Lecture 1: Distinct Elements and Frequency Moments in Data Streams

Michael Kapralov

EPFL

May 23, 2017

Streaming model

Observe a (very long) stream of data, e.g. IP packets, tweets, search queries....

Task: maintain (approximate) statistics of the stream

Streaming model

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{\text {poly (n) }}$

Typically, assume n is known, $i_{j} \in[n]$

- Small (sublinear) storage: typically $n^{\alpha}, \alpha<1$ or $\log ^{O(1)} n$ Units of storage: bits, words or 'data items' (e.g., points, nodes/edges)
- Fast processing time per element
- Mostly randomized algorithms

Randomness often necessary

In this lecture:

- Distinct elements
- Frequency moments (AMS sketch)

In this lecture:

- Distinct elements
- Frequency moments (AMS sketch)

Distinct elements problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{\text {poly }(n)}$

Typically, assume n is known, $i_{j} \in[n]$

- Output number of distinct elements seen
(Approximately, randomness ok)
- Small storage: will get $\log ^{O(1)} n$

Much better than storing all items!

1	2	3	4	5	6	7	8	9	10

Distinct elements problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{\text {poly }(n)}$

Typically, assume n is known, $i_{j} \in[n]$

- Output number of distinct elements seen
(Approximately, randomness ok)
- Small storage: will get $\log ^{O(1)} n$

Much better than storing all items!

Distinct elements problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{\text {poly }(n)}$

Typically, assume n is known, $i_{j} \in[n]$

- Output number of distinct elements seen
(Approximately, randomness ok)
- Small storage: will get $\log ^{O(1)} n$

Much better than storing all items!

Distinct elements problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{\text {poly }(n)}$

Typically, assume n is known, $i_{j} \in[n]$

- Output number of distinct elements seen
(Approximately, randomness ok)
- Small storage: will get $\log ^{O(1)} n$

Much better than storing all items!

343

Distinct elements problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{\text {poly }(n)}$

Typically, assume n is known, $i_{j} \in[n]$

- Output number of distinct elements seen
(Approximately, randomness ok)
- Small storage: will get $\log ^{O(1)} n$

Much better than storing all items!

3432

Distinct elements problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{\text {poly }(n)}$

Typically, assume n is known, $i_{j} \in[n]$

- Output number of distinct elements seen
(Approximately, randomness ok)
- Small storage: will get $\log ^{O(1)} n$

Much better than storing all items!

34310

Distinct elements problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{\text {poly }(n)}$

Typically, assume n is known, $i_{j} \in[n]$

- Output number of distinct elements seen
(Approximately, randomness ok)
- Small storage: will get $\log ^{O(1)} n$

Much better than storing all items!

$\begin{array}{llllll}3 & 4 & 3 & 2 & 10 & 3\end{array}$

Distinct elements problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{\text {poly }(n)}$

Typically, assume n is known, $i_{j} \in[n]$

- Output number of distinct elements seen
(Approximately, randomness ok)
- Small storage: will get $\log ^{O(1)} n$

Much better than storing all items!

$\begin{array}{lllllll}3 & 4 & 3 & 2 & 10 & 3 & 1\end{array}$

Distinct elements problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{\text {poly }(n)}$

Typically, assume n is known, $i_{j} \in[n]$

- Output number of distinct elements seen
(Approximately, randomness ok)
- Small storage: will get $\log ^{O(1)} n$

Much better than storing all items!

$\begin{array}{llllllll}3 & 4 & 3 & 2 & 10 & 3 & 1 & 3\end{array}$

Distinct elements problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{\text {poly }(n)}$

Typically, assume n is known, $i_{j} \in[n]$

- Output number of distinct elements seen
(Approximately, randomness ok)
- Small storage: will get $\log ^{O(1)} n$

Much better than storing all items!

$\begin{array}{lllllllll}3 & 4 & 3 & 2 & 10 & 3 & 1 & 3 & 1\end{array}$

Distinct elements problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{\text {poly }(n)}$

Typically, assume n is known, $i_{j} \in[n]$

- Output number of distinct elements seen
(Approximately, randomness ok)
- Small storage: will get $\log ^{O(1)} n$

Much better than storing all items!

