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Abstract

We study the space and time complexity of approximating distributions of l-step random walks in
simple (possibly directed) graphsG. While very efficient algorithms for obtaining additive ε-approximations
have been developed in the literature, non non-trivial results with multiplicative guarantees are known,
and obtaining such approximations is the main focus of this paper. Specifically, we ask the following
question: given a bound S on the space used, what is the minimum threshold t > 0 such that l-step
transition probabilities for all pairs u, v ∈ V such that P luv ≥ t can be approximated within a 1 ± ε
factor? How fast can an approximation be obtained?

We show that the following surprising behavior occurs. When the bound on the space is S =
o(n2/d), where d is the minimum out-degree of G, no approximation can be achieved for non-trivial
values of the threshold t. However, if an extra factor of s space is allowed, i.e. S = Ω̃(sn2/d) space,
then the threshold t is exponentially small in the length of the walk l and even very small transition prob-
abilities can be approximated up to a 1±ε factor. One instantiation of these guarantees is as follows: any
almost regular directed graph can be represented in Õ(ln3/2+ε) space such that all probabilities larger
than n−10 can be approximated within a (1 ± ε) factor as long as l ≥ 40/ε2. Moreover, we show how
estimates of all such probabilities can be found faster than matrix multiplication time.

Ours results can be related to some of the known fast algorithms for approximating matrix products
in terms of Frobenius or spectral norm – we essentially use a variant of row/column sampling to give
a fast algorithm for obtaining a significantly more precise approximation to Al for a special class of
matrices A.

For undirected graphs, we also give small space oracles for estimating P luv using a notion of bicriteria
approximation based on approximate distance oracles of Thorup and Zwick [STOC’01].
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1 Introduction

Large scale graphs are now a widely used tool for representing real world data. Many modern applica-
tions, such as search engines or social networks, require supporting various queries on large-scale graphs
efficiently. An important operation is calculating some measure of distance between two nodes in a graph.
Random walks recently emerged as an important tool for measuring distance between nodes in such graphs.
PageRank[22] and its personalized version is one of the popular random walk based measures of relatedness
of nodes in a graph. Personalized PageRank uses the distribution of a short random walk of exponentially
distributed length started at a source node to measure proximity between the source and other nodes in the
graph. Methods for computing personalized PageRank have received significant attention recently. Very
efficient algorithms are known for computing and updating (personalized) Pagerank vectors in various com-
putation models such as random access and streaming (see, e.g. [17, 18, 1, 26, 27, 2]). The techniques that
have been used range from methods from linear algebra to Monte Carlo simulation and dynamic program-
ming. It is hard to do justice to the large body of work on this topic in limited space, and we refer the reader
to the great surveys [19, 5] and recent papers on Pagerank computation (see, e.g. [2]) for a more complete
discussion of prior work on Pagerank. The approximation obtained via these methods is usually an additive
ε-approximation for some ε > 0. With this measure of approximation, it is in general sufficient to per-
form O(log n/ε) random walks of small length to obtain an approximation. While additive approximations
are well-studied, no non-trivial multiplicative (1± ε)-factor approximations are known, and obtaining such
approximations using small space and time is the main focus of this paper.

Given a simple (possibly directed) graph G = (V,E) and a bound S on the space we can use, we
would like to obtain (1 ± ε)-factor approximations of l-step transition probabilities P luv from u to v, for
all pairs u, v ∈ V such that P luv ≥ t, for the smallest possible threshold value t. We show that the
following surprising behavior occurs. If the minimum out-degree of the graph G is d, then no (1± ε)-factor
approximation can be achieved for any reasonable value of t if the space S available is below o(n2/d).
However, if the available space is a factor s > 1 larger than Ω̃(n2/d), then (1± ε)-factor approximation can
be achieved for probabilities larger than t ≥ 1

ds
−(ε/4)(l−1). Thus, increasing the amount of space available

by a factor of s > 1 allows one to approximate transition probabilities that are exponentially small in the
length of the walk l. One instantiation of such guarantees is that any regular graph can be represented in
Õ(ln3/2+ε/ε2) space so that (1± ε)-approximations to transition probabilities P luv can be recovered for all
pairs u, v ∈ V such that P luv ≥ n−10 as long as l ≥ 40/ε2.

These bounds are nearly-tight: we show that the space complexity of obtaining (1± ε)-approximations
to P luv for all pairs such that P luv ≥ 1

du
(s/2)−(l−1) is Ω(sn2/d). Additionally, our techniques yield fast

algorithms for calculating very precise approximations to l-step random walk transition probabilities for
special classes of graphs. For example, it follows that an (1±ε)-factor approximation to P luv for all pairs such
that P luv ≥ n−10, say, can be obtained in time Õ(n2+(1+ε)ω−2

ω−1 ), where ω ≥ 2 is the matrix multiplication
constant, for any (almost) regular graph. Thus, we show that very precise approximations can be obtained
strictly faster than matrix multiplication if ω > 2. A very interesting question raised by our work is whether
our techniques can be used to obtain similar approximations to the problem of multiplying two matrices with
non-negative entries faster than matrix multiplication time. We note that besides being of intrinsic theoretical
interest, multiplicative approximation guarantees for all transition probabilities above a very small threshold
may be useful, for example, in applications to probabilistic model checking, where one is interested in the
probability that a Markov chain reaches an ‘error state’ in a given number of steps ([24]).

We also consider the problem of obtaining approximate oracles for random walk transition probabilities
for undirected graphs. While almost-optimal tradeoffs for the problem of approximating distances have been
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obtained in the large body of work on spanners ([7, 8, 11, 29, 31, 4, 30, 23]), we are not aware of any known
results on small space oracles for approximating random walk transition probabilities. Our lower bounds
on the space complexity of multiplicative approximation suggest that a weaker notion of approximation
is required if close to linear space is desired. A natural candidate notion is a relaxation of the length of
the random walk similar to the approximations obtained in the well-known distance oracles of Thorup and
Zwick[29]. Surprisingly, it turns out that such relaxation is too strong for our problem. However, we show
that a more relaxed notion of bicriteria approximation can be used to obtain small space oracles based on
the techniques of [29].

