
Improved Bounds for Online Stochastic
Matching

Bahman Bahmani?1 and Michael Kapralov??2

1 Stanford University, bahman@stanford.edu
2 Stanford University, kapralov@stanford.edu

Abstract. We study the online stochastic matching problem in a form
motivated by Internet display advertisement. Recently, Feldman et al.
gave an algorithm that achieves 0.6702 competitive ratio, thus breaking
through the 1−1/e barrier. One of the questions left open in their work is
to obtain a better competitive ratio by generalizing their two suggested
matchings (TSM) algorithm to d-suggested matchings (d-SM).

We show that the best competitive ratio that can be obtained with the
static analysis used in the d-SM algorithm is upper bounded by 0.76, even
for the special case of d-regular graphs, thus suggesting that a dynamic
analysis may be needed to improve the competitive ratio significantly.
We make the first step in this direction by showing that the RANDOM
algorithm, which assigns an impression to a randomly chosen eligible
advertiser, achieves 1 − e−ddd/d! = 1 − O(1/

√
d) competitive ratio for

d-regular graphs, which converges to 1 as d increases. On the hardness
side, we improve the upper bound of 0.989 on the competitive ratio of
any online algorithm obtained by Feldman et al. to 1 − 1/(e + e2) ≈
0.902. Finally, we show how to modify the TSM algorithm to obtain an
improved 0.699 approximation for general bipartite graphs.

1 Introduction

Bipartite matching problems are among the central problems in combinatorial
optimization with numerous applications. In this paper, we study a variant of
the online bipartite matching problem motivated by applications in Internet
advertising.

We are given a graph G = (A, I,E), where A is a set of advertisers, I is the
set of impression types and E is the set of edges between them. For a ∈ A, i ∈ I
the presence of an edge (a, i) indicates that advertiser a is bidding for impression
type i. Advertisers are fixed and known in advance, while impressions of different
types come online, and the task of the algorithm is to assign each impression
to an advertiser as soon as the impression arrives or discard the impression.
The objective is to maximize the number of matched impressions, subject to

? Research supported by a Stanford Graduate Fellowship.
?? Research supported by a Stanford Graduate Fellowship.

each advertiser being assigned at most one impression and each impression be-
ing assigned to at most one advertiser, i.e. subject to the allocation forming a
matching.

If nothing is known about the graph G in advance and edges incident to
impression types are revealed online, then we are in the online adversarial setting,
for which an algorithm achieving the optimal approximation ratio of 1− 1/e
was given in [1]. A less restrictive model is the random order model, which has
received a significant amount of attention recently. This model assumes that
impression types and the graph G are unknown but appear in the random order.
Even the greedy algorithm has a competitive ratio of 1−1/e in this model [2]. It
is also known that no deterministic algorithm can achieve approximation ratio
better than 0.75 and no randomized algorithm better than 0.83 [2]. However, the
adversarial model or random order model may be too restrictive for applications,
where statistics about frequencies of various impression types may be known. In
the iid model, which we consider in this paper, we assume that impressions are
drawn from a known distribution D on the set of impression types for which the
edges to advertisers are known in advance. The 1−1/e bound of [1] was the best
known approximation for the stochastic online model, until recently Feldman et
al. gave an algorithm that achieves 0.6702 competitive ratio.They also showed
that no algorithm can achieve a competitive ratio better than 0.989. Their main
algorithmic technique is a novel application of the power of two choices consisting
of carefully computing two edge-disjoint (near)-matchings offline to guide the
online allocation. One of the questions left open by Feldman et al. is to obtain
a better competitive ratio by generalizing the two suggested matchings (TSM)
idea to d-suggested matchings (d-SM).

1.1 Our results and techniques

In this paper we give improved upper and lower bounds for three questions
related to the stochastic matching problem.

First, we show that the static analysis inherent in the d-suggested matchings
algorithm of [3] cannot achieve an competitive ratio better than 0.76, suggesting
that a dynamic analysis of the allocation process would be needed to achieve a
higher competitive ratio, even for the special case of d-regular graphs. We make
a first step in that direction by proving

Theorem 1. For any ε > 0 as the size of the d-regular expected graph G =
(A, I,E) goes to ∞, with high probability the algorithm RANDOM has a com-
petitive ratio at least as large as 1− e−ddd/d!− ε.

