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Abstract

The problem of counting occurrences of query graphs in a large data graph, known
as subgraph counting, is fundamental to several domains such as genomics and social
network analysis. Many important special cases (e.g. triangle counting) have received
significant attention. Color coding is a very general and powerful algorithmic tech-
nique for subgraph counting. Color coding has been shown to be effective in several
applications, but scalable implementations are only known for the special case of tree
queries (i.e. queries of treewidth one).

In this paper we present the first efficient distributed implementation for color
coding that goes beyond tree queries: our algorithm applies to any query graph of
treewidth 2. Since tree queries can be solved in time linear in the size of the data
graph, our contribution is the first step into the realm of colour coding for queries that
require superlinear running time in the worst case. This superlinear complexity leads
to significant load balancing problems on graphs with heavy tailed degree distribu-
tions. Our algorithm structures the computation to work around high degree nodes
in the data graph, and achieves very good runtime and scalability on a diverse collec-
tion of data and query graph pairs as a result. We also provide theoretical analysis of
our algorithmic techniques, showing asymptotic improvements in runtime on random
graphs with power law degree distributions, a popular model for real world graphs.

1 Introduction

Graphs serve as common abstractions for real world data, making graph mining primitives
a critical tool for analyzing real-world networks. Counting the number of occurrences of a
query graph in a large data graph (subgraph counting, often referred to as motif counting)
is an important problem with applications in a variety of domains such as bioinformatics,
social sciences and spam detection (e.g. [8, 10, 23]).

Subgraph counting and its variants have received a lot of attention in the literature.
Substantial progress has been achieved for the case of small queries such as triangles or
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Figure 1: Illustration of a match (left) and a colorful match (right)

4-vertex subgraphs: not only have very efficient algorithms been developed (e.g. [15, 20,
27, 31]), but also theoretical explanation of their performance on popular graph models
has been obtained (see [5] and references therein).

Some of the recent work has addressed larger queries [29, 30, 6, 26, 7], but our under-
standing here is far from complete. Even for reasonably large graphs (a million edges)
and small queries (e.g. 5-cycles), the number of solutions tend to be enormous, running
into billions. This explosion in the search space makes the subgraph counting problem
very hard even for moderately large queries. Theoretically, the fastest known algorithm
for counting occurrences of a k-vertex subgraph in an n-vertex data graph runs in time
nωk/3, where O(nω) is the time complexity of matrix multiplication (currently ω ≈ 2.38).
This improves upon the trivial algorithm with runtime nk, but is prohibitively expensive
even for moderate size queries.

To address the above issue, Alon et al. [2] proposed the color coding technique. Here,
given a k-node query, we assign random colors between 1 and k to the vertices of the
data graph, and count the number of occurrences of the query that are colorful, meaning
the vertices matched to the query have distinct colors. See Figure 1. The count is scaled
up appropriately to get an estimate on the actual number of occurrences. The accuracy is
then improved by repeating the process over multiple random colorings and taking the
average. Restricting the search to colorful matches leads to pruning of the search space
and improved efficiency. Using this method, Alon et al. obtained faster algorithms for
cetain queries such as paths, cycles, trees and bounded treewidth graphs.

The power of color coding as a very general counting technique together with the im-
portance of subgraph counting in various applications (as mentioned above) makes it im-
portant to design practically efficient and scalable implementations. In a different work,
Alon et al. [1] applied the color coding technique for counting the occurrences of treelets
(tree queries) in biological networks. Color coding allowed them to handle tree queries
up to size 10 in protein interaction networks, extending beyond the reach of previously
known approaches [25, 18, 17]. Recently, Slota and Madduri [28, 30] presented FASCIA, an
efficient and scalable distributed implementation of subgraph counting (via color coding),
again for the case of treelet queries. However, despite considerable interest in non-tree
queries from several application domains (see the experimental section for details), the
technique has not been explored for more general settings. In this work we present the
first efficient distributed implementation of color coding beyond tree queries.
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As part of their original color coding solution, Alon et al. [2] presented faster algorithms
for certain special classes of queries. They showed that if the query is a tree, then colorful
subgraph counting can be solved in time O(2km), i.e. in time linear in the size of the data
graph. They extended the algorithm to show that if the query is close to a tree, specifically
has (small) treewidth t, a running time of O(2knt+1) can be achieved. Treewidth [9] is a
widely adopted measure of the intrinsic complexity of a graph. Intuitively, it measures
how close the topology of a given graph is to being a tree: tree queries have treewidth 1,
and a cycle is the simplest example of a treewidth 2 query. The above algorithm, restricted
to trees, forms the basis for the previously-mentioned treelet counting implementations
[28, 30, 1].

While the runtime of the above algorithm is linear for the case of trees (i.e. acyclic
queries), it becomes at least quadratic for query graphs of treewidth 2 and beyond. This
phenomenon also manifests itself in practice: on real world graphs with even moderately
skewed degree distribution load imbalance is observed and the running time tends to have
quadratic dependence on the maximum degree of the graph. Thus, even triangles (the
smallest cyclic query) are harder to handle, and have received considerable attention from
the research community (as mentioned earlier).

The goal of this paper is to study the colorful subgraph counting problem on queries of
treewidth 2, taking the first step in the realm of color coding with cyclic queries. The class of
queries of treewidth 2 is quite rich. In particular, it contains all trees, cycles, series-parallel
graphs and beyond. Figure 8 shows treewidth 2 queries (used in our experimental eval-
uation) drawn from real-world studies on biological, social and collaboration networks
[22, 32, 4].

To the best of our knowledge, the previously-mentioned algorithm [1] is the best known
algorithm for treewidth 2 queries, and we use it as our baseline. We rephrase this algorithm
within our framework and devise a distributed implementation. The rephrased algorithm
becomes a recursive procedure that decomposes the query into simpler path subqueries,
which are then solved to get the overall count. We thus refer to our baseline as the Path
Splitting algorithm (PS).

Our Contributions

1. Building on the PS algorithm, we develop novel strategies that lead to significant
performance gains in terms of runtime, scalability, and the size of graphs and queries han-
dled.

2. Our algorithm works by decomposing the query to cycles and leaves, thereby reduc-
ing the problem of colorful subgraph counting on treewidth 2 queries to counting (anno-
tated) cycles.

3. The decomposition in terms of cycles enables us to exploit the so-called degree or-
dering approach (e.g., MINBUCKET algorithm for triangle enumeration [5]) Specifically, we
show how to force the computation process to (mostly) work around high degree vertices,
leading to substantial speedups and scalability gains.

4. We present a detailed experimental evaluation of the algorithms on real-world graphs
having more than million edges and real-world queries of size up to 10 nodes. The results
show that our strategies offer improvements of up to 28x in terms of running time and
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exhibit improved scalability.
5. Finally, we complement our experimental evalutation by a theoretical analysis of the

runtime of our degree ordering approach for cycle queries, on a popular class of random
power law graphs (Chung-Lu graphs [14]). Our analysis provides justification for empiri-
cally observed performance gains of the approach.

Related Work

Subgraph counting has received significant attention in the fields of computational biol-
ogy [25, 18, 17] and social network analysis [21, 13, 27, 5, 20]. We give an overview of prior
work on the problem (both theoretical and empirical) as well as techniques for making
subgraph counting scalable, and explain how our contributions relate to this prior work.

Color Coding and Approximate Subgraph Counting: Color coding was introduced in an
influential paper by Alon et al. [2] as a fast algorithm for finding occurrences of a query
in a data graph and counting the number of such occurrences. In a different work, Alon
et al. [1] explored its applications to approximate subgraph counting (most commonly
known as motif counting) in computational biology. They were motivated by the fact that
subgraph counting is an important primitive for characterizing biological networks [23].
Color coding allowed Alon et al. to count occurrences of treelets (tree queries) up to size
10 in protein interaction networks, extending beyond the reach of previously known ap-
proaches [25, 18, 17]. A scalable distributed implementation of color coding for trees has
been reported by Slota and Madduri [29, 30], but no principled solutions beyond tree
queries are known. ParSE [33] extends beyond tree queries, by considering query graphs
that can partitioned into subtemplates via edge cuts of size 1. However, the only class of
query graphs that can be perfectly partitioned using this method is trees; ParSE resorts to
brute force enumeration for other cases. Our work provides the first principled approach
to implementing color coding in a scalable way beyond trees queries. Further, our analysis
of the runtime of our cycle counting subroutine on a random graphs with a power law
degree distribution provides a theoretical justification of our algorithmic techniques.

While our work and the above-mentioned prior work [1, 29, 30] count non-induced sug-
raphs, some other prior work [25, 18, 17] addressed the case of counting induced subgraphs.
The search space of non-induced subgraphs is larger and furthermore, these counts are
more robust with respect to perturbations of the data graph [1].

Degree Based Approaches: Designing scalable subgraph counting algorithms turns out
to be hard even for the simple case of triangle counting. A naive approach lets each ver-
tex enumerate pairs of neighbors and check if they are connected. This leads to wasteful
computations and also runs into load balancing issues on graphs with heavy tailed degree
distributions [31]. The above issue has been addressed using a simple, but efficient solu-
tion (referred to as the MINBUCKET algorithm [15, 31]): each vertex enumerates pairs of
neighbors with degree no smaller than its own (with arbitrary tie breaking) and checks
they are connected. It is not hard to see that this gives a correct count, and it has been
empirically observed that this algorithm does not run into load balancing issues even on
heavy tailed graphs [31]. The MINBUCKET heuristic has also been shown to give poly-
nomial runtime improvement over the naive method when the input is a random graph
with a power law degree distribution [5]. A recent work by Jha et al. [20] applies the
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degree based technique for counting 4-vertex queires. There are a few prior approaches
for arbitrary queries of [7, 3, 26], but algorithms do not use degree information, and are
comparable to the baseline algorithm used in our study.

To the best of our knowledge, prior to our work there has not been a systematic study
of how MINBUCKET generalizes to larger subgraph counting problems. In this work we
generalize the method for counting occurrences of treewidth 2 graphs, perform a thorough
experimental evaluation and provide a theoretical runtime analysis of our technique in the
random power law graph model. Our paper improves upon prior work along three axes:
generality of queries handled, scalability of the proposed solution and theoretical analysis
of the main algorithmic primitive on a class of graphs often used to model real world
networks.

2 Preliminaries

Subgraph counting problem. The subgraph counting problem is defined as follows. The
input consists of a query graph Q = (VQ, EQ) over a set of k nodes and a data graph G =
(VG, EG) over a set of n vertices and m edges. The task is to count the number of (not
necessarily induced) subgraphs ofG that are isomorphic toQ. Formally, count the number
of injective mappings π : VQ → VG such that for any pair of query nodes a, b ∈ VQ, if
〈q1, q2〉 ∈ EQ, then 〈π(q1), π(q2)〉 ∈ EG. We refer to such mappings π as matches.
Color coding and colorful matches. A coloring is a function χ : VG → {1, 2, . . . , k}, where
for every vertex u ∈ VG, χ(u) denotes its color. A match π from VQ to VG is colorful if
the vertices of Q are mapped to k distinctly colored vertices in G, i.e.

⋃
a∈VQ χ(π(a)) =

{1, 2, 3, . . . , k}. The main idea is that instead of counting all possible matches of the k
vertices of the query graph to the vertices of the data graph, one first colors the vertices of
the data graph uniformly at random using k colors, and then searches for colorful matches.
Colorful subgraph counting problem. In the colorful subgraph counting problem the task is
to count the number of colorful matches of the query Q in VG.

