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Abstract
In this paper we further investigate the well-studied problem
of finding a perfect matching in a regular bipartite graph.
The first non-trivial algorithm, with running time O(mn),
dates back to König’s work in 1916 (here m = nd is
the number of edges in the graph, 2n is the number of
vertices, and d is the degree of each node). The currently
most efficient algorithm takes time O(m), and is due to
Cole, Ost, and Schirra. We improve this running time to

O(min{m, n2.5 ln n
d

}); this minimum can never be larger than

O(n1.75
√

ln n). We obtain this improvement by proving a
uniform sampling theorem: if we sample each edge in a
d-regular bipartite graph independently with a probability
p = O( n ln n

d2 ) then the resulting graph has a perfect matching
with high probability. The proof involves a decomposition
of the graph into pieces which are guaranteed to have many
perfect matchings but do not have any small cuts. We then
establish a correspondence between potential witnesses to
non-existence of a matching (after sampling) in any piece
and cuts of comparable size in that same piece. Karger’s
sampling theorem for preserving cuts in a graph can now
be adapted to prove our uniform sampling theorem for
preserving perfect matchings. Using the O(m

√
n) algorithm

(due to Hopcroft and Karp) for finding maximum matchings
in bipartite graphs on the sampled graph then yields the
stated running time. We also provide an infinite family of
instances to show that our uniform sampling result is tight
up to poly-logarithmic factors (in fact, up to ln2 n).

1 Introduction

A bipartite graph G = (U, V,E) with vertex set U ∪ V
and edge set E ⊆ U × V is said to be regular if every
vertex has the same degree d. We use m = nd to denote
the number of edges in G and n to represent the number
of vertices in U (as a consequence of regularity, U and V
have the same size). Regular bipartite graphs have been
the subject of much study. Random regular bipartite
graphs represent some of the simplest examples of
expander graphs [12]. These graphs are also used to
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model scheduling, routing in switch fabrics, and task-
assignment problems (sometimes via edge coloring, as
described below) [1, 6].

A regular bipartite graph of degree d can be de-
composed into exactly d perfect matchings, a fact that
is an easy consequence of Hall’s theorem [4]. Finding a
matching in a regular bipartite graph is a well-studied
problem, starting with the algorithm of König in 1916,
which is now known to run in time O(mn) [11]. The
well-known bipartite matching algorithm of Hopcroft
and Karp [8] can be used to obtain a running time of
O(m

√
n). In graphs where d is a power of 2, the fol-

lowing simple idea, due to Gabow and Kariv [7], leads
to an algorithm with O(m) running time. First, com-
pute an Euler tour of the graph (in time O(m)) and
then follow this tour in an arbitrary direction. Ex-
actly half the edges will go from left to right; these
form a regular bipartite graph of degree d/2. The
total running time T (m) thus follows the recurrence
T (m) = O(m) + T (m/2) which yields T (m) = O(m).
Extending this idea to the general case proved quite
hard, and after a series of improvements (eg. by Cole
and Hopcroft [5], and then by Schrijver [13] to O(md)),
Cole, Ost, and Schirra [6] gave an O(m) algorithm for
the case of general d.

The main interest of Cole, Ost, and Schirra was in
edge coloring of general bipartite graphs of maximum
degree d, where finding perfect matchings in regular
bipartite graphs is an important subroutine. Finding
perfect matchings in regular bipartite graphs is also
closely related to the problem of finding a Birkhoff
von Neumann decomposition of a doubly stochastic
matrix [3, 16].

In this paper we present an algorithm for finding
a perfect matching in a regular bipartite graph that
runs in time O(min{m, n

2.5 lnn
d }). It is easy to see that

this minimum can never be larger than O(n1.75
√

lnn).
This is a significant improvement over the running time
of Cole, Ost, and Schirra when the bipartite graph
is relatively dense. We first prove (Theorem 2.1 in
section 2) that if we sample the edges of a regular
bipartite graph independently and uniformly at rate
p = O(n lnn

d2 ), then the resulting graph has a perfect
matching with high probability. The resulting graph has
O(mp) edges in expectation, and running the bipartite



matching algorithm of Hopcroft and Karp gives an
expected running time of O(n

2.5 lnn
d ). Since we know

this running time in advance, we can choose the better
of m and n2.5 lnn

d in advance. It is worth noting that
uniform sampling can easily be implemented in O(1)
time per sampled edge assuming that the data is given in
adjacency list format, with each list stored in an array,
and assuming that log n bit random numbers can be
generated in one time step1.

