
ALGORITHMS FOR BIPARTITE MATCHING PROBLEMS WITH

CONNECTIONS TO SPARSIFICATION AND STREAMING

A DISSERTATION

SUBMITTED TO THE INSTITUTE FOR COMPUTATIONAL AND

MATHEMATICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Mikhail Kapralov

August 2012



Abstract

The problem of finding maximum matchings in bipartite graphs is a classical problem in combinato-

rial optimization with a long algorithmic history. Graph sparsification is a more recent paradigm of

replacing a graph with a smaller subgraph that preserves some useful properties of the original graph,

perhaps approximately. Traditionally, sparsification has been used for obtaining faster algorithms

for cut-based optimization problems.

The contributions of this thesis are centered around new algorithms for bipartite matching prob-

lems, in which, surprisingly, graph sparsification plays a major role, and efficient algorithms for

constructing sparsifiers in modern data models.

In the first part of the thesis we develop sublinear time algorithms for finding perfect matchings

in regular bipartite graphs. These graphs have been studied extensively in the context of expander

constructions, and have several applications in combinatorial optimization. The problem of finding

perfect matchings in regular bipartite graphs has seen almost 100 years of algorithmic history, with

the first algorithm dating back to König in 1916 and an algorithm with runtime linear in the number

of edges in the graph discovered in 2000. In this thesis we show that, even though traditionally the

use of sparsification has been restricted to cut-based problems, in fact sparsification yields extremely

efficient sublinear time algorithms for finding perfect matchings in regular bipartite graphs when the

graph is given in adjacency array representation. Thus, our algorithms recover a perfect matching

(with high probability) without looking the whole input. We present two approaches, one based on

independent sampling and another on random walks, obtaining an algorithm that recovers a perfect

matching in O(n log n) time, within O(log n) of output complexity, essentially closing the problem.

In the second part of the thesis we study the streaming complexity of maximum bipartite match-

ing. This problem is relevant to modern data models, where the algorithm is constrained in space

and is only allowed few passes over the input. We are interested in determining the best tradeoff

between the space usage and the quality of the solution obtained. We first study the problem in

the single pass setting. A central object of our study is a new notion of sparsification relevant to

matching problems: we define the notion of an ε-matching cover of a bipartite graph as a subgraph

that approximately preserves sizes of matchings between every two subsets of vertices, which can be

viewed as a sparsifier for matching problems. We give an efficient construction of a sparse subgraph

that we call a matching skeleton, which we show is a linear-size matching cover for a certain range of

parameters (in fact, for ε > 1/2). We then show that our sparsifier can be applied repeatedly while
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maintaining a non-trivial approximation ratio in the streaming model with vertex arrivals, obtaining

the first 1 − 1/e deterministic one-pass streaming algorithm that uses linear space for this setting.

Further, we show that this is in fact best possible: no algorithm can obtain a better than 1 − 1/e

approximation in a single pass unless it uses significantly more than quasilinear space. This is a

rather striking conclusion since a 1−1/e approximation can be obtained even in the more restrictive

online model for this setting. Thus, we show that streaming algorithms can get no advantage over

online algorithms for this problem unless they use substantially more than quasilinear space.

Our impossibility results for approximating matchings in a single pass using small space exploit

a surprising connection between the sparsifiers that we define and a family of graphs known as

Ruzsa-Szemerédi graphs. In particular, we show that bounding the best possible size of ε-covers for

general ε is essentially equivalent to determining the optimal size of an ε-Ruzsa-Szemerédi graph.

These graphs have received significant attention due to applications in PCP constructions, property

testing and additive combinatorics, but determining their optimal size still remains a challenging

open problem.

Besides giving matching upper and lower bounds for single pass algorithms in the vertex arrival

setting, we also consider the problem of approximating matchings in multiple passes. Here we give

an algorithm that achieves a factor of 1−e−kkk/k! = 1− 1√
2πk

+o(1/k) in k passes, improving upon

the previously best known approximation.

In the third part of the thesis we consider the concept of spectral sparsification introduced by

Spielman and Teng. Here, we uncover a connection between spectral sparsification and spanners,

i.e. subgraphs that approximately preserve shortest path distances. This connection allows us to

obtain a quasilinear time algorithm for constructing spectral sparsifiers using approximate distance

oracles and entirely bypassing linear system solvers, which was previously the only known way of

constructing spectral sparsifiers in quasilinear time.

Finally, in the last part of the thesis we design an efficient implementation of cut-preserving

sparsification in a streaming setting with edge deletions using only one pass over the data.
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CHAPTER 1. INTRODUCTION 2

The contributions of this thesis are centered around bipartite matching problems, for which we

give algorithms that crucially use graph sparsification. We also consider the problem of implementing

sparsification primitives in modern data models such as streaming and Map/Reduce. In the following

sections we give an overview of the three main topics that this thesis spans, and outline our results.

1.1 Matchings in regular bipartite graphs

Let G = (U, V,E) denote a bipartite graph with n vertices and m edges. A subset M ⊆ E of edges is

a matching if no two edges in M share an endpoint. The problem of finding maximum matchings in

bipartite graphs is a classical problem in combinatorial optimization. The best known algorithm for

finding matchings in bipartite graphs was obtained by Hopcroft and Karp in 1974 [45] and achieves

O(m
√
n) runtime. An algebraic approach was used in [74] to obtain an algorithm with runtime

O(nω), where ω is the matrix multiplication constant, which is better than O(m
√
n) for sufficiently

dense graphs.

In the first part of the thesis we consider the problem of finding perfect matchings in regular

bipartite graphs. A bipartite graph G = (U, V,E) is regular if the degree of each vertex is exactly d,

so that m = nd, where n = |U |. As a consequence of regularity one has |U | = |V |. These graphs have

been studied extensively in the context of expander constructions, and have several applications in

combinatorial optimization. The problem of finding perfect matchings in regular bipartite graphs

has seen almost 100 years of algorithmic history, with the first algorithm dating back to König in

1916 [61] and an algorithm with O(m) runtime discovered in 2000 by Cole, Ost and Schirra[23]. The

main interest of Cole, Ost, and Schirra was in edge coloring of general bipartite graphs of maximum

degree d, where finding perfect matchings in regular bipartite graphs is an important subroutine.

Finding perfect matchings in regular bipartite graphs is also closely related to the problem of finding

a Birkhoff von Neumann decomposition of a doubly stochastic matrix [17, 91]. Chapter 2 contains

a more detailed discussion of prior work on these problems.

While the linear time algorithm of Cole, Ost and Schirra may seem to be a natural stopping point

for this problem, in Chapter 2 we give sublinear time algorithms for finding a perfect matching in a

regular bipartite graph using sparsification and random walks. We show that, even though tradition-

ally the use of sparsification has been restricted to cut-based problems, in fact sparsification yields

extremely efficient sublinear time algorithms for finding perfect matchings in regular bipartite graphs

when the graph is given in adjacency array representation. Thus, our algorithms recover a perfect

matching (with high probability) without looking the whole input. We present two approaches, one

based on independent sampling and another on random walks, obtaining an algorithm that recovers

a perfect matching in O(n log n) time, within O(log n) of output complexity, essentially closing the

problem. Our techniques also yield efficient algorithms for edge coloring bipartite multigraphs and

finding a Birkhoff-von Neumann decomposition of doubly stochastic matrices.
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1.2 Graph sparsification

Large scale graphs are now a widely used tool for representing real world data. Many modern

applications, such as search engines or social networks, require supporting various queries on large-

scale graphs efficiently. An important primitive is maintaining a succint representation that preserves

certain properties of the graph.

Various properties of graphs have been considered from the point of view of obtaining succint

approximate representations recently. Perhaps the first such example is given by the celebrated cut-

preserving sparsifiers of Benczúr and Karger[16]. Spectral sparsification is a generalization of cut-

preserving sparsification introduced by Spielman and Teng[82] that has been used in constructing

efficient algorithms for solving symmetric diagonally dominant linear systems in near-linear time

[86, 63, 65]. A substantial body of work in the theoretical computer science literature is devoted

to obtaining succint representations of graphs that support approximate distance queries such as

spanners and approximate distance oracles [89, 90, 70, 8, 9, 10, 11]. A more detailed discussion of

cut sparsifiers is given in Chapters 2 and 6. Spectral sparsifiers and spanners are discussed further

in Chapter 5.

In this thesis we both borrow from and contribute to various notions of sparsification as follows:

1. In Chapters 2 and 7 we exhibit a novel connection between cut-preserving sparsification and

the structure of matchings in regular bipartite graphs, obtaining sublinear time algorithms for

finding perfect matchings in such graphs.

2. In Chapters 3 and 4 we introduce and study a new notion of sparsification relavant to matching

problems in general bipartite graphs. This yields upper and lower bounds for the problem of

finding matchings in a single pass in the streaming model.

3. In Chapter 5 we exhibit a novel connection between spanners and spectral sparsification,

obtaining efficient algorithms for spectral sparsification.

4. In Chapter 6 we show how to construct spanners in a single pass in the streaming model with

edge deletions using small space.

1.3 The streaming model

The need to process modern massive data sets necessitates rethinking classical solutions to many

combinatorial optimization problems from the point of view of space usage and type of access to the

data that algorithms assume. Applications in domains such as processing web-scale graphs, network

monitoring or data mining among many others prohibit solutions that load the whole input into

memory and assume random access to it. The streaming model of computation has emerged as a

more realistic model for processing modern data sets. In this model the input is given to the algorithm

as a stream, possibly with multiple passes allowed. The goal is to design algorithms that require

small space and ideally one or a small constant number of passes over the data stream to compute
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a (often approximate) solution. For many problems with applications in network monitoring, it has

been shown that space polylogarithmic in the size of the input is often sufficient to compute very good

approximate solutions. On the other hand, even basic graph algorithms have been shown to require

Ω(n) space in the streaming model[27], where n is the number of vertices. A common relaxation

is to allow O(n · polylog(n)) space, a setting often referred to as the semi-streaming model. An

important extension of the streaming model is the dynamic streaming model, where edge deletions

are allowed in addition to edge addition.

The problem of implementing fundamental graph algorithms in the streaming model has received

significant attention recently. Efficient algorithms for constructing sparsifiers[2, 57], spanners[8] and

approximating matchings [28, 68, 26, 3, 4, 62] are known. Beautiful recent results of [5] show how to

implement several fundamental graph algorithms in the dynamic streaming model as well. Further

discussion of these models is given in Chapter 3 for matchings and Chapter 6 for sparsification in

the dynamic streaming model.

In this thesis, we contribute to the study of graph algorithms in the streaming model in the

following ways. First, in Chapter 3 we define a new notion of graph sparsification that is relevant to

approximating matchings in the streaming model and use it to give the first strong lower bounds for

approximating matchings in the streaming model. Further, we prove an optimal impossibility result

on the approximation ratio that single pass streaming algorithms can achieve if they are constrained

to use quasilinear space (i.e. semi-streaming algorithms). We also give a simple algorithm that

improves upon the best known approximation for matchings using k ≥ 1 passes. Second, in Chapter 6

we give a single pass algorithm for constructing cut-preserving sparsifiers in the streaming model

with edge deletions.

Parts of this thesis have been published as papers or manuscripts [38, 36, 35, 49, 39, 48].
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CHAPTER 2. MATCHINGS IN REGULAR BIPARTITE GRAPHS 6

A bipartite graph G = (U, V,E) with vertex set U ∪ V and edge set E ⊆ U × V is said to be

regular if every vertex has the same degree d. We use m = nd to denote the number of edges in

G and n to represent the number of vertices in U (as a consequence of regularity, U and V have

the same size). Regular bipartite graphs have been the subject of much study. Random regular

bipartite graphs represent some of the simplest examples of expander graphs [72]. These graphs are

also used to model scheduling, routing in switch fabrics, and task-assignment problems (sometimes

via edge coloring, as described below) [1, 23].

A regular bipartite graph of degree d can be decomposed into exactly d perfect matchings, a

fact that is an easy consequence of Hall’s theorem [18]. Finding a matching in a regular bipartite

graph is a well-studied problem, starting with the algorithm of König in 1916, which is now known

to run in time O(mn) [61]. The well-known bipartite matching algorithm of Hopcroft and Karp [45]

can be used to obtain a running time of O(m
√
n). An algorithm of complexity O(nω), where ω is

the matrix multiplication constant, was given by Mucha and Sankowski [74]. In graphs where d is

a power of 2, the following simple idea, due to Gabow and Kariv [33], leads to an algorithm with

O(m) running time. First, compute an Euler tour of the graph (in time O(m)) and then follow

this tour in an arbitrary direction. Exactly half the edges will go from left to right; these form

a regular bipartite graph of degree d/2. The total running time T (m) thus follows the recurrence

T (m) = O(m) + T (m/2) which yields T (m) = O(m). Extending this idea to the general case

proved quite hard, and after a series of improvements (e.g. by Cole and Hopcroft [22], and then by

Schrijver [80] to O(md)), Cole, Ost, and Schirra [23] gave an O(m) algorithm for the case of general

d.

The main interest of Cole, Ost, and Schirra was in edge coloring of general bipartite graphs of

maximum degree d, where finding perfect matchings in regular bipartite graphs is an important

subroutine. Finding perfect matchings in regular bipartite graphs is also closely related to the

problem of finding a Birkhoff von Neumann decomposition of a doubly stochastic matrix [17, 91].

In this chapter we present two algorithms for finding a perfect matching in a regular bipartite

graph in sublinear time.

For sub-linear (in m) running time algorithms, the exact data model is important. In this paper,

as well as in the sub-linear running time algorithms mentioned above, we assume that the graph is

presented in the adjacency array format, i.e., for each vertex, its d neighbors are stored in an array.

This is the most natural input data structure for our problem. For simple graphs or multigraphs

with edge multiplicities bounded above by γd, γ ∈ (0, 1) our algorithms will not make any ordering

assumptions within an adjacency array. However, the data layout will be important for multigraphs

without any assumptions on edge multiplicities.
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2.1 Uniform Sampling for Perfect Matchings

We now present an algorithm for finding a perfect matching in a regular bipartite graph that runs in

time O(min{m, n
2.5 lnn
d }). It is easy to see that this minimum can never be larger than O(n1.75

√
lnn).

This is a significant improvement over the running time of Cole, Ost, and Schirra when the bipartite

graph is relatively dense. We first prove (Theorem 1 in section 2.2) that if we sample the edges of a

regular bipartite graph independently and uniformly at rate p = O(n lnn
d2 ), then the resulting graph

has a perfect matching with high probability. The resulting graph has O(mp) edges in expectation,

and running the bipartite matching algorithm of Hopcroft and Karp gives an expected running time

of O(n
2.5 lnn
d ). Since we know this running time in advance, we can choose the better of m and

n2.5 lnn
d in advance. It is worth noting that uniform sampling can easily be implemented in O(1)

time per sampled edge assuming that the data is given in adjacency list format, with each list stored

in an array, and assuming that log n bit random numbers can be generated in one time step1.

We believe that our sampling result is also independently interesting as a combinatorial fact. The

proof of our sampling theorem relies on a sequential decomposition procedure that creates a vertex-

disjoint collection of subgraphs, each subgraph containing many perfect matchings on its underlying

vertex set. We then show that if we uniformly sample edges in each decomposed subgraph at a

suitably chosen rate, with high probability at least one perfect matching survives in each decomposed

subgraph. This is established by using Karger’s sampling theorem [52, 51] in each subgraph. An

effective use of Karger’s sampling theorem requires the min-cuts to be large, a property that is not

necessarily true in the original graph. For instance, G could be a union of two disjoint d-regular

bipartite graphs, in which case the min-cut is 0; non-pathological examples are also easy to obtain.

However, our serial decomposition procedure ensures that the min-cuts are large in each decomposed

subgraph. We then establish a 1-1 correspondence between possible Hall’s theorem counter-examples

in each subgraph and cuts of comparable size in that subgraph. Since Karger’s sampling theorem

is based on counting cuts of a certain size, this coupling allows us to claim (with high probability)

that no possible counter-example to Hall’s theorem exists in the sampled graph. On a related note,

Benczúr [15] presented another sampling algorithm which generatesO(n lnn) edges that approximate

all cuts; however this sampling algorithm, as well as recent improvements [84, 83] take Ω̃(m) time

to generate the sampled graph. Hence these approaches do not directly help in improving upon the

already known O(m) running time for finding perfect matchings in d-regular bipartite graphs.

The sampling rate we provide may seem counter-intuitive; a superficial analogy with Karger’s

sampling theorem or Benczúr’s work might suggest that sampling a total of O(n lnn) edges should

suffice. We show (Theorem 8, section 2.4) that this is not the case. In particular, we present a

family of graphs where uniform sampling at rate o( n
d2 lnn ) results in a vanishingly low probability

that the sampled subgraph has a perfect matching. Thus, our sampling rate is tight up to factors

of O(ln2 n). This lower bound suggests two promising directions for further research: designing an

efficiently implementable non-uniform sampling scheme, and designing an algorithm that runs faster

than Hopcroft-Karp’s algorithm for near-regular bipartite graphs (since the degree of each vertex in

1Even if we assume that only one random bit can be generated in one time step, the running time of our algorithm
remains unaltered since the Hopcroft-Karp algorithm incurs an overhead of

√
n per sampled edge anyway.
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the sampled subgraph will be concentrated around the expectation).

2.2 Uniform Sampling for Perfect Matchings: An Upper Bound

In this section, we will establish our main sampling theorem stated below. We will then show in

Section 2.3 that this theorem immediately yields an O(n1.75
√

lnn) time algorithm for finding a

perfect matching in regular bipartite graphs.

Theorem 1 There exists a constant c such that given a d-regular bipartite graph G(U, V,E), a

subgraph G′ of G generated by sampling the edges in G uniformly at random with probability p =
cn lnn
d2 contains a perfect matching with high probability.

Our proof is based on a decomposition procedure that partitions the given graph into a vertex-

disjoint collection of subgraphs such that (i) the minimum cut in each subgraph is large, and (ii)

each subgraph contains Ω(d) perfect matchings on its vertices. We then show that for a suitable

choice of sampling rate, w.h.p. at least one perfect matching survives in each subgraph. The union

of these perfect matchings then gives us a perfect matching in the original graph. We emphasize

here that the decomposition procedure is merely an artifact for our proof technique. Note that the

theorem is trivially true when d ≤
√
n log n. So in what follows we assume that d >

√
n log n.

2.2.1 Hall’s Theorem Witness Sets

Let G(U, V,E) be a bipartite graph. We denote by V (G) the vertex set of G. For any set S ⊆ V (G),

let δG(S) denote the set of edges crossing the boundary of S in G. Also, for any set S ⊆ V (G), we

denote by ΓG(S) the set of vertices that are adjacent to vertices in S.

A pair (A,B) with A ⊆ U and B ⊆ V is said to be a relevant pair to Hall’s theorem if |A| > |B|.
Given a relevant pair (A,B), we denote by E(A,B) the set of edges in E ∩ (A× (V \B)). We refer

to the set E(A,B) as a witness edge set if (A,B) is a relevant pair. Also, for any two sets A,A′ ⊆ U
we denote by A ⊕ A′ the set (A \ A′) ∪ (A′ \ A). In what follows we will be using Hall’s theorem,

which we state here for convenience of the reader:

Theorem 2 (Hall’s theorem, cf. [18]) A bipartite graph G(U, V,E) contains a matching that includes

every vertex in U iff |ΓG(S)| ≥ |S| for all S ⊂ U .

Note that if |U | = |V |, then any matching that includes every vertex in U is a also a perfect

matching in G. Since |U | = |V | in a d-regular graph, by Hall’s theorem, to prove Theorem 1

it suffices to show that w.h.p. in the sampled graph G′, at least one edge is chosen from each

witness set. We will focus on a sub-class of relevant pairs, referred to as minimal relevant pairs. A

relevant pair (A,B) is minimal if there does not exist another relevant pair (A′, B′) with A′ ⊂ A

and E(A′, B′) ⊆ E(A,B). A witness edge set corresponding to a minimal relevant pair is called

a minimal witness set, respectively. If a graph G has a perfect matching, every minimal witness

set must be non-empty. It also follows from Hall’s theorem that any balanced subgraph of G that
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includes at least one edge from every minimal witness set must have a perfect matching. We refer

to a bipartite graph as balanced if it contains the same number of vertices in each side.

A key idea underlying our proof is a mapping from minimal witness sets in G to distinct cuts in

G. In particular, we will map each minimal witness set E(A,B) to the cut δG(A∪B). The theorem

below shows that this is a one-to-one mapping.

Theorem 3 Let G(U, V,E) be a bipartite graph that has at least one perfect matching. If (A,B) and

(A′, B′) are minimal relevant pairs in G with E(A,B) 6= E(A′, B′), then δG(A ∪B) 6= δG(A′ ∪B′).

Proof: Assume by way of contradiction that there exist minimal relevant pairs (A,B) and (A′, B′)

in G with E(A,B) 6= E(A′, B′) but δG(A ∪ B) = δG(A′ ∪ B′). Then the following conditions must

be satisfied for any edge (u, v) ∈ E :

A1. If u ∈ A ⊕ A′ then v ∈ B ⊕ B′. To see this, assume w.l.o.g. that u ∈ A \ A′, and then note

that if v ∈ B ∩B′, then (u, v) ∈ δG(A′ ∪B′) but (u, v) 6∈ δG(A ∪B), which is a contradiction.

Similarly, if v ∈ V \ (B ∪B′), then (u, v) ∈ δG(A∪B) but (u, v) 6∈ δG(A′ ∪B′), which is again

a contradiction.

A2. If u ∈ (A ∩ A′) then v 6∈ B ⊕ B′. To see this, w.l.o.g. assume that v ∈ (B \ B′). Then

(u, v) ∈ δG(A′ ∪B′) but (u, v) 6∈ δG(A ∪B). This is a contradiction.

In what follows, we slightly abuse the notation and given any (not necessarily relevant) pair

(C,D) with C ⊆ U and D ⊆ V , we denote by E(C,D) the set of edges in E ∩ (C × (V \D)). As an

immediate corollary of the properties A1 and A2, we now obtain the following containment results:

B1. E(A \A′, B \B′) ⊆ E(A,B). This follows directly from property A1 above.

B2. E(A ∩A′, B ∩B′) ⊆ E(A,B). This follows directly from property A2 above.

We now consider three possible cases based on the relationship between A and A′, and establish

a contradiction for each case.

Case 1: A ∩ A′ = ∅. By property A1, if u ∈ A ∪ A′ then v ∈ B ∪B′. In other words, there are no

edges from A∪A′ to vertices outside B∪B′. Since |A∪A′| = |A|+ |A′| > |B|+ |B′|, this contradicts

our assumption that G has at least one perfect matching.

Case 2: A = A′. For any edge (u, v) with u ∈ A, property A2 shows that v 6∈ B ⊕ B′. Then

E(A,B) = E(A′, B′). A contradiction.

Case 3: A∩A′ 6= ∅ and A 6= A′. Assume w.l.o.g. that A \A′ 6= ∅. Since |A| > |B|, it must be that

either |A\A′| > |B \B′| or |A∩A′| > |B∩B′|. If |A\A′| > |B \B′|, then (A\A′, B \B′) is a relevant

pair, and by B1, it contradicts the fact that (A,B) is a minimal relevant pair. If |A∩A′| > |B ∩B′|,
then (A∩A′, B∩B′) is a relevant pair set, and by B2, it contradicts the fact that (A,B) is a minimal

relevant pair.
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2.2.2 A Decomposition Procedure

Given a d-regular bipartite graph on n vertices, we will first show that it can be partitioned into

k = O(n/d) vertex disjoint graphs G1(U1, V1, E1), G2(U2, V2, E2), ..., Gk(Uk, Vk, Ek) such that each

graph Gi satisfies the following properties:

P1. the size of a minimum cut in Gi(Ui, Vi, Ei) is strictly greater than α = d2

4n .

P2. |δG(Ui ∪ Vi)| ≤ d/2 (hence Gi contains at least d/2 edge-disjoint perfect matchings).

The decomposition procedure is as follows. Initialize H1 = G, and set i = 1.

1. Find a smallest non-empty proper subset Xi ⊆ V (Hi) such that |δHi(Xi)| ≤ 2α. Let Mi

denote the number of edges in the cut δHi(Xi). If no such set Xi exists, we define Gi to be

the graph Hi, and terminate the decomposition procedure.

2. Define Gi to be the subgraph of Hi induced by the vertices in Xi, i.e. Xi = Ui ∪ Vi = V (Gi).

Also, define Hi+1 to be the graph Hi with vertices from Xi removed.

3. Increment i, and go to step (1).

Note that if the minimum cut of G is greater than 2α, then the procedure terminates after the

first step, and the decomposition trivially satisfies both P1 and P2. So we focus below on the case

when step (2) is executed at least once.

We now prove the following properties of the decomposition procedure.

Theorem 4 The decomposition procedure outlined above satisfies properties P1 and P2.

Proof: We start by proving that property P1 is satisfied. Suppose that there exists a cut (C, V (Gi)\
C) in Gi of value at most α, i.e. |δGi(C)| ≤ α (note that one could have C ∩U 6= ∅ and C ∩V 6= ∅).
Let D = V (Gi) \ C. We have |δHi(C) \ δGi(C)| + |δHi(D) \ δGi(D)| ≤ 2α by the choice of Xi

in (1). Suppose without loss of generality that |δHi(C) \ δGi(C)| ≤ α. Then |δHi(C)| ≤ 2α and

C ⊂ Xi, which contradicts the choice of Xi as the smallest cut of value at most 2α in step (1) of

the procedure.

It remains to show that |δG(Ui∪Vi)| ≤ d/2 for all i. In order to establish this property, it suffices

to show that
∑k
i=1Mi ≤ d/2 (recall that Mi = |δHi(Xi)|).

We prove the following statements by induction on k, the number of times step (2) in the

decomposition procedure above has been executed thus far.

1. |V (Gk)| = |Uk ∪ Vk| ≥ 2d;

2.
∑k
i=1Mi ≤ d/2;

3. k + 1 ≤ n/d.
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Base: k = 1. Since 2α = d2

2n ≤ d/2, we have M1 ≤ d/2, which establishes (2). We now prove

(1), i.e. show that G1(U1, V1, E1) has at least 2d vertices. Consider any vertex u ∈ U1. Let

ΓG1(u) ⊆ V1 be the neighbors of u in G1. Clearly,

|δG(u) ∩ δG(X1)|+
∑

v∈ΓG1
(u)

|δG(v) ∩ δG(X1)| ≤ |δG(X1)| ≤ 2α ≤ d/2.

If all terms are positive then we have

d/2 ≥ |δG(u) ∩ δG(X1)|+ |ΓG1
(u)|.

This is a contradiction since the right-hand side is d, the number of neighbors of u. So we

have |δG(v) ∩ δG(X1)| = 0 for some v ∈ ΓG1
(u), implying that all neighbors of v are inside

U1, so |U1| ≥ d. A similar argument shows that |V1| ≥ d, so |X1| ≥ 2d. |V (H2)| ≥ 2d. This

establishes (3).

Inductive step: k − 1→ k. Suppose that the algorithm constructs Gk. Since k ≤ n/d by the

inductive hypothesis, we have
∑k
i=1Mi ≤ (n/d) (2α) = (n/d)

(
d2

2n

)
≤ d/2, which establishes

(2). Consider the cut (Xk, V (Hk) \Xk) of Hk.

Every edge in δG(Xk) has one endpoint in Xk and the other in either V (Hk)\Xk or V (Gi) = Xi

for some i < k. Thus

δG(Xk) ⊆ δHk(Xk) ∪
k−1⋃
i=1

δHi(Xi).

Thus

|δG(Xk)| ≤Mk +

k−1∑
i=1

Mi.

By induction k ≤ n/d, so we have

|δG(Xk)| ≤
k∑
i=1

Mi ≤ (n/d)(2α) ≤ (n/d)
d2

2n
≤ d/2.

An argument similar to the base case can be used to show that |Xk| ≥ 2d as well as |V (Hk) \
Xk| ≥ 2d, establishing (1). Since at every decomposition step j ≤ k at least 2d vertices were

removed from the graph, we have k + 1 ≤ n/d, which establishes (3).

2.2.3 Proof of Theorem 1

We now argue that if the graph G′ is obtained by uniformly sampling the edges of G with probability

p = Θ
(

lnn
α

)
, then w.h.p. G′ contains a perfect matching.
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It suffices to show that in each graph Gi obtained in the decomposition procedure, every minimal

witness set is hit w.h.p. in the sampled graph (that is, at least one edge in each minimal witness

set is chosen in the sampled graph). This ensures that at least one perfect matching survives inside

each Gi. A union of these perfect matchings then gives us a perfect matching of G in the sampled

graph G′.

Fix a graph Gi(Ui, Vi, Ei). Let (A,B) be a relevant pair in Gi. Using the fact that our starting

graph G is d-regular, we observe that |E(A,B)| ≥ d+ |E(B,A)|, and obtain

|δG(A ∪B)| ≤ 2|E(A,B)| − d.

Let mA,mB denote the number of edges in G that connect nodes in A and B, respectively, to

nodes outside Gi. Then

|δGi(A ∪B)| ≤ 2|E(A,B)| − d−mA −mB .

By property P2, since |δG(Ui ∪ Vi)| ≤ d/2, it follows that |E(A,B) ∩ Ei| ≥ |E(A,B)| − d/2. Also,

by definition, |E(A,B) ∩ Ei| ≥ |E(A,B)| −mA −mB . Combining, we obtain:

|δGi(A ∪B)| ≤ 2|E(A,B) ∩ Ei| − d/2.

Thus the set E(A,B) ∩ Ei contains at least half as many edges as the the cut δGi(A ∪B). We will

now use the following sampling result due to Karger [51]:

Theorem 5 [51] Let Gi be an undirected graph on at most n vertices, and let κ be the size of a

minimum cut in Gi. There exists a positive constant c such that for any ε ∈ (0, 1), if we sample

the edges in Gi uniformly with probability at least p = c
(

lnn
κε2

)
, then every cut in Gi is preserved to

within (1± ε) of its expected value with probability at least 1− 1/nΩ(1).

Thus the sampling probability needed to ensure that all cuts are preserved close to their expected

value, is inversely related to the size of a minimum cut in the graph. We now use the theorem above

to prove that at least one perfect matching survives in each graph Gi when edges are sampled with

probability as specified in Theorem 1.

By Property P1, we know that the size of a minimum cut in Gi is at least α = d2/4n. Fix an

ε ∈ (0, 1). The theorem above implies that if we sample edges in Gi with probability p = Θ
(

lnn
αε2

)
,

then for every relevant pair (A,B), w.h.p. the sampled graph contains (1±ε)p|δGi(A∪B)| = Ω(lnn)

edges from the set δGi(A ∪B).

Note that the set δGi(A ∪B) is not a Hall’s theorem witness edge set. However, by Theorem 3,

we know that for every left (right) minimal witness edge set E(A,B)∩Ei, we can associate a distinct

cut, namely δGi(A∪B), of size at most twice |E(A,B)∩Ei|. We now show that this correspondence

can be used to directly adapt Karger’s proof of Theorem 5 to claim that every witness edge set in

Gi is preserved to within (1 ± ε) of its expected value. We remind the reader that the proof of

Karger’s theorem is based on an application of union bound over all cuts in the graph. In particular,
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it is shown that the number of cuts of size at most β times the minimum cut size is bounded by

n2β . Then, for the sampling rate given in Theorem 5, Chernoff bounds are used to claim that the

probability that a cut of size β times the minimum cut deviates by (1± ε) from its expected value

is at most 1/nΩ(β). The theorem follows by combining these two facts.

Within any piece of the decomposition, let ci be the number of cuts of size i and let wi be the

number of minimal witness sets of size i. We know by the correspondence argument above that

every Hall’s theorem minimal witness set of size i corresponds to a cut of size at most 2i, and at

most one minimal witness set corresponds to the same cut.

Now, given a sampling probability p, the probability that none of the edges in some minimal

witness set are sampled is at most
∑
i wi(1 − p)i, which is at most

∑
i ci(1 − p)i/2. Therefore the

probability that there is no matching in this piece can be at most twice the expression used in

Karger’s theorem to bound the probability that there exists a cut from which no edge is sampled

when the sampling rate is q, where 1− q = (1− p)1/2, or p = 2q− q2. Hence, it is sufficient to use a

sampling rate which is twice that required by Karger’s sampling theorem to conclude that a perfect

matching survives with probability at least 1 − 1/nΩ(1) in any given piece of the decomposition.

The union bound over all pieces of decomposition can be handled by increasing the constant in the

sampling probability.

Even though we don’t use it in this paper, the following remark is interesting and is worth making

explicitly. The remark follows from the additional observation that Karger’s proof [51] of theorem 5

uses Chernoff bounds for each cut, and these bounds remain the same if we use minimal witness sets

which are at least half the size of the corresponding cuts, and then sample with twice the probability.

Remark 6 There exists a positive constant c′ such that for any ε ∈ (0, 1), if we sample the edges

in G uniformly with probability at least p = c′
(

lnn
αε2

)
, then every minimal witness set in every piece

Gi is preserved to within (1 ± ε) of its expected value with probability at least 1 − 1/nΩ(1). Here

α = d2/(4n), as defined before.

Putting everything together, the sampled graph G′ will have a perfect matching w.h.p. as long as

we sample the edges with probability p > c lnn
α for a sufficiently large constant c, thus completing

the proof of theorem 1. We have made no attempt to optimize the constants in this proof (an

upper bound of 8 lnn
α follows from the reasoning above). In fact, in an implementation, we can use

geometrically increasing sampling rates until either the sampled graph has a perfect matching, or

the sampling rate becomes so large that the expected running time of the Hopcroft and Karp [45]

algorithm is Ω(m).

2.3 A Faster Algorithm for Perfect Matchings in Regular

Bipartite Graphs

We now show that the sampling theorem from the preceding section can be used to obtain a faster

randomized algorithm for finding perfect matchings in d-regular bipartite graphs.
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Theorem 7 There exists an O(min{m, n
2.5 lnn
d }) expected time algorithm for finding a perfect match-

ing in a d-regular bipartite graph with 2n vertices and m = nd edges.

Proof: Let G be a d-regular bipartite graph with 2n vertices and m = nd edges. If d ≤ n3/4
√

lnn,

we use the O(m) time algorithm of Cole, Ost, and Schirra [23] for finding a perfect matching in a

d-regular bipartite graph. It is easy to see that m ≤ n2.5 lnn
d in this case.

Otherwise, we sample the edges in G at a rate of p = cn lnn
d2 for some suitably large constant

c (c = 32 suffices by the reasoning from the previous section), and by Theorem 1, the sampled

graph G′ contains a perfect matching w.h.p. The expected number of edges, say m′, in the sampled

graph G′ is O(n
2 lnn
d ). We can now use the algorithm of Hopcroft and Karp [45] to find a maximum

matching in the bipartite graph G′ in expected time O(m′
√
n). The sampling is then repeated if no

perfect matching exists in G′. This takes O(n
2.5 lnn
d ) expected running time. Hence, the algorithm

takes O(min{m, n
2.5 lnn
d }) expected time.

Note that by aborting the computation whenever the number of sampled edges is more than twice

the expected value, the above algorithm can be easily converted to a Monte-Carlo algorithm with a

worst-case running time of O(min{m, n
2.5 lnn
d }) and a probability of success = 1 − o(1). Finally, it

is easy to verify that the stated running time never exceeds O(n1.75
√

lnn).

2.4 Uniform Sampling for Perfect Matchings: A Lower Bound

We now present a construction that shows that the uniform sampling rate of Theorem 1 is optimal

to within a factor of O(ln2 n). As before, G′ denotes the graph obtained by sampling the edges of a

graph G uniformly with probability p.

Theorem 8 Let d(n) be a non-decreasing positive integer valued function such that for some fixed

integer n0, it always satisfies one of the following two conditions for all n ≥ n0: (a) d(n) ≤
√
n/ lnn,

or (b)
√
n/ lnn < d(n) ≤ n/ lnn. Then there exists a family of d(n)-regular bipartite graphs Gn

with 2n+o(n) vertices such that the probability that the graph G′n, obtained by sampling edges of Gn

with probability p, has a perfect matching goes to zero faster than any inverse polynomial function

in n if p = o(1) when d(n) satisfies condition (a) above, and if

p = o

(
n

(d(n))2 lnn

)
when d(n) satisfies condition (b) above.

Proof: Note that the theorem asserts that essentially no sampling can be done when d(n) ≤√
n/ lnn. We shall omit the dependence on n in d(n) to simplify notation.

Define H(k) = (U, V,E), 0 ≤ k ≤ d, to be a bipartite graph with |U | = |V | = d such that k

vertices in each of U and V have degree (d−1) and the remaining vertices have degree d. We will call

the vertices of degree (d − 1) deficient. Clearly, for any 0 ≤ k ≤ d, the graph H(k) exists: starting

with a d-regular bipartite graph on 2d vertices, we can remove an arbitrary subset of k edges that
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Figure 2.1: Graph H(k) for k = 2 and d = 4.

belong to a perfect matching in the graph (H(k) with k = 2 and d = 4 is shown in Fig. 2.1). In the

following construction, we will use copies of H(k) as building blocks to create our final instance. In

doing so, only the set of deficient vertices in a copy of H(k) will be connected to (deficient) vertices

in other copies in our construction.

We now define a d-regular bipartite graph Gn. Let γ =
⌈
d2 lnn
n

⌉
(note that γ ≤ d since d ≤

n/ lnn). We choose W =
⌈
d
γ

⌉
, kj = γ for 1 ≤ j < W , and kW = d− γ(W − 1) ≤ γ. We also define

K(n) = dlnne if d(n) ≥
√
n/ lnn and K(n) = d nd2 e otherwise.

The graph Gn consists of K(n) ·W copies of H(k) that we index as {Hi,j}1≤i≤K(n),1≤j≤W . The

subgraph Hi,j is a copy of H(kj), where kj is as defined above. Note that the sum of the number of

deficient vertices over each of the parts of Hi,j , 1 ≤ j ≤ W , equals d for all fixed i. Moreover, the

number of deficient vertices in Hi,j is the same for all i when j is held fixed.

We now introduce two distinguished vertices u and v and add additional edges as follows:

1. For every 1 ≤ i < K(n) and for every 1 ≤ j ≤ W , all deficient vertices in part V of Hi,j are

matched to the deficient vertices in part U of Hi+1,j (that is, we insert an arbitrary matching

between these two sets of vertices);

2. All deficient vertices in part U of H1,j for 1 ≤ j ≤W are connected to u;

3. All deficient vertices in part V of HK(n),j for 1 ≤ j ≤W are connected to v.

Essentially, we are connecting the graphs Hi,j for fixed j in series via their deficient vertices, and

then connecting the left ends of these chains to the distinguished vertex u and the right ends of the

chains to the distinguished vertex v. The construction is illustrated in Fig. 2.2.

We note that the graph Gn constructed as described above is a d-regular bipartite graph with

2dK(n)W + 2 = 2n+ o(n) vertices.

Consider the sampled graph G′n. Suppose G′n has a perfect matching M . In the matching

M , if u is matched to a vertex in part U of H ′1,j for some 1 ≤ j ≤ W , then there must be a

vertex in part V of H ′1,j that is matched to a vertex in part U of H ′2,j . Proceeding in the same
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Figure 2.2: Illustration of the family of graphs that yields the lower bound.
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way, one concludes that for every i, 1 ≤ i < K(n) there must be a vertex in part V of H ′i,j that

is matched to a vertex in part U of H ′i+1,j . Finally, vertex v must be matched to a vertex in

part V of H ′K(n),j . This implies that the sampled graph G′n can have a perfect matching only if

at least one edge survives in G′n between every pair of adjacent elements in the sequence below:

u→ H1,j → H2,j → . . .→ HK(n)−1,j → HK(n),j → v.

Now suppose that we sample edges uniformly with probability p. It follows from the construction

of Gn that for any fixed j, the probability that at least one edge survives between every pair of

adjacent elements in the sequence u→ H1,j → H2,j → . . .→ HK(n)−1,j → HK(n),j → v is equal to

(
1− (1− p)kj

)K(n)+1

≤ (pkj)
K(n)+1.

Hence, the probability that at least one such path survives in G′n is at most

W

(
p max

1≤j≤W
kj

)K(n)+1

by the union bound.

When d(n) ≤
√
n/ lnn, we have γ = 1, W = d, kj = 1 and K(n) = dn/d2e. So the bound

transforms to

WpK(n)+1 = dpdn/d
2e+1, (2.1)

which goes to zero faster than any inverse polynomial function in n when p = o(1) since K(n) =

dn/d2e = Ω(lnn).

When d ≥
√
n/ lnn, we have kj ≤ γ where γ =

⌈
d2 lnn
n

⌉
, W =

⌈
d
γ

⌉
and K(n) = dlnne. Hence,

the bound becomes

W (pγ)
K(n)+1

=

⌈
d

γ

⌉
(pγ)

dlnne+1
, (2.2)

which goes to zero faster than any inverse polynomial function in n when p = o
(

n
d2 lnn

)
. This

completes the proof of the theorem.

The construction given in Theorem 8 shows that the sampling upper bound for preserving a

perfect matching proved in Theorem 1 is tight up to a factor of O(ln2 n).
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2.5 Matchings via Random Walks

In section 2.1, we gave a sampling-based algorithm that computes a perfect matching in d-regular

bipartite graphs in O(min{m, n
2.5 logn
d }) expected time, an expression that is bounded by Õ(n1.75).

That algorithm uses uniform sampling to reduce the number of edges in the input graph while

preserving a perfect matching, and then runs the Hopcroft-Karp algorithm on the sampled graph.

We also gave a lower bound of Ω̃
(

min{nd, n
2

d }
)

on the running time of an algorithm that uses

non-adaptive uniform sampling to reduce the number of edges in the graph as the first step. Also,

in Chapter 7 we match this lower bound by using a two stage sampling scheme and a specialized

analysis of the runtime of the Hopcroft-Karp algorithm on the sampled graph to obtain a runtime

of Õ
(

min{nd, n
2

d }
)

.

Given a partial matching in an undirected graph, an augmenting path is a path which starts and

ends at an unmatched vertex, and alternately contains edges that are outside and inside the partial

matching. Many of the algorithms mentioned above work by repeatedly finding augmenting paths.

Our main result in the rest of this chapter is the following theorem.

Theorem 9 There exists a randomized algorithm for finding a perfect matching in a d-regular bi-

partite graph G = (P,Q,E) given in adjacency array representation, and takes time O(n log n) time

both in expectation as well as with high probability.

The algorithm is very simple: the matching is constructed by performing one augmentation at a

time, and new augmenting paths are found by performing an alternating random walk with respect

to the current matching. The alternating random walk on G, defined in Section 2.6, can be viewed as

a random walk on a modified graph that encodes the current matching. The random walk approach

may still be viewed as repeatedly drawing a uniform sample from the adjacency array of some vertex

v; however this vertex v is now chosen adaptively, thus allowing us to bypass the Ω̃
(

min{nd, n
2

d }
)

lower bound on non-adaptive uniform sampling established in section 2.1. Somewhat surprisingly,

we show that the total time taken by these random augmentations can be bounded by O(n log n)

in expectation, only slightly worse than the Ω(n) time needed to simply output a perfect matching.

The proof involves analyzing the hitting time of the sink node in the random walk. It should be

noted here that, of course, the O(m) algorithm of Cole-Ost-Schirra is faster than our algorithm when

d = o(log n).

In section 2.8 we establish that randomization is crucial to obtaining an o(nd) time algorithm,

thus showing that the algorithm of [23] is asymptotically optimal in the class of deterministic algo-

rithms. In section 2.9, we show that no randomized algorithm can achieve high probability runtime

better than O(n log n) for the case of d-regular bipartite multigraphs.

Our techniques also extend to the problem of finding a perfect matching in the support of a

doubly-stochastic matrix, as well as to efficiently compute the Birkhoff-von-Neumann decomposition

of a doubly stochastic matrix. The details are given in section 2.7.1.

Finally, we note that an application of Yao’s min-max theorem (see, for instance, [72]) to Theo-

rem 9 immediately yields the following corollary:
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Corollary 10 For any distribution on regular bipartite graphs with 2n nodes, there exists a deter-

ministic algorithm that runs in average time O(n log n) on graphs drawn from this distribution.

A similar corollary also follows for doubly stochastic matrices.

2.6 Matchings in d-Regular Bipartite Graphs

2.6.1 The Basic Algorithm

Let G = (P,Q,E) denote the input d-regular graph and let M be a partial matching in G. We first

describe the alternating random walk on G with respect to M . We assume that the algorithm has

access to the function SAMPLE-OUT-EDGE that takes a vertex u ∈ P and returns a uniformly

random unmatched edge going out of u. The implementation and runtime of SAMPLE-OUT-EDGE

depend on the representation of the graph. It is assumed in Theorem 9 and in this section that the

graph G does not have parallel edges and is represented in adjacency array format, in which case

SAMPLE-OUT-EDGE can be implemented to run in expected constant time (throughout the paper

we assume the model in which a random number in the range 1 : n can be generated in O(1)

time). In Theorem 13, however, a preprocessing step will be required to convert the matrix to an

augmented binary search tree, in which case SAMPLE-OUT-EDGE can be implemented to run in

O(log n) time.

The alternating random walk starts at a uniformly random unmatched vertex u0 ∈ P and

proceeds as follows:

1. Set v :=SAMPLE-OUT-EDGE(uj);

2. If v is matched, set uj+1 := M(v), otherwise terminate.

Note that an augmenting path with respect to M can be obtained from the sequence of steps taken

by the alternating random walk by removing possible loops.



CHAPTER 2. MATCHINGS IN REGULAR BIPARTITE GRAPHS 20

We now state a basic version of our algorithm:

Algorithm 1

Input: A d-regular bipartite graph G = (P,Q,E) in adjacency array format.

Output: A perfect matching of G.

1. Set j := 0, M0 := ∅.

2. Run the alternating random walk starting from a random unmatched vertex in P until it hits an

unmatched vertex in Q.

3. Denote the augmenting path obtained by removing possible loops from the sequence of steps

taken by the walk by p. Set Mj+1 := Mj∆p.

4. Set j := j + 1 and go to step 2.

Here for two sets of edges A,B ⊆ E we use the notation A∆B to denote the symmetric difference

of A and B. In particular, if M is a matching and p is an augmenting path with respect to M , then

M∆p is the set of edges obtained by augmenting M with p.

We prove in the next section that this algorithm takes O(n log n) time in expectation. The high

probability result is obtained in section 2.6.3 by performing appropriately truncated random walks

in step 2 instead of a single untruncated walk.

2.6.2 Expected Running Time Analysis

The core of our analysis is the following lemma, which bounds the time that it takes an alternating

random walk in G with respect to a partial matching M that leaves 2k vertices unmatched to reach

an unmatched vertex.

Lemma 11 Let G = (P,Q,E) be a d-regular bipartite graph and let M be a partial matching that

leaves 2k vertices unmatched. Then the expected number of steps before the alternating random walk

in G reaches an unmatched vertex is at most 4 + n/k.

Proof:

It will be convenient to use the auxiliary notion of a matching graph H(G,M) which will allow

us to view alternating random walks in G with respect to M as random walks in H(G,M) starting

from a special source node s and hitting a special sink node t. We then get the result by bounding

the hitting time from s to t in H(G,M).

The matching graph corresponding to the matching M is defined to be the directed graph H

obtained by transforming G as follows:

1. Orient edges of G from P to Q;

2. Add a vertex s connected by d parallel edges to each unmatched node in P , directed out of s;
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3. Add a vertex t connected by d parallel edges to each unmatched node in Q, directed into t;

4. Contract each pair (u, v) ∈M into a supernode.

The graph H has n + k + 2 nodes. Note that for every vertex v ∈ H, v 6= s, t the in-degree of v is

equal to its out-degree, the out-degree of s equals dk, as is the in-degree of t. Also, any path from s

to t in H gives an augmenting path in G with respect to M . We now concentrate on finding a path

from s to t in H.

Construct the graph H∗ by identifying s with t in H and adding a self-loop at every vertex (and

thus increasing all degrees by 1). Denote the vertex that corresponds to s and t by s∗. Note that

H∗ is a balanced directed graph, i.e. the out-degree of every vertex is equal to its in-degree. The

out-degree of every vertex except s∗ is at most d+ 1, while the out-degree of s∗ is dk + 1.

Consider the simple random walk in H∗ started at s∗ where at each step of the random walk, we

choose an outgoing edge uniformly at random. We wish to analyze the expected time for a return

visit to s∗; this is precisely the expected time to find an augmenting path. We first observe that since

H∗ is a balanced directed graph, any strongly connected component must have the same number

of edges entering and leaving that component. It follows that every strongly connected component

is isolated, and hence the Markov chain induced by the above simple random walk is irreducible.

Furthermore, the addition of self-loops ensures that the chain is aperiodic. Denote the set of vertices

in the strongly connected component of s∗ by C.

By the Fundamental theorem of Markov chains (see, e.g. [88], Theorem 4.1, where this result is

referred to as the basic limit theorem of Markov chains), we know that there is a unique stationary

distribution, and it is easy to verify that it is given by

πu =
deg(u)∑
v∈C deg(v)

for each u ∈ C. Since the expected return time to s∗ is equal to the inverse of the stationary measure

of s∗, we get that

1

πs∗
=

∑
v∈C deg(v)

deg(s∗)
=

(n− k)d+ 2k(d+ 1) + dk + 1

dk + 1
≤ 1 +

(n+ k)(d+ 1)

dk
≤ 4 +

2n

k
.