Our setting counts the number of colorful matches or mappings from Q to the data
vertices. Alternatively, we may want to count the number of colorful subgraphs that are
isomorphic toQ. The latter quantity can be obtained by dividing the former by aut(Q), the
number of automorphisms of Q. While it is computationally hard to compute aut(Q) for
an arbitrary query graph, the quantity can be computed quickly for queries of relatively
small size (say about 10 nodes). Given the above discussion, we focus on counting the
number of colorful matches.
Treewidth. Intuitively, if the query graph Q = (VQ, EQ) has treewidth t then Q can be
decomposed into subgraphs Q1, Q2, . . . such that each subgraph Qi is also of treewidth t,
and each Qi has no more than t nodes that belong also to other subgraphs. We call such
nodes the boundary nodes of Qi. In addition, the total number of distinct boundary nodes
in all subgraphs Q1, Q2, . . . is at most t + 1. Note that the decomposition can be done
recursively as each Qi has treewidth t, until we are left only with subgraphs that have
at most t + 1 nodes. This results in a treewidth decomposition tree denoted TQ. A formal
definition is givne below.

A tree decomposition of a query |Q| is a tree T = (VT , ET ), wherein each node p ∈ VT
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is associated with a subset of query nodes S(p) ⊆ VQ, called pieces, such that the following
properties are true: (i) for every query edge (a, b) ∈ EQ, there exists a piece S(p) (for some
p ∈ VT ) that contains both a and b; (ii) for every query node a ∈ VQ, the set of nodes
whose pieces contain a induce a connected subtree. Alternatively, the second property
states that if a belongs to pieces S(p1) and S(p2) for some p1 and p2, then a must also
belong to the piece S(p) for any node p found on the (unique) path connecting p1 and p2 in
T . The width of the tree decomposition is the maximum cardinality overall pieces minus
one, i.e., maxp |S(p)| − 1. The treewidth t of the query is the minimum width over all its
tree decompositions.

Approximate subgraph counting via color coding. Counting the number of colorful
matches turns out to be easier than counting the actual (not necessarily colorful) matches.
The price to pay is that the algorithm is randomized. We color the graph randomly and
obtain the number of colorful matches, and repeat the process independently at random a
few times. Then, an estimate for the number of matches (occurrences of the query) can be
obtained by taking the average.

For a given input graph G and query Q let n(G,Q) denote the number of matches π
from Q to G. For a (random) coloring χ of vertices of G let ncolorful(G,Q, χ) denote the
number of colorful matches of Q to G under coloring χ. It was shown [2, 1] that with
proper normalization the colorful count ncolorful(G,Q, χ) is an unbiased estimator of the
actual count. Specifically, the right normalization factor is kk/k!, i.e. we have (kk/k!) ·
Eχ[ncolorful(G,Q, χ)] = n(G,Q). The variance of the estimator can also be bounded (see [1],
section 2.1). Thus, taking the average of ncolorful(G,Q, χ) under a few independently cho-
sen colorings χ converges to the right answer, i.e. n(G,Q). Thus, in order to obtain an
approximate subgraph counting algorithm it suffices to solve the colorful subgraph count-
ing problem. The rest of the paper is devoted to designing a scalable solution to colorful
subgraph counting.

3 Overview

The work of Alon et al. [2] yields a natural algorithm for the colorful subgraph counting
problem on bounded treewidth query graphs. This algorithm is based on the following
intuition. Suppose that we have found a colorful match π for a subgraph Q of the input
query graph Q, and we wish to extend it into a colorful match π′ for Q by additionally
fixing the mapping of the nodes outsideQ. For this we do not need to know the mapping of
the non-boundary nodes ofQ, since they do not share edges with nodes outsideQ. Instead,
it suffices to know the mapping of the boundary nodes (i.e., the nodes that share edges with
nodes outside Q) and the set of colors used by π. The mapping of the boundary nodes is
needed to ensure that for any edge from a boundary node to outside, the corresponding
data vertices share an edge in the data graph; and the set of colors is needed to avoid
repeating a color already used by π. Analogously, in the setting of counting, in order to
count the number of colorful matches for Q, we do not need a complete listing of colorful
matches of Q. Instead, we can group the colorful matches based on the set of colors used
and the mappings for the boundary nodes and it suffices to know the count per group.

Based on the above intuition, we apply dynamic programming to count the number
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colorful matches of Q. Let TQ be the tree decomposition of Q with treewith t. The al-
gorithm processes TQ in a bottom-up manner and a creates a hash table (that we call a
projection table) for each tree node. The subgraph graph Q associated with a node has at
most t boundary nodes and these nodes can be mapped to the data vertices in at most nt

ways. In addition, we need to record the colors of the data vertices to which the nodes
of Q are mapped. Since we focus on colorful matches, the set of colors used (that we call
“signature”) can be at most

(
k
t

)
≤ 2k (where k is the size of the query graph). For each

combination of mappings to the boundary nodes and the signature, we record the number
of colorful matches of Q consistent with the combination. The number of entries in the
table is at most nt2k. The projection table for a tree node can be computed from those of
its children. We get the total number of colorful matches by performing an aggregation on
the projection table of the root node.

Working in the realm of motif counting, Slota and Madduri [30] described an efficient
distributed implementation of the above algorithm for the case of tree queries and pre-
sented an experimental evaluation. Trees have treewidth one hence, the size of projection
tables is linear in the number of vertices and the overall computation can be carried out in
time linear in the graph size. Our goal is to address a more general class of queries (beyond
trees) in a distributed setting and we focus on the case of queries of treewidth 2. Treewidth
2 queries are more challenging since in the worst case, the tables can be of size quadratic
in the number vertices and the computation time also gets quadratic.

The construction of our algorithm is motivated by the fact that real life data graphs
tend to exhibit variations in the degree distribution. A naive implementation that treats all
data vertices in the same manner would result in a lot of entries in the projection tables of
the high degree vertices that do not lead to colorful matches for the overall input query.
Moreover, in a distributed setting the processors owning such vertices perform more com-
putation leading to load imbalance.

Our algorithm is based on a crucial observation that any treewidth 2 query can be recur-
sively decomposed into (annotated) cycles or leaves. The core component of the algorithm
is an efficient procedure for handling cycles that employs a strategy based on degree based
ordering of vertices. This leads to reduction in wasteful computation, as well as improved
load balancing. The procedure is inspired by a similar strategy used in prior work [5] for
handling triangles. The overall algorithm uses the above decomposition and the improved
procedure for handling cycles.

4 Overall Algorithm

In this section we describe the overall structure of our subgraph counting algorithm that
proceeds in two steps. In the first step, we decompose the query into cycles and leaves
(called blocks) and construct a decomposition tree for the input query Qwhich is essentially
a carefully chosen treewidth decomposition tree; each node of the tree represents a block
and encodes a convenient subquery. This step is independent of the data graph and can
be viewed as a preprocessing phase for the query. Then in the second step we traverse the
tree in a bottom up manner, performing primitive counting operations over the data graph
prescribed by the internal nodes and combining the results. The final count is produced
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by the root of the tree.

4.1 Decomposition Tree

For an input query graph Q = (VQ, EQ), construct the decomposition tree T (Q) by itera-
tively applying one of two primitive operations: contraction of a leaf edge or a cycle. As
these operations are applied the number of nodes in the query Q decreases. At the same
time new edges may appear in Q to represent contracted structures, and edges as well as
nodes may get annotated with the identity of the contracted structures that they represent.
Before defining the tree construction algorithm we need to introduce two definitions. First,
we say that a cycle C inQ is contractible if (a) C = (a0, a1, . . . , aL−1) is induced (i.e. there are
no edges between nodes a0, a1, . . . , aL−1 except the edges of C) and (b) cycle C has most
two boundary nodes (i.e., nodes that share edges with nodes outside of C). Second, a leaf
edge is an edge L = (a, b), where b is a leaf node (has degree one); a is called the boundary
node of the leaf edge. We use the common term block to refer to leaf edges and contractible
cycles.

For example, consider the query named Satellite in Fig 2. The cycle (i, j, k) is con-
tractible with a single boundary node i, the cycle (a, b, c, d, e) is contractible with two
boundary nodes a and c, and (f, h) is a leaf edge. The cycle (i, f, g) is not contractible
since it has three boundary nodes.

We construct the decomposition tree T (Q) starting with an empty tree. The tree is
built bottom-up starting from the leaf level and hence, the structure may be a forest with
multiple roots in the intermediate stages. Each iteration adds a new node and may make
some of the existing roots as its children, culminating in a tree.

In the construction process we iteratively perform the following operations until Q
contains a single node: find a block B (a leaf edge or a contractible cycle) inQ and remove
it from Q (while possibly adding an edge to Q), and add a corresponding node to T (Q).
We iterate until Q contains a single node. We distinguish 3 cases.
Case 1: B is a contractible cycle C with exactly one boundary node a ∈ VQ: Remove the nodes
and edges of C from Q, except for node a. Erase any annotation found on a in Q and
annotate it with the block name B.
Case 2: B is a contractible cycle C with two boundary nodes a, b ∈ VQ: Remove the nodes and
edges of C from Q, except for the nodes a and b. Add an edge (a, b) in Q and annotate it
with B. Erase any annotation found on a and b in Q.
Case 3: B is a leaf edge L = (a, b): Remove b and the edge from Q. Erase any annotation
found on node a ∈ Q and annotate it with the block name B.

The nodes and edges of B inherit the annotations from Q, as they were before Q was
transformed (this ensures that the annotations on the boundary nodes that got erased get
captured by the new annotation).

Next we add a new node B to the tree T (Q). If any node or edge in B has an anno-
tation B′, make B′ a child of B in T (Q). This completes the construction of T . We show
below that the process can find a block in each iteration and terminate successfully on ev-
ery query of treewidth 2. Assuming termination, it is not difficult to see that the process
produces a tree. During contraction, every block B′ annotates a particular node or an edge
of Q, recording the way in which it has been contracted. The annotation gets inherited by
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Figure 2: Illustration of the decomposition process. The top row shows the sequence of
queries considered in the process (the original query is on the left), the bottom row shows
the blocks that were contracted in each step.

some other block B in a subsequent iteration. The block B becomes the parent of B′. The
annotation is erased in Q, ensuring that no other block becomes a parent of B′.

Taking Satellite as the input queryQ, Figure 2 provides an illustration process, along
with the output decomposition tree. The bottom row shows the blocks being contracted
and the top row shows the transformed Q. The first iteration contracts the cycle B1 =
(a, b, c, d, e). A new edge (a, c) is added toQ, along with the annotationB1, andB1 is added
to the tree. The second iteration contracts the leaf blockB2 = (f, h). Node f is annotated as
B2 and the B2 is added to the tree. The third iteration contracts B3 = (a, f, g, c), by adding
an edge (f, g) with the annotation B3. The block is added to the tree and it is made the
parent of B1 and B2. In the fourth iteration, the cycle B4 = (i, j, k) is contracted. Node i
gets annotated asB4 andB4 is added to the tree. Finally, the queryQ4 is contracted leaving
Q empty. We add Q4 as the root of the tree, making it the parent of B3 and B4.

The following lemma guarantees that for any treewidth 2 queryQ, the tree construction
procedure will always find a block (a leaf edge or a contractible cycle) in each iteration and
terminate successfully. The proof relies on prior work on nested ear decompositions of
treewidth 2 queries [16].
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Lemma 4.1 (i) Any treewidth 2 query Q contains a block; (ii) the transformed query resulting
from the contraction process is also a treewidth 2 query.
Proof: We first prove part (ii) of the lemma. If the contracted block has one boundary
node then no new edges are added to Q, in which case the tree TQ for the updated Q
is given by deleting all the nodes not in the updated VQ from the subsets SQ(t). If the
contracted block has two boundary nodes a and b then the edge (a, b) is added to Q. In
this case we get the tree for the updated Q by replacing each occurrence of the nodes not
in the updated VQ by b. Note that the size of each subset is still at most 3, nodes associated
with subsets that contain b form a connected component, and for at least one subset SQ(t),
{a, b} ⊆ SQ(t).

We now prove part (i). First, Root the tree TQ at an arbitrary non-leaf node. This in-
duces an ancestor-descendant relationship on the nodes in VT . Note that if there are two
nodes {t, t′} ⊆ VT , such that SQ(t′) ⊆ SQ(t), node t′ can be omitted and all its children con-
nected to t. Thus from now on we assume that no subset SQ(t) is contained (or identical)
to another subset.

