider η ∈ (0, 1].

DEFINITION 10. For e = (u, v) ∈ E let the κ-robust connec-
tivity qκ(e) denote the largest η ∈ R such that pκ(e, η) ≥ 1/2.

In what follows the parameter κwill be fixed, and we will use the
term robust connectivity for clarity. We will now show that qκ(e)
upper bounds effective resistance up to a factor of κ. We will need

LEMMA 11 (RAYLEIGH’S MONOTONICITY PRINCIPLE, [8]).
Cutting an edge of an electrical resistor network does not decrease
the effective resistance between any pair of nodes.

LEMMA 12. For all e ∈ E

qκ(e) ≥ Re/(2κ).



PROOF. We use the characterization of conductance between a
pair of nodes in an electrical resistor network as

Cuv = min
x∈RV :xs=1,xt=0

∑
e=(u,v)∈E

we(xu − xv)2. (1)

For a sampling parameter p ∈ R+ let Ep denote a random set
of edges obtained by sampling E independently with probability
min{wep, 1}. Similarly, denote the conductance of e = (u, v) in
Gp by

Cuv(p) = min
x∈RV :xs=1,xt=0

∑
e=(u,v)∈Ep

(xu − xv)2. (2)

We have

E [Cuv(p)] = E

 min
x∈RV :xs=1,xt=0

∑
e=(u,v)∈Ep

(xu − xv)2


≤ min
x∈RV :xs=1,xt=0

E

 ∑
e=(u,v)∈Ep

(xu − xv)2


= min
x∈RV :xs=1,xt=0

∑
e=(u,v)∈E

(wep)(xu − xv)2 = pCuv

and hence by Markov’s inequality, one has

Pr[Cuv(p) > 2p/Re] ≤ Pr[Cuv(p) > 2E[Cuv]] ≤ 1/2. (3)

On the other hand, for p ≥ qκ(e) one has Pr[dGp(u, v) ≤ κ] ≥
1/2. This implies by Lemma 11 that

Pr[Cuv(p) ≥ 1/κ] ≥ 1/2 (4)

since the conductance of a path of length at most κ is at least 1/κ.
Setting p = qκ(e) and combining (3) and (4), we get that

2qκ(e)/Re ≥ 1/κ, (5)

i.e. qκ(e) ≥ Re/(2κ).

We will need the following simple lemma

LEMMA 13. For all r′ < r one has pκ(e, r) ≤ pκ(e, r′).

PROOF. The result follows by coupling the process of sampling
edges at rate r′ and r such that the set of edges picked by the first
process is a subset of edges picked by the second process.

We now prove that the sum of distance thresholds over edges of
G is small. In order to do that, we relate the distance threshold of
e ∈ E to the probability of including e in a randomized spanner
construction which we now define. Note that this construction is
only used to prove an upper bound on the sum of distance thresh-
olds and, in particular, we do not provide an efficient implementa-
tion here.

The intuition behind the randomized construction of the spanner
is very simple, and we outline it here for the case of unweighted
graphs. Arrange edges of G in a random order, add for each edge
e in that order add e to the spanner H if e does not form a cy-
cle of length smaller than κ with the edges that are included so
far. It is known that such a process produces a spanner [1] with
at most n1+O(1/κ) edges. On the other hand, the set of edges that
have rank at most t in a uniformly random order essentially form
a random sample of edges of G where each edge is present with
probability t/m. Hence, the probability that the endpoints of e are
at least κ apart in the subgraph formed by edges with rank at most
t, and hence in the spanner constructed so far, is approximately

pκ(e, t/m), allowing us to conclude that each edge is taken with
probability about qκ(e), since it is taken with constant probabil-
ity if it arrives before time qκ(e) ·m. We now make a version of
this argument formal. Since ordering edges by a uniformly random
permutation causes dependencies, we choose a slightly different
but essentially equivalent approach. We first define the following

Algorithm 1: Randomized spanner construction
1: H ← (V, ∅)
2: for η = 0 to 1

wmin
with step ∆ do

3: for each e = (u, v) ∈ E do
4: γ ← min

{
1, we∆

1−weη

}
.