The analysis is based on a linear program that lower bounds the evolution
of the allocation process as new impressions arrive. Interestingly, this bound
coincides with the static bounds of 1 − 1/e and 1 − 2/e2 for d = 1, 2, but is
strictly better than the static bound for any d > 2.

The proof of Theorem 1 proceeds by showing that RANDOM obtains a
matching of size at least (1− e−ddd/d!− ε)n whp. It is interesting to note that

this bound is tight, i.e. there exists a family of d-regular graphs for which the
expected size of the matching constructed by RANDOM is (1−e−ddd/d!)n+o(n).

On the upper bound side, we prove

Theorem 2. The expected competitive ratio of any algorithm for online stochas-

tic matching is bounded above by 1−1/e+1/e2

1+1/e ≈ 0.901.

This improves upon the 0.9898 hardness result obtained in [3].

Finally, we show that the 1−2/e2
4/3−2/3e ≈ 0.67 approximation for general bipartite

graphs obtained in [3] can be slightly improved without going beyond subgraphs
of degree 2:

Theorem 3. There exists an algorithm that for any ε > 0 one has competitive
ratio at least 0.699− ε with high probability.

It is interesting to point out that the worst case competitive ratio is achieved
in Theorem 3 in the regime when a bound on the performance of any online
algorithm similar to Theorem 2 holds. In particular, a slightly better bound can
be proved if one compares the performance of the algorithm to be best possible
performance of an online algorithm. However, we do not pursue this direction
here.

1.2 Other related work

The related online decision problem, the ad allocation problem, which is moti-
vated by sponsored search auctions, has been studied extensively in the litera-
ture. In this problem, every edge (a, i) ∈ E has a weight that corresponds to
the bid of advertiser a for impression i, and each advertiser has a budget. Now
in addition to forming a matching, the allocation of impressions to advertisers
now has to satisfy budget constraints, and the objective is to maximize the to-
tal value of bids for the assigned impression. The offline version of the problem
in NP-hard ([4]) and several approximation algorithms have been designed ([2],
[5]). Approximation algorithms have also been designed for the online setting
([6], [2], [7], [8]), typically achieving 1 − 1/e approximation under the assump-
tion that bids are small compared to budgets. An 1 − ε approximation for any
ε > 0 has recently been obtained by [9] in the random permutation model under
the assumption that the optimum is significantly larger than the maximum bid.

1.3 Preliminaries

We start with a formal definition of the problem. We are given a bipartite graph
G = (A, I,E) of advertisers A and impression types I, together with an integer
number of impressions of type i that we expect to see. We denote this number
by ei and define n :=

∑
i∈I ei. We assume that at each step an impression of

type i arrives with probability ei/n and denote this distribution by D. Then, n
i.i.d. draws i ∼ D, of impression types arrive, and as soon as an impression i
arrives, we should either assign it to an advertiser a such that (i, a) ∈ E, or not

assign i at all. Each advertiser a ∈ A may be assigned at most once. Our goal is
to maximize the number of assigned impressions.

More formally, If D(i) is the set of arrivals of the impression type i, the
realization graph Ĝ is defined as Ĝ = (A, Î, Ê), where Î = ∪i∈ID(i) and Ê =
{(a, i′)| i′ ∈ D(i) and (a, i) ∈ E}. Then, we would like to design an algorithm
ALG, which having access to G,D and n finds a matching, in an online fashion,
in Ĝ, such that with high probability ALG(Ĝ)/OPT (Ĝ) ≥ α for some α, where
OPT (Ĝ) is the size of the maximum matching in Ĝ.

It is shown in [3] that one can assume without loss of generality that D is the
uniform distribution (indeed, it is sufficient to duplicate impression types in I
an appropriate number of times to achieve that). Hence, in the rest of this paper
we will make this assumption, and thus also have that n = |I|.