We can now prove

Theorem 12 Algorithm 1 finds a matching in a d-regular bipartite graph G = (P,Q,E) in expected

time O(n log n).

Proof: By Lemma 11 it takes at most 4 + 2n/(n − j) expected time to find an augmenting path

with respect to partial matching Mj . Hence, the expected runtime of the algorithm is bounded by

n−1∑
j=0

4 + 2n/(n− j) = 4n+ 2nHn = O(n log n),
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where H(n) := 1 + 1/2 + 1/3 + . . .+ 1/n is the n-th Harmonic number.

2.6.3 Truncated Random Walks and High Probability Analysis

In this section we show how Algorithm 1 can be modified by introducing truncated random walks

to obtain a running time of O(n log n) with high probability.

Algorithm 2

Input: A d-regular bipartite graph G = (P,Q,E) in adjacency array format.

Output: A perfect matching of G.

1. Set j := 0, M0 := ∅.

2. Repeatedly run alternating random walks for bj := 2
(

4 + 2n
n−j

)
steps until a successful run is

obtained.

3. Denote the augmenting path obtained by removing possible loops from the sequence of steps

taken by the walk by p. Set Mj+1 := Mj∆p.

4. Set j := j + 1 and go to step 2.

We now analyze the running time of our algorithm, and prove Theorem 9.

Proof of Theorem 9:

We now show that Algorithm 2 takes time O(n log n) with high probability. First note that

by Lemma 11 and Markov’s inequality, a truncated alternating random walk in step 2 succeeds

with probability at least 1/2. Let Xj denote the time taken by the j-th augmentation. Let Yj be

independent exponentially distributed with mean µj :=
bj

ln 2 . Note that

Pr[Xj ≥ qbj ] ≤ 2−q = exp

[
−qbj ln 2

bj

]
= Pr[Yj ≥ qbj ]

for all q > 1, so

Pr[Xj ≥ x] ≤ Pr[Yj ≥ x] (2.3)

for all x > bj . We now prove that Y :=
∑

0≤j≤n−1 Yj ≤ cn log n w.h.p. for a suitably large positive

constant c. Denote µ := E[Y ]. By Markov’s inequality, for any t, δ > 0

Pr[Y ≥ (1 + δ)µ] ≤ E[etY ]

et(1+δ)µ
.

Also, for any j, and for t < 1/µj , we have

E[etYj ] =
1

µj

∫ ∞
0

etxe−x/µjdx =
1

1− tµj
.
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The two expressions above, along with the fact that the Yj ’s are independent, combine to give:

Pr[Y ≥ (1 + δ)µ] ≤ e−t(1+δ)µ∏n−1
j=0 (1− tµj)

. (2.4)

Observe that µn−1 is the largest of the µj ’s. Assume that t = 1
2µn−1

, which implies that (1− tµj) ≥
e−tµj ln 4. Plugging this into equation 2.4, we get:

Pr[Y ≥ (1 + δ)µ] ≤ e−(1+δ−ln 4)µ/(2µn−1). (2.5)

Further observe that µ = 4
ln 2

∑n−1
j=0 (1 + n/(n − j)) = 4

ln 2n(1 + Hn) ≥ µn−1H(n), where H(n) :=

1+1/2+1/3+. . .+1/n is the n-th Harmonic number. Since H(n) ≥ lnn, we get our high probability

result:

Pr[Y ≥ (1 + δ)µ] ≤ n−(1+δ−ln 4)/2. (2.6)

Since µ = O(n log n), this completes the proof of Theorem 9.

2.7 Matchings in Doubly-Stochastic Matrices and Regular

Bipartite Multigraphs

2.7.1 Doubly-Stochastic Matrices

We now apply techniques of the previous section to the problem of finding a perfect matching in

the support of an n× n doubly stochastic matrix M with m non-zero entries. A doubly-stochastic

matrix can be viewed as a regular graph, possibly with parallel edges, and we can thus use the

same algorithm and analysis as above, provided that SAMPLE-OUT-EDGE can be implemented

efficiently. We start by describing a simple data structure for implementing SAMPLE-OUT-EDGE.

For each vertex v, we store all the outgoing edges from v in a balanced binary search tree, augmented

so that each node in the search tree also stores the weight of all the edges in its subtree. Since inserts

into, deletes from, and random samples from this augmented tree all take time O(log n), we obtain

a running time of O(n log2 n) for finding a matching in the support of a doubly stochastic matrix.

Superficially, it might seem that initializing the balanced binary search trees for each vertex takes

total time Θ(m log n). However, note that there is no natural ordering on the outgoing edges from a

vertex, and we can simply superimpose the initial balanced search tree for a vertex on the adjacency

array for that vertex, assuming that the underlying keys are in accordance with the (arbitrary) order

in which the edges occur in the adjacency array. We have proved

Theorem 13 Given an n× n doubly-stochastic matrix M with m non-zero entries, one can find a

perfect matching in the support of M in O(n log2 n) expected time with O(m) preprocessing time.

In many applications of Birkhoff von Neumann decompositions (e.g. routing in network switches [20]),

we need to find one perfect matching in a single iteration, and then update the weights of the matched
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edges. In such applications, each iteration can be implemented in O(n log2 n) time (after initial O(m)

preprocessing time), improving upon the previous best known bound of O(mb) where b is the bit

precision.

The complete Birkhoff-von Neumann decomposition can be computed by subtracting an appro-

priately weighted matching matrix from M every time a matching is found, thus decreasing the

number of nonzero entries of M. Note that the augmented binary search tree can be maintained in

O(log n) time per deletion. This yields

Corollary 14 For any k ≥ 1, there exists an O(m+ kn log2 n) expected time algorithm for finding

k distinct matchings (if they exist) in the Birkhoff-von-Neumann decomposition of an n× n doubly

stochastic matrix with m non-zero entries.

Remark 15 The O(log n) bound on the time per sample and update that is achieved via binary

search trees can be improved using the results of Hagerup et al[42] on sampling from a changing

distribution in constant time under the assumption that the entries of M are represented using

O(log n) bits. This yields an expected runtime of O(n log n) for finding one matching in Theorem 13

and O(m+ kn log n) expected time in Corollary 14.

2.7.2 Regular Bipartite Multigraphs and Edge Coloring

For regular bipartite multigraphs with edge multiplicities at most d/2, Algorithm 2 still takes time at

most O(n log n) with high probability, since SAMPLE-OUT-EDGE can be implemented by sampling

the adjacency list of the appropriate vertex in G until we find an unmatched edge. Each sample

succeeds with probability at least 1/2 since the matched edge can have multiplicity at most d/2.

Here, we assume that an edge with multiplicity k occurs k times in the adjacency arrays of its

endpoints.

We also note that our algorithm can be implemented to run in O(n log n) time without any

assumptions on multiplicities if the data layout is as follows. For each vertex we have an adjacency

array with edges of multiplicity k appearing as contiguous blocks of length k. Also, each element

in the adjacency array is augmented with the index of the beginning of the block corresponding to

its edge and the index of the end of the block. Assuming this data layout, SAMPLE-OUT-EDGE

can be implemented in O(1) expected time regardless of edge multiplicities: it is sufficient to sample

locations outside the block corresponding to the currently matched edge.

It remains to note that when the size of the support of the set of edges, which we denote by ms,

is small, then the data representation used in finding a matching in a doubly-stochastic matrix can

be used to find a matching in time O(ms+n log2 n). It is interesting to compare this runtime to the

result of [23]. The runtime of their matching algorithm is stated as O(m+ n log3 d) = O(m), but it

is easy to see that it can be implemented to run in O(ms + n log3 d) time.

Our algorithm can be used to obtain a simple algorithm for edge-coloring bipartite graphs with

maximum degree d in time O(m log n) (slightly worse than the best known O(m log d) dependence

obtained in [32, 23, 47, 78]). In the first step one reduces the problem to that on a regular graph
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with O(m) edges as described in [23] (note that parallel edges may emerge at this point). The lists

of neighbors of every vertex of the graph can then be arranged in a data structure that supports

sampling and deletion in O(1) amortized time. It then remains to find matchings repeatedly, taking

O(n log n) time per matching. This takes O(nd log n) = O(m log n) time overall.

One simple approach to implementing sampling and deletion in O(1) amortized time is to use the

data layout outlined above: for each vertex we have an adjacency array with edges of multiplicity k

appearing as contiguous blocks of length k. Also, each element in the adjacency array is augmented

with the index of the beginning of the block corresponding to its edge and the index of the end of

the block. Deletion is performed as follows. When an edge is deleted, its block is marked for deletion

(it is sufficient to store a corresponding flag at the beginning of each contiguous block), but is only

removed when the number of elements marked for deletion (counting multiplicities) exceeds half of

the current size of the adjacency array, in which case the whole array is rearranged, removing the

marked elements. Note that until the number of elements in the deleted blocks exceeds half of the

current size of the array, sampling can be performed in O(1) expected time. On the other hand,

since rearrangement of the array takes linear time and is only performed when at least half of the

elements are marked for deletion, the amortized cost of deletion is O(1).

2.8 An Ω(nd) Lower Bound for Deterministic Algorithms

In this section, we will prove

Theorem 16 For any 1 ≤ d < n/12, there exists a family of d-regular graphs on which any deter-

ministic algorithm for finding a perfect matching requires Ω(nd) time.

We will show that for any positive integer d, any deterministic algorithm to find a perfect match-

ing in a d-regular bipartite graph requires Ω(nd) probes, even in the adjacency array representation,

where the ordering of edges in an array is decided by an adversary. Specifically, for any positive

integer d, we construct a family G(d) of simple d-regular bipartite graphs with O(d) vertices each

that we refer to as canonical graphs. A canonical bipartite graph G(P ∪ {t}, Q ∪ {s}, E) ∈ G(d)

is defined as follows. The vertex set P = P1 ∪ P2 and Q = Q1 ∪ Q2 where |Pi| = |Qi| = 3d for

i ∈ {1, 2}. The vertex s is connected to an arbitrary set of d distinct vertices in P1 while the vertex

t is connected to an arbitrary set of d distinct vertices in Q2. In addition, G contains a matching

M ′ of size d that connects a subset Q′1 ⊆ Q1 to a subset P ′2 ⊆ P2, where |Q′1| = |P ′2| = d. The

remaining edges in E connect vertices in Pi to Qi for i ∈ {1, 2} so as to satisfy the property that the

degree of each vertex in G is exactly d. It suffices to show an Ω(d2) lower bound for graphs drawn

from G(d) since we can take Θ(n/d) disjoint copies of canonical graphs to create a d-regular graph

on n vertices.

Overview: Let D be a deterministic algorithm for finding a perfect matching in graphs drawn from

G(d). We will analyze a game between the algorithm D and an adaptive adversary A whose goal is

to maximize the number of edges that D needs to examine in order to find a perfect matching. In

order to find a perfect matching, the algorithm D must find an edge in M ′, since s must be matched
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to a vertex in P1, and thus in turn, some vertex in Q1 must be matched to a vertex in P2. We will

show that the adversary A can always force D to examine Ω(d2) edges in G before revealing an edge

in M ′. The specific graph G ∈ G(d) presented to the algorithm depends on the queries made by

the algorithm D. The adversary adaptively answers these queries while maintaining at all times the

invariant that the partially revealed graph is a subgraph of some graph G ∈ G(d). The cost of the

algorithm is the number of edge locations probed by it before A reveals an edge in M ′ to D.

In what follows, we assume that the adversary reveals s, t and the partition of remaining vertices

into Pi, Qi for 1 ≤ i ≤ 2, along with all edges from s to P1 and all edges from t to Q2, to the

deterministic algorithm D at the beginning. The algorithm pays no cost for this step.

Queries: Whenever the algorithm D probes a new location in the adjacency array of some vertex

u ∈ P ∪Q, we will equivalently view D as making a query Q(u) to the adversary A, in response to

which the adversary outputs a vertex v that had not been yet revealed as being adjacent to u.

Subgraphs consistent with canonical graphs: Given a bipartite graph G′(P ∪{t}, Q∪{s}, E′),
we say that a vertex u ∈ P ∪Q is free if its degree in G′ is strictly smaller than d. We now identify

sufficient conditions for a partially revealed graph to be a subgraph of some canonical graph in G(d).

Lemma 17 Let Gr(P ∪ {t}, Q ∪ {s}, Er) be any simple bipartite graph such that

(a) the vertex s is connected to d distinct vertices in P1 and the vertex t is connected to d distinct

vertices in Q2,

(b) all other edges in Gr connect a vertex in Pi to a vertex in Qi for some i ∈ {1, 2},

(c) degree of each vertex in Gr is at most d, and

(d) at least 5d
2 vertices each in both Q1 and P2 have degree strictly less than d

5 .

Then for any pair u, v of free vertices such that u ∈ Pi and v ∈ Qi for some i ∈ {1, 2}, and

(u, v) 6∈ Er, there exists a canonical graph G(P∪{t}, Q∪{s}, E) ∈ G(d) such that that Er∪(u, v) ⊆ E.

Proof: Let G′(P ∪ {t}, Q ∪ {s}, E′) be the graph obtained by adding edge (u, v) to Gr, that is,

E′ = Er ∪ {(u, v)}. Since u and v are free vertices, all vertex degrees in G′ remain bounded by d.

We now show how G′ can be extended to a d-regular canonical graph.

We first add to G′ a perfect matching M ′ of size d connecting an arbitrary set of d free vertices

in Q1 to an arbitrary set of d free vertices in P2. This is feasible since G′ has at least 5d
2 free vertices

each in both Q1 and P2. In the resulting graph, since the total degree of all vertices in Pi is same

as the total degree of all vertices in Qi, we can repeatedly pair together a vertex of degree less than

d in Pi with a vertex of degree less than d in Qi until degree of each vertex becomes exactly d, for

i ∈ {1, 2}. Let E′′ be the set of edges added to G′∪M ′ in this manner, and let G′′ be the final graph.

The graph G′′ satisfies all properties of a canonical graph in the family G(d) except that it may not

be a simple graph. We next transform G′′ into a simple d-regular graph by suitably modifying edges

in E′′.
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Given any graph H(VH , EH), we define

Φ(H) =
∑

(x,y)∈VH×VH

max{0, η(x, y)− 1},

where η(x, y) denotes the number of times the edge (x, y) appears in H. Note that Φ(H) = 0 iff H

is a simple graph. Consider any edge (a, b) that has multiplicity more than one in G′′. It must be

that (a, b) ∈ E′′ since G′ is a simple graph. Assume w.l.o.g. that a ∈ P1 and b ∈ Q1. Let X ⊂ P1

and Y ⊂ Q1 respectively denote the set of vertices adjacent to b and a in G′′. Using condition (d)

on the graph Gr, we know that

|E′′ ∩ (P1 ×Q1)| ≥
(

5d

2

)(
4d

5
+ 1

)
− (d+ 1) > 2d2.

Since |X| < d and |Y | < d, it follows that there must exist an edge (a′, b′) ∈ E′′ ∩ (P1×Q1) such

that a′ 6∈ X and b′ 6∈ Y . We can thus replace edges {(a, b), (a′, b′)} in E′′ with edges {(a, b′), (a′, b)}
without violating the d-regularity condition. It is easy to verify that the exchange reduces Φ(G′′) by

at least one, and that all edges involved in the exchange belong to the set E′′. We can thus repeat

this process until the graph G′′ becomes simple, and hence a member of the family G(d).

Adversary strategy: For each vertex u ∈ P ∪ {t}, Q∪ {s}, the adversary A maintains a list N(u)

of vertices adjacent to u that have been so far revealed to the algorithm D. Wlog we can assume

that the algorithm D never queries a vertex u for which |N(u)| = d. At any step of the game, we

denote by Gr the graph formed by the edges revealed thus far. We say the game is in evasive mode

if the graph Gr satisfies the condition (a) through (d) of Lemma 17, and is in non-evasive mode

otherwise. Note that the game always starts in the evasive mode, and then switches to non-evasive

mode.

When the game is in the evasive mode, in response to a query Q(u) by D for some free vertex

u ∈ Pi (i ∈ {1, 2}), A returns an arbitrary free vertex v ∈ Qi such that v 6∈ N(u). The adversary

then adds v to N(u) and u to N(v). Similarly, when D asks a query Q(u) for some free vertex

u ∈ Qi (i ∈ {1, 2}), A returns an arbitrary free vertex v ∈ Pi such that v 6∈ N(u). It then adds v to

N(u) and u to N(v) as above.

As the game transitions from evasive to non-evasive mode, Lemma 17 ensures existence of a

canonical graph G ∈ G(d) that contains the graph revealed by the adversary thus far as a subgraph.

The adversary answers all subsequent queries by D in a manner that is consistent with the edges

of G. The lemma below shows that the simple adversary strategy above forces Ω(d2) queries before

the evasive mode terminates.

Lemma 18 The algorithm makes Ω(d2) queries before the game enters non-evasive mode.

Proof: The adversary strategy ensures that conditions (a) through (c) in Lemma 17 are maintained

at all times as long as the game is in the evasive mode. So we consider the first time that condition

(d) is violated. Since each query answered by the adversary in the evasive mode contributes 1 to the
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degree of exactly one vertex in Q1 ∪ P2, A always answers at least Ω(d2) queries before the number

of vertices with degree less than d
5 falls below 5d

2 in either Q1 or P2. The lemma follows.

Since A can not discover an edge in M ′ until the game enters the non-evasive mode, we obtain

the desired lower bound of Ω(d2).

2.9 An Ω(n log n) High Probability Lower Bound For Dense

Graphs

In this section we give a lower bound on the running time of any randomized algorithm for finding

a perfect matching in d-regular bipartite multigraphs, even with edge multiplicities bounded above

by d/2:

Theorem 19 Let A be any randomized algorithm that finds a matching in a d-regular bipartite

multigraph with n nodes and edge multiplicities bounded above by d/2. Then there exists a family of

dense graphs for which A probes at least (γ/64)n lnn locations in the input adjacency arrays with

probability at least n−γ .

We first reiterate that even though the algorithm obtained in section 2.6 is stated for simple

graphs, the same runtime analysis applies for multigraphs as long as edge multiplicities are bounded

above by d/2. The restriction on maximum edge multiplicity is necessary to ensure that SAMPLE-

OUT-EDGE takes O(1) time in expectation. In this section we show that every algorithm that finds

a matching in a d-regular multigraph (even with edge multiplicities bounded above by d/2) probes

at least (γ/64)n lnn locations in the input adjacency arrays with probability at least n−γ (on some

fixed family of distributions). Thus, the lower and upper bounds are tight in this particular case.

The lower bound instances use d = Θ(n).

It is also interesting to contrast Theorem 19 with the result of [92], which shows that sampling a

constant number of edges incident to every vertex of a complete bipartite graph yields a subgraph that

contains a perfect matching with high probability, i.e. the sampling complexity is O(n) even if a high

probability result is desired. The lower bound on the randomized algorithm is not as comprehensive

as the deterministic lower bound: it holds only for very specific values of d (specifically, d = Θ(n)),

it bounds the “with high probability”-running time as opposed to the expected running time, and it

works for multi-graphs. Obtaining tight upper and lower bounds for the entire range of parameters

and for expected running time remains an interesting open problem.

We first introduce the following problem, which we will refer to as BIPARTITE-DISCOVERY(d).

Definition 20 (BIPARTITE-DISCOVERY(d)) Let G = (P,Q,E) be a bipartite multigraph with

|P | = 4d and |Q| = d. The set of edges E(G) is constructed as follows. For each u ∈ Q choose d

neighbors in P uniformly at random with replacement. A node u∗ ∈ Q is then marked as special, and

edges incident to the special node are referred to as special. The graph G is presented in adjacency

array format with edges appearing in random order in adjacency lists.
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When an algorithm A queries a neighbor of a vertex u ∈ Q or v ∈ P , the location of the edge in

the adjacency arrays of both endpoints is revealed to A, i.e. it is no longer considered undiscovered

when any of its endpoints is queried. The algorithm is not allowed to query the special node directly.

Algorithm A solves BIPARTITE-DISCOVERY(d) if it finds an edge incident to the special node.

The cost of A is defined as the number of queries that it makes before discovering an edge to the

special node.

We show the following:

Lemma 21 Any algorithm that solves BIPARTITE-DISCOVERY(d) makes at least (γ/2)d ln d

queries with probability at least d−γ for any γ > 0, where the probability is taken over the coin

tosses used to generate the instance BIPARTITE-DISCOVERY.

Proof: We first note that when an algorithm queries a neighbor of a vertex u ∈ Q or v ∈ P , in fact

an incident edge is returned uniformly at random among the yet undiscovered edges incident on u

(resp. v), irrespective of the set of edges discovered by the algorithm so far.

Suppose that the algorithm has discovered J edges of G. Then the probability of the next query

not yielding a special edge is at least d2−d−J
d2−J , independent of the actual set of edges of G that have

already been discovered. Hence, the probability of not discovering a special edge after J < d2/3

queries is at least
J∏
j=0

d2 − d− j
d2 − j

≥
J∏
j=0

2d2/3− d
2d2/3

≥ e−2J/d

for sufficiently large d. Hence, we have that the probability of not finding a special edge after

(γ/2)d ln d queries is at least d−γ . We stress here that this probability is over the coin tosses used to

generate the instance of BIPARTITE-DISCOVERY and not the coin tosses of the algorithm (which,

in particular, could be deterministic).

We now give a reduction from BIPARTITE-DISCOVERY(d) to the problem of finding a matching

in a regular bipartite multigraph with edge multiplicities bounded by d/2:
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Proof of Theorem 19:

Let A be an algorithm that finds a matching in a regular bipartite multigraph with edge multi-

plicities bounded above by d/2 and makes fewer than (γ/64)n lnn queries with probability at least

1−n−γ on every such graph. We will give an algorithm A′ that solves BIPARTITE-DISCOVERY(d)

and makes fewer than (γ/2)d ln d queries with probability strictly larger than 1− d−γ .

Consider an instance G = (P,Q,E) of BIPARTITE-DISCOVERY(d). Algorithm A′ first checks

if the degrees of all nodes in P are smaller than d/2. If there exists a node with degree strictly larger

than d/2, A′ queries all edges of all vertices in P and thus finds a special edge in at most 2d2 queries.

Note that since the expected degree of vertices in P is d/4, the probability of this happening is at

most e−d for sufficiently large d by an application of the Chernoff bound with a union bound over

vertices of P .

Now suppose that degrees of all nodes in P are at most d/2. A′ adds a set of 3d vertices Q′ to

the Q side of the partition of G and connects nodes in Q′ to nodes in P to ensure that the degree of

every vertex in P and Q′ is exactly d (it can be shown using an argument similar to the one in the

proof of Lemma 17 that this can be done without introducing double edges). Denote the resulting

regular multigraph by G+ = (P,Q∪Q′, E ∪E′). Note that G+ has 4d vertices in each part, and one

vertex in the Q part of the bipartition is marked special together with its d adjacent edges. Now A′

constructs the final graph by putting together two copies of G+. In particular, we denote by G− a

mirrored copy of G+, i.e. G− = (Q ∪ Q′, P, E ∪ E′), and finally denote by G∗ the graph obtained

by taking the union of G+ and G−, removing the two special nodes and identifying special edges in

G+ with special edges in G−. Note that any matching in G∗ contains a special edge, so algorithm A

necessarily finds a special edge. Note that a query to an adjacency list in G+ or G− can be answered

by doing at most one query on G. The number of vertices in each bipartition of G∗ is 8d − 1 and

the degree of each node is d.

By assumption, algorithm A does not make more than (γ′/64)n lnn queries with probability at

least 1 − n−γ′ for any γ′ > 0. Setting n = 8d − 1 and γ′ = 2γ, we get that A does not need more

than (2γ/64)8d ln(8d) ≤ (γ/2)d ln d queries with probability at least 1− (8d− 1)−2γ ≥ 1− d−2γ for

sufficiently large d. Hence, we conclude that A′ probes at most (γ/2)d ln d locations with probability

at least 1− d−2γ + e−d > 1− d−γ , contradicting Lemma 21.
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In this chapter we study the communication and streaming complexity of the maximum bipartite

matching problem. Consider the following scenario. Alice holds a graph GA = (P,Q,EA) and Bob

holds a graph GB = (P,Q,EB), where |P | = |Q| = n. Alice is allowed to send Bob a message m

that depends only on the graph GA. Bob must then output a matching M ⊆ EA ∪ EB . What is

the minimum size of the message m that Alice sends to Bob that allows Bob to recover a matching

of size at least 1 − ε of the maximum matching in GA ∪ GB? The minimum message length is

the one-round communication complexity of approximating bipartite matching, and is denoted by

CC(ε, n). It is easy to see that the quantity CC(ε, n) also gives a lower bound on the space needed

by a one-pass streaming algorithm to compute a (1 − ε)-approximate bipartite matching. To see

this, consider the graph GA∪GB revealed in a streaming manner with edge set EA revealed first (in

some arbitrary order), followed by the edge set EB . It is clear that any non-trivial approximation to

the bipartite matching problem requires Ω(n) communication and Ω(n) space, respectively, for the

one–round communication and one-pass streaming problems described above. The central question

considered in this work is how well can we approximate the bipartite matching problem when only

Õ(n) communication/space is allowed.

Matching Covers: We show that a study of these questions is intimately connected to existence

of sparse “matching covers” for bipartite graphs. An ε-matching cover or simply an ε-cover, of a

graph G(P,Q,E) is a subgraph G′(P,Q,E′) such that for any pairs of sets A ⊆ P and B ⊆ Q,

the graph G′ preserves the size of the largest A to B matching to within an additive error of

εn. The notion of matching sparsifiers may be viewed as a natural analog of the notion of cut-

preserving sparsifiers which have played a very important role in the study of network design and

connectivity problems [52, 16]. It is easy to see that if there exists an ε-cover of size f(ε, n) for

some function f , then Alice can just send a message of size f(ε, n) to allow Bob to compute an

additive εn error approximation to bipartite matching (and (1−ε)-approximation whenever GA∪GB
contains a perfect matching). However, we show that the question of constructing efficient ε-covers

is essentially equivalent to resolving a long-standing problem on a family of graphs known as the

Ruzsa-Szemerédi graphs. A bipartite graph G(P,Q,E) is an ε-Ruzsa-Szemerédi graph if E can be

partitioned into a collection of induced matchings of size at least εn each. Ruzsa-Szemerédi graphs

have been extensively studied as they arise naturally in property testing, PCP constructions and

additive combinatorics [29, 43, 87]. A major open problem is to determine the maximum number

of edges possible in an ε-Ruzsa-Szemerédi graph. In particular, do there exist dense graphs with

large locally sparse regions (i.e. large induced subgraphs are perfect matchings)? We establish the

following somewhat surprising relationship between matching covers and Ruzsa-Szemerédi graphs:

for any ε > 0 the smallest possible size of an ε-matching cover is essentially equal to the largest

possible number of edges in an ε-Ruzsa-Szemerédi graph.

Constructing dense ε-Ruzsa-Szemerédi graphs for general ε and proving upper bounds on their

size appears to be a difficult problem [40]. To our knowledge, there are two known constructions

in the literature. The original construction due to Ruzsa and Szemerédi yields a collection of n/3

induced matchings of size n/2O(
√

logn) using Behrend’s construction of a large subset of {1, . . . , n}
without three-term arithmetic progressions [14, 87]. Constructions of a collection of nc/ log logn
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induced matchings of size n/3− o(n) were given in [29, 77]. We use the ideas of [29, 77] to construct

( 1
2 − δ)-Ruzsa-Szemerédi graphs with n1+Ωδ(1/ log logn) edges and a more general construction for

the vertex arrival case. To the best of our knowledge, the only known upper bound on the size of

ε-Ruzsa-Szemerédi graphs for constant ε < 1
2 is O(n2/ log∗ n) that follows from the bound used in

an elementary proof of Roth’s theorem [87].

One-round Communication: We show that in fact CC(ε, n) ≤ 2n−1 for all ε ≥ 1
3 , i.e. a message

of linear size suffices to get a 2
3 -approximation to the maximum matching in GA ∪GB . We establish

this result by constructing an O(n) size 1
2 -cover of the input graph that satisfies certain additional

properties which allows Bob to recover a 2
3 -approximation1. We refer to this particular 1

2 -cover as a

matching skelton of the input graph, and give a polynomial time algorithm for constructing it. Next,

building on the above-mentioned connection between matching covers and Ruzsa-Szemerédi graphs,

we show the following two results: (a) our construction of 1
2 -cover implies that for any δ > 0, there do

not exist ( 1
2 +δ)-Ruzsa-Szemerédi graph with more than O(n/δ) edges, and (b) our 2

3 -approximation

result is best possible when only linear amount of communication is allowed. In particular, Alice

needs to send n1+Ω(1/ log logn) bits to achieve a ( 2
3 + δ)-approximation, for any constant δ > 0, even

when randomization is allowed.

We then study the one round communication complexity CCv(ε, n) of (1− ε)-approximate max-

imum matching in the restricted model when the graphs GA and GB are only allowed to share

vertices on one side of the bipartition. This model is motivated by application to one-pass streaming

computations when the vertices of the graph arrive together with all incident edges. We obtain a

stronger approximation result in this model, namely, using the preceding 1
2 -cover construction we

show that CCv(ε, n) ≤ 2n − 1 for ε ≥ 1/4. Thus a 3
4 -approximation can be obtained with linear

communication complexity, and as before, we show that obtaining a better approximation requires

a communication complexity of n1+Ω(1/ log logn) bits.

One-pass Streaming: We build on our techniques for one-round communication to design a one-

pass streaming algorithm for the case when vertices on one side are known in advance, and the

vertices on the other side arrive in a streaming manner together with all their incident edges. This is

precisely the setting of the celebrated (1− 1
e )-competitive randomized algorithm of Karp-Vazirani-

Vazirani (KVV) for the online bipartite matching problem [56]. We give a deterministic one-pass

streaming algorithm that matches the (1 − 1
e )-approximation guarantee of KVV using only O(n)

space. Prior to our work, the only known deterministic algorithm for matching in one-pass streaming

model, even under the assumption that vertices arrive together with all their edges, is the trivial

algorithm that keeps a maximal matching, achieving a factor of 1
2 . We note that in the online setting,

randomization is crucial as no deterministic online algorithm can achieve a competitive ratio better

than 1
2 .

Related work: The streaming complexity of maximum bipartite matching has received signifi-

cant attention recently. Space-efficient algorithms for approximating maximum matchings to factor

(1 − ε) in a number of passes that only depends on 1/ε have been developed. The work of [68]

1We note here that a maximum matching in a graph is only a 2
3

-cover.
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gave the first space-efficient algorithm for finding matchings in general (non-bipartite) graphs that

required a number of passes dependent only on 1/ε, although the dependence was exponential. This

dependence was improved to polynomial in [26], where (1− ε)-approximation was obtain in O(1/ε8)

passes. In a recent work, [3] obtained a significant improvement, achieving (1− ε)-approximation in

O(log log(1/ε)/ε2) passes (their techniques also yield improvements for the weighted version of the

problem). Further improvements for the non-bipartite version of the problem have been obtained

in [4]. Despite the large body of work on the problem, the only known algorithm for one pass is

the trivial algorithm that keeps a maximal matching. No non-trivial lower bounds on the space

complexity of obtaining constant factor approximation to maximum bipartite matching in one pass

were known prior to our work (for exact computation, an Ω(n2) lower bound was shown in [28]).

Organization: We start by introducing relevant definitions in section 3.1. In section 3.2 we give the

construction of the matching skeleton, which we use later in section 3.3 to prove that CC(1/3, n) =

O(n), as well as show that the matching skeleton forms a 1/2-cover. In section 3.4 we deduce using

the matching skeleton that CCv(1/4, n) = O(n). In section 3.5 we use these techniques to obtain a

deterministic one-pass (1− 1/e) approximation to maximum matching in O(n) space in the vertex

arrival model. We extend the construction of Ruzsa-Szemerédi graphs from [29, 77] in section 3.6.

We use these extensions in section 3.7 to show that our upper bounds on CC(ε, n) and CCv(ε, n)

are best possible, as well as to prove lower bounds on the space complexity of one-pass algorithms

for approximating maximum bipartite matching. Finally, in section 3.8 we prove the correspondence

between the size of the smallest ε-matching cover of a graph on n nodes and the size of the largest

ε-Ruzsa-Szemerédi graph on n nodes.

3.1 Preliminaries

We start by defining bipartite matching covers, which are matchings-preserving graph sparsifiers.

Definition 22 Given an undirected bipartite graph G = (P,Q,E), and sets A ⊆ P,B ⊆ Q, and

H ⊆ E, let MH(A,B) denote the size of the largest matching in the graph G′ = (A,B, (A×B)∩H).

Given an undirected bipartite graph G = (P,Q,E) with |P | = |Q| = n, a set of edges H ⊆ E is

said to be an ε-matching-cover of G if for all A ⊆ P,B ⊆ Q, we have MH(A,B) ≥ME(A,B)− εn.

Definition 23 Define LC(ε, n) to be the smallest number m′ such that any undirected bipartite graph

G = (P,Q,E) with P = Q = n has an ε-matching-cover of size at most m′.

We next define induced matchings and Ruzsa-Szemerédi graphs.

Definition 24 Given an undirected bipartite graph G = (P,Q,E) and a set of edges F ⊆ E,

let P (F ) ⊆ P denote the set of vertices in P which are incident on at least one edge in F , and

analogously, let Q(F ) denote the set of vertices in Q which are incident on at least one edge in F .

Let E(F ), called the set of edges induced by F , denote the set of edges E ∩ (P (F ) × Q(F )). Note

that E(F ) may be much larger than F in general.
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Given an undirected bipartite graph G = (P,Q,E), a set of edges F ⊆ E is said to be an induced

matching if no two edges in F share an endpoint, and E(F ) = F . Given an undirected bipartite

graph G = (P,Q,E) and a partition F of E, the partition is said to be an induced partition of

G if every set F ∈ F is an induced matching. An undirected bipartite graph G = (P,Q,E) with

P = Q = n is said to have an ε-induced partition if there exists an induced partition of G such every

set in the partition is of size at least εn. Following [29], we refer to graphs that have an ε-induced

partition as ε-Ruzsa-Szemerédi graphs.

Definition 25 Let UI(ε, n) denote the largest number m such that there exists an undirected bipartite

graph G = (P,Q,E) with |E| = m, |P | = |Q| = n, and with an ε-induced partition.

Note that for any 0 < ε1 < ε2 < 1, any ε2-induced partition of a graph is also an ε1-induced

partition, and hence, UI(ε, n) is a non-increasing function of ε. Analogously, any ε1-matching-cover

is also an ε2-matching cover, and hence, LC(ε, n) is also a non-increasing function of ε.

3.2 Matching Skeletons

Let G = (P,Q,E) be a bipartite graph. We now define a subgraph G′ = (P,Q,E′) of G that contains

at most (|P | + |Q| − 1) edges, and encodes useful information about matchings in G. We refer to

this subgraph G′ as a matching skeleton of G, and this construction will serve as a building block

for our algorithms. Among other things, we will show later that G′ is a 1
2 -cover of G.

We present the construction of G′ in two steps. We first consider the case when P is hyper-

matchable, that is, for every vertex v ∈ Q there exists a perfect matching of the P side that does

not include v. We then extend the construction to the general case using the Edmonds-Gallai

decomposition [81].

3.2.1 P is hypermatchable in G

We note that since P is hypermatchable, by Hall’s theorem [81], we have that |Γ(A)| > |A| for all

A ⊆ P . For a parameter α ∈ (0, 1], let RG(α) = {A ⊆ P : |ΓG(A)| ≤ (1/α)|A|}. Note that as the

parameter α decreases, the expansion requirement in the definition above increases. We will omit

the subscript G when G is fixed, as in the next lemma.

Lemma 26 Let α ∈ (0, 1] be such that R(α+ε) = ∅ for any ε > 0, i.e. G supports an 1
α+ε -matching

of the P -side for any ε > 0. Then for any two A1 ∈ R(α), A2 ∈ R(α) one has A1 ∪A2 ∈ R(α).

Proof: Let B1 = Γ(A1) and B2 = Γ(A2). First, since (A1×(Q\B1))∩E = ∅ and (A2×(Q\B2))∩E =

∅, we have that (A1 ∩ A2) × (Q \ (B1 ∩ B2)) = ∅. Furthermore, since R(α + ε) = ∅, one has

|B1 ∩B2| ≥ (1/α)|A1 ∩A2|. Also, we have |Bi| ≤ |Ai|/α, i = 1, 2. Hence,

|B1 ∪B2| = |B1|+ |B2| − |B1 ∩B2| ≤ (1/α)(|A1|+ |A2| − |A1 ∩A2|) = (1/α)|A1 ∪A2|,

and thus (A1 ∪A2) ∈ R(α) as required.
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We now define a collection of sets (Sj , Tj), j = 1, . . . ,+∞, where Sj ⊆ P, Tj ⊆ Q,Si∩Sj = ∅, i 6=
j.

1. Set j := 1, G0 := G,α0 := 1. We have RG0(α0) = ∅.

2. Let β < αj−1 be the largest real such that RGj−1
(β) 6= ∅.

3. Let Sβ =
⋃
A∈R(β)A, and Tβ = Γ(Sβ). We have Sβ ∈ RRj−1

(β) by Lemma 26.

4. Let Gj := Gj−1 \ (Sβ ∪ Tβ). We refer to the value of α at which a pair (Sα, Tα) gets removed

from the graph as the expansion of the pair. Set Sj := Sβ , Tj := Tβ , αj := β. If Gj 6= ∅, let

j := j + 1 and go to (2).

The following lemma is an easy consequence of the above construction.

Lemma 27 1. For each U ⊆ Sj one has |ΓGj (U)| ≥ (1/αj)|U |.

2. For every k > 0,
((⋃

j≤k Sj

)
×
(
Q \

⋃
j≤k Tj

))
∩ E = ∅.

Proof: We prove (1) by contradiction. When j = 1, (1) follows immediately since we are

choosing the largest β such that R(β) 6= ∅. Otherwise suppose that there exists U ⊆ PGj such that

|ΓGj (U)| < (1/αj)|U |. Then first observe that |ΓGj (U)| > (1/αj−1)|U |. If not then

|ΓGj−1(Sj−1 ∪ U)| = |Tj−1|+ |ΓGj (U)| ≤ 1

αj−1
(|Sj−1|+ |U |) ≤

1

αj−1
(|Sj−1 ∪ U |),

since Sj−1∩PGj = ∅ by construction. Now as αj < αj−1 is chosen to be the largest real for which

there exists some subset U ′ ⊆ PGj with |ΓGj (U ′)| ≤ (1/αj)|U ′|, it follows that for every U ⊆ PGj ,

we must have |ΓGj (U)| ≥ (1/αj)|U |.
(2) follows by construction.

To complete the definition of the matching skeleton, we now identify the set of edges of G that

our algorithm keeps. For a parameter γ ≥ 1 and subsets S ⊆ P , T ⊆ Q we refer to a (fractional)

matching M that saturates each vertex in S exactly γ times (fractionally) and each vertex in T at

most once as a γ-matching of S in (S, T, (S×T )∩E). By Lemma 27 there exists a (fractional) (1/αj)-

matching of Sj in (Sj , Tj , (Sj × Tj) ∩E). Moreover, one can ensure that the matching is supported

on the edges of a forest by rerouting flow along cycles. Let Mj be a fractional (1/αj)-matching in

(Sj , Tj) that is a forest.

Interestingly, the fractional matching corresponding to the matching skeleton is identical to a

1-majorized fractional allocation of unit-sized jobs to (1 − ∞) machines [59, 37]; as a result, the

fractional matchings xe simultaneously minimize all convex functions of the xe’s subject to the

constraint that every node in P is matched exactly once.
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3.2.2 General bipartite graphs

We now extend the construction to general bipartite graphs using the Edmonds-Gallai decompo-

sition of G(P,Q,E), which essentially allows us to partition the vertices of G into sets AP (G),

DP (G), CP (G), AQ(G), DQ(G), and CQ(G) such that AP (G) is hypermatchable to DQ(G), AQ is

hypermatchable to DP (G), and there is a perfect matching between CP (G) and CQ(G).

The Edmonds-Gallai decomposition theorem is as follows.

Theorem 28 (Edmonds-Gallai decomposition, [81]) Let G = (V,E) be a graph. Then V can be

partitioned into the union of sets D(G), A(G), C(G) such that

D(G) = {v ∈ V |there exists a maximum matching missing v}

A(G) = Γ(D(G))

C(G) = V \ (D(G) ∪A(G)).

Moreover, every maximum matching contains a perfect matching inside C(G).

Applying Edmonds-Gallai decomposition to bipartite graphs, we get

Corollary 29 Let G = (P,Q,E) be a graph. Then V can be partitioned into the union of sets

DP (G), DQ(G), AP (G), AQ(G), CP (G), CQ(G) such that

DP (G) = {v ∈ P |there exists a maximum matching missing v}

DQ(G) = {v ∈ Q|there exists a maximum matching missing v}

AP (G) = Γ(DQ(G))

AQ(G) = Γ(DP (G))

CP (G) = P \ (DP (G) ∪AP (G))

CQ(G) = Q \ (DQ(G) ∪AQ(G)).

Moreover,

1. there exists a perfect matching between CP (G) and CQ(G)

2. for every U ⊆ AP (G) one has |Γ(U) ∩DQ(G)| > |U |

3. for every U ⊆ AQ(G) one has |Γ(U) ∩DP (G)| > |U |.

Proof: (1) is part of the statement of Theorem 28. To show (2), note that by definition of DQ(G) for

each vertex v ∈ DQ(G) there exists a maximum matching that misses v. Thus, |Γ(U)∩DQ(G)| > |U |
for every set U .

Using the above partition, we can now define a matching skeleton of G using the above partition.

Let S0 = CP (G), T0 = CQ(G), and let M0 be a perfect matching between S0 and T0. Let (S1, T1), . . .,

(Sj , Tj) be the expanding pairs obtained by the construction in the previous section on the graph

induced by AP (G)∪DQ(G). Let (S−j , T−j), . . ., (S−1, T−1) be the expanding pairs obtained by the

construction in the previous section from the Q side on the graph induced by AQ(G) ∪DP (G).
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Definition 30 For a bipartite graph G = (P,Q,E) we define the matching skeleton G′ of G as the

union of pairs (Sj , Tj), j = −∞, . . . ,+∞, with corresponding (fractional) matchings Mj. Note that

G′ contains at most |P |+ |Q| − 1 edges.

As before, we can show the following:

Lemma 31 1. For each U ⊆ Sj, one has |Tj ∩ ΓG′(U)| ≥ (1/αj)|U |.

2. For every k > 0,
((
P \

⋃
j≥k Sj

)
×
(⋃

j≥k Tj

))
∩E = ∅, and

((
Q \

⋃
j≤−k Sj

)
×
(⋃

j≤−k Tj

))
∩

E = ∅.

Proof: Follows by construction of G′.

We note that the formulation of property (2) in Lemma 31 is slightly different from property (2) in

Lemma 27. However, one can see that these formulations are equivalent when there are no (Sj , Tj)

pairs for negative j, as is the case in Lemma 27.

3.3 O(n) communication protocol for CC(1
3 , n)

In this section, we prove that for any two bipartite graphs G1, G2, the maximum matching in the

graph G′1 ∪ G2 is at least 2/3 of the maximum matching in G1 ∪ G2, where G′1 is the matching

skeleton of G1. Thus, CC(ε, n) = O(n) for all ε ≥ 1/3; Alice sends the matching skeleton G′A of her

graph, and Bob computes a maximum matching in the graph G′A ∪GB .

Before proceeding, we establish some notation used for the next several sections. Denote by

(Sj , Tj), j = −∞, . . . ,+∞ the set of pairs from the definition of G′. Recall that Sj ⊆ P when j ≥ 0

and Sj ⊆ Q when j < 0. Also, given a maximum matching M in a bipartite graph G = (P,Q,E), a

saturating cut corresponding to M is a pair of disjoint sets (A1 ∪B1, A2 ∪B2) such that A1 ∪A2 =

P,B1 ∪B2 = Q, all vertices in A2 ∪B1 are matched by M , there are no matching edges between A2

and B1, and no edges at all between A1 and B2. The existence of a saturating cut follows from the

max-flow min-cut theorem. Let ALG denote the size of the maximum matching in G′1 ∪G2 and let

OPT denote the size of the maximum matching in G1 ∪G2.

Consider a maximum matching M in (G′1∪G2) and a corresponding saturating cut (A1∪B1, A2∪
B2); note that ALG = |B1|+ |A2|. Let M∗ be a maximum matching in E1 ∩ (A1 ×B2). Note that

we have OPT ≤ |B1|+ |A2|+ |M∗|.
We start by describing the intuition behind the proof. Suppose for simplicity that the matching

skeleton G′1 of G1 consists of only one (Sj , Tj) pair for some j ≥ 0, such that |Tj | = (1/αj)|Sj |.
We first note that since the matching M∗ is not part of the matching skeleton, it must be that

edges of M∗ go from Sj to Tj . We will abuse notation slightly by writing M∗ ∩ X to denote, for

X ⊆ P ∪Q, the subset of nodes of X that are matched by M∗. Since all edges of M∗ go from Sj to

Tj , we have M∗ ∩A1 ⊆ Sj ∩A1 and M∗ ∩B2 ⊆ Tj ∩B2. This allows us to obtain a lower bound on

|B1| and |A2| in terms of |M∗| if we lower bound |B1| and |A2| in terms of |Sj ∩ A1| and |Tj ∩ B2|
respectively. First, we have that |B1| ≥ |ΓG′1(Sj ∩ A1)| ≥ (1/αj)|Sj ∩ A1| ≥ (1/αj)|M∗|, where we

used the fact that the saturating cut is empty in G′1 ∪ G2 and Lemma 31 . Next, we prove that
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|ΓG′1(Sj ∩A2) ∩B2| ≤ (1/αj)|Sj ∩A2| (this is proved in Lemma 33 below). This, together with the

fact that M∗ ∩ B2 ⊆ Tj ∩ B2 = ΓG′1(Sj ∩ A2) ∩ B2, implies that |A2| ≥ αj |M∗|. Thus, we always

have |A2| + |B1| ≥ (αj + 1/αj)|M∗|, and hence the worst case happens at αj = 1, i.e. when the

matching skeleton G′1 of G1 consists of only the (S0, T0) pair, yielding a 2/3 approximation. The

proof sketch that we just gave applies when the matching skeleton only contains one pair (Sj , Tj).

In the general case, we use Lemma 31 to control the distribution of M∗ among different (Sj , Tj)

pairs. More precisely, we use the fact that edges of M∗ may go from Sj ∩ A1 to Ti ∩ B2 only if

i ≤ j. Another aspect that adds complications to the formal proof is the presence of (Sj , Tj) pairs

for negative j.

We will use the notation

Zj ⊆

{
Sj ∩A1, j > 0

Sj ∩B2, j < 0.
and Wj ⊆

{
Tj ∩B2, j > 0

Tj ∩A1, j < 0

for the vertices in P and Q that are matched by M∗ (see Fig. 3.3). Further, let Z∗ denote the set

of vertices in S0 ∩ A1 that are matched by M∗ to B2 ∩ T0, and let W ∗ = M∗(Z∗) ⊆ B2 ∩ T0. Let

W 1
0 ⊆ S0 ∩ A1 denote the vertices in S0 ∩ A1 that are matched by M∗ outside of T0. Similarly, let

W 2
0 ⊆ T0 ∩ B2 denote the vertices in T0 ∩ B2 that are matched by M∗ outside of S0 (see Fig. 3.3).

Let

B′1 := B1 ∩

ΓG′1(Z∗) ∪ ΓG′1(W 1
0 ) ∪

⋃
j>0

(
ΓG′1(Zj) ∪ S−j

)
A′2 := A2 ∩

ΓG′1(W ∗) ∪ ΓG′1(W 2
0 ) ∪

⋃
j<0

(
ΓG′1(Zj) ∪ S−j

) .

Then since

OPT ≤ |B′1|+ |A′2|+ |M∗|+ (|B1 \B′1|+ |A2 \A′2|)

ALG = |B′1|+ |A′2|+ (|B1 \B′1|+ |A2 \A′2|),

it is sufficient to prove that (|B′1|+ |A′2|) ≥ (2/3)(|B′1|+ |A′2|+ |M∗|). Let OPT ′ = |B′1|+ |A′2|+ |M∗|
and ALG′ = |B′1|+ |A′2|. Define ∆′ = (OPT ′ −ALG′)/OPT ′.

We will now define variables to represent the sizes of the sets used in defining B′1, A′2:

w1
0 = |W 1

0 |, w2
0 = |W 2

0 |, z∗ = |Z∗|, w∗ = |W ∗|, (Note that z∗ = w∗)

zj = |Zj |, wj = |Wj |, rj = |ΓG′1(Zj)|, sj =

{
|Sj ∩A2| j > 0

|Sj ∩B1| j < 0
.

Lemma 32 expresses the size of B′1 and A′2 in terms of the new variables defined above.
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Lemma 32 ALG′ =
∑
j 6=0(sj + rj) + (z∗ + w1

0) + (w∗ + w2
0), and OPT ′ ≤ z∗ + (z∗ + w1

0) + (w∗ +

w2
0) +

∑
j 6=0(sj + zj + rj).