5: Xe(η)← Bernoulli (γ).
6: if Xe(η) = 1 then
7: Add e to H if dH(u, v) < κ.
8: end if
9: end for

10: end for

Note that intuitively, the sampling parameter η iterates over the
relevant range of sampling parameters [0, 1/wmin] with a suffi-
ciently small step ∆, sampling the edges of G in such a way that
at each time η the distribution of sampled edges is the same as in
Gη . For sufficiently small ∆, we have that

∑
eXe(η) ≤ 1 for all

η with high probability. More precisely, we say that an edge e ∈ E
is sampled by time η by Algorithm 1 if Xe(η′) = 1 for at least one
η′ ∈ [0, η]. Note that an edge e that is sampled is not necessarily
included in H . Denote the set of edges sampled by Algorithm 1 by
time η by Es(η). Denote the set of edges included in H by time η
by EH(η). The crucial property of Algorithm 1 that we will use in
our analysis is

LEMMA 14. Es(η) is distributed as a uniformly random inde-
pendent sample of edges of E, where edge e ∈ E is picked with
probability min{1, weη}.

PROOF. Since the coin tosses for different edges are indepen-
dent, it is sufficient to consider a fixed e ∈ E. We prove by induc-
tion on η (recall that η iterates over a discrete set) that

Pr[e ∈ Es(η)] = min {1, weη} .

Base:η = 0 One has Pr[e ∈ Es(η)] = min{1, weη} = 0.

Inductive step:η → η + ∆ One has

Pr[e ∈ Es(η + ∆)] = Pr[e ∈ Es(η)]

+Pr[e sampled at step η + ∆|e 6∈ Es(η)]Pr[e 6∈ Es(η)]

= Pr[e ∈ Es(η)]

+Pr[e sampled at step η + ∆]Pr[e 6∈ Es(η)]

= weη + min

{
1,

we∆

1− weη

}
(1− weη) .

Since

min

{
1,

we∆

1− weη

}
=

{
1, we(η + ∆) ≥ 1
we∆

1−weη o.w. ,

we get that

Pr[e ∈ Es(η + ∆)] = min {1, we(η + ∆)} .

We now (almost) mirror the definition of qκ(e) for the random-
ized spanner construction for use in the analysis



DEFINITION 15. Let q∗e (κ) denote the probability of including
edge e ∈ E in H in Algorithm 1, i.e.

q∗κ(e) = Pr[e ∈ EH(R)].

We can now prove

LEMMA 16. For all e ∈ E

qκ(e) ≤ 2q∗κ(e).

PROOF. Fix an edge e ∈ E and let η∗ = qκ(e). We first note
that by Lemma 13, the probability that e is added to H if e is sam-
pled at time η′ is only larger than the probability that e is added if
it appears at time η > η′. Thus, we have

q∗κ(e) ≥ Pr[e ∈ EH(η∗)] ≥ Pr[e ∈ Es(η∗)]/2 = qκ(e)/2. (6)

Hence, we get

LEMMA 17. ∑
e∈E

weqκ(e) ≤ 2n1+O(1/κ)

PROOF. One has
∑
e∈E weq

∗(e) = E[|E(H)|], where H is
the random spanner constructed by Algorithm 1. By construction
H does not have cycles of length less than κ, and hence |E(H)| ≤
n1+O(1/κ) (see, e.g. [8]). Now the result follows by Lemma 16.

Now the proof of Lemma 2 follows by putting together Lemma 16
and Lemma 12. We now proceed to give an algorithm for efficiently
obtaining estimates q̂κ(u, v) of qκ(u, v) guaranteed by Lemma 3.

3.1 Estimating qκ(e)

We now show how obtain surrogate values q̂κ(e) that we will use
in place of qe(κ) such that q̂κ(e) ≥ Re/κ

2 and
∑
e∈E q̂κ(e) ≤

n1+O(1/κ) in Õ(m) time. It will be convenient to introduce an-
other parameter δ ∈ (0, 1) and write q̂κ,δ(e). Intuitively, δ is the
probability that the endpoints of e are more than κ apart a random
sample of edges of G where each edge is present independently
with probability q̂κ,δ(e), so that q̂κ,1/2(e) is an estimate for qκ(e).

The estimation procedure is quite simple. We consider samples
of edges of G at a geometric sequence of rates, an calculate the
distance between the endpoints of each edge e ∈ E in the random
subgraph given by the sample. Independent repetition of such ex-
periments allows us to estimate the sampling threshold for which
the distance between the endpoints of e becomes large. Since the
distance calculation is not exact, the approximation to effective re-
sistance that the procedure gives suffers an extra κ factor (we will
set κ = logn later). The bound on the sum of the estimated con-
nectivities will follow similarly to the proofs above. We now give
a formal description of the estimation procedure.