1.1 Related work

Approximate matrix multiplication It is interesting to compare our results on multiplicative approxi-
mation to the line of work on approximate matrix computations (e.g. [9, 15, 10, 25, 21, 6, 20]), which
develops extremely efficient approximate randomized algorithms for several problems in numerical linear
algebra. A lot of these algorithms can be used in the streaming model, requiring close to optimal space an
only a small constant number of passes over the data. These algorithms are also very general and apply to
arbitrary matrices. There is a vast literature on this topic, and we refer the reader to some of the latest papers
for a more complete list of references (see, e.g. [20]). All of the developed algorithms for approximating
matrix products yield approximation guarantees in term of the Frobenius or spectral norm. To highlight the
relation to our results, we now compare our algorithm to the earlier algorithm of [9], which is also based on
column/row sampling. In [9] the authors show that for any s > 1 there exists a randomized algorithm that
given two matrices A,B ∈ Rn×n outputs a matrix P such that

E[||P −A ·B||2F ] ≤ 1

s
||A||2F ||B||2F (1)

in time Õ(n2s) by carefully sampling rows of A and columns of B. On the other hand, our multiplication
approximation algorithm computes the l-th power of a matrixA, giving entrywise approximation guarantees.
Let A be the random walk transition matrix of an (almost)regular graph. We show how to calculate (1± ε)-
factor approximation to every sufficiently large entry of Al in time Õ(n2+(1+ε)ω−2

ω−1 ) for any sufficiently
large l. It should be noted that the best speedups that our techniques currently yield are for a special class
of graphs. On the other hand, we obtain a significantly more precise estimate than (1) faster than matrix
multiplication time. Since ||A||F can in general be very large, there is no way of setting the parameter s in
the algorithm of (1) that would allow to obtain such precision faster than matrix multiplication.

It is interesting to note that the approach we take also uses row and column sampling. However, the
process is somewhat different: we show that for each pair u, v ∈ V such that the (u, v) entry of Al is
sufficiently large there exists j, 1 ≤ j ≤ l − 1 such that sampling rows of Aj and columns of Al−j at an
appropriate rate allows one to get a 1± ε approximation for Aluv. It seems plausible that similar techniques
could be used to obtain good approximations to the product of two matrices with non-negative entries faster
than matrix multiplication time. This currently remains a very interesting open problem.

Another connected line of work concerns efficiently representing various notions of distance between
nodes of a weighted undirected graph, which we now describe.

Distance oracles. A large body of work on spanners and emulators provides almost optimal tradeoffs
for the case when the distance measure of interest is the shortest path distance. A spanner is a subgraph
H of the target graph G that approximates the shortest path metric on G in some sense. Several notions
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of spanners have been considered in the literature. A multiplicative spanner is a subgraph H of G such
that δG(u, v) ≤ δH(u, v) ≤ tδH(u, v) for some constant t > 1 called the stretch of H . The landmark
paper of [29] provides almost optimal tradeoffs between the size of H and the stretch, assuming a widely
believed girth conjecture of Erdős. In particular, [29] construct stretch 2k − 1-spanners with O(n1+1/k)
edges. Moreover, their construction has O(k) query time, thus yielding an approximate distance oracle.
Very recently, [23] gave an oracle that returns a path of length at most 2δG(u, v)+1 and usesO(n5/3) space
for unweighted graphs. Efficient algorithms for constructing spanners in the streaming model have been
proposed in [12, 3].

Additive spanners are subgraphs H of G that approximate shortest path distances in G up to an ad-
ditive error. Additive spanners with sublinear (in the distance) additive approximation error have been
constructed for unweighted graphs in [30]: the authors show how to construct a subgraph H of G such
that if δG(u, v) = d, then d ≤ δH(u, v) ≤ d + O(d1−1/(k−1)). Another useful notion of approximation
is obtained if the condition of H being a subgraph of G is removed. In particular, H is an emulator for
G is H is a (possibly weighted) graph on the same set of nodes that approximates the shortest path metric
of G. Approximation/space tradeoffs known for emulators are significantly better than for additive span-
ners: the authors of [30] construct emulators H with O(n1+1/(2k−1)) edges such that if δG(u, v) = d, then
d ≤ δH(u, v) ≤ d + O(d1−1/(k−1)). One disadvantage of these constructions of additive spanners and
emulators, however, is that even though the constructed graph H approximates distances in G well, no fast
method for answering distance queries using H is known.

Effective resistance. Other distance measures besides shortest path distance are of value in many real-
world scenarios. For example, in networks that can be modeled by preferential attachment graphs, whose
diameter is logarithmic in the size of the network, a notion of distance that takes the number of paths between
two nodes is more desirable. One such notion is commute time, which has been considered as a measure
of distance in social networks ([13, 14]). The results of [28] show that a data structure that returns (1 + ε)-
approximate answers in O(log n/ε2) time and takes O(n log n/ε2) space can be produced in Õ(m) time.
This algorithm can also be implemented in the semi-streaming model with at most a polylogarithmic loss in
efficiency and the space required.

s− t mincuts. The minimum s− t cut is another important measure of node proximity. It is known [16]
that all min-cuts in a weighted undirected graph can be represented inO(n) space by storing the Gomory-Hu
tree T of the graph. Additionally, this algorithm can be implemented in the semi-streaming model with at
most a polylogarithmic loss in efficiency and the space required.

1.2 Our Results and Techniques

Directed graphs

For a graph G = (V,E) and a pair of nodes u, v ∈ V we denote the probability of reaching v from u in l
steps of a simple random walk on G by P luv.

Our main result is

Theorem 1 Let G = (V,E) be a (possibly directed) graph with minimum out-degree bounded below by
d. For any s ≥ 1 there exists a data structure that allows returning 1 ± ε-factor approximations to P luv
for all u, v ∈ V such that P luv ≥ (1/d)s−(ε/4)(l−1) using space Õ

(
lsn2

ε2d

)
. Moreover, whp for any u, v the
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approximation to P luv that is returned does not overestimate P luv by more than a 1+ ε factor. The query time
is Õ(lns/(ε2d)) and the preprocessing time is Õ(l ·min{nω, lsn3/(ε2d)}).

Remark 2 Note that the preprocessing time is o(nω) for d = Ω(sn3−ω) and l = Õ(1).

Note that the threshold above which we can provide 1± ε-approximations to P luv depends exponentially
on the length of the walk l. Thus, even for moderate values of s Theorem 1 potentially allows to approximate
transition probabilities for all pairs u, v ∈ V . One instantiation of Theorem 1 is as follows:

Corollary 3 Let G = (V,E) be a regular graph. Then all l-step transition probabilities P luv ≥ n−10 can
be approximated up to 1± ε for any ε > 0 in space Õ(ln3/2+ε/ε2) as long as l ≥ 40/ε2.