1.4 d-Suggested Matchings Algorithm

A family of algorithms for the introduced problem, namely d-Suggested Matching
(d-SM), was presented in [3]. The d-SM algorithm works by finding d edge-
disjoint (near) matchings in the expected graph, G, and then use these matchings
to guide the online assignments of impressions.

More precisely, the algorithm finds (e.g. by using max flows in a boosted
graph) d edge-disjoint near-matchings M1,M2, . . . ,Md, and then for the jth

arrival of the impression type i, the algorithm tries to match the impression
to the advertiser a connected to i in Mj . If a is already matched, then the
impression is not assigned at all.

It is proved in [3] that the 1-SM algorithm achieves 1−1/e = 0.63 competitive
ratio, and that two near-matchings can be carefully chosen so that 2-SM (aka

TSM) achieves 1−2/e2
4/3−2/3e ≈ 0.67 competitive ratio for general bipartite graphs.

But, the problem of finding a decomposition of general bipartite graphs into d
edge-disjoint near-matchings to achieve a better competitive ratio is left open.
This problem is trivial for d-regular graphs, which can be decomposed into a
union of d edges-disjoint perfect matchings. However, we show that the d-SM
algorithm cannot achieve a competitive ratio better than 0.76 for any d, thus
suggesting that a dynamic analysis is needed to improve the current competitive
ratio significantly. We make a first step towards such dynamic analysis by proving
that the RANDOM algorithm achieves a competitive ratio of 1 − e−ddd/d! =
1−O(1/

√
d) on d-regular graphs.

1.5 Organization

In section 2 we prove an upper bound on the performance of the d-SM algorithm
and analyze the performance of RANDOM algorithm on d-regular graphs. Sec-
tion 3 contains the improved hardness result, and section 4 presents an improved
version of the TSM algorithm.

2 Dynamic analysis for regular graphs

In this section we first upper bound the performance of the d-SM algorithm
for any d and then analyze the RANDOM algorithm for allocation on regular
graphs, showing that it achieves a competitive ratio of 1−e−ddd/d! on d-regular
graphs.

2.1 Upper-bounding the performance of d-SM

In this section, we give an upper-bound on the performance of any d-SM algo-
rithm (for any value of d). In particular, we show that (with |I| = n) no d-SM
algorithm can produce a matching of a larger size than 0.76n, even on regular
graphs:

Theorem 4. No d-SM algorithm (for any value of d) can achieve a larger
matching size than 0.76n, even in expectation on regular graphs.

The proof of this theorem is deferred to the full version of the paper. The
bottleneck in the performance of the d-SM algorithm is that it is inherently
a static algorithm. That is after it calculates the offline matchings, it doesn’t
consider the dynamics of the arrival sequence. In particular, near the end of the
sequence, many of the advertisers are already matched, so when an impression
arrives and checks its corresponding advertiser, there is a good chance that
advertiser is already matched and the impression is thrown away. However, there
may be other advertisers connected to this impression that are not yet matched
and could be used for this impression but don’t get utilized. In the next section,
we present a simple dynamic algorithm that can get a much better competitive
ratio for regular graphs.

2.2 The Random Algorithm

As in the previous section, G = (A, I,E) is assumed to be a d-regular bipartite
graph with |I| = n. The algorithm simply assigns each arriving impression to an
unmatched connected advertiser chosen uniformly at random.

In this section, we analyze the performance of this algorithm and show that
it achieves a significantly better competitive ratio than d-SM on regular graphs.

We give a few definitions first.

Definition 1. – We denote the tth arriving impression by it. Whenever we
refer to time t, we mean the time just before the arrival of it.

– Au(t) is the set of unmatched advertisers at time t.

– St is all the state information at time t, i.e. the sequence of all impressions
that have arrived by time t as well as the sequence of all assignments made
by the algorithm up to time t.