$\begin{array}{llllllllll}3 & 4 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2\end{array}$

Distinct elements problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{\text {poly }(n)}$

Typically, assume n is known, $i_{j} \in[n]$

- Output number of distinct elements seen
(Approximately, randomness ok)
- Small storage: will get $\log ^{O(1)} n$

Much better than storing all items!

$\begin{array}{lllllllllll}3 & 4 & 3 & 2 & 1 & 0 & 3 & 1 & 3 & 1 & 2\end{array} 2$

Distinct elements problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{\text {poly }(n)}$

Typically, assume n is known, $i_{j} \in[n]$

- Output number of distinct elements seen
(Approximately, randomness ok)
- Small storage: will get $\log ^{O(1)} n$

Much better than storing all items!

$\begin{array}{llllllllllll}3 & 4 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5\end{array}$

Distinct elements problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{\text {poly }(n)}$

Typically, assume n is known, $i_{j} \in[n]$

- Output number of distinct elements seen
(Approximately, randomness ok)
- Small storage: will get $\log ^{O(1)} n$

Much better than storing all items!

$\begin{array}{lllllllllllll}3 & 4 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5\end{array}$

Distinct elements problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{\text {poly }(n)}$

Typically, assume n is known, $i_{j} \in[n]$

- Output number of distinct elements seen
(Approximately, randomness ok)
- Small storage: will get $\log ^{O(1)} n$

Much better than storing all items!

$\begin{array}{llllllllllllll}3 & 4 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5\end{array}$

Distinct elements problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{\text {poly }(n)}$

Typically, assume n is known, $i_{j} \in[n]$

- Output number of distinct elements seen
(Approximately, randomness ok)
- Small storage: will get $\log ^{O(1)} n$

Much better than storing all items!

3
$\begin{array}{lllllllllllllll}3 & 4 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9\end{array}$

Distinct elements problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{\text {poly }(n)}$

Typically, assume n is known, $i_{j} \in[n]$

- Output number of distinct elements seen
(Approximately, randomness ok)
- Small storage: will get $\log ^{O(1)} n$

Much better than storing all items!

3
$\begin{array}{lllllllllllllll}3 & 4 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9\end{array}$

Distinct elements problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{\text {poly }(n)}$

Typically, assume n is known, $i_{j} \in[n]$

- Output number of distinct elements seen
(Approximately, randomness ok)
- Small storage: will get $\log ^{O(1)} n$

Much better than storing all items!

$\begin{array}{llllllllllllllll}3 & 4 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9 & 7\end{array}$

Distinct elements problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{\text {poly }(n)}$

Typically, assume n is known, $i_{j} \in[n]$

- Output number of distinct elements seen
(Approximately, randomness ok)
- Small storage: will get $\log ^{O(1)} n$

Much better than storing all items!

$\begin{array}{lllllllllllllllll}3 & 4 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9 & 7 & 4\end{array}$

Distinct elements problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{\text {poly }(n)}$

Typically, assume n is known, $i_{j} \in[n]$

- Output number of distinct elements seen
(Approximately, randomness ok)
- Small storage: will get $\log ^{O(1)} n$

Much better than storing all items!

$\begin{array}{llllllllllllllllll}3 & 4 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9 & 7 & 4 & 4\end{array}$

Distinct elements problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{\text {poly }(n)}$

Typically, assume n is known, $i_{j} \in[n]$

- Output number of distinct elements seen
(Approximately, randomness ok)
- Small storage: will get $\log ^{O(1)} n$

Much better than storing all items!

3
34
3
2
10
3
13
12
2
555
9
74
42

Distinct elements problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{\text {poly }(n)}$

Typically, assume n is known, $i_{j} \in[n]$

- Output number of distinct elements seen
(Approximately, randomness ok)
- Small storage: will get $\log ^{O(1)} n$

Much better than storing all items!