Proof: Set s = nε. If d = Ω(n1/2+ε), then Theorem 1 can be used to compress the representation to
Õ(ln2+ε/ε2d) = Õ(ln3/2+ε/ε2) space. Otherwise one can store the entire graph in Õ(n3/2+ε) space.

Remark 4 Perhaps the most natural interpretation of the guarantees given by our algorithm is as follows.
Given the compressed representation of the graph, if for a query (u, v) the value P̂ luv returned by the al-
gorithm is large (i.e. satisfies P̂ luv ≥ n−10), then it is guaranteed to be within (1 ± ε) factor of the true
transition probability. Otherwise, the true transition probability is very small, i.e. below n−10.

Note that it is entirely possible that all l-step transition probabilities in a regular graph are larger than
n−10, in which case one can approximate each entry of Al up to an 1± ε factor, where A is the random walk
transition matrix of G.

Interestingly, our algorithm yields a method for approximating sufficiently large l-step transition proba-
bilities in a regular graph faster than matrix multiplication:

Corollary 5 P luv ≥ n−10 can be approximated up to 1 ± ε for any ε > 0 in time Õ(ln2+(1+ε)(ω−2)/(ω−1))
as long as l ≥ 40/ε2

We now show that the upper bound given by Algorithm 2 is of the right form:

Theorem 6 Any algorithm that gives a constant factor approximation to P luv ≥ 1
du

(s/2)−(l−1) in an undi-

rected graph G = (V,E) with minimum degree d must use Ω
(
sn2

l2d

)
space.

Undirected graphs

The lower bound given by Theorem 6 suggests that near-linear space cannot be achieved independently
of the minimum degree of the graphs if a constant factor approximation to P luv is desired. In light of the
result of [29] on 2k− 1-approximate distance oracles for undirected graphs in space O(n1+1/k) it is natural
to conjecture that one can output a constant factor approximation to the probability of reaching v from u
in (2j − 1)t steps for some 1 ≤ j ≤ k in O(n1+1/k) space. Perhaps surprisingly, we show that such
approximation cannot be achieved for random walk transition probabilities:

Lemma 7 Any algorithm that given a weighted graph G = (V,E) for any pair of nodes (u, v) outputs an
estimate p̂(u, v) such that

P lu,v ≤ p̂ ≤ (1 + ε) max
1≤j≤2k−1

P jlu,v

for any constant ε > 0 must use Ω(n2/2kl) space.
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Lemma 7 motivates more relaxed bicriteria approximation. In particular, when queried about the value
of P lu,v, the algorithm may return an approximation to the logarithm of P jlu,v for any 1 ≤ j ≤ 2k − 1. The
following theorem shows that a somewhat more powerful notion of approximation is possible:

Theorem 8 Let G = (V,E) be a weighted undirected graph such that 1/γ ≤ d(u)/d(v) ≤ γ for all
u, v ∈ V for some constant γ ≥ 1. There exists an O(k3n1+1/k log n) space and O(k3 log n) query time
oracle that given a pair u, v ∈ V outputs a value p̂ such that

γ−1P lu,v ≤ p̂ ≤ 4 max
1≤j≤k

(
P (2j−1)l
u,v /n(j−1)/k

)1/(2j−1)
.

The preprocessing time is bounded by Õ(klnω), where ω ≥ 2 is the matrix multiplication constant.

Note that the difference between the statement of Theorem 8 differs from the notion of bicriteria approx-
imation outlined above in the extra normalization term n(j−1)/k, which only improves the guarantee. The
algorithm is based on approximate distance oracles of Thorup and Zwick.

Theorem 8 applies to γ-regular graphs. For general graphs, we approximate the symmetrized quantity
St(u, v) =

√
Pt(u, v)Pt(v, u) =

√
d(u)/d(v)Pt(u, v):

Theorem 9 Let G = (V,E) be a weighted undirected graph. There exists an O(k3n1+1/k log n) space and
O(k3 log n) query time oracle that given a pair u, v ∈ V outputs a value p̂ such that

Slu,v ≤ p̂ ≤ 4 max
1≤j≤k

(
S(2j−1)l
u,v /n(j−1)/k

)1/(2j−1)
.

The preprocessing time is bounded by Õ(klnω), where ω ≥ 2 is the matrix multiplication constant.

This approximation ratio is optimal up to an O(log n) factor in the following sense:

Theorem 10 Any algorithm that outputs an estimate p̂ such that

P lu,v ≤ p̂ ≤ (1 + ε) max
1≤j≤k

(
P (2j−1)l
u,v /n(j−1)/k

)1/(2j−1)
for a constant ε > 0 must use Ω(n1+1/k/2lk) space.

2 Directed graphs

2.1 Algorithm

In this section we give an algorithm for approximating random walk transition probabilities in simple graphs
G = (V,E). Most proofs from this section are deferred to Appendix A due to space considerations.

Given a bound Õ(lsn2/d) on the available space, where s ≥ 1, the preprocessing Algorithm 1 samples
O(log n/ε) sets of centers Ct ⊆ V , by including each vertex into Ct uniformly at random with probability
r = 4s logn

ε2(1−ε/2)d . For each center c ∈ Ct the algorithm computes and stores P juc and P jcu for all u ∈ V and
all 1 ≤ j ≤ l − 1:

1: for t = 1, . . . , 4 log n/ε do
2: Choose r = 4s logn

ε2(1−ε/2)d centers Ct uniformly at random.

3: For each c ∈ Ct and for each j, 1 ≤ j ≤ l − 1 calculate and store P juc, P
j
cu for all u ∈ V .

4: end for
Algorithm 1: Preprocessing algorithm
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At query time, given a pair of vertices u, v ∈ V , for each of the O(log n/ε) sets of centers Ct and for
each 1 ≤ j ≤ l − 1 Algorithm 2 calculates an estimate

p̂t,j :=
1

r

∑
c∈Ct

P jucP
l−j
cv . (2)

Finally, the algorithm sets
p̂minj := min

1≤t≤4 logn/ε
p̂t,j (3)

and returns the largest of p̂minj , 1 ≤ j ≤ l − 1 as its estimate.

1: for t = 1, . . . , 4 log n/ε do
2: p̂t,j ← 1

r

∑
c∈Ct P

j
ucP

l−j
cv .

3: end for
4: p̂← maxj=1,...,l−1 mint=1,...,4 logn/ε pt,j
5: return p̂

Algorithm 2: Estimation algorithm
The estimator in (2) is unbiased, i.e. E[p̂t,j ] = P luv for all t and j since the set of centers was chosen

uniformly at random. The question that we consider is for which u, v ∈ V and for what sampling rate r is
P̂ luv is tightly concentrated around its expectation.