– The set of impressions of remaining degree k at time t is denoted by Ik(t).
In other words,

Ik(t) = {i| |N(i) ∩Au(t)| = k} ∀ 0 ≤ k ≤ d

where N(i) is the neighborhood of impression i.
– The fraction of impressions of remaining degree k at time t:

Rk(t) =
|Ik(t)|
n

– For any i ∈ I, a ∈ A, and 1 ≤ t ≤ n:

P (i, a, t) = Pr[i gets matched to a at time t | it = i, St]

– for any i ∈ I,

P (i, t) = Pr[the remaining degree of i changes at time t | St]

– For 1 ≤ k ≤ d,

Pk(t) =E[fraction of impression types whose remaining degree

changes from k to k − 1 at time t| St]

– We denote the expectations of the random variables defined above by corre-
sponding lower-case letters. That is,

rk(t) = E[Rk(t)], p(i, a, t) = E[P (i, a, t)],

p(i, t) = E[P (i, t)], pk(t) = E[Pk(t)]

where all expectations are with respect to the randomness in St.
– We denote the matching constructed by the algorithm up to time t by Mt

and the final matching (i.e. after the arrival of in) by M .

Fact 5 The following are clear:

P (i, t) =
∑

a∈N(i)∩Au(t)

∑
j∈N(a)

P (j, a, t)/n

Pk(t) =
1

n

∑
i∈Ik(t)

P (i, t)

We would like to analyze |M |, the size of the final matching constructed by
the algorithm. We start with a lemma, which is proved in the full version of the
paper.

Lemma 1. |M | is sharply concentrated around E[|M |].

So, we only need to analyze the expectations (or in other words, only E[|M |]).
We have the following lemmas, proved in the full version of the paper:

Lemma 2.

E[|M |] =

n∑
t=1

(1− r0(t))

Lemma 3.

rk(t+ 1)− rk(t) = pk+1(t)− pk(t) ∀ 1 ≤ k < d

r0(t+ 1)− r0(t) = p1(t)

rd(0) = 1,

d∑
k=0

rk(t) = 1, rk(t) ≥ 0

The next lemma is essential in our analysis. But, before presenting it, we no-
tice that since the algorithm picks a connected unmatched advertiser uniformly
at random at each time, we have:

P (i, a, t) =
1{a ∈ N(i) ∩Au(t)}
|N(i) ∩Au(t)|

This fact is used in the proof of the lemma, which is given in the full version
of the paper:

Lemma 4.
k∑

k′=1

pk′(t) ≤
d

n

k∑
k′=1

rk′(t)

From the previous two lemmas, we get that to lower-bound E[|M |], we can
solve the following LP:

maximize
∑n
t=1 r0(t)

s.t. r0(t+ 1)− r0(t) = p1(t) 1 ≤ t ≤ n− 1

rk(t+ 1)− rk(t) = pk+1(t)− pk(t) ∀ 1 ≤ k < d, 1 ≤ t ≤ n− 1

rd(t+ 1)− rd(t) = −pd(t) 1 ≤ t ≤ n− 1

rd(1) = 1, rk(1) = 0 ∀ 0 ≤ k < d∑k
k′=1 pk′(t) ≤

d
n

∑k
k′=1 rk′(t) ∀ 1 ≤ k ≤ d, 1 ≤ t ≤ n

We present the solution to the above LP. To simplify the presentation of the
solution, we introduce the following notation:

Definition 2. For any non-negative integers k, t:

θ(k, t) =

(
d

n

)k (
1− d

n

)t−k−1(
t− 1

k

)

By the properties of the binomial coefficients, we have θ(k, t) = 0 for any

k > t− 1, and also
∑t−1
k=0 θ(k, t) = 1.

Now, the following proposition, proven in the full version of the paper, gives
the LP solution:

Proposition 1. The solution to the above LP is as follows:

rd−k(t) = θ(k, t) ∀ 0 ≤ k < d, 1 ≤ t ≤ n

r0(t) = 1−
d∑
j=1

rj(t) ∀ 1 ≤ t ≤ n

pj(t) =
d

n
rj(t) ∀ 1 ≤ j ≤ d, 1 ≤ t ≤ n

From the above proposition, we get that the performance of the algorithm is
bounded as follows:

E[|M |]
n

≥ 1

n

d−1∑
k=0

n∑
t=1

(
d

n

)k (
1− d

n

)t−1−k (
t− 1

k

)
It can be seen that as n→∞, the above summation converges to:

d−1∑
k=0

∫ 1

0

e−dx(dx)j/j!dx = 1− e−ddd/d!

