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Abstract

A graph G′(V,E′) is an ε-sparsification of G for some ε > 0, if every (weighted) cut in G′ is within
(1 ± ε) of the corresponding cut in G. A celebrated result of Benczúr and Karger shows that for every
undirected graph G, an ε-sparsification with O(n log n/ε2) edges can be constructed in O(m log2 n) time.
The notion of cut-preserving graph sparsification has played an important role in speeding up algorithms
for several fundamental network design and routing problems. Applications to modern massive data sets
often constrain algorithms to use computation models that restrict random access to the input. The semi-
streaming model, in which the algorithm is constrained to use Õ(n) space, has been shown to be a good
abstraction for analyzing graph algorithms in applications to large data sets. Recently, a semi-streaming
algorithm for graph sparsification was presented by Anh and Guha; the total running time of their imple-
mentation is Ω(mn), too large for applications where both space and time are important. In this paper, we
introduce a new technique for graph sparsification, namely refinement sampling, that gives an Õ(m) time
semi-streaming algorithm for graph sparsification.

Specifically, we show that refinement sampling can be used to design a one-pass streaming algorithm
for sparsification that takes O(log log n) time per edge, uses O(log2 n) space per node, and outputs an
ε-sparsifier with O(n log3 n/ε2) edges. At a slightly increased space and time complexity, we can reduce
the sparsifier size to O(n log n/ε2) edges matching the Benczúr-Karger result, while improving upon the
Benczúr-Karger runtime for m = ω(n log3 n). Finally, we show that an ε-sparsifier with O(n log n/ε2)
edges can be constructed in two passes over the data and O(m) time whenever m = Ω(n1+δ) for some
constant δ > 0. As a by-product of our approach, we also obtain an O(m log log n + n log n) time
streaming algorithm to compute a sparse k-connectivity certificate of a graph.
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1 Introduction

The notion of graph sparsification was introduced in [BK96], where the authors gave a near linear time pro-
cedure that takes as input an undirected graph G on n vertices and constructs a weighted subgraph H of G
with O(n log n/ε2) edges such that the value of every cut in H is within a 1 ± ε factor of the value of the
corresponding cut inG. This algorithm has subsequently been used to speed up algorithms for finding approx-
imately minimum or sparsest cuts in graphs ([BK96, KRV06]), as well as in a host of other applications (e.g.
[KL02]). A more general class of spectral sparsifiers was recently introduced by Spielman and Srivastava in
[SS08]. The algorithms developed in [BK96] and [SS08] take near-linear time in the size of the graph and
produce very high quality sparsifiers, but require random access to the edges of the input graphG, which is of-
ten prohibitively expensive in applications to modern massive data sets. The streaming model of computation,
which restricts algorithms to use a small number of passes over the input and space polylogarithmic in the
size of the input, has been studied extensively in various application domains (e.g. [Mut06]), but has proven
too restrictive for even the simplest graph algorithms (even testing s − t connectivity requires Ω(n) space).
The less restrictive semi-streaming model, in which the algorithm is restricted to use Õ(n) space, is more
suited for graph algorithms [FKM+05]. The problem of constructing graph sparsifiers in the semi-streaming
model was recently posed by Anh and Guha [AG09], who gave a one-pass algorithm for finding Benczúr-
Karger type sparsifiers with a slightly larger number of edges than the original Benczúr-Karger algorithm, i.e.
O(n log n log m

n /ε
2) as opposed to O(n log n/ε2). Their algorithm requires only one pass over the data, and

their analysis is quite non-trivial. However, its time complexity is Ω(mn polylog(n)), making it impractical
for applications where both time and space are important constraints1

Apart from the issue of random access vs disk, the semi-streaming model is also important for scenarios
where edges of the graph are revealed one at a time by an external process. For example, this application
maps well to online social networks where edges arrive one by one, but efficient network computations may
be required at any time, making it particularly useful to have a dynamically maintained sparsifier.

Our results: We introduce the concept of refinement sampling. At a high level, the basic idea is to sample
edges at geometrically decreasing rates, using the sampled edges at each rate to refine the connected com-
ponents from the previous rate. The sampling rate at which the two endpoints of an edge get separated into
different connected components is used as an approximate measure of the “strength” of that edge. We use
refinement sampling to obtain two algorithms for computing Benczúr-Karger type sparsifiers of undirected
graphs in the semi-streaming model efficiently. The first algorithm requires O(log n) passes, O(log n) space
per node, O(log n log log n) work per edge and produces sparsifiers with O(n log2 n/ε2) edges. The second
algorithm requires one pass over the edges of the graph, O(log2 n) space per node, O(log log n) work per
edge and produces sparsifiers with O(n log3 n/ε2) edges. Several properties of these results are worth noting:

1. In the incremental model, the amortized running time per edge arrival is O(log log n), which is quite
practical and much better than the previously best known running time of Ω(n).

2. The sample size can be improved for both algorithms by running the original Bencúr-Karger algo-
rithm on the sampled graph without violating the restrictions of the semi-streaming model, yielding
O(log n log log n+ ( nm) log4 n) and O(log log n+ ( nm) log5 n) amortized work per edge respectively.

3. Somewhat surprisingly, this two-stage (but still semi-streaming) algorithm improves upon the runtime
of the original sparsification scheme when m = ω(n log2 n) for the O(log n)-pass version and m =
ω(n log3 n) for the one-pass version.