It is easy to construct examples that show that in general there need not be any useful concentration
for nontrivial sampling probabilities if 1 ± ε factor approximation of P luv is desired for all pairs u, v ∈ V .
Moreover, one cannot in general guarantee tight concentration for any fixed j under reasonable conditions
on u and v. However, in this section we will show that in fact for each u, v ∈ V such that P luv is sufficiently
large the estimate p̂t,j from (2) will not underestimate by more than a 1 − ε factor whp for at least one
choice of j between 1 and l− 1 and for all t. The main technical part of our analysis is analysing conditions
under which p̂t,j does not underestimate P luv, since overestimation can be easily dealt with by independent
repetition.

We first give the intuition behind the analysis. We assume that the graph is undirected and strictly regular
for simplicity. Then P luv for a pair u, v ∈ V is just the number of l-step walks from u to v divided by dl,
where d is the degree. We need to relate the number of l-step walks from u to v to the probability that the
random sampling in (2) underestimates by more than 1− ε factor. Fix j between 1 and l− 1 and for a node
c ∈ V let

α(j, c) =
P jucP

l−j
cv

P luv

be the fraction of l-step walks from u to v that pass through c at step j. By Bernstein’s inequality the
probability of underestimating by more than a factor of 1− ε can be related to the variance of the sequence
α(j, c), c ∈ V . Thus we need to relate the variance of α(j, ·) to the number of walks from u to v. In order
to do that, we consider a uniformly random l-step walk P = (X1, . . . , Xl−1) from u to v, where Xj is the
(random) j-th vertex in the walk. The number of paths is thus equal to the entropy H(P ). However, by a
well-known property of the entropy function we have that

H(P ) = H(X1, . . . , Xl−1) ≤
l−1∑
j=1

H(Xj |Xj−1, . . . , X1) ≤
l−1∑
j=1

H(Xj |Xj−1). (4)
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We now note that the distribution of Xj is given by α(j, ·) defined above. Thus, it is sufficient to bound

min
(X,Y ),X∝α(j,·),(X,Y )∈E

H(X|Y ) (5)

in terms of ε and the variance of α(j, ·). Here the minimization is over all random variables (X,Y ) taking
values in (V × V ) ∩ E (corresponding to the j-th and (j − 1)-st vertex on the random walk from u to v)
such that the distribution of X is α(j, ·). Given such a bound, we conclude that if (2) underestimates by
more than a factor 1− ε for all j between 1 and l − 1, then there must be very few paths between u and v.

We have given the sketch of the proof for regular graphs, where the regularity allows the use of the
entropy function for bounding P luv. In the more general case of graphs of minimum degree d we use the
relative entropy, or Kullback-Leibler divergence, with respect to the inverse degree sequence of the graph.
We now give the details of the proof.

Denote the set of l-step walks in G from u and v by P luv ⊆ V l−1. We write P = (v1, . . . , vl−1) ∈ P luv
to denote the path (u, v1, . . . , vl−1, v). Let µl : P luv → [0, 1] be the natural distribution on paths P =
(v1, . . . , vl−1) ∈ P luv defined as

µ((v1, . . . , vl−1)) =

{
1
P luv

1
du

∏l−1
j=1

1
dvj

if (v1, . . . , vl−1) ∈ P luv
0 o.w.

Note that this is indeed a distribution, i.e.
∑

P∈Pluv µ(P ) = 1.
Also, for P = (v1, . . . , vl−1) ∈ V l−1 define

ηl((v1, . . . , vl−1)) =
1

du

l−2∏
j=1

1

dvj
.

For a vertex v ∈ V define η(v) = 1
dv

. We note that ηl is in general not a distribution.
Recall that for two distributions on a set X the relative entropy of p with respect to q is defined as

D(p||q) =
∑
x∈X

px log(qx/px). (6)

Note that (6) is defined even when q is only guaranteed to be non-negative. Note that the usual definition
uses log(px/qx), but we use this one in order to get an inequality of the form (4).

We will use the following:

Claim 11
P luv ≤

1

d
eD(µ||η).

Proof: Indeed,

D(µ||η) =
∑

P∈Pluv

µ(P ) log(η(P )/µ(P )) =
∑

P∈Pluv

p(P ) log(dvl−1
P luv) ≥ log(dP luv).

For two random variables X,Y taking values in V define

D∗(X|Y ||η) =
∑
y∈V

p(y)
∑
x∈V

p(x|y) log(η(y)/p(x|y)). (7)

We will use the following
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Lemma 12 Let (X1, . . . , Xl−1) be a random variable taking values in V l−1. Let X0 = u. Then one has

D((X1, . . . , Xl−1)||ηl) ≤
l−1∑
j=1

D∗(Xj |Xj−1||η)

Note that this is the equivalent of (4) in the sketch of the proof for the regular case given above.

Definition 13 For a distribution x on V define

D̄(x) = max
(X,Y ):X∝x,(X,Y )∈E

D∗(X|Y ||η).

This is the equivalent of (5) in the regular case. We will use the following lemma:

Lemma 14 Let x be a distribution on V . Sort elements of x so that x1 ≥ x2 ≥ . . . ≥ xn. Then for any
j, 1 ≤ j ≤ n one has

D̄(x) ≤

∑
i<j

xi

 log
1

dxj
.

Lemma 15 (Bernstein’s inequality) Let X =
∑n

i=1Xi, where |Xi| ≤M almost surely. Then

Pr [X − E[X] < εE[X]] < exp

(
− ε2E[X]2∑n

i=1 EX2
i + εME[X]/3

)
We now prove the main lemma in the analysis:

Lemma 16 If our sample underestimates by a factor larger than 1− ε with probability larger than 1−n−4,
then for every j between 1 and l − 1 we have

D̄(α(j, ·)) ≤ −η log(ε2(1− η)s/4)

for some η ∈ [ε/4, ε/2].

Proof:
Let x1 ≥ . . . ≥ xn,

∑
i xi = 1 be the distribution α(j, ·) (we numbered vertices of G). Let Xi =

Ber(s/d, xi). We consider two cases. First suppose that x1 ≥ ε/4. Then we have D̄(x) ≤ −ε/4 log d and
we are done. We now assume that x1 ≤ ε/4.

Denote by xε the subsequence xjε ≥ . . . ≥ xn such that
∑n

i=jε xi ≤ 1− ε/4, where jε is the maximum
possible. Since x1 ≤ ε/4, we have that

∑n
i=jε xi ≥ 1− ε/2.