This and the sharp concentration of |M | give the following result:

Theorem 6. For any ε > 0 as the size of the d-regular expected graph G =
(A, I,E) converges to ∞, with high probability the algorithm RANDOM achieves
a competitive ratio at least as large as 1− e−ddd/d!− ε.

It remains to note that the bound on the size of the matching is tight: it is
achieved for a family of graphs Gn that consist of a disjoint union of n/d copies
of Kd,d.

Comparing this lower bound on the performance of RANDOM (which con-
verges to 1 as 1− 1/

√
d when d→∞) with the constant (0.76) upper bound on

the performance of d-SM, we conclude that the RANDOM algorithm achieves a
significantly better competitive ratio than d-SM on regular graphs.

3 Hardness

Feldman et al. [3] prove that no online algorithm for the stochastic matching
problem can achieve a better competitive ratio than 0.99. In this section, we
prove that in fact no online algorithm can achieve a better competitive ratio
than 0.902:

Theorem 7. The expected competitive ratio of any algorithm for online stochas-

tic matching is bounded above by 1−1/e+1/e2

1+1/e ≈ 0.901062.

Proof. We exhibit an instance G = (A, I, E) of the problem for which no online
algorithm yields a matching of expected size larger than
1−1/e+1/e2

1+1/e |I|, even though a matching of size (1− ε)|I| exists with high proba-

bility. Let G = (I1 ∪ I2, A1 ∪A2, E) be defined as follows:

1. |I1| = |A2| = n, |A1| = |I2| = n/e.

2. There is a perfect matching M between I1 and A2.

3. There is a complete graph between I2 and A2, and between I1 and A1.

We first show that with high probability there exists a matching of size
(1 + 1/e− ε)n in the realization graph. By the balls and bins analysis, there will
be (1− 1/e)n distinct arrivals in I1. Route the first arrivals in I1 to A2 and the
rest to A1 (this is possible since there is a complete graph between I1 and A1,
and |A1| = |I1|/e). This leaves |A2|/e advertisers in A2 unmatched. These are
matched to impressions from I2. Hence, a matching of size (1 + 1/e− ε)n exists
with high probability.

Consider an advertiser a ∈ A2 that is matched by ALG to an impression in
I2. Fix a time t ∈ [1, (1 + 1/e)n] (recall that time t corresponds to the moment
just before the arrival of the tth impression). We call advertiser a good if M(a)
has not arrived and bad otherwise (where M(a) is the impression connected to a
by an edge in M). Denote the number of good advertisers at time t by Xt, and
the number of good advertisers at the end of the sequence by X = X(1+1/e)n+1.
Note that the size of the final matching constructed by ALG is upper bounded
by n/e+ (1− 1/e)n+X.

At time t an impression i ∈ I1 arrives with probability 1/(1 + 1/e) and it is
a unique arrival incident on a good advertiser with probability Xt/n. Hence, we
have:

E[Xt+1 −Xt|Xt] ≤
1/e

1 + 1/e
− 1

1 + 1/e
Xt/n,X1 = 0,

which implies that

E[Xt] ≤ (n/e)

(
1−

(
1− 1

(1 + 1/e)n

)t−1)

This yields that E[X] ≤ (n/e)(1− e−1), and hence, in expectation, at most
1
e (1 − e−1)n of the advertisers that are matched to I2 are good at the end of
the sequence. This concludes that the expected size of the matching constructed
by ALG can not be larger than n/e+ (1− 1/e)n+ 1/e(1− 1/e)n = (1 + 1/e−
1/e2)n, and hence ALG’s competitive ratio can not be better than 1+1/e−1/e2

1+1/e ≈
0.901062, which finishes the proof. ut

4 Improved competitive ratio for general graphs

In this section we present an algorithm for the online stochastic matching prob-
lem in general graphs that yields an 0.699-approximation to the offline optimum.