1As is often the case for semi-streaming algorithms, Anh and Guha do not explicitly compute the running time of their algorithm;
Ω(mn polylog(n)) is the best running time we can come up with for their algorithm.
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4. As a by-product of our analysis, we show that refinement sampling can be regarded as a one-pass
algorithm for producing a sparse connectivity certificate of a weighted undirected graph (see Corollary
4.7). Thus we obtaining a streaming analog of the Nagamochi-Ibaraki result [NI92] for producing
sparse certificates, which is in turn used in the Bencúr-Karger sampling.

Finally, in Section 5 we give an algorithm for constructing O(n log n/ε2)-size sparsifiers in O(m) time
using two passes over the input when m = Ω(n1+δ).

Related Work: In [AG09] the authors give an algorithm for sparsification in the semi-streaming model
based on the observation that one can use the constructed sparsification of the currently received part of
the graph to estimate of the strong connectivity of a newly received edge. A brief outline of the algorithm
is as follows. Denote the edges of G in their order in the stream by e1, . . . , em. Set H0 = (V, ∅). For
every t > 0 compute the strength st of et in Ht−1, and with probability pet = min{ρ/st, 1} set Ht =
(V,E(Ht−1) ∪ {et}), giving et weight 1/pet in Ht and Ht = Ht−1 otherwise. For every t the graph Ht

is an ε-sparsification of the subgraph received by time t. The authors show that this algorithm yields an
ε-sparsifier with O(n log n log m

n /ε
2) edges. However, it is unclear how one can calculate the strengths st

efficiently. A naive implementation would take Ω(n) time for each t, resulting in Ω(mn) time overall. One
could conceivably use the fact that Ht−1 is always a subgraph of Ht, but to the best of our knowledge there
are no results on efficiently calculating or approximating strong connectivities in the incremental model.

It is important to emphasize that our techniques for obtaining an efficient one-pass sparsification algorithm
are very different from the approach of [AG09]. In particular, the structure of dependencies in the sampling
process is quite different. In the algorithm of [AG09] edges are not sampled independently since the probabil-
ity with which an edge is sampled depends on the the coin tosses for edges that came earlier in the stream. Our
approach, on the other hand, decouples the process of estimating edge strengths from the process of producing
the output sample, thus simplifying analysis and making a direct invocation of the Benczúr-Karger sampling
theorem possible.

Organization: Section 2 introduces some notation as well as reviews the Benczúr-Karger sampling algo-
rithm. We then introduce in Section 3 our refinement sampling scheme, and show how it can be used to
obtain a sparsification algorithm requiring O(log n) passes and O(log n log log n) work per edge. The size
of the sampled graph is O(n log2 n/ε2), i.e. at most O(log n) times larger than that produced by Benczúr-
Karger sampling. Finally, in Section 4 we build on the ideas of Section 3 to obtain a one-pass algorithm with
O(log log n) work per edge at the expense of increasing the size of the sample to O(n log3 n/ε2).

2 Preliminaries

We will denote by G(V,E) the input undirected graph with vertex set V and edge set E with |V | = n
and |E| = m. For any ε > 0, we say that a weighted graph G′(V,E′) is an ε-sparsification of G if every
(weighted) cut in G′ is within (1 ± ε) of the corresponding cut in G. Given any two collections of sets that
partition V , say S1 and S2, we say that S2 is a refinement of S1 if for any X ∈ S1 and Y ∈ S2, either
X ∩ Y = ∅ or Y ⊂ X . In other words, S1 ∪ S2 form a laminar set system.

2.1 Benczúr-Karger Sampling Scheme

We say that a graph is k-connected if the value of each cut in G is at least k. The Benczúr-Karger sampling
scheme uses a more strict notion of connectivity, referred to as strong connectivity, defined as follows:

Definition 2.1 [BK96] A k-strong component is a maximal k-connected vertex-induced subgraph. The strong
connectivity of an edge e, denoted by se, is the largest k such that a k-strong component contains e.
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Note that the set of k-strong components form a partition of the vertex set ofG, and the set of k+1-strong
components forms a refinement this partition. We say e is k-strong if its strong connectivity is k or more, and
k-weak otherwise. The following simple lemma will be useful in our analysis.

Lemma 2.2 [BK96] The number of k-weak edges in a graph on n vertices is bounded by k(n− 1).

The sampling algorithm relies on the following result:

Theorem 2.3 [BK96] Let G′ be obtained by sampling edges of G with probability pe = min{ ρ
ε2se

, 1}, where
ρ = 16(d + 2) lnn, and giving each sampled edge weight 1/pe. Then G′ is an ε-sparsification of G with
probability at least 1− n−d. Moreover, expected number of edges in G′ is O(n log n).

It follows easily from the proof of theorem 2.3 in [BK96] that if we sample using an underestimate of
edge strengths, the resulting graph is still an ε-sparsification.

Corollary 2.4 Let G′ be obtained by sampling each edge of G with probability p̃e ≥ pe and and give every
sampled edge e weight 1/p̃e. Then G′ is an ε-sparsification of G with probability at least 1− n−d.

In [BK96] the authors give an O(m log2 n) time algorithm for calculating estimates of strong connec-
tivities that are sufficient for sampling. The algorithm, however, requires random access to the edges of the
graph, which is disallowed in the semi-streaming model. More precisely, the procedure for estimating edge
strengths given in [BK96] relies on the Nagamochi-Ibaraki algorithm for obtaining sparse certificates for edge-
connectivity in O(m) time ([NI92]). The algorithm of [NI92] relies on random access to edges of the graph
and to the best of our knowledge no streaming implementation is known. In fact we show in Corollary 4.7
that refinement sampling yields a streaming algorithm for producing sparse certificates for edge-connectivity
in one pass over the data.

In what follows we will consider unweighted graphs to simplify notation. The results obtained can be
easily extended to the polynomially weighted case as outlined in Remark 4.8 at the end of Section 4.