We need the following definition and claim.
Definition 4.1 For a node t ∈ VT , let Qt be the subgraph of Q induced by the nodes that are in
the union of the subsets associated with the nodes of TQ in the subtree rooted at t.
Claim 4.1 For every node t ∈ VT , either Qt contains a block, or Qt is a path whose endpoints are
in the subset associated with the parent of t (if such exists).
Before proving the claim we show how it implies the lemma. Since the claim holds also for
the root of TQ then either Q contains a block or it is a path in which case it also contains a
leaf block.
Proof of Claim 4.1: We prove the claim by induction. The base of the induction is a leaf
node. Consider a leaf node t ∈ VT . There are two possibilities: (i) SQ(t) = {x, y}, and (ii)
SQ(t) = {x, y, z}. If SQ(t) = {x, y}, then at least one node, say y, is only connected to x
and thus (x, y) is a leaf edge.

If SQ(t) = {x, y, z}, then consider the subgraph induced by {x, y, z}. If this subgraph
is a triangle then it must be a contractible cycle. The only remaining case is the subgraph
induced by {x, y, z} forms a path. Assume that the endpoints of this path are x and z. If
one of these endpoints, say z, is not in the subset associated with the parent of t then (y, z)
is a leaf edge. Otherwise, let t′ be the parent of t, we have SQ(t) ∩ SQ(t′) = {x, z}.

For the inductive step consider a non-leaf node t ∈ VT . If Qt′ for any child t′ of t
contains a block then we are done. Assume that this is not the case. Consider first the case
that t has a single child t′. By the inductive hypothesisQt′ is a path whose endpoints x and
y are in SQ(t). Let SQ(t) = {x, y, z}. If z is connected to both x and y then the cycle closed
by z is a contractible cycle. If z is connected to only one endpoint, say y, then we get a path
with endpoints x and z. If either x or z are not in the subset associated with the parent of
t, then the missing endpoint is leaf node. If both x and z are in the subset associated with
the parent of t then the inductive claim follows.

Next, Consider the case that t has several children. If two of the children of t, say t′ and
t′′, share endpoints then the cycle formed byQt′ andQt′′ is contractible. Otherwise, t must
have exactly two children, say t′ and t′′, with endpoint {x, y} and {y, z}, forming a path
with endpoints x and z. If z is connected also to x then the cycle closed by the edge (x, z)
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is a contractible cycle. If either x or z are not in the subset associated with the parent of t,
then the missing endpoint is a leaf node. If both x and z are in the subset associated with
the parent of t then the inductive claim follows.

An input query may admit multiple decomposition trees and the choice of the tree in-
fluences the performance of our algorithm. In Section 6, we present a heuristic for finding
a good decomposition. Each node of the tree represents a block and it will be convenient
to view to the node simply as the block represented by it.

At this point, it is interesting to consider tree queries studied by Slota and Madduri [30].
Given a tree query, their algorithm fixes a suitable query node as the root and iteratively
processes the tree in a bottom-up manner. The algorithm implicitly uses a decomposition
tree. However, since trees do not have cycles, the decomposition tree consists of only leaf
edge blocks. In contrast, the decomposition trees of treewidth two queries involve the
more challenging case of cycles as well.

4.2 Tree Traversal

Here, we describe the second step of the algorithm that traverses the decomposition tree
in a bottom-up manner and computes the number of colorful matches of the blocks in the
data graph. For this purpose, we define the notion of subqueries represented by blocks.

A subquery Q of the input query Q refers to any induced subgraph of Q. Consider a
block B and let U be the union of nodes found in the block B and its descendant blocks
in the tree. The subquery represented by B, denoted SQ(B), refers to the subquery induced
by U . For example, Figure 2 shows the subquery represented by the block B4. The decom-
position tree yields a nested hierarchy of subqueries: the root block represents the whole
input query and for any block B with the parent B′, the subquery SQ(B) is contained
within SQ(B′).

Let B be a block. A node a ∈ SQ(B) is said to be a boundary node, if a shares an edge
with a node outside SQ(B). It is not hard to see that these boundary nodes are the same
as the boundary nodes of B (identified during the tree construction process). Thus, SQ(B)
can have at most two boundary nodes.

Before describing the counting algorithm we extend the notion of colorful matches
to subqueries: a colorful match for a subquery Q = (VQ, EQ) is an injective mapping
π : VQ → VG, such that for any edge (a, b) ∈ EQ, (π(a), π(b)) ∈ EG, and the vertices of Q
are mapped to distinctly colored vertices of G.

The algorithm traverses the tree in a bottom-up manner. For each block B, it outputs a
succinct synopsis of the set of colorful matches of the subquery SQ(B), using a projection
table and signature (as outlined in Section 3). that we now define precisely.

Signature: Let K = {1, 2, . . . , k} denote the set of colors used in the data graph, where
k is the size of the input query Q. The term signature refers to any subset α ⊆ K. For a
subquery Q and a colorful match π of Q, the signature of π refers to the set of colors of the
data vertices used by π and it is denoted sig(π), i.e., sig(π) = ∪a∈Q{χ(π(a))}.

Projection Tables: Let Q be subquery with two boundary nodes a and b. For a pair
of data vertices u and v and a signature α ⊆ K let cnt(u, v, α|Q) denote the number of
colorful matches of Q wherein the boundary nodes a and b are mapped to u and v and the
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Overall Algorithm
1. Compute a decomposition tree T (Q) for the input query Q.
2. Traverse the tree bottom-up.

For each non-root block B:
Use the projection tables of the children blocks of B and

compute the projection table for B
3. Output the number of colorful mathes of the subquery

represented by the root-block.

Figure 3: Overall Algorithm

signature of π is α:

cnt(u, v, α|Q) = |{π ∈ Π : π(a) = u and π(b) = v and sig(π) = α}|,

where Π is the set of all the colorful matches of Q.
These counts can be conveniently represented in the form a hash table with (u, v, α)

forming the key and the count forming the value. We refer to any encoding of the above
counts (such as the hash table above) as the projection table of Q. In the worst case, the table
may have size quadratic in the input data graph. However, a significant fraction of the
triplets will have a count of zero and we maintain only the non-zero counts.

The projection table for subqueries having a single boundary node a is defined in a
similar manner. For a data vertex u and a signature α ⊆ K, define

cnt(u, s|Q) = |{π ∈ Π : π(q) = u and sig(π) = α}|.

4.3 Computing the Counts

Given a decomposition tree, the algorithm works based on the fact that the projection table
for a block can be computed by joining the projection table of its children blocks.

As an illustration of the idea, consider the block B3 having boundary nodes f and
g, and the subquery represented by it (Figure 2). For a pair of vertices u and v, and a
signature α, the projection count cnt(u, v, α|B3) can be computed as follows. The block
consists of the path (a, f, g, c), and any match π for the subquery must map these nodes
to vertices (x, u, v, y) that form a path in the data graph. The block is annotated by its
children blocks B1 with boundary nodes a and c, and B2 with boundary node f . Any pair
of matches π1 and π2 for SQ(B1) and SQ(B2) can be extended as matches for SQ(B3), as
long as their signatures α1 and α2 are disjoint (since the blocks do not share any node)
and are contained within α. Therefore, we can derive the desired count by performing the
following aggregation over all quadruples (x, y, α1, α2) satisfying the properties: (x, u, v, y)
forms a path in the data graph; α1, α2 ⊆ α; (α1 ∩ α2) is empty. The aggregation is:

cnt(u, v, α|B3) =
∑
x,y

∑
α1,α2

cnt(x, y, α1|B1)× cnt(u, α2|B2).

We can express the projection counts for any block in the above manner. However,
as the number of children increases, the cartesian product involved in the aggregation
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Procedure 1: Computing Projection Table for P+

For each edge (u, v) in the data graph G
cnt(u, v, α|P+

p,p⊕1)← 1, where α = {χ(u), χ(v)}.
For j = p⊕ 2, p⊕ 3, . . . , q

For each triple (u, v, α) with cnt(u, v, α|P+
p,j	1) 6= 0

For each edge (v, w) in G such that χ(w) 6∈ α do:
Let α′ = α ∪ {χ(w)}.
Increment cnt(u,w, α′|P+

p,j) by cnt(u, v, α|P+
p,j	1).

Procedure 2: Computing Projection Table for C
For each entry (u, v, α1) with cnt(u, v, α1|P+) 6= 0

For each entry (u, v, α2) with cnt(u, v, α2|P−) 6= 0
If α1 ∩ α2 = {χ(u), χ(v)}
α′ ← α1 ∪ α2

val1 ← cnt(u, v, α1|P+); val2 ← cnt(u, v, α2|P−)
Increment cnt(u, v, α′|C) by val1 × val2.

Figure 4: PS Algorithm

would be prohibitively expensive. Our procedures efficiently simulate the aggregation by
performing a sequence of join operations involving the projection tables of children blocks.

Given a decomposition tree, the algorithm traverses the decomposition tree in a bottom-
up manner, computing the projection tables for all the blocks and culminates in the root-
block representing the whole input query. At this step, instead of producing a projection
table, the algorithm simply computes the number of colorful matches. The pseudo-code is
shown in Figure 3.

5 Solving Blocks

The main step of the algorithm is the construction of the projection tables of a block from
its children blocks. In this section we develop efficient procedures for handling cycles.
For the sake of highlighting the main ideas, we first focus on the case of cycles found at a
leaf level of the decomposition tree (such as the cycle B1 in Figure 2); these cycles do not
have other blocks annotating them. General cycles are handled by extending these ideas
as discussed later.

5.1 Solving Cycles at the Leaf Level

Consider a cycle block C = (a0, . . . , aL−1) of length L without annotations. The cycle may
have at most two boundary nodes. We discuss the more interesting case where the number
of boundary nodes is exactly two; the other cases are handled in a similar fashion. Let the
two boundary nodes of the cycle be ap and aq, for some 0 ≤ p, q ≤ L − 1. We present two
procedures for computing the projection table of C: a baseline procedure that uses a path
splitting strategy and an efficient procedure guided by a degree based ordering of vertices.
Path Splitting Algorithm (PS). For two nodes as and at on the cycle, let P+

s,t and P−s,t be the
paths obtained by traversing the cycle from as to at in the clockwise and counter-clockwise
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Figure 5: PS and DB Illustrations.

directions, respectively, i.e., P+
s,t = (as, as⊕1, . . . , at) and P−s,t = (as, as	1, . . . , at), where ⊕

and 	 refer to addition and subtraction modulo L.
Let cnt(·, ·, ·|P+

s,t) denote the projection counts for path P+
s,t taking as and at as the

boundary nodes. Namely, for a triple (u, v, α), let cnt(u, v, α|P+
s,t) denote the number of

colorful matches for P+
s,t wherein π(as) = u, π(at) = v and sig(π) = α. A similar notion is

defined for the paths P−s,t.
The procedure splits the cycle into two paths along the boundary nodes, given by P+

p,q

and P−p,q; we refer to these special paths as P+ and P−. See Fig 5 (a) for an illustration.
The projection table for P+ is constructed iteratively, by building the tables for the

paths P+
p,j , for each node aj found along the path. This is accomplished by extending

the projection table for the prior path P+
p,j	1 via a join with the edges of the data graph.

The pseudocode is given in Figure 4 (Procedure 1). We assume that all the counts are ini-
tialized to zero. The first iteration is handled by directly reading the edges of the data
graph. In the subsequent iterations, we extend every triple (u, v, α) with non-zero count
cnt(u, v, s|P+

p,j	1), with any edge (v, w), provided the resulting match is colorful. The
counts for P− are constructed analogously. Finally, the projection table for the cycle C
is obtained by joining the counts of P+ and P−, as shown in Procedure 2. Here, a pair of
triples (u, v, α1) and (u, v, α2) are joined, if the resulting match is colorful.
Discussion of baseline. As discussed below (Section 5.2), the PS procedure can be ex-
tended to handle general cycles with annotations, and yields an algorithm for handling
treewidth 2 queries. The resultant PS algorithm is equivalent to the original color coding
algorithm of Alon et al. [2]. Prior work [30, 1] on colorful subgraph counting utilize the
algorithm of Alon et al. as the basis for counting tree queries (treelets). We developed a
distributed implementation of the PS algorithm, and use it as the baseline in our experi-
mental study. Known techniques for subgraph counting with large queries (e.g. [7, 26])
employ similar graph traversal techniques, making PS consistent with the state of the art
for subgraph counting as well as color coding.