We start by giving an outline of the algorithm of [3]. In the offline phase,
the TSM algorithm constructs a boosted flow graph Gf , where each a ∈ A is
connected to a source s by an edge with capacity 2, each i ∈ I is connected to
a sink t by an edge with capacity 2 and each edge of G is directed from A to I
and assigned capacity 1. One then finds an integral maxflow in Gf . Denote the
edges that carry flow by Ef . The flow edges form a union of paths and cycles,
which are colored blue and red in an alternating fashion (with some extra care
taken for various types of paths). The online algorithm proceeds as follows: (1)
assigns the first arrival along the blue edge if it is still available, and discards
otherwise, (2) assigns the second arrival to the red edge if it is still available,
discards otherwise.

It was shown in [3] that this algorithm yields an (1− 2/e2)/(4/3− 2/(3e)) ≈
0.67029 approximation, which is tight for their algorithm. In what follows we
show how to modify the flow graph constructed by the TSM algorithm to obtain
an approximation ratio of 0.699 against the optimal offline algorithm.

Our algorithm works on the flow graph constructed by the algorithm of [3].
As in [3], denote the reachability min-cut corresponding to the max-flow in the
boosted flow graph Gf by (AS ∪ IS , AT ∪ IT), where AS ∪ IS is the source side
of the cut and AT ∪ IT is the sink side, and denote the set of edges crossing the
cut by Eδ. It was shown in [3] that the min-cut can always be chosen so that
the edges in Eδ form a matching, and we make that assumption on Eδ.

The intuition behind the algorithm is as follows. Recall that the analysis of
the TSM algorithm uses the reachability cut (AS ∪ IS , AT ∪ IT) in the boosted
flow graph to bound the optimum in Ĝ. The key insight is that this bound on
OPT can sometimes be improved by using a different cut in Ĝ. In order to exploit
this fact, however, we first modify the flow graph obtained in the TSM algorithm
as described in Algorithm 1 below. Intuitively, the modification is based on the
fact that the value of the flow in the boosted graph Gf does not translate directly
into the performance of TSM on the subgraph given by Ef . In particular, the
performance of the algorithm improves if the flow obtained via the max-flow
computation in Gf is rerouted so that it is more evenly spread among vertices
in AS and IT . This can be done using two max-flow computations. The two
min-cuts obtained from these computations are then used to define a subgraph
H of G for which we can bound OPT more carefully. The cut that we use to
bound OPT (Ĥ) then depends on the structure of the new set of flow edges that
was obtained.

Denote by GS the subgraph induced by vertices of AS ∪ IS in G and by GT
the subgraph induced by vertices of AT ∪ IT in G. For k = 0, 1, 2 define

AkS = {a ∈ AS : a carries k units of flow in Ef}
IkT = {i ∈ IT : i carries k units of flow in Ef}.

Algorithm 1

Input: G = (A, I,E), the set of edges Ef carrying max-flow in Gf . The min-cut
(AS ∪ IS , AT ∪ IT).

Output: E∗ - a modified set of paths and cycles in G.

1. Orient edges of GS from AS to IS , orient flow edges from IS to AS .

2. Connect vertices in A0
S to a source by edges of capacity 1, vertices in A2

S to
a sink by edges of capacity 1, assign capacity 1 to edges of G.

3. Find max-flow in GS . Denote the set of edges carrying flow by ESf .

4. Orient edges of GT from IT to AT , orient flow edges from AT to IT .

5. Connect vertices in I0T to a source by edges of capacity 1, vertices I2T to a
sink by edges of capacity 1, assign capacity 1 to edges of G.

6. Find max-flow in GT . Denote the set of edges carrying flow by ETf .

7. Set E∗ := Eδ ∪ ETf ∪ ESf .

8. Decompose E∗ into a disjoint union of paths and cycles. Color the edges of the
paths and cycles as follows (the same as in [3], given here for completeness):

– Color cycles alternately blue and red;

– Color odd length paths alternately blue and red, with more blue than
red;

– For even paths that start and end in I, color the first two edges blue,
then alternate red and blue.

– For even paths that start and end in A, alternate blue and red.

9. (TSM) At runtime, assign the first arrival along the blue edge if it is still
available, discard otherwise. Assign the second arrival to the red edge if it is
still available, discard otherwise.