We believe that our sampling result is also indepen-
dently interesting as a combinatorial fact. The proof of
our sampling theorem relies on a sequential decomposi-
tion procedure that creates a vertex-disjoint collection
of subgraphs, each subgraph containing many perfect
matchings on its underlying vertex set. We then show
that if we uniformly sample edges in each decomposed
subgraph at a suitably chosen rate, with high probabil-
ity at least one perfect matching survives in each decom-
posed subgraph. This is established by using Karger’s
sampling theorem [9, 10] in each subgraph. An effective
use of Karger’s sampling theorem requires the min-cuts
to be large, a property that is not necessarily true in
the original graph. For instance, G could be a union of
two disjoint d-regular bipartite graphs, in which case the
min-cut is 0; non-pathological examples are also easy to
obtain. However, our serial decomposition procedure
ensures that the min-cuts are large in each decomposed
subgraph. We then establish a 1-1 correspondence be-
tween possible Hall’s theorem counter-examples in each
subgraph and cuts of comparable size in that subgraph.
Since Karger’s sampling theorem is based on count-
ing cuts of a certain size, this coupling allows us to
claim (with high probability) that no possible counter-
example to Hall’s theorem exists in the sampled graph.
On a related note, Benczur [2] presented another sam-
pling algorithm which generates O(n lnn) edges that ap-
proximate all cuts; however this sampling algorithm, as
well as recent improvements [15, 14] take Ω̃(m) time to
generate the sampled graph. Hence these approaches do
not directly help in improving upon the already known
O(m) running time for finding perfect matchings in d-
regular bipartite graphs.

The sampling rate we provide may seem counter-
intuitive; a superficial analogy with Karger’s sampling
theorem or Benczur’s work might suggest that sampling
a total of O(n lnn) edges should suffice. We show (The-
orem 4.1, section 4) that this is not the case. In partic-
ular, we present a family of graphs where uniform sam-
pling at rate o( n

d2 lnn ) results in a vanishingly low prob-

1Even if we assume that only one random bit can be generated

in one time step, the running time of our algorithm remains
unaltered since the Hopcroft-Karp algorithm incurs an overhead
of
√

n per sampled edge anyway.

ability that the sampled subgraph has a perfect match-
ing. Thus, our sampling rate is tight up to factors of
O(ln2 n). This lower bound suggests two promising di-
rections for further research: designing an efficiently im-
plementable non-uniform sampling scheme, and design-
ing an algorithm that runs faster than Hopcroft-Karp’s
algorithm for near-regular bipartite graphs (since the
degree of each vertex in the sampled subgraph will be
concentrated around the expectation).

2 Uniform Sampling for Perfect Matchings: An
Upper Bound

In this section, we will establish our main sampling
theorem stated below. We will then show in Section 3
that this theorem immediately yields an O(n1.75

√
lnn)

time algorithm for finding a perfect matching in regular
bipartite graphs.

Theorem 2.1. There exists a constant c such that
given a d-regular bipartite graph G(U, V,E), a subgraph
G′ of G generated by sampling the edges in G uniformly
at random with probability p = cn lnn

d2 contains a perfect
matching with high probability.

Our proof is based on a decomposition procedure
that partitions the given graph into a vertex-disjoint
collection of subgraphs such that (i) the minimum cut in
each subgraph is large, and (ii) each subgraph contains
Ω(d) perfect matchings on its vertices. We then show
that for a suitable choice of sampling rate, w.h.p. at
least one perfect matching survives in each subgraph.
The union of these perfect matchings then gives us a
perfect matching in the original graph. We emphasize
here that the decomposition procedure is merely an
artifact for our proof technique. Note that the theorem
is trivially true when d is O(

√
n lnn). So in what

follows, we assume that d is Ω(
√
n lnn).

2.1 Hall’s Theorem Witness Sets Let G(U, V,E)
be a bipartite graph. We shall use the following
notation. For a graph G and a set of vertices W we
denote the number of edges crossing the boundary of
W in G by δG(W ). Also, we denote the vertex set of G
by V (G).