For each t = 1, . . . , T , where T = log(n4wmax/wmin), and
j = 1, . . . , J for J = 80 logn/δ2 define sets Ejt as follows. For
each e ∈ E add e to Ejt for t between 1 and 1 + log(we/wmin).
Then for each e, repeatedly add e to sets Ejt with a higher value of
t while a coin with heads probability of 1− ε comes up heads.

We will use the Thorup-Zwick distance oracles:

THEOREM 18. [14] LetG = (V,E) be an undirected weighted
graph with n vertices and m edges. For any integer k ≥ 1 the
graph G can be preprocessed in O(kmn1/k) expected time con-
structing a data structure of size O(kn1+1/k) such that any subse-
quent distance query can be answered approximately inO(k) time.
The approximate distance returned is is of stretch at most 2k − 1.

For t ∈ [1 : T ], j ∈ [1 : J ] and e ∈ E the estimation algorithm
sets ηje(t) = 0 if the distance between the endpoints of e is reported
by an appropriate distance oracle on Ejt to be at most κ2 and 0
otherwise. The formal description is given in Algorithm 2.

Algorithm 2: ESTIMATE(G, κ, δ)

1: for j = 1 to J do
2: Set Ejt ← ∅ for t ∈ [1 : T ].
3: For each e ∈ E add e to Ejt for t between 1 and

1 + log(we/wmin).
4: for t = 1 to T − 1 do
5: Add each e ∈ Ejt to Ejt+1 independently with

probability 1− ε.
6: end for
7: end for
8: for t = 1 to T do
9: Construct a Thorup-Zwick distance oracle for Ejt ,

j ∈ [1 : J ], denoted by Ojt .
10: for e = (u, v) ∈ E do
11: if Ojt (u, v) > κ2 then
12: ηje(t)← 1
13: else
14: ηje(t)← 0
15: end if
16: end for
17: end for
18: for e ∈ E do
19: q̂κ,δ(e)← 2−t, where t is the smallest such that

|{j : ηje(t) = 1}| ≥ (1− δ)J
20: end for
21: return q̂κ,δ

The following lemma gives bounds on q̂κ,δ that yield Lemma 3
after setting δ = 1/2. We will need the ability to chose general δ
in the next section (where we will also need property 3 from the
lemma below).

LEMMA 19. With high probability for all e = (u, v) ∈ E one
has

1. q̂κ,δ(e) ≥ δRe/(4κ2)

2.
∑
e∈E weq̂κ,δ(e) ≤ 2n1+O(1/κ)

3. for all η < qκ,δ(e) one has Pr[dGη (u, v) > κ] ≥ 1− δ/2.

PROOF. First note that by the choice of T = log
(
n4wmax
wmin

)
we

have for each e ∈ E that Pr[dG
2−T

(u, v) ≥ κ] = 1 − n−c for a
constant c > 0, so whp q̂κ,δ(e) is defined by Algorithm 2.

To prove the first statement, we argue similarly to Lemma 12.
We use the characterization

Cuv = min
x∈RV :xs=1,xt=0

∑
e=(u,v)∈E

we(xu − xv)2 (7)

and denote the conductance of e = (u, v) in Gp by

Cuv(p) = min
x∈RV :xs=1,xt=0

∑
e=(u,v)∈Ep

(xu − xv)2. (8)

As before, we have

Pr[Cuv(p) > 2p/(δRe)] ≤ Pr[Cuv(p) > (2/δ)E[Cuv]] ≤ δ/2.
(9)

Let t∗ ∈ [1, T ] be such that q̂κ,δ(e) = 2−t
∗

. Let

α := Pr[d2q̂κ,δ(e)(u, v) ≥ 1/κ2]



It follows by an application of Chernoff bounds that

Pr[|{j : ηje(t
∗ − 1) = 1}| 6∈ [α− δ/2, α+ δ/2]J ]

< e−δ
2J/16 = n−5.

Hence, we have with high probability that α ≤ 1− δ/2, i.e.