We now analyze the performance of Algorithm 1. We start with some defi-
nitions. Denote by the Pδ and Cδ the set of paths and cycles respectively in E∗

that contain edges from Eδ. Note that since there are no flow edges between IS
and AT , paths and cycles in the flow graph are either contained in one of GS
and GT or contain an edge of Eδ. Here and in what follows we will sometimes
view the set of paths and cycles Pδ ∪ Cδ as a set of vertices.

Orient edges of GS and GT as described above (note that edges from Eδ are
not oriented since reachability is defined only within GS and GT). Denote by P∗S
the set of paths in E∗∩E(GS) that are reachable from AS∩(Pδ∪Cδ) using edge
orientation in GS and by P∗T the set of paths in E∗ ∩E(GT) that are reachable
from IT ∩ (Pδ ∪ Cδ) using edge orientation in GT . Also, define P∗ := P∗S ∪ P∗T .

Let H be the subgraph induced by Pδ ∪ Cδ ∪ P∗. Define ÃT := AT \ V (H),
ĨT := IT \ V (H), ĨS := IS \ V (H), ÃS := AS \ V (H).

All proofs from this section have been deferred to the full version of the
paper.

The following lemmas are important for our analysis:

Lemma 5. There are no edges between ĨT and A \ ÃT , and no edges between
ÃS and I \ ĨS

Lemma 6. For any ε > 0 one has

ALG(Ĝ) ≥(1− 2/e2)|ÃT |+ (1− 2/e2)|ĨS |+ALG(Ĥ)− ε
OPT (Ĝ) ≤|ÃT |+ |ĨS |+OPT (Ĥ) + ε

with high probability.

We now proceed to prove that Algorithm 1 gives a 0.699-approximation to
the best offline solution. In light of Lemma 6 and the fact that 0.699 < 1− 2/e2

it suffices to prove this guarantee for the graph H.

Lemma 7. For any ε > 0 one has ALG(Ĥ)/OPT (Ĥ) ≥ 0.699− ε whp.

We can now prove Theorem 3:
Proof of Theorem 3: It follows from Lemma 7 and Lemma 6 that for any
ε > 0 Algorithm 1 achieves a competitive ratio of at least 0.699− ε. ut

Remark 1. It can be seen from the proof of Lemma 7 that the worst case per-
formance of Algorithm 1 occurs when (1 − 1/e)|Eδ| = |A′S | − |I ′S |, i.e. in the
regime in which a bound similar to Theorem 2 on the performance of any on-
line algorithm holds. It is in fact possible to get a slightly better bound if one
compares the performance of Algorithm 1 against the best possible performance
of an online algorithm, but we do not present that analysis here for the sake of
clarity. It can also be noted that the original analysis of the TSM algorithm is
tight even when compared against the performance of the best possible online
algorithm.

References

1. Karp, R., Vazirani, U., Vazirani, V.: An optimal algorithm for online bipartite
matching. STOC (1990)

2. Goel, G., Mehta, A.: Online budgeted matching in random input models with
applications to adwords. SODA (2008)

3. Feldman, J., Mehta, A., Mirrokni, V., Muthukrishnan, S.: Online stochastic match-
ing: Beating 1− 1/e. FOCS (2009)

4. Azar, Y., Birnbaum, B., Karlin, A., Mathieu, C., Nguyen, C.: Improved approxi-
mation algorithms for budgeted allocations. ICALP (2008)

5. Srinivasan, A.: Budgeted allocations in the full-information setting. RAN-
DOM/APPROX (2008)

6. Mehta, A., Saberi, A., Vazirani, U., Vazirani, V.: Adwords and generalized online
matching. FOCS (2005)

7. Buchbinder, N., Jain, K., Naor, J.: Online primal-dual algorithms for maximizing
ad-auctions. ESA (2007)

8. Kalyanasundaram, B., Pruhs, K.R.: An optimal deterministic algorithm for online
b -matching. Theoretical Computer Science (2000)

9. Devanur, N., Hayes, T.: The adwords problem: online keyword matching with
budgeted bidders under random permutations. EC (2009)

10. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press
(1995)