3 Refinement Sampling

We start by introducing the idea of refinement sampling that gives a simple algorithm for efficiently computing
a BK-sample, and serves as a building block for our streaming algorithms.

To motivate refinement sampling, let us consider the simpler problem of identifying all edges of strength
at least k in the input graphG(V,E). A natural idea to do so is as follows: (a) generate a graphG′ by sampling
edges ofGwith probability Õ(1/k), (b) find connected components ofG′, and (c) output all edges (u, v) ∈ E
as such that u and v are in the same connected component in G′. The sampling rate of Õ(1/k) suggests that if
an edge (u, v) has strong connectivity below k, the vertices u and v would end up in different components in
G′, and conversely, if the strong connectivity of (u, v) is above k, they are likely to stay connected and hence
output in step (c). While this process indeed filters out most k-weak edges, it is easy to construct examples
where the output will contain many edges of strength 1 even though k is polynomially large (a star graph, for
instance). The idea of refinement sampling is to get around this by successively refining the sample obtained
in the final step (c) above.

In designing our algorithm, we will repeatedly invoke the subroutine REFINE(S, p) that essentially imple-
ments the simple idea described above.

Function: REFINE(S, p)

Input: Partition S of V , sampling probability p.
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Output: Partition S′ of V , a refinement of S.

1. Take a uniform sample E′ of edges of E with probability p.

2. For each U ∈ S,U ⊆ V let C(U) be the set of connected components of U induced by E′.

3. Return S′ := ∪U∈SC(U).

It is easy to see that REFINE can be implemented using O(n) space, a total of n UNION operations with
O(n log n) overall cost and m FIND operations with O(1) cost per operation, for an overall running time of
O(n log n + m)(see, e.g. [CLRS01]). Also, REFINE can be implemented using a single pass over the set of
edges. A scheme of refinement relations between Sl,k is given in Fig. 1.

The refinement sampling algorithm computes partitions Sl,j for l = 1, . . . , L and j = 0, 1, . . . ,K. Here
L = log(2n) is the number of strength levels (the factor of 2 is chosen for convenience to ensure that SL,K
consists of isolated vertices whp), K is a parameter which we call the strengthening parameter. Also, we
choose a parameter φ > 0, which we will refer to as the oversampling parameter. For a partition S, let X(S)
denote all the edges in E which have endpoints in two different sets in S. The partitions are computed as
follows:

Algorithm 1 (Refinement Sampling)

Initialization: Sl,0 = {V } for l = 1, . . . , L.

1. Set k := 1

2. For each l, 1 ≤ l ≤ L, set Sl,k := REFINE(Sl,k−1, 2−l).

3. Set k := k + 1. If k < K, go to step 1.

4. For each e ∈ E defineL(e) = min {l : e ∈ X(Sl,K)}. Sample edge ewith probability z(e) = min{1, φ
ε22L(e) }

and assign it weight 1/z(e). Let R(φ,K) denote the set of edges sampled during this step; we call this
the refinement sample of G.

The following two lemmas relate the probabilities z(e) to the sampling probabilities used in the Benczúr-
Karger sampling scheme.

Lemma 3.1 For any K > 0, with probability at least 1−Kn−d every edge e satisfies z(e) ≤ 4φρ/(ε2se).

Proof: Consider an edge ewith strong connectivity se, and let C denote the se-strongly connected component
containing e. By Theorem 2.3, sampling with probability min{4ρ/se, 1} preserves all cuts up to 1 ± 1

2 in C
with probability at least 1−n−d. Hence, all se-strongly connected components stay connected after K passes
of REFINE for all l > 0 such that 2−l ≥ 4ρ/se, yielding the lemma.

Lemma 3.2 If K > log4/3 n, then 2−L(e)+1 ≥ 1/(2se) for every e ∈ E(G) with probability at least 1 −
Ke−(n−1)/100.

Proof: Consider a level l such that p = 2−l < 1/(2se). Let H be the graph obtained by contracting all
(se + 1)-strong components in G into supernodes. Since H contains only (se + 1)-weak edges, the number
of edges is at most se(n− 1) by Lemma 2.2. As the expected number of (se + 1)-weak edges in the sample
is at most (n − 1)/2, by Chernoff bounds, the probability that the number of (se + 1)-weak edges in the
sample exceeds 3(n − 1)/4 is at most (e1/4(5/4)−5/4)−(n−1)/2 < e−(n−1)/100. Thus at least one quarter
of the supernodes get isolated in each iteration. Hence, no (se + 1)-weak edge survives after K = log4/3 n

rounds of refinement sampling with probability at least 1−Ke−(n−1)/100. Since L(e) was defined as the least
l such that e ∈ X(Sl,K), the endpoints of e were connected in SL(e)−1,K , so 2−L(e)+1 ≥ 1/(2se).
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S1,1 S1,2 . . . S1,K−1 S1,K- - - -

S2,1 S2,2 . . . S2,K−1 S2,K- - - -

...
...

...
...

...

SL−1,1 SL−1,2 . . . SL−1,K−1 SL−1,K- - - -

SL,1 SL,2 . . . SL,K−1 SL,K- - - -

Figure 1: Scheme of refinement relations between partitions for Algorithm 1.

Theorem 3.3 LetG′ be the graph obtained by running Algorithm 1 with φ := 4ρ. ThenG′ hasO(n log2 n/ε2)
edges in expectation, and is an ε-sparsification of G with probability at least 1− n−d+1.