We develop an procedure, called Degree Based (DB) algorithm, that outperforms the PS
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algorithm for practical graphs and queries. It is motivated by the following observations.
First, the paths P+ and P− may have uneven lengths (for instance, in Figure 5), |P+| = 6
and |P−| = 2) and the processing of the longer path dominates the overall running time.
Second, in real-graphs with skewed degree distributions, high degree vertices tend to have
more paths passing through them, which populate the projection tables of P+ and P−.
However, significant fraction of these paths do not find appropriate counterparts in the
other table to complete a match, leading to wasteful computations. Third, in a distributed
setting, the above phenomenon manifests as higher load on processors owning high degree
vertices, leading to load imbalance.

It is not difficult to address the first issue alone. The only intricacy is that when the
paths are split evenly, the boundary nodes may appear internally on the the paths (see
Figure 5 with a split across nodes denoted h and d). This can be handled by recording the
mapping for the boundary nodes as part of the projection counts. We implemented the
above algorithm as well and noticed that the issue of wasteful computations and load im-
balance still persists. And furthermore, performance of the PS algorithm and the modified
implementations does not differ significantly on our benchmark graphs and queries.
Degree Based Algorithm (DB). The DB algorithm addresses all the three issues by using
the strategy of building the paths from high degree vertices.

Arrange the data vertices in the increasing order of their degree; if two vertices have
the same degree, the tie is broken arbitrarily, say by placing the vertex having the least
id first. We say that a vertex u is higher than a vertex v, if u appears after v in the above
ordering and this is denoted “u � v”.

Consider the input cycle C = (a0, a1, . . . , aL−1) with boundary nodes ap and aq and let
π be a colorful match for C that maps the above nodes to data vertices u0, u1, . . . , uL−1,
respectively. Among these data vertices, let uj be the highest vertex. We refer to the corre-
sponding node aj as the highest node of π.

The idea is to partition the set of colorful matches into L groups based on their highest
node ah and compute the projection table for each group separately. For a pair of data
vertices u and v, and a signature α, let cnt(u, v, α|C, hi = h) denote the number of colorful
matches of π for C, wherein π(ap) = u, π(aq) = v, sig(π) = α and ah is the highest node
of π. The projection table for C can be obtained by aggregating the above counts: for any
triple (u, v, α),

cnt(u, v, α|C) =

L−1∑
h=0

cnt(u, v, α|C,hi = h). (1)

We next describe an efficient procedure for computing the counts cnt(u, v, α|C, hi = h).
The concept of high starting matches plays a crucial role in the procedure. Let ad be the
node diagonally opposite to ah on the cycle, i.e., d = h ⊕ bL/2c. The procedure splits the
cycles into two paths P+

h,d and P−h,d. Figure 5 (b) shows the paths for two sample values
of h. Let aj be a node found on the path P+

h,d. A colorful match π for P+
h,j is said to be

high-starting, if the data vertex π(ah) is higher than all the other data vertices used by π,
i.e., π(ah) � π(ai), for all nodes ai on the path P+

h,j . For a pair of vertices u and v, and a
signature α, let cnt∗(u, v, α|P+

h,j) denote the number of high-starting colorful matches for
the path P+

h,j wherein π(ah) = u, π(aj) = v and sig(π) = α.
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Procedure 1: Compute cnt∗(u, v, α|P+
h,d)

For each edge (u, v) in the data graph G with u � v
cnt∗(u, v, α|P+

h,h⊕1)← 1, where α = {χ(u), χ(v)}.
For j = h⊕ 2, a⊕ 3, . . . , d

For each triple (u, v, α) with cnt∗(u, v, α|P+
h,j	1) 6= 0

For each edge (v, w) in G s.t. u � w and χ(w) 6∈ α:
Let α′ = α ∪ {χ(w)}.
Incr. cnt∗(u,w, α′|P+

h,j) by cnt∗(u, v, α|P+
h,j	1).

Procedure 2: Compute cnt∗(x, y, α|C,hi = h) for Config. (A)
For each entry (u, v, x, α1) with cnt∗(u, v, x, α1|P+

h,d) 6= 0

For each entry (u, v, y, α2) with cnt∗(u, v, y, α2|P−h,d) 6= 0

If α1 ∩ α2 = {χ(u), χ(v)}
α′ ← α1 ∪ α2

val1 ← cnt∗(u, v, x, α1|P+
h,d);

val2 ← cnt∗(u, v, y, α2|P−h,d)

Incr. cnt∗(x, y, α′|C,hi = h) by val1 × val2.

Figure 6: DB Algorithm

We then count the high-starting colorful matches for the two paths, which can be ac-
complished via edge extensions, as in the PS algorithm. However, the current setting offers
a crucial advantage: we can dictate that the starting node ah is the highest node, meaning
whenever an entry (u, v, α) gets extended by an edge (v, w), we can impose the condition
that u is higher than w in the degree based ordering. Imposing the condition leads to a
significant pruning of the tables. The pseudo-code is given in Figure 6 (Procedure 1).

While the degree based strategy is more efficient, we need to address an intricacy re-
garding the projection aspects. In contrast to the PS algorithm, the DB algorithm splits
at the highest node and consequently, the boundary nodes p and q may appear inside the
paths. Thus, in order to get the projection counts on p and q, we also need to explicitly
record the mappings for the boundary nodes.

The two nodes ap and aq may occur on either P+
h,d or P−h,d. Six different configurations

are possible, of which two are shown in Figure 5 (b). In Configuration (A), the paths
include one boundary each, whereas in the second configuration, the same path includes
both the boundary nodes. The other four configurations are symmetric: the boundary
nodes may swap the paths in which they occur and in Configuration (B) can also reverse
the order in which they occur. We discuss the two configurations shown in the figure; the
other configurations are handled in a similar fashion.

Consider configuration (A). In order to record the mappings of the boundary node
ap, we introduce an additional field in the projection counts. For a triple of data vertices
u, v and x, and a signature α, let cnt∗(u, v, x, α|P+

h,d) denote the number of high-starting
matches π for P+

h,d with π(ah) = u, π(ad) = v, π(ap) = x and sig(π) = α. These counts
are computed in a manner similar to the base procedure shown in Figure 6 (Procedure
1); however, when the process encounters the boundary node p (namely, the initializa-
tion step or j = p), the mapped vertex (v or w, respectively) is recorded in the addi-
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Compute Projection Table for P+
h,d

Let B be the block annotating the edge (ah, ah⊕1)
cnt∗(·, ·, ·|P+

h,h⊕1) = cnt∗(·, ·, ·|B)

For j = h⊕ 1, h⊕ 2, . . . , d
Execute NodeJoin(aj)
Execute EdgeJoin(aj)

Execute NodeJoin(ad)

NodeJoin(aj):
If aj is annotated by a block B

For each (u, v, α1) with cnt∗(u, v, α1|P+
h,j) 6= 0

For each (v, α2) with cnt(v, α2|B) 6= 0
If (α1 ∩ α2 = {χ(v)}
α← α1 ∪ α2

val1 ← cnt∗(u, v, α1|P+
h,j); val2 ← cnt(v, α2|B)

Incr. cnt∗(u, v, α|P+
h,j) by val1 × val2

EdgeJoin(aj)
For each entry cnt∗(u, v, α1|P+

h,j) 6= 0

For each entry cnt(v, w, α2|B) 6= 0 and u � w
If (α1 ∩ α2 = {χ(v)}
α← α1 ∪ α2

val1 ← cnt∗(u, v, α1|P+
h,j); val2 ← cnt(v, w, α2|B)

Incr. cnt∗(u,w, α|P+
h,j⊕1) by val1 × val2

Figure 7: DB Procedure for General Cycle Blocks

tional field. The analogous counts for P− can derived in a similar manner. The value
of cnt∗(u, v, α|C,hi = h) is obtained by joining the two; see Procedure (2) in Figure 6. Con-
figuration (B) is handled in a similar fashion, except that we need two additional fields
to record the mappings for both the boundary nodes. Namely, we maintain counts hav-
ing keys of the form (u, v, x, y) representing the mapping of the nodes h, d, q and p to the
vertices u, v, x and y. Procedure (2) is also adjusted accordingly. Finally, we can get the
projection table cnt(u, v, α|C) via aggregation, as in Equation 1.

5.2 Solving General Blocks

In this section, we present procedures for handling generic blocks. We first consider the
case of cycle blocks with two boundary nodes.

Consider a generic cycle C = (a0, a1, . . . , aL−1) having two boundary nodes ap and aq,
whose nodes and edges may be annotated with other blocks (children of C in the decom-
position tree). All these blocks have at most two boundary nodes and these are found on
C. For such any block B, the subquery represented by B has the same boundary nodes as
that of B. Thus, we can get the projection table for C by joining the projection tables of the
subqueries represented by the above blocks, as described below.

As before, we consider each possible choice for the highest node ah and split the cycle
into two paths P+

h,d and P−h,d. The path segment P+
h,d also represents a subquery (induced
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by the union of the nodes found in the path and the blocks annotating path). Thus, we
can extend the notion of projection tables for these segments as well. The procedure for
computing the projection table for P+

h,d is similar that the one discussed in previous section
(Procedure 1 in Figure 6), and works by extending one edge in each step. However, two
aspects need to be addressed. Firstly, in contrast to the prior procedure, the edge being
extended may be annotated with a block or un-annoated (and correspond to an original
edge found in input query Q). In the former case, we perform a join operation with the
edges of the data graph (as before), whereas in the latter case the join operation involves
the projection table of the block B. For the sake of uniformity, it will be convenient to view
the former edges as blocks as well, denoted BG, and associate with them a projection table
derived from the graph edges, as follows. For each edge (u, v) ∈ G, set cnt(u, v, α) as 1, for
α = {χ(u), χ(v)}; all other entries of the table are set to a count of zero. The second aspect
is that the nodes of the cycles may also be annotated, and these get included as part of the
sequence of joins being performed. The two aspects are addressed by procedures called
NodeJoin and EdgeJoin. The pseudo-code is shown in Figure 7.

The procedure starts with an initial table representing the first edge (ah, ah⊕1) and per-
forms a sequence of join operation with the blocks annoatating the nodes and edges of the
cycle. At this juncture, two intricacies must be highlited. Firstly, the endpoint ah and/or
ad may be annotated by a block B, which must be joined by either P+

h,d or P+
h,d, but not by

both (to avoid double counting). For this purpose, we adopt the convention that P+
h,d and

P−h,d include only the block annotating ad and ah (if found), respectively. Secondly, for a
block with two boundary nodes p and q, the projection table views one of them as the first
boundary node and the other as the second (corresponding to the two components of the
keys of the form (u, v, α)). Thus, the boundary nodes are ordered and the projection tables
need not be symmetric: taking q as the first boundary node and p as the second bound-
ary node would produce a different boundary tables. However, the boundary tables are
transpose of each other (cnt(u, v, α) = cnt(v, u, α)). Our algorithm maintains both the ta-
bles and uses the appropriate one as dictated by the nodes of the cycle. The pseudo-code
reflects the first aspect, but, for the sake of clarity, ignores the second.

The projection counts obtained by the above process are joined using a procedure sim-
ilar to Figure 6, taking into account the configuration in which the boundary nodes occur.
These are aggregated over all possible choices of the high node ah.

Cycles with a single boundary node are handled in a similar manner by considering
each possible choice for the highest node ah and splitting the cycle into two paths P+

h,d and
P−h,d. The setting is simpler with only two configurations possible on how the boundary
nodes may appear on the paths: the (single) boundary node may appear in P+ or P−.
Thus, the prior procedures can be applied here as well.

The case of leaf blocks are also handled via join operations. Any leaf block (a, b) is
processed by joining the projection table for the blocks annotating the nodes a, the edge
(a, b) and the node b (if found).