A pair (A,B) with A ⊆ U and B ⊆ V is said to
be a left relevant pair to Hall’s theorem if |A| > |B|.
Similarly, a pair (A,B) with A ⊆ U and B ⊆ V is said
to be a right relevant pair to Hall’s theorem if |A| < |B|.

Given a left relevant pair (A,B), we denote by
E(A,B) the set of edges in E∩ (A× (V \B)). Similarly,
given a right relevant pair (A,B), we denote by E(A,B)
the set of edges in E∩ ((U \A)×B). We refer to the set
E(A,B) as a witness edge set if (A,B) is a left or right
relevant pair. By Hall’s theorem (see, for instance, [4]),



to prove Theorem 2.1 it suffices to show that w.h.p.
in the sampled graph G′, at least one edge is chosen
from each witness set. We will focus on a sub-class
of relevant pairs, referred to as minimal relevant pairs.
A left relevant pair (A,B) is minimal if there does not
exist another left relevant pair (A′, B′) with A′ ⊂ A and
E(A′, B′) ⊆ E(A,B). Minimal right relevant pairs are
similarly defined. A witness edge set corresponding to
a minimal left relevant pair or a minimal right relevant
pair is called a minimal left witness set or a minimal
right witness set, respectively. If a graph G has a
perfect matching, every minimal witness set must be
non-empty. It also follows that any subgraph of G that
includes at least one edge from every minimal witness
set must have a perfect matching.

A key idea underlying our proof is a mapping from
minimal witness sets in G to distinct cuts in G. In
particular, we will map each minimal left witness set
E(A,B) to the cut δG(A ∪ B). The theorem below
shows that this is a one-to-one mapping. The analogous
theorem holds for minimal right witness sets.

Theorem 2.2. Let G(U, V,E) be a bipartite graph that
has at least one perfect matching. If (A,B) and (A′, B′)
are minimal left relevant pairs in G with E(A,B) 6=
E(A′, B′), then δG(A ∪B) 6= δG(A′ ∪B′).

Proof. Assume by way of contradiction that there exist
minimal left relevant pairs (A,B) and (A′, B′) in G with
E(A,B) 6= E(A′, B′) but δG(A∪B) = δG(A′∪B′). Then
the following conditions must be satisfied for any edge
(u, v) ∈ E :

A1. If u ∈ (A\A′)∪(A′\A) then v ∈ (B\B′)∪(B′\B).
To see this, assume w.l.o.g. that u ∈ A \ A′,
and then note that if v ∈ B ∩ B′, then (u, v) ∈
δG(A′∪B′) but (u, v) 6∈ δG(A∪B). A contradiction.
Similarly, if v ∈ V \(B∪B′), then (u, v) ∈ δG(A∪B)
but (u, v) 6∈ δG(A′ ∪B′). A contradiction.

A2. If u ∈ (A ∩ A′) then v 6∈ (B \ B′) ∪ (B′ \ B). To
see this, consider w.l.o.g. that v ∈ (B \ B′). Then
(u, v) ∈ δG(A′ ∪ B′) but (u, v) 6∈ δG(A ∪ B). A
contradiction.

In what follows, we slightly abuse the notation and
given any (not necessarily relevant) pair (C,D) with
C ⊆ U and D ⊆ V , we denote by E(C,D) the set of
edges in E∩(C×(V \D)). As an immediate corollary of
the properties A1 and A2, we now obtain the following
containment results:

B1. E(A \A′, B \B′) ⊆ E(A,B). This follows directly
from property A1 above.

B2. E(A∩A′, B ∩B′) ⊆ E(A,B). This follows directly
from property A2 above.

We now consider three possible cases based on
the relationship between A and A′, and establish a
contradiction for each case.

Case 1: A ∩ A′ = ∅. By property A1, if u ∈ A ∪ A′
then v ∈ B ∪ B′. In other words, there are no edges
from A∪A′ to vertices outside B ∪B′. Since |A∪A′| =
|A|+ |A′| > |B|+ |B′|, this contradicts our assumption
that G has at least one perfect matching.

Case 2: A = A′. For any edge (u, v) with u ∈ A,
property A2 shows that v 6∈ (B \ B′) ∪ (B′ \ B). Then
E(A,B) = E(A′, B′). A contradiction.