Proof: We have from lemma 3.2 and the choice of φ that the sampling probabilities dominate those used
in Benczúr-Karger sampling with probability at least 1 − Ke−(n−1)/100. Hence, by corollary 2.4 we have
that every cut in G′ is within 1 ± ε of its value in G with probability at least 1 −Ke−(n−1)/100 − n−d. The
expected size of the sample is O(n log2 n/ε2) by lemma 3.1 together with the fact that ρ = O(log n). The
probability of failure of the estimate in lemma 3.2 is at most Kn−d, so all bounds hold with probability at
least 1−Kn−d +Ke−(n−1)/100 − n−d > 1− n−d+1 for sufficiently large n. The high probability bound on
the number of edges follows by an application of the Chernoff bound.

The next lemma follows from the discussion above:

Lemma 3.4 For any ε > 0, an ε-sparsification of G with O(n log2 n/ε2) edges can be constructed in
O(log n) passes of REFINE using O(log n) space per node and O(log2 n) time per edge.

We now note that one log n factor in the running time comes from the fact that during each pass k Algo-
rithm 1 flips a coin at every level l to decide whether or not to include e into Sl,k when e ∈ Sl,k−1. If we could
guarantee that Sl,k is a refinement of Sl′,k for all l′ < l and for all k, we would be able to use binary search
to find the largest l such that e ∈ Sl,k in O(log log n) time. Algorithm 2 given below uses iterative sampling
to ensure a scheme of refinement relations given in Fig. 2. For each edge e, 1 ≤ k ≤ K, and 1 ≤ ` ≤ L,
we define for convenience independent Bernoulli random variables Al,k,e such Pr[Al,k,e = 1] = 1/2, even
though the algorithm will not always need to flip all these O(log2 n) coins. Also define Ul,k,e =

∏
j≤lAj,k,e.

The algorithm uses connectivity data structures Dl,k, 1 ≤ l ≤ L, 1 ≤ k ≤ K. Adding an edge e to Dl,k

merges the components that the endpoints of e belong to in Dl,k.
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Algorithm 2 (An O(log n)-Pass Sparsifier)

Input: Edges of G streamed in adversarial order: (e1, . . . , em).

Output: A sparsification G′ of G.

Initialization: Set E′ := ∅.

1. For all k = 1, . . . ,K

2. Set t = 1.

3. For all l = 1, . . . , L

4. Add et = (ut, vt) to Dl,k if Ul,k,e = 1 and ut and vt are connected in D(l,k−1).

5. Set t := t+ 1. Go to step 1 if t ≤ m.

6. For each et define L′(et) as the minimum l such that ut and vt are not connected in Dl,K . Set z′(et) :=

min
{

1, 4ρ

ε22L
′(et)

}
. Output et with probability z′(et), giving it weight 1/z′(et).

Theorem 3.5 For any ε > 0, there exists anO(log n)-pass streaming algorithm that produces an ε-sparsification
G′ of a graph G with at most O(n log2 n/ε2) edges using O((n/m) log n+ log n log log n) time per edge.

Proof: The correctness of Algorithm 2 follows in the same way as for Algorithm 1 above, so it remains
to determine its runtime. An O((n/m) log n + 1) term per edge comes from amortized O(n log n + m)
complexity of UNION-FIND operations. The log n factor in the runtime comes from the log n passes, and
we now show that step 3 can be implemented in O(log log n) time. First note that since Sl′,k′ is a refinement
of Sl,k whenever l′ ≥ l and k′ ≥ k, one can use binary search to determine the largest l0 such that ut and vt
are connected in Dl0−1,k−1. One then keeps flipping a fair coin and adding e to connectivity data structures
Dl,k for successive l ≥ l0 as long as the coin keeps coming up heads. Since 2 such steps are performed on
average, it takes O(K) = O(log n) amortized time per edge by the Chernoff bound. Putting these estimates
together, we obtain the claimed time complexity.

The scheme of refinement relations between Sl,k is depicted in Fig. 2.

Corollary 3.6 For any ε > 0, there is an O(log n)-pass algorithm that produces an ε-sparsification G′

of an input graph G with at most O(n log n/ε2) edges using O(log2 n) space per node, and performing
O(log n log log n+ (n/m) log4 n) amortized work per edge.

Proof: One can obtain a sparsification G′ with O(n log2 n/ε2) edges by running Algorithm 2 on the input
graph G, and then run the Benczúr-Karger algorithm on G′ without violating the restrictions of the semi-
streaming model. Note that even though G′ is a weighted graph, this will have overhead O(log2 n) per edge
of G′ since the weights are polynomial. Since G′ has O(n log2 n) edges, the amortized work per edge of
G is O(log n log logn + (n/m) log4 n). The Benczúr-Karger algorithm can be implemented using space
proportional to the size of the graph, which yields O(log2 n) space per node.

Remark 3.7 The algorithm improves upon the runtime of the Benczúr-Karger sparsification scheme when
m = ω(n log2 n).
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4 A One-pass Õ(n+m)-Time Algorithm for Graph Sparsification

In this section we convert Algorithm 2 obtained in the previous section to a one-pass algorithm. We will
design a one-pass algorithm that produces an ε-sparsifier with O(n log3 n/ε2) edges using only O(log log n)
amortized work per edge. A simple post-processing step at the end of the algorithm will allow us to reduce the
size to O(n log n/ε2) edges with a slightly increased space and time complexity. The main difficulty is that
in going from O(log n) passes to a one-pass algorithm, we need to introduce and analyze new dependencies
in the sampling process.