At the end of the traversal process, the root block is solved, which is either a cycle or a
singleton node. In the former case, the block is treated as a cycle without boundary nodes.
Instead of computing its projection table, we simply count the number of colorful matches,
via a procedure similar to that of two-boundary cycles. In the latter case, we consider the
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projection table of the block annotating the singleton node and output the sum of counts
across all entries of the table. The process yields the number of colorful matches of the
input query Q.

6 Finding Good Decomposition Trees

In each step of the decomposition process, multiple blocks may be available for contrac-
tion. Each sequence of choices leads to a unique decomposition tree, and hence, multiple
trees are possible for a given query. For example, the query brain1 (Figure 8) admits two
decomposition trees: (i) contract the 4-cycle first and then the 6-cycle, and (ii) vice versa.
We conducted an experimental study involving a number of real-world data graphs and
queries. For each query, we enumerated all the possible decomposition trees and evalu-
ated the execution time on each graph. We observed a maximum difference of 13x in the
execution times of two decomposition trees for the same graph-query combination. How-
ever, we noted that in most cases the optimal tree is independent of the data graph and is
mainly determined by the structure of the query. These observations show that we need a
procedure for selecting a good tree, but in this process, we need not analyze the large data
graph; rather, it suffices to focus on the structural properties of the small query graph.

Our study also showed that the following factors, in the decreasing order of impor-
tance, determine the execution time: (i) length of the longest cycle block; (ii) number of
boundary nodes; (iii) number of node/edge annotations. Armed with the above observa-
tions, we designed a simple heuristic procedure. Enumerate all possible trees for the given
query and pick the best using the above factors for comparison. In our experimental set-
ting, barring a few exceptions, the heuristic picked the optimal tree in majority of the cases
and a near-optimal tree for the rest. Since the queries are of small size (about 10 nodes),
even a sequential implementation of the heuristic takes insignificant amount of running
time.

7 Distributed Implementation

In this section, we present a brief sketch of the distributed implementation of the two
algorithms, highlighting their main aspects. The distributed implementation consists of
three layers. The first layer, called the planner, finds a good decomposition tree for the
given query a fast sequential implementation the heuristic discussed in Section 6. The
second layer, called the plan solver, takes the data graph and the decomposition tree and
implements the PS and DB algorithms presented in Section 5. It accomplishes the above
task by using efficient join routines supported by the third layer, called engine. The engine
has three functionalities. The first is to store the data graph in a distributed manner. This
is achieved via a 1D decomposition, wherein the vertices are equally distributed among
the processors using block distribution, and each vertex is owned by some processor. The
second is to maintain projection tables. These tables are of two types: unary projection
tables having single-vertex keys of the form (u, α) associated with blocks having single
boundary nodes; binary projection tables having two-vertex keys of the form (u, v, α). The
binary tables also have variants involving additional fields for storing the mappings for
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Table 1: Real Data Graphs
Graph Domain Nodes Edges Avg Max

Deg Deg
brightkite Geo loc. 58K 214K 4 1135
condMat Collab. 23K 93K 4 281
astroph Collab. 18K 198K 11 504
enron Commn. 36K 180K 5 1385
hepph Citation 34K 421K 12 848
slashdot Soc. net. 82K 900K 11 2554
epinions Soc. net. 131K 841K 6 3558
orkut Soc. net. 524K 1.3M 3 1634
roadNetCA Road net. 2M 2.7M 1.3 14
brain Biology 400K 1.1M 3 286

the boundary vertices. The engine provides a convenient abstraction to the plan solver
for all these types of tables. All the tables are maintained as distributed hash tables which
use open addressing to resolve collisions. Every entry (u, v, α) is stored on the processor
owning v; the degree of v is packed as part of the entry for enforcing the degree constraint
in the join operations (of the form u � w in Procedure 1 of Figure 6). Signatures are
maintained as bitmaps. The third functionality is to support two types of join operations
on the projection tables. The first type of join is used for extending a path segment an
edge; this involves a join with either the graph edges or the projection table of the block
annotating the edge. In the former case, the extension of an entry with a key (u, v, α)
with an edge (v, w) will be performed at the owner of v. The result is an entry with a key
(u,w, α′); this entry is communicated to the owner ofw, where it gets stored. The latter case
involves join of two entries with keys (u, v, α1) and (v, w, α2). Since the first entry is stored
at the owner of v and the second, at the owner of w, a communication is performed to
bring the two entries to a common processor. The second type of join is used for merging
the projection tables of two path segments (for example, Procedure 2 in Figure 6) and it
is implemented in a similar way. The two operations are implemented using a standard
sort-merge join procedure with signature compatibility checks performed via fast bitwise
operations.

8 Experimental Study

We present an extensive experimental evaluation of the algorithms presented in the paper.
Our experiments include a comparison of the algorithms on execution time, strong and
weak scaling studies for our algorithm, and studies to evaluate the quality of our query
plan generation heuristic and the efficacy of color coding for treewidth two queries.

8.1 Experimental Setup

System. The experiments were conducted on an IBM Blue Gene/Q system [12]. Each
BG/Q node has 16 cores and 16 GB memory; multiple nodes are connected using a 5D
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Figure 8: Real world queries used in our study.

Figure 9: Average execution time (seconds).

torus interconnect. Our implementation is based on MPI2 with gcc 4.4.6 with the num-
ber of ranks varying from 32 to 512. Each MPI rank was mapped to a single core. The
number of MPI ranks mapped to a node was adjusted based on the memory requirements
of individual experiments.

Graphs. The experiments involved nine real world graphs obtained from the SNAP
dataset collection and the human brain network from the Open Connectome Project (http:
//snap.stanford.edu, http://www.openconnectomeproject.org/). Our bench-
mark includes representative graphs from different domains in SNAP. The graphs and
their characteristics are presented in Table 1. We also used synthetic R-MAT graphs [11],
for the purpose of studying the weak scaling behavior of our algorithms.

Queries. Our query benchmark consists of the ten real world queries shown in Fig-
ure 8. The queries were derived from prior network analysis work spanning diverse do-
mains: dros, ecoli1, ecoli2, brain1, brain2, brain3 - biological networks
[22, 19]; glet1, glet2 - graphlets [7]; wiki - collaboration networks [32]; youtube -
spam networks [24].

Algorithms. We study two algorithms: PS, which serves as the baseline, and our
degree based DB algorithm. Recall that PS is equivalent to the dyamic programming based
algorithm of Alon et al. [2].
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8.2 Graph-Query Characteristics

The characteristics of the input graph and query strongly influence the running time of
query counting algorithms. To obtain an overall characterization of the phenomenon,
we measured the execution time of the DB algorithm on each of the 100 real graph and
query combinations using 512 MPI ranks. Figure 9 shows the average running time for
each graph across the ten queries and the average running time of each query across the
ten graphs. The wide variations in execution time across graphs and queries is indica-
tive of their relative difficulty in practice. For example, although roadNetCA is a larger
graph than epinions, the average running time of the former is smaller than the latter by
an order of magnitude. We can understand this behaviour by studying the skew in un-
derlying degree distribution. In general, counting colorful occurrences of a query on a
graph with high skew (indicated by high maximum degree in Table 1) tends to be compu-
tationally expensive. Similarly, the queries also exhibit large variations in running time,
ranging from sub-second for youtube, glet1 and glet2 to more than a minute for brain2 and
brain3. These variations can be accounted for by studying the differences in the size and
the sub-structures of the queries. We observed that queries with longer cycles are more
challenging. As an extreme case, a 12-vertex complete binary tree query requires 2 sec-
onds on average, in contrast to the 10-vertex brain3 query which requires nearly 2 minutes
on average, exemplifies our observation.

8.3 Performance Comparison of PS and DB Algorithms

We study the performance of the PS and DB algorithms on 100 graph-query combinations
obtained by selecting a graph from Table 1 and a query from Figure 8. For our DB algo-
rithm, we used plans supplied by the heuristic described in Section 6. In contrast, for the
PS algorithm, we enumerated all the possible plans and obtained the optimal plan. Thus,
we compare our algorithm to the best possible scenario for the baseline algorithm.

We compute the improvement factor (IF ) of DB over PS as the ratio of the execution
time of PS to DB. Figure 10 shows IF at 32 and 512 ranks. The combinations where DB
outperforms PS (IF > 1) are highlighted in green. The blank entries represent cases where
PS (or DB) did not complete execution, due to lack of available memory. At 32 ranks, we
can see that DB outperforms PS on 84% of the graph-query combinations with IF being as
high as 9.1x (average 2.4x). At 512 ranks, DB outperforms the baseline on 89% of the cases,
with IF becoming as high as 28.7x (average 5.0x).

We can see that the relative performance of the two algorithms is dependent on the
graph-query pair. For instance, the average IF on enron and condmat graphs are 8.4
and 3.1 on 512 ranks, respectively, correlating well with their skew in the degree distribu-
tion (see Table 1). Similarly, the improvement factors is higher on complex queries such
as brain1 where the average improvement is 13.1x, compared to youtube where the av-
erage improvement is only 4.1x. The phenomenon becomes extreme in the case of road
networks that have very low skew and exhibit sub-second average running time across
queries.

Our DB algorithm scales better than PS, as demonstrated by the increase in IF at higher
ranks. For different graph-query combinations, we computed the ratio of IF at 512 ranks
to that of 32 ranks and found that IF increases by a factor of up to 4.7x (average 1.7x).
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(a) 32 Ranks

(b) 512 Ranks

Figure 10: Improvement factor of the DB algorithm over the PS algorithm.
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Figure 11: Normalized execution time, average load and maximum load on enron graph.

To understand this trend further, we compute the load (number of projection function op-
erations) for both algorithms for processing different queries on the enron graph at 512
ranks. For different queries, Figure 11 shows the execution time and the average and max-
imum load. We can see that DB has lesser average load than PS, since DB avoids waste-
ful computations. Furthermore, the improvement obtained by DB over PS on execution
time correlates well with improvement obtained on the maximum load. For example, on
ecoli1 query, even though PS outperforms DB at 32 ranks, the performance is reversed
at 512 ranks (see Fig 10), because of superior load balancing characteristic of DB.

8.4 Scalability Characteristics of DB Algorithm

We studied the scaling of DB across the 100 graph-query combinations. For each combi-
nation, we computed the ratio of the execution time at 512 ranks to that of 32 ranks. Fig-
ure 12 summarizes the above information by providing the averge of the above speedup
for each query across graphs and the same for each graph across queries. As against an

24



Figure 12: Avg. speedup of DB at 512 ranks compared to 32 ranks.
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Figure 13: Strong and weak scaling

ideal speedup of 16x, we see that the algorithms obtains speedups in the range of 7.4x to
15.8x.

We studied the strong scaling behavior of our algorithm, using enron as a representa-
tive graph. Taking 32 ranks as the baseline, Figure 13 shows the speedup up to 512 ranks
for different queries. The algorithm scales well across queries, with an average speedup of
8.2x and maximum speedup of 9.9x at 512 ranks (as against an ideal speedup of 16x).

To study weak scaling, we use R-MAT synthetic graphs with parameters A = 0.5,
B = 0.1, C = 0.1 and D = 0.3 and edge factor 16, suggested in a Graph 500 benchmark
specification (http://www.cc.gatech.edu/˜jriedy/tmp/graph500/). The num-
ber of vertices was fixed at 1K per rank and the number of ranks was varied from 32 to
512. We report the execution times each query-rank combination in Figure 13. We see ex-
cellent weak scaling behavior with the execution times at 512 ranks remaining close to that
of the baseline 32 ranks.

8.5 Evaluation of Plan Generation Heuristic

We studied the quality of our plan generation heuristic for the DB algorithm at 512 ranks.
For each graph-query combination, we determined the optimal plan via an exhaustive
enumeration. We compared the execution time of the heuristic plan to the optimal plan and
measured the percentage difference. These results are reported in Figure 14. We can see
that in 90% of the case, the heuristic generated the optimal plan, whereas in the remaining
cases, the difference was at most 15%.
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Figure 14: Error % of the execution time of the plan proposed by the plan heuristic with
reference to the optimal plan for each graph-query combination.