3
$\begin{array}{lllllllllllllllllll}3 & 4 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9 & 7 & 4 & 4 & 2\end{array}$

Distinct elements problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{\text {poly }(n)}$

Typically, assume n is known, $i_{j} \in[n]$

- Output number of distinct elements seen
(Approximately, randomness ok)
- Small storage: will get $\log ^{O(1)} n$

Much better than storing all items!

3
$\begin{array}{llllllllll}3 & 4 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2\end{array}$
2
555
9
7442
23

Distinct elements problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{\text {poly }(n)}$

Typically, assume n is known, $i_{j} \in[n]$

- Output number of distinct elements seen
(Approximately, randomness ok)
- Small storage: will get $\log ^{O(1)} n$

Much better than storing all items!

3
$\begin{array}{llllllllll}3 & 4 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2\end{array}$
2
555
9
7
442
2
33

Distinct elements problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{\text {poly }(n)}$

Typically, assume n is known, $i_{j} \in[n]$

- Output number of distinct elements seen
(Approximately, randomness ok)
- Small storage: will get $\log ^{O(1)} n$

Much better than storing all items!

\#distinct elements=\#\{1, 2, 3, 4, 5, 7, 9, 10\}=8
$\begin{array}{lllllllllllllllllll}3 & 4 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9 & 7 & 4 & 4 & 2\end{array} 2$

Estimating number of IP flows through a router

Estimate the \# of IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
y	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0
$\begin{gathered} 0 \\ i n \end{gathered}$	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0

Estimating number of IP flows through a router

Estimating number of IP flows through a router

Estimating number of IP flows through a router

Estimating number of IP flows through a router

Estimating number of IP flows through a router

Estimating number of IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{\cup}{\cup}$	0	0	0	2	0	0	0	0	0
y	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	

Src	Dst
DATA	

Estimating number of IP flows through a router

Estimating number of IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{\cup}{\cup}$	0	0	0	2	0	0	0	0	0
y	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0	1	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	

Src	Dst
DATA	

Estimating number of IP flows through a router

Estimating number of IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{\cup}{\cup}$	0	0	0	2	0	0	0	0	0
y	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0	1	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	

Src	Dst
DATA	

Estimating number of IP flows through a router

Estimating number of IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{\cup}{\cup}$	0	0	0	3	0	0	0	0	0
y	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0	1	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	

Src	Dst
DATA	

Estimating number of IP flows through a router

Estimating number of IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{\cup}{\cup}$	0	0	0	3	0	0	0	0	0
y	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0	1	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	

Src	Dst
DATA	

Estimating number of IP flows through a router

Estimating number of IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{\cup}{\cup}$	0	0	0	3	0	0	0	0	0
y	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	2	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	

Src	Dst
DATA	

Estimating number of IP flows through a router

Estimating number of IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{\cup}{\cup}$	0	0	0	3	0	0	0	0	0
y	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0	2	0	0	0	0	0	1	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	

Src	Dst
DATA	

Estimating number of IP flows through a router

Estimating number of IP flows through a router

Src	Dst
DATA	

Estimating number of IP flows through a router

Estimating number of IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{\cup}{\cup}$	0	0	0	4	0	0	0	0	0
y	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	3	0	0	0	0	0	1	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	

Src	Dst
DATA	

Estimating number of IP flows through a router

Estimating number of IP flows through a router

Estimating number of IP flows through a router

Estimating number of IP flows through a router

Estimating number of IP flows through a router

Estimating number of IP flows through a router

Estimating number of IP flows through a router

Estimating number of IP flows through a router

Estimating number of IP flows through a router

Estimating number of IP flows through a router

Estimate the \# of IP flows through a router

Estimating number of IP flows through a router

Estimate the \# of IP flows through a router

destination
 1

1

0			5		
\cup					
Y					
0	4				1
0	4			1	

Estimating number of IP flows through a router

Estimate the \# of IP flows through a router

destination

1

1

0			5		
U				5	
0					
J					
0	4				
\sim				1	

Trivial: store all distinct IP pairs
Space complexity: $\Omega(n)$
1

Estimating number of IP flows through a router

destination

Estimate the \# of IP flows through a router

1
Trivial: store all distinct IP pairs
Space complexity: $\Theta(n)$
This lecture: solve in space $\log ^{O(1)} n$
Exponential improvement!