By Bernstein’s inequality

Pr [Xε − E[Xε] < δE[Xε]] < exp

(
− δ2(s log n/d)2

(s log n/d)||xε||22 + xjε(s log n/3d)

)
= exp

(
− δ2 log n

(d/s)||xε||22 + xjε(d/3s)

)
Thus, if our sampling underestimates by a factor larger than 1− ε, we must have that

||xε||22 + xjε/3 ≥ δ2s/(4d).
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Let η := 1−
∑

i≥jε xi. We have that Since ||xε||2 ≤ (1−η)xjε , we have ||xε||2+xjε/3 ≤ (4/3−η)xjε ,
so ||xε||2 + xjε/3 ≥ δ2s/(4d) implies that xjε ≥ δ2(s/d)/(16/3− 4η). Thus, by Lemma 14 we have

D̄(x) ≤ −η log(ε2(1− η)s/4),

where we chose δ = ε/4.
It now follows by Claim 11, Lemma 16 and Lemma 12 that if a pair u, v is underestimated by more than

a factor of 1− ε with probability at least 1− n−4, then

P luv ≤
1

d
(ε2(1− ε/2)s/4)−(ε/4)(l−1). (8)

It remains to note that with probability at least 1−n−2 one has p̂minj ≤ (1 + ε)P luv for all u, v. Since by
the previous estimate with probability at least 1−1/n for each u, v that satisfy (8) one has p̂t,j ≥ (1−ε)P luv,
we have proved Theorem 1, which is the main result of this section.

2.2 Lower bounds

The following theorem, proved in Appendix A, shows that the upper bound given by Algorithm 2 is of the
right form:

Theorem 17 Any algorithm that gives a constant factor approximation to P luv ≥ 1
du

(s/2)−(l−1) in an

undirected graph G = (V,E) with minimum degree d must use Ω
(
sn2

l2d

)
space.

Also, the ε-factor in the exponent is not an artifact of our analysis:

Lemma 18 For any ε < 1/2 there exist graph G = (V,E) with minimum degree d on which Algorithm 2
underestimates P luv by more than 1− ε factor for pairs (u, v) such that P luv ≥ 1

du
(s/2)−ε(l−1)

Proof: Consider (l− 1)/ε sets Vi,j , i = 1, . . . , 1/ε, j = 1, . . . , (l− 1), l− 1 sets V ∗j , j = 1, . . . , (l− 1)

and two special vertices u and v. The vertex set of the graph G will be V = {u, v}
⋃l−1
j=1 V

∗
j ∪

(⋃1/ε
i=1 Vi,j

)
.

A set Vij contains one vertex if i + j ≡ 2(mod b1/εc) and contains d/s vertices otherwise (see Fig. 1).
For each j = 1, . . . , l − 2 and all i the nodes in Vi,j ∪ Vi,j+1 form a bipartite clique, and the remaining
d − d/s edges from each node in Vi,j go to V ∗j . Note that a uniform sample misses the nodes in Vij for
i+j ≡ 2(mod b1/εc) with a constant probability, which can be boosted by introducing many pairs u, v ∈ V .
Thus, the uniform sampling algorithm does not give a better than 1 − ε approximation. However, one sees
that P luv ≥ 1

du
(s/2)−ε(l−1).

3 Bicriteria approximation for undirected graphs

We now give an algorithm for approximating P luv for undirected graphs based on the techniques of [29]. The
algorithm is based on the idea of sampling a hierarchy of centers and approximating transition probabilities
by probabilities of going through the centers. However, unlike in Algorithm 2, one cannot guarantee con-
centration of the sample around its mean since we would like to use close to linear amount of space. Another
notion of approximation is still possible: we show that our estimate never underestimates P luv and at the same
time cannot exceed a quantity that depends on the transition probability P jluv, where 1 ≤ j ≤ (2k − 1)l.
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Figure 1: Tight example for algorithm analysis (the sets V ∗j are not shown)

We start by giving intuition about the algorithm. The algorithm chooses a hierarchy of centers Ai, i =
0, . . . , k, where A0 = V and Ai+1 is obtained by sampling elements of Ai independently with probability
n−1/k, so that E[Ai] = n1−i/k. For each vertex u ∈ V and for each j = 0, . . . , k, the algorithm stores the
vertices in Aj that are more likely to be reached in jl steps from u than any vertex in Aj+1. When P lu,v
is queried, the algorithm attempts to find a center c ∈ Aj for some j such that both P (j−1)l

u,c and P jlc,v are
available. The search for the centers is organized in a way that ensures that for the center c∗ that is found
the probability of reaching v from u in (2j − 1)l steps via c∗ can be related to P lu,v (the left inequality in
Theorem 8). This is achieved via methods similar to [29].

As noted in section 2, choosing random centers and approximating the probability of a (2j − 1)l-step
transition from u to v by the sum of P (j−1)l

u,c P jlc,v over centers c is exact in expectation. However, the lack
of concentration as well as the fact that we only use one center for approximation does not allow us to
conclude that out estimate is within a constant multiplicative factor of the true probability of (2j − 1)l-step
transition. However, with some additional care we ensure that our estimate does not exceed the expectation
significantly, thus yielding the right inequality in Theorem 8.

We first consider the case of graphs with vertex degrees differing by at most a constant factor, i.e. the
case in which our lower bounds hold, and then extend the results to a symmetrized transition probability for
general graphs.

We now describe the algorithm. Let As0 = V, s = 0, . . . , 6k2 log n and let Asj be obtained by sampling
elements of Asj−1 with probability n−1/k, j = 1, . . . , k. For a vertex u ∈ V and a set S ⊆ V we define

P jlu,S = maxs∈S P
jl
u,s. For a vertex u define Bs

j (u) to be

Bs
j (u) = {v ∈ Asj : P (j+1)l

u,v > P
(j+1)l
u,Asj+1

}.

Also, let psj(u) := v such that Pjl(u, v) = Pjl(u,A
s
j+1). We prove the following

Theorem 8 Let G = (V,E) be a weighted undirected graph such that 1/γ ≤ d(u)/d(v) ≤ γ for all
u, v ∈ V . There exists an O(k3n1+1/k log n) space and O(k3 log n) query time oracle that given a pair

10



u, v ∈ V outputs a value p̂ such that

γ−1P lu,v ≤ p̂ ≤ 4 max
1≤j≤k

(
P (2j−1)l
u,v /n(j−1)/k

)1/(2j−1)
.