As before, the algorithm maintains connectivity data structures Dl,k, where 1 ≤ l ≤ L and 1 ≤ k ≤ K.
In addition to indexing Dl,k by pairs (l, k) we shall also write DJ for Dl,k, where J = K(l − 1) + k, so that
1 ≤ J ≤ LK. This induces a natural ordering on Dl,k, illustrated in Fig. 3, that corresponds to the structure
of refinement relations. We will assume for simplicity of presentation that D0 = D1,0 is a connectivity data
structure in which all vertices are connected. For each edge e, 1 ≤ ` ≤ L, and 1 ≤ k ≤ K, we define an
independent Bernoulli random variable A′l,k,e with Pr[A′l,k,e = 1] = 2−l. The algorithm is as follows:

Algorithm 3 (A One-Pass Sparsifier)

Input: Edges of G streamed in adversarial order: (e1, . . . , em).

Output: A sparsification G′ of G.

Initialization: Set E′ := ∅.

1. Set t = 1.

2. For all J = 1, . . . , LK (J = (l, k))

3. Add et = (ut, vt) to DJ if A′l,k,e = 1 and ut and vt are connected in DJ−1.

4. DefineL′(et) as the minimum l such that ut and vt are not connected inDl,K . Set z′(et) := min
{

1, 4ρ

ε22L
′(et)

}
.

Output et with probability z′(et), giving it weight 1/z′(et).

5. Set t := t+ 1. Go to step 2 if t ≤ m.

Informally, Algorithm 3 underestimates strength of some edges until the data structures Dl,k become
properly connected but proceeds similarly to Algorithms 1 and 2 after that. Our main goal in the rest of the
section is to show that this underestimation of strengths does not lead to a large increase in the size of the
sample.

Note that not all LK = Θ(log2 n) coin tosses A′l,k,e per edge are necessary for an implementation of
Algorithm 3 (in particular, we will show that Algorithm 3 can be implemented with O(log log n) = o(LK)
work per edge). However, the random variables A′l,k,e are useful for analysis purposes. We now show that
Algorithm 3 outputs a sparsification G′ of G with O(n log3 n/ε2) edges whp.

Lemma 4.1 For any ε > 0, w.h.p. the graph G′ is an ε-sparsification of G.

Proof: We can couple behaviors of Algorithms 1 and 3 using the coin tosses A′l,k,e to show that L(e) ≥ L′(e)
for every edge e, i.e. z′(e) ≥ z(e). Hence G′ is a sparsification of G by Corollary 2.4.

It remains to upper bound the size of the sample. The following lemma is crucial to our analysis; its proof
is deferred to the Appendix A due to space limitations.

Lemma 4.2 Let G(V,E) be an undirected graph. Consider the execution of Algorithm 3, and for 1 ≤ J ≤
LK where J = (l, k), let XJ denote the set of edges e = (u, v) such that u and v are connected in DJ−1

when e arrives. Then |E \XJ | = O(K2ln) with high probability.
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Lemma 4.3 The number of edges in G′ is O(n log3 n/ε2) with high probability.

Proof: Recall that Algorithm 3 samples an edge et = (ut, vt) with probability z′(et) = min
{

1, 4ρ

ε22L
′(et)

}
,

where L′(et) is the minimum l such that ut and vt are not connected in Dl,K . As before, for J = (l, k), we
denote by XJ the set of edges e = (u, v) such that u and v are connected in DJ−1 when e arrives. Note that
w.h.p. X(L,1) = ∅ w.h.p. by our choice of L = log(2n). For each 1 ≤ l ≤ L, let Yl = X(l,1) \ X(l+1,1).
We have by Lemma 4.2 that

∑
1≤j≤l |Yj | = O(K2ln) w.h.p. Also note that edges in Yl are sampled with

probability at most 4ρ
ε22l−1 . Hence, we get that the expected number of edges in the sample is at most

L∑
l=1

|Yl| ·
4ρ

ε22l−1
= O

(
L∑
l=1

K2ln · 4ρ
ε22l−1

)
= O(n log3 n/ε2).

The high probability bound now follows by standard concentration inequalities.

Finally, we have the following theorem.

Theorem 4.4 For any ε > 0 and d > 0, there exists a one-pass algorithm that given the edges of an undi-
rected graph G streamed in adversarial order, produces an ε-sparsifier G′ with O(n log3 n/ε2) edges with
probability at least 1 − n−d. The algorithm takes O(log log n) amortized time per edge and uses O(log2 n)
space per node.

Proof: Lemma 4.1 and Lemma 4.3 together establish that G′ is an ε-sparsifier G′ with O(n log3 n/ε2) edges.
It remains to prove the stated runtime bounds.

Note that when an edge et = (ut, vt) is processed in step 3 of Algorithm 3, it is not necessary to add
et to any data structure DJ in which ut and vt are already connected. Also, since DJ is a refinement of
DJ ′ whenever J ′ ≤ J , for every edge et there exists J∗ such that ut and vt are connected in DJ for any
J ≤ J∗ and not connected for any J ≥ J∗. The value of J∗ can be found in O(log log n) time by binary
search. Now we need to keep adding et to DJ , for each J ≥ J∗ such that Ul,k,et = 1. However, we have that

E
[∑

J≥J∗ U
′
l,k,et

]
= O(1). Amortizing over all edges, we get O(1) per edge using standard concentration

inequalities.

Corollary 4.5 For any ε > 0 and d > 0, there exists a one-pass algorithm that given the edges of an
undirected graph G streamed in adversarial order, produces an ε-sparsifier G′ with O(n log n/ε2) edges with
probability at least 1− n−d. The algorithm takes amortized O(log log n+ (n/m) log5 n) time per edge and
uses O(log3 n) space per node.