. Proof: The main idea is that most of the sets in the definitions of B′1 and A′2 are disjoint,

allowing us to represent sizes of unions of these sets by sums of sizes of individual sets.

For ALG′, recall that ΓG′1(Sj) = Tj and hence, the sets ΓG′1(Sj) are all disjoint. Further, the sets

Sj are all disjoint, by construction, and disjoint with all the Tj ’s. Thus, |A′1|+ |B′2| = |ΓG′1(W ∗) ∪
ΓG′1(W 2

0 )|+|ΓG′1(Z∗)∪ΓG′1(W 1
0 )|+

∑
j 6=0(sj+rj). The setsW ∗ andW 2

0 are disjoint. Further, they are

subsets of T0 (corresponding to α = 1), and hence nodes in these sets have a single unique neighbor

in G′1; consequently |ΓG′1(W ∗) ∪ ΓG′1(W 2
0 )| = w∗ + w2

0. Similarly, |ΓG′1(Z∗) ∪ ΓG′1(W 1
0 )| = z∗ + w1

0.

This completes the proof of the lemma for ALG′.

We have OPT ′ = ALG′ + |M∗|. Consider any edge (u, v) ∈ M∗. This edge is not in G′1 and

hence must go from an Sj to a Tj′ where 0 ≤ j′ ≤ j or 0 ≥ j′ ≥ j. The number of edges in M∗ that

go from S0 to T0 is precisely z∗ by definition; the number of remaining edges is precisely
∑
j 6=0 zj .
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We now derive linear constraints on the size variables, leading to a simple linear program. We

have by Lemma 31 that for all k > 0P \ ⋃
j≥k

Zj

×
⋃
j≥k

Wj

 ∩ E1 = ∅, and

Q \ ⋃
j≤−k

Zj

×
 ⋃
j≤−k

Wj

 ∩ E1 = ∅.

(3.1)

The existence of M∗ together with (3.1)yields

+∞∑
j=k

zj ≥
+∞∑
j=k

wj ,∀k > 0, and

−k∑
j=−∞

zj ≥
−k∑

j=−∞
wj ,∀k > 0. (3.2)

Furthermore, we have by definition of W 1
0 together with (3.1)that

w1
0 ≤

∑
j<0

zj −
∑
j<0

wj and w2
0 ≤

∑
j>0

zj −
∑
j>0

wj . (3.3)

Also, we have ∑
j<0

zj = w1
0 +

∑
j<0

wj and
∑
j>0

zj = w2
0 +

∑
j>0

wj . (3.4)

Next, by Lemma 31, we have rj ≥ (1/αj)zj . We also need

Lemma 33 (1) |ΓG′1(Sj ∩A2)∩B2| ≤ (1/αj)|Sj ∩A2| for all j > 0, and (2) |ΓG′1(Sj ∩B1)∩A1| ≤
(1/αj)|Sj ∩B1| for all j < 0.

Proof: We prove (1). The proof of (2) is analogous. Suppose that |ΓG′1(Sj∩A2)∩B2| > (1/αj)|Sj∩
A2|. Then using the assumption that (A1 ×B2) ∩ E′ = ∅, we get

|Tj | = |Tj ∩B2|+ |Tj ∩B1| ≥ |ΓG′1(Sj ∩A2) ∩B2|+ |ΓG′1(Sj ∩A1)|

> (1/αj)|Sj ∩A2|+ (1/αj)|Sj ∩A1| > (1/αj)|Sj |,

a contradiction to the definition of the matching skeleton.

We will now bound ∆′ = (OPT ′ −ALG′)/OPT ′ using a sequence of linear programs, described

in figures 3.3-3.4(b). We will overload notation to use P ∗1 , P
∗
2 , P

∗
3 , respectively, to refer to these

linear programs as well as their optimum objective function value. By Lemma 33 one has for all

j 6= 0 that (1/αj)sj ≥ wj . We combine this with equations 3.2, 3.3, and 3.4 to obtain the first of our

linear programs, P ∗1 , in figure 3.3. Bounding ∆′ is equivalent to bounding this LP (i.e. ∆′ ≤ P ∗1 ).

Note that we have implicitly rescaled the variables so that OPT ′ ≤ 1.

We now symmetrize the LP P ∗1 by collecting the variables for cases when j is positive, negative,

and 0 to obtain LP P ∗2 in figure 3.4(a). Finally, we relax LP P ∗2 by combining the second and third

constraints, and then establish that the remaining constraints are all tight. This gives us the LP P ∗3
in figure 3.4(b). Details of the construction are embedded in the proof of the following lemma.
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P ∗1 = maximize z∗ +
∑
j 6=0

zj s.t.

z∗ + (z∗ + w1
0) + (w∗ + w2

0) +
∑
j 6=0

sj + zj + rj ≤ 1

∀k > 0,

+∞∑
j=k

zj ≥
+∞∑
j=k

wj ,

∀k > 0,

−k∑
j=−∞

zj ≥
−k∑

j=−∞
wj

∀j 6= 0, (1/αj)sj ≥ wj
∀j 6= 0, rj ≥ (1/αj)zj∑

j<0

zj = w1
0 +

∑
j<0

wj∑
j>0

zj = w2
0 +

∑
j>0

wj

z∗ = w∗

s, z, w, r, z∗, w∗, w1
0, w

2
0 ≥ 0

Figure 3.3: The linear programs for lower bounding ALG/OPT (P ∗1 ).

P ∗2 = maximize

+∞∑
j=0

zj s.t.

+∞∑
j=0

sj + zj + rj ≤ 1

∀k ≥ 0,

k∑
j=0

wj ≥
k∑
j=0

zj

(1/αj)sj ≥ wj , j ≥ 0

rj ≥ (1/αj)zj , j ≥ 0

x, z, w, r ≥ 0

P ∗3 = maximize

∞∑
j=0

zj s.t.

∑
j

(αj + 1 + 1/αj)zj ≤ 1

z ≥ 0

Figure 3.4: The linear programs for lower bounding ALG/OPT (P ∗2 and P ∗3 ).

Lemma 34 P ∗1 ≤ P ∗2 ≤ P ∗3 .

Proof:
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From P ∗1 to P ∗2

We will show that the optimum of the LP P ∗2 in figure 3.4(a) is an upper bound for the optimum

of P ∗1 in figure 3.3. First increase the set {αj}∞j=−∞ to ensure that αj = α−j(this can only improve

the objective function). Now, we define

s′j = sj + s−j , j > 0

r′j = rj + r−j , j > 0

z′j = zj + z−j , j > 0

w′j = wj + w−j , j > 0

w′0 = w∗ + w1
0 + w2

0

s′0 = w∗ + w1
0 + w2

0

z′0 = z∗

r′0 = z∗.

(3.5)

We will show that if s, r, z, w, z∗, w∗, w1
0, w

2
0 are feasible for P ∗1 , then s′, r′, z′, w′ are feasible for

P ∗2 with the same objective function value.

First, the objective function is exactly the same by inspection. Constraints 3 and 4 of P ∗2 for

j > 0 are linear in the respective variables and are hence satisfied. Furthermore, one has

(1/α0)s′0 = w∗ + w1
0 + w2

0 = w′0

and

r′0 = z∗ = z′0.

Hence, constraints 3 and 4 are satisfied for all j ≥ 0.

To verify that constraint 1 is satisfied, we calculate

+∞∑
j=0

s′j + z′j + r′j = s′0 + z′0 + r′0 +

+∞∑
j=1

(s′j + z′j + r′j)

= (w∗ + w1
0 + w2

0) + z∗ + z∗ +
∑
j 6=0

(sj + zj + rj)

= z∗ + (z∗ + w1
0) + (z∗ + w2

0) +
∑
j 6=0

(sj + zj + rj) ≤ 1.

We now verify that constraint 2 of P ∗2 is satisfied. First, for k = 0 one has

w′0 = w∗ + w1
0 + w2

0 ≥ w∗ = z∗ = z′0.
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Next, note that by adding constraints 2,3 of P ∗1 we get∑
|j|≥k

zj ≥
∑
|j|≥k

wj (3.6)

for all k > 0. Adding constraints 6 and 7 of P ∗1 , we get∑
j 6=0

zj = w1
0 + w2

0 +
∑
j 6=0

wj . (3.7)

Subtracting (3.7) from (3.6), we get

k∑
|j|=1

zj ≤ w1
0 + w2

0 +

k∑
|j|=1

wj . (3.8)

Adding z∗ to both sides and using the fact that z′0 = z∗ and w′0 = z∗ + w1
0 + w2

0, we get

k∑
j=0

zj ≤
k∑
j=0

wj . (3.9)

This completes the proof of the first half of lemma 34.

From P ∗2 to P ∗3

We now bound P ∗2 . First we relax the constraints by adding constraint 3 of over j from 0 to k and

adding to constraint 2:

maximize

∞∑
j=0

zj

s.t.
∞∑
j=0

sj + zj + rj ≤ 1

k∑
j=0

(1/αj)sj ≥
k∑
j=0

zj ,∀k ≥ 0

rj ≥ (1/αj)zj ,∀j ≥ 0

x, z, w, r ≥ 0

(3.10)

Note that the first constraint is necessarily tight at the optimum. Otherwise scaling all variables

to make the constraint tight increases the objective function. We now show that all of the constraints

in the second line of (3.10) are necessarily tight at the optimum. Indeed, let k∗ ≥ 0 be the smallest
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such that
∑k∗

j=0(1/αj)sj >
∑k∗

j=0 zj . Note that one necessarily has sk∗ > 0. Let

s′ = s− δek∗ + (αk∗+1/αk∗)δek∗+1

r′ = r, z′ = z,

where ej denotes the vector of all zeros with 1 in position j. Then

k∑
j=0

(1/αj)s
′
j ≥

k∑
j=0

z′j

for all k and
∞∑
j=0

(s′j + z′j + r′j) = 1− δ(1− αk∗+1/αk∗).

So for sufficiently small positive δ > 0 one has that

s′′ = s′/(1− δ(1− αk∗+1/αk∗))

r′′ = r′/(1− δ(1− αk∗+1/αk∗))

z′′ = z′/(1− δ(1− αk∗+1/αk∗))

form a feasible solution with a better objective function value.

Thus, one has
∑k
j=0(1/αj)sj =

∑k
j=0 zj for all k ≥ 0 and hence (1/αj)sj = zj for all j.

Additionally, one necessarily has rj = (1/αj)zj for all j at optimum. Indeed, otherwise decreasing

rj does not violate any constraint and makes constraint 1 slack. Then rescaling variables to restore

tightness of constraint 1 improves the objective function. Thus, we need to solve

P ∗3 = maximize

∞∑
j=0

zj

s.t.∑
j

(αj + 1 + 1/αj)zj ≤ 1

z ≥ 0

(3.11)

But P ∗3 is easy to analyze: there exists an optimum solution that sets all zj to zero except for a j

that minimizes (αj +1+1/αj). For all non-negative x, f(x) = 1+x+1/x is minimized when x = 1,

and f(1) = 3. This gives P ∗3 ≤ 1/3, and hence ∆′ ≤ 1/3, or ALG′ ≥ (2/3)OPT ′. Thus, we have

proved

Theorem 35 For any bipartite graph G1 = (P,Q,E1) there exists a subforest G′1 of G such that

for any graph G2 = (P,Q,E2) the maximum matching in G′1 ∪ G2 is a 2/3-approximation of the

maximum matching in G1 ∪G2; further, it suffices to choose G′1 to be the matching skeleton of G1.
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Corollary 36 CC( 1
3 , n) = O(n).

Theorem 35 also implies that the matching skelton gives a linear size 1/2-cover of G.

Corollary 37 For any bipartite graph G = (P,Q,E), the matching skeleton G′ is a 1
2 -cover of G.

Proof: We need to show that for any A ⊆ P,B ⊆ Q, |A|, |B| > n/2 such that there exists a perfect

matching between A and B in G one has E′ ∩ (A×B) 6= ∅. Let G2 = (P ∪P ′, Q∪Q′,MP ∪MQ) be

a graph that consists of a perfect matching from a new set of vertices P ′ to Q \ B and a matching

from a new set of vertices Q′ to P \A. Then the maximum matching in G ∪G2 is of size (3/2)n.

By the max-flow min-cut theorem, the size of the matching in G′∪G2 is no larger than |P \A|+|Q\
B|+ |E′∩(A×B)|. By Theorem 35 the approximation ratio is at least 2/3, and |P \A|+ |Q\B| < n,

so it must be that |E′ ∩ (A×B)| > 0.

3.4 O(n) communication protocol for CCv(
1
4 , n)

In this section we prove that CCv(ε, n) = O(n) for all ε < 1/4. In particular, we show that given

a bipartite graph G1 = (P1, Q,E1), there exists a forest F ⊆ E1 such that for any G2 = (P2, Q,E)

that may share nodes on the Q side with G1 but not on the P side, the maximum matching in

G′1 ∪ G2 is a 3/4-approximation of the maximum matching in G1 ∪ G2. The broad outline of the

proof is similar to the previous section, but we can now assume a special optimal matching using

the assumption that G2 may only share nodes with G1 on the Q side.

We first prove

Lemma 38 Let G = (P,Q,E) be a bipartite graph and let S ⊆ P be such that |Γ(U)| ≥ |U | for all

U ⊆ S. Then there exists a maximum matching in G that matches all vertices of S.

Proof: Let M be a maximum matching in G1∪G2 that leaves a nonempty set U ⊆ S of vertices

exposed. Let U be the largest subset of S exposed by M . We will show how to obtain a different

maximum matching M ′ that leaves one fewer nodes exposed. Orient edges of the matching M

from Q to P and orient all other edges from P to Q. Denote the set of all nodes reachable from

U by Γ∗(U). Suppose that no node outside S is reachable in this directed graph. Then we have

|Γ∗(U) ∩Q| = |Γ∗(U) ∩ P | − |U |, a contradiction since

1. Γ∗(U) ∩ P ⊆ S by assumption;

2. Γ∗(U) ∩Q = Γ(Γ∗(U) ∩ P ).

Thus, there exists an (even length) path in this directed graph from U to P \ S. Swapping

edges in and out of M along this path decreases the number of unmatched nodes in S by one while

preserving the size of the matching. Repeating the argument, we obtain a maximum matching in

G1 ∪G2 that matches all of S.

We also need
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Lemma 39 Let G1 = (P1, Q,E), G2 = (P2, Q,E) and let G′1 be the matching skeleton of G1. Let

(A1 ∪B1, A2 ∪B2) be a saturating cut corresponding to a maximum matching in G′1 ∪G2. Then,

1. for all j < 0 one has Sj ∩B2 = ∅;

2. for all j ≥ 0 one has |ΓB1
(Sj ∩A1)| ≥ (1/αj)|Sj ∩A1|

3. for all edges e = (u, v) ∈ (A1 × B2) ∩ E1 one has u ∈ Sj for some j ≥ 0 and v ∈ Ti for some

i, 0 ≤ i ≤ j.

Proof: We start by showing part (1) of the lemma. By the choice of the cut (A1 ∪B1, A2 ∪B2) all

of A2 can be matched to Q\B1 in G′1∪G2. Let T ∗ = ΓG′1(Sj ∩B2). One has |T ∗| ≥ (1/αj)|Sj ∩B2|.
Hence, since vertices only arrive on the P side, one has |ΓG′1∪G2

(T ∗) \ B1| ≤ αj |T ∗| < |T ∗|, which

contradicts the choice of the cut (A1 ∪B1, A2 ∪B2).

Part (2) follows directly by Lemma 31 together with the assumption that (A1 × B2) ∩ E = ∅.
Now (3) follows from (1) together with the fact that edges e ∈ E1 \ E′1 that have one endpoint in

Ti, i ≥ 0 can only go to Sj for some j ≥ 0 by construction of G′1.

We now prove the main theorem of this section:

Theorem 40 Let G1 = (P1, Q,E1), G2 = (P2, Q,E2) be bipartite graphs that share the vertex set

on one side. Let G′1 be the matching skeleton of G1. Then the maximum matching in G′1 ∪G2 is a

3/4-approximation of the maximum matching in G1 ∪G2.

Proof: Let (Sj , Tj), j = −∞, . . . ,+∞ be the pairs from the definition of G′. Consider a saturating

cut (A1∪B1, A2∪B2) in G′1∪G2. Recall that A1, A2 ⊆ P1∪P2, B1, B2 ⊆ Q, (A1×B2)∩(E′1∪E2) = ∅,
ALG = |B1|+ |A2|.

Let S :=
⋃
j≥0 Sj . Choose a maximum matching M in G1 ∪ G2 such that M matches all of S,

as guaranteed by Lemma 38. Define

Kj = {v ∈ ΓG′1(Sj) ∩B2 : M(v) 6∈ S}

K∗j = {v ∈ ΓG′1(Sj) ∩B1 : M(v) 6∈ S}

By Lemma 39 there are no edges in G1 from Tj , j < 0 to B2. This implies that

((A1 \ S)×B2) ∩ (E1 ∪ E2) = ∅. (3.12)

This allows us to obtain the following bound on the size of the matching M , which we denote by

OPT . It follows from 3.12 that a matching edge that has an endpoint in A1 \ S necessarily has the

other endpoint either in K∗j for some j or in B1 \ ΓG′1(S). Hence, we have

OPT ≤|S|+
∑
j≥0

(|Kj |+ |K∗j |) + (|B1 \ ΓG′1(S)|+ |A2 \ (S ∪
⋃
j≥0

M(Kj))|). (3.13)

Indeed, if an edge ε ∈ M has an endpoint in S, it is counted by the first term. Otherwise if e has

an endpoint in ΓG′1(Sj) ∩ B2 for some j, it is counted in Kj ; if e has an endpoint in ΓG′1(Sj) ∩ B1
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for some j, it is counted in K∗j . Finally, if e satisfies none of the above conditions, it must have one

endpoint in either B1 \ ΓG′1(S) or A2 \ (S ∪
⋃
j≥0M(Kj)) by 3.12. Note that an edge e ∈ M may

satisfy more than one of these conditions, and hence we are only getting an upper bound on OPT .

By definition of the cut (A1 ∪B1, A2 ∪B2) we also have

ALG =|B1|+ |A2| = |S ∩A2|+
∑
j≥0

|M(Kj)|+ |ΓG′1(S) ∩B1|

+ (|B1 \ ΓG′1(S)|+ |A2 \ (S ∪
⋃
j≥0

M(Kj))|),
(3.14)

where we use the fact that M(Kj) ⊆ A2 \ S by definition of Kj together with 3.12. Thus, since

|M(Kj)| = |Kj |, it is sufficient to show that

|S ∩A2|+
∑
j≥0

|Kj |+ |ΓG′1(S) ∩B1| ≥ (3/4)(|S|+
∑
j≥0

|Kj |+ |K∗j |)

Let

ALG′ = |S ∩A2|+
∑
j≥0

|Kj |+ |ΓG′1(S) ∩B1|

OPT ′ = |S|+
∑
j≥0

|Kj |+ |K∗j |.

Let xj := |Sj |, zj = |Sj ∩A1|, wj := |ΓG′1(Sj ∩A1)|, r∗j := |K∗j |, rj := |Kj |.
We will derive relations between these variables using the properties of the matching skeleton.

By construction of G′1 we have

(Si × Tj) ∩ E1 = ∅,∀i < j. (3.15)

Define canonical cuts (Uk,Wk) as

Uk =

k⋃
j=0

Sj ⊆ P1,Wk =

k⋃
j=0

Tj ⊆ Q. (3.16)

By (3.15) we have that (Uk × (Q \Wk)) ∩ (E1 ∪ E2) = ∅.
Since M matches all of S, we have using the fact that canonical cuts are empty that for each

k ≥ 0

|Uk| ≤ |Wk| −
k∑
j=0

(|Kj |+ |K∗j |).

Since |Tj | = αj |Sj | by definition of G′1 and since Tj are disjoint, this can be equivalently stated in

terms of the new variables as

k∑
j=0

((1/αj)xj − rj − r∗j ) ≥
k∑
j=0

xj ,∀k ≥ 0. (3.17)
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Thus, in terms of the new variables we have

OPT ′ =

∞∑
j=0

xj +

∞∑
j=0

rj +

∞∑
j=0

r∗j . (3.18)

Similarly,

ALG′ =

∞∑
j=0

(xj − zj) +

∞∑
j=0

wj +

∞∑
j=0

rj (3.19)

By Lemma 39, (3), we have |ΓB1
(Sj ∩A1)| = wj ≥ (1/αj)zj .

Thus, putting (3.18), (3.19), (3.17) together, we have that it is sufficient to lower bound the

solution of 3.20, obtaining a lower bound of P ∗1 on the ratio ALG′/OPT ′, and hence on ALG/OPT .

P ∗1 = minimize

∞∑
j=0

(xj − zj) + wj + rj

s.t.
∞∑
j=0

(xj + rj + r∗j ) ≥ 1

k∑
j=0

((1/αj)xj − rj − r∗j ) ≥
k∑
j=0

xj ,∀k

r∗j ≤ wj
wj ≥ (1/αj)zj

x, z, w, r, r∗ ≥ 0

(3.20)

We now transform 3.20 in two steps to obtain bounds P ∗3 ≤ P ∗2 ≤ P ∗1 , and then show that

P ∗3 ≥ 3/4.

First note that at the optimum one has r ≡ 0 since decreasing r and scaling all variables

appropriately does not violate any constraints and only improves the solution. Next, we show that

at the optimum, the third constraint is necessarily tight for all k. Otherwise let k be such that the

constraint is not tight and let k∗ be the smallest such that k∗ > k and rk∗ > 0.

Let

x′ = x

r∗′ = r∗ + δek − δek∗

w′ = w + δek − δek∗

z′ = z + αkek − αk∗ek∗ .

Note that x′, r∗′, w′, z′ form a feasible solution if δ > 0 is sufficiently small. Finally,
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∞∑
j=0

(x′j − z′j) + w′j =

 ∞∑
j=0

(xj − zj) + wj

+ δ(−αk + αk∗) <

∞∑
j=0

(xj − zj) + wj .

Also, for fixed r∗, x one can maximize zj pointwise, so r∗j = (1/αj)zj for all j.

Thus, we have P ∗2 ≤ P ∗1 , where

P ∗2 = minimize 1−
∞∑
j=0

zj

s.t.
∞∑
j=0

(xj + (1/αj)zj) = 1

k∑
j=0

(1/αj − 1)xj ≥
k∑
j=0

(1/αj)zj ,∀k

x, z ≥ 0

(3.21)

Finally, we show that constraints in line 2 are necessarily tight at the optimum. Otherwise let

k∗ be the smallest such that constraint 2 is slack. Note that we necessarily have xk∗ > 0. Let

x′ = x− δek∗ + δek∗+1
1/αk∗ − 1

1/αk∗+1 − 1
,

which is feasible for sufficiently small δ > 0 and makes constraint 2 satisfied for all k. Let

γ =

∞∑
j=0

(xj + αjzj) = 1− δ
(

1− 1/αk∗ − 1

1/αk∗+1 − 1

)
= 1− δ 1/αk∗+1 − 1/αk∗

1/αk∗+1 − 1
< 1.

Now x′′ = x′/γ, z′′ = z/γ are feasible solutions that improve the objective function.

Thus, we have xj = zj/(1 − αj) for all j > 0 (note that x0 = 0 at the optimum for the same

reason as r ≡ 0). Thus, we get P ∗3 ≤ P ∗2 , where

P ∗3 = minimize 1−
∞∑
j=1

zj

s.t.
∞∑
j=1

(1/(1− αj) + 1/αj)zj = 1

z ≥ 0

(3.22)

In order to lower bound P ∗3 , it is sufficient to minimize f(α) = 1/(1−α)+1/α over all α ∈ (0, 1].
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One has f ′(α) = 1/(1 − α)2 − 1/α2, f ′(1/2) = 0 and f ′′(α) = 2/(1 − α)3 + 2/(1 − α)3 > 0. Hence,

the unique minimum is attained at α = 1/2.

Thus, we have zj = 1/4 for αj = 1/2 and zero otherwise. The objective value is 3/4, proving

that 3/4 ≤ P ∗3 ≤ P ∗2 ≤ P ∗1 , and hence ALG/OPT ≥ 3/4.

3.5 One-pass streaming with vertex arrivals

Let Gi = (Pi, Q,Ei) be a sequence of bipartite graphs, where Pi ∩ Pj = ∅ for i 6= j. For a graph

G, we denote by SPARSIFY∗(G) the matching skeleton of G modified as follows: for each pair

(Sj , Tj), j < 0 keep an arbitrary matching of Sj to a subset of Tj , discarding all other edges, and

collect all these matchings into the (S0, T0) pair. Note that we have Sj ⊆ P , where P is the side of

the graph that arrives in the stream. We have

Lemma 41 Let G = (P,Q,E) be a bipartite graph. Let G′ = SPARSIFY ∗(G). Let (Sj , Tj), j =

0, . . . ,+∞ denote the set of expanding pairs. Then E ∩ (Si × Tj) = ∅ for all i < j.

Let

G′1 = SPARSIFY∗(G1), and G′i = SPARSIFY∗(G′i−1 ∪Gi). (3.23)

We will show that for each τ > 0 the maximum matching in G′τ is at least a 1−1/e fraction of the

maximum matching in
⋃τ
i=1Gi. We will slightly abuse notation by denoting the set of expanding

pairs in G′τ by (Sα(τ), Tα(τ)). Recall that we have α ∈ (0, 1], and |Sα(τ)| = α|Tα(τ)|. We need the

following

Definition 42 For a vertex u ∈ P define its level after time τ , denoted by αu(τ), as the value of α

such that u ∈ Sα(τ). Similarly, for a vertex v ∈ Q define its level after time τ , denoted by αv(τ),

as the value of α such that u ∈ Tα(τ). Note that for a vertex u is at level α = αu(τ) the expansion

of the pair (Sα(τ), Tα(τ)) that it belongs to is 1/α.

Before describing the formal proof, we give an outline of the main ideas. In our analysis, we track

the structure of the matching skeleton maintained by the algorithm over time. For the purposes of

our analysis, at each time τ , every vertex is characterized by two numbers: its initial level β when

it first appeared in the stream and its current level α at time τ (we denote the set of such vertices

at time τ by Sα,β(τ)). Informally, we first deduce that the matching edges that our algorithm

misses may only connect a vertex in Sα,β(τ) to a vertex in Tβ′(τ) for β′ ≥ β, and hence we are

interested in the distribution of vertices among the sets Sα,β(τ). We show that vertices that initially

appeared at lower levels and then migrated to higher levels are essentially the most detrimental to

the approximation ratio. However, we prove that for every λ ∈ (0, 1], which can be thought of as a

‘barrier’, the number of vertices that initially appeared at level β < λ but migrated to a level α ≥ λ
can never be larger than λ

∣∣∣⋃γ∈[λ,1] Tγ(τ)
∣∣∣ at any time τ . This leads to a linear program whose

optimum lower bounds the approximation ratio, and yields the (1− 1/e) approximation guarantee.
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Lemma 43 For all u ∈ P and for all τ , αu(τ+1) ≥ αu(τ). Similarly for v ∈ Q, αv(τ+1) ≥ αv(τ).

Proof: We prove the statement by contradiction. Let τ be the smallest such that ∃α ∈ (0, 1] such

that R := {u ∈ P : u ∈ Sα(τ), αu(τ + 1) < αu(τ)} 6= ∅. Let α∗ = minu∈R αu(τ + 1) (we have α∗ < α

by assumption). Let R∗ = R ∩ Sα∗(τ + 1). Note that R∗ ⊆ Sα(τ). We have

|ΓG′τ (R∗)| ≥ |ΓG′τ+1
(R∗)| ≥ (1/α∗)|R∗| > (1/α)|R∗|. (3.24)

Since |ΓG′τ (Sα(τ))| = (1/α)|Sα(τ)|, (3.24) implies that Sα(τ) \R∗ 6= ∅. However, since |ΓG′τ (Sα(τ) \
R∗)| ≥ (1/α)|Sα(τ) \R∗|, one has

ΓG′τ (Sα(τ) \R∗) ∩ ΓG′τ (R∗) 6= ∅.

This, however, contradicts the assumption that (Sα(τ) \ R∗) ∩ Sα∗(τ + 1) = ∅ and the fact that

G′τ+1 = SPARSIFY∗(G′τ , Gτ+1).

The same argument also proves the monotonicity of levels for v ∈ Q.

Let Sα,β(τ) denote the set of vertices in u ∈ P such that

1. u ∈ Sβ(τ ′), where τ ′ is the time when u arrived (i.e. u ∈ Pτ ′), and

2. u ∈ Sα(τ).

Note that one necessarily has α ≥ β by Lemma 43 for all nonempty Sα,β . We will need the

following

Lemma 44 For all τ one has for all λ ∈ (0, 1](Q \
⋃

α∈[λ,1]

Tα(τ))×
⋃

β∈[λ,1]

Sα,β(τ)

 ∩ τ⋃
t=1

Et = ∅.

Proof: A vertex u ∈ Sα,β(τ) with β ≥ λ that arrived at time τu could only have edges to v ∈ Tλ′(τu)

for λ′ ≥ λ. By Lemma 43, such vertices v can only belong to Tλ′′(τ) for some λ′′ ≥ λ′ ≥ β ≥ λ, and

the conclusion follows with the help of Lemma 41.

Let tα(τ) = |Tα(τ)|, sα,β(τ) = |Sα,β(τ)|. The quantities tα(τ), sα,β(τ) are defined for α, β ∈
D = {∆k : 0 < k ≤ 1/∆}, where 1/∆ is a sufficiently large integer (note that all relevant values of

α, β are rational with denominators bounded by n). In what follows all summations over levels are

assumed to be over the set D. Then

Lemma 45 For all τ and for all α ∈ (0, 1], the quantities tα(τ), sα,β(τ) satisfy∑
β∈[α,1]

∑
δ∈(0,α−∆]

sβ,δ(τ) ≤ (α−∆)
∑

β∈[α,1]

tβ(τ). (3.25)

Proof: The proof is by induction on τ .
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Base: τ = 0 At τ = 0 the lhs is zero, so the relation is satisfied.

Inductive step: τ → τ + 1 Fix α ∈ (0, 1). For all γ ∈ (0, α−∆] let

Rγ(τ) = Sγ(τ) ∩

 ⋃
β∈[α,1]

Sβ(τ + 1)

 .

We have |ΓG′τ (Rγ(τ))| ≥ (1/γ)|Rγ(τ)| and ΓG′τ (Rγ(τ)) ⊆
⋃
β∈[α,1] Tβ(τ + 1).

Also, we have by Lemma 43 that ⋃
β∈[α,1]

Tβ(τ)

 ∪
 ⋃
γ∈(0,α−∆]

ΓG′τ (Rγ(τ))

 ⊆ ⋃
β∈[α,1]

Tβ(τ + 1).

Moreover, since ΓG′τ (Rγ(τ)) are disjoint for different γ and disjoint from Tβ(τ), β ∈ [α, 1],

letting rγ(τ) = |Rγ(τ)|, we have

∑
β∈[α,1]

tβ(τ + 1) ≥
∑

β∈[α,1]

tβ(τ) +
∑

γ∈(0,α−∆]

1

γ
rγ(τ) ≥

∑
β∈[α,1]

tβ(τ) +
1

α−∆

∑
γ∈(0,α−∆]

rγ(τ).

(3.26)

Furthermore, by Lemma 43∑
β∈[α,1]

∑
δ∈(0,α−∆]

sβ,δ(τ + 1) =
∑

β∈[α,1]

∑
δ∈(0,α−∆]

sβ,δ(τ) +
∑

γ∈(0,α−∆]

rγ(τ) (3.27)

Since by inductive hypothesis

∑
β∈[α,1]

tβ(τ) ≥ 1

α−∆

∑
β∈[α,1]

∑
δ∈(0,α−∆]

sβ,δ(τ). (3.28)

we have by combining (3.26), (3.27) and (3.28)

∑
β∈[α,1]

tβ(τ + 1) ≥
∑

β∈[α,1]

tβ(τ) +
1

α−∆

∑
γ∈(0,α−∆]

rγ(τ)

≥ 1

α−∆

∑
β∈[α,1]

∑
δ∈(0,α−∆]

sβ,δ(τ)

+
1

α−∆

∑
β∈[α,1]

∑
δ∈(0,α−∆]

(sβ,δ(τ + 1)− sβ,δ(τ))

=
1

α−∆

∑
β∈[α,1]

∑
δ∈(0,α−∆]

sβ,δ(τ + 1).
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In what follows we only consider sets Sα,β(τ), Tα(τ) for fixed τ , and omit τ for brevity. Let

S =
⋃
α,β Sα,β . Choose a maximum matching M in Gτ that matches all of S, as guaranteed by

Lemma 38. Let γ denote the number of vertices in T1 that are matched outside of S by M (note

that no vertices of Tα, α ∈ (0, 1) are matched outside of S by lemma 44). For each α ∈ (0, 1] let

rα ≤ tα denote the number of vertices in Tα that are not matched by M . Then the following is

immediate from lemma 44.

Lemma 46 For all λ ≤ 1 ∑
α∈[λ,1]

tα ≥
∑

α∈[λ,1],β∈[λ,1]

sα,β +
∑

α∈[λ,1]

rα + γ. (3.29)

Proof: Follows from Lemma 44.

We also have ∑
β∈[α,1]

∑
δ∈(0,1]

sβ,δ =
∑

β∈[α,1]

βtβ (3.30)

for all α ∈ (0, 1].

By Lemma 45 and Lemma 46, we get

ALG =
∑

α∈(0,1)

(tα − rα) + (t1 − r1 − γ)

OPT = ALG+ γ

t1 ≥ γ + r1.

Thus, we need to minimize ALG/OPT subject to t1 ≥ r1 + γ, tα, sα,β ≥ 0 and

∀α ∈ (0, 1] :
∑

β∈[α,1]

tβ ≥ γ +
∑

β∈[α,1]

∑
δ∈[α,1]

sβ,δ +
∑

β∈[α,1]

rβ .

∀α ∈ (0, 1] :
∑

β∈[α,1]

∑
δ∈(0,α−∆]

sβ,δ ≤ (α−∆)
∑

β∈[α,1]

tβ

∀α ∈ (0, 1]
∑

β∈[α,1]

∑
δ∈(0,1]

sβ,δ =
∑

β∈[α,1]

βtβ .

(3.31)

We start by simplifying (3.31). First note that we can assume without loss of generality that r1 = 0.

Indeed, if r1 > 0, we can decrease r1 to 0 and increase γ to keep ALG constant, without violating

any constraints, only increasing OPT . Furthermore, we have wlog that t1 > 0 since otherwise

ALG/OPT = 1. Finally, note that setting t1 = γ only makes the ratio ALG/OPT smaller, so it

is sufficient to lower bound
∑
α∈(0,1)(tα − rα) in terms of γ, and for this purpose we can set γ = 1

since this only fixes the scaling of all variables. Thus, it is sufficient to lower bound the optimum of

(3.32), obtaining a lower bound of
P∗1
P∗1 +1 on the ratio ALG/OPT .
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P ∗1 = minimize
∑

α∈(0,1)

(tα − rα)

s.t.

∀α ∈ (0, 1] :
∑

β∈[α,1]

tβ ≥ 1 +
∑

β∈[α,1]

∑
δ∈[α,1]

sβ,δ +
∑

β∈[α,1]

rβ .

∀α ∈ (0, 1] :
∑

β∈[α,1]

∑
δ∈(0,α−∆]

sβ,δ ≤ (α−∆)
∑

β∈[α,1]

tβ

∀α ∈ (0, 1]
∑

β∈[α,1]

∑
δ∈(0,1]

sβ,δ =
∑

β∈[α,1]

βtβ

tα, sα,β ≥ 0.

(3.32)

Combining constraints 2 and 3 of (3.32), we get

1∑
β=α

(1 + α−∆)tβ ≥ γ +

1∑
β=α

βtβ .

Thus, it is sufficient to lower bound the optimum of

P ∗2 = minimize
∑

α∈(0,1)

(tα − rα)

s.t.

∀α ∈ (0, 1] :
∑
β≥α

(1− β + α−∆)tβ ≥ 1 +
∑

β∈[α,1)

rα.

tα ≥ 0.

(3.33)

We first show that one has rα = 0 for all α ∈ [0, 1) at the optimum. Indeed, suppose that rα∗ > 0

for some α∗ ∈ (0, 1). Then since the coefficient of tα∗ is (1− α∗ + α−∆) ≤ 1−∆ < 1, β = α∗ ≥ α,

we can decrease r∗α by some δ > 0 and also decrease tα∗ by δ
1−∆ < δ, keeping all constraints satisfied

and improving the value of the objective function.

Thus, we arrive at the final LP, whose optimum we need to lower bound:

P ∗3 = minimize
∑

α∈(0,1)

tα

s.t.

∀α ∈ (0, 1] :
∑
β≥α

(1− β + α−∆)tβ ≥ 1.

tα ≥ 0.

(3.34)
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We now show that all constraints are necessarily tight at the optimum. Let α∗ ∈ [0, 1] be the

largest such that constraint 1 is not tight. Note that one necessarily has tα∗ > 0. Let

t′ = t− δeα∗ +
δ

1 + ∆
eα∗−∆.

We now verify that all constrains are satisfied. For α > α∗ all constraints are satisfied since we

did not change t. For α = α∗, the constraint is satisfied since it was slack for t and δ is sufficiently

small.

For α < α∗, i.e. α ≤ α∗ −∆ since we are considering only α ∈ D, we have

∑
β≥α

(1− β + α−∆)t′β =
∑
β≥α

(1− β + α−∆)tβ + δ

(
1− (α∗ −∆) + α−∆

1 + ∆
− (1− α∗ + α−∆)

)

=
∑
β≥α

(1− β + α−∆)tβ +
δ∆(α∗ − α−∆)

1 + ∆
≥
∑
β≥α

(1− β + α−∆)tβ ≥ 1.

Thus, at the optimum we have∑
β≥α

(1 + (α− β −∆))tβ = 1,∀α ∈ [0, 1]. (3.35)

Subtracting (3.35) for α+ ∆ from (3.35) for α, we get∑
β≥α

(1 + (α− β −∆))tβ −
∑

β≥α+∆

(1 + (α+ ∆− β −∆)tβ

= tα −∆
∑
β≥α

tβ = 0.
(3.36)

In other words,

tα = ∆
∑
β≥α

tβ , t1 ≥ 1. (3.37)

Let δ = ∆
1−∆ . We now prove by induction that t1−k∆ = δ(1 + δ)k−1 for all k > 0.

Base:k = 1 t1−∆ = ∆
1−∆ = δ.

Inductive step: k → k + 1

t1−(k+1)∆ = ∆

t1−(k+1)∆ + 1 + δ

k∑
j=1

(1 + δ)j−1


Thus,

t1−(k+1)∆ = δ

1 + δ

k∑
j=1

(1 + δ)j−1

 = δ

(
1 + δ

1− (1 + δ)k

1− (1 + δ)

)
= δ(1 + δ)k.
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Hence, one has

∑
α∈[0,1)

tα ≥ δ
1/∆∑
j=1

(1+δ)j−1 = δ
1− (1 + δ)1/∆

1− (1 + δ)
= (1+δ)1/∆−1 =

(
1 +

∆

1−∆

)1/∆

−1 = (1−∆)−1/∆−1

Now, the size of the matching M is bounded by

OPT ≤
∑

α∈[0,1)

tα + 1.

On the other hand,

ALG ≥
∑

α∈[0,1)

tα.

Thus, we get

ALG

OPT
=

P ∗1
P ∗1 + 1

= 1− 1

P ∗1 + 1
≥ 1− 1

P ∗3 + 1
≥ 1− (1−∆)1/∆ ≥ 1− 1/e

since (1−∆)1/∆ ≤ 1/e for all ∆ ≥ 0. We have now proved

Theorem 47 There exists a deterministic O(n) space 1-pass streaming algorithm for approximating

the maximum matching in bipartite graphs in the vertex arrival model.

Proof: Run the algorithm given in (3.23), letting |Pi| = 1, i.e. sparsifying as soon as a new vertex

comes in. The algorithm only keeps a sparsifier G′i in memory, which takes space O(n).

3.6 Constructions of Ruzsa-Szemerédi graphs

In this section we give two extensions of constructions of Ruzsa-Szemerédi graphs from [29]. The

first construction shows that for any constant ε > 0 there exist (1/2 − ε)-Ruzsa-Szemerédi graphs

with superlinear number of edges. We use this construction in section 3.7 to prove that our bound

on CC(ε, n), ε < 1/3 is tight. The second construction that we present is a generalization to lop-

sided graphs, which we use in section 3.7 to prove that our bound on CCv(ε, n), ε < 1/4 is tight.

Specifically, we show the following results:

Lemma 48 For any constant ε > 0 there exists a family of bipartite (1/2−ε)-Ruzsa-Szemerédi graphs

with n1+Ω(1/ log logn) edges.

Lemma 49 For any constant δ > 0 there exists a family of bipartite Ruzsa-Szemerédi graphs G =

(X,Y,E) with |X| = n, |Y | = 2n such that (1) the edge set E is a union of nΩδ(1/ log logn) induced

2-matchings M1, . . . ,Mk of size at least (1/2 − O(δ))|X|, and (2) for any j ∈ [1 : k] the graph G

contains a matching M∗j of size at least (1−O(δ))|X| that avoids Y \ (Mj ∩ Y ).
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The proofs of these results are based on an adaptation of Theorem 16 in [29] (see also [77]), which

constructs bipartite 1/3-Ruzsa-Szemerédi graphs with superlinear number of edges. The main idea

of the construction, use of a large family of nearly orthogonal vectors derived from known families

of error correcting codes, is the same. A technical step is required to go from matchings of size 1/3

to matchings of size 1/2 − ε for any ε > 0. Since the result does not follow directly from [29], we

give a complete proof in the full version.

3.6.1 Balanced graphs

The following lemma is an adaptation of Theorem 16 in [29] (see also [77]), where bipartite 1/3-

Ruzsa-Szemerédi graphs with a superlinear number of edges are constructed. The main idea of the

construction, i.e. the use of a large family of nearly orthogonal vectors derived from known families

of error correcting codes, is the same. A technical step is required to go from matchings of size 1/3

to matchings of size 1/2 − ε for any ε > 0. Since the result does not follow directly from [29], we

give the argument here.

Proof of Lemma 48: Let X = Y = [m2]m for some integer m > 0. We will refer to vertices in X

and Y as points in [m2]m. Matchings MT will be indexed by subsets T ⊆ [m].

Fix T ⊆ [m]. Let Ls = {x :
∑
i∈T xi = s}. Define red, white and blue strips as follows. Choose

w = 2(1 + 2/ε)(εm/6)and define

Rk =

kw+(2/ε)(εm/6)−1⋃
s=kw

Ls

Wk =

kw+(1+(2/ε))(εm/6)−1⋃
s=kw+(2/ε)(εm/6)

Ls

Bk =

kw+(1+4/ε)(εm/6)−1⋃
s=kw+(1+2/ε)(εm/6)

Ls

W ′k =

(k+1)w−1⋃
s=kw+(1+4/ε)(εm/6)

Ls

Finally, define B =
⋃
k Bk, R =

⋃
k Rk,W

′ =
⋃
kW

′
k,W =

⋃
kWk.

For T ⊆ [m] let 1T denote the characteristic vector of T . The matching MT is defined as

follows. If a blue point b ∈ BX has all coordinates greater than (2/ε + 1), match it to the point

r = b− (2/ε+ 1) · 1T in RY . Note that r ∈ RY by the definition of B and R.

Following [29], we first note that

Lemma 50 |MT | ≥ (1/2− ε)n− o(n)

Proof: The only points of B that are not matched by MT are those in the set

S = {x : ∃j ∈ T, xj < (2/ε+ 1)vj}.
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However, |S| ≤ (m/6)(2/ε+1)
m2 |X| = (2/ε+1)

6m |X| = o(|X|). Hence, we have that |B| = (1± o(1))|R|.
Similarly, we have that |W | ≤ (ε/(1 + ε)± o(1))|B|

Now let T1, T2 be two sets in [m] of size (ε/6)m such that |T1 ∩ T2| ≤ (5/2)(ε/6)2m. We show

that no edge of MT1
is induced by MT2

. Let b be matched to r by T1, i.e. b − r = (2/ε + 1)1T1
. If

the edge (b, r) is induced by MT2 , then one of b, r is colored blue and the other is colored red in the

coloring induced by T2. In particular, b and r are separated by a white strip. Thus,∣∣∣∣∣∑
i∈T2

bi −
∑
i∈T2

ri

∣∣∣∣∣ ≥ (ε/6)m. (3.38)

On the other hand, ∣∣∣∣∣∑
i∈T2

bi −
∑
i∈T2

ri

∣∣∣∣∣ =

∣∣∣∣∣∑
i∈T2

(b− r)i

∣∣∣∣∣ =

∣∣∣∣∣∑
i∈T2

((2/ε+ 1)1T1)i

∣∣∣∣∣
= (2/ε+ 1)|T1 ∩ T2| < (2/ε+ 1)(5/2)(ε/6)2m = (5/6)(1 + ε/12)(ε/6)m,

(3.39)

a contradiction with (3.38) for any ε ≤ 1/2.

Now it suffices to exhibit a large family F of subsets of [m] of size (ε/6)m with intersection at

most (5/2)(ε/6)2. Following [29], we obtain such a family from an error-correcting code with weight

w = (ε/6)m and Hamming distance at least d = 2(ε/6)−(5/2)(ε/6)2. The Gilbert-Varshamov bound

yields [66], for d ≤ 2w(m−w)
m , a family F such that

1

m
log |F| ≥ H

(w
m

)
− w

m
H

(
d

2w

)
−
(

1− w

m

)
H

(
d

2(m− w)

)
− o(1)

Letting δ = ε/3 and γ = 5/4 for convenience, we have that w/m = δ and d/m = 2δ(1 − γδ). This

yields

1

m
log |F| ≥ H (δ)− δH (1− γδ)− (1− δ)H

(
δ − γδ2

1− δ

)
− o(1)

Using H(x) = H(1− x) and strict convexity of H(x), we get

δH (1− γδ) + (1− δ)H
(
δ − γδ2

1− δ

)
≤ c(δ, γ) +H

(
γδ2 + (1− δ)

(
δ − γδ2

1− δ

))
= c(δ, γ) +H (δ)

where c(δ, γ) > 0 whenever γ 6= 1.

Hence, setting γ = 5/4 and δ = ε/6 yields a family of codes with 1
m log |F| ≥ c(ε/6, 5/4)− o(1).

Thus, we have constructed a bipartite graph G = (X,Y,E) such that E =
⋃
T∈FMT is a union

of induced matchings of size 1/2 − ε − o(1). The number of nodes in the graph is m2m and the

number of matchings is |F| = 2(c(ε/3,5/4)−o(1))m = 2Ω(m). Thus, we get a graph on n = m2m nodes

that is a union of 2Ω(m) = nΩε(1/ log logn) induced matchings of size 1/2− ε.
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3.6.2 Lop-sided graphs

We now extend this construction to lop-sided graphs, which will be important for showing optimality

of our bound on CCv(ε, n).

Lemma 51 For any constant δ > 0 there exists a family of bipartite Ruzsa-Szemerédi graphs G =

(X,Y,E) with |X| = n, |Y | = 2n such that

1. the edge set E is a union of nΩδ(1/ log logn) induced 2-matchings M1, . . . ,Mk of size at least

(1/2−O(δ))|X|.

2. for any j ∈ [1 : k] the graph G contains a matching M∗j of size at least (1 − O(δ))|X| that

avoids Y \ (Mj ∩ Y ).

Proof: Let X ′ = Y = [m2]m for some integer m > 0. Let X be a random subset of X ′ that

contains each element of X ′ with probability 1/2. We will refer to vertices in X and Y as points in

[m2]m. The matchings MT will be indexed by subsets T ⊆ [m].

Choose w = 2C(1 + 2/δ)p for p and a constant C > 0 to be specified later. Fix T ⊆ [m].

Let Ls = {x :
∑
i∈T xi = s + (w/2) · QT }, where QT is a Bernoulli 0/1 random variable with on

probability 1/2. Define red, white and blue strips as follows. Define

Rk =

kw+C(2/δ)p−1⋃
s=kw

Ls

Wk =

kw+C(1+(2/δ))p−1⋃
s=kw+C(2/δ)p

Ls

Bk =

kw+C(1+4/δ)p−1⋃
s=kw+C(1+2/δ)p

Ls

W ′k =

(k+1)w−1⋃
s=kw+C(1+4/δ)p

Ls

Define B =
⋃
k Bk, R =

⋃
k Rk,W

′ =
⋃
kW

′
k,W =

⋃
kWk.

Here we are assuming that δ ∈ (0, 1) is such that 2/δ is an integer.

Fix k. For two vertices u, v ∈ Bk we say that u ∼ v if u− v = λ(1 + 2/δ) · 1T for some λ (note

that since u, v ∈ Bk, we have λ ∈ [−C,C]). We write Sv ⊆ Y to denote the equivalence class of v.

Note that |Sv| ≥ C/2 for all v. Also, let

Tv = {u ∈ X : u = w − C(1 + 2/δ) · 1T , w ∈ Sv}.