Estimating search statistics

Given a set of items as a stream (e.g. queries on google.com over a period of time)

Geneva to NYC, coffee in Geneva, Geneva to NYC

Estimating search statistics

Given a set of items as a stream (e.g. queries on google.com over a period of time)

```
Geneva to NYC, coffee in Geneva, Geneva to NYC
```

Find the \# of distinct items in the set
Geneva to NYC, coffee in Geneva

Streaming model

	Trivial	This lecture
Solution	hash<string> h;	HYPERLOGLOG
Space	$\#$ of distinct items	$\log ^{(1)} n$

Streaming model

	Trivial	This lecture
Solution	hash<string> h;	HYPERLOGLOG
Space	\# of distinct items	$\log ^{(1)} n$

Are constants small?

Streaming model

	Trivial	This lecture
Solution	hash<string> h;	HYPERLOGLOG
Space	$\#$ of distinct items	$\log ^{(1)} n$

Are constants small?

HyperLogLog: estimate Shakespeare's vocabulary using 128 bits of memory

Streaming model

Widely used in practice for scalable data analytics

most frequent searches on google.com over a time period

most frequent tweets

Distinct elements problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{n}$ integers between 1 and poly(n)
- Output ($1 \pm \varepsilon$)-approximation to \# of distinct elements $(1-\varepsilon) \mathrm{DE} \leq \widehat{\mathrm{DE}} \leq(1+\varepsilon) \mathrm{DE}$
- Small storage: will get $\log ^{O(1)} n$

Much better than storing all items!

- Success probability $\geq 1-\delta$

Simpler goal: for a given $T>0$, provide an algorithm ALG that, with probability $1-\delta$:

- answers YES if DE $>(1+\varepsilon) T$
- answers NO if $\mathrm{DE}<(1-\varepsilon) T$

Simpler goal: for a given $T>0$, provide an algorithm ALG that, with probability $1-\delta$:

- answers YES if DE $>(1+\varepsilon) T$
- answers NO if $\mathrm{DE}<(1-\varepsilon) T$

To achieve the original goal, run in ALG with thresholds

$$
T=1,1+\varepsilon,(1+\varepsilon)^{2}, \ldots, n
$$

Simpler goal: for a given $T>0$, provide an algorithm ALG that, with probability $1-\delta$:

- answers YES if DE $>(1+\varepsilon) T$
- answers NO if $\mathrm{DE}<(1-\varepsilon) T$

To achieve the original goal, run in ALG with thresholds

$$
T=1,1+\varepsilon,(1+\varepsilon)^{2}, \ldots, n
$$

- total space multiplied by $\log _{1+\varepsilon} n \approx \frac{1}{\varepsilon} \log n$
- failure probability multiplied by same factor

Vector interpretation

$x \in \mathbb{R}^{n}$| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate $\operatorname{DE}(x)$

Vector interpretation

3

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate $\operatorname{DE}(x)$

Vector interpretation

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate DE(x)

Vector interpretation

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate DE(x)

Vector interpretation

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate DE(x)

Vector interpretation

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate DE(x)

Vector interpretation

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate DE(x)

Vector interpretation

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate DE(x)

Vector interpretation

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate DE(x)

Vector interpretation

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate DE(x)

Vector interpretation

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate DE(x)

Vector interpretation

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate DE(x)

Vector interpretation

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate DE(x)

Vector interpretation

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate DE(x)

Vector interpretation

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate DE(x)

Vector interpretation

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate DE(x)

Vector interpretation

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate DE(x)

Vector interpretation

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate DE(x)

Vector interpretation

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate DE(x)

Vector interpretation

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate DE(x)

Vector interpretation

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate DE(x)

Vector interpretation

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate DE(x)