We note that the same approximation guarantees hold for the symmetrized quantity Sluv =
√
P luvP

l
vu

(see Appendix B).
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A Proofs from section 2

We now give
Proof of Lemma 12: The proof is by induction on l.

Base:l = 2 Since X0 = u, D∗(X1|X0||η) = D(X1||η1).

Inductive step:l→ l + 1 First note that for any j > 0 for any x ∈ V j−2, x′, y ∈ V one has

ηj(x, x′, y) = η(x′)ηj−1(x, x′).
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Using this fact, we get

D(X1, . . . , Xl−1||ηl) =
∑

x∈V l−3,x′,y∈V

p(x, x′, y) log((η(x′)ηl−1(x, x′))/p(x, x′, y))

=
∑
x′∈V

p(x′)
∑

x∈V l−3

p(x|x′)
∑
y∈V

p(y|x, x′)[
log(η(x′)/p(y|x, x′)) + log(ηl−1(x, x′)/p(x, x′))

]
=
∑
x′∈V

p(x′) log η(x′)

+
∑
x′∈V

p(x′)
∑

x∈V l−3

p(x|x′)

∑
y∈V

p(y|x, x′) log(1/p(y|x, x′))


+

∑
x′∈V,x∈V l−3

p(x, x′) log(ηl−1(x, x′)/p(x, x′))

= S1 + S2 + S3.

By convexity of the entropy function, we have

S2 ≤
∑
x′∈V

p(x′)
∑
y∈V

p(y|x′) log(1/p(y|x′)),

so
S1 + S2 ≤ D∗(Xl−1|Xl−2||η).

By the inductive hypothesis, S3 ≤
∑l−2

j=1D
∗(Xj |Xj−1||η), so

D((X1, . . . , Xl−1)||ηl) ≤
l−1∑
j=1

D∗(Xj |Xj−1||η).

Proof of Lemma 14: Consider any pair (X,Y ), X ∝ x, (X,Y ) ∈ E. Denote the distribution by p(x, y).
Denote the set of vertices corresponding to xi, i ≥ j by Ij . For a set S ⊂ V we will write p(S) to denote
the probability assigned to S by x.

We have

D∗(X|Y ||η) =
∑
y

p(y)
∑
x

p(x|y) log(1/(p(x|y)dy))

≤
∑
y

p(y)
∑
x∈Ij

p(x|y) log(1/(p(x|y)d))

+
∑
y

p(y)
∑

x∈V \Ij

p(x|y) log(1/(p(x|y)dy))

≤
∑
y

p(y)
∑
x∈Ij

p(x|y) log(1/p(x|y)) + p(Ij) log(1/d)

≤ p(Ij)H(x|Ij ) + p(Ij) log(1/d) ≤ p(Ij) log(1/(dxj)),
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where we used the convexity of the entropy function and the fact that all out-degrees are at least d.
Proof of Corollary 5: Set s = nε. We need to calculate l-step transition probabilities from Õ(n1+ε/d)
nodes. This takesO(nd) time per node. After doing that we end up with two matricesX and Y of dimension
n× n1+ε/d and n1+ε/d× n respectively. We need to evaluate XY . To do so, we write

X = [X1 . . . Xk]

Y = [Y1 . . . Yk]
T ,

where k = O(d/nε) and each of Xj , Yj is (n1+ε/d) × (n1+ε/d). Multiplying XiYj takes O(n(1+ε)ω/dω)
times. Since there are (d/n1+ε)2 such pairs, the total time taken is(

d

nε

)2

(n(1+ε)ω/dω) = n(1+ε)ω−2ε/dω−2

This works well when d is large. When d is small, sparse matrix-vector products can be used to calculate the
distribution in O(n2d) time. Choosing the better of the two, we obtain O

(
n2+(1+ε)(ω−2)/(ω−1)) runtime.

Proof of Theorem 17: Construct the graph G = (V,E) as follows. Let

V = V0 ∪

l−1⋃
j=1

V ∗l ∪

sn/d⋃
i=1

Vij

 ,

where |Vij | = d/s, |V ∗j | = d and |V0| = n. Thus, the graph G has O(nl) vertices.
Vi,j−1 ∪ Vi,j form a bipartite clique for each i and j. For each j each vertex in Vij is connected to

d− d/s nodes in V ∗j . Finally, for each u ∈ V0 and i = 1, . . . , sn/d a fair coin is flipped to determine if u is
connected to all vertices in Vi1 or to none.

Now choose u ∈ Vil and v ∈ V0. All l-step paths go through vertices of Vi,l, Vi,l−1, . . . , Vi1 in that order,
and the probability of reaching u from v is 1

du
(s/2)−(l−1) if Vi1 is connected to v and 0 otherwise. Thus,

a constant factor approximation allows one to determine presence of edges between V0 and Vi1, and hence
necessarily takes Ω(sn′2/l2d) space, where n′ = nl is an upper bound on the number of vertices in G.

B Analysis of Algorithm 4

B.1 Lower bounds

We show that the space used by Algorith 4 is optimal in the sense that any algorithm that provides the
guarantees of Theorem 8 necessarily uses Ω(n1+1/k) space.

Our lower bounds are based on the following observation. Consider a random Gn,p graph with a path
Pv = (u1, . . . , ul−1) attached to every vertex v, which we identify with ul (the paths belonging to different
vertices are disjoint). It can be shown that for any vertex w that is connected to ul by an edge the probability
of reaching v from u1 in j steps for any j between l and kl is significantly larger than the probability of
reaching a vertexw that is not connected to ul by a direct edge. This is because the probability of reachingw
without leaving the set of vertices {u0, . . . , ul, w} dominates the probability of reaching w by going through
vertices of the Gn,p graph other than ul and w since the random walk on Gn,p mixes fast. Thus, shortest
paths are the most probable paths in this setting. In what follows we make this intuition precise.

We start by proving Lemma 7:
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Proof of Lemma 7: Consider a family of graphs G = (V,E) defined as follows. Let V =
⋃l
j=1 Vj , where

|Vj | = n. There is a matching between the nodes of Vj and Vj+1 for j = 1, . . . , l − 1, each edge having
weight n, and a random graph with each edge appearing independently with probability p on the vertices of
Vl. Edges with both endpoints in Vl have weight 1. Note that whp the degrees of vertices of G differ by at
most a factor of (2p+ 1)/(p/2), i.e. G is γ-regular with γ = 4 + 2/p whp.