Note that for any v ∈ Bk one has Tv ⊆ Rk. Note that Tv is a random set (determined by the random

choice of X ⊂ X ′).
We now define a 2-matching from (a subset of) Tv to Sv. First note that E[|Tv|] = 1

2 |Sv|. Fur-

thermore, since X is obtained from X by independent sampling, the events {v ∈ X} are independent
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conditional on the value of QT . Thus, standard concentration inequalities apply (see, e.g. [41]) and

we get

Pr

[
|Tv| 6∈ (1± δ)1

2
|Sv|

]
≤ e−δ

2(1/2)|Sv|/4 = e−δ
2C/16 ≤ δ/4

for C > 16 ln(4/δ)/δ2. We now classify points v ∈ Bk as good or bad depending on the how close

|Tv| is to its expectation. In particular, mark v bad if |Tv| 6∈ (1 ± δ) 1
2 |Sv| and good otherwise. If

v is good, let T ′v denote an arbitrary subset of Tv of cardinality (1 − δ) 1
2 |Sv|. Similarly, let S′v

denote an arbitrary subset of Sv of cardinality (1 − δ)|Sv|, so that |T ′v| = 1
2 |S
′
v|. Next, choose an

arbitrary 2-matching from T ′v to S′v. Note that all matched edges are of the form (b, r), where

r = b−λ(1 + 2/δ) · 1T for some λ ∈ (0, 2C]. This completes the definition of the 2-matching MT for

a fixed set T .

We now argue that there cannot be too many bad classes in a fixed set T . Note that there are

Ω(m2m) equivalence classes (since they have constant size by construction). For a vertex v denote

the event that v’s equivalence class is bad by Ev. Then, conditional on the value of QT , these events

are independent for non-equivalent v’s. Hence, by Chernoff bounds the probability that the number

of bad classes exceeds its expectation by more than a factor of 4 is at most e−Ω(m2m). We use the

collection F constructed in the proof of Lemma 48, and a union bound over 2O(m) sets T shows that

there will be no more than a δ fraction of bad classes in any of sets T with high probability.

We will also need a bound on the maximum degree of vertices in X and Y . First note that the

definition of the set of levels Ls and the random variable QT amounts to flipping the role of the sets

Rk and Bk independently with probability 1/2. Thus, for a fixed T , every vertex except for those

in W ∪W ′, of which there is only an O(δ) fraction, takes part in the matching with probability 1/2.

Thus, the expected degree of a fixed vertex v ∈ Y is at most |F|/2, where F is the collection of

almost orthogonal vectors that we use. Since QT are independent for each T , Chernoff bounds imply

that the degree of any vertex v in Y in the graph that we construct is at most (1 + δ)|F|/2 with

probability at least 1 − e−Ω(|F|) = 1 − e−Ω(2Ω(m)). In particular, a union bound over all v ∈ Y , of

which there are m2m, shows that the degree cannot be larger than (1 + δ)|F|/2 for any v with high

probability. Finally, we also note that the average degree is at least (1−O(δ))|F|/2 by construction.

A similar argument shows that the maximum degree of a vertex in X does not exceed (1 + δ)|F|
with high probability, and the average degree is at least (1−O(δ))|F|.

Essentially the same argument as in Lemma 48 together with the fact that for good sets T we

have a 2-matching of at least (1−O(δ))|R| nodes by the argument above shows that the size of the

matching is at least (1
2 −O(δ))|X|.

Now let T1, T2 be two sets in [m] of size p = (δ/(8C))m such that |T1∩T2| ≤ (5/2)(δ/(8C))2m. We

show that no edge of MT1 is induced by MT2 . Let b be matched to r by T1, i.e. b− r = j(2/δ+1)1T1

for some j ∈ (0, 2C]. If the edge (b, r) is induced by MT2
, then one of b, r is colored blue and the

other is colored red in the coloring induced by T2. In particular, b and r are separated by a white

strip. Thus, ∣∣∣∣∣∑
i∈T2

bi −
∑
i∈T2

ri

∣∣∣∣∣ ≥ (δ/(8C))m. (3.40)
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On the other hand, ∣∣∣∣∣∑
i∈T2

bi −
∑
i∈T2

ri

∣∣∣∣∣ =

∣∣∣∣∣∑
i∈T2

(b− r)i

∣∣∣∣∣
=

∣∣∣∣∣∑
i∈T2

(j(2/δ + 1)1T1
)i

∣∣∣∣∣
≤ 2C(2/δ + 1)|T1 ∩ T2| < C(2/δ + 1)(5/2)(δ/(8C))2

≤ (5/6)(1 + δ/12)(δ/8C)m,

(3.41)

a contradiction with (3.40) for any δ ≤ 1/2. This completes the proof of (1).

Figure 3.5: A 2-matching MT

BTY

X RT B̄X
T

It remains to show (2). Consider a fixed matching MT . Let RT = X∩MT ⊆ RX , BT = Y ∩MT ⊆
BY , where we use the notation BX , BY , RX , RY to denote the set of blue and red points in X and

Y respectively. For a vertex u ∈ X ∪ Y , denote by Γ(u) its neighbors in G. Let

B̄T =
⋃
k

kw+C(4/δ)p−1⋃
s=kw+C(2+2/δ)p

Ls.

Note that B̄T ⊂ BT can be viewed as the ’interior’ of BT . We write B̄XT and B̄YT to denote the

projection of B̄ onto X and Y respectively.

We first show that for all x ∈ B̄XT one has Γ(x) ⊆ BT ⊆ Y . Since B̄XT is not matched by

T , it suffices to consider edges of MT ′ , T
′ 6= T . But any such edge has the form (x, y), where

x = y ± λ(2/δ + 1) · 1T ′ , so by the argument above one has
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∣∣∣∣∣∑
i∈T2

xi −
∑
i∈T2

yi

∣∣∣∣∣ < (δ/(8C))m = p, (3.42)

so y ∈ BYT .

Thus, for each x ∈ B̄XT one has Γ(x) ⊆ BYT . We can now exhibit the required fractional matching.

Include edge (x, y), r ∈ BXT , y ∈ B̄YT with weight 1
(1+O(δ))|F| , and include all edges of the 2-matching

MT with weight 1/2. Since the maximum degree of a node in BT is at most (1 + δ)|F|/2, and the

maximum degree of a node in B̄T is at most (1+O(δ))|F|, this assignment yields a feasible fractional

matching. Recall that by construction, the average degree in X is at least (1 − O(δ))|F|/2, hence

the size of the fractional matching is at least (1−O(δ))|X|.
By the integrality of the matching polytope, the fractional matching can be rounded to produce

an integral matching of size at least (1−O(δ))|X|, as required. Note that since we proved that for

each x ∈ B̄XT one has Γ(y) ⊆ BYT , the fractional matching that we constructed avoids Y \ BT =

Y \ (Y ∩MT ), and hence so does the integral matching. This completes the proof of (2).

Finally, we note that the number of edges in the graph is given by n1+Ωδ(1/ log logn), as before.

We note that the same techniques can be used to prove the following more general

Lemma 52 For any fixed constants ε, γ > 0 and an arbitrarily small constant δ > 0 there exists a

family of bipartite Ruzsa-Szemerédi graphs G = (X,Y,E) with |X| = n, |Y | = n/ε such that

1. the edge set E is a union of nΩε,δ,γ(1/ log logn) induced 1−γ
εγ -matchings M1, . . . ,Mk of size at

least (γ − δ)|X|.

2. for every j ∈ [1 : k] the graph G contains a matching M∗j of size at least (1 − O(δ))|X| that

avoids Y \ (Mj ∩ Y ).

3.7 Lower bounds on communication and one-pass streaming

complexity

We show here that lower bounds on the size of Ruzsa-Szemerédi graphs yield lower bounds on the

(randomized) communication complexity, and hence for one-pass streaming complexity.

In the edge model, we show that CC
(

2(1−ε)
2−ε − δ, (2− ε)n

)
= Ω(UI(ε, n)) for all ε, δ > 0. In

particular, combined with the constructions of (1/2 + δ0)-Ruzsa-Szemerédi graphs for any constant

δ0 > 0 (Lemma 48) this proves that CC(ε, n) = n1+Ω(1/ log logn) for ε < 1/3. Thus our O(n) upper

bound on CC( 1
3 , n) in section 3.3 is optimal in the sense that any better approximation requires

super-linear communication. As a corollary, we also get that super-linear space is necessary to

achieve better than 2/3-approximation in the one-pass streaming model.

In the vertex model, using the construction of Ruzsa-Szemerédi graphs from Lemma 49, we show

that CCv(ε, n) = n1+Ω(1/ log logn) for all ε < 1/4. This proves optimality of our construction in sec-

tion 3.4, and also shows that super-linear space is necessary to achieve better than 3/4-approximation
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in the one-pass streaming model even in the vertex arrival setting.

We note that our lower bounds for both the edge and vertex arrival case apply to randomized

algorithms. The proofs of these results appear in the full version.

3.7.1 Edge arrivals

Lemma 53 For any ε > 0 and δ > 0, CC
(

2(1−ε)
2−ε − δ, (2− ε)n

)
= Ω(UI(ε, n)).

Proof: For any δ > 0, we will construct a distribution over bipartite graphs with (2−ε)n vertices on

each side such that each graph in the distribution contains a matching of size at least (2− ε)n− δn.

On the other hand, we will define a partition of the edge set E of the graph into E = E1 ∪ E2

and show that any for deterministic communication protocol using message size s = o(UI(ε, n)),

the expected size of the matching computed is bounded by 2(1 − ε)n + o(n). Using Yao’s minmax

principle, we get the desired performance bound for any protocol with o(UI(ε, n)) communication.

Let G = (P,Q,E) be an ε-RS graph with n vertices on each side and UI(ε, n) edges. By definition,

E can be partitioned into k induced matchings M1, ...,Mk, where |Mi| = εn for 1 ≤ i ≤ k, and

k = UI(ε, n)/(εn). We generate a random bipartite graph G′ = (P1 ∪ P2, Q1 ∪ Q2, E1 ∪ E2) with

(2− ε)n vertices on each side, as follows:

1. We set P1 = P and Q1 = Q. Also, let P2 and Q2 be a set of (1 − ε)n vertices each that are

disjoint from P and Q.

2. For each Mi, i = 1, ..., k, let M ′i be a uniformly at random chosen subset of Mi of size (1− δ)n.

We set E1 = ∪ki=1M
′
i .

3. Choose a uniformly random r ∈ [1 : k]. Let M∗1 be an arbitrary perfect matching between P2

and Q \ Q1(Mr), and let M∗2 be an arbitrary perfect matching between Q2 and P \ P1(Mr).

We set E2 = M∗1 ∪M∗2 .

The instance G′ is partitioned between Alice and Bob as follows: Alice is given all edges in

G1(P1, Q1, E1) (first phase), and Bob is given all edges in G2(P2, Q2, E2) (second phase). Clearly,

any optimal matching in G′ has size at least (2 − ε)n − δn; consider, for instance, the matching

M ′r ∪M∗1 ∪M∗2 .

We now show that for any deterministic communication protocol using communication at most

s = o(UI(ε, n)), with probability at least (1−o(1)), number of edges in M ′r retained by the algorithm

at the end of the first phase is o(n). Assuming this claim, we get that with probability at least

(1 − o(1)), the size of the matching output by Bob is bounded by 2(1 − ε)n + o(n). Hence the

expected size of the matching output by Bob is bounded by 2(1− ε)n+ o(n). We now establish the

preceding claim.

We start by observing that the number of distinct first phase graphs is at least (assume δ < ε/2)

(
εn

δn

)k
=

(
εn

δn

)UI (ε,n)

εn

= 2γUI(ε,n),



CHAPTER 3. MATCHING COVERS AND STREAMING 65

for some positive γ bounded away from 0. Let G denote the set of all possible first phase graphs,

and let φ : G → {0, 1}s be the mapping used by Alice to map graphs in G to a message of size

s = o(UI(ε, n)). For any graph H ∈ G, let Γ(H) = {H ′ | φ(H ′) = φ(H)}. Then note that for any

graph H ∈ G, Bob can output an edge e in the solution iff e occurs in every graph H ′ ∈ Γ(H). For

any subset F of G, let GF denote the unique graph obtained by intersection of all graphs in F (i.e.

the graph GF contains an edge e iff e is present in every graph in the family F ).

Claim 54 For any 0 < ε′ < ε
2 and any subset F of G, let I ⊆ {1, 2, ..., k} be the set of indices such

that GF contains at least ε′n edges from Mi for each i ∈ I. Then if |F | ≥ 2(γ−o(1))UI(ε,n), |I| = o(k).

Proof: Let |I| = k1. Then the number of graphs that can be in F is bounded by(
(ε− ε′)n

δn

)k1
(
εn

δn

)k−k1

=

(
2−Ω(ε′n)

(
εn

δn

))k1
(
εn

δn

)k−k1

= 2−Ω(k1(ε′n))

(
εn

δn

)k
.

It then follows that if k1 = Ω(k), we have |F | ≤ 2(γ−Ω(1))UI(ε,n), contradicting our assumption

on the size of F .

To conclude the proof, we note that a simple counting argument shows that for a uniformly at

random chosen graph H ∈ G, with probability at least 1 − o(1), we have |Γ(H)| ≥ 2(γ−o(1))UI(ε,n).

Conditioned on this event, it follows from Claim 54 that for a randomly chosen index r ∈ [1..k], with

probability at least 1− o(1), the graph GΓ(H) contains at most ε′n edges from Mr.

In particular, we get

Corollary 55 For any δ > 0, CC(2/3 + δ, n) = n1+Ωδ(1/ log logn).

Proof: Follows by putting together Lemma 48 and Lemma 53.

Lower bounds on communication complexity translate directly into bounds on one-pass streaming

complexity:

Corollary 56 For any constant δ > 0 any (possibly randomized) one-pass streaming algorithm that

achieves approximation factor 2(1−ε)
2−ε + δ must use Ω(UI(ε, n)) space. In particular, any one-pass

streaming algorithm that achieves approximation factor 2/3 + δ must use n1+Ωδ(1/ log logn) space.

Proof: Follows by Lemma 48 and Lemma 53.

3.7.2 Vertex arrivals

We now prove a lower bound on the communication complexity in the vertex arrival model using

the construction of lop-sided Ruzsa-Szemerédi graphs from Lemma 49. The bound implies that our

upper bound from section 3.4 is tight. Moreover, the bound yields the first lower bound on the

streaming complexity in the vertex arrival model.

Lemma 57 For any constant δ > 0, CC1
v (3/4 + δ, n) = n1+Ωδ(1/ log logn).
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Proof: For sufficiently small δ > 0, we will construct a distribution over bipartite graphs with

(2 + δ)n vertices on each side such that each graph in the distribution contains a matching of size at

least (2−O(δ))n. On the other hand, we will show that for any deterministic protocol using space

s = n1+o(1/ log logn), the expected size of the matching computed is bounded by (3/2+O(δ))n+o(n).

Using Yao’s minmax principle we get the desired performance bound for any n1+o(1/ log logn)-space

randomized protocol.

Let G = (P,Q,E) be an (1/2−δ)-RS graph with |P | = n, |Q| = 2n and n1+Ω(1/ log logn) edges, as

guaranteed by Lemma 51. By definition, E can be partitioned into k induced 2-matchingsM1, ...,Mk,

where |Mi| ≥ (1/2 − δ′)n for 1 ≤ i ≤ k, and k = nΩ(1/ log logn) and some δ′ = O(δ). We generate a

random bipartite graph G′ = (P1 ∪ P2, Q,E1 ∪ E2) with (2 + δ′)n vertices on each side, as follows:

1. We set P1 = P and let P2 be a set of (1 + δ′)n vertices that are disjoint from P .

2. For each Mi, i = 1, ..., k, let M ′i be a uniformly at random chosen subset of Mi of size

(1/2− 2δ′)n. We set E1 = ∪ki=1M
′
i .

3. Choose a uniformly random r ∈ [1 : k]. Let M∗ be an arbitrary perfect matching between P2

and Q \Q(Mr). We set E2 = M∗.

Let Alice hold the graph GA(P1, Q1, E1) and let Bob hold the graph G2 = (P2, Q,E2). By

Lemma 49, there exists a matching M∗r that matches at least a (1 − δ′) fraction of X and avoids

Q \ Q(Mr). Thus, any optimal matching in GA ∪ GB has size at least (2 − O(δ))n; consider, for

instance, the matching M∗r ∪M∗.
However, no deterministic space protocol can output more than a δ′′ = O(δ′) fraction of the

edges in M ′r if it uses n1+oδ′′ (1/ log logn) space by the same argument as in 53. Hence, the size of the

matching output by the protocol is bounded above by (1/2 +O(δ))|P1|+ |P2| = (3/2 +O(δ))n.

We immediately get

Corollary 58 For any constant δ > 0 any (possibly randomized) one-pass streaming algorithm that

achieves approximation factor 3/4 + δ must use n1+Ωδ(1/ log logn) space.

3.8 Matching covers versus Ruzsa-Szemerédi graphs

In this section we prove that the size of the smallest possible matching cover is essentially the same

as the number of edges in the largest Ruzsa-Szemerédi graph with appropriate parameters.

We are now ready to state the two theorems that use induced matchings to bound the size of

matching covers. The lower bound is easy, and is proved first. The upper bound is more intricate,

and is presented in section 3.8.1.

Theorem 59 [Lower bound] For any δ > 0, LC(ε, n) ≥ UI ((1 + δ)ε, n) ·
(

δ
1+δ

)
.

Proof of Theorem 59: Let c = 1 + δ. By definition, there exists an undirected bipartite graph

G = (P,Q,E) with |E| = UI(εc, n), |P | = |Q| = n, and an induced partition F of G such that every
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set in the partition is of size at least εcn. Consider the smallest ε-matching-cover H of G, and any

set F ∈ F . Recall that by the definition of an induced matching, the edges in F are the only edges

between P (F ) and Q(F ). Since F is a matching between P (F ) and Q(F ), and the size of F is at

least εcn, the intersection of H and F must be of size at least |F | − εn, which is at least |F | ·
(
c−1
c

)
.

Summing over all sets F in the partition F , we get that |H| ≥ |E| ·
(
c−1
c

)
, which proves the theorem.

In particular, choosing δ = 1, we get LC(ε, n) ≥ UI(2ε, n)/2. The upper bound is more compli-

cated; we first state a simplified version (Theorem 60), and then the full version (Theorem 61). The

simple version is a corollary of the full version; the full version is proved in section 3.8.1.

Theorem 60 [Simplified upper bound] Assume 0 < ε < 2/3, 0 < δ < 1, and εn ≥ 3. Then,

LC(n, ε) ≤ UI((1− δ)ε, n) ·O
(

log(1/ε)
δ(1−δ)

)
.

Theorem 61 [Upper bound] Assume εn ≥ 3, and 0 < δ < 1. Then,

LC(n, ε) ≤ UI((1− δ)ε, n) ·
(

8εn

εn− 1

)
·
(

1 + log(1/ε) +
log(εn)

8εn

)
·
(

1

δ(1− δ)

)
.

We state the full expression in the above theorem as opposed to using asymptotic notation since

the constants are simple, and it is conceivable that one may choose to apply it in regimes where

ε is arbitrarily close to 1. Choosing δ = 1/2 in Theorem 60, we get the interesting special case,

LC(n, ε) = O(UI(ε/2, n) log(1/ε)).

3.8.1 Proof of the Upper Bound

We will now prove Theorem 61. Assume we are given an arbitrary undirected bipartite graph

G = (P,Q,E) with |P | = |Q| = n. Assume that εn is an integer. Also assume that εn is at least

3 (of course the most interesting case is when ε > 0 is some constant). Before proceeding, we need

another definition:

Definition 62 A pair (A,B), where A ⊆ P and B ⊆ Q, is said to be “critical” if |A| = |B| =

ME(A,B) = εn, i.e. A,B are both of size εn and there is a perfect matching between them. Let C
denote the set of all critical pairs in G.

We will now consider a primal-dual pair of Linear Programs. By strong duality, the optimum

objective value for both LPs is the same; denote this value as Z∗. We label the constraints in the

primal with the corresponding variable in the dual, and vice versa, for clarity.
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PRIMAL: Z∗ = minimize
∑
e∈E

xe

Subject to:

∀(A,B) ∈ C :
∑

e∈E∩(A×B)

xe ≥ 1 [λA,B ]

x ≥ 0

DUAL: Z∗ = maximize
∑

(A,B)∈C
λA,B

Subject to:

∀(e) ∈ E :
∑

(A,B)∈C:e∈E∩(A×B)

λ(A,B) ≤ 1 [xe]

λ ≥ 0

We will relate the size of an ε-matching-cover of G to the primal and the size of an ε-induced

partition of G to the dual. In particular, in the next two subsections, we will prove the following

two lemmas:

Lemma 63 The graph G has an ε-matching-cover of size at most(
εn

εn− 1

)
· (2εn(1 + log(1/ε)) + log(εn)) · Z∗.

Lemma 64 There exists a graph G′ = (P,Q,E′) with E′ ⊆ E such that |E′| ≥ Z∗δ(1 − δ)εn/4
edges, and G′ has a (1− δ)ε-induced partition. Hence, UI(n, (1− δ)ε) ≥ Z∗δ(1− δ)εn/4.

Theorem 61 is immediate from these two lemmas.

Proof of Lemma 63

A set of edges F ⊆ E is said to satisfy a pair (A,B) if |F ∩ (A × B)| > 0. We will further break

down the proof of Lemma 63 in two parts.

Lemma 65 If F satisfies all critical pairs, then F is an ε-matching-cover.

Proof: The proof is by contradiction. Suppose F satisfies all critical pairs, but there exists a

pair (A,B) such that A ⊆ P , B ⊆ Q, and MF (A,B) < ME(A,B) − εn. Consider an arbitrary

maximum matching in the graph (A,B,E ∩ (A × B)), say H. Discard all vertices from A and B

that are not incident on an edge in H, to obtain A′ ⊆ A, B′ ⊆ B. It is still true that MF (A′, B′) <

ME(A′, B′) − εn, but now we also know that ME(A′, B′) = |H| = |A′| = |B′|. Consider the graph

G′ = (A′, B′, F ). By Hall’s theorem, there exists a set A′′ ⊆ A′ and another set B′′ ⊆ B′ such that

(a) |A′′| > |B′′|+ εn, and (b) |F ∩ (A′′ × (B′ \B′′))| = 0. Since H is perfect matching in the graph

(A′, B′, E), there must exist at least εn edges of H that go from A′′ to B′ \ B′′; let H ′ denote an

arbitrary set of εn edges of H that go from A′′ to B′ \B′′. Let C denote the endpoints of these edges



CHAPTER 3. MATCHING COVERS AND STREAMING 69

in P and D denote the endpoints of these edges in Q. Then, |C| = |D| = εn and there is a perfect

matching between C and D in E, i.e., the pair (C,D) is critical. But there is no edge between C

and D in F (by construction), and hence F does not satisfy all critical pairs, which contradicts our

assumption.

Lemma 66 There exists a set F of size at most(
εn

εn− 1

)
· (2εn(1 + log(1/ε)) + log(εn)) · Z∗

that satisfies all critical pairs.

Proof: First note that the number of critical pairs is at most
(
n
εn

)2
<
(
en
εn

)2εn
= e2εn(1+log(1/ε)).

We will now define a simple randomized rounding procedure for the solution x of the primal LP.

For convenience, let γ denote the quantity (2εn(1 + log(1/ε)) + log(εn)). For each edge e, let x̃e

denote a Bernoulli random variable which takes the value 1 with probability pe = min{1, γxe}, and

let all x̃e’s be independent. Let F denote the set of edges e for which x̃e = 1.

We will now define two bad events: Let ξ1 denote the event that |F | > γZ∗
(

εn
εn−1

)
. Let ξ2

denote the event that F does not satisfy all critical sets.

By construction, E[|F |] = E[
∑
e x̃e] ≤ γ

∑
e xe = γZ∗. Hence, by Markov’s inequality, Pr[ξ1] <

εn−1
εn = 1− 1/(εn).

Fix an arbitrary critical set (A,B). If there exists an edge e ∈ E ∩ (A × B) such that pe = 1

then (A,B) is deterministically satisfied by F . Else, it must be that pe = γxe for every edge

e ∈ E ∩ (A×B), and the probability that F does not satisfy (A,B) is at most∏
e∈E∩(A×B)

(1− γxe)

≤ e−γ
∑
e∈E∩(A×B) xe

≤ e−γ [From feasibility of the fractional solution].

Using the union bound over all critical pairs, we get Pr[ξ2] < e− log(εn) = 1/(εn). Using the

union bound over the two bad events, we get Pr[ξ1 ∪ ξ2] < 1. Hence, (using the probabilistic

method), there must exist a set of edges F that satisfies all critical pairs and has size at most(
εn
εn−1

)
· (2εn(1 + log(1/ε)) + log(εn)) · Z∗.

This concludes the proof of Lemma 63.

Proof of Lemma 64

This proof is also via randomized rounding, this time applied to the optimum solution of the dual

LP. For every relevant pair (A,B), choose λ̃A,B to be one with probability δλA,B/2 and 0 otherwise;

further choose the values of different λ̃A,B ’s independently. If λ̃A,B = 1 then we say that the pair

(A,B) has been selected. Initialize H to be E; we will remove edges from H till the graph (P,Q,H)

has an ε-induced partition.
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Step 1: Getting an induced partition. First, fix an arbitrary perfect matching (in E)

between each selected pair, and (a) remove all edges from H that do not belong to any of these

perfect matchings. Then, (b) remove all edges that belong to more than one of the graphs induced

by the selected pairs. Let the new set of edges be called H1.

Step 2: Pruning small induced sets. At this point, the collection of sets of edges {(A×B)∩H1 :

λ̃A,B = 1} forms an induced partition of the graph (P,Q,H1). The only problem is that some of the

sets in this partition may be too small. We will count a selected pair (A,B) as “good” if it induces

at least (1− δ)εn edges in H1, and “bad” otherwise. Remove all edges from H1 that are induced by

a bad selected pair to obtain the set H2. The set (P,Q,H2) now has a ((1− δ)ε)-induced partition.

Let k denote the number of good selected pairs; then |H2| (and hence UI(n, (1 − δ)ε)) is at least

k(1− δ)εn.

We will now show that Pr[k > δZ∗/4] > 0. Consider a relevant pair (A,B) with λA,B > 0. Now,

Pr[λ̃A,B = 1] = δλA,B/2. Consider the perfect matching F chosen between this pair (arbitrarily) in

step 1 and consider any edge e in this matching. This edge will not be pruned away in step 1(a).

By the feasibility constraint in the dual, ∑
(A′,B′)∈C:(A,B) 6=(A′,B′),e∈E∩(A′×B′)

λA′,B′ < 1.

Hence, the probability that this edge will belong to a selected pair other than (A,B) is less than

δ/2. Thus, the expected number of edges in H1 ∩ (A×B) is more than (1− δ/2)εn. The maximum

number of edges in H1 ∩ (A × B) is εn. Applying Markov’s inequality to the random variable

εn− |H1 ∩ (A×B)|, we get:

Pr[|H1 ∩ (A×B)| ≥ (1− δ)εn | λ̃A,B = 1] > 1/2.

Multiplying with the probability that λ̃A,B = 1, we obtain:

Pr[A relevant pair (A,B) is both selected and good] > δλA,B/4.

Summing over all relevant pairs (A,B), we get E[k] > δZ∗/4, and hence (using the probabilistic

method again), there must exist a set of choices for λ̃A,B which make k > δZ∗/4. For this choice,

we know that H2 (and hence UI(n, (1− δ)ε)) is at least Z∗δ(1− δ)εn/4.

This concludes the proof of Lemma 64.

Finally, we note that an upper bound on the size of ε-covers directly yields an upper bound on the

communication complexity of achieving an additive εn error approximation to bipartite matching,

denoted by CC+(ε, n).

Lemma 67 CC+(ε, n) ≤ LC(ε, n).

Proof: Let G1 = (P1, Q1, E1) denote the bipartite graph with |P | = |Q| = n that Alice holds and

let G2 = (P2, Q2, E2) be the graph that Bob holds. Let G′1 be a ε-matching cover of G1. Consider



CHAPTER 3. MATCHING COVERS AND STREAMING 71

an empty cut (A1 ∪B1, A2 ∪B2) corresponding to a maximum matching M ′ in (G′1 ∪G2), i.e. such

that |M ′| = |B1| + |A2|. Let M∗ denote a maximum matching in (A1 × B2) ∩ E1. Since G′1 is an

ε-matching cover, we have that |M∗| < εn.

Thus, since the maximum matching M in G1 ∪G2 is bounded by |B1|+ |A2|+ |M∗| we have

|M | − |M ′| ≤ (|B1|+ |A2|+ |M∗|)− (|B1|+ |A2|) ≤ εn.



Chapter 4

1− 1/e lower bound and multipass

algorithms

In this chapter we build upon our techniques introduced in Chapter 3 to obtain the following results.

First, we prove an optimal impossibility result for approximating matchings in a single pass in the

streaming model. In particular, we show that no algorithm that uses quasilinear space can achieve

a 1 − 1/e + δ approximation to the size of the matching in a single pass for any constant δ > 0.

We then devise a simple multipass algorithm for approximating maximum matchings using linear

space that improves upon the state of the art. Finally, we show how our techniques apply to the

Gap-Existence problem, which we define below.

The problem of approximating maximum matchings in bipartite graphs has received signifi-

cant attention recently, and very efficient small-space solutions are known when multiple passes

are allowed[28, 68, 26, 3, 4, 62]. The best known algorithm due to Ahn and Guha [3] achieves a

1 − O(
√

log log k/k) in k passes for the weighted as well as the unweighted version of the problem

using Õ(kn) space.

Single pass algorithms. All algorithms mentioned above require at least two passes to achieve

a nontrivial approximation. The problem of approximating matchings in a single pass has recently

received significant attention[35, 62]. Two natural variants of this problem have been considered in

the literature: (1) the edge arrival setting, where edges arrive in the stream and (2) the vertex arrival

setting, when vertices on one side of the graph arrive in the stream together with all their incident

edges. The latter setting has also been studied extensively in the context of online algorithms, where

each arriving vertex has to either be matched irrevocably or discarded upon arrival.

In a single pass, the best known approximation in the edge arrival setting is still 1/2, achieved

by simply keeping a maximal matching (this was recently improved to 1/2 + ε for a constant ε > 0

under the additional assumption of random edge arrivals[62]). We showed in Chapter 3 that no

Õ(n) space algorithm can achieve a better than 2/3 approximation in this setting.

In the vertex arrival setting, the best known algorithms achieve an approximation of 1 − 1/e.

72
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The assumption of vertex arrivals allows one to leverage results from online algorithms [56, 67, 50] .

In the online model vertices on one side of the graph are known, and vertices on the other side arrive

in an adversarial order. The algorithm has to either match a vertex irrevocably or discard upon

arrival. The celebrated algorithm of Karp-Vazirani-Vazirani achieves a 1−1/e approximation for the

online problem by crucially using randomization (additionally, this algorithm only uses Õ(n) space).

A deterministic single pass Õ(n) space 1− 1/e approximation in the vertex arrival setting was given

in Chapter 3 (such a deterministic solution is provably impossible in the online setting). We also

showed by analyzing a communication complexity problem that no single-pass streaming algorithm

that uses Õ(n) space can obtain a better than 3/4 approximation in the vertex arrival setting. The

protocol provided a protocol for this communication problem that matches the 3/4 approximation

ratio, suggesting that new techniques would be needed to prove a stronger impossibility result.

Lop-sided graphs. The techniques for matching problems outlined above yield efficient solutions

that use Õ(|P | + |Q|) space, where |P | and |Q| are the sizes of the sets in the bipartition. While

this is a reasonable space bound to target, this can be prohibitively expensive for lop-sided graphs

that arise, for example, in applications to ad allocations. Here the P side of the graph corresponds

to the set of advertisers, and the Q side to the set of impressions [21]. An important constraint is

that the set of impressions Q may be so large that it is not feasible to represent it explicitly, ruling

out algorithms that take O(|P |+ |Q|) space.

Data model for lop-sided graphs. Since the set Q cannot be represented explicitly, it is im-

portant to fix the model of access to Q. Here we assume the following scenario. Vertices in P arrive

in the stream in an adversarial order, together with a representation of their edges. We make no as-

sumptions on the way the edges are represented. For example, some edges could be stored explicitly,

while others may be represented implicitly. We assume access to the following two functions:

1. LIST-NEIGHBORS(u, S) which, given a set of vertices S ⊆ Q and a vertex u ∈ P , lists the

neighbors of u in S;

2. NEW-NEIGHBOR(u, S) which, given a set of vertices S ⊆ Q and a vertex u ∈ P outputs a

neighbor of u outside of the set S.

In this chapter, we improve upon the best known bounds for both the single pass and multi-pass

settings. In the single pass setting, we prove an optimal impossibility result for vertex arrivals, which

also yields the best known impossibility result in the edge arrival model. For the multipass setting,

we give a simple algorithm that improves upon the approximation obtained by Ahn and Guha in the

vertex arrival setting, as well as yields an efficient solution to the Gap-Existence problem considered

by Charles et al[21].

Lower bounds. In this paper we build upon the communication complexity approach taken in

Chapter 3 to obtain lower bounds via what can be viewed as multi-party communication complexity.

Our main result is an optimal bound on the best approximation ratio that a single-pass Õ(n) space

streaming algorithm can achieve in the vertex arrival setting:
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Theorem 68 No (possibly randomized) one-pass streaming algorithm that outputs a valid matching

with probability at least 3/4 can obtain a better than 1 − 1/e + δ-approximation to the maximum

matching, for any constant δ > 0, unless it uses at least n1+Ω(1/ log logn) space, even in the vertex

arrival model.

We note that this bound is matched by the randomized KVV algorithm[56] for the online problem

and the deterministic Õ(n) space algorithm of Chapter 3. One striking consequence of our bound

is that no single-pass streaming algorithm can improve upon the more constrained online algorithm

of KVV, which has to make irrevocable decisions, unless is uses significantly more than Õ(n) space.

Our bound also improves upon the best known bound of 2/3 for small space one-pass streaming

algorithms in the edge arrival model.

We showed in Chapter 3 via an analysis of the natural two-party communication problem that no

one-pass streaming algorithm that uses Õ(n) space can achieve approximation better than 2/3 in the

edge arrival setting and 3/4 in the vertex arrival setting. Furthermore, we also gave a communication

protocol that proves the optimality of both bounds for the communication problem, thus suggesting

that a more intricate approach would be needed to prove better impossibility results.

In this chapter we prove the optimal bound of 1−1/e on the best approximation that a single-pass

Õ(n) space algorithm can achieve even in the vertex arrival setting. While the lower bounds from

Chapter 3 follow from a construction of a distribution on inputs that consists of two parts and hence

yields a two-party communication problem, here we obtain an improvement by constructing hard

input sequences that consist of k parts instead of two, getting a lower bound that approaches 1−1/e

for large k. This can be viewed as multi-party communication complexity of bipartite matching, but

we choose to present our lower bound in different terms for simplicity. We note that extending the

approach of Chapter 3 sto a multi-party setting requires a substantially different construction. We

discuss the difficulties and our approach to overcoming them in section 4.1.

Upper bounds. We show that a simple algorithm based on fractional load balancing achieves the

optimal 1− 1/e approximation in a single pass and 1− 1√
2πk

+ o(k−1/2) approximation in k passes,

improving upon the best known algorithms for this setting:

Theorem 69 There exists an algorithm for approximating the maximum matching M in a bipartite

graph G = (P,Q,E) with the P side arriving in the stream to factor 1 − e−kkk−1/(k − 1)! =

1− 1√
2πk

+O(k−3/2) in k passes using O(|P |+ |Q|) space and O(m) time per pass.

Remark 70 Note that our algorithm extends trivially to the case when vertices in P have integral

capacities Bu, u ∈ P , corresponding to advertiser budgets.

The gap-existence problem. In [21] the authors give an algorithm for the closely related gap-

existence problem. In this problem the algorithm is given a bipartite graph G = (A, I,E), where

A is the set of advertisers with budgets Ba, a ∈ A and I is the set of impressions. The graph is

lopsided in the sense that |I| � |A|. A matching M is complete if |M ∩ δ(i)| = 1 for all i ∈ I and

|M ∩ δ(a)| = Ba for all a ∈ A. The gap-existence problem consists of distinguishing between two

cases:
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(YES) there exists a complete matching with budgets Ba;

(NO) there does not exist a complete matching with budgets b(1− ε)Bac.

The approach of [21] is via sampling the I side of the graph, and yields a solution that allows for

non-trivial subsampling when the budgets are large. In particular, they obtain an algorithm with

runtime O
(
|A| log |A|

ε2 · |I|
mina |Ba|

)
, which is sublinear in the size of the graph when all budgets are

large. In section 4.4 we improve significantly upon their result, showing

Theorem 71 Gap-Existence can be solved in O(log(|I|·
∑
a∈Ba Ba)/ε2) passes using space O(

∑
a∈ABa/ε).

The time taken for each pass is linear in the representation of the graph.

It should also be noted that the result of [21] could be viewed as a single pass algorithm, albeit with

the stronger assumption that the arrival order in the stream is random.

Organization: In section 4.1 we present the framework of our lower bound, which relies on a special

family of graphs that we refer to as (d, k, δ)-packing. We then give a construction of a (d, k, δ)-packing

in section 4.2. Our basic multipass algorithm for approximating matchings is presented in section 4.3,

and the algorithm for Gap-existence is given in section 4.4.

4.1 Single pass lower bound

In this section we define the notion of a (d, k, δ)-packing, our main tool in proving the lower bound.

A (d, k, δ)-packing is a family of graphs parameterized by the set of root to leaf paths in a d-ary

tree of height k, inspired by Ruzsa-Szemerédi graphs, i.e. graphs whose edge set can be partitioned

into large induced matchings. In this section we will show that existence of a (d, k, δ)-packing with

a large number of edges implies lower bounds on the space complexity of achieving a better than

1− 1/e approximation to maximum matchings in a single pass over the stream.

We first recall the definition of induced matchings and ε-Ruzsa-Szemerédi graphs.

Definition 72 Let G = (P,Q,E) denote a bipartite graph. A matching F ⊆ E that matches a set

A ⊆ P to a subset B ⊆ Q is induced if E ∩ (A×B) = F .

Definition 73 A bipartite graph G = (P,Q,E) with |P | = |Q| = n is an ε-Ruzsa-Szemerédi graph

if one can write E =
⋃k
i=1Mi, where each Mi is an induced matching and |Mi| = εn for all i.

Several constructions of Ruzsa-Szemerédi graphs with a large number of edges are known. We will

use the techniques pioneered in [29], where the authors construct ε-Ruzsa-Szemerédi graphs with

constant ε < 1/3, and the extensions developed in Chapter 3, where we proved that

Theorem 74 [35] For any constant δ ∈ (0, 1/2) there exist bipartite (1/2−δ)-Ruzsa-Szemerédi graphs

on 2n nodes with n1+Ω(1/ log logn) edges.
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In the rest of the section we define a distribution on input instances for our problem of approxi-

mating maximum matchings in a single pass in the streaming model. We start by providing intuition

for our distribution. It is useful to first recall how the lower bound of 3/4 for the same setting was

proved in Chapter 3 (see section 3.7). The stream consists of two ‘phases’. In the first phase, the

algorithm is presented with a graph G = (P,Q,E) such that |P | = n, |Q| = 2n and the edge set E

can be represented as a union of induced 2-matchings Mi, i = 1, . . . , k, k = nΩ(1/ log logn), where Mi

matches a subset Ai ⊆ P such that |Ai| ≥ (1/2− δ)n to a subset Bi ⊆ Q, |Bi| = (1± δ)n. Then an

index i is chosen uniformly at random from [1 : k], and in the second part of the stream a matching

arrives that matches a new set of vertices P ∗ to Q∗ = Q \ Bi, making the edges of the (uniformly

random) matching Mi crucial for constructing a better than 3/4 approximation to the maximum

matching in the whole instance. It is then shown, using an additional randomization trick, that the

algorithm essentially needs to store Ω(1) bits for each edge in each induced matching Mi if it beats

the 3/4 approximation ratio.

We generalize this approach by constructing hard distributions on inputs that consist of multiple

phases, for which any algorithm that achieves a better than 1 − 1/e approximation is essentially

forced to remember Ω(1) bits per edge of the input graph. Ensuring that this is the case is the main

challenge in generalizing the construction to a multiphase setting. We address this challenge using

the notion of a (d, k, δ)-packing, which we now define.

4.1.1 (d, k, δ)-packing

Let T denote a d-ary tree of height k. A (d, k, δ)-packing will be defined as a function mapping

root-to-leaf paths p in T to bipartite graphs on the vertex set (T, S), where T and S are the two

sides of the bipartition. We will write G(p) to denote the graph that a path p is mapped to by the

packing.

The vertex set of G(p) for each root-to-leaf path p will always be (T, S), so that the choice of p

determines the set of edges of the graph. We partition the set S as S = S0∪ . . .∪Sk−1∪Sk (the sets

Si, i = 0, . . . , k are disjoint and correspond to k + 1 ‘phases’ of the input instance). We will always

have |T | = (1 +O(δ))|S| for an arbitrarily small constant δ > 0.
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d-ary tree T

u0

u1

u2w

Hw
2

Figure 4.1: A root to leaf path in T . Thick solid edges represent the edges of the path (r = u0, u1, u2).
Dashed edges incident on nodes on the path P correspond to subgraphs Hw

i for i = 0, 1 and w a
child of ui.

Tu0 Tu1

S0

Hu1
0

Su1
0 Su2

0 S1 Su2
1

Tu2

S2

Figure 4.2: Subgraphs (Tui , Si) that arrive in the stream. The edges of induced near-regular sub-
graph Hu1

0 induced by (Tu0 \ Tu1) ∪ Su1
0 are shown in bold.

We now associate several sets of vertices on the T and S side of the bipartition with each node

in the binary tree T . Let u ∈ T be a node at distance i ∈ [0, k] from the root. The following sets

are associated with u:

1. a subset Tu ⊆ T , such that if w is a child of u in T , one always has Tw ⊂ Tu;

2. for each j ∈ [0 : i− 1], a set Suj , such that if w is a child of u in T , one always has Swj ⊂ Suj .

To simplify notation, we set Suii := Si.

We now describe the hard inputs that we will use. The input sequence is split into k+ 1 phases.

The i-th phase corresponding to the i-th vertex on the path p from root to a leaf, where i = 0, . . . , k

(see Fig. 4.1). During phase i the edges of the subgraph induced by Gi(p) = (Tui , Si, Ei(p)) arrive

in the stream. Crucially, the graph Gi(p) will be a union of induced sparse subgraphs indexed by

children of ui.

This setup is illustrated in Fig. 4.1, where (a) all edges of the path p = (r = u0, u1, u2) are shown

in bold and (b) all edges of T that are incident on nodes of p are dashed since the corresponding
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subgraphs Hw
i arrive in the stream. The path p yields a nested sequence T = Tu0 ⊃ Tu1 ⊃ . . . Tuk

shown in Fig. 4.2.

The reason behind the fact that this construction presents a hard instance for small space algo-

rithms is as follows. At each step i the algorithm is presented with all the subgraphs Hw
i , of which

all except the uniformly random one (corresponding to the next node on the path p, i.e. H
ui+1

i )

will be useful for constructing a large matching in the whole instance. Large here means a matching

of size at least a (1 − (1 − 1/k)k + δ′) fraction of the maximum for some constant δ′ > 0. To

show that only these special subgraphs are useful for constructing a large matching, we will later

exhibit a directed cut of appropriate size in the graph G(p) that consists only of the edges of H
ui+1

i ,

i = 0, . . . , d − 1 (see Lemma 80). The key to exhibiting such a cut is the special structure of the

sets Suki for i = 0, . . . , k− 1 that we define in property (2) of (d, k, δ)-packings below. An additional

randomization trick will allow us to show that a construction of a (d, k, δ)-packing immediately yields

a lower bound of essentially Ω(dn) on the space required for a single-pass algorithm to achieve an

approximation ratio better than 1− (1− 1/k)k + δ′ for a constant δ′ > 0.

We now transform the intuitive description above into a formal argument. We will use the

following

Definition 75 We call a bipartite graph G = (P,Q,E) (a, b, δ)-almost regular if (1) at most a δ

fraction of vertices in P has degree outside of [(1 − δ)a, (1 + δ)a], and no vertex has degree larger

than (1 + δ)a and (2) at most a δ fraction of vertices in Q has degree outside of [(1− δ)b, (1 + δ)b],

and no vertex has degree larger than (1 + δ)b.

Definition 76 ((d, k, δ)-packing) A mapping from the set of root-to-leaf paths p in a d-ary tree T
to the set of bipartite graphs G(p) = (T, S,E(p)) is a (d, k, δ)-packing if the following conditions are

satisfied.

Let p = (r = u0, u1, . . . , uk) be a root-to-leaf path in T . Let G(p) = (T, S,E(p)) denote the graph

that the path p is mapped to. Then the nested sequences of sets T = Tu0 ⊃ Tu1 ⊃ . . . ⊃ Tuk−1 ⊃ Tuk ,

and Si = Suii ⊃ S
ui+1

i ⊃ . . . ⊃ Suki satisfies the following properties for all i = 0, . . . , k − 1:

1. For a constant γ > 0, one has for every child w of ui in the tree T that the subgraph Hw
i induced

by (Tui \ Tw) ∪ Swi is ((k − 1)γ, kγ, δ)-almost regular.

2. there exists a set Zui ⊂ T such that |Zui | ≤ O(δ/k2)|Tui |, and the subgraph induced by (Tui \
(Tuk ∪ Zui)) ∪ Suki contains only the edges of H

ui+1

i .

3. there exists a matching of at least a 1− δ fraction of Si to Tui \ Tui+1 ;

4. |Tui | = (1+O(δ))(1−1/k)−k+in and |Suji | = (1+O(δ))(1−1/k)−k+jn/k for all j = i, . . . , k−1.

5. there exists a matching of at least a 1− δ fraction of Sk to Tuk .

Furthermore, for each i = 0, . . . , k the edge set of the subgraph induced by Tui ∪ Si only depends on

the nodes of p at distance at most i from the root.
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Remark 77 One could replace property (1) with the requirement that Hw
i be a matching of a 1−O(δ)

fraction of Swi to Tui \ Tw, and still get a lower bound that tends to 1− 1/e for large k, albeit with

slightly worse convergence. We prefer to use the more complicated definition to obtain the clean

approximation ratio 1− (1− 1/k)k +O(δ), where δ can be chosen an arbitrarily small constant, for

any k > 1.

In what follows we will often refer to properties of (d, k, δ)-packings by number, without specifying

each time that Definition 76 is meant.

In the rest of this section we will show that existence of large (d, k, δ)-packings implies space

lower bounds for approximating matchings in one pass in the streaming model, thus proving

Theorem 78 If a (d, k, δ)-packing with Θ(n) vertices exists for sufficiently large constant k > 0 and

δ = O(1/k3), then no one-pass streaming algorithm can obtain a better than (1 − (1 − 1/k)k + δ′)-

approximation for any constant δ′ > 0 in space o(nd), even when vertices on one side of the graph

arrive in the stream together with all their edges.

Together with the construction of a (d, k, δ)-packing with d = nΩ(1/ log logn) and δ = O(1/k3)

given in section 4.2, this will yield a proof of Theorem 68.

4.1.2 Distribution over inputs

We now formally define the (random) input graph I = (P,Q,E) based on a (d, k, δ)-packing. We

will always have P =
⋃k
i=0 Si and Q = T , but it will be useful to have notation for the parts P

and Q of the bipartition of I. Let p = (r = u0, u1, . . . , uk) denote the path from the root of T
to a uniformly random leaf. Let G = G(p) denote the graph that the path p is mapped to by our

(d, k, δ)-packing.

Let T = Tu0 ⊃ Tu1 ⊃ Tu2 ⊃ . . . ⊃ Tuk denote the sequence of subsets of T corresponding to p.

For each i = 0, . . . , k − 1 and each child w of ui let Hw
i = (Xw

i , Y
w
i , E

w
i ) denote the almost regular

graph induced by Xw
i ∪ Y wi , where Xw

i = Tui \ Tw and Y wi = Swi .

We now introduce some randomness into the graph Hw
i . Let H̄w

i be obtained from Hw
i via the

following subsampling process. For each i and w let Kw
i denote a uniformly random subset of Xw

i of

size δ|Xw
i | for a small constant δ. Let bi,wx = 1 if x ∈ Kw

i and 0 o.w. Then for each x ∈ Xw
i the graph

H̄w
i contains all edges incident on x in Hw

i if bi,wx = 0 and none of the edges incident on x otherwise.

For each i = 0, . . . , k − 1 let bi = (b
i,ui+1
x )x∈Xiui+1

. Note that H̄w
i is a ((k − 1)γ, kγ,O(δ))-almost

regular. For each i = 0, . . . , k − 1 let Ḡi(p) = (Tui , Si, Ēi(p)) denote the subgraph with bipartition

(Tui , Si) such that Ēi(p) is the union of the edges of all graphs H̄w
i over all children w of ui. Let

Gk(p) = (Tuk , Sk, Ēk(p)) be a subgraph that consists of a perfect matching between Sk and Tuk

(see Fig. 4.2). The instance I is the union of Ḡi(p) over i = 0, . . . , k.

We now specify the order in which the vertices appear in the stream. The stream will consist of

k + 1 phases. For each i = 0, . . . , k the vertices and edges of Ḡi(p) arrive in phase i in an arbitrary

order.