Case 3: A ∩ A′ 6= ∅ and A 6= A′. Since |A| > |B|, it
must be that either |A \ A′| > |B \ B′| or |A ∩ A′| >
|B ∩ B′|. If |A \ A′| > |B \ B′|, then (A \ A′, B \ B′)
is a left relevant pair, and by B1, it contradicts the
fact that (A,B) is a minimal left relevant pair. If
|A ∩ A′| > |B ∩ B′|, then (A ∩ A′, B ∩ B′) is a left
relevant pair set, and by B2, it contradicts the fact that
(A,B) is a minimal left relevant pair.

2.2 A Decomposition Procedure Given
a d-regular bipartite graph on n vertices,
we will first show that it can be parti-
tioned into k = O(n/d) vertex disjoint graphs
G1(U1, V1, E1), G2(U2, V2, E2), ..., Gk(Uk, Vk, Ek) such
that each graph Gi satisfies the following properties:

P1. the size of a minimum cut in Gi(Ui, Vi, Ei) is
strictly greater than α = d2

4n .

P2. |δG(Ui ∪ Vi)| ≤ d/2 (hence Gi contains at least d/2
edge-disjoint perfect matchings).

The decomposition procedure is as follows. Initial-
ize H1 = G, and set i = 1.

1. Find a smallest subset Xi ⊆ V (Hi) such that
|δHi

(Xi)| ≤ 2α. If no such set Xi exists, then the
decomposition procedure terminates.

2. Define Gi to be the subgraph of Hi induced by the
vertices in Xi. Also, let Mi denote the number of
edges in the cut δHi

(Xi).

3. Define Hi+1 as Hi with vertices from Xi removed.

4. Increment i, and go to step (1).

We now prove the following properties of the de-
composition procedure.



Proposition 2.1. The decomposition procedure out-
lined above satisfies properties P1 and P2.

Proof. We start by proving that property P1 is satisfied.
Suppose that there exists a cut (C,D) in Gi of value less
than α, i.e. C ∪D = Xi and δGi

(C) = δGi
(D) ≤ α. We

have |δHi
(C) \ δGi

(C)|+ |δHi
(D) \ δGi

(D)| ≤ 2α by the
choice of Xi in (1). Suppose without loss of generality
that |δHi(C) \ δGi(C)| ≤ α. Then δHi(C) ≤ 2α and
C ⊂ Xi, which contradicts the choice of Xi as the
smallest cut of value at most 2α in step (1) of the
procedure.

It remains to show that |δG(Ui ∪ Vi)| ≤ d/2 for all
i. In order to establish this property, it suffices to show
that

∑k
i=1Mi ≤ d/2 (recall that Mi = |δHi(Xi)|).

We prove the following statements by induction on
k, the number of decomposition steps:

1. |Uk ∪ Vk| ≥ 2d;

2.
∑k
i=1Mi ≤ d/2;

3. k ≤ n/d.

Base: k = 1 Since 2α = d2

2n ≤ d/2, we have M1 ≤ d/2.
It remains to show that G1(U1, V1, E1) has at least
2d vertices. Consider any vertex u ∈ U1. Let
j ≤ d/2 be the number of edges in δH1(U1∪V1) that
are incident on vertex u. Then u must have exactly
(d− j) neighbors in V1. Since |δH1(U1∪V1)| ≤ d/2,
at least one vertex among the neighbors of u in
V1 must have all its d neighbors inside U1. Thus
|U1| ≥ d. Similarly, we can show that |V1| ≥ d.

Inductive step: k → k + 1 Suppose that the k-th
step has been executed and the algorithm has not
terminated yet. Since k ≤ n/d by the induc-
tive hypothesis, we have

∑k
i=1Mi ≤ (n/d) (2α) =

(n/d)
(
d2

2n

)
≤ d/2. Consider the cut (Xk, Hk \Xk)

of Hk. It follows from the previous estimate that
|δHk

(Xk)| ≥ |δG(Xk)|−d/2. Hence, we conclude as
in the base case that |Xk| ≥ 2d and |Hk \Xk| ≥ 2d.
Since at every decomposition step j ≤ k at least
2d vertices were removed from the graph, we have
k + 1 ≤ n/d.