For a vertex u1 ∈ V1 let uj be the vertex in Vj that is matched to uj−1, for 2 ≤ j ≤ l For a vertex
v ∈ Vl, v 6= ul we will estimate P klu1,v in two cases: (1) (ul, v) ∈ E and (ul, v) 6∈ E.

1. (ul, v) ∈ E In this case one has P lk−1(u1, ul) ≥ 2−lk+1. Hence, whp

P lk(u1, v) ≥ 2−lk+1 p/2

(1 + 2p)

1

pn
= 2−lk+1 1

(2 + 4p)n
.

2. (ul, v) 6∈ E One has whp P lku1,v ≤
2p

1+p/2 maxw∈V P
2
w,v = maxw∈Vl P

2
w,v, where the term 2p

1+p/2 appears
due to the transition of the walk out of ul, and the maximum can be taken over nodes in Vl since
(ul, v) 6∈ E).

We now upper bound P 2
w,v. Fix w ∈ Vl. The expected number of common neighbors of w and v is

np2, and is at most 2np2 with high probability. Hence, with high probability P 2
w,v ≤ 2np2 1

(np)2
.

Finally, we get that with high probability one has P lku1,v ≤
4p

(1+p/2)n .

Now suppose that an algorithm A outputs an estimate p̂ such that

P lu,v ≤ p̂ ≤ (1 + ε) max
1≤j≤k

P jlu,v

for some ε > 0. By the estimates above one has that if (ul, v) ∈ E, then P lu1,v ≥ 2−lk+1 1
(2+4p)n , and

when (ul, v) 6∈ E, then P klu1,v ≤ 4p/(1 + p/2)n. Hence, setting p = Ω(2−lk), we get that the output of the
algorithm can be used to determine the presence of any edge (u, v), u, v ∈ Vl. Hence, the algorithm must
use Ω(pn2) = Ω(n2/2−lk) space.

We now give
Proof of Theorem 10: We use the same construction as in the proof of Lemma 7 with p = αn−1+1/k,
where α > 0 is a parameter that will be chosen later. The weight of edges in the attached paths is αn1/k.
Using the same arguments as before, we have P lku1,v ≥ 2−lk+1 1

2αn1/k whp.
Also, we have that

P lku1,v ≤ max
1<j≤k

P jul,v.

Fix w, v ∈ Vl. Consider a j-step walk for 2 ≤ j ≤ k that traverses 2 ≤ s ≤ j distinct edges
W ∈ Ws,j ,W = (w = w0, w1, . . . , wj = v) and does not use the edge (ul, v). The size ofWs,j is at most
j2(j−s)ns−1, and the probability that all edges of W ∈ Ws,j are present is αsn(−1+1/k)s. The probability
of taking such a walk is at most 2α−j/n with high probability (since the degree of every node is within a
factor of (1 ± ln 2/lk) of expectation with high probability). Hence, with high probability over the graph
one has for all j

E
[

max
1<j≤k

P jul,v

]
≤ k

j∑
s=1

|Ws,j |αsn−(1−1/k)sα−j(2/n)

≤ k
j∑
s=1

j2(j−s)ns−1αsn−(1−1/k)s(2/n) = k

j∑
s=1

αsj2(j−s)n−1+s/kα−j(2/n) ≤ 3k/n
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By Markov’s inequality and the fact that the probability that we bounded is independent of the presence
or absence of a direct edge (since the edge (ul, v) was excluded), at least for half of the graphs and for at
least half of the pairs (u0, v) such that (ul, v) ∈ E one has max1<j≤k P

j(ul, v) ≤ 12k/n.
Now consider a pair (u1, v) such that (ul, v) ∈ E. Then Pl(u, v) ≥ 2−lk+1 1

2αn1/k , so A outputs
p̂ ≥ 2−lk+1 1

2αn1/k . On the other hand, for a pair (u1, v) such that (ul, v) 6∈ E one has P lu1,v = 0, while

P lju1,v ≤ 12k/n, so we have

max
1≤j≤k

(
P jlu,v/n

(j−1)/k
)1/(2j−1)

≤ 12k max
1≤j≤k

(
n−1−(j−1)/k

)1/(2j−1)
= 12k max

1≤j≤k

(
n−1−(j−1)/k

)1/(2j−1)
= 12k max

1≤j≤k
n−(1/k)(k+j−1)/(2j−1) = 12kn−1/k.

Thus, algorithm A outputs p̂ ≤ 12Ckn−1/k, so after choosing a sufficiently small constant α = Ω(2−lk),
we get that the presence or absence of an edge between at least half of pairs of vertices can be determined
from the output of A for at least half of the graphs. Thus, A must use Ω(n1+1/k/2lk) space.
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B.2 Upper bound

1: for s← 1 to 6k2 log n do
2: As0 := V
3: for j = 1 to k do
4: Let Asj contain each element of Asj−1 independently with probability n−1/k

5: end for
6: for every v ∈ V and j ≤ k do
7: psj(v)← argmaxw∈Asj+1

P
(j+1)l
v,w .

8: Let Bs
j (u)← {v ∈ Asj : P

(j+1)l
u,v > P

(j+1)l
u,Asj+1

}.
9: end for

10: end for
Algorithm 3: Preprocessing algorithm

1: for i← 1 to k do
2: Qi ← ∅, Ri ← ∅
3: for s← 1 to 6k2 log n do
4: qsi ← maxw∈Asi P

il
u,w · P

(i+1)l
w,v .

5: Ri ← Ri ∪ {qsi}
6: end for
7: zi ← (6k2 log n/(4i2))-th largest element in Ri.
8: end for
9: for s← 1 to 6k2 log n do

10: w ← v, i← 0
11: while w 6∈ Bs

i (u) do
12: w ← psi (u)
13: (u, v)← (v, u)
14: i← i+ 1
15: end while
16: Qi ← Qi ∪ {P (i+1)l

u,w · P (i+2)l
w,v }

17: end for
18: for i← 0 to k − 1 do
19: Q∗i ← {x ∈ Qi|x ≤ zi}
20: if Q∗i 6= ∅, let r ← min{rs ∈ Q∗i } and return p̂← r1/(2i−1).
21: end for

Algorithm 4: Probability estimation
In this section we give the analysis of Algorithm 4 omitted in section 3. We first consider γ-regular

graphs, and then give an approximation of the symmetrized quantity Slu,v =
√
P luvP

l
vu.

We first bound the space used by the data structure:

Lemma 19 The expected space required by Algorithm 4 is O(k3n1+1/k log n).