Proof: One can obtain a sparsification of G′ with O(n log3 n/ε2) edges by running Algorithm 3 on the input
graph G, and then run the Benczúr-Karger algorithm on G′ without violating the restrictions of the semi-
streaming model. Note that even though G′ is a weighted graph, this will have overhead O(log2 n) per edge
of G′ since the weights are polynomial. Since G′ has O(n log3 n) edges, the amortized work per edge of
G is O(log n log logn + (n/m) log5 n). The Benczúr-Karger algorithm can be implemented using space
proportional to the size of the graph, which yields O(log3 n) space per node.

Remark 4.6 The algorithm avove improves upon the runtime of the Benczúr-Karger sparsification scheme
when m = ω(n log3 n).

Sparse k-connectivity Certificates: Our analysis of the performance of refinement sampling is along broadly
similar lines to the analysis of the strength estimation routine in [BK96]. To make this analogy more precise,
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we note that refinement sampling as used in Algorithm 3 in fact produces a sparse connectivity certificate of
G, similarly to the algorithm of Nagamochi-Ibaraki[NI92], although with slightly weaker guarantees on size.

A k-connectivity certificate, or simply a k-certificate, for an n-vertex graph G is a subgraph H of G
such that contains all edges crossing cuts of size k or less in G. Such a certificate always exists with O(kn)
edges, and moreover, there are graphs where Ω(kn) edges are necessary. The algorithm of [NI92] depends on
random access to edges of G to produce a k-certificate with O(kn) edges in O(m) time. We now show that
refinement sampling gives a one-pass algorithm to produce a k-certificate with O(kn log2 n) edges in time
O(m log logn+ n log n). The result is summarized in the following corollary:

Corollary 4.7 Whp for each l ≥ 1 the set X(Dl,K) is a 2l-certificate of G with O(log2 n)2ln edges.

Proof: Whp X(Dl,K) contains all 2l-weak edges, in particular those that cross cuts of size at most 2l. The
bound on the size follows by Lemma 4.2.

Remark 4.8 Algorithms 1-3 can be easily extended to graphs with polynomially bounded integer weights
on edges. If we denote by W the largest edge weight, then it is sufficient to set the number of levels L to
log(2nW ) instead of log(2n) and the number of passes to log4/3 nW instead of log4/3 n. A weighted edge is
then viewed as several parallel edges, and sampling can be performed efficiently for such edges by sampling
directly from the corresponding binomial distribution.

5 A Linear-time Algorithm for O(n log n/ε2)-size Sparsifiers

We now present an algorithm for computing an ε-sparsification with O(n log n/ε2) edges in O(m log 1
δ +

n1+δ) expected time for any δ > 0. Thus, the algorithm runs in linear-time whenever m = Ω(n1+Ω(1)).
We note that no (randomized) algorithm can output an ε-sparsification in sub-linear time even if there is no
restriction on the size of the sparsifier. This is easily seen by considering the family of graphs formed by
disjoint union of two n-vertex graphs G1 and G2 with m edges each, and a single edge e connecting the two
graphs. The cut that separates G1 from G2 has a single edge e, and hence any ε-sparsifier must include e. On
the other hand, it is easy to see that Ω(m) probes are needed in expectation to discover the edge e.

Our algorithm can in fact be viewed as a two-pass streaming algorithm, and we present is as such below.
As before, let G = (V,E) be an undirected unweighted graph. We will use Algorithm 3 as a building block
of our construction. We now describe each of the passes.

First pass: Sample every edge of G uniformly at random with probability p = 4/ log n. Denote the resulting
graph by G′ = (V,E′). Give the stream of sampled edges to Algorithm 3 as the input stream, and
save the state of the connectivity data structures Dl,K for all 1 ≤ l ≤ L at the end of execution. For
1 ≤ l ≤ L, let D∗l denote these connectivity data structures (we will also refer to D∗l as partitions in
what follows).

Note that the first pass takes O(m) expected time since Algorithm 3 has an overhead O(log log n) time
per edge and the expected size of |E′| is |E|/ log n.

Recall that the partitions D∗l are used in Algorithm 3 to estimate strength of edges e ∈ E′. We now show
that these partitions can also be used to estimate strength of edges in E. The following lemma establishes a
relationship between the edge strengths in G′ and G. For every edge e ∈ E, let s′e denote the strength of edge
e in the graph G′e(V,E

′ ∪ {e}).

Lemma 5.1 Whp s′e ≤ se ≤ 2s′e log n+ ρ log n for all e ∈ E, where ρ = 16(d+ 2) lnn is the oversampling
parameter in Karger sampling.
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Proof: The first inequality is trivially true since G′e is a subgraph of G. For the second one, let us first
consider any edge e ∈ E with se > ρ log n. Let C be the se-strong component in G that contains the edge
e. By Karger’s theorem, whp the capacity of any cut defined by a partition of vertices in C decreases by a
factor of at most 2 log n after sampling edges of G with probability p = 4/ log n = ρ/((1/2)2ρ log n), i.e.
in going from G to G′. So any cut in C, restricted to edges in E′ has size at least se/(2 log n), implying that
s′e ≥ se/(2 log n). Finally, for any edge e with se ≤ ρ log n, s′e is at least 1, and the inequality thus follows.