2.3 Proof of Theorem 2.1 We now argue that if the
graph G′ is obtained by uniformly sampling the edges
of G with probability p = Θ

(
lnn
α

)
, then w.h.p. G′

contains a perfect matching.
It suffices to show that in each graph Gi obtained

in the decomposition procedure, every minimal witness

set is hit w.h.p. in the sampled graph (that is, at least
one edge in each minimal witness set is chosen in the
sampled graph). This ensures that at least one perfect
matching survives inside each Gi. A union of these
perfect matchings then gives us a perfect matching of G
in the sampled graph G′.

Fix a graph Gi(Ui, Vi, Ei). Let (A,B) be a left or
a right relevant pair in Gi. Using the fact that our
starting graph G is d-regular, we get

|δG(A ∪B)| ≤ 2|E(A,B)| − d.

Let mA,mB denote the number of edges in G that
connect nodes in A,B respectively to nodes outside Gi.
Then

|δGi
(A ∪B)| ≤ 2|E(A,B)| − d−mA −mB .

By property P2, since |δG(Ui∪Vi)| ≤ d/2, it follows that
|E(A,B) ∩ Ei| ≥ |E(A,B)| − d/2. Also, by definition,
|E(A,B)∩Ei| ≥ |E(A,B)|−mA−mB . Combining, we
obtain:

|δGi
(A ∪B)| ≤ 2|E(A,B) ∩ Ei| − d/2.

Thus the set E(A,B)∩Ei contains at least half as many
edges as the the cut δGi

(A∪B). We will now utilize the
following sampling result due to Karger [10]:

Theorem 2.3. [10] Let Gi be an undirected graph on at
most n vertices, and let κ be the size of a minimum cut
in Gi. There exists a positive constant c such that for
any ε ∈ (0, 1), if we sample the edges in Gi uniformly
with probability at least p = c

(
lnn
κε2

)
, then every cut in

Gi is preserved to within (1 ± ε) of its expected value
with probability at least 1− 1/nΩ(1).

Thus the sampling probability needed to ensure
that all cuts are preserved close to their expected value,
is inversely related to the size of a minimum cut in the
graph. We now show use the theorem above to prove
that at least one perfect matching survives in each graph
Gi when edges are sampled with probability specified in
Theorem 2.1.

By Property P1, we know that the size of a mini-
mum cut in Gi is at least α = d2/4n. Fix an ε ∈ (0, 1).
The theorem above implies that if we sample edges
in Gi with probability p = Θ

(
lnn
αε2

)
, then for every

relevant pair (A,B), w.h.p. the sampled graph con-
tains (1± ε)p|δGi(A ∪B)| = Ω(lnn) edges from the set
δGi(A ∪B).

Note that the set δGi
(A∪B) is not a Hall’s theorem

witness edge set. However, by Theorem 2.1, we know
that for every left (right) minimal witness edge set



E(A,B) ∩ Ei, we can associate a distinct cut, namely
δGi

(A∪B), of size at most twice |E(A,B)∩Ei|. We now
show that this correspondence can be used to directly
adapt Karger’s proof of Theorem 2.3 to claim that every
witness edge set in Gi is preserved to within (1 ± ε) of
its expected value. We remind the reader that the proof
of Karger’s theorem is based on an application of union
bound over all cuts in the graph. In particular, it is
shown that the number of cuts of size at most β times
the minimum cut size is bounded by n2β . On the other
hand, for the sampling rate given in Theorem 2.3, we
can use Chernoff bounds to claim that the probability
that a cut of size β times the minimum cut deviates by
(1± ε) from its expected value is at most 1/nΩ(β). The
theorem follows by combining these two facts.

Within any piece of the decomposition, let ci be
the number of cuts of size i and let wi be the number
of minimal witness sets of size i. We know by the cor-
respondence argument above that every Hall’s theorem
minimal witness set of size i corresponds to a cut of size
at most 2i, and at most two minimal witness sets (one
left and one right) correspond to the same cut.

Now, given a sampling probability p, the probability
that none of the edges in some minimal witness set
are sampled is at most

∑
i wi(1 − p)i, which is at

most
∑
i 2ci(1 − p)i/2. Therefore the probability that

there is no matching in this piece can be at most
twice the expression used in Karger’s theorem to bound
the probability that there exists a cut from which no
edge is sampled when the sampling rate is q, where
1− q = (1− p)1/2, or p = 2q− q2. Hence, it is sufficient
to use a sampling rate which is twice that required by
Karger’s sampling theorem to conclude that a perfect
matching survives with probability at least 1− 1/nΩ(1).