This completes the description of the input. We now turn to proving Theorem 78. We will need

the following claim
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Claim 79 G contains a matching of size at least (1−O(δ))(1− 1/k)−kn.

Proof: It is sufficient to match a 1 − δ fraction of Si to Tui \ Tui+1 for all i = 0, . . . , k − 1, as

guaranteed by property (3), and match the vertices in Tuk to Sk. This matches a 1−O(δ) fraction

of T , and hence yields the required matching.

4.1.3 Bounding performance of a small space algorithm

By Yao’s minimax principle it is sufficient to upper bound the performance of a deterministic small

space algorithm that succeeds with probability at least 1/2. To do that, we bound the size of

the matching that a small space algorithm can output at the end of the stream. Let E∗ denote

the set of edges that an algorithm outputs at the end of the stream. We first upper bound the

approximation ratio that the algorithm obtains in terms of the number of edges in E(H
ui+1

i ) ∩ E∗,
where p = (u0, u1, . . . , uk) is the uniformly random path from the root to a leaf in T .

Lemma 80 The size of the matching output by the algorithm is bounded by

(
(1− 1/k)−k − 1

)
n+

k−1∑
i=0

|E(H
ui+1

i ) ∩ E∗|+O(δk2n).

Proof: Consider the cut (A,B), where A =
(
T 0 \ (Tuk ∪

⋃k−1
i=0 Z

ui)
)
∪
⋃k−1
i=0 (Si \ Suki ) and B =

Tuk ∪ S∗ ∪
⋃k−1
i=0 S

uk
i ∪

⋃k−1
i=0 Z

ui . Here Zui are the sets whose existence is guaranteed by property

(2).

By the maxflow/mincut theorem, the size of the matching output by the algorithm is bounded

by |A ∩ P | + |B ∩ Q| + |((A ∩ Q) × (B ∩ P )) ∩ E∗|. Furthermore, by property (2) in Definition 76

for the sets A and B one has, using the fact that there are no edges from S∗ to T \ Tuk that

((A ∩Q)× (B ∩ P )) ∩ E ⊂
⋃k−1
i=0 E(H

ui+1

i ), and hence

|((A ∩Q)× (B ∩ P )) ∩ E∗| ≤
k−1∑
i=0

|E(H
ui+1

i ) ∩ E∗|. (4.1)

Combining these estimates, we get that the size of the matching output by the algorithm is bounded

by ∣∣∣∣∣
k−1⋃
i=0

(Si \ Suki )

∣∣∣∣∣+ |Tuk |+
k−1∑
i=0

|Zui |+
k−1∑
i=0

|E(H
ui+1

i ) ∩ E∗|,

Recall that |Si| = (1 + O(δ))(1 − 1/k)−k+i and |Suki | = (1 + O(δ))n/k by property (4). Thus, the

first term is at most

(1 +O(δ))

(
k−1∑
i=0

(1− 1/k)−k+i − 1

)
n/k = (1 +O(δ))

(
(1− 1/k)−k

1− (1− 1/k)k

1− (1− 1/k)
− k
)
n/k

= (1 +O(δ))((1− 1/k)−k − 2)n.
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Recalling that Tuk = (1 + O(δ))n by property (4) and |Zui | = O(kδ)n by property (2) completes

the proof.

We now show that no small space algorithm that is correct with probability at least 1/2 can

output more than a vanishingly small fraction of edges in
⋃k−1
i=0 E(H

ui+1

i ). Recall that the vectors of

bits flipped in the subsampling process that correspond to vertices (and their edge neighborhoods)

in H̄
ui+1

i are denoted by bi.

Lemma 81 Let I denote the distribution on input graphs obtained from a (d, k, δ)-packing for con-

stant k and δ = O(1/k3). Let A be a o(nd) space algorithm that is correct with probability at least

1/2. Then for each i = 0, . . . , k − 1 the expected number of edges in E(
⋃k−1
i=0 H

ui+1

i ) retained by A

conditional on A being correct is o(n).

Proof:

We give the algorithm the following information for free. At the end of phase i the algorithm

knows all vectors u1, . . . ,ui on the path chosen in the distribution (of course, the algorithm does

not know ui+1). This only makes the algorithm more powerful.

Let Gi denote the set of phase i graphs, i.e. the set of possible graphs on the vertices Tui ∪ Si.
Since the algorithm knows all vectors u1, . . . ,ui, these graphs are solely determined by the choices

made in the subsampling process in Hw
i for each w. Denote the state of the memory of the algorithm

after i-th phase for i = 0, . . . , k − 1 by mi. For each i between 0 and k − 1 we denote the function

that maps mi−1 and the graph Gi = (Tui , Si, Ei) ∈ Gi to mi by φi : {0, 1}s × Gi → {0, 1}s, where s

is the number of bits of space that the algorithm uses. Wlog assume m−1 = 0.

Denote by E∗ the set of edges that the algorithm outputs at the end of the stream. Denote the

event that the algorithm is correct by C. Let E∗i := E∗ ∩ (Si × Q). Let Mi ∈ {0, 1}s denote the

(random) state of the memory of the algorithm at the end of phase i. Let D := {|E∗| = Ω(n)} ∧ C
and Di = {|E∗i | = Ω(1/k)n} ∧ C.

We prove the lemma by contradiction. Suppose that conditional on being correct, the algorithm

retains Ω(n) edges of
⋃k−1
i=0 E(H

ui+1

i ). Then a simple averaging argument using the assumption that

Pr[C] ≥ 1/2 shows that Pr[D] = Ω(1) and there exists j ∈ [0 : k − 1] such that Pr[Dj ] ≥ C/k for a

constant C > 0. We will now concentrate on phase j. Denote the set of good memory configurations

by G = {(mj−1,mj) ∈ {0, 1}s : Pr[Dj |Mj−1 = mj−1,Mj = mj ] ≥ C/(2k))}. Thus, G is a set of

memory configurations in the j− 1-st and j-th phases such that conditional on (Mj−1,Mj) ∈ G the

algorithm is likely to output a lot of edges of
⋃k−1
i=0 E(H

ui+1

i ). Then

Pr[(Mj−1,Mj) ∈ G] + (C/(2k))Pr[(Mj−1,Mj) 6∈ G] ≥ Pr[Dj ] ≥ C/k,

so

Pr[(Mj−1,Mj) ∈ G] ≥ C/(2k). (4.2)

Before proceeding, we prove an auxiliary lemma. Recall that in the definition of a (d, k, δ)-

packing for all d children w of ui the graph H̄w
i is obtained from Hw

i by keeping edges incident to a

uniformly random subset of a 1−δ fraction of nodes in Xw
i . Thus, there are at least

( |Xwi |
δ|Xwi |

)d
= 2ηdn
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graphs in Gi, where η > 0 is a constant. The following claim follows similarly to Claim 54 (see

section 3.7). We give a proof here for completeness.

Claim 82 Let α > 0 be a constant and let F be any subset of Gi. Let GF denote a set of edges that

are contained in at least 1/2 of the graphs in F . Let J ⊆ [1 : d] be the set of indices such that GF

contains at least α|Xw
i | edges from Hw

i−1, where w is the j-th child of ui−1, for each j ∈ J . Then if

|F | ≥ 2(η−o(1))dn, |J | = o(d).

Proof: Let |J | = d1. Recall that by property (1) the maximum degree in Hw
i is bounded above by

c := (1 +O(δ))γk. Thus, the number of graphs that can be in F is bounded by

(
(1− α/c)|Xw

i |
δ|Xw

i |

)d1
(
|Xw

i |
δ|Xw

i |

)d−d1

=

(
2−Ω(|Xwi |)

(
|Xw

i |
δ|Xw

i |

))d1
(
|Xw

i |
δ|Xw

i |

)d−d1

= 2−Ω(d1n)2ηdn.

It then follows that if d1 = Ω(d), we have |F | ≤ 2(η−Ω(1))dn, contradicting our assumption on

the size of F .

Let Ej denote the event that |φ−1
Mj−1

(Mj)| ≥ 2(η−o(1))dn. A simple counting argument shows that

for a uniformly random graph H ∈ Gj we have Pr[Ēj ] = o(1) (here we use the fact that coin flips

that determine which edges belong to Hw
i−1 are independent of Mj−1). Combining this with (4.2),

we get

Pr[(Mj−1,Mj) 6∈ G] + Pr[Ēj ] ≤ 1− C/(2k) + o(1) < 1.

Thus, there exists m∗j−1,m
∗
j ∈ {0, 1}s such that the following properties hold

(P1) Pr[Dj |Mj−1 = m∗j−1,Mj = m∗j ] ≥ C/k;

(P2) |φ−1
m∗j−1

(m∗j )| ≥ 2(η−o(1))dn.

We can now complete the proof. For brevity let M = {Mj−1 = m∗j−1,Mj = m∗j}. Recall that

E∗j is the set of edges from H
uj+1

j that the algorithm outputs at the end of the stream. We have

EE∗j
[Pr[Dj |M]] ≥ C/k,

and so there exists Ê∗j such that Pr[Dj |M ∧ E∗j = Ê∗j ] ≥ C/k.

Now recall that Dj = {|E∗j | = Ω(1/k)n} ∧ C. Thus, we have isolated memory configurations

m∗j−1 and m∗j and a set of edges Ê∗j of size Ω(1/k)n such that the algorithm can output Ê∗j and be

correct with probability at least C/k conditional on Mj−1 = m∗j−1 and Mj = m∗j !

Finally, note that conditional on M∧ {E∗j = Ê∗j } all graphs H ∈ φ−1
i (m∗) are equiprobable.

Now using property P2 above together with Claim 82 we conclude that |Ê∗j | = o(n), which is a

contradiction.

We can now give

Proof of Theorem 78: The proof of Theorem 78 now follows by combining Claim 79, Lemma 80

and Lemma 81 after setting δ = cδ′/k2 for a small constant c > 0.
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4.2 Construction of a (d, k, δ)-packing

In this section we give a construction of a (d, k, δ)-packing on Θ(n) nodes with d = nΩ( 1
log logn )

for any constant k and sufficiently small constant δ > 0. Our construction will use many of the

techniques introduced in [29] and extensions of these techniques obtained in Chapter 3.

We first introduce notation. As before, the sides of the bipartition of the graph G(p) that we

need to construct are denoted by T and S = S0 ∪ . . . ∪ Sk. We use the notation [a] = {1, . . . , a} for

integer a ≥ 1. In our construction the T = T 0 side of the graph is identified with a hypercube [m4]m

for a value of m to be chosen later, and the sets Si, i = 0, . . . , k− 1 are identified with a subsampled

version of the hypercube [m4]m. The vertices of the last set Sk do not have any special structure.

Vertices x ∈ T or y ∈ Si will often be treated as points x, y ∈ [m4]m. Each node u of T (except the

root) will be labeled with a binary vector u ∈ {0, 1}m. We will write |u| to denote the Hamming

weight of u. For x ∈ T and u ∈ T we use the dot product notation (x,u) =
∑m
i=1 xi ·ui ∈ Z. For an

interval [a, b], where a, b are integers, and an integer number W we will write [a, b] ·W to denote the

interval [a ·W, b ·W ]. Finally, for an integer i and an integer W we will write i mod W to denote

the residue of i modulo W that belongs to [0,W − 1].

For convenience of the reader, we first give an informal outline of the construction. Given a

path p = (u0, u1, . . . , uk) from the root of T to a uniformly random leaf, we construct the packing as

follows. First, we associate with each node of T other than the root a subset of {0, 1}m (i.e. a binary

vector) from a family of subsets of fixed cardinality and with small intersections. Since the subsets

corresponding to nodes of T have small intersections, one can think of them as nearly orthogonal

vectors.

We then traverse the path p from the root to the leaf and at step i, i = 0, . . . , k−1 we essentially

set1

Tui+1 := {x ∈ Tui : (x,ui+1) mod W ∈ [1/k, 1] ·W},

where W is an appropriately chosen parameter. Thus, traversing a root to leaf path amounts to

repeatedly cutting the hypercube with hyperplanes whose normal vectors are almost orthogonal.

At step i the set Si is identified with an appropriately subsampled copy of Tui , and a Ruzsa-

Szemerédi graph is constructed on (Tui , Si). At step i, besides defining the new set Tui+1 , the

vector ui+1 (corresponding to the next vertex on the path) is used to define a subset S
ui+1

j ⊆ Suij
for all j ≤ i by similarly cutting Suij with a hyperplane. The most important property of our

construction will be the fact that when we reach the leaf uk, most of the edges going out of Sukj
for j = 0, . . . , k − 1 will be contained in Tuk , yielding property (2) of (d, k, δ)-packings. Our main

contribution here is the approach of constructing a recursive sequence of graphs by cutting the

hypercube by nearly orthogonal hyperplanes, which allows us to derive property (2).

We now give the details of the construction. We will use the following lemma, whose proof

is implicit in the proofs of lower bounds from Chapter 3 (see section 3.7), which is a convenient

formulation of the construction of error correcting codes with fixed weight in [66]

1This statement is slightly imprecise in the interest of clarity.
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Lemma 83 [35] For sufficiently large m > 0, any constant ε ∈ (0, 1) and constant γ ∈ (0, 2) there

exists a family F of subsets of [m] of size εm with intersection at most γε2m such that 1
m log |F| ≥

cε,γ − o(1).

Our main lemma is

Lemma 84 For any constants k, δ′ > 0 there exists a (d, k, δ′)-packing on Θ(n) nodes with d =

nΩ( 1
log logn ).

Proof: We associate with each node of the d-ary tree T of height k a vector v from a family of

almost orthogonal binary vectors of equal weight whose existence is guaranteed by Lemma 83. Since

the number of nodes in such a tree is at most dk+1, we can afford to set d = 2Ω(m) since k is constant.

Besides associating with each node u ∈ T a vector u, we also associate with u a random variable Uu

that is uniformly distributed over the integers between 0 and W − 1, where W is a parameter that

will be chosen later. The variables Uu and Uu′ are independent for u 6= u′.

Let X ′ = Y = [m4]m for some integer m > 0. Let X be a uniformly random subset of X ′

where each point of X ′ appears independently with probability 1/k. We will refer to vertices in X

and Y as points in [m4]m. We now specify how a graph satisfying the properties in definition 76 is

constructed for a given path p = (u0, u1, . . . , uk) denote a path from the root of T to a leaf of T .

The path p induces a decomposition of the vertex set T as follows. For all i = 0, . . . , k − 1

Tui = {y ∈ Y : (y,uj) mod W ∈ [1/k, 1) ·W, for all j ∈ [1 : i]}

Si = {x ∈ X ′ : (x,uj) mod W ∈ [1/k, 1) ·W, for all j = [1 : i]}.
(4.3)

Also, let

Suij = {x ∈ Sj : (x,ul) mod W ∈ [1/k, 1) ·W, for all l ∈ [1 : i]}, for all j = 0, . . . , i− 1 (4.4)

The set Sk is a disjoint set of vertices connected to Tuk by a perfect matching.

Consider fixed i between 0 and k − 1. For all children w of ui let

RY (w) = {y ∈ Tui : ((y,w) + Uw) mod W ∈ [0, 1/k] ·W}

WY (w) = {y ∈ Tui : ((y,w) + Uw) mod W ∈ ([1/k, 1/k + δ] ∪ [1− δ, 1)) ·W}

BY (w) = {y ∈ Tui : ((y,w) + Uw) mod W ∈ [1/k + δ, 1− δ] ·W}

(4.5)

Define RX(w),WX(w), BX(w) similarly (note that these sets are defined only for Si):

RX(w) = {x ∈ Si : ((x,w) + Uw) mod W ∈ [0, 1/k] ·W}

WX(w) = {x ∈ Si : ((x,w) + Uw) mod W ∈ ([1/k, 1/k + δ] ∪ [1− δ, 1)) ·W}

BX(w) = {x ∈ Si : ((x,w) + Uw) mod W ∈ [1/k + δ, 1− δ] ·W}

(4.6)

We note here that the random shift Uw is not necessary for most properties that we establish,

and will only be useful to establishing property (3). First, we analyze
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Size of the sets Tui , Sj , S
ui
j , R,B,W and property (4). We will need

Claim 85 Let δ > 0 be a constant such that 1/δ and δW/|w| are integers, and let U ∈ [0 : W − 1]

be an integer. Define for q = 0, . . . , 1/δ − 1

Aq = |{y ∈ Y : ((y,uj) + U) mod W ∈ [δq, δ(q + 1)] ·W | . (4.7)

Then |Aq| ∈ (1± o(1))δ|Y |.

Proof: Consider the mapping ψ : y → y − δW
|uj | · uj . This is a well defined mapping into Y for all

y ∈ Y except those that have at least one coordinate smaller than δW
|uj | = O(1). We denote this set

by R. But for any fixed l one has |{y ∈ Y : yl <
δW
|uj |} = δW

m4|uj | = o(|Y |/m2), and hence by the union

bound over all l = 1, . . . ,m one has |R| = o(|Y |). For all q = 1, . . . , 1/δ− 1 the mapping φ maps Aq

injectively into Aq−1, and A0 into A1/δ−1, everywhere except R. Thus, one has |Aq| = δ(1±o(1))|Y |,
and the conclusion of the lemma follows.

We first prove

Lemma 86 Consider any set S defined by S = {y ∈ Y : (y,u) mod W ∈ [au, bu] ·W,u ∈ U}, where

U is a collection of binary vectors and au, bu are constants. Let v be a vector such that |u| = |v| for

all u ∈ U and maxu∈U (u,v)/|v| ≤ δ′, and A,B ∈ [0, 1], A ≤ B are rational constants. Let

S ′ = {y ∈ S : (y,v) mod W ∈ [A,B] ·W}.

Then for sufficiently large W = O(m) one has ||S ′| − (B −A)|S|| = O(|U|δ′).

Proof: Consider the mapping ψv,j : y → y − j·δ(B−A)W
|v| · v, where δ is a sufficiently small rational

constant such that 1 − (B − A) is an integer multiple of δ(B − A). Note that the mapping is

well-defined as long as W is an integer multiple of 1/(δ(B − A)), which is admissible under our

assumption that W = O(m).

Let y ∈ S. Then

(ψv,j(y),u) = (y,u) +
j · δ(B −A)W

|v|
· (u,v) ≤ (y,u) + j · δ(B −A)Wδ′,

so ψv,j for |j| ≤ 1/(δ(B −A)) maps points y ∈ S into S unless either

(y,u) mod W ∈ [au, au + δ′] ∪ [bu − δ′, bu] ·W (4.8)

for at least one u ∈ U or y has at least one coordinate smaller than W . We call such points bad

and denote this set by R. For a fixed u the fraction of y ∈ Y that do not satisfy (4.8) is O(δ′) by

Claim 85 and hence by the union bound over all u ∈ U we get that the fraction of such points in Y

is O(|U|δ′). The fraction of points with at least one coordinate smaller than W is at most W/m4,

and hence by the union bound the fraction of points with at least one coordinate smaller than W is

o(1), so |R| = O(Uδ′) · |Y |.
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Similarly to Claim 85, define

Aq = |{y ∈ S : (y,v) mod W ∈ [(B −A)δq, (B −A)δ(q + 1)] ·W | . (4.9)

Now let D = [0 : 1
(B−A)δ ) denote the set of indices such that S =

⋃
d∈D Ad, and let D′ = [ A

(B−A)δ :
B

(B−A)δ ] denote the set of indices such that S ′ =
⋃
d∈D′ Ad.

Define a bipartite graph F = (S ′,S \ S ′, EF ) by including an edge (x, y), x ∈ S ′, y ∈ S \ S ′ to

EF whenever ψv,j(x) = y for some j ∈ D. Thus, each x ∈ S ′ \ R has degree |D \ D′| in F , and

x ∈ (S \S ′)\R have degree |D′| in F . Furthermore, the degree of each x ∈ S ′ is bounded by |D\D′|
and the degree of each x ∈ S \ S ′ is bounded by |D′|.

Putting these estimates together, we have |S ′ \R| · |D \D′| ≤ |S \ S ′| · |D′|, i.e.

|S ′| ≤ (|S| − |S ′|) · |D′|
|D \D′|

+ |R| = (|S| − |S ′|) · B −A
1− (B −A)

+ |R|.

Thus, |S ′| ≤ (B−A) · |S|+ (1− (B−A))|R|. On the other hand, we also have |(S \ S ′) \R| · |D′| ≤
|S ′| · |D \D′|, i.e.

|S \ S ′| ≤ |S ′| · |D \D
′|

|D′|
+ |R| = |S ′| · 1− (B −A)

B −A
+ |R|

Thus, (B − A)(|S| − |S ′|) ≤ |S ′| · (1 − (B − A)) + (B − A)|R|, so |S ′| ≥ (B − A)|S| − (B − A)|R|.
The conclusion of the lemma follows.

Estimates on the size of sets Tui now follow by noting that one has |U| ≤ k in all cases, and that

the maximum dot product δ′ can be chosen to be 1/poly(k). The bounds on the size of S
uj
i , R,B,W

follow in a similar way with the additional application of Chernoff bounds to the sampling of points

that are included in X ′.

We now define the edges of the ((k − 1)γ, kγ,O(δ))-almost regular induced subgraph Hw
i , for a

constant γ > 0 (the induced property will be shown later). The subgraph Hw
i will consist of disjoint

copies of small complete bipartite graphs.

Constructing Hw
i . Fix a child w of ui. For the purposes of constructing Hw

i we condition

on the values of all shifts Uw. In what follows we omit the parameter w when referring to sets

RY (w),WY (w), BY (w). For two vertices b, b′ ∈ RY such that |(b− b′,w)| ≤W/k we say that b ∼ b′

if b − b′ = λ ·w for some λ. Note that we have λ ∈
[
− W
k|w| ,

W
k|w|

]
. We write Bb ⊆ Y to denote the

equivalence class of b. It follows directly from the definition of Bb and (4.5) that |Bb| = W/(k|w|)
for all b. Also, let

Ab = BX ∩

 ⋃
λ∈[0,(1−1/k)W/|w|]

(Bb + λ ·w)

 .

Note thatAb is a random set (determined by the random choice of X ⊂ X ′). Since each element of X ′

is included in X independently with probability 1/k, we have that E[|Ab|] = (1±O(δ))(1−1/k)|Bb|.
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We now define a set of edges of a ((k − 1)γ, kγ, δ)-almost regular subgraph between (a subset

of) Bb and Ab. First note that E[|Bb|] = (1±O(δ))(1− 1/k)|Ab|. Furthermore, since X is obtained

from X ′ by independent sampling at rate 1/k, standard concentration inequalities yield

Pr [|Av| 6∈ (1± δ)(1− 1/k)|Bv|] ≤ e−δ
2(1/2)|Bv|/4 ≤ δ2 (4.10)

for |Ab| > γ = 16 ln(8/δ)/δ2. To ensure this, it is sufficient to ensure that W ≥ 16k ln(8/δ)
δ2 · |w|.

We note here that we are thinking of δ as being smaller than 1/k. In particular, we will set

δ = O(1/poly(k)) at the end of the construction. Now for each c ∈ Ab, d ∈ Bb include an edge (c, d)

in Hw
i . We will define a complete bipartite graph on each such equivalence class Ab,Bb, i.e. for each

c ∈ Ab, d ∈ Bb include an edge (c, d) in Hw
i . However, since we used randomness to chose the set X ′,

some of these classes may be too small due to stochastic fluctuations. We deal with this problem

next.

We now classify points b ∈ RY as good or bad depending on the how close |Bb| is to its expec-

tation. In particular, mark a b bad if |Bb| 6∈ (1 ± δ)(1 − 1/k)|Ab| and good otherwise. Note that

in fact this is a well-defined property of an equivalence class. Let JB denote the indicator random

variable that equals 1 if B is bad and 0 otherwise, where B is an equivalence class. Note that JB is

independent of JB′ for B 6= B′, since J is determined by the random choice of X ⊂ X ′ and we are

conditioning on the values of all shifts Uw, w ∈ T . By (4.10) one has E[JB] ≤ δ2 for all equivalence

classes B. Note that each equivalence class contains a constant number of points, and hence there

are Ω(m4m) equivalence classes for every i and w child of ui.

An application of Chernoff bounds shows that for fixed i and fixed w a child of ui

Pr

[∑
B
JB > 2E

[∑
B
JB

]]
≤ e−Ω(m4m). (4.11)

Note that by (4.10) one has that (4.11) bounds the probability of there being more than 2δ2 fraction

of bad classes for fixed w ∈ T . Taking a union bound over 2O(m) nodes of T , we conclude that there

will be no more than 2δ2 fraction of bad equivalence classes in Hw
i for any i, and w a child of ui.

If b is good, let A′b denote an arbitrary subset of Ab of cardinality (1− δ)(1−1/k)|Bb|. Similarly,

let B′b denote an arbitrary subset of Bb of cardinality (1− δ)|Bb|, so that |A′b| = (1− 1/k)|B′b|. Now

for each c ∈ A′b, d ∈ B′b include an edge (c, d) in Hw
i . Note that each such graph is a ((k−1)γ, kγ, δ)-

almost regular graph, as required by property (1). Note that all matched edges are of the form (c, d),

where

c = d− λ ·w, λ ∈ (0,W/|w|]. (4.12)

The union of the small complete graphs that we constructed yields the graph Hw
i for a fixed

child w of ui. We also showed that on such graph Hw
i contains more than a 2δ2 fraction of bad

classes whp, which completes the construction of the graphs Hw
i .
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Induced property (property (1)). Graphs Hw
i constructed in this way are induced for the same

reason as in the constructions in [29] and Chapter 3 when the vectors w,w′ corresponding to two

distinct nodes of T are chosen in such a way that |w| = |w′| = εm (recall that X ′ = Y = [m4]m)

and

(w,w′) ≤ (5/2)ε|w| (4.13)

for sufficiently small constant ε. Indeed, consider a fixed i and suppose that an edge (a, b) ∈ E(Hw
i )

is induced by Hw′

i for w′ 6= w. But then it must be that either c ∈ RY (w′), d ∈ BX(w′) or

d ∈ RY (w′), c ∈ BX(w′). In either case one has

|(c− d,w′)| ≥ δ ·W. (4.14)

However, by (4.13) together with (4.12) one has

|(c− d,w′)| ≤ W

|w|
(w,w′) ≤ W

|w|
(5/2)ε|w| = (5/2)εW,

which is a contradiction with (4.14) for ε < δ/10.

Existence of a large matching (property (3)) We now show that for any i and w a child of

ui there exists a matching of 1 − O(δ) fraction of Si to Tui \ Tw. We will do this by exhibiting a

fractional matching of appropriate size.

Consider a point x ∈ Tui . We need to analyze the degree of x in the graph Tui ∪ Si. Note that

the degree of x depends on (1) the number of vectors w for which x ∈ RY (w) and (2) on the size of

the equivalence classes that x belongs to for different w. We first analyze (1).

For a fixed w it follows by Claim 85 and the definition of Uw that PrUw [x ∈ RY (w)] ∈ (1±o(1)) 1
k .

Next note that each vertex x ∈ RY (w) has degree (k − 1)γ in Hw
i . Furthermore, since the random

shifts Uw are independent for different w, we obtain using Chernoff bounds that for a fixed x ∈ Tui

Pr

[ ∑
w child of ui

1x∈RY (w) 6∈ (1±O(δ))d/k

]
≤ e−Ω(δ2d/k). (4.15)

A similar argument shows that the expected degree of each vertex in Si\Swi has similar concentration

around kγd. Since there are only O(m4m) vertices and 2O(m) nodes in the tree T , and d = 2Ω(m), a

union bound shows that vertex degrees are concentrated in each Tui , Si pair with high probability.

Now it remains to handle the loss of edges due to x ∈ Tui belonging to small equivalence classes for

some w. However, it follows from the analysis in (4.11) that at most an O(δ2) fraction of the edge

mass can be lost because of this, yielding the following fractional matching. Put weight 1/(kγ) on

each edge in Hw
i , and put weight 1

(1+O(δ))k(1−1/k)γd on each edge going from Tui \ Tw to Si \ Swi .

Since degrees in Tui are bounded by (1 + O(δ))(1 − 1/k)γd, and degrees is Si are bounded by

(1 +O(δ))kγd, this is feasible and yields a matching of size (1−O(δ+ δ2))|Si|, proving property (3).
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We now prove property (2). For i = 0, . . . , k − 1 let

Zui = {y ∈ Y : (y,uj) mod W ∈ ([1/k − δ, 1/k] ∪ [0, δ]) ·W for some j ∈ [1 : k]}. (4.16)

We need to show that the subgraph H∗ induced by (Tui \ (Tuk ∪Zui))∪Suki only contains the edges

of H
ui+1

i . First note that if an edge (c, d), c ∈ P, d ∈ Q belongs to H∗, then c ∈ Suki and d ∈ Tui , so

(c, d) necessarily belongs to some graph Hw
i , where w is a child of ui. Then we have by (4.12) that

d− c = q ·w, where |q| ≤W/|w|.

On the other hand, we have for all j = 1, . . . , k using the orthogonality condition (4.13)

|(c− d,uj)| ≤
W

|w|
|(w,uj)| ≤ (5/2)εW. (4.17)

Now recall that a ∈ Suki , so by (4.3) and (4.4)

(c,uj) mod W ∈ [1/k, 1] ·W, ∀j = 1, . . . , k.

Thus, by (4.17) one has

(d,uj) mod W ∈ ([1/k − δ, 1] ∪ [0, δ]) ·W, ∀j ≤ k,

i.e. d ∈ Zui ∪ Tuk , if we set ε to smaller than δ/10.

It remains to bound the size of Zui . First note that it follows from Claim 85 that for sufficiently

small constant δ (e.g. δ < 1/k2) one has

|{y ∈ Y : (y,uj) mod W ∈ ([1/k − δ, 1/k] ∪ [0, δ]) ·W | ≤ 2δ|Y |. (4.18)

Now by a union bound over all j ∈ [1 : k] we conclude that |Zui | ≤ 2δk|Y | = O(δkn).

It remains to set parameters. First, inspection of the bounds obtained so far reveals that setting

δ = cδ′/k4 for a sufficiently small constant c > 0 is sufficient to obtain a (d, k, δ′)-packing, where

we set ε = δ/10. Finally, the size of the graphs obtained is essentially the same as in [29] and our

constructions in Chapter 3. In particular, the number of vertices is n = Θ(m4m) and d = 2Ω(m).

Thus, we get a graph on n vertices with d = nΩ( 1
log logn ) edges.

Proof of Theorem 68: The proof follows by combining Theorem 78 and Lemma 84.

4.3 Multipass approximation for matchings

In this section we present the basic version of our algorithm for approximating matchings in multiple

passes in the vertex arrival setting. Let G = (P,Q,E) denote a bipartite graph. We assume that

vertices in P arrive in the stream together with all their edges. At each step the algorithm maintains
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a fractional matching {fe}e∈E , where the capacity of each vertex in Q is infinite and the capacity of

each vertex u ∈ P is equal to the number of times it has appeared in so far (i.e. always between 1

and k). The capacity of an edge e = (u, v), u ∈ P, v ∈ Q is equal to the capacity of u. For a vertex

u ∈ P we write δ(u) to denote the set of neighbors of u in G.

4.3.1 Algorithm

We now give the algorithm and show how to implement each pass in linear time.

Algorithm 1: PROCESS-VERTEX(G, u, δ(u))

1: Augment capacity of u and all edges in δ(u) by 1.

2: WATER-FILLING(G′, u, δ(u))

3: REMOVE-CYCLES(G′, f).

The function WATER-FILLING(G′, u, δ(u)) increases the load of the least loaded neighbors of u

simultaneously (with other neighbors joining if the load reaches their level) until one unit of water is

dispensed out of u. Here the support of the fractional matching {fe}e∈E maintained by the algorithm

is denoted by G′. The function REMOVE-CYCLES(G′, f) reroutes flow among cycles that could

have emerged in the process, ensuring that the flow is supported on at most |P |+ |Q| − 1 edges. We

note that as stated, Algorithm 1 does not necessarily take O(m) time per pass due to the runtime

of cycle removal. However, simply buffering incoming vertices until the number of edges received is

Θ(n) and only then removing cycles yields a linear time implementation. Here we can use DFS to

reroute flow along cycles in time linear in the number of nodes.

Remark 87 We note that a single pass of this algorithm is different from the one-pass algorithm

that achieves 1 − 1/e approximation from [35]. However, we will later show that our algorithm in

fact also achieves the ratio of 1− 1/e in a single pass.

We now turn to analyzing the approximation ratio. We first give a sketch of the proof under

additional assumptions on the graph G, and then proceed to give the relevant definitions and the

complete argument.

4.3.2 Analysis for a simple case

We now assume that G = (P,Q,E) has a perfect matching M . For each k ≥ 1 and all x ≥ 0

denote by bk(x) the number of vertices in Q that have load at least x after k passes. We start by

pointing out some useful properties of the function bk(x). First, note that bk(0) = |M |, bk(x) is

non-increasing in x and bk(x)− bk−1(x) ≥ 0 for all x. Furthermore, we have∫ ∞
0

bk(x)dx = k|M |, (4.19)

since every vertex u ∈ P contributed 1 unit of water, amounting to |M | amount of water overall,

and (4.19) calculates the sum of loads on all v ∈ Q. Furthermore, note that the size of the matching
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constructed by the algorithm after k passes is exactly equal to

1

k

∫ k

0

bk(x)dx, (4.20)

since every vertex v ∈ Q with load x contributed 1
k ·min{k, x} to the matching. Hence the approxi-

mation ratio after k passes is at least

1− 1

k

∫ ∞
k

bk(x)dx, (4.21)

where we used (4.19) to convert (4.20) into (4.21). Thus, it is sufficient to lower bound
∫ k

0
bk(x)dx

in order to analyze the approximation ratio, and we turn to bounding this quantity.

First consider the case k = 1. Fix x ≥ 0 and consider vertices v ∈ Q that have load at least x

– there are at least
∫∞
x
b1(s)ds of them. For each such vertex u consider its match M(u). Since u

ended up at level at least x after the first pass, its match M(u) must have been at level at least x

when u arrived, and levels are monotone increasing. Hence, we have

b1(x) ≥
∫ ∞
x

b1(s)ds (4.22)

for all x ≥ 0. This, however, together with (4.19) can be shown to imply that
∫∞
x
b1(s)ds ≤ |M | ·e−x

for all x. We immediately get using (4.21) that the approximation ratio after one pass is at least

1− 1/e.

Now suppose that k > 1 and consider vertices v ∈ Q that are at level at least x after k-th pass,

but were at a lower level after (k−1)-st pass. There are exactly bk(x)− bk−1(x) such vertices. Since

these vertices u were at level at least x after k-th pass, their matches M(u) must have also been at

level at least x when they arrived, implying that

bk(x) ≥
∫ ∞
x

(bk(s)− bk−1(s))ds (4.23)

for all x ≥ 0. Solving (4.23), we get that for all k ≥ 1∫ ∞
x

bk(s)ds ≤ |M | ·
∫ ∞
x

F k(s)ds, (4.24)

where 1 − F k(x) is the cdf of the Gamma distribution with scale 1 and shape k, i.e. F k(x) =∫∞
x
e−ssk−1/(k − 1)!ds. Using this in (4.21) yields the desired bound on the approximation ratio,

i.e. 1− e−kkk−1/k!.

4.3.3 General case

The proof sketch we gave in the previous subsection works under the assumption that G has a

perfect matching. The general case turns out to be substantially more involved. Interestingly, while
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Figure 4.3: Canonical decomposition of a bipartite graph. Note that edges from Si only go to Tj
with j ≤ i (property (1)).

the analysis above proceeds by showing that not too much mass will be in the tail
∫∞
k
bk(x)dx, here

we find it more convenient to show that substantial mass will be in the head of the distribution,

i.e. bound
∫ k

0
bk(x)dx from below. We extend the argument using a careful reweighting of vertices

and scaling of levels guided by the structure of the canonical decomposition of G introduced in [35],

which we now define.

Let G = (P,Q,E) denote a bipartite graph. For a set S ⊆ P we denote the set of neighbors of S

by Γ(S). For a number α > 0 the graph G is said to have vertex expansion at least α if |Γ(S)| ≥ α|S|
for all S ⊆ P .

Definition 88 (Canonical decomposition) Let G = (P,Q,E) denote a bipartite graph. A par-

tition of Q =
⋃
j∈I Tj , Tj ∩ Ti = ∅, j 6= i and P =

⋃
j∈I Sj , Sj ∩ Si = ∅, j 6= i together with numbers

αj > 0, where αj ≤ 1 for j ≤ 0 and αj > 1 for j > 0 is called a canonical partition if

1. for all i one has Γ
(⋃

j∈I,j≤i Sj

)
⊆
⋃
j∈I,j≤i Tj;

2. |Γ(S) ∩ Tj | ≥ αj |S| for all S ⊆ Sj for all j ∈ I;

3. |Tj |/|Sj | = αj , j ∈ I.

Here I ⊂ Z is a set of indices.

Please see Fig. 4.3 for an illustration.

Remark 89 For k = 1, the analysis is inspired by the analysis of the round-robin algorithm in [73].

We note that the difference in our case is that we essentially consider a fractional version of their

process, and obtain significantly better bounds on the quality of approximation. In particular, the

best approximation factor that follows from the result of [73] is 1/8 even after any k passes, while

here we get the optimal 1 − 1/e factor for k = 1, and an approximation of the form 1 − O(1/k1/2)

for all k > 0.
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We now introduce some definitions. For a node v ∈ Q let lk(v) denote the load of v after the

k-th pass. Note that lk(v) ≥ 0 and may in general grow with |P | for the most loaded vertices in

Q. The core of our analysis will consist of bounding the distribution of water levels among vertices

in Q, showing that there cannot be too many highly overloaded vertices. It will be convenient to

assume that water is allocated in multiples of some ∆org > 0 (such a ∆org always exists since we

are dealing with a finite process).

Shadow allocation and density function φkv(x). First, define

(Source capacities) Define ws(u), u ∈ P by setting ws(u) = min{1, αj} for u ∈ Sj . Note that one

has
∑
u∈P ws(u) = |M |. Also, for v ∈ Tj let ws(v) := min{1, αj} for convenience.

(Sink capacities) Define wt(v), v ∈ Q by setting wt(v) = min{1, 1/αj} for v ∈ Tj . Note that one

has
∑
v∈Q wt(v) = |M |. Also, for u ∈ Sj let wt(u) := min{1, 1/αj} for convenience.

We will use the concept of a shadow allocation, in which whenever a units of water are added to

a vertex v ∈ Q in the original allocation, a/wt(v) units of water are added to v in the shadow

allocation. Now whenever water from a vertex u ∈ P is added to vertex v ∈ Q at level x during the

j-th pass in the shadow allocation, we let φjv(x) := ws(u), where φ is the density function. It will be

crucial that ∑
v∈Q

wt(v)

∫ ∞
0

φjv(x)dx = |M | (4.25)

for all j = 1, . . . , k. We assume that water in the shadow allocation is allocated in multiples of some

∆ > 0.

Then

Lemma 90 One has for all x ≥ 0 and all k ≥ 1

bk(x) ≥
∫ ∞
x

∑
v∈Q

wt(v)φkv(s)ds.

Proof: Recall that the pairs in the canonical decomposition of G are denoted by (Sj , Tj), where the

expansion factors αj are increasing with j. We need to that

bk(x) ≥
∫ ∞
x

∑
v∈Q

wt(v) · φkv(s)ds (4.26)

By definition of the canonical decomposition (Sj , Tj)j∈I for each j ∈ I there exists a (possibly

fractional) matching Mj in G that matches each u ∈ Sj exactly αj times and each v ∈ Tj exactly

once. Let Mj(u, v) ∈ [0, 1] denote the extent to which u is matched to v, so that
∑
v∈Tj Mj(u, v) = αj

for all u ∈ Sj and
∑
u∈Sj Mj(u, v) = 1 for all v ∈ Tj .

Consider a node u ∈ Sj and suppose that a ∆org amount of its water was allocated to level

[i · ∆, (i + 1) · ∆] of a vertex v ∈ Tr in the original allocation. Note that r ≤ j since there are no
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edges from Sj to Tr, r > j. By the definition of the shadow allocation ∆org amount of water in the

original allocation corresponds to
∆org

wt(u) water placed contiguously in the shadow allocation.

By definition of the water-filling algorithm all neighbors w of u must have been at level at least
wt(v)
wt(u) (i+1)∆org ≥ (i+1)∆org when the node u was allocated since wt(v) = min{1, 1/αr} ≥ wt(u) =

min{1, 1/αj}.
Thus, we have that for each such u ∈ Sj

contribution to rhs of (4.26) = ∆org · φkv(s)

since the ∆org amount of water corresponds to t =
∆org

wt∆
slabs of size ∆, and the contribution is then

weighted by wt(v) in the rhs of (4.26). We now calculate the contribution of u ∈ Sj to the lhs. We

let each uj ∈ Sj contribute Mj(u,w) to each w ∈ Tj , so that the total contribution to each w is 1

and total contribution of each u ∈ Sj is αj . Thus,

contribution of u to lhs of (4.26) ≥ ∆org ·min{1, 1/αj} · αj

since u has αj matches in Tj , whose contributions are weighted by min{1, 1/αj}. As before, it

remains to note that min{1, 1/αj} · αj = min{1, αj} = φkv(s).

We now get

Lemma 91 One has for all x ≥ 0 and all k ≥ 1

|M | − bk(x) ≤
∫ x

0

(bk(s)− bk−1(s))ds.

Proof: By Lemma 90 we have

bk(x) ≥
∫ ∞
x

∑
v∈Q

wt(v)φkv(s)ds.

Putting this together with (4.25) we get

|M | − bk(x) ≤
∫ x

0

∑
v∈Q

wt(v)φkv(s)ds

for all x ≥ 0 and k ≥ 1. To complete the proof, we note that∫ x

0

∑
v∈Q

wt(v)φkv(s)ds ≤
∫ x

0

(bk(s)− bk−1(s))ds

for all k ≥ 1 and x ≥ 0, where we let b0 ≡ 0 for convenience.

We also need
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Lemma 92 Algorithm 1 constructs a matching of size at least

1

k

∫ k

0

bk(x)dx.

Proof: A vertex v ∈ Q contributes 1
k min{k, lk(v)} ≥ wt(v) 1

k min{k, lk(v)/wt(v)} to the matching,

implying that the size of the constructed matching is at least

1

k

∫ k

0

bk(x)dx.

We now prove lower bounds on bk(x). Recall that for integer k ≥ 1

F k(x) =

∫ ∞
x

e−ssk−1/(k − 1)!ds =

k−1∑
i=0

e−xxi/i!. (4.27)

Note that 1− F k(x) is the cdf of the Gamma distribution with scale 1 and shape k.

Lemma 93 For every k ≥ 1 one has for all x ≥ 0∫ x

0

bk(s)ds ≥ |M | ·
∫ x

0

F k(s)ds.

Proof:

We prove the lemma by induction on k.

Base: k = 1 This follows immediately since by Lemma 91 one has∫ x

0

b1(s)ds ≥ |M | − b1(x). (4.28)

Letting f(x) =
∫ x

0
b1(s)ds, we get that f ′(x) ≥ |M | − f(x) for all x ≥ 0, f(0) = 0 and

f ′(0) = |M |, which implies that f(x) ≥ |M | · (1− e−x), as required.

Inductive step: k − 1→ k We need to prove that∫ x

0

bk(s)ds ≥ |M | ·
∫ x

0

F k(s)ds. (4.29)

By Lemma 91 for all x ≥ 0

bk(x) ≥ |M | −
∫ x

0

(bk(s)− bk−1(s))ds ≥ |M | −
∫ x

0

bk(s)ds+ |M | ·
∫ x

0

F k−1(s)ds, (4.30)

where we used the inductive hypothesis to replace
∫ x

0
bk−1(s)ds with |M | ·

∫ x
0
F k−1(s)ds.



CHAPTER 4. 1− 1/e LOWER BOUND AND MULTIPASS ALGORITHMS 96

Thus, ∫ x

0

bk(s)ds ≥ |M | − bk(x) + |M | ·
∫ x

0

F k−1(s)ds. (4.31)

Let f(x) =
∫ x

0
bk(s)ds. We have from (4.31) that

f ′(x) = |M | − f(x) + |M | ·
∫ x

0

F k−1(s)ds, f(0) = 0, f ′(0) = |M |.

Thus, f ′(x) is given by the solution of

g(x) = −g′(x) + |M | · F k−1(x), g(0) = |M |. (4.32)

The solution of (4.32) is given by

g(x) = e−x
(
|M |

∫ x

0

esF k−1(s)ds+ |M |
)
. (4.33)

Calculating the integral in (4.33) yields

∫ x

0

esF k−1(s)ds =

∫ x

0

es
∫ ∞
s

1

(k − 1)!
zk−1e−zdzds =

∫ x

0

k−1∑
j=0

1

j!
sjds =

k∑
j=1

1

j!
xj , (4.34)

and hence g(x) = |M | · F k(x). Thus,
∫ x

0
bk(s)ds ≥ f(x) = |M | ·

∫ x
0
F k(s)ds as required.

Given Lemma 93, we immediately obtain

Theorem 94 Algorithm 1 achieves a (1 − e−k kk−1

(k−1)! )-approximation to maximum matchings in k

passes over the input stream.

Proof: The approximation ratio is at least

1

k

∫ k

0

bk(x)dx ≥ 1

k

∫ k

0

F k(x)dx = 1− 1

k

∫ ∞
k

F k(x)dx.

Recalling that F k(x) =
∑k−1
j=0 e

−xxj/j! and using integration by parts∫
e−xxj/j!dx = −e−xxj/j!

∣∣∞
k

+

∫
e−xxj−1/(j − 1)!dx,

we get

∫ ∞
k

F k(x)dx =

∫ ∞
k

k−1∑
j=0

e−xxj/j!dx =

k−1∑
j=0

(k − j)e−kkj/j!

=

k−1∑
j=0

e−kkj+1/j!−
k−1∑
j=1

e−kkj/(j − 1)! = e−kkk/(k − 1)!

(4.35)
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Thus,
1

k

∫ ∞
k

F k(x)dx =
e−kkk−1

(k − 1)!
=

1√
2πk

+O(k−3/2)

4.4 Gap-existence

In this section we show how our techniques yield an efficient algorithm for Gap-existence, thereby

proving Theorem 71. Recall that we are given a graph G = (A, I,E) and integral budgets Ba. Note

that integral budgets can be simulated implicitly by creating Ba copies of a for all a ∈ A. For

simplicity, this is the approach that we take.

We now present a discretized version of Algorithm 1. We will explicitly maintain a subset I∗ ⊂ I
of size O(|A|/ε), relying on the following two oracles:

1. an oracle LIST-NEIGHBORS(a, I∗) that, given a node a ∈ A and a set I∗ outputs the set of

nodes I∗∗ ⊆ I∗ that a is connected to;

2. an oracle NEW-NEIGHBOR(a, I∗) that, given any set I∗ ⊆ I, outputs any node i ∈ I \ I∗

that a is connected to or ∅ if all neighbors of a are in I∗.

Algorithm 2: DISCRETIZED-WATERFILLING(G, a, ε, k)

1: I∗ ← ∅
2: while exists a neighbor i of a in I∗ with level < (ε/4)k do

3: Allocate water to i until it is at level (ε/4)k

4: end while

5: I∗ ← I∗ ∪NEW-NEIGHBOR(a, I∗)

6: Perform water filling on neighbors in I∗.

7: REMOVE-CYCLES(G′)

First we prove

Lemma 95 The space used by Algorithm 2 is O(|A|/ε).

Proof: Call a vertex saturated if the amount of water in it is at least εk. The number of saturated

vertices is O(|A|/ε) since there are k|A| units of water in the system, and each saturated vertex

accounts for at least εk. We say that an unsaturated vertex i belongs to a ∈ A if i was added to I∗

when NEW-NEIGHBOR was called from a. Note that for each a ∈ A only one i ∈ I belongs to a.

Thus, this amounts to at most |A| additional vertices.

Our algorithm for Gap-Existence is as follows:

Algorithm 3: GAP-EXISTENCE(G, ε)

1: Run DISCRETIZED-WATERFILLING(G) with k = O(log(|I| ·
∑
a∈ABa)/ε2).

2: Let G′ denote the support of the fractional solution.

3: Output YES if a complete matching with budgets b(1− ε)Bac exists in G′, NO otherwise.
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We now assume that we are in the YES case and prove that the algorithm will find a matching

with budgets b(1− ε)Bac. We refer to vertices i ∈ I that have a nonzero amount of water as active.

Let pi = 1 for active vertices and pi = 0 o.w. Abusing notation somewhat, for an active vertex i ∈ I
let lk(i) denote the level of water in i minus εk and 0 otherwise. The Gap-Existence case is in fact

somewhat simpler than the general case of approximating matchings that we just discussed, so we

will use the more lightweight techniques from the analysis of the simple case for matchings.