We now discuss the second pass over the data. Recall that in order to estimate the strength s′e of an edge
e ∈ E′, Algorithm 3 finds the minimum L(e) such that the endpoints of e are not connected in D∗l by doing
a binary search over the range [1..L]. For an edge e ∈ G we estimate its strength in G′e by doing binary
search as before, but stopping the binary search as soon as the size of the interval is smaller than δL, thus
taking O(log 1

δ ) time per edge and obtaining an estimate that is away from the true value by a factor of at
most nδ. Let s′′e denote this estimate, that is, s′en

−δ ≤ s′′e ≤ s′enδ. Now sampling every edge with probability
pe = min

{
ρnδ

ε2s′′e
, 1
}

and giving each sampled edge weight 1/pe yields an ε-sparsification G′′ = (V,E′′) of G

whp. Moreover, we have that w.h.p. |E′′| = Õ(n1+δ). Finally, we provide the graphG′′ as input to Algorithm
3 followed by applying Benczúr-Karger sampling as outlined in Corollary 4.5, obtaining a sparsifier of size
O(n log n/ε2). We now summarize the second pass.

Second pass: For each edge e of the input graph G:

• Perform O(log 1
δ ) steps of binary search to calculate s′′e .

• Sample edge e with probability pe = min{ ρn
δ

ε2s′′e
, 1}.

• If e is sampled, assign it a weight of 1/pe, and pass it as an input to a fresh invocation of Al-
gorithm 3, followed by Benczúr-Karger sampling as outlined in Corollary 4.5, giving the final
sparsification.

Note that the total time taken in the second pass is O(m log 1
δ ) + Õ(n1+δ). We have proved the following

Theorem 5.2 For any ε > 0 and δ > 0, there exists a two-pass algorithm that produces an ε-sparsifier in
time O(m log 1

δ ) + Õ(n1+δ). Thus the algorithm runs in linear-time when m = Ω(n1+δ) and δ is constant.
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Figure 2: Scheme of refinement relations for Algorithm 2.
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Figure 3: Scheme of refinement for Algorithm 3.

A Proof of Lemma 4.2

We denote the edges of G in their order in the stream by E = (e1, . . . , em). In what follows we shall treat
edge sets as ordered sets, and for any E1 ⊆ E write E \E1 to denote the result of removing edges of E1 from
E while preserving the order of the remaining edges. For a stream of edges E we shall write Et to denote the
set of the first t edges in the stream.

For a κ-connected component C of a graph G we will write |C| to denote the number of vertices in C.
Also, we will denote the result of sampling the edges of C uniformly at random with probability p by C ′. The
following simple lemma will be useful in our analysis:

Lemma A.1 Let C be a κ-connected component of G for some positive integer κ. Denote the graph obtained
by sampling edges of C with probability p ≥ λ/κ by C ′. Then the number of connected components in C ′ is
at most γ|C| with probability at least 1− e−η|C|, where γ = (7/8 + e−λ/2/8) and η = 1− e−λ/2.

Proof: Choose A,B ⊂ V (C) so that A ∪ B = V (C), A ∩ B = ∅, |A| ≥ |V (C)|/2 and for every v ∈ A
at least half of its edges that go to vertices in C go to B. Note that such a partition always exists: starting
from any arbitrary partition of vertices of C, we can repeatedly move a vertex from one side to the other if
it increases the number of edges going across the partition, and upon termination, the larger side corresponds
to the set A. Denote by Y the number of vertices of A that belong to components of size at least 2. Note
that Y can be expressed as sum of |A| independent 0/1 Bernoulli random variables. Let µ := E[Y ]; we
have that µ ≥ |A|(1 − (1 − λ/κ)κ/2) ≥ |A|(1 − e−λ/2). We get by the Chernoff bound that Pr[Y ≤
|A|(1 − e−λ/2)/2] ≤ e−2µ ≤ e−|C|(1−e

−λ/2) = e−η|C|. Hence, at least a (1 − e−λ/2)/4 fraction of the
vertices of C are in components of size at least 2. Hence, the number of connected components is at most a
1− (1− e−λ/2)/8 = 7/8 + e−λ/2/8 = γ fraction of the number of vertices of C.
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Proof of Lemma 4.2: The proof is by induction on J . We prove that w.h.p. for every J = (l, k) one has
|E \XJ | ≤

∑
1≤J ′=(l′,k′)≤J−1 c12l

′
n for a constant c1 > 0.

Base: J = 1 Since everything is connected in D0 by definition, the claim holds.

Inductive step: J → J + 1 The outline of the proof is as follows. For every J = (l, k) we consider the
edges of the stream that the algorithm tries to add to DJ , identify a sequence of 2l-strongly connected
components C0, C1 . . . in the partially received graph, and use lemma A.1 to show that the number
of connected components decreases fast because only a small fraction of vertices in the sampled 2l-
strongly connected components are isolated. We thus show that, informally, it will take O(2ln) edges
to make the connectivity data structure DJ in Algorithm 3 connected. The connected components Cs
are defined by induction on s. The vertices of Cs are elements of a partition Ps of the vertex set V of
the graph G. We shall use an auxiliary sequence of graphs which we denote by Ht

s.

Let P0 be the partition consisting of isolated vertices of V . We treat the base case s = 0 separately
to simplify exposition. We use the definition of γ and η from lemma A.1 with λ = 1 since we are
considering 2l-connected components when J = (k, l).