Putting everything together, the sampled graph
G′ will have a perfect matching w.h.p. as long as
we sample the edges with probability p > c lnn

α for
a sufficiently large constant c, thus completing the
proof of theorem 2.1. We have made no attempt to
optimize the constants in this proof (an upper bound
of 12 lnn

α follows from the reasoning above). In fact, in
an implementation, we can use geometrically increasing
sampling rates until either the sampled graph has a
perfect matching, or the sampling rate becomes so large
that the expected running time of Hopcroft and Karp [8]
algorithm is Ω(m).

3 A Faster Algorithm for Perfect Matchings in
Regular Bipartite Graphs

We now show that the sampling theorem from the pre-
ceding section can be used to obtain a faster randomized
algorithm for finding perfect matchings in d-regular bi-
partite graphs.

Theorem 3.1. There exists an O(min{m, n
2.5 lnn
d }) ex-

pected time algorithm for finding a perfect matching in
a d-regular bipartite graph with 2n vertices and m = nd
edges.

Proof. Let G be a d-regular bipartite graph with 2n
vertices and m = nd edges. If d ≤ n3/4

√
lnn, we use

the O(m) time algorithm of Cole, Ost, and Schirra [6]
for finding a perfect matching in a d-regular bipartite
graph. It is easy to see that m ≤ n2.5 lnn

d in this case.
Otherwise, we sample the edges in G at a rate of

p = cn lnn
d2 for some suitably large constant c (c = 48

suffices by the reasoning from the previous section),
and by Theorem 2.1, the sampled graph G′ contains
a perfect matching w.h.p. The expected number of
edges, say m′, in the sampled graph G′ is O(n

2 lnn
d ).

We can now use the algorithm of Hopcroft and Karp [8]
to find a maximum matching in the bipartite graph
G′ in expected time O(m′

√
n). The sampling is then

repeated if no perfect matching exists in G′. This
takes O(n

2.5 lnn
d ) expected running time. Hence, the

algorithm takes O(min{m, n
2.5 lnn
d }) expected time.

Note that by aborting the computation whenever
the number of sampled edges is more than twice the
expected value, the above algorithm can be easily
converted to a Monte-Carlo algorithm with a worst-case
running time of O(min{m, n

2.5 lnn
d }) and a probability

of success = 1 − o(1). Finally, it is easy to verify that
the stated running time never exceeds O(n1.75

√
lnn).

4 Uniform Sampling for Perfect Matchings: A
Lower Bound

We now present a construction that shows that the
uniform sampling rate of Theorem 2.1 is optimal to
within a factor of O(ln2 n). As before, for any graph
G the graph obtained by sampling the edges of G
uniformly with probability p is denoted by G′.

Theorem 4.1. Let d(n) be a non-decreasing positive
integer valued function such that for some fixed integer
n0, it always satisfies one of the following two conditions
for all n ≥ n0: (a) d(n) ≤

√
n/ lnn, or (b)

√
n/ lnn <

d(n) ≤ n/ lnn. Then there exists a family of d(n)-
regular bipartite graphs Gn with 2n + o(n) vertices
such that the probability that the graph G′n, obtained by
sampling edges of Gn with probability p, has a perfect
matching goes to zero faster than any inverse polynomial
function in n if p = o(1) when d(n) satisfies condition
(a) above, and if

p = o

(
n

(d(n))2 lnn

)
when d(n) satisfies condition (b) above.



Proof. Note that the theorem asserts that essentially no
sampling can be done when d(n) ≤

√
n/ lnn. We shall

omit the dependence on n in d(n) to simplify notation.
Define H(k) = (U, V,E), 0 ≤ k ≤ d, as a bipartite

graph with |U | = |V | = d such that k vertices in U
(respectively V ) have degree (d− 1) and the remaining
vertices have degree d. We will call the vertices of degree
(d− 1) deficient. Clearly, for any 0 ≤ k ≤ d, the graph
H(k) exists: starting with a d-regular bipartite graph
on 2d vertices, we can remove an arbitrary subset of k
edges that belong to a perfect matching in the graph.
In the following construction, we will use copies of H(k)

as building blocks to create our final instance. In doing
so, only the set of deficient vertices in a copy of H(k)

will be connected to (deficient) vertices in other copies
in our construction.