For each k ≥ 1 and all x ≥ 0 denote by bk(x) the number of vertices in I that have load at least

x+ εk after k passes. We start by pointing out some useful properties of the function bk(x). First,

note that bk(0) ≤ |I|, bk(x) is non-increasing in x and bk(x)− bk−1(x) ≥ 0 for all x. Recall that we

are interested in recovering a 1− ε/2-matching of the A side. To do that, we scale all allocations by

1− ε/2. The size of the matching recovered is

(1− ε/2)(ε/4)k
∑
i∈I

pi + (1− ε/2)

∫ ∞
0

bk(x)dx = (1− ε/2)k|M |, (4.36)

since every vertex a ∈ A contributed k units of water, one in each round, amounting to k|M | amount

of water overall, except for the water that was allocated below εk, and (4.36) calculates the sum of

loads on all i ∈ I. Furthermore, note that the size of the matching constructed by the algorithm

after k passes is at least

(1− ε/2)(ε/4)
∑
i∈I

pi +
1

k

∫ k(1−ε/4)/(1−ε/2)

0

bk(x)dx, (4.37)

since every vertex i ∈ I with load x contributes at least 1
k ·min{k(1−ε/4), x} to the matching before

scaling, and hence 1
k ·min{k(1− ε/4)/(1− ε/2), x} after scaling. Hence the approximation ratio after

k passes is at least

1− 1

k

∫ ∞
k(1−ε/4)/(1−ε/2)

bk(x)dx, (4.38)

where we used (4.36) to convert (4.37) into (4.38). Thus, it is sufficient to lower bound
∫ k

0
bk(x)dx

in order to analyze the approximation ratio, and we turn to bounding this quantity.

Lemma 96 One has for all k ≥ 1

bk(x) ≥
∫ ∞
x

(bk(s)− bk−1(s))ds. (4.39)

for all x ≥ 0, where b0 ≡ 0.

Proof: For each such vertex a ∈ A consider its match M(a). If a ended up allocating water at level

at least x during the k-th pass, its match M(a) must have been at level at least x when a arrived.

Together with the fact that levels are monotone increasing this gives the result. We omit the details

since they would essentially repeat the proof of Lemma 90 with minor changes due to the absence

of weights wt on the I side.
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We now get

Lemma 97 For all k ≥ 1 and all x ≥ 0∫ ∞
x

bk(s)ds ≤ |I| ·
∫ ∞
x

F k(s)ds. (4.40)

Proof: We prove the lemma by induction on k.

Base: k = 1 We prove the statement by contradiction. Suppose that∫ ∞
x0

b1(s)ds > |I|
∫ ∞
x0

e−sds = |I|e−x0 (4.41)

for some x0 ≥ 0. Recall that by Lemma 96 one has

b1(x) ≥
∫ ∞
x

b1(s)ds, (4.42)

for all x ≥ 0. Let g(x) =
(∫∞

x0
b1(s)ds

)
· e−x+x0 for x ∈ [0, x0]. Then g(x) satisfies (4.42) with

equality, and hence b1(x) ≥ g(x) for all x ∈ [0, x0]. But g(0) =
(∫∞

x0
b1(s)ds

)
· ex0 > |I|, a

contradiction with b1(0) = |I|.

Inductive step: k − 1→ k We need to prove that∫ ∞
x

bk(s)ds ≤ |I| ·
∫ ∞
x

F k(s)ds. (4.43)

Recall that by Lemma 96 for all x ≥ 0

bk(x) ≥
∫ ∞
x

(bk(s)− bk−1(s))ds =

∫ ∞
x

bk(s)ds− |I| ·
∫ ∞
x

F k−1(s)ds, (4.44)

where we used the inductive hypothesis to replace
∫∞
x
bk−1(s)ds with |I| ·

∫∞
x
F k−1(s)ds.

Fix any point x0 ≥ 0 and denote

γ :=

∫ ∞
x0

bk(s)ds.

We will show that one necessarily has γ > |I| ·
∫∞
x0
F k(s)ds.

It now follows from (4.44) that bk(x) is lower bounded by the solution of

g(x) =

∫ ∞
x

(g(s)− |I| · F k−1(s))ds

g(x0) = γ.

Thus, g(x) satisfies

g′(x) = −g(x) + |I| · F k−1(x), g(x0) = γ. (4.45)
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The solution of (4.45) is given by

g(x) = e−x
(
−|I|

∫ x

0

esF k−1(s)ds+ c

)
, (4.46)

where the constant c depends on γ. Note that g(0) = c, and recalling that g lower bounds

bk(x), which is at most |I| at x = 0, we have that c ≤ |I|.

Calculating the integral in (4.46) yields

∫ x

0

esF k−1(s)ds =

∫ x

0

es
∫ ∞
s

1

(k − 1)!
zk−1e−zdzds =

∫ x

0

k−1∑
j=0

1

j!
sjds =

k∑
j=1

1

j!
xj , (4.47)

and hence

g(x) = (c+ |I|
k∑
j=1

e−xxj/j!) = |I| · F k(x) + (c− |I|).

In particular, it follows that γ = g(x0) = |I| · F k(x) + (c − |I|) ≤ |I| · F k(x), completing the

proof of the inductive step.

We now ready to prove correctness. Suppose that we are in the YES case, i.e. there exists a

complete matching with budgets Ba. Consider the fractional allocation returned by DISCRETIZED-

WATERFILLING(G), and multiply it by (1− ε/2)/k. Recalling that each active vertex can take at

least 1 − ε/4 units of water, we get that every vertex in i ∈ I now contributes 1−ε/2
k(1−ε/4) min{k(1 −

ε/4)/(1− ε/2), lk(v)} to the matching.

Thus, by Lemma 97 together with (4.38) shows that the amount of water lost is at most

(1− ε/2)|I|1
k

∫ ∞
k(1−ε/4)/(1−ε/2)

bk(x)dx. (4.48)

We will need

Lemma 98 For all k ≥ 1 and ε∗ ≥ 0

1

k

∫ ∞
k(1+ε∗)

F k(x)dx ≤ e−ε
∗k(1 + ε∗)k · e−kkk−1/(k − 1)!

Proof: Recalling that F k(x) =
∑k−1
j=0 e

−xxj/j! and using integration by parts∫
e−xxj/j!dx =

[
−e−xxj/j!

]∞
k

+

∫
e−xxj−1/(j − 1)!dx,
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we get

∫ ∞
k(1+ε∗)

F k(x)dx =

∫ ∞
k(1+ε∗)

k−1∑
j=0

e−xxj/j!dx =

k−1∑
j=0

(k − j)e−k(1+ε∗)(k(1 + ε∗))j/j!

≤ e−ε
∗k(1 + ε∗)k

k−1∑
j=0

(k − j)e−kkj/j! = e−ε
∗k(1 + ε∗)k · e−kkk−1/(k − 1)!

(4.49)

Let ε∗ = (1− ε/4)/(1− ε/2)− 1. By Lemma 98 we have

1

k

∫ ∞
k(1+ε∗)

bk(x)dx ≤ e−k(ε∗−ln(1+ε∗)) · [e−kkk−1/(k − 1)!] ≤ e−(ε∗)2k/3 (4.50)

for sufficiently small ε∗ > 0. Also note that ε/5 ≤ ε∗ ≤ ε for sufficiently small ε > 0. Hence, letting

k = γ log(|I| ·
∑
a∈ABa)/ε2 for a sufficiently large constant γ > 0 yields a (1 − (

∑
a∈ABa)−2)-

approximate fractional matching with budgets b(1− ε)Bac. We now argue that the set of edges that

this fractional matching is supported on admits a complete matching with budgets b(1− ε)Bac. We

will need

Lemma 99 Let G = (P,Q,E) denote a bipartite graph. Suppose that there exists a fractional

matching of size |P |(1−|P |−2) in G. Then the support of the fractional matching contains a perfect

matching of the |P | side.

Proof: Consider the subgraph G′ that supports a fractional 1 − |P |−2 matching. Recall that a

graph supports an α-matching of the P -side iff |Γ(S)| ≥ α|S| for all S ⊆ P . Now note that the

ratio |Γ(S)|/|S| is a rational number of the form i/j where j ≤ |P |. The existence of the fractional

matching implies that |Γ(S)|/|S| ≥ (1 − |P |−2) for all S ⊆ P . Since |Γ(S)|/|S| can only have

denominator at most |P |, this implies that in fact |Γ(S)| ≥ |S| for all |S|.
Since the budgets b(1− ε)Bac are integral, finding a complete matching with budgets b(1− ε)Bac

is equivalent to finding a complete matching in a graph with
∑
a∈Ab(1−ε)Bac vertices on the A side.

Lemma 99 now implies the existence of a complete matching in the set of edges that the fractional

matching is supported on. This completes the proof of Theorem 71.
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Our results in Chapters 2-4 revolved around matching problems. We showed in Chapter 2

how cut-preserving sparsification turns out to be useful for finding perfect matchings in regular

bipartite graphs in sublinear time, and developed a more general notion of sparsification relevant to

the problem of finding matchings in the streaming model in Chapter 3. In this chapter we study

the relationship between two different notions of sparsification, namely spanners, i.e. subgraphs

that preserve distances approximately, and spectral sparsification, which is a generalization of cut-

preserving sparsification. We uncover a connection between these two notions of sparsification by

defining a new notion of distance between nodes of the graph, which we call robust connectivity, and

relating it to effective resistance between nodes in the graph. We also show how to approximate

such distances efficiently in small space, i.e. obtain an oracle for robust connectivity. This oracle

allows us to obtain a nearly-linear time algorithm for constructing spectral sparsifiers.

Before stating our results on robust connectivity we discuss the relevant notions distances that

have been studied in the literature. Various notions of distance between nodes of the graph have been

considered recently, e.g. shortest path distance, minimum cuts, effective resistance etc. For all of

these notions of ‘distance’ it is known how to compress a graph to a small representation that allows

to compute ‘distance’ queries approximately from the compressed representation. For example,

for shortest path distance this is provided by the spanner construction algorithms of Thorup and

Zwick[89] (see also [90, 70, 8, 9, 10, 11]), for cuts this is given by sparsifiers of Benczúr and Karger[16]

(see also [30]) and for effective resistances by spectral sparsifiers of Spielman and Srivastava [83] (see

also [12]). In fact, all of these methods for succint representation satisfy a stronger guarantee – they

support efficient queries of the corresponding ‘distances’ between nodes. It should be noted here

that the latter two measures of distance essentially take into account the set of paths between a pair

of nodes in the graph as opposed to the path of minimum length.

Here we introduce a new notion of distance between nodes in a graph that we refer to as robust

connectivity. Robust connectivity between a pair of nodes u and v is parameterized by a threshold

κ and intuitively captures the number of paths between u and v of length at most κ. Using this

new notion of distances, we show that any black box algorithm to construct a spanner can be

viewed as an algorithm to construct a sparsifier: Given a graph G, simply take the spanners of

a few (polylogarithmically many) random subgraphs of G obtained by sampling edges at different

probabilities; the union of these spanners, appropriately weighted, is also a sparsifier of G. While

the cut sparsifiers of Benczur and Karger were based on weighting edges according to (inverse)

strong connectivity, and the spectral sparsifiers were based on resistance, our method weights edges

using the robust connectivity measure. The main property that we use is that this new measure

is always greater than the resistance when scaled by a factor of O(κ), but (just like resistance and

connectivity) – has a bounded sum (Õ(n)) over all the edges of the graph. Our distance measure

can be viewed as a generlization of the affinity measure that was used in an experimental paper to

study user behavior in social networks [76].

We now give an outline of our results. In order to simplify presentation, we now define robust

connectivities for unweighted graphs. The definition for weighted graphs will be given in Section 5.2.

We stress here that even though we give the definition for unweighted graphs now, we will prove
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all our results for weighted graphs. Let G = (V,E) be an undirected graph. For a sampling

probability p ∈ (0, 1) denote by Gp the graph obtained by sampling edges of G with probability

p. Let dG(u, v) denote the shortest path distance between u and v in G. For a pair of nodes, the

κ-Robust Connectivity is the highest sampling probability at which the they are at least distance κ

apart in Gp with constant probability.

Definition 100 (Robust Connectivity) For a pair of nodes (u, v) let the κ-robust connectivity

qκ(u, v) denote the largest η ∈ (0, 1] such that Pr[dGη (u, v) ≥ κ] ≥ 1/2. For an edge e = (u, v), we

use qκ(e) to denote qκ(u, v).

We show that the robust connectivity upper bounds the resistance (upto a O(κ) factor) and also

has a bounded sum over all edges.

Lemma 101 For all e ∈ E
qκ(e) ≥ Re/(2κ).

and ∑
e∈E

qκ(e) ≤ 2n1+O(1/κ)

Further, based on distance oracles, which support approximate shortest path distance queries

efficiently, one can construct an oracle that supports queries of approximate - robust connectivities

between any pair of nodes.

Lemma 102 For a fixed graph G, there is a oracle that for any pair of nodes (u, v), can be used

to query an estimate q̂κ(u, v) of κ-robust connectivity. The estimate satisfies the (slightly weaker)

conditions: for all e ∈ E
q̂κ(e) ≥ Re/(2κ2).

and ∑
e∈E

q̂κ(e) ≤ O(n1+O(1/κ))

If κ = Ω(log n), the oracle can be constructed in time Õ(m), stores a sketch of size Õ(1) per node,

and each query takes Õ(1) time.

We note that Lemma 102 immediately yields a simple Õ(m) time algorithm for spectral sparsification.

Let S be any black box algorithm spanner construction algorithm, that on input G outputs a

spanner S(G). Assume that the distances between all pairs of nodes in S(G) are within factor

O(log n) of the true distance in G. Existing spanner construction algorithms produce such spanners

with O(n) edges in time Õ(m). We show

Theorem 103 Let {Gi,j : 1 ≤ i ≤ O
(

log 1
1−ε

(
n4wmax
wmin

))
, 1 ≤ j ≤ O(log3 n/ε3)} be a collection of

random subgraphs of G, where Gi,j is an independent copy of Gp for p = 1
wmin

(1− ε)i. Then there

is a weighting of the edges of the subgraph H = ∪i,jS(Gi,j) such that it is a (1± ε)-sparsifier of G.

Moreover, such a weighting can be constructed in Õ(m) time.
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Organization We start by introducing definitions related to spectral sparsification and spanners

in section 5.1. In section 5.2 we give the definition of robust connectivities and prove Lemma 101

and Lemma 102, thus obtaining a simple algorithm for spectral sparsification. Finally, in section 5.3

we prove Theorem 103.

5.1 Background and notation

For a weighted undirected graph G = (V,E,w) the Laplacian matrix of G is the matrix defined as

LG(i, j) = −w(i,j) and LG(i, i) =
∑
j 6=i

wij

Definition 104 (Spectral ordering of graphs) We define a partial ordering ≺ on graphs by let-

ting

G ≺ H if and only if xTLGx ≤ xTLHx ∀x ∈ R|V |.

A weighted undirected graph G can be associated with an electrical network with link e having

conductance we (i.e. corresponding to a resistor of resistance 1/we). Then the effective resistance

Re across an edge e is the potential difference induced across it when a unit current is injected at

one end of e and extracted at the other end of e. We will use the following

Theorem 105 (Spectral sparsification, [83]) Let H be obtained by sampling edges of G inde-

pendently with probability pe = Θ(weRe log n/ε2) for some ε > 1/
√
n and giving each sampled edge

weight 1/pe. Then whp

(1− ε)G ≺ H ≺ (1 + ε)G.

The following corollary is well-known (see, e.g.[64]):

Corollary 106 (Oversampling) Let H be obtained by sampling edges of G independently with

probability pe ≥ cweRe log n/ε2 for some ε > 1/
√
n and a sufficiently large constant c > 0, and

giving each sampled edge weight 1/pe. Then whp

(1− ε)G ≺ H ≺ (1 + ε)G.

We will also need definitions related to spanners.

Definition 107 (t-spanner) A t-spanner of a weighted undirected graph G is a subgraph H of G

such that the distances in H are stretch t estimates of the distances in G, i.e. for all u, v ∈ V one

has

dG(u, v) ≤ dH(u, v) ≤ t · dG(u, v).
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5.2 Robust connectivities

In this section we define robust connectivities, prove their main properties and give an efficient algo-

rithm for approximating them. These results together with Corollary 106 imply a simple algorithm

for spectral sparsification.

Let G = (V,E) be a weighted undirected graph with edge weights we. For a sampling parameter

p ∈ R+ denote by Gp the unweighted random graph obtained by sampling each edge e ∈ E indepen-

dently with probability min{wep, 1}. For a graph H we denote the shortest path distance between

nodes u and v in H by dH(u, v). We start by defining robust connectivities, for which we need an

auxiliary definition.

Definition 108 Let G = (V,E) be a weighted undirected graph. For η ∈ R+ and e ∈ E let pκ(e, η) =

Pr[dGη (u, v) > κ].

Note that when G is an unweighted graph, it is sufficient to consider η ∈ (0, 1].

Definition 109 For e = (u, v) ∈ E let the κ-robust connectivity qκ(e) denote the largest η ∈ R such

that pκ(e, η) ≥ 1/2.

In what follows the parameter κ will be fixed, and we will use the term robust connectivity for

clarity. We will now show that qκ(e) upper bounds effective resistance up to a factor of κ. We will

need

Lemma 110 (Rayleigh’s monotonicity principle, [18]) Cutting an edge of an electrical resis-

tor network does not decrease the effective resistance between any pair of nodes.

Lemma 111 For all e ∈ E
qκ(e) ≥ Re/(2κ).

Proof: We use the characterization of conductance between a pair of nodes in an electrical resistor

network as

Cuv = min
x∈RV :xs=1,xt=0

∑
e=(u,v)∈E

we(xu − xv)2. (5.1)

For a sampling parameter p ∈ R+ let Ep denote a random set of edges obtained by sampling E

independently with probability min{wep, 1}. Similarly, denote the conductance of e = (u, v) in Gp

by

Cuv(p) = min
x∈RV :xs=1,xt=0

∑
e=(u,v)∈Ep

(xu − xv)2. (5.2)
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We have

E [Cuv(p)] = E

 min
x∈RV :xs=1,xt=0

∑
e=(u,v)∈Ep

(xu − xv)2


≤ min
x∈RV :xs=1,xt=0

E

 ∑
e=(u,v)∈Ep

(xu − xv)2


= min
x∈RV :xs=1,xt=0

∑
e=(u,v)∈E

(wep)(xu − xv)2 = pCuv

and hence by Markov’s inequality, one has

Pr[Cuv(p) > 2p/Re] ≤ Pr[Cuv(p) > 2E[Cuv]] ≤ 1/2. (5.3)

On the other hand, for p ≥ qκ(e) one has Pr[dGp(u, v) ≤ κ] ≥ 1/2. This implies by Lemma 110 that

Pr[Cuv(p) ≥ 1/κ] ≥ 1/2 (5.4)

since the conductance of a path of length at most κ is at least 1/κ. Setting p = qκ(e) and combining

(5.3) and (5.4), we get that

2qκ(e)/Re ≥ 1/κ, (5.5)

i.e. qκ(e) ≥ Re/(2κ).

We will need the following simple lemma

Lemma 112 For all r′ < r one has pκ(e, r) ≤ pκ(e, r′).

Proof: The result follows by coupling the process of sampling edges at rate r′ and r such that the

set of edges picked by the first process is a subset of edges picked by the second process.

We now prove that the sum of distance thresholds over edges of G is small. In order to do that,

we relate the distance threshold of e ∈ E to the probability of including e in a randomized spanner

construction which we now define. Note that this construction is only used to prove an upper bound

on the sum of distance thresholds and, in particular, we do not provide an efficient implementation

here.

The intuition behind the randomized construction of the spanner is very simple, and we outline

it here for the case of unweighted graphs. Arrange edges of G in a random order, add for each edge

e in that order add e to the spanner H if e does not form a cycle of length smaller than κ with the

edges that are included so far. It is known that such a process produces a spanner [7] with at most

n1+O(1/κ) edges. On the other hand, the set of edges that have rank at most t in a uniformly random

order essentially form a random sample of edges of G where each edge is present with probability

t/m. Hence, the probability that the endpoints of e are at least κ apart in the subgraph formed by

edges with rank at most t, and hence in the spanner constructed so far, is approximately pκ(e, t/m),

allowing us to conclude that each edge is taken with probability about qκ(e), since it is taken with
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constant probability if it arrives before time qκ(e) · m. We now make a version of this argument

formal. Since ordering edges by a uniformly random permutation causes dependencies, we choose a

slightly different but essentially equivalent approach. We first define the following

Algorithm 4: Randomized spanner construction

1: H ← (V, ∅)
2: for η = 0 to 1

wmin
with step ∆ do

3: for each e = (u, v) ∈ E do

4: γ ← min
{

1, we∆
1−weη

}
.

5: Xe(η)← Bernoulli (γ).

6: if Xe(η) = 1 then

7: Add e to H if dH(u, v) < κ.

8: end if

9: end for

10: end for

Note that intuitively, the sampling parameter η iterates over the relevant range of sampling

parameters [0, 1/wmin] with a sufficiently small step ∆, sampling the edges of G in such a way that

at each time η the distribution of sampled edges is the same as in Gη. For sufficiently small ∆, we

have that
∑
eXe(η) ≤ 1 for all η with high probability. More precisely, we say that an edge e ∈ E

is sampled by time η by Algorithm 4 if Xe(η
′) = 1 for at least one η′ ∈ [0, η]. Note that an edge e

that is sampled is not necessarily included in H. Denote the set of edges sampled by Algorithm 4 by

time η by Es(η). Denote the set of edges included in H by time η by EH(η). The crucial property

of Algorithm 4 that we will use in our analysis is

Lemma 113 Es(η) is distributed as a uniformly random independent sample of edges of E, where

edge e ∈ E is picked with probability min{1, weη}.

Proof: Since the coin tosses for different edges are independent, it is sufficient to consider a fixed

e ∈ E. We prove by induction on η (recall that η iterates over a discrete set) that

Pr[e ∈ Es(η)] = min {1, weη} .

Base:η = 0 One has Pr[e ∈ Es(η)] = min{1, weη} = 0.

Inductive step:η → η + ∆ One has

Pr[e ∈ Es(η + ∆)] = Pr[e ∈ Es(η)]

+Pr[e sampled at step η + ∆|e 6∈ Es(η)]Pr[e 6∈ Es(η)]

= Pr[e ∈ Es(η)]

+Pr[e sampled at step η + ∆]Pr[e 6∈ Es(η)]

= weη + min

{
1,

we∆

1− weη

}
(1− weη) .
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Since

min

{
1,

we∆

1− weη

}
=

{
1, we(η + ∆) ≥ 1
we∆

1−weη o.w.
,

we get that

Pr[e ∈ Es(η + ∆)] = min {1, we(η + ∆)} .

We now (almost) mirror the definition of qκ(e) for the randomized spanner construction for use

in the analysis

Definition 114 Let q∗e(κ) denote the probability of including edge e ∈ E in H in Algorithm 4, i.e.

q∗κ(e) = Pr[e ∈ EH(R)].

We can now prove

Lemma 115 For all e ∈ E
qκ(e) ≤ 2q∗κ(e).

Proof: Fix an edge e ∈ E and let η∗ = qκ(e). We first note that by Lemma 112, the probability

that e is added to H if e is sampled at time η′ is only larger than the probability that e is added if

it appears at time η > η′. Thus, we have

q∗κ(e) ≥ Pr[e ∈ EH(η∗)] ≥ Pr[e ∈ Es(η∗)]/2 = qκ(e)/2. (5.6)

Hence, we get

Lemma 116 ∑
e∈E

weqκ(e) ≤ 2n1+O(1/κ)

Proof: One has
∑
e∈E weq

∗(e) = E[|E(H)|], where H is the random spanner constructed by Algo-

rithm 4. By construction H does not have cycles of length less than κ, and hence |E(H)| ≤ n1+O(1/κ)

(see, e.g. [18]). Now the result follows by Lemma 115.

Now the proof of Lemma 101 follows by putting together Lemma 115 and Lemma 111. We now

proceed to give an algorithm for efficiently obtaining estimates q̂κ(u, v) of qκ(u, v) guaranteed by

Lemma 102.

5.2.1 Estimating qκ(e)

We now show how obtain surrogate values q̂κ(e) that we will use in place of qe(κ) such that q̂κ(e) ≥
Re/κ

2 and
∑
e∈E q̂κ(e) ≤ n1+O(1/κ) in Õ(m) time. It will be convenient to introduce another
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parameter δ ∈ (0, 1) and write q̂κ,δ(e). Intuitively, δ is the probability that the endpoints of e are

more than κ apart a random sample of edges of G where each edge is present independently with

probability q̂κ,δ(e), so that q̂κ,1/2(e) is an estimate for qκ(e).

The estimation procedure is quite simple. We consider samples of edges of G at a geometric

sequence of rates, an calculate the distance between the endpoints of each edge e ∈ E in the random

subgraph given by the sample. Independent repetition of such experiments allows us to estimate

the sampling threshold for which the distance between the endpoints of e becomes large. Since the

distance calculation is not exact, the approximation to effective resistance that the procedure gives

suffers an extra κ factor (we will set κ = log n later). The bound on the sum of the estimated

connectivities will follow similarly to the proofs above. We now give a formal description of the

estimation procedure.

For each t = 1, . . . , T , where T = log(n4wmax/wmin), and j = 1, . . . , J for J = 80 log n/δ2 define

sets Ejt as follows. For each e ∈ E add e to Ejt for t between 1 and 1 + log(we/wmin). Then for each

e, repeatedly add e to sets Ejt with a higher value of t while a coin with heads probability of 1− ε
comes up heads.

We will use the Thorup-Zwick distance oracles:

Theorem 117 [89] Let G = (V,E) be an undirected weighted graph with n vertices and m edges. For

any integer k ≥ 1 the graph G can be preprocessed in O(kmn1/k) expected time constructing a data

structure of size O(kn1+1/k) such that any subsequent distance query can be answered approximately

in O(k) time. The approximate distance returned is is of stretch at most 2k − 1.

For t ∈ [1 : T ], j ∈ [1 : J ] and e ∈ E the estimation algorithm sets ηje(t) = 0 if the distance

between the endpoints of e is reported by an appropriate distance oracle on Ejt to be at most κ2
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and 0 otherwise. The formal description is given in Algorithm 5.

Algorithm 5: ESTIMATE(G, κ, δ)

1: for j = 1 to J do

2: Set Ejt ← ∅ for t ∈ [1 : T ].

3: For each e ∈ E add e to Ejt for t between 1 and 1 + log(we/wmin).

4: for t = 1 to T − 1 do

5: Add each e ∈ Ejt to Ejt+1 independently with probability 1− ε.
6: end for

7: end for

8: for t = 1 to T do

9: Construct a Thorup-Zwick distance oracle for Ejt , j ∈ [1 : J ], denoted by Ojt .

10: for e = (u, v) ∈ E do

11: if Ojt (u, v) > κ2 then

12: ηje(t)← 1

13: else

14: ηje(t)← 0

15: end if

16: end for

17: end for

18: for e ∈ E do

19: q̂κ,δ(e)← 2−t, where t is the smallest such that |{j : ηje(t) = 1}| ≥ (1− δ)J
20: end for

21: return q̂κ,δ

The following lemma gives bounds on q̂κ,δ that yield Lemma 102 after setting δ = 1/2. We will

need the ability to chose general δ in the next section (where we will also need property 3 from the

lemma below).

Lemma 118 With high probability for all e = (u, v) ∈ E one has

1. q̂κ,δ(e) ≥ δRe/(4κ2)

2.
∑
e∈E weq̂κ,δ(e) ≤ 2n1+O(1/κ)

3. for all η < qκ,δ(e) one has Pr[dGη (u, v) > κ] ≥ 1− δ/2.

Proof: First note that by the choice of T = log
(
n4wmax
wmin

)
we have for each e ∈ E that Pr[dG2−T

(u, v) ≥
κ] = 1− n−c for a constant c > 0, so whp q̂κ,δ(e) is defined by Algorithm 5.

To prove the first statement, we argue similarly to Lemma 111. We use the characterization

Cuv = min
x∈RV :xs=1,xt=0

∑
e=(u,v)∈E

we(xu − xv)2 (5.7)
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and denote the conductance of e = (u, v) in Gp by

Cuv(p) = min
x∈RV :xs=1,xt=0

∑
e=(u,v)∈Ep

(xu − xv)2. (5.8)

As before, we have

Pr[Cuv(p) > 2p/(δRe)] ≤ Pr[Cuv(p) > (2/δ)E[Cuv]] ≤ δ/2. (5.9)

Let t∗ ∈ [1, T ] be such that q̂κ,δ(e) = 2−t
∗
. Let

α := Pr[d2q̂κ,δ(e)(u, v) ≥ 1/κ2]

It follows by an application of Chernoff bounds that

Pr[|{j : ηje(t
∗ − 1) = 1}| 6∈ [α− δ/2, α+ δ/2]J ]

< e−δ
2J/16 = n−5.

Hence, we have with high probability that α ≤ 1− δ/2, i.e.

Pr
[
d2q̂κ,δ(e)(u, v) ≤ κ2

]
≥ δ/2. (5.10)

Using Rayleigh’s monotonicity principle and the fact that the conductance of a path of length at

most κ2 is at least 1/κ2, we get, combining (5.10) with (5.9)

(2/δ)(2q̂κ,δ(e))/Re ≥ 1/κ2, (5.11)

i.e. qκ,δ(e) ≥ δRe/(4κ2).

To prove the second inequality, we argue similarly to Lemma 115. Consider a randomized spanner

construction process in Algorithm 4 in which an edge e is added to the spanner if there is no path

of length smaller than κ in the spanner constructed so far. Since Ojt (u, v) ≥ κ2, we have, using

the assumption that Oij is a κ-approximate distance oracle, that the distance between u and v in

the appropriate sampled graph is larger than κ. Thus, similarly to Lemma 115, we have that the

probability of including an edge e in the randomized spanner construction is at least q̂κ(e)/2. Since

the spanner construction process terminates with a graph without cycles of length smaller than

κ, we have
∑
e∈E weq̂κ(e) ≤ 2n1+O(1/κ). The third inequality follows from the fact the Ojt is a

κ-approximate distance oracle and Chernoff bounds as above.

Algorithm 5 immediately yields a simple algorithm for spectral sparsification:

Algorithm 6: Spectral sparsification via robust connectivities

1: Set q̂ ← ESTIMATE(G, log n, 1/2) ∈ E.

2: Sample each e ∈ E independently with probability re := min{1, (cweq̂(e) log3 n)/ε2} for a

constant c, giving e weight 1/re if sampled.
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We now obtain

Theorem 119 Algorithm 4 produces a spectral sparsifier of G with O(n log3 n/ε2) edges whp.

Proof: It follows from Lemma 118 that q̂κ,1/2(e)(2 log2 n) ≥ Re, where Re is the effective resistance

of e. Hence, the sampled graph is a spectral sparsifier whp by Corollary 106. By Lemma 118∑
e∈E

weq̂κ,1/2(log n) = O(n1+O(1/ logn)) = O(n).

Hence, the size of the sample is bounded by O(n log3 n/ε2).

In the next section we show that in fact a spectral sparsifier can obtained by taking a union of

black-box spanners of random subgraphs of G, thus proving Theorem 103.

5.3 Sparsification by spanners

In this section we give an algorithm for obtaining a spectral sparsifier of an undirected weighted

graph G using black box invocations of a spanner construction algorithm, proving Theorem 103.

The main challenge here is to overcome dependencies in the sampling process that arise from using a

black-box spanner construction. In order to do that, we introduce a procedure that, given a vector of

target sampling probabilities q(e) := q̂κ,ε(e), e ∈ E, samples edges of G using the black-box spanner

construction such that the sampling process (a) stochastically dominates the process of sampling

edges independently with probabilities (1 − ε) min{1, weq(e)} and (b) is stochastically dominated

by the process that samples edges independently with probability min{1, weq(e)}. The procedure

consists of a logarithmic number invocations of a basic sampling scheme that we now define.

We first define a sequence of sets E1, E2, . . . , EH with H = log1/(1−ε)

(
n4wmax
wmin

)
such that Ei ∩

Ej = ∅ for i 6= j and
⋃H
i=1Ei = E. For each e ∈ E with weight we ∈ wmin · ((1− ε)−j , (1− ε)−(j+1)]

assign e to set Ej , and for each edge e independntly, keep moving e to higher levels Ei, i ≥ j,

one level at a time while a coin with heads probability (1 − ε) comes up heads. Thus, we have

Pr[e ∈ Ei for some i ≥ j] = min{1, we
wmin

(1 − ε)j}. For e ∈ E let the level of e, denoted by l(e), be

the unique index j such that e ∈ Ej , and let l∗(e) denote the smallest j such that wmin(1 − ε)j ≤
min{1, weq(e)}.

Let q(e) = q̂κ,ε(e), e ∈ E be the vector of sampling parameters. We first define

Algorithm 7: SAMPLE-SPANNER(G, q)

1: for j = 1, . . . ,H do

2: Construct a spanner Sj on (V,Ej) of stretch at most κ.

3: For each e ∈ Sj , assign weight 0 to e if l(e) < l∗(e), otherwise assign weight 1/q(e).

4: end for

5: Return the weighted collection S1 ∪ . . . ∪ SH .
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The sampling process takes form

Algorithm 8: SPANNER-SPARSIFY(G, q, ε, Z)

1: q ← ESTIMATE(G, log n, ε).

2: Z ← Θ(log3 n/((1− ε)ε3))

3: for t = 1, . . . , Z do

4: Xt ← SAMPLE-SPANNER(G, q)

5: end for

6: return 1
Z (X1 + . . .+XH)

We now prove the main property of our sampling process.

Lemma 120 Let q = q̂κ,ε. Then for Z = Ω(log n) whp, i.e. except for a negligible part of the sample

space, the sampling process in Algorithm 8 is stochastically dominated by the process of independently

sampling an edge e with probability min{1, weq(e)} Z times (process B), and dominates the process

of independently sampling each edge with probability (1− ε) ·min{1, weq(e)} Z times(process A).

Proof: Denote the spanner constructed by t-th invocation of SAMPLE-SPANNER at level j ∈ [1 :

H] by St,j . We denote the system of sets E1, . . . , EH in the t-th invocation of SAMPLE-SPANNER

by Etj . For an edge e ∈ E we write lt(e) to denote the level of e in Ejt . We refer to an edge

e = (u, v) ∈ E as free at level j in invocation t if dEtj (u, v) > κ. By Lemma 118, (3) we have that if

lt(e) ≥ l∗(e), then

Pr[e is free in St,lt(e)] ≥ Pr[dGq̂κ,ε(e)(u, v) > κ] ≥ 1− ε,

where the probability is over the coin tosses determining the distribution of e ∈ E among Etj .

Since the invocations of SAMPLE-SPANNER use independent randomness, we have by an appli-

cation of Chernoff bounds, using the assumption that Z = Ω(log n), that with probability at least,

say, 1− n−5 for each e ∈ E such that lt(e) ≥ l∗(e), one has that e is free in at least a 1− ε fraction

of the spanners St,lt(e), t = 1, . . . , Z.

Consider any set W ⊆ E of edges. Each edge may be sampled by our process between 0 and Z

times. We will show that for any {ze ∈ [0 : Z]|e ∈W}∏
e∈W

((1− ε)qκ)ze ≤ Pr[e is chosen ze times ∀e ∈W ] ≤
∏
e∈W

qzeκ , (5.12)

where we say that edge e is chosen if it is included in a spanner and given positive weight.

Indeed, consider the following sampling process. Take Z copies of the edge set E and for each

edge first toss a coin to determine which of the Z spanner constructions it belongs to, and then toss

coins to determine the level Ej that the edge belongs to. Note that since, by the argument above,

whp each edge is free in at least a (1−ε) fraction of the spanners, with probability at least (1−ε) the

edge belongs to a spanner construction in which it is free. In that case the edge necessarily belongs

to the spanner Sj (since its endpoints are at distance greater than κ in Ej \{e}), and hence is chosen



CHAPTER 5. SPECTRAL SPARSIFICATION VIA RANDOM SPANNERS 115

with probability at least (1− ε)qκ. Since the coin tosses for different edges are independent, we get

that

Pr[e is chosen ze times ∀e ∈W ] ≥
∏
e∈W

((1− ε)qκ)ze .

On the other hand, the weight of an edge is 0 when the edge is at level larger than l∗(e), and hence,

since these coin tosses are independent for different edges, for any W ⊆ E,

Pr[e is chosen ze times ∀e ∈W ] ≤
∏
e∈W

qzeκ .

We have shown that our sampling process is sandwiched between two independent sampling pro-

cesses which sample edges with probabilities (1−ε)Z ·min{1, weqκ} (process A) and Z ·min{1, weqκ}
respectively (process B).

We now obtain

Proof of Theorem 103: Set Z = O(log3 n/((1− ε)ε3)). By Lemma 118 we have that

min{1, Z · weq̂κ,ε(e)} ≥ Θ(log n/ε2) ·min{1, weRe}

for all e ∈ E. Let G′A denote the subgraph sampled by process A and let G′B denote the subgraph

sampled by process B, where process A gives weight 1
(1−ε)q(e) to a chosen edge and B gives weight

1
q(e) . Let G′ denote the output of Algorithm 8. Then we have by Corollary 106

G′A ∈ (1± ε)G,G′B ∈ (1± ε)G

and by Lemma 120 we have

(1− ε) ·G′A ≺ G′ ≺ G′B ,

and hence G′ ∈ (1±O(ε))G.
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In this chapter we study the problem of graph sparsification on dynamic graph streams. Graph

sparsification was introduced by Benczúr and Karger [16], who gave a near linear time procedure that

takes as input an undirected graph G on n vertices and constructs a weighted subgraph H of G with

O(n log n/ε2) edges such that the value of every cut in H is within a 1± ε factor of the value of the

corresponding cut in G. A graph H that satisfies this property is called an ε-cut sparsifier of G. This

algorithm has subsequently been used to speed up algorithms for a host of applications involving

cuts and flows such as finding approximately minimum or sparsest cuts in graphs ([16, 58]), as well

as other applications (e.g. [53]). Spielman and Teng introduced a stronger class of sparsifiers called

spectral sparsifiers that preserve the Laplacian quadratic form [85]. Subsequent work has developed

a number of efficient algorithms for constructing cut and spectral sparsifiers [16, 83, 13, 60, 31, 49]

(one such algorithm was presented in Chapter 5).

The algorithms developed in [16, 83, 31, 49] take near-linear time in the size of the graph and

produce very high quality sparsifiers but require random access to the edges of the input graph G,

which is often prohibitively expensive in applications involving massive data sets. The streaming

model of computation, which restricts algorithms to use a small number of passes over the input

and space polylogarithmic in the size of the input, has been studied extensively in various applica-

tion domains—see [75] for an overview—but has proven too restrictive for even the simplest graph

algorithms. Even testing s − t connectivity requires Ω(n) space [44]. The less restrictive semi-

streaming model, in which the algorithm is restricted to use Õ(n) space, is more suited for graph

algorithms [27, 69].

The problem of constructing graph sparsifiers in the semi-streaming model was first considered

by Ahn and Guha [2], who gave a one-pass algorithm for finding Benczúr-Karger type sparsifiers with

a slightly larger number of edges than the original Benczúr-Karger algorithm, O(n log n log m
n /ε

2) as

opposed to O(n log n/ε2) using Õ(n) space. Subsequently, [57] obtained an algorithm for constructing

stronger spectral sparsifiers of size O(n log n/ε2) in a single pass in the streaming model. All of these

algorithms work only in the incremental model, where edges can be added to the graph but not

removed.

In a recent paper [5] Ahn, Guha and McGregor introduced a beautiful graph sketching approach

to streaming computations in dynamic streams, i.e., allowing both edge additions and deletions.

They showed that connectivity can be determined in Õ(n) space in this setting, and gave a multi-

pass algorithm for obtaining cut sparsifiers in small space. Their techniques center around the use of

linear sketches, which have been heavily studied in the field of compressed sensing/sparse recovery

originating in [19, 25]. See [34] for a survey. Our focus in this chapter is on providing a single-pass

implementation of cut sparsification on dynamic streams in the semi-streaming model.1

Our results: Our main result is an algorithm for constructing cut sparsifiers in a single pass in

dynamic streams with edge deletions. We prove

Theorem 121 There exists a single-pass streaming algorithm for constructing an ε-cut sparsifier

of an unweighted, undirected graph G = (V,E) with n vertices and m edges in the dynamic model

1A similar result was independently and concurrently obtained by [6].
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using Õ(n/ε2) space. The size of the sparsifier is O(n log3 n/ε2), and the runtime of the algorithm

is Õ(1/ε2) per update. At each point in the stream we can recover the edges of the sparsifier in time

Õ(n/ε2).

Our sparsification algorithm works by sampling edges at a rate inversely proportional to their

edge connectivity, which was shown to work in [31]. In order to do this we maintain two sets of

data structures. The first estimates connectivities, and the second does the actual sampling. We

estimate connectivities by sampling edges of the input graph at a geometric sequence of sampling

rates and recovering connected components of these samples using a result of [5]. The second set of

data structures stores a linear sketch of the actual samples we use in our sparsifier, sampling edges

incident on each vertex at a geometric sequence of rates. Using sparse recovery and the linearity of

our sketch we are able to reconstruct the necessary samples when needed.

The main challenges that we need to overcome to make this work is (1) being able to estimate

connectivities and produce edges of a sparsifier using random variables with limited indepence and

(2) recovering the edges of the sparsifier from stored sketches. In order to put these challenges in

perspective and outline our approach to overcoming them, suppose that G is k-connected and does

not contain any 2k-strongly connected components. The latter assumption implies that the average

degree of G is O(k). Edges of G can be sampled at rate Õ(1/k) in this case, resulting in Õ(1)

edges incident on each vertex on average. If all vertex degrees are in fact close to average, one can

show as in Section 6.3 that using sampling with Θ̃(1) independence per vertex is sufficient, and

then the sampled edges can be recovered from linear sketches of edges at each vertex. However,

complications arise when degrees are non-uniform: if a vertex in G has degree significantly above

average, we cannot in general reconstruct its sampled edges from the sketch stored of the vertex, and

it is no longer clear if this construction would actually yield a sparsifier, since the random variables

used for sampling these edges do not have sufficient independence. Nevertheless, we give a recursive

peeling-type decomposition of the graph that repeatedly removes low-degree nodes, reducing the

degree of those that remain and allowing us to recover edges of the sparsifier from the sketches.

Organization: We start by giving preliminaries on graph sparsification in Section 6.1. We then

describe the algorithm in Section 6.2 and Section 6.3. Maintaining our samples in the dynamic

model requires knowing, for each edge in the graph, whether or not it was included in each sample.

This can be easily achieved if we assume that our algorithm has access to Θ̃(n2) independent random

bits, which, however, is not feasible in Õ(n) space. For simplicity of presentation, we first describe

our algorithm assuming that it has access to Θ̃(n2) random bits in Section 6.2. We show how

to obtain sufficiently good estimates of edge connectivities in a single pass, as well as recover the

edges of a sparsifier using sparse recovery techniques. In Section 6.3 we show how to remove the

assumption that the algorithm has access to Θ̃(n2) independent random bits using random variables

with limited independence, obtaining a Õ(n/ε2) space single-pass algorithm for sparsification in the

dynamic model.
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6.1 Sparsification preliminaries

We will denote by G(V,E) the undirected input graph with vertex set V and edge set E with

|V | = n and |E| = m. For our purposes G will be unweighted, but the results in this section apply

to weighted graphs. For any ε > 0, we say that a weighted graph G′(V,E′) is an ε-sparsification of

G if the weight of every cut in G′ is within (1± ε) of the corresponding cut in G.

Sparsification algorithms work by sampling edges with probabilities inversely proportional to

some measure of connectivity. The simplest of these is edge-connectivity:

Definition 122 A graph G is k-connected if the value of each cut in G is at least k, and an edge

e has edge-connectivity ce if ce is the value of the minimum cut separating its endpoints.

Graphs with high k-connectivity are particularly simple to sample:

Theorem 123 ([52]) Let G = (V,E) be a k-connected graph on n nodes, and let G′ be obtained

from G by sampling edges independently with probability p = Θ(log n/(ε2k)), and giving sampled

edges weight 1/p. Then G′ is an ε-sparsifier of G with high probability.

The Benczúr-Karger algorithm samples according to a more strict notion of connectivity, referred

to as strong connectivity, defined as follows:

Definition 124 ([16]) A k-strong component is a maximal k-connected vertex-induced subgraph.

The strong connectivity of an edge e, denoted by se, is the largest k such that a k-strong component

contains e, and we say e is k-strong if its strong connectivity is k or more, and k-weak otherwise.

The following two lemmas will be useful in our analysis:

Lemma 125 ([16]) The number of k-weak edges in a graph on n vertices is bounded by k(n− 1).

Lemma 126 ([16]) Let G = (V,E) denote an undirected graph on n nodes. For an edge e ∈ E let

se denote the strong connectivity of e. Then
∑
e∈E 1/se ≤ n− 1.

We also rely on Benczúr and Karger’s main result, which is as follows:

Theorem 127 ([16]) Let G′ be obtained by sampling edges of G with probability pe = min{ρ/(ε2se), 1},
where ρ = 16(d + 2) lnn, and giving each sampled edge weight 1/pe. Then G′ is an ε-sparsification

of G with probability at least 1− n−d. Moreover, the expected number of edges in G′ is O(n log n).

It follows easily from the proof of Theorem (127) in [16] that if we over-sample by using an

underestimate of edge strengths, the resulting graph is still an ε-sparsification.

Corollary 128 Let G′ be obtained by sampling each edge of G with probability p̃e ≥ pe and and

give every sampled edge e weight 1/p̃e. Then G′ is an ε-sparsification of G with probability at least

1− n−d.
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Recently Fung et al.[31] proved that a more aggressive sampling method, namely sampling using

edge connectivities as opposed to strong connectivities, also produces cut sparsifiers, and we will

also require this result.

Theorem 129 ([31]) Let G′ be obtained from a weighted graph G by independently sampling edge

e with probability pe = ρ/ce, where ρ = Θ(log2 n/ε2). Then, G′ contains O(n log2 n/ε2) edges in

expectation and is an ε-sparsification whp.
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6.2 Sparsification with free randomness

In this section we present a dynamic sparsifier under the assumption that the algorithm has access

to Θ̃(n2) random words. We will remove this assumption in Section 6.3.

Our input graph G is undirected and unweighted. As in [5], we will use the following represen-

tation of G:

Definition 130 Given an unweighted graph G = (V,E), let AG be the n ×
(
n
2

)
matrix with entry

(u, (v, w)) ∈ [n]×
(

[n]
2

)
and v < w given by

au,(v,w) =


1 if u = v and (v, w) ∈ E

−1 if u = w and (v, w) ∈ E

0 otherwise

Updates to the graph G in the form of the addition or deletion of an edge arrive one at a time in

a streaming fashion. An update cannot delete an edge that does not exist or add one that already

does, but other than these restrictions the order is adversarial, and the stream can be arbitrarily

long. We need to maintain a data structure using only Õ(n) space that allows us to efficiently

construct an ε-sparsifier of the current graph G after any sequence of updates. We will accomplish

this using a collection of linear sketches of the rows of AG.

Our algorithm has two components: the first will maintain an estimate of the connectivity of

each edge and therefore its sampling rate (as discussed in Section 6.1), and the second will store the

actual samples. The former uses the tools developed by Ahn et al.[5], and the latter is based on the

technique of sparse recovery developed in the sketching and compressed sensing literature [34].

Before delving into the details, we elaborate on our use of randomness. In this section we assume

that for each pair (u, v) ∈ [n]2 the algorithm has access to a uniformly random number h(u,v) ∈ [0, 1].

In fact, we will need O(log n) independent copies of these random numbers, which we will denote by

hb(u,v), b = 1, . . . , O(log n). These random variables will be used to estimate sampling rates for edges

of G. We will also assume access to independent random numbers gb(u,v) ∈ [0, 1], b = 1, . . . , O(log n),

which we will use to determine a partition of the vertex set needed for sampling. Finally, we also

assume access to independent random numbers g∗(u,v) ∈ [0, 1] which will be used to sample edges

of the sparsifier. Once g, g∗ and h are sampled, they are fixed for the duration of the algorithm.

This is important for handling deletions, as it ensures that edges can be removed from exactly those

sketches to which they have been added.

It will be convenient to think of all these numbers as independent in this section, even though

this is not feasible in subquadratic space in the semi-streaming model. In Section 6.3 we will show

that using numbers that are only Õ(1)-wise independent for fixed u and independent for different v

is sufficient, leading to a space-efficient solution. Some of our subroutines will also require their own

internal entropy, but the total used will be only Õ(n) words.
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6.2.1 Estimating edge connectivity

The building block of our connectivity estimates is the following result from [5] that finds connected

components by sketching the rows of AG:

Theorem 131 ([5]) There is a single-pass, linear sketch-based algorithm supporting edge additions

and deletions that uses O(n log3 n) space and returns a spanning forest of the graph with high prob-

ability.

Our sketch is simple. We consider random samples of the input graph at geometric sampling rates

and find connected components in each sample. Specifically, for each a = 1, . . . , O(log n) denote by

Gba = (V,Eba) a subsample of the edges of G obtained by setting

Eba =
{

(u, v) ∈ E : min{hb(u,v), h
b
(v,u)} < 2−a

}
. (6.1)

We maintain connectivity data structures Cba for each of the subgraphs Gba for a = 1, . . . , O(log n),

b = 1, . . . , O(log n) using Theorem 131. It is important to note that use of the functions h(u,v) for

sampling rather than fresh randomness allows us to handle deletions properly by deleting a removed

edge only from the sketches that we added it to by simply sampling and using the consistent samples

as input to the sketch in Theorem 131.