Figure 15: Coefficient of variation with 50 trials of color coding for each graph-query com-
bination.

8.6 Precision of Color Coding

We evaluated the precision of color coding on our benchmark by performing independent
trials and computing the empirical variance of the sample (see Section 2). Specifically, for a
given graph-query combination we performed a sequence of trials, where in each trial the
colorful count ncolorful(G,Q, χ) was computed for a fresh random coloring. We performed
10 random trials for each of the 100 graph-query combinations in our test set and evaluated
the empirical mean and variance of the number of colorful matches. For each graph-query
combination, we computed the coefficient of variation, which is the ratio of the empirical
variance to the mean. The results are shown in Figure 15. A value close to 0 indicates the
convergence of our estimate to the true mean n(G,Q). We observed that with only three
trials, 82% of the graph-query combinations had coefficient of variation at most 0.1; when
the number of trials was increased to 10, it increases to 91%. Hence, using 512 ranks, for
a majority of the input graph-query combinations in our benchmark, we require less than
a minute to count the actual number of matches of the query, with ≈ 10% accuracy. We
conclude that our DB algorithm enables fast approximate counting of treewidth 2 queries
for data graphs spanning various real domains.
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9 Cycle queries on random power law graphs

In this section we concentrate on cycle queries of constant size and analyze the expected
runtime of a variant of the PS and DB procedures on a certain class of random data graphs.
We prove a lower bound on the expected runtime of the PS procedure and an upper bound
on the expected runtime of the DB procedure. Both bounds are functions of the (expected)
degree sequence of the graph. We show that our upper bound on the runtime of the DB
procedure is never worse (up to constant factors) than the lower bound on the PS proce-
dure. Moreover, if the random graphs satisfy a natural power law property then we prove
that the expected runtime of the DB procedure is polynomially better. Recall that the most
complicated blocks in our general decomposition of the query graph are (annotated) cy-
cles. Thus, we postulate that the better performance of our variant of the DB procedure
on cycle queries explains the better performance of the DB procedure studied in the main
body of the paper on queries of treewidth 2.

The class of random graphs considered is a certain variant of the Chung-Lu graphs [14],
a popular model for random graphs that captures several properties of real world social
networks, as defined precisely below.

9.1 The procedures analyzed

Consider a cycle query C of constant size k. Since the query graph is a cycle, the decompo-
sition tree consists of only a root node which represents this cycle with a single boundary
node.

Recall that procedure PS computes cnt(u, {1, . . . , k}|C), for each node u. For this
it first computes cnt(u, v, α1|P+) and cnt(u, v, α2|P−) for all of nodes v and all signa-
tures. Since k is constant the number of signatures is also constant and thus computing
cnt(u, {1, . . . , k}|C) given cnt(u, ·, ·|P+) and cnt(u, ·, ·|P−) can be done in linear time. In
the PS procedure the computation of cnt(u, ·, ·|P+) and cnt(u, ·, ·|P−) is done by itera-
tively recomputing cnt(u, v, ·|P+) for all u and v. This recomputation can be viewed as a
optimized version of enumerating all paths starting at u, where instead of storing paths
explicitly, we only store the two endpoints, the signature, and a count. Our simplified
variant of the PS procedure, which is more amenable to analysis, computes cnt(u, ·, ·|P+)
and cnt(u, ·, ·|P−) by enumerating all possible paths, instead of performing this optimized
enumeration. Thus, its complexity is linear in the number of possible paths of lengths
1, . . . , d1

2ke. We will refer to this version of PS procedure as the PS procedure throughout
this section to simplify notation.

To increase the efficiency of our PS procedure when applied to cycle queries we can
break symmetry using the id of the nodes and count only colorful matches where node
u has the largest id among all data nodes in the image of π. Consequently, cnt(u, ·, ·|P+)
and cnt(u, ·, ·|P−) need only to count paths with the property that node u has the largest
id among nodes on the path.

For an integer q ≥ 3 let

Y (q) = |{(u1, . . . , uq) is a simple path and id(u1) > id(uj), j ∈ [2..q]}| . (2)

It follows that the expected complexity of procedure PS is linear in
∑dk/2e

q=1 E[Y (q)]. Later,
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we derive lower bounds on E[Y (q)] for any constant q, and our bounds are monotone
increasing in q. Thus, the dominant term in the complexity of procedure PS is provided
by our bound on Y (d1

2ke).
Procedure DB also computes cnt(u, {1, . . . , k}|C), but does it by computing high-starting

colorful matches. Again, to increase the efficiency of procedure DB when applied to cycle
queries we can break symmetry and only compute cnt(u, {1, . . . , k}|C,hi = u), namely,
colorful matches where node u is the highest in the degree based ordering among all data
nodes in the image of π. It follows that for this we need only to compute cnt∗(u, ·, ·|P+

h,d)

and cnt∗(u, ·, ·|P−h,d), namely, the number of high-starting colorful matches for the paths
P+
h,d and P−h,d, wherein π(ah) = u, π(ad) = v and sig(π) = α, for all possible v and α. Note

that similarly to the PS procedure, the recomputation in the DB procedure considered in
the main body of the paper can be viewed as a optimized enumeration, where instead of
storing paths explicitly, we only store the two endpoints, the signature, and a count. Our
simplified variant of the DB procedure, which is more amenable to analysis, computes the
counts by enumerating all these paths, instead of performing this optimized enumeration.

For an integer q ≥ 3 let

X(q) = |{(u1, . . . , uq) is a simple path and u1 � uj , j ∈ [2..q]}| . (3)

It follows that the expected complexity of procedure DB is linear in
∑dk/2e

q=1 E[X(q)]. Later,
we will derive bounds on E[X(q)], and since our bounds will be monotone increasing
in q, the dominant term in complexity of procedure DB is provided by our bound on
E[X(d1

2ke)].

9.2 The random data graphs

We analyze our algorithm on Chung-Lu graphs whose expected degree sequence has some
additional property.

Chung-Lu distribution The Chung-Lu distribution on random graphs is defined as fol-
lows. First choose a degree sequence d = (d1, . . . , dn), where V = [n]. We assume that
du ≥ 1 for all u ∈ V . Let m = 1

2

∑
u∈V du. We assume that m ≥ n and maxu∈V du ≤

√
n. To

generate the graph G = (V,E) we include each edge (u, v) independently with probability
dudv/(2m). Note that the expected degree of every node u ∈ V is

∑
v∈[n] dudv/(2m) = du

as required. We write deg(u) to denote the actual degree of u in G.
We require the degree sequence d = (d1, . . . , dn) to be λ-balanced.

Balanced degree sequence A degree sequence d = (d1, . . . , dn) is λ-balanced for some
λ ∈ (0, 1) if for any integers a, b ≥ 1,

∑
u d

a+b
u ≤ λ · (

∑
u d

a
u)(
∑

u d
b
u). Intuitively, a degree

sequence is balanced if it is not too concentrated on the high degree nodes.
For some of the claims we require the sequence to satisfy the stronger truncated power

law.
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Truncated power law distribution A degree sequence d = (d1, . . . , dn) satisfies the trun-
cated power law for a constant α ∈ (1, 2) if for each 0 ≤ j ≤ 1

2 log n, the number of nodes
with degree between 2j and 2j+1 is Θ(n/2αj). We show later that if a sequence satisfies the
power law for α then it is λ-balanced for λ = O(nα/2−1).

9.3 Main theorem

Theorem 9.1 Let G be sampled according to the Chung-Lu distribution on n vertices with an
n−δ-balanced degree sequence d, for some constant δ > 0, and let q ≥ 3 be a constant. Then,

(1) The expected number of paths (u1, . . . , uq) of length q for which id(ui) is with the highest id is
lower bounded by

E[Y (q)] ≥ (1− o(1)) · 1

q
(2m)−q+3

(∑
u

d2
u

)q−2

.

(2) The expected number of high-starting paths of length q is upper bounded by

E[X(q)] ≤ C(2m)−q+2

(∑
u∈V

d2−1/(q−1)
u

)q−1

for some constant C > 1.

(3) Based on the above inequalities

1. E[X(q)] = O(E[Y (q)]).

2. If the degree sequence satisfies the truncated power law with parameter α, for any con-
stant α ∈ (1, 2), then E[X(q)] is polynomially smaller than E[Y (q)].

Proof: (1) follows by Lemma 9.5. (2) follows by Lemma 9.6. (3) follows by putting
together Lemma 9.7 and Lemma 9.8.

Remark 9.2 Note that if
∑

u d
2
u ≥

∑
u du = 2m and

∑
u d

2−1/(q−1)
u ≥

∑
u du = 2m, since

du ≥ 1 by our assumption on the degree sequence. Thus both E[Y (q)] and E[X(q)] are monotone
in q. It follows that for any constant k, the dominant terms in the complexity of our PS and DB
procedures for query cycles of length k is indeed determined by E[Y (d1

2kee)] and E[X(d1
2kee)],

respectively, as claimed in section 9.1.
The rest of this section is devoted to proving Lemmas 9.5, 9.6, 9.7 and 9.8. The

analysis uses the approach of [5]. It turns out, however, that new ingredients are necessary
for handling cycles due to the presence of multiple intermediate nodes.

9.4 Useful facts

In this section we state some simple claims and known results that will be useful in the
rest of the proof. The following claim specifies the probability that a fixed path exists in a
random graph drawn from the Chung-Lu distribution:
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Claim 9.1 Let G be drawn from the Chung-Lu distribution with degree sequence d. Then for any
q ≥ 2 and a vector (u1, . . . , uq) ∈ V q of distinct nodes

Pr[(u1, . . . , uq) is a path in G] =
du1duq

2m
·
q−1∏
j=2

d2
uj

2m
.

Proof: Since the input graph G is drawn from the Chung-Lu distribution, for each j =
1, . . . , q − 1 we have

Pr[(uj , uj+1) ∈ E] =
dujduj+1

2m
.

Since edges are included in E independently, we have

Pr[(u1, . . . , uq) is a path in G] =

q−1∏
j=1

dujduj+1

2m
=
du1duq

2m
·
q−1∏
j=2

d2
uj

2m

We will also use
Theorem 9.3 (Chernoff bound) Let X1, . . . , Xn be independent 0/1 Bernoulli random vari-
ables. Let X =

∑n
i=1Xi, and let µ := E[X]. Then for any ε ∈ (0, 1)

Pr[X ≤ (1− ε)µ] < e−Ω(ε2µ)

and for every λ > 0
Pr[X ≥ (1 + λ)µ] < (e/(1 + λ))(1+λ)µ

A simple corollary of the bound is
Corollary 9.4 LetX1, . . . , Xn be independent 0/1 Bernoulli random variables. LetX =

∑n
i=1Xi,

and let µX := E[X]. Let Y1, . . . , Yn be independent 0/1 Bernoulli random variables. Let Y =∑n
i=1 Yi, and let µY := E[Y ]. If µY ≤ µX/20, then Pr[Y ≥ X] < 2e−cµX , for some constant

c > 0.
Proof: We have

Pr[Y ≥ X] ≤ Pr[X ≤ (µX + µY )/2] + Pr[Y ≥ (µX + µY )/2].

Since (µX + µY )/2 ≤ (3/4)µX , we have Pr[X ≤ (µX + µY )/2] < e−cµX , for some constant
c > 0 by the first bound from Theorem 9.3 invoked with ε = 1/4.

We also have (µX + µY )/2 ≥ 10µY , so by the second bound from Theorem 9.3 invoked
with λ = 9 we get

Pr[Y ≥ (µX + µY )/2] < (e/10)10µY ≤ (e/10)µX/2.

Clearly, (e/10)µX/2 = e−cµX for some constant c > 0, as required.
Finally, we need the following inequality on the degree sequence d.