We now define a d-regular bipartite graph Gn. Let
γ =

⌈
d2 lnn
n

⌉
(note that γ ≤ d since d ≤ n/ lnn).

We choose W =
⌈
d
γ

⌉
, kj = γ for 1 ≤ j < W , and

kW = d− γ(W − 1) ≤ γ. We also define K(n) = dlnne
if d(n) ≥

√
n/ lnn and K(n) = d nd2 e otherwise.

The graph Gn consists of K(n) ·W copies of H(k)

that we index as {Hi,j}1≤i≤K(n),1≤j≤W . The subgraph
Hi,j is a copy of H(kj), where kj is as defined above.
Note that the sum of the number of deficient vertices
over each of the parts of Hi,j , 1 ≤ j ≤ W , equals d for
all fixed i. Moreover, the number of deficient vertices in
Hi,j is the same for all i when j is held fixed.

We now introduce two distinguished vertices u and
v and add additional edges as follows:

1. For every 1 ≤ i < K(n) and for every 1 ≤ j ≤ W ,
all deficient vertices in part V of Hi,j are matched
to the deficient vertices in part U of Hi+1,j (that
is, we insert an arbitrary matching between these
two sets of vertices);

2. All deficient vertices in part U of H1,j for 1 ≤ j ≤
W are connected to u;

3. All deficient vertices in part V of HK(n),j for 1 ≤
j ≤W are connected to v.

Essentially, we are connecting the graphs Hi,j for
fixed j in series via their deficient vertices, and then
connecting the left ends of these chains to the distin-
guished vertex u and the right ends of the chains to the
distinguished vertex v.

We note that the graph Gn constructed as described
above is a d-regular bipartite graph with 2dK(n)W +
2 = 2n+ o(n) vertices.

Consider the sampled graph G′n. Suppose G′n has a
perfect matchingM . In the matchingM , if u is matched
to a vertex in part U of H ′1,j for some 1 ≤ j ≤W , then

there must be a vertex in part V of H ′1,j that is matched
to a vertex in part U of H ′2,j . Proceeding in the same
way, one concludes that for every i, 1 ≤ i < K(n) there
must be a vertex in part V of H ′i,j that is matched to
a vertex in part U of H ′i+1,j . Finally, vertex v must be
matched to a vertex in part V of H ′K(n),j . This implies
that the sampled graph G′n can have a perfect matching
only if at least one edge survives in G′n between every
pair of adjacent elements in the sequence below: u →
H1,j → H2,j → . . .→ HK(n)−1,j → HK(n),j → v.

Now suppose that we sample edges uniformly with
probability p. It follows from the construction of Gn
that for any fixed j, the probability that at least one
edge survives between every pair of adjacent elements
in the sequence u→ H1,j → H2,j → . . .→ HK(n)−1,j →
HK(n),j → v is equal to(

1− (1− p)kj

)K(n)+1

≤ (pkj)K(n)+1.

Hence, the probability that at least one such path
survives in G′n is at most

W

(
p max

1≤j≤W
kj

)K(n)+1

by the union bound.
When d(n) ≤

√
n/ lnn, we have γ = 1, W = d,

kj = 1 and K(n) = dn/d2e. So the bound transforms
to

(4.1) WpK(n)+1 = dpdn/d
2e+1,

which goes to zero faster than any inverse polynomial
function in n when p = o(1) since K(n) = dn/d2e =
Ω(lnn).

When d ≥
√
n/ lnn, we have kj ≤ γ where γ =⌈

d2 lnn
n

⌉
, W =

⌈
d
γ

⌉
and K(n) = dlnne. Hence, the

bound becomes

W (pγ)K(n)+1 =
⌈
d

γ

⌉
(pγ)dlnne+1

,(4.2)

which goes to zero faster than any inverse polynomial
function in n when p = o

(
n

d2 lnn

)
. This completes the

proof of the theorem.

The construction given in Theorem 4.1 shows that
the sampling upper bound for preserving a perfect
matching proved in Theorem 2.1 is tight up to a factor
of O(ln2 n).
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