Remark 132 Note that an edge (u, v) is included in Eba if the minimum of hb(u,v) and hb(v,u) is

smaller than 2−a. This will be important for the proof of correctness for hash functions with limited

independence in Section 6.3.

The connectivity structure of the subgraphs Gba allows us to associate a sampling rate with each

edge. For an edge (u, v) ∈ E we use the smallest sampling rate 2−a at which u and v are still in

the same component as an estimate of the sampling rate for (u, v). Independent repetition O(log n)

times reduces the variance sufficiently to get precise estimates.

Define Va as the partition of vertices in V induced by the intersection of all partitions Cba, b =

1, . . . , O(log n). That is, vertices u and v are in the same connected component in Va if and only

if they are connected in Cba for all b = 1, . . . , O(log n). For an edge (u, v) let L(u, v)—the level of

(u, v)—denote the largest a such that u and v are in the same component in Va, and for a vertex v

let the level L(v) denote the largest a such that v is not a singleton in Va.

The level L(e) of an edge serves as a proxy for its connectivity:

Lemma 133 For all edges e ∈ E one has

Θ(se/ log n) ≤ 2L(e) ≤ 2ce

with high probability, where se denotes strong connectivity and ce denotes edge connectivity.

Proof: The first inequality follows from the fact that Θ(log n) · 2L-strongly connected components

will stay connected with high probability by Theorem 123 when the functions hb(u,v) used for sampling
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are truly random. Lemma 146 from Section 6.3 gives the result for hash functions with limited

independence.

The second inequality follows by noting that if there is a cut separating u and v of size at most

2L/2, then it will be empty with probability at least 1/2 when we sample at rate 2−L by Markov’s

inequality, so u and v will get disconnected in one of the O(log n) independent repetitions with high

probability.

This implies the levels can be used as sampling rates:

Lemma 134 Sampling edges independently at rate pe = O
(
log2 n/(ε22L(e))

)
and weighting sampled

edges with 1/pe produces a sparsifier with O(n log3 n/ε2) edges high probability.

Proof: By Theorem 129 sampling at rate O(log2 n/(ε2ce)) works. By Lemma 133 1/2L(e) ≥ 1/(2ce),

and oversampling only improves concentration. This proves the statement assuming that the sam-

pling of edges is independent.

The expected size of the sample is bounded by
∑
e∈E pe = O(log3 n/ε2)·

∑
e∈E 1/se = O(n log3 n/ε2),

where we used Lemma 133 to bound pe = O(log n)/se and the fact that
∑
e∈E 1/se ≤ n − 1 by

Lemma 126.

6.2.2 Maintaining edge samples

We now show how to maintain small space sketches that will allow us to reconstruct the edges of

the sparsifier. Our basic tool is the technique of sparse recovery from the field of compressed sensing

[34]. A vector A of dimension N is k-sparse if it has at most k non-zero entries, and a k-sparse,

or approximately k-sparse, signal can be recovered with high probability from O(k log(N/k)) non-

adaptive linear measurements. Here we use the following result of Cormode and Muthukrishnan [24]

that allows recovery in Õ(k) time at the cost of slightly sub-optimal sketch size and error guarantees:

Theorem 135 ([24]) We can construct a randomized 0/1 matrix T of dimension O(ck log3 n/ε2)×
N such that for any k-sparse signal A of dimension N , given the transformation TA we can recon-

struct A exactly with probability at least 1−n−c in time O(c2k log3 n/ε2). The matrix T is constructed

using O(1)-wise independent hash functions, and individual entries can be queried efficiently.

We will also need the following result by Indyk [46] on sketching `1 norms:

Theorem 136 ([46]) There is a linear sketch-based algorithm using O(c log2N/ε2) space and O(c log2N/ε2)

random bits that can estimate the `1 norm of a vector of dimension N to within a factor of (1± ε)
with probability 1−N−c. The sketch can be updated in O(logN) time.

For a row v of the matrix AG let Sra(v) for r = 1, . . . , O(log n) denote linear sketches guaranteed

by Theorem 135 for k = O(log3 n/ε2) where a corresponds to the geometric sequence of sampling

rates, and r = 1, . . . , O(log n) are independent copies that are useful for recovery. More precisely,

Sra(v) is a sketch of row v in the matrix AG′a,r where G′a,r has edges

E′a,r =
{

(u, v) ∈ E : min{gr(u,v), g
r
(v,u)} < 2−a

}
. (6.2)



CHAPTER 6. SPARSIFICATION IN THE EDGE DELETION MODEL 124

Some of these sketches may accumulate more than k edges and consequently cannot be decoded on

their own, but we will prove this is not an issue. We will also need sketches dra(v), r = 1, . . . , O(log n)

for the `1-norm of the v-th row of the matrix AG′a,r . Note row v of AG′a,r contains a ±1 entry for

each edge incident on v in G′a,r, so the `1 norm corresponds exactly to the degree of v in the sampled

graph G′a,r.

Remark 137 Note that we are using O(log n) independent samples G′a,r for each sampling rate a.

This will be important in the proof of Lemma 141 below.

Finally, we will also need another set of independent samples of G that will be used to obtain

the edges of the sparsifier. Let G∗a be the graph with edges

E∗a =
{

(u, v) ∈ E : min{g∗(u,v), g
∗
(v,u)} < 2−a

}
. (6.3)

For each node v and sampling rate a we maintain sketches S∗a(v) of row v in the matrix AG∗a using

Theorem 135 for k = O(log3 n/ε2). Here we do not need independent repetitions for each sampling

rate a.

By the choice of the matrix AG and the linearity of the sketches, if S ⊆ V is a cut then
∑
v∈S d

r
a(v)

is a sketch for the size of the cut and
∑
v∈S S

r
a(v) is sketch of a sample of its edges. If v is a supernode

obtained by contracting a set of vertices S, we write dra(v) to denote
∑
u∈S d

r
a(u) and similarly for

Sra(v) and S∗a(v). For any fixed cut and fixed G′a the estimate given by dra(v) is close to expectation

with high probability.

Before specifying the algorithm formally, we give the intuition behind it. Recall that for every

vertex u at level L(u) = a, we need to sample edges going from u to vertices in u’s component in Va
with probability γ log2 n/(ε22a) for an appropriate constant γ. In order to do that, we will sample

all edges incident on u with probability γ log2 n/(ε22a) and then throw away the ones that do not

go to u’s component. In order to obtain such a sample, we will use the sketches Sra′(u) that were

made with sampling at rate γ log2 n/(ε22a).

The main observation here is that if we contract connected components in Va+1 into supernodes,

the resulting graph will have only (γ log n · 2a+1)-weak edges for a constant γ, so the average degree

will be no larger than γ log n · 2a+1. By repeatedly removing vertices with degree at most twice the

average, nodes of this subgraph can be partitioned into sets W1, . . . ,Wt such that for each i = 1, . . . , t

and u ∈Wi the degree of u in Wi ∪ · · · ∪Wt is at most 4γ log n2a and t = O(log n). Formally,

Lemma 138 Suppose all edges in G are k-weak. Then V can be partitioned into t = logn sets

W1, . . . ,Wt such that for all v ∈Wi the degree of v when restricted to Wi ∪ · · · ∪Wt is at most 2k.

Proof: By Lemma 125 if G has n′ nodes then it has at most k(n′−1) edges. Let W1 be the set of

all nodes with degree at most 2k. By Markov’s inequality W1 includes at least half the nodes. After

removing W1 and all incident edges we can repeat this process to find W2, etc. At each iteration we

remove at least half the nodes, so it terminates in log n iterations.
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This partition cannot actually be computed because we cannot properly update the degree

sketches after removing W1, but its existence allows us to prove that the same procedure works

when using the lower degree sample G′a,r.

Let ∆ = log(γ log2 n/ε2). We need to use the samples Sra−∆(u) for edges at level a. We first

bound the degrees in G′a−∆,r:

Lemma 139 Let gr(u,v) be Θ(log3 n/ε2)-wise independent for fixed u, and independent for different

u. Then the degree of all u ∈Wi in G′a−∆,r restricted to nodes Wi∪ . . .∪Wt is at most O(log3 n/ε2)

with high probability.

Proof: Consider a vertex u ∈ Wi and let N(u) denote the neighbors of u in Wi ∪ . . . ∪Wt in the

full graph G. The size of its sampled neighborhood is bounded by∑
v∈N(u)

1gr
(u,v)

<γ log2 n/(ε22a) +
∑

v∈N(u)

1gr
(v,u)

<γ log2 n/(ε22a)

The number of terms is O(log n2a). The second sum consists of independent random variables, so

standard Chernoff bounds apply. Concentration bounds from Theorem 145 apply to the first sum

since they are sufficiently independent for expectation O(log3 n/ε2).

Observe that if a node u satisfies the bound in Lemma 139, then the sketch Sra−∆(u) can be

decoded using Theorem 135. Let U1 be the set of decodable nodes. We would like to argue that we

can simply output a decoded edge (u, v) as part of the sparsifier if and only if gr(u,v) < γ log2 n/(ε22a)

and v belongs to the same connected component as u in Va. Then, using the linearity of the sketches,

we could subtract decoded edges of the form (u, v), u ∈ U1, v ∈ V \ U1 from the sketches S(v) and

d(v), effectively removing U1 from the graph, and then move on to U2.

However, for technical reasons to avoid dependencies and ensure the algorithm works in small

space, we cannot reuse the variables gr(u,v). We need to calculate U2 using the independent sketches

Sr+1 and dr+1 as opposed to Sr and dr to avoid dependencies and also use the variables g∗(u,v) for

the actual samples. The size of r will remain bounded since we will prove the process terminates

in O(log n) steps, but switching to Sr+1 introduces additional complications because to remove a

vertex u ∈ U1 from the graph, we must be able to recover the edges from Sr+1
a−∆(u), . . . , S

O(logn)
a−∆ (u).

The following lemma accomplishes this:

Lemma 140 Let gr(u,v) be Θ(log3 n/ε2)-wise independent for fixed u, and independent for different

u, and suppose the degree of u in G′a−∆,r is at most α log3 n/ε2 where α is the constant from

Lemma 139. Then the degree of u in G′a−∆,r′ is O(log3 n/ε2) for all r′ ≥ r with high probability.

Proof: If the degree of u in G′a−∆,r is at most α log3 n/ε2, we expect the degree in G to be at most

(α/γ) log n2a, and concentration inequalities for sampling with limited independence (Theorem 145)

show that with high probability its degree is at most, say, 2(α/γ) log n2a. Applying Theorem 145

again shows u’s degree in G′a−∆,r′ is O(log3 n/ε2) for any r′, and taking a union bound over all r′

finishes the proof.
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We now state the algorithm formally. For each a = 1, . . . , O(log n) we denote the graph obtained

by contracting all connected components in Va+1 into supernodes by Ha.

Algorithm 9: PARTITION(a)

1: Let H1
a ← Ha.

2: for r ← 1 to O(log n) do

3: Estimate the degree of each v ∈ Hr
a from sketches dra−∆(v)

4: Ura ← {v ∈ Hr
a |dra−∆(v) ≤ 4α log3 n/ε2}

5: for u ∈ Ura , j = r + 1, . . . , O(log n) do

6: Run sparse recovery on Sja−∆(u)

7: For all edges (u, v) recovered from Sja−∆(u), subtract (u, v) from Sja−∆(v) and dja−∆(v)

8: end for

9: Hr+1
a ← Hr

a \ Ura .

10: end for

11: return {Ura}r=1,...,O(logn)

Here γ is a constant such that sampling the edges of a k-connected graph at rate γ log n/k produces

a connected subgraph with probability at least 1 − n−10, and α is a constant bounding the degree

in Lemma 139.

We first prove

Lemma 141 For all a = 1, . . . , O(log n), Algorithm 9 recovers a partition of Ha such that for all

r = 1, . . . , O(log n) for each u ∈ Ura the degree of u in Ur+1
a ∪ . . . ∪ UO(logn)

a in graph G∗a−∆ is

O(log3 n/ε2) with high probability.

Proof:

We first prove that the constructed sets cover all of Ha. Consider the set U1. By Lemma 139,

all u ∈ W1 have degree O(log3 n/ε2) in G′a−∆,1 with high probability, so removing all nodes with

degree at most 4α log3 n/ε2 for large enough α will include all u ∈W1. Lemma 140 implies that the

sparse recovery in line 6 will succeed for all j with high probability, so we can completely remove Ura
from the graph. Lemma 140 also bounds the degree of u ∈ Ura in graph G∗a−∆, by replacing G′a−∆,r′

with G∗a−∆ in the statement of the lemma.

We now note that the identity of the set Ura is independent of the randomness used for samples

and sketches Sja−∆, dja−∆, j = r + 1, . . . , O(log n). Thus, the same bounds on node degrees follow

by a recursive application of the argument to Ha \ U1
a . Furthermore, it follows by induction on r

that after removing U1
a , . . . , U

r
a we have removed all of W1, . . . ,Wr with high probability, so the

algorithm terminates in O(log n) iterations.
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Given the partition U1
a , . . . , U

O(logn)
a , the algorithm for recovering the edges of the sparsifier is

as follows:

Algorithm 10: RECOVER(a)

1: for r = 1, . . . , O(log n), u ∈ Ura do

2: Run sparse recovery on S∗a−∆(u)

3: Output each recovered edge (u, v), u ∈ Ur only if g∗(u,v) < γ log2 n/(ε22a) and L(u, v) = a.

4: Subtract recovered edges from S∗a−∆(v) for all v ∈ Ua,r+1 ∪ . . . Ua,O(logn).

5: end for

We can now prove

Theorem 142 For each v ∈ V (G) Algorithm 10 recovers a sample of edges incident on v, where

edges are picked with probability γ log2 n/(ε22L(v)).

Proof:

Note that sparse recovery succeeds whp by the degree bound in Lemma 141. Finally, note that

the structure of the partition U1 ∪ . . .∪Ur maps to each edge a single random variable g(u,v), so the

probability of an edge being sampled is correct.

We will need the following definition in Section 6.3:

Definition 143 An edge e = (u, v) ∈ E is controlled by a vertex u ∈ V if e is sampled using g∗(u,v).

We denote the set of edges controlled by u by Eu.

We will also need

Lemma 144 Let E∗ be a set of edges. For each u ∈ V one has E[|E∗ ∩ Eu|] = O(log4 n/ε2).

Proof: Consider a vertex u ∈ V . By Lemma 141 u controls O(log3 n2a/ε2) edges at level a. Hence,

the expected number of edges sampled at each level a is O(log3 n/ε2). Hence, the expected number

of edges controlled by u across all levels is O(log4 n/ε2).

6.2.3 Runtime

We now briefly summarize the time required to update the sketches and to construct a sparsifier.

We do not optimize the log factors but only show updates require Õ(1/ε2) time and building a

sparsifier requires Õ(n/ε2). Each addition of deletion of an edge requires updating Cba, Sra and dra for

a, b, r ≤ O(log n). The sketches Cba are built using `0-samplers (see [5]) and can be updated in Õ(1)

time. For an edge (u, v) we update all O(log n) copies of S(u), S(v), d(u) and d(v). By Theorems

135 and 136, these can each be updated in Õ(1/ε2) time. For S(u) this is done by querying only the

Õ(1/ε2) entries of the matrix T we need.

Construction of the sparsifier is more expensive. If we query the sparsifier after each graph

update it may need to be recomputed from scratch each time due to edge deletions, so we cannot

amortize its cost across the updates. However, we will show it requires only Õ(n/ε2) time. Building

all O(log n) Va requires Õ(n) operations each if `0-sampling is done efficiently.
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Running one iteration of Algorithm 9 requires O(n) estimations of d, O(n) decodings of S, Õ(k)

updates to S and d for each of the O(n) sparse recoveries and O(n) additional bookkeeping. Since

S is Õ(1/ε2)-sparse by Theorem 135 decoding takes Õ(1/ε2) time. Summing over Õ(1) values of r

and a, we use a total of Õ(n/ε2) time. Algorithm 10 also does O(n) sparse recoveries and Õ(n/ε2)

updates to S∗ per iteration, which also totals to Õ(n/ε2) summing over all r and a.

6.2.4 Weighted graphs

We note that even though we stated the algorithm for unweighted graphs, the following simple

reduction yields a single pass dynamic sparsifier for weighted graphs, as long as when an edge is

removed or updated, its weight is given together with the identity of its endpoints. Suppose that edge

weights are integers between 1 and W (the general case can be reduced to this one with appropriate

scaling and rounding). Consider graphs G0, . . . , Glog2 W , where an edge e = (u, v) belongs to the

edge set of Gb iff the binary expansion of we has 1 in position b, for b = 0, . . . , log2W . Note that

in order to preserve cuts in G to a multiplicative factor of 1 ± ε, it is sufficient to preserve cuts in

each of G0, . . . , Gb to the same factor. To do that, it is sufficient to maintain log2W copies of our

algorithm operating on the graphs Gb (this is feasible due to the assumption that edges are either

added or completely removed, i.e., the weight of the removed edge is given at the time of removal).

The space used and the number of edges in the sparsifier will both increase by a factor of log2W .
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6.3 Sparsification with limited independence

In this section we remove the assumption that the algorithm has access to Θ̃(n2) bits of randomness

by using sampling with limited independence. We prove the following two statements. First, we

show in Lemma 146 that sampling edges of a k-connected graph at rate γ log n/k yields a connected

graph with high probability, even with limited independence. In particular, it is sufficient to ensure

that random variables used for sampling edges incident to any given vertex are only Õ(1/ε2)-wise

independent. This lemma is used in Section 6.2 to show that our estimation of sampling rates

is accurate. We then show that our algorithm for constructing a sparsifier by sampling at rates

proportional to edge connectivities yields a sparsifier with high probability even when the sampling

is done using limited independence. We note that the second claim does not subsume the first due

an extra log n factor that is needed for sampling with edge connectivities to go through.

We will use tail bounds for t-wise independent random variables proved in [79], Theorem 5:

Theorem 145 Let X1, . . . , Xn be random variables each of which is confined to [0, 1]. Let X =∑n
i=1Xi, µ = E[X]. Let p = µ/n, and suppose that p ≤ 1/2. Then if Xi are dεµe-wise independent,

then

Pr[|X − µ| ≥ εµ] < e−bε
2µ/3c,

if ε < 1, and

Pr[|X − µ| ≥ εµ] < e−ε ln(1+ε)µ/2 < e−εµ/3

otherwise.

We now prove

Lemma 146 Let G = (V,E) be a k-connected graph on n nodes. For edges e = (u, v) ∈ E let

random numbers hu,v ∈ [0, 1] be such that

1. hu,v is independent of hu′,v′ for all u′ 6= u;

2. hu,v are d4γ log ne-wise independent for fixed u, where γ ≥ 20.

Also, let Xu,v be 0/1 random variables such that Xu,v = 1 if hu,v ≤ (γ log n)/k and 0 otherwise.

If G′ is obtained by including each edge (u, v) ∈ E such that Xu,v = 1 or Xv,u = 1, then G′ is

connected whp.

Proof: First, for each e = (u, v) ∈ E let X̂u,v denote 0/1 random variables such that Xu,v = 1 if

hu,v < (γ log n)/se, where se is the strong connectivity of e. Define Ĝ′ as the graph obtained by

including each edge (u, v) ∈ E such that X̂u,v = 1 or X̂v,u = 1. Note that Ĝ′ is a subgraph of G′,

so it is sufficient to show that Ĝ′ is connected whp.

Suppose that F = (VF , EF ) is a k-connected graph without 2k-strongly connected components

for some k. Recall from Lemma 138 that VF can be partitioned into log |VF | sets W1, . . . ,Wlog |VF |

such that the degree of any u ∈ Wr in Wr ∪ · · · ∪Wlog |VF | is at most 4k. For each node u ∈ Wr

let Eu denote the edges incident on u that go to nodes in Wr ∪ · · · ∪Wlog |VF | (if an edge e = (u, v)
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goes between two nodes in Wr, include it either in Eu or Ev arbitrarily). We will say vertex u ∈Wr

controls edges e ∈ Eu. Note that |Eu| ≤ 4k for all u ∈ Wr, and hence the expected number of

edges sampled in Eu is at most 4γ log n. Note that this definition of control is slightly different from

the one given in Definition 143. In particular, this is because Definition 143 pertains to the actual

sampling procedure that our algorithm uses, while here we are concerned with the estimation step.

Let jmax = blog2 nc. We will show by induction on j = jmax, . . . , 0 that all 2j-connected

components are connected with probability at least 1− (jmax − j + 1)n−3.

Base:j = jmax We have κ = 2jmax . Apply the decomposition above to the κ-strongly connected

components of G, which does not have any 2κ-connected components since 2κ > n. Let Ĝ′′

denote the subgraph of G obtained by including for each u ∈ V edges e = (u, v) ∈ Eu when

Xu,v = 1. Denote the set of sampled edges by E′. Recall that for all u ∈ V (G) one has

E[|E′ ∩ Eu|] ≤ 4γ log n.

Fix a cut (C, V \ C). For each vertex u ∈ C let Xu =
∑

(u,v)∈Eu,v 6∈C Xu,v.

By setting ε = 1 in Theorem 145 we get

Pr[Xu = 0] < e−E[Xu]/3.

Since Xu, Xu′ are independent for u 6= u′, the probability that the cut is empty is at most∏
u∈C

e−E[Xu]/3 = e−γ|C| logn/(3k).

By Karger’s cut counting lemma, the number of cuts of value at most αk is at most n2α. A

union bound over all cuts, we get failure probability at most∑
α≥1

n2αe−γα logn/3 ≤ n−4

since γ ≥ 20. Taking a union bound over all κ-connected components yields failure probability

at most n−3.

Inductive step: j + 1→ j We have κ = 2j . By the inductive hypothesis, all 2j+1-connected

components will be connected with probability at least 1 − (jmax − (j + 1) + 1)n−3. We

condition on this event and contract the connected components into supernodes.

We now have a union of vertex-disjoint κ-strongly connected components that do not contain

any 2κ-connected components. The same argument as in the base case shows that each such

component will be connected with probability at least 1 − n−4. A union bound over at most

n such components completes the inductive step.
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In order to show that the results of [31] carry over to our setting, it is sufficient to show that the

following version of Chernoff bounds holds under our limited independence assumptions (Theorem

2.2 in [31]):

Theorem 147 Let X1, . . . , Xn be n random variables such that Xi takes value 1/pi with probability

pi and 0 otherwise.Then, for any p such that p ≤ pi, for each i, any ε ∈ (0, 1) and any N ≥ n the

following holds:

Pr

[∣∣∣∣∣
n∑
i=1

Xi − n

∣∣∣∣∣ > εN

]
< 2e−0.38ε2pN .

Indeed, an inspection of the proofs of Lemma 4.1 and Lemma 5.5 in [31] shows that the authors

(a) only rely on independence of their sampling process to obtain Theorem 147 and (b) only apply

Theorem 147 to subsets of edges ofG, where pi are sampling probabilities.Thus, proving an equivalent

of Theorem 147 allows us to extend their results to our limited independence sampling approach.

We now prove

Lemma 148 Let G = (V,E) denote an unweighted undirected graph. Let γ > 0 be a sufficiently large

constant such that sampling at rate γ log2 n/ce independently produces a sparsifier with probability at

least 1−n−2, where ce is the edge connectivity of e. Let Xe, e ∈ E be random variables corresponding

to including edges from a set E∗ into the sample such that Xe takes value 1/pe with probability pe

and 0 otherwise, where pe is the sampling probability used by Algorithm 10. Assume that sampling

is c log4 n/ε2-wise independent for a sufficiently large constant c > 0 that may depend on γ.

There exists an event E with Pr[E ] > 1 − n−2 such that for any E∗ ⊆ E, any p ≤ pe, e ∈ E∗,
any ε ∈ (0, 1) and any N ≥ |E∗|

Pr

[∣∣∣∣∣∑
e∈E∗

Xe − |E∗|

∣∣∣∣∣ > εN |E

]
< e−ε

2pN/6.

Proof: For simplicity of exposition, we now assume that G is unweighted. Let X1, . . . , Xn be

random variables corresponding to picking edges of the graph. Recall that our sampling algorithm

samples an edge (u, v) either depending on the value of g(u,v) or the value of g(v,u) (the choice

depends on the partition of the node set U1 ∪ . . .∪Ur constructed in Algorithm 10). Recall that by

Definition 143 a node u controls edge (u, v) if Algorithm 10 samples (u, v) using the value of g∗(u,v).

Note that each edge is controlled by exactly one node. For a node u, as before, let Eu denote the

set of edges controlled by u. By Lemma 144, one has E[|E∗ ∩ Eu|] = O(log4 n/ε2). Let E denote

the event that at most 2γ log4 n/ε2 edges controlled by u are sampled, for all u ∈ V , where we are

assuming that γ is sufficiently large. Since our random variables are c log4 n/ε2-wise independent

for sufficiently large c, by Theorem 145 and a union bound over all u one has Pr[E ] ≥ 1− n−2.

For each e ∈ E let Xe be a Bernoulli random variable that takes value p/pe if edge e is sampled,

and 0 otherwise, so that Xe ∈ [0, 1].

Consider a set of edges E∗. Partition E∗ as E∗ =
⋃
u∈V E

∗
u, where E∗u = E∗∩Eu. Thus, random

variables Xu :=
∑
e∈E∗u

Xe are independent for different i. Let X =
∑
u∈V Xu, µ = E[X ].
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Then by Markov’s inequality

Pr[X ≥ (1 + δ)µ|E ] ≤ E[etX |E ]

et(1+δ)µ
. (6.4)

Recall that

E[etX |E ] =

∞∑
j=0

E[(tX )j |E ]/j! =

∞∑
j=0

tj/j!
∑

S⊆E∗,|S|≤j

∑
αe≥0,

∑
e∈S αe=j

E

[∏
e∈S

Xαe
e |E

]
(6.5)

For any non-negative random variably Y one has

E[Y|E ] ≤ E[Y]/Pr[E ].

Conditional on E , one has
∏
e∈S X

αe
e = 0 for all S ⊆ E∗ such that |S ∩Eu| > 2γ log4 n/ε2 for at

least one u ∈ V . For other S, setting Y =
∏
e∈S X

αe
e , one gets

E

[∏
e∈S

Xαe
e |E

]
≤ E

[∏
e∈S

Xαe
e

]
/Pr[E ]. (6.6)

Combining (6.6) and (6.5) one gets

E[etX |E ] ≤ 1

Pr[E ]

∞∑
j=0

tj/j!
∑

S⊆E∗,|S|≤j,|S∩Eu|≤2γ log4 n/ε2

∑
αe≥0,

∑
e∈S αe=j

E

[∏
e∈S

Xαe
e

]
(6.7)

On the other hand, for all S ⊆ E∗ such that |S ∩ Eu| ≤ 2γ log4 n/ε2 one has

E

[∏
e∈S

Xαe
e

]
=
∏
e∈S

E[Xαe
e ]

by γ log4 n/ε2-wise independence. Thus, we get

Pr[X ≥ (1 + δ)µ|E ] ≤ 1

Pr[E ]

∏
e∈E∗ E[etXe ]

et(1+δ)µ
, (6.8)

which is the same bound as in the full independence case, except for a factor of 1/Pr[E ] = 1+O(1/n)

in front. Now the same derivation as in the full independence case shows that the probability of

overestimating is appropriately small.

We now bound the probability of underestimating. Consider a set of edges E∗. Partition E∗ as

E∗ =
⋃s
i=1Ei, where Ei ∩ Ej = ∅, i 6= j, so that

1. E[
∑
e∈Ei Xe] ≤ c log4 n/ε2 for a sufficiently large constant c > 0;

2. random variables
∑
e∈Ei Xe are independent for different i;
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3. s ≤ ε2

6 log(4/ε2)E[
∑
e∈E∗ Xe].

Note that this is feasible since our graphs are unweighted, so ε can be assumed to be larger than 1/n2.

For each i = 1, . . . , s let Xi :=
∑
e∈Ei Xe. Note that Xi are independent, and Xe are c log4 n/ε2-wise

independent. Now by Theorem 145 for all i = 1, . . . , s one has for all ε ∈ (0, 1)

Pr[Xi < E[Xi]− εE[Xi]] < e−ε
2E[Xi]/3 (6.9)

Let X =
∑s
i=1 Xi. For constant ε > 0 let

K(ε) =

{
z = (z1, z2, . . . , zs) ∈

{
0,

1

4
ε2,

1

2
ε2,

3

4
ε2, . . . , 1− ε2/4, 1

}s
:

s∑
i=1

ziE[Xi] ≥ εE[X ]

}
.

We now have

Pr [X < E [X ]− εE[E ]] ≤
∑

z∈K(ε)

s∏
i=1

Pr[Xi < E[Xi]− (zi − ε2/4)2E[Xi]]

≤
∑

z∈K(ε)

s∏
i=1

Pr[Xi < E[Xi]− z2
iE[Xi] + (ε2/2)E[Xi]]

(6.10)

since every set of values for Xi − E[Xi] such that
∑
i(Xi − E[Xi]) < −εE[X ] can be rounded to a

point in K(ε) with a loss of at most (ε2/2)E[Xi] in each term. We now note that for any z ∈ [0, 1]s

such that
∑s
i=1 ziE[Xi] = ε′E[X ] ≥ εE[X ] one has

∑s
i=1 z

2
iE[Xi] ≥ (ε′)2E[X ] ≥ ε2E[X ].

Next, since s ≤ ε2

6 log(4/ε2) (
∑s
i=1 E[Xi]), we have that

Pr [X < E [X ]− εE[X ]] ≤ (4/ε2)se−ε
2E[X ]/3 ≤ e−ε

2E[X ]/6. (6.11)

Theorem 149 The set of edges returned by Algorithm 10 is a sparsifier whp.

Proof: Lemma 148 can be used instead of Theorem 147 in [31].
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In this chapter we present an algorithm for finding perfect matchings in regular bipartite graphs

whose runtime improves significantly on the runtime of the sampling based algorithm presented in

Chapter 2. Our main techniques here are a more general two-stage non-uniform sampling scheme

and a specialized analysis of the runtime of the Hopcroft-Karp algorithm on the subsampled graph.

The runtime of the resulting algorithm matches (up to polylogarithmic terms) the lower bound for

algorithms that use uniform sampling to access the graph that we proved in Chapter 2.

We present a significantly faster algorithm for finding perfect matchings in regular bipartite

graphs.

Theorem 150 There is an O
(

min{m, n
2 ln3 n
d }

)
expected time algorithm to find a perfect matching

in a d-regular bipartite graph G.

As a function of n alone, the running time stated above is O((n lnn)1.5). Since the O(m) running

time is guaranteed by the algorithm of Cole, Ost, and Schirra, we are only concerned with the case

where d is Ω(
√
n lnn). For this regime, our algorithm reduces the perfect matching problem on a

regular bipartite graph G to the same problem on a (not necessarily regular) sparse bipartite graph

H with O(n lnn) edges. This reduction takes time O(n
2 ln3 n
d ). We then use the Hopcroft-Karp

algorithm on H to recover a perfect matching. A black-box use of the analysis of the Hopcroft-Karp

algorithm would suggest a running time of O(n
2 ln3 n
d + n1.5 lnn). However, we show that the final

sampled graph has some special structure that guarantees that the Hopcroft-Karp algorithm would

complete in time O(n
2 ln2 n
d ) whp.

For every pair A ⊆ P,B ⊆ Q, we define a witness set W (A,B) to be the set of all edges going

from A to Q \ B. Of particular interest are what we call Hall witness sets, which correspond to

|A| > |B|; the well-known Hall’s theorem [18] says that a bipartite graph H(P,Q,EH) contains

a perfect matching iff EH includes an edge from each Hall witness set. Thus any approach that

reduces the size of the input bipartite graph by sampling must ensure that some edge from every

Hall witness set is included in the sampled graph; otherwise the sampled graph no longer contains a

perfect matching. In Chapter 2 we showed that no uniform sampling scheme on a d-regular bipartite

graph can reduce the number of edges to o( n2

d lnn ) while preserving a perfect matching, and hence

their Õ(n1.75)-time algorithm is the best possible running time achievable via uniform sampling

followed by a black-box invocation of the Hopcroft-Karp analysis.

In order to get past this barrier, we use here a two-stage sampling process. The first stage is a

uniform sampling (along the lines of Chapter 2) which generates a reduced-size graph G′ = (P,Q,E′)

that preserves not only a perfect matching but also a key relationship between the sizes of “relevant”

witness sets and cuts in the graph G. The second stage is to run the non-uniform Benczúr-Karger

sampling scheme [16] on G′ to generate a graph G′′ with Õ(n) edges while preserving a perfect

matching w.h.p. Since this step requires Ω̃(|E′|) time, we crucially rely on the fact that G′ does not

contain too many edges.

While our algorithm is easy to state and understand, the proof of correctness is quite involved.

The Benczúr-Karger sampling was developed to generate, for any graph, a weighted subgraph with

Õ(n) edges that approximately preserves the size of all cuts in the original graph. The central
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idea underlying our result is to show that there exists a collection of core witness sets that can be

identified in an almost one-one manner with cuts in the graph such that the probability mass of

edges in each witness set is comparable to the probability mass of the edges in the cut identified with

it. Further, every witness set in the graph has a “representative” in this collection of core witness

sets. Informally, this allows us to employ cut-preserving sampling schemes such as Benczúr-Karger

as “witness-preserving” schemes. We note here that the natural mapping which assigns the witness

set of a pair (A,B) to the cut edges associated with this pair can map arbitrarily many witness sets

to the same cut and is not useful for our purposes. One of our contributions is an uncrossing theorem

for witness sets, that we refer to as the proportionate uncrossing theorem. Informally speaking, it

says that given any collection of witness sets R such that the probability mass of each witness set is

comparable to that of its associated cut, there exists another collection T of witness sets such that

(i) the natural mapping to cuts as defined above is half-injective for T , that is, at most two witness

sets in T map to any given cut, (ii) the probability mass of each witness set is comparable to the

probability mass of its associated cut, and (iii) any subset of edges that hits every witness set in T
also hits every witness set in R. The collection T is referred to as a proportional uncrossing of R.

As shown in Figure 7.1(a), we can not achieve an injective mapping, and hence the half-injectivity

is unavoidable.

We believe the half-injective correspondence between witness sets and cuts, as facilitated by the

proportionate uncrossing theorem, is of independent interest, and will perhaps have other applica-

tions in this space of problems. We also emphasize here that the uncrossing theorem holds for all

bipartite graphs, and not only regular bipartite graphs. Indeed, the graph G′ on which we invoke

this theorem does not inherit the regularity property of the original graph G. As another illustra-

tive example, consider the celebrated Birkhoff-von Neumann theorem [18, 91] which says that every

doubly stochastic matrix can be expressed as a convex combination of permutation matrices (i.e.,

perfect matchings). In some applications, it is of interest to do an iterative decomposition whereby

a single matching is recovered in each iteration. The best-known bound for this problem, to our

knowledge, is an O(mb) time algorithm that follows from the work of Gabow and Kariv [33]; here b

denotes the maximum number of bits needed to express any entry in M . The following theorem is

an easy consequence of our proportionate uncrossing result.

Theorem 151 Given an n × n doubly-stochastic matrix M with m non-zero entries, one can find

a perfect matching in the support of M in Õ(m+ n1.5) expected time.

The proof of this theorem and a discussion of known results about this problem are given in

section 7.5. Though this result itself represents only a modest improvement over the earlier O(mb)

running time, it is an instructive illustration of the utility of the proportionate uncrossing theorem.

It is worth noting that while the analysis of Goel, Kapralov, and Khanna was along broadly

similar lines (sample edges from the original graph, followed by running the Hopcroft-Karp algo-

rithm), the proportionate uncrossing theorem developed in this paper requires significant new ideas

and is crucial to incorporating the non-uniform sampling stage into our algorithm. Further, the

running time of the Hopcroft-Karp algorithm is easily seen to be Ω(m
√
n) even for the 2-regular
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graph consisting of Θ(
√
n) disjoint cycles of lengths 2, 4, . . . ,

√
n respectively; the stronger analysis

for our special case requires both our uncrossing theorem as well as a stronger decomposition1. As

a step in this analysis, we prove the independently interesting fact that after sampling edges from a

d-regular bipartite graph with rate c lnn
d , for some suitable constant c, we obtain a graph that has a

matching of size n−O(n/d) whp and such a matching can be found in O(n/d) augmenting phases

of the Hopcroft-Karp algorithm whp.

Organization: Section 7.1 reviews and presents some useful corollaries of relevant earlier work.

In Section 7.2, we establish the proportionate uncrossing theorem. In section 7.3, we present and

analyze our two-stage sampling scheme, and section 7.4 outlines the stronger analysis of the Hopcroft-

Karp algorithm for our special case. Section 7.5 contains the proof of Theorem 151 and a discussion

of known results on finding perfect matchings in the support of double stochastic matrices.

7.1 Preliminaries

In this section, we adapt and present the results of Chapter 2 as well as the Benczúr-Karger sampling

theorem [16] for our purposes, and also prove a simple technical lemma for later use.

7.1.1 Bipartite Decompositions and Relevant Witness Pairs

Let G = (P,Q,E) be a regular bipartite graph, with vertex set P ∪ Q and edge set E ⊆ P × Q.

Consider any partition of P into k sets P1, P2, . . . , Pk, and a partition of Q into Q1, Q2, . . . , Qk. Let

Gi denote the (not necessarily regular) bipartite graph (Pi, Qi, Ei) where Ei = E ∩ (Pi × Qi). We

will call this a “decomposition” of G.

Given A ⊆ P and B ⊆ Q, define the witness set corresponding to the pair (A,B), denoted

W (A,B), as the set of all edges between A and Q \ B, and define the cut C(A,B) as the set of

all edges between A ∪ B and (P \ A) ∪ (Q \ B). The rest of the definitions in this section are with

respect to some arbitrary but fixed decomposition of G.

Definition 152 An edge (u, v) ∈ E is relevant if (u, v) ∈ Ei for some i.

Definition 153 Let ER be the set of all relevant edges. A pair (A,B) is said to be relevant if

1. A ⊆ Pi and B ⊆ Qi for some i,

2. |A| > |B|, and

3. There does not exist another A′ ∈ Pi, B′ ∈ Qi, such that A′ ⊂ A, |A′| > |B′|, and W (A′, B′)∩
ER ⊆W (A,B) ∩ ER.

1It is known that the Hopcroft-Karp algorithm terminates quickly on bipartite expanders [71], but those techniques
don’t help in our setting since we start with an arbitrary regular bipartite graph.
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Informally, a relevant pair is one which is contained completely within a single piece in the

decomposition, and is “minimal” with respect to that piece. The following lemma is implicit in our

results in Chapter 2 and is proved in section 7.6 for completeness.

Lemma 154 Let R denote all relevant pairs (A,B) with respect to a decomposition of G(P,Q,E),

and let ER denote all relevant edges. Consider any graph G∗ = (P,Q,E∗). If for all (A,B) ∈ R,

we have W (A,B) ∩ E∗ ∩ ER 6= φ, then G∗ has a perfect matching.

7.1.2 A Corollary of Benczúr-Karger Sampling Scheme

The Benczúr-Karger sampling theorem [16] shows that for any graph, a relatively small non-uniform

edge sampling rate suffices to ensure that every cut in the graph is hit by the sampled edges (i.e.

it has a non-empty intersection) with high probability. The sampling rate used for each edge e

inversely depends on its strength, as defined below.

Definition 155 [16] A k-strong component of a graph H is a maximal vertex-induced subgraph of

H with edge-connectivity k. The strength of an edge e in a graph H is the maximum value of k such

that a k-strong component contains e.

Definition 156 Given a graph H = (V,E), let H[j] = (V,E[j]) denote the subgraph of H restricted

to edges of strength j or higher, where j is some integer in {1, 2, . . . , |V |}.

It is easy to see that whenever a cut in a graph H(V,E) contains an edge of strength k, then

the cut must contain at least k edges. Furthermore, for any 1 < j ≤ |V |, each connected compo-

nent of graph H[j] is contained inside some connected component of H[j−1]. The Benczúr-Karger

theorem utilizes these properties to show that it suffices to sample each edge e with probability

Θ(min{1, lnn/se}).
We now extend this sampling result to any collection of edge-sets for which there exists an injec-

tion (one-one mapping) to cuts of comparable inverse strengths. The statement of our theorem 157

closely mirrors the Benczúr-Karger sampling theorem, and the proof is also along the same general

lines. However, the proof does not follow from the Benczúr-Karger sampling theorem in a black-box

fashion, so a proof is provided in section 7.7

Theorem 157 Let H(V,E) be any graph on n vertices, and let C denote the set of all possible edge

cuts in H, and γ ∈ (0, 1] be a constant. Let H ′ be a subgraph of H obtained by sampling each edge

e in H with probability pe = min
{

1, c lnn
γse

}
, where se denotes the strength of edge e, and c is a

suitably large constant. Further, let X be a collection of subset of edges, and let f be a one-one

(not necessarily onto) mapping from X to C satisfying
∑
e∈X 1/se > γ

∑
e∈f(X) 1/se for all X ∈ X .

Then ∑
X∈X

Pr[No edge in X is chosen in H ′] ≤ 1

n2
.

The result below from [16] bounds the number of edges chosen by the sampling in Theorem 157.
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Theorem 158 Let H(V,E) be any graph on n vertices, and let H ′ be a subgraph of H obtained by

sampling each edge e in H with probability pe = min
{

1, c lnn
se

}
, where se denotes the strength of

edge e, and c is any constant. Then with probability at least 1− 1
n2 , the graph H ′ contains at most

c′n lnn edges, where c′ is another suitably large constant.

We conclude with a simple property of integer multisets that we will use later. A similar statement

was used in [54] (lemma 4.5). A proof is provided in section 7.8 for completeness.

Lemma 159 Let S1 and S2 be two arbitrary multisets of positive integers such that |S1| > γ|S2| for

some γ > 0. Then there exists an integer j such that

∑
i≥j and i∈S1

1

i
> γ

 ∑
i≥j and i∈S2

1

i

 .

7.2 Proportionate Uncrossing of Witness Sets

Consider a bipartite graph G = (P,Q,E), with a non-negative weight function t defined on the

edges. Assume further that we are given a set of “relevant edges” ER ⊆ E. We can extend the

definition of t to sets of edges, so that t(S) =
∑
e∈S t(e), where S ⊆ E.

Definition 160 For any γ > 0 and A ⊆ P,B ⊆ Q, the pair (A,B) is said to be γ-thick with respect

to (G, t, ER) if t(W (A,B)∩ER) > γt(C(A,B)), i.e., the total weight of the relevant edges in W (A,B)

is strictly more than γ times the total weight of C(A,B). A set of pairs R = {(A1, B1), (A2, B2), . . . , (AK , BK)}
where each Ai ⊆ P and each Bi ⊆ Q is said to be a γ-thick collection with respect to (G, t, ER) if

every pair (Ai, Bi) ∈ R is γ-thick.

The quantities G, t, and ER will be fixed for this section, and for brevity, we will omit the phrase

“with respect to (G, t, ER)” in the rest of this section.

Before defining proportionate uncrossings of witness sets, we will informally point out the moti-

vation for doing so. If a pair (A,B) is γ-thick for some constant γ, and if we know that a sampling

process where edge e is chosen with probability t chooses some edge from C(A,B) with high proba-

bility, then increasing the sampling probability by a factor of 1/γ should result in some relevant edge

from W (A,B) being chosen with high probability as well, a fact that would be very useful in the

rest of this paper. The sampling sub-routines that we employ in the rest of this paper are analyzed

by using union-bound over all cuts, and in order to apply the same union bound, it would be useful

if each witness set were to correspond to a unique cut. However, in figure 7.1(a), we show two pairs

(A,B) and (X,Y ) which are both (1/2)-thick but correspond to the same cut; we call this a “cross-

ing” of the pairs (A,B) and (X,Y ), drawing intuition from the figure. In general, we can have many

witness sets that map to the same cut. We would like to “uncross” these witness sets by finding

subsets of each witness set that map to unique cuts, but there is no way to uncross figure 7.1(a) in

this fashion. Fortunately, and somewhat surprisingly, this is the worst case: any collection of γ-thick

pairs can be uncrossed into another collection such that all the pairs in the new collection are also
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γ-thick (hence the term proportionate uncrossing), every original witness set has a representative in

this new collection, and no more than two new pairs have the same cut. Figure 7.1(b) shows two
1
2 -thick pairs that can be uncrossed using a single 1

2 -thick representative, (A ∩X,B ∩ Y ). We will

spend the rest of this section formalizing the notion of proportionate uncrossings and proving their

existence. The uncrossing process is algorithmically inefficient, but we only need to demonstrate

existence for the purpose of this paper. The arguments in this section represent the primary techni-

cal contribution of this paper; these arguments apply to bipartite graphs in general (not necessarily

regular), and may be independently interesting.

A

P Q

X

B

Y

P Q

A

X

B

Y

(a) (b)

Figure 7.1: Both (a) and (b) depict two 1
2 -thick pairs (A,B) and (X,Y ) that have different witness

sets but the same cut (i.e. W (A,B) 6= W (X,Y ) but C(A,B) = C(X,Y )). The pairs in (a) can not
be uncrossed, whereas the pairs in (b) can be uncrossed by choosing the single pair (A ∩X,B ∩ Y )
as a representative.

7.2.1 Proportionate Uncrossings: Definitions and Properties

Definition 161 A γ-uncrossing of a γ-thick collection R is another γ-thick collection of pairs T
that satisfies the three properties below:

P1: For every pair (A,B) ∈ R there exists a pair (A′, B′) ∈ T such that C(A′, B′) ⊆ C(A,B), and

W (A′, B′) ⊆W (A,B). We will refer to (A′, B′) as a representative of (A,B).

P2 For every (A′, B′) ∈ T , there exists (A,B) ∈ R such that C(A′, B′) ⊆ C(A,B).

P3: (Half-injectivity): There can not be three distinct pairs (A,B), (A′, B′), and (A′′, B′′) in T such

that C(A,B) = C(A′, B′) = C(A′′, B′′).

Since T has the same (or larger) thickness as the thickness guarantee that we had for R, it seems

appropriate to refer to T as a proportionate uncrossing of R.

Definition 162 A γ-partial-uncrossing of a γ-thick collection R is another γ-thick collection of

pairs T which satisfies properties P1,P2 above but not necessarily P3.

The following three lemmas follow immediately from the two definitions above, and it will be useful

to state them explicitly. Informally, the first says that every collection is its own partial uncrossing,
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the second says that uncrossings can be composed, and the third says that the union of the partial

uncrossings of two collections is a partial uncrossing of the union of the collections.

Lemma 163 If R is a γ-thick collection, then R is a γ-partial uncrossing of itself.

Lemma 164 If S is a γ-partial uncrossing of a γ-thick collection R, and T is a γ-uncrossing of S,

then T is also a γ-uncrossing of R.

Lemma 165 If R1 and R2 are two γ-thick connections, T1 is a γ-partial-uncrossing of R1, and T2

is a γ-partial-uncrossing of R2, then T1 ∪ T2 is a γ-partial-uncrossing of R1 ∪R2.

7.2.2 Proportionate Uncrossings: An Existence Theorem

The main technical result of this section is the following:

Theorem 166 For every γ-thick collection R, there exists a γ-uncrossing of R.

The proof is via induction over the “largest cut” corresponding to any pair in the collection R; each

inductive step “uncrosses” the witness sets which corresponds to this largest cut. Before proving

this theorem, we need to provide several useful definitions and also establish a key lemma.

Define some total ordering ≺ over all subsets of E which respects set cardinality, so that if |E1| <
|E2| then E1 ≺ E2. Overload notation to use C(R) to denote the set of cuts {C(A,B) : (A,B) ∈ R}.
Analogously, use W (R) to denote the set of witness sets corresponding to pairs in R. Since C(A,B)

may be equal to C(A′, B′) for (A,B) 6= (A′, B′), it is possible that |C(R)| may be smaller than

|R|. In fact, if R and |C(R)| are equal, then R is its own γ-uncrossing and the theorem is trivially

true. Similarly, it is possible that W (A,B) is equal to W (A′, B′) for two different pairs (A,B) and

(A′, B′) in R. However, suppose W (A,B) = W (A′, B′) and C(A,B) = C(A′, B′) for two different

pairs (A,B) and (A′, B′) in R. In this case, we can remove one of the two pairs from the collection

to obtain a new collection R′; it is easy to see that a γ-uncrossing of R′ is also a γ-uncrossing of R.

So we will assume without loss of generality that for any two pairs (A,B) and (A′, B′) in R, either

W (A,B) 6= W (A′, B′) or C(A,B) 6= C(A′, B′); we will call this the non-redundancy assumption.

We will now prove a key lemma which contains the meat of the uncrossing argument. When

we use this lemma later in the proof of theorem 166, we will only use the fact that there exists a

γ-partial-uncrossing of R, where R satisfies the preconditions of the lemma. However, the stronger

claim of existence of a γ-uncrossing does not require much additional work and appears to be an

interesting graph theoretic argument in its own right, so we prove this stronger claim.

Lemma 167 If R is a γ-thick collection such that |R| > 2, R satisfies the non-redundancy assump-

tion, and C(R) contains a single set S, then there exists a γ-uncrossing T of R. Further, for every

pair (A,B) ∈ T , we have C(A,B) ⊂ S.