Base case: s = 0. Set Ht
0 = (P0, {e1, . . . , et}), i.e. Ht

0 is the partially received graph up to time t. Let
t∗0 be the the first value of t such that sHt

0
(et) ≥ 2l. This means that et∗0 belongs to a 2l-strongly

connected component in Ht∗0
0 . Note that this component does not contain any (2l + 1)-strongly

connected components. Denote this component by C0 (note that the number of edges in C0 is at
most 2l|C0| by lemma 2.2). Denote the random variables that correspond to sampling edges of C0

by R0. Let X0 be an indicator variable that equals 1 if the number of connected components in
C ′0 is at most γ|C0| and 0 otherwise. By lemma A.1 we have that Pr[X0 = 1] ≥ 1− e−η|C0|.
For a partition P denote diag(P ) = {(u, u) : u ∈ P}. Define P1 by merging partitions of
P0 that belong to connected components in C ′0 if X0 = 1 and as equal to P0 otherwise. Let
E1 = E \ (E(C0) ∪ diag(P1)), i.e. we remove edges of C0 and also edges that connect vertices
that belong to the same partition in P1. Note that we can safely remove these edges since their
endpoints are connected in DJ when they arrive. Define Ht

1 = (P1, E
1
t ), i.e. Ht

1 is the partially
received graph on the modified stream of edges.

Inductive step: s→ s+ 1. As in the base case, let t∗s be the the first value of t such that sHt
s
(et) ≥ 2l.

This means that et∗s belongs to a 2l-connected component in Ht∗s
s . Denote this component by

Cs(note that the number of edges in Cs is at most 2l|Cs| by lemma 2.2). Denote the random
variables that correspond to sampling edges of Cs by Rs. Let Xs be an indicator variable that
equals 1 if the number of connected components in C ′s is at most γ|Cs| and 0 otherwise. By
lemma A.1 we have that Pr[Xs = 1] ≥ 1 − e−η|Cs|. Define Ps+1 by merging together vertices
that belong to connected components in C ′s. Let Es+1 = Es \ (E(Cs) ∪ diag(Ps)). Denote
Ht
s = (Ps, Est ).

It is important to note that at each step s we only flip coins Rs that correspond to edges in E(Cs),
and delete only those edges from Es. While there may be edges going across partitions Ps for which
we do not perform a coin flip, there number is bounded by O(2ln) since these edges do not contain a
2l-connected component.

Note that for any s > 0 the number of connected components in Ps is at most

n−
s∑
j=1

(1− γ)|Cj |Xj .

III



We now show that it is very unlikely that
∑s

j=1 |Cj |Xj is more than a constant factor smaller than∑s
j=1 |Cj |, thus showing that the number of connected components cannot be more than 1 when∑s
j=1 |Cj | ≥

cn
1−γ for an appropriate constant c > 0.

For any constant d > 0 define I+ = {i ≥ 0 : |Ci| > ((d+2)/η) log n} and I− = {i ≥ 0 : |Ci| ≤ ((d+
2)/η) log n}. Also define Z+

i =
∑

0≤j≤i,j∈I+ Xj |Cj |, Z−i =
∑

0≤j≤i,j∈I− Xj |Cj |−|Cj |(1−e−η|Cj |).

First note that one has Pr[Xj = 1] ≥ 1 − n−d−2 for any j ∈ I+ by lemma A.1. Hence, it follows by
taking the union bound that i ≤ n2 one has Pr[Z+

i =
∑

j∈I+,j≤i |Cj |] ≥ 1− n−d.

We now consider Z−i . Note that Z−i ’s define a martingale sequence with respect to Ri−1, . . . , R0:
E[Z−i |Ri−1, . . . , R0] = Z−i−1. Also, |Z−i − Z

−
i−1| ≤ ((d + 2)/η) log n for all i. Hence, by Azuma’s

inequality (see, e.g. [AS08]) one has

Pr[Z−i < t] < exp
(
− t2

2i(((d+ 2)/η) log n)2

)
.

Now consider the smallest value τ such that
∑

j≤τ |Cj | =
∑

j≤τ,j∈I+ |Cj |+
∑

j≤i,j∈I− |Cj | = S+ +
S− ≥ 4n

(1−e−2η)(1−γ)
. Note that τ < n/(2(1− e−2η)(1− γ)) since |Ci| ≥ 2. If S+ ≥ 2n

(1−e−2η)(1−γ)
≥

2n/(1− γ), then we have that Z+
τ = S+ > 2n/(1− γ) with probability at least 1− n−d. Thus,

n−
τ∑
j=1

(1− γ)|Cj |Xj ≤ n− (1− γ)Z+
τ ≤ 0.

Otherwise S− ≥ 2n
(1−e−2η)(1−γ)

and by Azuma’s inequality we have

Pr[Z−τ < −n] < exp
(
− n2

2τ(((d+ 2)/η) log n)2

)
≤ exp

(
− n

(((d+ 2)/η) log n)2

)
< n−d.

Since |Ci| ≥ 2, we have |Ci|(1− e−η|Ci|) ≥ |Ci|(1− e−2η) and thus we get

n−
τ∑
j=1

(1− γ)|Cj |Xj < n− (1− γ)

 ∑
1≤j≤τ,j∈I−

|Cj |(1− e−η|Cj |) + Z−τ


< n− (1− γ)

(1− e−2η)
∑

1≤j≤τ,j∈I−
|Cj |+ Z−τ


< n− (1− γ)

[
2n

1− γ
+ n

]
< 0

We have shown that there exists a constant c′ > 0 such that with probability at least 1−n−d after c′2ln
edges are sampled by the algorithm at level J all subsequent edges will have their endpoints connected
in DJ . Note that we never flipped coins for those edges that did not contain a 2l-connected component.
Setting c1 = c′ + 1, we have that w.h.p. |E \XJ | ≤ c12ln+ |E \XJ−1|. By the inductive hypothesis
we have that |E \XJ−1| ≤

∑
1≤J ′=(l′,k′)≤J−2 c12l

′
n, which together with the previous estimate gives

us the desired result.

It now follows that |E \XJ | ≤
∑

1≤J ′=(l′,k′)≤J−1 c12l
′
n = O(K2ln) w.h.p., finishing the proof of the

lemma.
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