Pr
[
d2q̂κ,δ(e)(u, v) ≤ κ2

]
≥ δ/2. (10)

Using Rayleigh’s monotonicity principle and the fact that the con-
ductance of a path of length at most κ2 is at least 1/κ2, we get,
combining (10) with (9)

(2/δ)(2q̂κ,δ(e))/Re ≥ 1/κ2, (11)

i.e. qκ,δ(e) ≥ δRe/(4κ2).
To prove the second inequality, we argue similarly to Lemma 16.

Consider a randomized spanner construction process in Algorithm 1
in which an edge e is added to the spanner if there is no path
of length smaller than κ in the spanner constructed so far. Since
Ojt (u, v) ≥ κ2, we have, using the assumption that Oij is a κ-
approximate distance oracle, that the distance between u and v
in the appropriate sampled graph is larger than κ. Thus, simi-
larly to Lemma 16, we have that the probability of including an
edge e in the randomized spanner construction is at least q̂κ(e)/2.
Since the spanner construction process terminates with a graph
without cycles of length smaller than κ, we have

∑
e∈E weq̂κ(e) ≤

2n1+O(1/κ). The third inequality follows from the fact the Ojt is a
κ-approximate distance oracle and Chernoff bounds as above.

Algorithm 2 immediately yields a simple algorithm for spectral
sparsification:

Algorithm 3: Spectral sparsification via robust connectivities
1: Set q̂ ← ESTIMATE(G, logn, 1/2) ∈ E.
2: Sample each e ∈ E independently with probability
re := min{1, (cweq̂(e) log3 n)/ε2} for a constant c, giving e
weight 1/re if sampled.

We now obtain

THEOREM 20. Algorithm 1 produces a spectral sparsifier of G
with O(n log3 n/ε2) edges whp.

PROOF. It follows from Lemma 19 that q̂κ,1/2(e)(2 log2 n) ≥
Re, where Re is the effective resistance of e. Hence, the sampled
graph is a spectral sparsifier whp by Corollary 7. By Lemma 19∑

e∈E

weq̂κ,1/2(logn) = O(n1+O(1/ logn)) = O(n).

Hence, the size of the sample is bounded by O(n log3 n/ε2).

In the next section we show that in fact a spectral sparsifier can
obtained by taking a union of black-box spanners of random sub-
graphs of G, thus proving Theorem 4.

4. SPARSIFICATION BY SPANNERS
In this section we give an algorithm for obtaining a spectral spar-

sifier of an undirected weighted graph G using black box invoca-
tions of a spanner construction algorithm, proving Theorem 4. The
main challenge here is to overcome dependencies in the sampling
process that arise from using a black-box spanner construction. In
order to do that, we introduce a procedure that, given a vector of tar-
get sampling probabilities q(e) := q̂κ,ε(e), e ∈ E, samples edges
of G using the black-box spanner construction such that the sam-
pling process (a) stochastically dominates the process of sampling

edges independently with probabilities (1−ε) min{1, weq(e)} and
(b) is stochastically dominated by the process that samples edges
independently with probability min{1, weq(e)}. The procedure
consists of a logarithmic number invocations of a basic sampling
scheme that we now define.

We first define a sequence of sets E1, E2, . . . , EH with H =

log1/(1−ε)

(
n4wmax
wmin

)
such that Ei ∩ Ej = ∅ for i 6= j and⋃H

i=1 Ei = E. For each e ∈ E with weight we ∈ wmin · ((1 −
ε)−j , (1 − ε)−(j+1)] assign e to set Ej , and for each edge e inde-
pendntly, keep moving e to higher levels Ei, i ≥ j, one level at a
time while a coin with heads probability (1 − ε) comes up heads.
Thus, we have Pr[e ∈ Ei for some i ≥ j] = min{1, we

wmin
(1 −

ε)j}. For e ∈ E let the level of e, denoted by l(e), be the unique
index j such that e ∈ Ej , and let l∗(e) denote the smallest j such
that wmin(1− ε)j ≤ min{1, weq(e)}.

Let q(e) = q̂κ,ε(e), e ∈ E be the vector of sampling parameters.
We first define
Algorithm 4: SAMPLE-SPANNER(G, q)

1: for j = 1, . . . , H do
2: Construct a spanner Sj on (V,Ej) of stretch at most κ.
3: For each e ∈ Sj , assign weight 0 to e if l(e) < l∗(e),

otherwise assign weight 1/q(e).
4: end for
5: Return the weighted collection S1 ∪ . . . ∪ SH .