Proof: Let R = {(A1, B1), (A2, B2), . . . , (AJ , BJ)}. Since C(Ai, Bi) = S for all i, we know by the

non-redundancy assumption that W (Ai, Bi) 6= W (Ai′ , Bi′) for i 6= i′. We break the proof down into

multiple stages.
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1. Definition of Venn witnesses and Venn cuts. For any J-dimensional bit-vector b ∈ {0, 1}J ,

define

A(b) =

(
P ∩

(⋂
bi=1

Ai

))
\

(⋃
bi=0

Ai

)
,

and similarly,

B(b) =

(
Q ∩

(⋂
bi=1

Bi

))
\

(⋃
bi=0

Bi

)
.

We overload notation and use W(b) to denote the witness set W (A(b), B(b)) and C(b) to denote

the cut set C(A(b), B(b)). A node u belongs to A(b) if it is in every set Ai such that bi = 1 and

not in any of the sets Ai for which bi = 0. Thus, each A(b) corresponds to one of the regions

in the Venn diagram of the sets A1, A2, . . . , AJ , and the analogous statement holds for each

B(b). Hence, we will refer to the sets W(b) and C(b) as the Venn-witness and the Venn-cut for

b, respectively, and refer to the pair (A(b), B(b)) as a Venn pair. Also, we will use b to refer to

a vector which differs from b in every bit.

2. The special structure of Venn witnesses and Venn cuts. Consider an edge (u, v) that goes

out of A(b). Suppose that edge goes to B(d) where d 6= b and d 6= b. Then there must exist

1 ≤ i, i′ ≤ J such that bi = di and bi′ 6= di′ . Since bi = di, either u ∈ Ai, v ∈ Bi (if bi = di = 1)

or u 6∈ Ai, v 6∈ Bi (if bi = di = 0). In either case the edge (u, v) does not belong to the cut

C(Ai, Bi), and since all pairs in R have the same cut S, we conclude that (u, v) 6∈ S. On the

other hand, since bi′ 6= di′ , either u ∈ Ai′ , v 6∈ Bi′ (if bi′ = 1, di′ = 0) or u 6∈ Ai′ , v ∈ Bi′ (if

bi′ = 0, di′ = 1). In either case the edge (u, v) belongs to the cut C(Ai′ , Bi′) and hence to S,

which is a contradiction. Thus, any edge from A(b) goes to either B(b) or B(b).

If the edge (u, v) goes to B(b) then it does not belong to any witness set in W (R), any Venn

witness set, any Venn cut, or S. If (u, v) goes to B(b) then it belongs to S, to the Venn

witness set W(b), to the Venn cuts C(b) and C(b), and to no other Venn witness set or Venn

cut. This edge also belongs to W (Ai, Bi) for all i such that bi = 1. These observations, and

the definitions of Venn witnesses, cuts, and pairs easily lead to the following consequences:

W(b) ∩W(d) = ∅ if b 6= d, (7.1)

W (Ai, Bi) =
⋃

b∈{0,1}J :bi=1

W(b), (7.2)

C(b) = C(b), (7.3)

C(b) ∩ C(d) = ∅ if b 6= d and b 6= d, (7.4)

(∀i, 1 ≤ i ≤ J) : S =
⋃

b∈{0,1}J :bi=1

C(b), (7.5)
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and finally,

W(b) ∪W(b) = C(b). (7.6)

3. The collection T . Define T to consist of all γ-thick Venn pairs (A(b), B(b)) where b is not the

all zero vector.

4. Proving that T is a γ-uncrossing of R. (P1): Fix some i, 1 ≤ i ≤ J . Since R is a γ-

thick collection, it follows from the definition that (Ai, Bi) must be a γ-thick pair. From

equations 7.2 and 7.1, we know that t(W (Ai, Bi) ∩ ER) =
∑
b∈{0,1}J :bi=1 t(W(b) ∩ ER). We

also know, from equations 7.4 and 7.5, that t(S) =
∑
b∈{0,1}J :bi=1 t(C(b)). Hence, there must

be some b ∈ {0, 1}J such that bi = 1 and (A(b), B(b)) is γ-thick, which in turn implies that

(A(b), B(b)) is in T . This is the representative of (Ai, Bi) and hence T satisfies P1. (P2): This

follows trivially from equation 7.5. (P3): From equation 7.4 we know that there are only two

possible Venn pairs (specifically, (A(b), B(b)) and (A(b), B(b))) that have the same non-empty

cut C(b). Observe that our definition of γ-thickness involves “strict inequality”, and hence

Venn pairs where the Venn witness set and the Venn cut are both empty can’t be γ-thick and

can’t be in T .

5. Proving that C(X,Y ) ⊂ S for all pairs (X,Y ) ∈ T . Any cut C(A,B) ∈ C(T ) is of the form

C(b) for some J-dimensional bit vector b. Each C(b) ⊆ S, from equation 7.5. We will now show

that this containment is strict. Suppose not, i.e., there exists some C(b) = S. By equation 7.3,

C(b) = S as well. Since J > 2, either b or b must have two bits that are set to 1; without

loss of generality, assume that b1 = b2 = 1. From equations 7.1 and 7.6, we know that C(b)

(and hence S) is the disjoint union of W(b) and W(b). Any edge in W(b) must belong to both

W (A1, B1) and W (A2, B2), whereas any edge in W(b) can not belong to either W (A1, B1) or

W (A2, B2). Hence, W (A1, B1) = W (A2, B2) = W(b) which contradicts the non-redundancy

assumption on R. Therefore, we must have C(b) ⊂ S.

Proof of Theorem 166: The proof will be by induction over the largest set in C(R) according to

the ordering ≺. Let M(R) denote this largest set.

For the base case, suppose M(R) is the smallest set S under the ordering ≺. Then S must be

singleton, C(R) must have just a single set S, and W (R) must also have a single witness set, which

must be the same as S since R is γ-thick. By the non-redundancy assumption, R must have at most

one pair, and is its own γ-uncrossing.

For the inductive step, consider any possible cut S and assume that the theorem is true when

M(R) ≺ S. We will show that the theorem is also true when M(R) = S, which will complete the

inductive proof.

Suppose there is a unique (A,B) ∈ R such that C(A,B) = S. Intuitively, one would expect this

to be the easy case, since there is no “uncrossing” to be done for S, and indeed, this case is quite

straightforward. Define R′ = R− (A,B). Let T ′ denote a γ-uncrossing of R, which is guaranteed to

exist by the inductive hypothesis. Since T ′ is γ-thick, so is T = T ′∪{(A,B)}. The pair (A,B) clearly

has a representative in T (itself), and any (A′, B′) ∈ R−(A,B) has a representative in T ′ and hence
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also in T . Thus, T satisfies property P1 for being a γ-uncrossing of R. Every set in C(T ′) is a subset

of some cut in C(R′) (by property P2) and C(A,B) is also in C(R), and hence T satisfies property

P2 for being a γ-uncrossing of R. Every set in T ′ is smaller than C(A,B) according to ≺ and T ′

satisfies property P3. Hence, T also satisfies property P3. Thus, T is a γ-uncrossing of R. If there

are exactly two distinct pairs (A,B) and (A′, B′) in R such that C(A,B) = C(A′, B′) = S, then the

same argument works again, except that R′ = R\{(A,B), (A′, B′)} and T = T ′∪{(A,B), (A′, B′)}.
We now need to tackle the most interesting case of the inductive step, where there are more

than two pairs in R that correspond to the same cut S. Write R = R1 ∪ R2 where C(A,B) ≺ S

for all (A,B) ∈ R1 and C(A,B) = S for all (A,B) ∈ R2. Recall that for two different pairs (A,B)

and (A′, B′) in R2, we must have W (A,B) 6= W (A′, B′) by the non-redundancy assumption. From

lemma 167, there exists a γ-partial-uncrossing, say S2, of R2 with the property that for every set

S′ ∈ C(S2), we have S′ ⊂ S, and hence S′ ≺ S. By lemma 163, we know that R1 is its own

γ-partial-uncrossing. Further, by definition of R1, every set S′ ∈ C(R1) must satisfy S′ ≺ S. Define

S = R1 ∪ S2. By lemma 165, S is a γ-partial-uncrossing of R1 ∪ R2, i.e., of R. Further, for every

cut S′ ∈ C(S), we have S′ ≺ S. Hence, by our inductive hypothesis, there exists a γ-uncrossing of

S; let T be a γ-uncrossing of S. By lemma 164, T is also a γ-uncrossing of R, which completes the

inductive proof.

Remark 168 An alternate approach to relating cuts and witness sets is to suitably modify the proof

of the Benczúr-Karger sampling theorem, circumventing the need for the proportionate uncrossing

theorem. The idea is based on the observation that Karger’s sampling theorem also holds for vertex

cuts in graphs. Since Benczúr-Karger sampling theorem is proved using multiple invocations of

Karger’s sampling theorem, it is possible to set up a correspondence between cuts and witness sets

using a vertex-cut version of the Benczúr-Karger sampling theorem. However, we prefer to use here

the approach based on the proportionate uncrossing theorem as it is an interesting combinatorial

statement in its own right.

7.3 An Õ(n1.5) Time Algorithm for Finding a Perfect Match-

ing

We present here an Õ(n1.5) time randomized algorithm to find a perfect matching in a given d-regular

bipartite graph G(P,Q,E) on 2n vertices. Throughout this section, we follow the convention that

for any pair (A,B), the sets C(A,B) and W (A,B) are defined with respect to the graph G. Our

starting point is the following theorem, which we established in Chapter 2 2

Theorem 169 Let G(P,Q,E) be a d-regular bipartite graph, ε any number in (0, 1
2 ), and c a suitably

large constant that depends on ε. There exists a decomposition of G into k = O(n/d) vertex-disjoint

bipartite graphs, say G1 = (P1, Q1, E1), G2 = (P2, Q2, E2), . . . , Gk = (Pk, Qk, Ek), such that

2Part 1 of theorem 169 corresponds to theorem 4 in Chapter 2, part 2 is proved as part of the proof of theorem 1,
and part 3 combines remark 6 with Karger’s sampling theorem [52].
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1. Each Gi contains at least d/2 perfect matchings, and the minimum cut in each Gi is Ω(d2/n).

2. Let R denote the set of relevant pairs with respect to this decomposition, and ER denote the

set of relevant edges. Then for each (A,B) in R, we have |W (A,B) ∩ ER| ≥ 1
2 |C(A,B)|.

3. Let G′(P,Q,E′) be a random graph generated by sampling the edges of G uniformly at random

with probability p = cn lnn
d2 . Then with probability at least 1− 1/n, for every pair (A,B) ∈ R,

|W (A,B) ∩ E′ ∩ ER| > (1− ε)p|W (A,B) ∩ ER| >
(

1− ε
2(1 + ε)

)
|C(A,B) ∩ E′|.

The last condition above says that in addition to all cuts, all relevant witness edge sets are also

preserved to within (1 ± ε) of their expected value in G′, with high probability. We emphasize

here that the decomposition highlighted in Theorem 169 will be used only in the analysis of our

algorithm; the algorithm itself is oblivious to this decomposition.

Our algorithm consists of the following three steps.

(S1) Generate a random graph G′ = (P,Q,E′) by sampling edges of G uniformly at random with

probability p = c1n lnn
d2 where c1 is a constant as in Theorem 1693. We choose ε to be any fixed

constant not larger than 0.2.

(S2) The graph G′ contains O(n
2 lnn
d ) edges w.h.p. We now run the Benczúr-Karger sampling

algorithm [16] that takes O(|E′| ln2 n) time to compute the strength se of every edge e, and

samples each edge e with probability pe;
4 here pe is as given by Theorem 157 with γ = 1/3.

We show below that w.h.p. the graph G
′′

= (P,Q,E
′′
) obtained from this sampling contains

a perfect matching.

(S3) Finally, we run the Hopcroft-Karp algorithm to obtain a maximum cardinality matching in

G
′′

in O(n1.5 lnn) time since by Theorem 158, G
′′

contains O(n lnn) edges w.h.p.

Running time: With high probability, the running time of this algorithm is bounded byO(n
2

d ln3 n+

n1.5 lnn). Since we can always use the algorithm of Cole, Ost, and Schirra [23] instead, the final

running time is O(min{m, n
2

d ln3 n+n1.5 lnn}). This reduces to O(m) if d ≤
√
n lnn; to O(n1.5 lnn)

when d ≥
√
n ln2 n; and to at most O((n lnn)1.5) in the narrow range

√
n lnn < d <

√
n ln2 n.

Correctness: To prove correctness, we need to show that G
′′

contains a perfect matching w.h.p.

Theorem 170 The graph G
′′

contains a perfect matching with probability 1−O(1/n).

Proof: Consider the decomposition defined in Theorem 169. Let R denote the set of relevant pairs

with respect to this decomposition, and let ER denote the set of all relevant edges with respect to

3The time required for this sampling is proportional to the number of edges chosen, assuming the graph is presented
in an adjacency list representation with each list stored in an array.

4In fact, this sampling algorithm computes an upper bound on se, but this only affects the running time and the
number of edges sampled by a constant factor.
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this decomposition. We will now focus on proving that, with high probability, for every (A,B) ∈ R,

W (A,B) ∩ ER ∩ E
′′ 6= ∅; by Lemma 154, this is sufficient to prove the theorem.

For convenience, define W ′(A,B) = W (A,B) ∩ E′ and C ′(A,B) = C(A,B) ∩ E′. Assume for

now that the low-probability event in Theorem 169 does not occur. Thus, by choosing ε ≤ 0.2, we

know that for γ = 1/3, every relevant pair (A,B) ∈ R satisfies |W ′(A,B) ∩ ER| > γ|C ′(A,B)|.
Let s′e denote the strength of e in G′. Recall that G′[j] = (V,E′[j]) is the graph with the same vertex

set as G′ but consisting of only those edges in E′ which have strength at least j. Define W ′[j](A,B)

to be the set of all edges in W ′(A,B)∩E′[j]; define C ′[j](A,B) analogously. Define t(e) = 1/s′e. Since

|W ′(A,B) ∩ ER| > γ|C ′(A,B)|, by Lemma 159, there must exist a j such that

∑
e∈(W ′(A,B)∩ER),s′e≥j

1

s′e
> γ

∑
e∈C′(A,B),s′e≥j

1

s′e
> 0,

which implies that (A,B) is γ-thick with respect to (G′[j], t, ER), as defined in Definition 160. Par-

tition R into R[1], R[2], . . . ,R[n], such that if (A,B) ∈ R[j] then (A,B) is γ-thick with respect

to (G′[j], t, ER), breaking ties arbitrarily if (A,B) can belong to multiple R[j]. Consider an arbi-

trary non-empty R[j]. Let T represent a γ-uncrossing of R[j], as guaranteed by Theorem 166.

By property P3, no three pairs in a γ-uncrossing can have the same cut; partition T into T1

and T2 such that every pair (A,B) ∈ T1 has a unique cut C ′[j](A,B) and the same holds for

T2. We focus on T1 for now. For any (A,B) ∈ T1, define Y (A,B) = W ′[j](A,B) ∩ ER. Define

X = {Y (A,B) : (A,B) ∈ T1}. For any X ∈ X , define f(X) = C ′[j](A,B) for some arbitrary

(A,B) ∈ T1 such that X = Y (A,B). The function f is one-one by construction, and since (A,B) is

γ-thick, we know that
∑
e∈X 1/s′e > γ

∑
e∈f(X) 1/s′e. Thus, X satisfies the preconditions of Theo-

rem 157. Further, the sampling probability pe in step (S2) of the algorithm is chosen to correspond

to γ = 1/3. Thus, with probability at least 1 − 1/n2, X ∩ E′′ is non-empty for all X ∈ X , i.e.,

W ′[j](A,B) ∩ ER ∩ E
′′ 6= ∅ for all (A,B) ∈ T1. Since G′[j] is a subgraph of G′, we can conclude that

W ′(A,B) ∩ ER ∩ E
′′ 6= ∅ for all (A,B) ∈ T1 with probability at least 1− 1/n2.

Since the analogous argument holds for T2, we obtain W ′(A,B)∩ER∩E
′′ 6= ∅ for all (A,B) ∈ T

with probability at least 1−2/n2. Since T is a γ-uncrossing of R[j], we use property P1 to conclude

that W ′(A,B) ∩ ER ∩ E
′′ 6= ∅ for all (A,B) ∈ R[j], again with probability at least 1 − 2/n2.

Applying the union bound over all j, we further conclude that W ′(A,B) ∩ ER ∩ E
′′ 6= ∅ for all

(A,B) ∈ R with probability at least 1 − 2/n. As mentioned before, this suffices to prove that G
′′

has a perfect matching with probability at least 1−2/n, by Lemma 154. We assumed that condition

3 in theorem 169 is satisfied; this is violated with probability at most 1
n , which proves that G

′′
has

a perfect matching with probability at least 1− 3
n .

As presented above, the algorithm takes time min{Õ(n1.5), O(m)} with high probability, and

outputs a perfect matching with probability 1−O(1/n). We conclude with two simple observations.

First. it is easy to convert this into a Monte Carlo algorithm with a worst case running-time of

min{Õ(n1.5), O(m)}, or a Las Vegas algorithm with an expected running-time of min{Õ(n1.5), O(m)}.
If either the sampling process in steps (S1) or (S2) returns too many edges, or step (S3) does not

produce a perfect matching, then (a) abort the computation to get a Monte Carlo algorithm, or (b)
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run the O(m) time algorithm of Cole, Ost, and Schirra [23] to get a Las Vegas algorithm. Second, by

choosing larger constants during steps (S1) and (S2), it is easy to amplify the success probability

to be at least 1−O( 1
nj ) for any fixed j ≥ 1.

7.4 An Improved O
(
min{nd, (n2 ln3 n)/d}

)
Bound on the Run-

time

In this section we give an improved analysis of the runtime of the Hopcroft-Karp algorithm on the

subsampled graph, ultimately leading to a bound of O
(
min{nd, (n2 ln3 n)/d}

)
for our algorithm.

The main ingredients of our analysis are (1) a decomposition of the graph G into O(n/d) vertex-

disjoint Ω(d)-edge-connected subgraphs, (2) a modification of the uncrossing argument that reveals

properties of sufficiently unbalanced witness sets in the sampled graph obtained in step S2, and (3)

an upper bound on length of the shortest augmentating path in the sampled graph relative to any

matching of size smaller than n− 2n/d.

7.4.1 Combinatorial uncrossings

Theorem 172 below, which we state for general bipartite graphs, requires a variant of the uncrossing

theorem that we formulate now. We introduce the definition of combinatorial uncrossings:

Definition 171 Let R be any collection of pairs (A,B), A ⊆ P,B ⊆ Q. A combinatorial uncrossing

of R is a tuple (T , I), where T is another collection and I is a mapping from R to subsets of T ,

such that the following properties are satisfied:

Q1: For all (A,B) ∈ R

1. {W (A′, B′)}(A′,B′)∈I(A,B) are disjoint;

2. {C(A′, B′)}(A′,B′)∈I(A,B) are disjoint;

3. {A′ ∪B′}(A′,B′)∈I(A,B) are disjoint;

4. A′ ⊆ A,B′ ⊆ B for all (A′, B′) ∈ I(A,B);

5.

W (A,B) =
⋃

(A′,B′)∈I(A,B)

W (A′, B′)

C(A,B) =
⋃

(A′,B′)∈I(A,B)

C(A′, B′).

Q2: (Half-injectivity) There cannot be three distinct pairs (A,B), (A′, B′), (A′′, B′′) in T such that

C(A,B) = C(A′, B′) = C(A′′, B′′).

The proof of existence of combinatorial uncrossings is along the lines of the proof of existence of

γ-thick uncrossings, so we omit it here.
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For a graph H we denote WH(A,B) = W (A,B) ∩E(H) and CH(A,B) = C(A,B) ∩E(H), and

omit the subscript when the underlying graph is fixed.

Theorem 172 Let G∗ be a graph obtained by sampling edges uniformly at random with probability

p from a bipartite graph G = (P,Q,E) on 2n vertices with a minimum cut of size κ. Then there

exists a constant c > 0 such that for all ε > 0 if p > c lnn
ε2κ then w.h.p. for all A ⊆ P , and B ⊆ Q,

we have

p|WG(A,B)| − εp|CG(A,B)| ≤ |WG∗(A,B)| ≤ p|WG(A,B)|+ εp|CG(A,B)|.

Proof: Define R as the set of pairs (A,B), A ⊆ P ∩ V (G), B ⊆ Q ∩ V (G). Denote a combinatorial

uncrossing of R by (T , I). We first prove the statement for pairs from T , and then extend it to

pairs from R to obtain the desired result.

Consider a pair (A,B) ∈ T . Denote ∆G(A,B) = |WG∗(A,B)| − p|WG(A,B)|. We shall write

W (A,B) and C(A,B) instead of WG(A,B) and CG(A,B) in what follows for brevity. We have by

Chernoff bounds that for a given pair (A,B) ∈ T

Pr [|∆G(A,B)| > εp|C(A,B)|] < exp

[
−
(
ε|C(A,B)|
|W (A,B)|

)2
p|W (A,B)|

2

]

≤ exp

[
−ε2

(
p|C(A,B)|

2

)]
since |C(A,B)| ≥ |W (A,B)|. Since T satisfies Q2, we get that

Pr [∃(A,B) ∈ T : |∆G(A,B)| > εp|C(A,B)|]

<
∑

W (A,B)∈W (T )

exp
[
−ε2p|C(A,B)|/2

]
≤ 2

∑
C(A,B)∈C(T )

exp
[
−ε2p|C(A,B)|/2

]
= O(n−r)

for c = 2(r+ 2) by Corollary 2.4 in [52]. This implies that for c ≥ 2(r+ 2) we have with probability

1−O(n−r) for all (A,B) ∈ T
|∆G(A,B)| ≤ εp|C(A,B)|. (7.7)

Now consider any pair (A,B) ∈ R. Summing (7.7) over all (A′, B′) ∈ I(A,B) and using

properties Q1.1-5, we get

|∆G(A,B)| ≤
∑

(A′,B′)∈I(A,B)

εp|C(A′, B′)| = εp|C(A,B)|,

for all (A,B) ∈ R as required.

7.4.2 Decomposition of the graph G

Corollary 176, which relates the size of sufficiently unbalanced witness sets in the sampled graph to

the size of the corresponding cuts is the main result of this subsection. It follows from theorem 172
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and a stronger decomposition of bipartite d-regular graphs that we outline now.

Theorem 173 Any d-regular graph G with 2n vertices can be decomposed into vertex-disjoint in-

duced subgraphs G1 = (P1, Q1, E1), G2 = (P2, Q2, E2), ...., Gk = (Pk, Qk, Ek), where k ≤ 4n/d + 1,

that satisfy the following properties:

1. The minimum cut in each Gi is at least d/8.

2.
∑k+1
i=1 |δG(V (Gi))| ≤ 2n.

To prove Theorem 173, we give a procedure that decomposes the graph G into vertex-disjoint

induced subgraphs G1(P1, Q1, E1), G2(P2, Q2, E2), . . . , Gk(Pk, Qk, Ek), k ≤ 4n/d+ 1 such that the

min-cut in Gj is at least d/8 and at most n edges run between pieces of the decomposition.

The procedure is as follows. Initialize H1 := G, and set i := 1.

1. Find a smallest proper subset Xi ⊂ V (Hi) such that |δHi(Xi)| < d/4. If no such set exists,

define Gi to be the graph Hi and terminate.

2. Define Gi to be the subgraph of Hi induced by vertices in Xi, i.e. Xi = Pi ∪ Qi = V (Gi).

Also, define Hi+1 to be the graph Hi with vertices from Xi removed.

3. Increment i and go to step 1.

We now prove that the output of the decomposition procedure satisfies the properties claimed

above.

Lemma 174 The min-cut in Gi is greater than d/8.

Proof: If Gi contains a single vertex the min-cut is infinite by definition, so we assume wlog that

Gi contains at least two vertices. The proof is essentially the same as the proof of property P1 of

the decomposition procedure in Chapter 2.

Suppose that there exists a cut (V, V c) in Gi where V ⊂ V (Gi) and V c = V (Gi) \ V , such that

|δGi(V )| ≤ d/8 (note that it is possible that V ∩ Pi 6= ∅ and V ∩ Qi 6= ∅). We have |δHi(V ) \
δGi(V )| + |δHi(V c) \ δGi(V c)| < d/4 by the choice of Xi in (1). Suppose without loss of generality

that |δHi(V ) \ δGi(V )| < d/8. Then |δHi(V )| < d/4 and V ⊂ Xi, which contradicts the choice of Xi

as the smallest cut of value at most d/4 in step (1) of the procedure.

Lemma 175 The number of steps in the decomposition procedure is k ≤ 4n/d, and at most n edges

are removed in the process.

Proof: We call a vertex v ∈ V (Gi) bad if its degree in Gi is smaller than d/2. Note that for each

1 ≤ i ≤ k either Gi contains a bad vertex or V (Gi) ≥ d.

Note that since strictly fewer than d/4 edges are removed in each iteration, the number of bad

vertices created in the first j iterations is strictly less than j(d/4)/(d/2) = j/2. Hence, during at

least half of the j iterations at least d vertices were removed from the graph, i.e.

j∑
i=1

|V (Gi)| ≥ (j/2) · d = jd/2.
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This implies that the process terminates in at most 4n/d steps, and the number of edges removed

is at most (4n/d) · d/4 = n.

Proof of Theorem 173: The proof follows by putting together lemmas 174 and 175.

We overload notation here by denoting W (B,A) = W (P \ A,Q \ B) = C(A,B) \W (A,B) for

A ⊆ P,B ⊆ Q. The main result of this subsection is

Corollary 176 Let G∗ = (P,Q,E∗) be a graph obtained by sampling the edges of a d-regular bi-

partite graph G = (P,Q,E) on 2n vertices independently with probability p. There exists a constant

c > 0 such that if p > c lnn
ε2d then whp for all pairs (A,B), A ⊆ P,B ⊆ Q, |A| ≥ |B|+ 2n/d one has

that |W (A,B) ∩ E∗| > 1−3ε
1+2ε |W (B,A) ∩ E∗| for all ε < 1/4. In particular, G∗ contains a matching

of size at least n− 2n/d whp.

Proof: Set Ai = A ∩ Pi, Bi = B ∩Qi, where Gi = (Pi, Qi, Ei) are the pieces of the decomposition

obtained in Section 7.4.2. For each (Ai, Bi) such that Gi is not an isolated vertex we have by Lemma

174 and Theorem 172

||WGi(Ai, Bi) ∩ E∗| − p|WGi(Ai, Bi)|| < εp|CGi(Ai, Bi)|.

If Gi is an isolated vertex, we have |WGi(Ai, Bi) ∩ E∗| = p|WGi(Ai, Bi)| = 0. Since the latter

estimate is stronger than the former, we shall not consider the isolated vertices separately in what

follows.

Adding these inequalities over all i we get

k∑
i=1

|WGi(Ai, Bi) ∩ E∗| ≥ p
k∑
i=1

|WGi(Ai, Bi)| − εp
k∑
i=1

|CGi(Ai, Bi)|. (7.8)

Denote the set of edges removed during the decomposition process by Er. Denote E1 = Er ∩
W (A,B) and E2 = Er ∩W (B,A). Since |W (A,B)∩E∗| =

∑k
i=1 |WGi(Ai, Bi)∩E∗|+ |E1 ∩E′| and∑k

i=1 |WGi(Ai, Bi)| = |W (A,B)| − |E1|, this implies

|W (A,B) ∩ E∗| ≥ p|W (A,B)| − εp|C(A,B)| − p|E1|.

Likewise, since W (B,A) = W (P \A,Q \B), we have

|W (B,A) ∩ E∗| ≤ p|W (B,A)|+ εp|C(A,B)|+ p|E2|.

Since |A| ≥ |B|+ 2n/d, we have |W (A,B)| ≥ |W (B,A)|+ 2n, so

|W (A,B) ∩ E∗| ≥ p|W (A,B)| − εp|C(A,B)| − p|E1|

≥ p(|W (B,A)|+ 2n)− εp|C(A,B)| − p|E1| − p|E2|

≥ |W (B,A) ∩ E∗| − 2εp|C(A,B)|+ p(2n− |Er|)

≥ |W (B,A) ∩ E∗| − 2εp|C(A,B)|+ pn.
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By similar arguments |C(A,B) ∩ E∗| ≥ (1 − ε)p(|C(A,B)| − n), i.e. p|C(A,B)| ≤ 1
1−ε |C(A,B) ∩

E∗|+ pn. Hence, we have

|W (A,B) ∩ E∗| ≥ |W (B,A) ∩ E∗| − 2εp|C(A,B)|+ pn

≥ |W (B,A) ∩ E∗| − 2ε

1− ε
|C(A,B) ∩ E∗|+ (1− 2ε)pn

≥ |W (B,A) ∩ E∗| − 2ε

1− ε
(|W (A,B) ∩ E∗|+ |W (B,A) ∩ E∗|) + (1− 2ε)pn,

which implies

|W (A,B) ∩ E∗| > 1− 3ε

1 + ε
|W (B,A) ∩ E∗|

for ε < 1/4. This completes the proof.

Remark 177 The result in corollary 176 is tight up to an O(ln d) factor for d = Ω(
√
n).

Proof: The following construction gives a lower bound of n−Ω
(

n
d ln d

)
. Denote by Gn,d the graph

from Theorem 8 in Chapter 2 and denote by G∗n,d a graph obtained by sampling edges of Gn,d at

the rate of c lnn
d for a constant c > 0. Define the graph G as d disjoint copies of G2d ln d,d, and

denote the sampled graph by G∗. Note that by Theorem 4.1 the maximum matching in each copy

of G∗2d ln d,d has size at most 2d ln d− 1 whp, and since the number of vertices in G is N = 2d2 ln d,

the maximum matching in G∗ has size at most N − Ω
(

N
d ln d

)
whp.

7.4.3 Runtime analysis of the Hopcroft-Karp algorithm

In this section we derive a bound on the runtime of the Hopcroft-Karp algorithm on the subsampled

graph obtained in step S2 of our algorithm. The main object of our analysis is the alternating level

graph, which we now define. Given a partial matching of a graph G = (P,Q,E), the alternating

level graph is defined inductively. Define sets Aj and Bj , j = 1, . . . , L as follows. Let A0 be the

set of unmatched vertices in P and let B0 = ∅. Then let Bj+1 = Γ(Aj) \
(⋃

i<j Bi

)
, where Γ(A)

is the set of neighbours of vertices in A ⊆ V (G), and let Aj be the set of vertices matched to

vertices from Bj . The construction terminates when either Bj+1 contains an unmatched vertex or

when Bj+1 = ∅, and then we set L = j. We use the notation A(j) =
⋃
k≤j Ak, B

(j) =
⋃
k≤j Bk.

We now give an outline of the Hopcroft-Karp algorithm for convenience of the reader. Given a

non-maximum matching, the algorithm starts by constructing the alternating level graph described

above and stops when an unmatched vertex is found. Then the algorithm finds a maximal set of

vertex-disjoint augmenting paths of length L (this can be done by depth-first search in O(m) time)

and performs the augmentations, thus completing one augmentation phase. It can be shown that

each augmentation phase increases the length of the shortest augmenting path. Standard analysis

of the run-time for general bipartite graphs is based on the observation that once
√
n augmentations

have been performed, the constructed matching necessarily has size at most
√
n smaller than the

maximum matching.
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We denote the graph obtained by sampling edges of G independently with probability p = c lnn
d

for a constant c > 0 by G∗. Note that G∗ is obtained from G by uniform sampling. We will

make the connection to non-uniform sampling in Theorem 180. For A ⊆ V (G) denote the set of

edges in the cut (A, V (G) \ A) in G by δ(A) and the set of edges in the same cut in G∗ by δ∗(A).

Similarly, we denote the vertex neighbourhood of A in G by Γ(A) and the vertex neighbourhood

in G∗ by Γ∗(A). We consider the alternating level graph in G∗ and prove that whp for any partial

matching of size smaller than n − 2n/d for each 1 ≤ j ≤ L either |Bj−1 ∪ Bj ∪ Bj+1| = Ω(d) or

Bj expands by at least a factor of lnn in either forward or backward direction (|Bj+1| ≥ (lnn)|Bj |
or |Bj−1| ≥ (lnn)|Bj |). This implies that L = O

(
n ln d
d ln lnn

)
, thus yielding the same bound on the

length of the shortest augmenting path by virtue of corollary 176. The main technical result of this

subsection is

Lemma 178 Let the graph G∗ be obtained from the bipartite d-regular graph G on 2n vertices by

uniform sampling with probability p. There exist constants c > 0, ε > 0 such that if p ≥ c lnn
ε2d , then

whp for any partial matching in G∗ of size smaller than n − 2n/d there exists an augmenting path

of length O
(
n ln d
d ln lnn

)
.

The following expansion property of the graph G∗ will be used to prove lemma 178:

Lemma 179 Define γ(t) = (1−exp(−t))/t. For all t > 0 there exists a constant c > 0 that depends

on t and ε such that if G∗ is obtained by sampling the edges of G independently with probability

p > c lnn
d , then whp for every set A ⊆ P , |A| ≤ t/p (resp. B ⊆ Q, |B| ≤ t/p)

|Γ∗(A)| ≥ (1− ε)dpγ(t)|A|.

Proof: Consider a set A ⊆ P , |A| ≤ t/p. For b ∈ Γ(A) denote the indicator variable corresponding to

the event that at least one edge incident on b and going to A is sampled by Xb, i.e. Xb = I{b∈Γ∗(A)}.

Denote the number of edges between b and vertices of A by kb. We have

Pr[Xb = 1] = 1− (1− p)kb ≥ 1− exp(−kbp) ≥ kbpγ(t),

since kbp ≤ t and e−x ≤ 1− γ(t)x for x ∈ [0, t].

Hence,

E

[∑
b∈B

Xb

]
≥ p

∑
b∈B

kb ≥ p|δ(A)|γ(t). (7.9)

There are at most ns subsets A of P of size s and |δ(A)| = d|A| for all A, so we obtain using

Chernoff bounds and the union bound

Pr [∃ A ⊆ P : |Γ∗(A)| < (1− ε)pd|A|γ(t)] <

n∑
s=1

ns exp
(
−ε2pdsγ(t)

)
=

n∑
s=1

exp (s(1− cγ(t)) lnn) = O(n2−cγ(t)),
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which can be made O(n−r) by choosing c > (2 + r)/γ(t) for any r > 0.

Proof of Lemma 178: First note that since the partial matching is of size strictly less than

n− 2n/d, by Corollary 176 there exists an augmenting path with respect to the partial matching.

In order to upperbound the length of the shortest augmenting path, we will show that for each

j, at least one of the following is true:

1. |Bj | ≥ d/500;

2. |Bj+1| ≥ d/500;

3. |Bj+1| ≥ (lnn)|Bj |;

4. |Bj−1| ≥ d/500;

5. |Bj−1| ≥ (lnn)|Bj |.

It then follows that for each j there exists j′ such that |j − j′| ≤ 1 + lnlnn d and |Bj′ | ≥ d/500.

Hence, there cannot be more than O
(
n ln d
d ln lnn

)
levels in the alternating level graph, so there always

exists an augmenting path of length O
(
n ln d
d ln lnn

)
.

For each 1 ≤ j ≤ L, where L is the number of levels in the alternating level graph, we classify

the edges leaving Bj into three classes: (1) EF contains edges that go to U \A(j), (2) EM contains

edges that go to Aj , and (3) ER contains edges that go to Aj−1. At least one of EF , EM , ER has at

least (1− ε)pd|Bj |/3 edges by Lemma 179. We now consider each of these possibilities.

Case (A): First suppose that EF contains at least (1 − ε)pd|Bj |/3 edges. Note that since the

partial matching has size smaller than n− 2n/d by assumption, we have that |A(j)| ≥ |B(j)|+ 2n/d.

Hence, by Corollary 176 the number of edges going from Aj to Bj+1 is at least

(1− 3ε)(1− ε)
1 + ε

pd|Aj |/3.

Suppose first that |Aj | < 1/(5p). Then by Lemma 179 one has that |Γ∗(Aj)| ≥ (1−ε)γ(1/5)pd|Aj |.
Let β∗ = 1 + ε − (1−3ε)(1−ε)

3(1+ε) . Observe that since one edge going out of Aj yields at most one

neighbor, at most (1 + ε)pd|Aj | − (1−3ε)(1−ε)
1+ε pd|Aj |/3 = β∗pd|Aj | neighbours of vertices of Aj are

outside Bj+1. Setting ε = 1/15, we get that Bj+1 contains at least ((1 − ε)γ(1/5) − β∗)pd|Aj | >
0.011pd|Aj | > (lnn)|Aj | neighbours of |Aj |, i.e. |Bj+1| ≥ (lnn)|Aj | = (lnn)|Bj | (this corresponds

to case 3 above). Now if |Aj | ≥ 1/(5p), one can find A′ ⊆ Aj such that |A′| = b1/(5p)c and at

least (1−3ε)(1−ε)
1+ε pd|A′|/3 edges going out of A′ go to Bj+1, which implies by the same argument that

|Bj+1| ≥ 0.011pd|A′| ≥ d/500 (this corresponds to case 2 above).

Case (B): Suppose that EM contains at least (1−ε)pd|Bj |/3 edges. Then by the same argument

as in the previous paragraph (after first weakening our estimate to (1−3ε)(1−ε)
1+ε pd|Bj |/3) we have

that |Aj | ≥ (lnn)|Bj | if |Bj | ≤ 1/(5p). This is impossible when lnn > 1 since |Aj | = |Bj |. Hence,

|Aj | ≥ d/500 by same argument as above, and hence |Bj | ≥ d/500 (this corresponds to case 1 above).
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Case (C): Suppose that ER contains at least (1− ε)pd|Bj |/3 edges. By the same argument as

above we have that either |Bj−1| ≥ d/500 (this corresponds to case 5 above) or Bj−1 ≥ (lnn)|Bj |
(this corresponds to case 4 above).

This completes the proof.

We can now prove the main result of this section:

Theorem 180 Let the graph G∗ be obtained from G using steps S1 and S2 in the algorithm of

section 7.3. Then step S3 takes O
(
n2 ln2 n
d ln lnn

)
time whp, giving a time of O

(
n2 ln3 n

d

)
for the entire

algorithm.

Proof: We analyze the runtime of step S3 in two stages: (1) finding a matching of size n − 2n/d,

and (2) extending the matching of size n− 2n/d to a perfect matching.

Note that the strength of edges in G′ obtained after S1 does not exceed (1+ε)cn lnn
ε2d , the maximum

degree, with high probability, for a constant c > 0. Hence, the combination of sampling uniformly

in S1 and non-uniformly in S2 dominates sampling each edge with probability Ω
(

lnn
d

)
, so we write

G′′ = (P,Q,E∗∪E∗∗), where E∗ is obtained from E by sampling uniformly with probability p = c lnn
d

for a sufficiently large c > 0. The constant c > 0 can be made sufficiently large so that Lemma

178 applies by adjusting the constant in the sampling in steps S1 and S2. Denote G∗ = (P,Q,E∗)

and note that the proof of Lemma 178 only uses lower bounds on the number of edges incident to

vertices in a given set, as well as the number of vertex neighbours of a set of vertices. Hence, since all

bounds apply to G∗, the conclusion of the lemma is valid for G′′ whp as well, and we conclude that

the maximum number of layers in an alternating level graph, and hence the length of the shortest

augmenting path, is O
(
n ln d
d ln lnn

)
. As each augmentation phase takes time proportional to the number

of edges in the graph, this implies that the first stage takes O
(
n2 ln2 n
d ln lnn

)
.

Finally, note that each augmentation phase increases the size of the matching by at least 1, and

thus O(n/d) augmentation suffice to extend the matching constructed in the first stage to a perfect

matching. This takes O
(
n2 lnn
d

)
time, so the runtime is O

(
n2 ln2 n
d ln lnn

)
for step S3, and O

(
n2 ln3 n

d

)
overall.

Remark 181 Theorem 180 as well as lemma 178 can be slightly altered to show that the runtime

of the Hopcroft-Karp algorithm on the uniformly subsampled graph in Chapter 2 is O
(
n3 ln2 n
d2 ln lnn

)
.

This shows that the uniform sampling approach from Chapter 2 yields an Õ(n5/3) algorithm, which

is better than Õ(n1.75) obtained there.

Theorem 182 For any function d(n) ≥ 2
√
n there exists an infinite family of d(n)-regular graphs

with 2n + o(n) vertices such that whp the algorithm in section 7.3 performs Ω(n/d) augmentations

in the worst case.

Proof: In what follows we omit the dependence of d on n for brevity. Define H(k) = (U, V,E),

0 ≤ k ≤ d, to be a (d − k)-regular bipartite graph with |U | = |V | = d. The graph G consists of t

copies of H(k), which we denote by {Hj}tj=1, where Hj = H(t−j+1), and 2t vertices u1, . . . , ut and

v1, . . . , vt. Each of u1, . . . , ut is connected to all d vertices in the V -part of H1, and for 1 ≤ j ≤ t, the
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vertex vj is connected to all vertices in the U -part of Hj . The remaining connections are established

by adding t − j edge-disjoint perfect matchings between the U part of Hj and the V part of Hj+1

for all 1 ≤ j < t.

Set t = n/d ≤
√
n/2 ≤ d/4. Note that the strength of edges in Hj is at least d/4, so whp

there exists a perfect matching in subgraph of Hj generated by the sampling steps S1 and S2, for

1 ≤ j ≤ t. Suppose that at the first iteration of the Hopcroft-Karp algorithm a perfect matching is

found in each Hj , thus leaving unmatched the vertices u1, . . . , ut and v1, . . . , vt. Then from this point

on, the shortest augmenting path for each pair pair (uj , vj) has length j, and each augmentation

phase of the Hopcroft-Karp algorithm will increase the size of the matching by 1. Hence, it takes t

augmentations to find a perfect matching. The number of vertices is 2(d+ 1)t = 2n+ o(n).

7.5 Perfect Matchings in Doubly Stochastic Matrices

An n × n matrix A is said to be doubly stochastic if every element is non-negative, and every

row-sum and every column-sum is 1. The celebrated Birkhoff-von Neumann theorem says that

every doubly stochastic matrix is a convex combination of permutation matrices (i.e., matchings).

Surprisingly, the running time of computing this convex combination (known as a Birkhoff-von

Neumann decomposition) is typically reported as O(m2
√
n), even though much better algorithms

can be easily obtained using existing techniques or very simple modifications. We list these running

times here since there does not seem to be any published record5. After listing the running times

that can be obtained using existing techniques, we will show how proportionate uncrossings can be

applied to this problem to obtain a slight improvement.

1. An O(m2)-time algorithm for finding a Birkhoff-von Neumann decomposition can be obtained

by finding a perfect matching in the existing graph using augmenting paths (in time O(mn)),

assigning this matching a weight which is the weight of the smallest edge in the matching,

subtracting this weight from every edge in the matching (causing one or more edges to be

removed from the support of A), and continuing the augmenting path algorithm without

restarting. When a matching is found, if we remove k edges then we need to find only k

augmenting paths (finding each augmenting path takes time O(m)) to find another matching,

which leads to a total time of O(m2).

2. Let b be the maximum number of significant bits in any entry of A. An O(mb)-time algorithm

for finding a single perfect matching in the support of a doubly stochastic matrix can be easily

obtained using the technique of Gabow and Kariv [33]: repeatedly find Euler tours in edges

where the lowest order bit (say bit j) is 1, and then increase the weight of all edges going

from left to right by 2−j and decrease the weight of all edges going from right to left by the

same amount, where the directionality of edges corresponds to an arbitrary orientation of the

5This list was compiled by Bhattacharjee and Goel and is presented here to provide some context rather than as
original work.
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Euler tour; this eliminates bit j while preserving the doubly stochastic property and without

increasing the support.

3. An O(mnb)-time algorithm to compute the Birkhoff-von Neumann decomposition can be ob-

tained using the edge coloring algorithm of Gabow and Kariv [33].

We now show how our techniques lead to an O(m ln3 n + n1.5 lnn)-time algorithm for finding a

single perfect matching in the support of a doubly stochastic matrix. In realistic scenarios, this is

unlikely to be better than (2) above, and we present this primarily to illustrate another application

of our proportionate uncrossing technique. First, define a weighted bipartite graph G = (P,Q,E),

where P = {u1, u2, . . . un} corresponds to rows of A, Q = {v1, v2, . . . , vn} corresponds to columns of

A, and (ui, vj) ∈ E iff Ai,j > 0. Define a weight function w on edges, with w(ui, vj) = Ai,j . Let R be

the collection of all pairs (A,B), A ⊆ P,B ⊆ Q, |P | > |Q|. Since A is doubly stochastic, the collection

R is (1/2)-thick with respect to (G,w,E). Let T be a (1/2)-uncrossing of R. Performing a Benczúr-

Karger sampling on G will guarantee (with high probability) that at least one edge is sampled from

every witness set in W (T ), and hence running the Hopcroft-Karp algorithm on the sampled graph

will yield a perfect matching with high probability. The running time of O(m ln3 n + n1.5 lnn) is

just the sum of the running times of Benczúr-Karger sampling for weighted graphs [16] and the

Hopcroft-Karp matching algorithm [45].

7.6 Proof of Lemma 154

Consider any (A,B) where |A| > |B|, A ⊆ P,B ⊆ Q. Define Ai = Pi ∩A and Bi = Qi ∩B. Fix an i

such that |Ai| > |Bi|; such an i is guaranteed to exist. By the definition of relevance, there exists a

pair (X,Y ) ∈ R such that X ⊆ Ai, and W (X,Y )∩ER ⊆W (Ai, Bi)∩ER. By the assumption in the

theorem, there exists an edge (u, v) ∈ E∗ ∩ER ∩W (X,Y ). Since W (X,Y )∩ER ⊆W (Ai, Bi)∩ER,

it follows that (u, v) ∈ E∗ ∩ ER ∩W (Ai, Bi). This edge is in G∗, and goes from Ai to Qi \Bi, i.e.,

from Ai to Qi \ (Qi ∩ B), and hence, from A to Q \ B. Since the only assumption on (A,B) was

that |A| > |B|, we can now invoke Hall’s theorem to claim that G∗ has a perfect matching.

7.7 Proof of Theorem 157

As mentioned before, the proof is along very similar lines to that of the Benczúr-Karger sampling

theorem, but does not follow in a black-box fashion and is presented here for completeness. The

proof relies on the following result due to Karger and Stein [55]:

Lemma 183 Let H(V,E) be an undirected graph on n vertices such that each edge e has an asso-

ciated non-negative weight p̃e. Let s∗ be the value of minimum cut in H under the weight function

p̃e. Then for any α ≥ 1, the number of cuts in H of weight at most αs∗ is less than n2α.

Proof of Theorem 157: We will choose c = 5. The first part of the proof shows that it is sufficient

to bound a certain expression that involves only cuts. The second part then bounds this expression.
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For the first part, let µ(X) =
∑
e∈X pe denote the expected number of edges chosen from X by

the sampling process. If a set X ∈ X contains an edge e with pe = 1, then that edge will definitely

be chosen, and that set does not contribute to∑
X∈X

Pr[No edge in X is chosen in H ′]

and can be removed from X . Hence, assume without loss of generality that pe < 1 for every edge in⋃
X∈X X. Define µ̃(X) =

∑
e∈X

(
c lnn
se

)
. Now for any set X ∈ X ,

Pr[No edge in X is chosen in H ′] =
∏
e∈X

(1− pe) ≤
∏
e∈X

e−pe ≤ e−µ(X),

where

µ(X) =
c lnn

γ

∑
e∈X

1

se
> (c lnn)

∑
e∈f(X)

1

se
= µ̃(f(X)).

Since f is a one-one function, it is sufficient to provide an upper-bound on
∑
C∈C e

−µ̃(C).

For the second part, let µ̃1, µ̃2, . . . , µ̃2n−2 be a non-decreasing sorted sequence corresponding to

the multi-set {µ̃(C) : C ∈ C}. Define qi = e−µ̃i . Consider an arbitrary cut C. Any edge in C can

have strength at most |C|, and hence µ̃(C) ≥ c lnn, and therefore, q1 ≤ n−c. So the sum of qi for

the first n2 cuts in the sequence is bounded by n−c+2. We now focus on the remaining cuts. By

Lemma 183, we know that for any α ≥ 1, we have µ̃n2α ≥ αµ̃1. Hence

µ̃k ≥
ln k

2 lnn
µ̃1,

which in turn implies that qk ≤ k−c/2. Thus

∑
X∈X

Pr[No edge in X is chosen in H ′] ≤
∑
C∈C

e−µ̃(C) ≤
n2∑
k=1

qk+
∑
k>n2

qk ≤ n−c+2+
∑
k>n2

k−c/2 = O(n−c+2),

giving us the desired result when we choose c = 5.

7.8 Proof of Lemma 159

Assume by way of contradiction that no such integer j exists for some pair of multisets S1 and S2.

Let K be the largest integer in S1 ∪ S2, and let αi and βi denote the number of occurrences of i in

the multisets S1 and S2 respectively. Then for all j ≥ 1, we have

K∑
i=j

αi
i
≤ γ

 K∑
i=j

βi
i

 .
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Summing the above inequality for all j ∈ {1..K}, we get

K∑
i=1

αi ≤ γ

(
K∑
i=1

βi

)
,

which is a contradiction since |S1| > γ|S2| by assumption.
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