Proof: The size of the list stored at each vertex is bounded by n1/k in expectation for each j = 0, . . . , k. To
show this, we fix u and consider the list of vertices v ∈ Aj in decreasing order of the probability P (j+1)l

u,v .
Each vertex v ∈ Aj is included in Aj+1 with probability n−1/k. Thus the size of the list is dominated by
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a geometric random variable with rate 1 − n−1/k. Since 6k2 log n such lists are stored at each vertex, the
bound follows.

The proof of Theorem 8 follows from the following lemmas.

Lemma 20 Let G = (V,E) be a γ-regular graph. Let u, v ∈ V . Let p̂ be the output of the algorithm on
(u, v). Then

p̂ ≥ P lu,v/γ.

Proof: Fix s and consider the while loop in the estimation algorithm (lines 11–15). We show by induction
on i = 0, . . . , k that a while loop invariant is

P (i+1)l
u,w ≥ (P lu,v)

d(i+1)/2e(P lv,u)b(i+1)/2c.

Base:i = 0 P
(i+1)l
u,w ≥ (P lu,v)

d(i+1)/2e(P lv,u)b(i+1)/2c = P lu,v since w = v.

Inductive step:i→ i+ 1 Since w 6∈ Bs
i (u), one has P (i+1)l

u,psi (u)
≥ P (i+1)l

u,w . Hence,

P
(i+2)l
v,psi (u)

≥ P lv,uP
(i+1)l
u,psi (u)

≥ P lu,vP (i+1)l
u,w .

By the inductive hypothesis, P (i+1)l
u,w ≥ (P lu,v)

d(i+1)/2e(P lv,u)b(i+1)/2c, so

P
(i+2)l
v,psi (u)

≥ (P lu,v)
d(i+1)/2e(P lv,u)b(i+1)/2c+1.

Upon setting w ← psi (u) and switching u and v, we get

P (i+2)l
u,w ≥ (P lv,u)d(i+1)/2e(P lu,v)

b(i+1)/2c+1 = (P lv,u)b(i+2)/2c(P lu,v)
d(i+2)/2e.

since bj/2c+ 1 = d(j + 1)/2e and dj/2e = b(j + 1)/2c for all integer j.

We can now finish the proof of the lemma. We get that if w ∈ Bs
i (u),

P (i+1)l
u,w ≥ (P lu,v)

d(i+1)/2e(P lv,u)b(i+1)/2c

and
P ilv,w ≥ (P lv,u)di/2e(P lu,v)

bi/2c.

Let u0, v0 be the queried pair of vertices. If i is even, then u = u0, v = v0, and we get

P (i+1)l
u,w · P ilw,v ≥ γ−1(P lu0,v0)d(i+1)/2e+bi/2c(P lv0,u0)b(i+1)/2c+di/2e

≥ γ−(i+1)(P lu0,v0)2i+1

If i is odd, then u = v0, v = u0, and we get

P (i+1)l
u,w · P ilw,v ≥ γ−1(P lv0,u0)d(i+1)/2e+bi/2c(P lu0,v0)b(i+1)/2c+di/2e

≥ γ−(i+2)(P lu0,v0)2i+1

Hence, we have (
P (i+1)l
u,w · P ilw,v

)1/(2i+1)
≥ γ−1P lu0,v0 .
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Lemma 21 Let G = (V,E) be a γ-regular graph. Let u, v ∈ V . Denote by p̂ the output of the algorithm
on (u, v). Then

p̂ ≤ 4 max
1≤j≤k

(
P (2j−1)l
u,v /n(j−1)/k

)1/(2j−1)
.

Proof: Suppose that the algorithm outputs p̂ = r1/(2j−1), where r ∈ Qj .
First note that since ∑

c∈V
P (j−1)l
u,c P jlc,v = P (2j−1)l

u,v ,

we have

E

∑
c∈Aj

P (i−1)l
u,c P ilc,v

 = P (2j−1)l
u,v /n(j−1)/k,

and in particular,

E
[
max
c∈Aj

P (i−1)l
u,c P ilc,v

]
≤ P (2j−1)l

u,v /n(j−1)/k.

Let csj := argmaxc∈AsjP
(i−1)l
u,c P ilc,v. Let

Xjs =

{
1 if P (j−1)l

u,csj
P jlcsj ,v

> 4j2P
(2j−1)l
u,v /n(j−1)/k

0 o.w.

Note that Xjs are independent for fixed j and E[Xjs] ≤ 1/(4j2) by Markov’s inequality, and for each j we
have by the Chernoff bound that

Pr

[
6k logn∑
s=1

Xjs ≥ 6k2 log n/(2j2)

]
≤ n−3

Hence, with probability at least 1 − n−3 one has that
∑k

j=1

∑6k logn
s=1 Xjs < 3k2 log n

∑
j≥1 1/j2 <

6k2 log n. Thus, with probability at least 1− 1/n for every pair of vertices there exists i0 such that Q∗i0 6= ∅.
Then for all r ∈ Q∗i0 one has

r ≤ 4i2E

∑
c∈Aj

P (i−1)l
u,c P ilc,v

 = 4i2P (2i−1)l
u,v /n(i−1)/k.

Hence,

p̂ = r1/(2i−1) ≤
(

4i2P (2i−1)l
u,v /n(i−1)/k

)1/(2i−1)
≤ 4

(
P (2i−1)l
u,v /n(i−1)/k

)1/(2i−1)
.

The proof of Theorem 8 follows by putting together Lemma 20 and Lemma 21. The bound ofO(k3 log n)
query time follows since the algorithm performsO(k) hash table lookups for each s = 1, . . . , 6k2 log n. The
preprocessing time is bounded by Õ(klnω), where ω ≥ 2 is the matrix multiplication constant.
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Finally, we show that Algorithm 4 can be used to approximate a symmetrized version of P l(u, v). Define
St(u, v) =

√
P t(u, v)P t(v, u) =

√
d(v)/d(u)P t(u, v). We now check that the two properties of P l(u, v)

that were crucially used in Algorithm 4 also hold for Sl(u, v). The first property, used in Lemma 20 is

S(i+1)l
u,v =

√
d(v)/d(u)P l(u, v) ≥

√
d(v)/d(u)P l(u, c)P ilc,v

=
√
d(c)/d(u)P lu,c

√
d(v)/d(c)P ilc,v = Slu,cS

il
c,v.

The second property, used in Lemma 21, is

S(2i−1)l
u,v =

∑
c∈V

Silu,cS
(i−1)l
c,v .

Thus, we get the same guarantees for Algorithm 4 as we have for P t(u, v) after setting γ := 1.
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