The sampling process takes form

Algorithm 5: SPANNER-SPARSIFY(G, q, ε, Z)
1: q ← ESTIMATE(G, logn, ε).
2: Z ← Θ(log3 n/((1− ε)ε3))
3: for t = 1, . . . , Z do
4: Xt ← SAMPLE-SPANNER(G, q)
5: end for
6: return 1

Z
(X1 + . . .+XH)

We now prove the main property of our sampling process.

LEMMA 21. Let q = q̂κ,ε. Then forZ = Ω(logn) whp, i.e. ex-
cept for a negligible part of the sample space, the sampling process
in Algorithm 5 is stochastically dominated by the process of in-
dependently sampling an edge e with probability min{1, weq(e)}
Z times (process B), and dominates the process of independently
sampling each edge with probability (1 − ε) · min{1, weq(e)} Z
times(process A).

PROOF. Denote the spanner constructed by t-th invocation of
SAMPLE-SPANNER at level j ∈ [1 : H] by St,j . We denote
the system of sets E1, . . . , EH in the t-th invocation of SAMPLE-
SPANNER by Etj . For an edge e ∈ E we write lt(e) to denote the
level of e inEjt . We refer to an edge e = (u, v) ∈ E as free at level
j in invocation t if dEtj (u, v) > κ. By Lemma 19, (3) we have that
if lt(e) ≥ l∗(e), then

Pr[e is free in St,lt(e)] ≥ Pr[dGq̂κ,ε(e)(u, v) > κ] ≥ 1− ε,

where the probability is over the coin tosses determining the distri-
bution of e ∈ E among Etj .

Since the invocations of SAMPLE-SPANNER use independent
randomness, we have by an application of Chernoff bounds, using
the assumption that Z = Ω(logn), that with probability at least,
say, 1 − n−5 for each e ∈ E such that lt(e) ≥ l∗(e), one has that
e is free in at least a 1 − ε fraction of the spanners St,lt(e), t =
1, . . . , Z.



Consider any set W ⊆ E of edges. Each edge may be sampled
by our process between 0 and Z times. We will show that for any
{ze ∈ [0 : Z]|e ∈W}∏
e∈W

((1−ε)qκ)ze ≤ Pr[e is chosen ze times ∀e ∈W ] ≤
∏
e∈W

qzeκ ,

(12)
where we say that edge e is chosen if it is included in a spanner and
given positive weight.

Indeed, consider the following sampling process. Take Z copies
of the edge set E and for each edge first toss a coin to determine
which of the Z spanner constructions it belongs to, and then toss
coins to determine the level Ej that the edge belongs to. Note that
since, by the argument above, whp each edge is free in at least a
(1 − ε) fraction of the spanners, with probability at least (1 − ε)
the edge belongs to a spanner construction in which it is free. In
that case the edge necessarily belongs to the spanner Sj (since its
endpoints are at distance greater than κ in Ej \ {e}), and hence is
chosen with probability at least (1− ε)qκ. Since the coin tosses for
different edges are independent, we get that

Pr[e is chosen ze times ∀e ∈W ] ≥
∏
e∈W

((1− ε)qκ)ze .

On the other hand, the weight of an edge is 0 when the edge is
at level larger than l∗(e), and hence, since these coin tosses are
independent for different edges, for any W ⊆ E,

Pr[e is chosen ze times ∀e ∈W ] ≤
∏
e∈W

qzeκ .

We have shown that our sampling process is sandwiched be-
tween two independent sampling processes which sample edges
with probabilities (1 − ε)Z · min{1, weqκ} (process A) and Z ·
min{1, weqκ} respectively (process B).

We now obtain
Proof of Theorem 4: SetZ = O(log3 n/((1−ε)ε3)). By Lemma 19
we have that

min{1, Z · weq̂κ,ε(e)} ≥ Θ(logn/ε2) ·min{1, weRe}

for all e ∈ E. Let G′A denote the subgraph sampled by process
A and let G′B denote the subgraph sampled by process B, where
process A gives weight 1

(1−ε)q(e) to a chosen edge and B gives
weight 1

q(e)
. Let G′ denote the output of Algorithm 5. Then we

have by Corollary 7

G′A ∈ (1± ε)G,G′B ∈ (1± ε)G

and by Lemma 21 we have

(1− ε) ·G′A ≺ G′ ≺ G′B ,

and hence G′ ∈ (1±O(ε))G.
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