Claim 9.2 For all t ≥ 1 one has

∑
u

d2−1/t
u ≤

(∑
u

du

)1/t

·

(∑
u

d2
u

)(t−1)/t

.
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Proof: By Hölder’s inequality with conjugates t and 1
1−1/t we have∑

u

d2−1/t
u =

∑
u

d1/t
u · d2−2/t

u

≤

(∑
u

(d1/t
u )t

)1/t

·

(∑
u

d
(2−2/t)· 1

1−1/t
u

)1−1/t

≤

(∑
u

du

)1/t

·

(∑
u

d2
u

)(t−1)/t

9.5 Proofs of the lower and upper bounds

We start by lower bounding E[Y (q)].
Lemma 9.5 Let G = (V,E), V = [n] be drawn from the Chung-Lu distribution with degree
sequence d. Suppose that node id’s are chosen uniformly at random. For any integer q ≥ 3 let
Y (q) be defined by (2). Then if d is n−δ-balanced for a constant δ > 0, the following holds for any
constant q

E[Y (q)] ≥ (1− o(1)) · 1

q
(2m)−q+3

(∑
u

d2
u

)q−2

.

Proof: We have

E[Y (q)] =
∑

(u1,...,uq)∈V q :
ui distinct

Pr[(u1, . . . , uq) is a path in G] · Pr [id(u1) > id(uj), j ∈ [2..q]]
(4)

By Claim 9.1 one has for any vector (u1, . . . , uq) of distinct nodes

Pr[(u1, . . . , uq) is a path in G] =

q−1∏
j=1

dujduj+1

2m
=
du1duq

2m
·
q−1∏
j=2

d2
uj

2m
.

Furthermore, for any fixed q-tuple of distinct nodes (u1, . . . , uq) we have

Pr [id(u1) > id(uj), j ∈ [2..q]] =
1

q

since id’s are uniformly random by assumption of the lemma. (Note that this implies that
Y (q) is lower bounded by a constant times the total number of paths of length q, since q is
constant.)
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Plugging this bound into (4), we get

E[Y (q)] =
∑

(u1,...,uq)∈V q :
ui distinct

Pr[(u1, . . . , uq) is a path in G] · Pr [id(u1) > id(uj), j ∈ [2..q]]

=
1

q

∑
(u1,...,uq)∈V q :
ui distinct

du1 · duq
2m

·
q−1∏
j=2

d2
uj

2m

=
1

q

∑
u1∈V

du1

 ·
∑
uq∈V

duq
2m

 · q−1∏
j=2

∑
uj∈V

d2
uj

2m

− 1

q

∑
(u1,...,uq)∈V q :
ui not distinct

du1 · duq
2m

·
q−1∏
j=2

d2
uj

2m
.

(5)

Clearly,

1

q

∑
u1∈V

du1

 ·
∑
uq∈V

duq
2m

 · q−1∏
j=2

∑
uj∈V

d2
uj

2m
=

1

q
(2m)3−q ·

(∑
u∈V

d2
u

)q−2

(6)

We now show that

1

q

∑
(u1,...,uq)∈V q :
ui not distinct

du1 · duq
2m

·
q−1∏
j=2

d2
uj

2m
= o

1

q
(2m)3−q ·

(∑
u

d2
u

)q−2
 . (7)

Together with (5) this gives the result.
We show that (7) follows from the assumption that the degree sequence d is balanced.

Let

U = {(u1, . . . , uq) ∈ V q : ui not distinct}
Wk,` = {(u1, . . . , uq) ∈ V q : uk = u`} , for 1 ≤ k < ` ≤ q.

Note that U ⊆ ∪1≤k<`≤qWk,`. Let ~v denote a vector (u1, . . . , uq) ∈ V q. To simplify the
exposition denote

S(~v) =
du1 · duq

2m
·
q−1∏
j=2

d2
uj

2m
.

We show that for every 1 ≤ k < ` ≤ q,

∑
~v∈Wk,`

S(~v) ≤ 1

q
n−δ(2m)3−q ·

(∑
u

d2
u

)q−2

. (8)

Since there are constant number of such sets this implies (7). To prove (8) we consider four
different cases.
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Case 1: 2 ≤ k < ` ≤ q − 1. In this case∑
~v∈Wk,`

S(~v) =
1

q

∑
(u1,...,uq)∈Wk,`

du1 · duq
2m

·
d4
uk

4m2
·

∏
j∈[2..q−1]\{k,`}

d2
uj

2m

=
1

q

∑
u1∈V

du1

 ·
∑
uq∈V

duq
2m

 ·
∑
uk∈V

d4
uk

4m2

 · ∏
j∈[2..q−1]\{k,`}

∑
uj∈V

d2
uj

2m

≤ 1

q
n−δ

∑
u1∈V

du1

 ·
∑
uq∈V

duq
2m

 ·
∑
uk∈V

d2
uk

2m

 ·
∑
uk∈V

d2
uk

2m

 ·
∏

j∈[2..q−1]\{k,`}

∑
uj∈V

d2
uj

2m

=
1

q
n−δ(2m)3−q ·

(∑
u∈V

d2
u

)q−2

Note that the inequality follows since the degree sequence d is n−δ-bounded.
Case 2: k = 1 and ` = q. In this case∑

~v∈W1,q

S(~v) =
1

q

∑
(u1,...,uq)∈W1,q

d2
u1

2m
·

∏
j∈[2..q−1]

d2
uj

2m

=
1

q

∑
u1∈V

d2
u1

2m

 · ∏
j∈[2..q−1]

∑
uj∈V

d2
uj

2m

≤ 1

q
n−δ

∑
u1∈V

du1

 ·
∑
u1∈V

du1
2m

 · ∏
j∈[2..q−1]

∑
uj∈V

d2
uj

2m

=
1

q
n−δ(2m)3−q ·

(∑
u∈V

d2
u

)q−2

Case 3: k = 1 and ` ∈ [2..q − 1]. In this case∑
~v∈W1,`

S(~v) =
1

q

∑
(u1,...,uq)∈W1,`

d3
u1

2m
·
duq
2m
·

∏
j∈[2..q−1]\{`}

d2
uj

2m

=
1

q

∑
u1∈V

d3
u1

2m

 ·
∑
uq∈V

duq
2m

 · ∏
j∈[2..q−1]\{`}

∑
uj∈V

d2
uj

2m

≤ 1

q
n−δ

∑
u1∈V

du1

 ·
∑
uq∈V

duq
2m

 ·
∑
u1∈V

d2
u1

2m

 · ∏
j∈[2..q−1]\{`}

∑
uj∈V

d2
uj

2m

=
1

q
n−δ(2m)3−q ·

(∑
u∈V

d2
u

)q−2
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Case 4: k ∈ [2..q − 1] and ` = q. This case is symmetric to Case 3.
The following lemma provides an upper bound on the expected runtime of the degree-

based algorithm for enumerating cycles of length q ≥ 3:
Lemma 9.6 Let G = (V,E), V = [n] be drawn from the Chung-Lu distribution with degree
sequence d. For any integer q ≥ 3 let X(q) be defined by (3). Then there exists an absolute
constant C > 1 such that

E[X(q)] ≤ C(2m)−q+2

(∑
u∈V

d2−1/(q−1)
u

)q−1

.

Proof: We have by (3)

E[X(q)] ≤
∑

(u1,...,uq)∈V q :
uidistinct

Pr[(u1, . . . , uq) is a path in G and ∀j ∈ [2..q] deg(u1) ≥ deg(uj)]

where deg(u) stands for the actual degree of the node u ∈ V in the graphG. Note that while
E[deg(u)] = du, there may be deviations due to the sampling process. This fact introduces
some complications in the analysis.

Similarly to [5], we start by splitting the summation above into two. For a constant φ
(to be fixed later to 1/80) let

E[X(q)] = S1 + S2, (9)

where

S1 :=
∑

(u1,...,uq)∈V q :ui distinct,
∀j∈[2..q] du1>φduj

Pr[(u1, . . . , uq) is a path in G and ∀j ∈ [2..q] deg(u1) ≥ deg(uj)]

S2 :=
∑

(u1,...,uq)∈V q :ui distinct
∃j∈[2..q] s.t. du1≤φduj

Pr[(u1, . . . , uq) is a path in G and ∀j ∈ [2..q] deg(u1) ≥ deg(uj)].

We now bound the two summations separately.

Bounding S1 To bound S1 we use the fact that for any q-tuple of distinct u1, . . . , uq by
Claim 9.1

Pr[(u1, . . . , uq) is a path in G and ∀j ∈ [2..q] deg(u1) ≥ deg(uj)

≤ Pr[(u1, . . . , uq) is a path in G] =
du1 · duq

2m
·
q−1∏
j=2

d2
uj

2m
.

We thus get

S1 ≤
∑

(u1,...,uq)∈V q

∀j∈[2..q] du1>φduj

du1 · duq
2m

·
q−1∏
j=2

d2
uj

2m (10)
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Since φduj < du1 for all potential paths (u1, . . . , uq) in the summation above, we have

d

(
1− 1

q−1

)
u1 = d

q−2
q−1
u1 >

q−1∏
j=2

(φduj )
1

q−1 = φ
q−2
q−1

q−1∏
j=2

d
1

q−1
uj ≥ φ

q−1∏
j=2

d
1

q−1
uj .

It follows that

du1 ·
q−1∏
j=2

d2
uj = du1 ·

q−1∏
j=2

d

(
2− 1

q−1

)
uj ·

q−1∏
j=2

d
1

q−1
uj ≤

1

φ

q−1∏
j=1

d

(
2− 1

q−1

)
uj .

Substituting this bound in (10), we get

S1 ≤
∑

(u1,...,uq)∈V q

∀j∈[2..q] du1>φduj

du1 · duq
2m

·
q−1∏
j=2

d2
uj

2m
≤ 1

φ

∑
(u1,...,uq)∈V q

∀j∈[2..q] du1>φduj

duq ·
q−1∏
j=1

d
2−1/(q−1)
uj

2m

≤ 1

φ

∑
(u1,...,uq)∈V q

duq ·
q−1∏
j=1

d
2−1/(q−1)
uj

2m
≤ 1

φ

∑
uq∈V

duq

 · q−1∏
j=1

∑
uj∈V

d
2−1/(q−1)
uj

2m

≤ 1

φ
(2m)−q+2

(∑
u

d

(
2− 1

q−1

)
u

)q−1

.

Bounding S2 Recall that

S2 =
∑

(u1,...,uq)∈V q :
∃j∈[2..q] s.t. du1≤φduj

Pr [(u1, . . . , uq) is a path in G and ∀j ∈ [2..q] deg(u1) ≥ deg(uj)]

=
∑

(u1,...,uq)∈V q :
∃j∈[2..q] s.t. du1≤φduj

Pr[∀j ∈ [2..q] deg(u1) ≥ deg(uj) | E(u1, . . . , uq)] · Pr[E(u1, . . . , uq)],

where we let E(u1, . . . , uq) := {(u1, . . . , uq) is a path in G}. We omit the argument of E
below to simplify notation. Note that we have

du1 ≤E[deg(u1) | E ] ≤ du1 + 1

duj ≤E[deg(uj) | E ] ≤ duj + 2 for all j ∈ [2..q − 1]

duq ≤E[deg(uq) | E ] ≤ duq + 1.

Furthermore, deg(uj) is a sum of independent 0/1 Bernoulli random variables even con-
ditional on the event E . Now we would like to apply Corollary 9.4 to random variables
deg(u1) and deg(uj) conditional on E , but there is one more issue: these random vari-
ables are dependent through the potential edge (u1, uj). To avoid this issue, we omit
the 0/1 Bernoulli random variable corresponding to this potential edge from both ran-
dom variables deg(u1) and deg(uj). Let deg(u1) and deg(uj) be the modified random
variables. Namely, deg(u1) := deg(u1) − 1(u1,uj)∈E and deg(uj) := deg(uq) − 1(u1,uj)∈E ,
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where 1(u1,uj)∈E is the random variable corresponding to the sampling of the potential
edge (u1, uj).

Note that conditional on E the random variables deg(u1) and deg(uj) are independent,
and are both sums of independent Bernoulli 0/1 random variables. Note that du ≥ 1 for
every node u ∈ V , and since du1 ≤ φduj , then duj ≥ 1/φ. It follows that

E[deg(u1) | E ] = E[deg(u1)− 1(u1,uj)∈E | E ] ≤ du1 + 1 ≤ φ(duj +
1

φ
) ≤ 2φduj (11)

On the other hand since du1 < m,

E[deg(uj) | E ] = E[deg(uj)− 1(u1,uj)∈E | E ] ≥ duj
(

1− du1
2m

)
≥ 1

2
duj . (12)

Putting these bounds together with the assumption that φ < 1/80, we get that the
preconditions of Corollary 9.4 are satisfied, and hence

Pr[deg(u1) ≥ deg(uj) | E ] = Pr[deg(u1)− 1(u1,uj)∈E ≥ deg(uj)− 1(u1,uj)∈E | E ]

= Pr[deg(u1) ≥ deg(uj) | E ] ≤ 2e−Ω(duj ).
(13)

This allows us to bound Pr[∀j ∈ [2..q] deg(u1) ≥ deg(uj) | E ] as follows. Let j∗ be the
index of the highest expected degree node in {u2, . . . , uq}, that is, j∗ := argmaxj∈[2..q]duj .
Clearly,

Pr[∀j ∈ [2..q] deg(u1) ≥ deg(uj) | E ] ≤ Pr[deg(u1) ≥ deg(uj∗) | E ].

Note that if there exists j ∈ [2..q] such that du1 ≤ φduj , then also du1 ≤ φduj∗ . Thus,
applying (13) with j = j∗ we get

Pr[∀j ∈ [2..q] deg(u1) ≥ deg(uj) | E ] ≤ Pr[deg(u1) ≥ deg(uj∗) | E ]

≤ 2e
−Ω(duj∗ )

.

Substituting this bound in the expression for S2 and using the fact that 2e
−Ω(duj∗ ) ≤

2
∏
j∈[1..q] e

−Ω
(

1
q
duj

)
(since duj∗ ≥ duj for all j ∈ [1..q]), we get

S2 ≤
∑

(u1,...,uq)∈V q :
∃j∈[2..q] s.t. du1≤φduj

(2m)−q+1 · du1e
−Ω( 1

q
du1 ) · duqe

−Ω( 1
q
duq ) ·

∏
j∈[2..q−1]

d2
uje
−Ω( 1

q
duj )

≤ (2m)−q+1 ·

(∑
u∈V

due
−Ω( 1

q
du)

)2

·

(∑
u∈V

d2
ue
−Ω( 1

q
du)

)q−2

.

Recall that the first two moments of the exponential distribution are constants and thus
since q is assumed to be constant we get that both∑

u∈V
due
−Ω( 1

q
du) and

∑
u∈V

d2
ue
−Ω( 1

q
du)

are constants and thus S2 = O
(
(2m)−q+1

)
= o(S1).
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9.6 Comparing the lower and upper bounds

We show that the bound on E[X(q)] is not much worse than our bound on E[Y (q)] for any
degree sequence d that is n−δ-balanced. We later show that our bound gives polynomially
smaller runtime if the degree sequence d satisfies the truncated power law.
Lemma 9.7 For any q ≥ 3 and any n−δ-balanced degree sequence d, for a constant δ > 0,
E[X(q)] = O(E[Y (q)]).
Proof: We start with the bound from Lemma 9.6:

E[X(q)] ≤ C(2m)2−q

(∑
u∈V

d

(
2− 1

q−1

)
u

)q−1

.

By Claim 9.2 with t = q − 1 we have

∑
u

d

(
2− 1

q−1

)
u ≤

(∑
u

du

) 1
q−1

·

(∑
u

d2
u

) q−1−1
q−1

.

Substituting this into the bound above, we get that

E[X(q)] ≤ C(2m)2−q

(∑
u∈V

d

(
2− 1

q−1

)
u

)q−1

≤ C(2m)2−q

(∑
u

du

) 1
q−1

·

(∑
u

d2
u

) q−2
q−1

q−1

= C(2m)2−q

(∑
u

du

)
·

(∑
u

d2
u

)q−2

= C(2m)3−q

(∑
u

d2
u

)q−2

.

The lemma follows by comparing the above bound to the bound on E[Y (q)] provided by
Lemma 9.5 (note that the preconditions are satisfied, as d is n−δ-balanced for a constant
δ > 0 by assumption of the lemma).

We now compare the bounds from Lemma 9.6 and Lemma 9.5 when the graph G is
drawn from the Chung-Lu distribution with a degree sequence that satisfies the truncated
power law.
Lemma 9.8 LetG be a random graph drawn from the Chung-Lu distribution with degree sequence
d that satisfies the truncated power law with exponent α, for a constant α ∈ (1, 2). The following
bounds hold for any constant q ≥ 3.

(1) E[Y (q)] = Ω
(
nα−1+ 1

2
(2−α)q

)
(2a) E[X(q)] = O

(
n

1
2

+ 1
2

(2−α)(q−1)
)

, for α ∈ (1, 2− 1
q−1).

(2b) E[X(q)] = O (n log n), for α ∈ [2− 1
q−1 , 2).

Proof: We first prove the bound on E[Y (q)]. As shown later in Claim 10.1 the condition
that the degree sequence d satisfies the truncated power law implies that the degree se-
quence d is n−δ-balanced for a constant δ > 0, and hence preconditions of Lemma 9.5 are
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satisfied. To apply the bound of Lemma 9.5 we bound
∑

u d
2
u.

∑
u

d2
u =

1
2

log2 n∑
j=0

( n

2αj

)
22j = n ·

1
2

log2 n∑
j=0

2(2−α)j = Θ
(
n · n1− 1

2
α
)
.

The number of edges in a graph with degree sequence that satisfies the power law with
exponent α ∈ (1, 2) satisfies

m =
1

2

∑
u∈V

du = Θ

∑
j≥0

2j · n
2αj

 = Θ

∑
j≥0

2(1−α)j · n

 = Θ(n).

Plugging both bounds in the bound of Lemma 9.5 we get

E[Y (q)] = Ω
(
n−q+3n(2− 1

2
α)(q−2)

)
= Ω

(
nα−1+ 1

2
(2−α)q

)
.

To bound E[X(q)] using Lemma 9.6 we need first to bound the following summation.

∑
u∈V

d

(
2− 1

q−1

)
u =

1
2

log2 n∑
j=0

n

2αj
· 2

(
2− 1

q−1

)
j

= n ·

1
2

log2 n∑
j=0

2

(
2−α− 1

q−1

)
j
. (14)

The sum (14) above is dominated either by the first term or by the last term, depending
on whether α is less than or greater than 2− 1

q−1 .

Case 1: α ∈
(

1, 2− 1
q−1

)
. In this case the sum (14) is dominated by the last term and thus

bounded by

n ·

1
2

log2 n∑
j=0

2

(
2−α− 1

q−1

)
j

= O

(
n

1+ 1
2

(
2−α− 1

q−1

))
= O

(
n

2− 1
2

(
α+ 1

q−1

))
.

Substituting this into the bound provided by Lemma 9.6, using the fact that m = Θ(n)
we get

E[X(q)] = O

(
n−q+2n

(
2− 1

2

(
α+ 1

q−1

)
(q−1)

))
= O

(
n

1
2

+ 1
2

(2−α)(q−1)
)

Case 2: α ∈
[
2− 1

q−1 , 2
)

. In this case the sum (14) is dominated by the first term which is

constant and since we have 1
2 log n summands the sum (14) is O(n log n).

Substituting this into the bound provided by Lemma 9.6, using the fact that m = Θ(n)
we get

E[X(q)] = O
(
n−q+2 (n log n)q−1

)
= O

(
n (log n)q−1

)
.

Applying these bounds we conclude the following
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Corollary 9.9 IfG is a random graph drawn from the Chung-Lu distribution with degree sequence
d that satisfies the truncated power law with exponent α, for a constant α ∈ (1, 2), then E[X(q)] =
o (E[Y (q)]).
Proof: Using the bounds of Lemma 9.8 above. If α ∈

(
1, 2− 1

q−1

)
the improvement of

the degree based algorithm over the id based (naive) algorithm is

E[Y (q)]

E[X(q)]
≥ nα−1+ 1

2
(2−α)q

n
1
2

+ 1
2

(2−α)(q−1)
= n

1
2

(α−1)

If α ∈
[
2− 1

q−1 , 1
)

the improvement of the degree based algorithm over the id based
(naive) algorithm is

E[Y (q)]

E[X(q)]
≥ nα−1+ 1

2
(2−α)q

n (log n)q−1 = nα−2+ 1
2

(2−α)q · (log n)1−q

Note that if If α ∈
(

2− 1
q−1 , 1

)
then the second term vanishes.

10 Power law and balanced sequences

In this section we show that a degree sequence that satisfies the truncated power law is
also balanced.
Claim 10.1 Any degree sequence d that satisfies the truncated power law with exponent α, for any
α ∈ (1, 2) that is bounded away from 1 and 2 by constants, is λ-balanced for λ = O

(
n

1
2
α−1
)

.

Proof: The intuition behind the proof is simple: the bound that needs to be satisfied by a
balanced sequence holds because a degree sequence that satisfies the truncated power law
contains about n

1
2

(1−α) nodes of degree
√
n (the largest), which means that the edge mass

is somewhat spread among these nodes, leading to the result of the lemma. We now give
the details.

Recall that by definition of the truncated power law, for each j = 0, . . . , 1
2 log2 n, the

number of nodes with degree Θ(2j) is Θ(n/2αj). For any integer s ≥ 2, we have

∑
u

dsu = Θ

 1
2

log2 n∑
j=0

2s·j · n
2αj

 = Θ

 1
2

log2 n∑
j=0

2(s−α)·j · n

 .

Since s ≥ 2 and α is bounded away from 2 by assumption, the summation is dominated
by the last term. Namely,

∑
u

dsu = Θ

 1
2

log2 n∑
j=0

2(s−α)·j · n

 = Θ
(
ns/2 · n1−α/2

)
We now show that for for any integers a, b ≥ 1,

∑
u d

a+b
u ≤ λ · (

∑
u d

a
u)(
∑

u d
b
u).
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We distinguish the following three cases:

Case 1: a ≥ 2 and b ≥ 2. In this case the derivation above with q = a and q = b gives∑
u

dau = Θ(na/2 · n1−α/2)
∑
u

dbu = Θ(nb/2 · n1−α/2).

It follows that

∑
u d

a+b
u

(
∑

u d
a
u)(
∑

u d
b
u)

= Θ

(
n(a+b)/2 · n1−α/2

na/2 · n1−α/2 · nb/2 · n1−α/2

)
= Θ

(
nα/2−1

)
,

which gives the result.
Case 2: a = 1, b ≥ 2. Since α is bounded away from 1 by a constant we have

∑
u

du =

1
2

log2 n∑
j=0

2j · n
2αj

= Θ(n) (15)

On the other hand, since b ≥ 2 and a+ b ≥ 2,∑
u

da+b
u = Θ(n(a+b)/2 · n1−α/2)

∑
u

dbu = Θ(nb/2 · n1−α/2)

Putting the estimates above together, we get∑
u d

a+b
u

(
∑

u d
a
u)(
∑

u d
b
u)

= Θ

(
n(a+b)/2 · n1−α/2

n · nb/2 · n1−α/2

)
= Θ

(
n−1/2

)
.

The result follows since nα/2−1 ≥ n−1/2 by the assumption that α ∈ (1, 2). Note that the
case a ≥ 2, b = 1 is symmetric.
Case 3: a = 1, b = 1. Then we have∑

u

da+b
u = Θ(n(a+b)/2 · n1−α/2)

∑
u

dau = Θ(n)
∑
u

dbu = Θ(n)

by the estimates above, and hence∑
u d

a+b
u

(
∑

u d
a
u)(
∑

u d
b
u)

= Θ

(
n(a+b)/2 · n1−α/2

n · n

)
= Θ

(
n−α/2

)
The result follows since nα/2−1 ≥ n−α/2 by the assumption that α ∈ (1, 2).
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