Vector interpretation

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate DE(x)

Vector interpretation

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate DE(x)

Vector interpretation

\#distinct elements=\#\{1, 2, 3, 4, 5, 7, 9, 10\}=8

$$
\begin{array}{llllllllllllllllllllll}
3 & 4 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9 & 7 & 4 & 4 & 2 & 2 & 3 & 3
\end{array}
$$

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate DE(x)

Estimating $\mathrm{DE}(x)$ - decision problem

- Choose a random set $S \subseteq[n]$ s.t. for each $i \in[n]$

$$
\operatorname{Pr}[i \in S]=1 / T
$$

Estimating $\mathrm{DE}(x)$ - decision problem

- Choose a random set $S \subseteq[n]$ s.t. for each $i \in[n]$

$$
\operatorname{Pr}[i \in S]=1 / T
$$

Estimating $\mathrm{DE}(x)$ - decision problem

- Choose a random set $S \subseteq[n]$ s.t. for each $i \in[n]$

$$
\operatorname{Pr}[i \in S]=1 / T
$$

- Maintain $c_{S}:=\sum_{i \in S} x_{i}$

Estimating $\mathrm{DE}(x)$ - decision problem

- Choose a random set $S \subseteq[n]$ s.t. for each $i \in[n]$

$$
\operatorname{Pr}[i \in S]=1 / T
$$

- Maintain $c_{S}:=\sum_{i \in S} x_{i}$
- Estimation:
- If $c_{S}>0$, output YES
- If $c_{S}=0$, output NO

Basic algorithm (decision problem)

Algorithm:

- Choose a random set $S \subseteq[n]$ s.t. for each $i \in[n]$

$$
\operatorname{Pr}[i \in S]=1 / T
$$

- Maintain $c_{S}:=\sum_{i \in S} x_{i}$
- Estimation:
- If $c_{S}>0$, output YES
- If $c_{S}=0$, output NO

Analysis:

- For T large enough: $\operatorname{Pr}\left[c_{S}=0\right]=(1-1 / T)^{\mathrm{DE}} \approx e^{-\mathrm{DE} / T}$
- So for small enough ε
- If $\operatorname{DE}>(1+\varepsilon) T$, then $\operatorname{Pr}\left[c_{S}=0\right] \approx e^{-(1+\varepsilon)}<1 / e-\varepsilon / 3$
- If $\mathrm{DE}<(1-\varepsilon) T$, then $\operatorname{Pr}\left[c_{S}=0\right] \approx e^{-(1-\varepsilon)}>1 / e+\varepsilon / 3$

Full algorithm for decision problem

Basic algorithm:

- If DE $>(1+\varepsilon) T$, then $\operatorname{Pr}\left[c_{S}=0\right]<1 / e-\varepsilon / 3$
- If $\mathrm{DE}<(1-\varepsilon) T$, then $\operatorname{Pr}\left[c_{S}=0\right]>1 / e+\varepsilon / 3$

Full algorithm for decision problem

Basic algorithm:

- If DE $>(1+\varepsilon) T$, then $\operatorname{Pr}\left[c_{S}=0\right]<1 / e-\varepsilon / 3$
- If $\mathrm{DE}<(1-\varepsilon) T$, then $\operatorname{Pr}\left[c_{S}=0\right]>1 / e+\varepsilon / 3$

Full algorithm:

- Select sets $S_{1}, \ldots, S_{k}, k=O\left(\frac{1}{\varepsilon^{2}} \log (1 / \delta)\right)$
- Maintain counters $c_{S_{j}}, j \in[k]$
- $Z:=\left\|\left\{j \in[k]: C_{S_{j}}=0\right\}\right\|$
- If $Z<k / e$, say YES
- If $Z \geq k / e$, say NO

Full algorithm for decision problem - space complexity

Basic algorithm:

- If DE $>(1+\varepsilon) T$, then $\operatorname{Pr}\left[c_{S}=0\right]<1 / e-\varepsilon / 3$
- If $\mathrm{DE}<(1-\varepsilon) T$, then $\operatorname{Pr}\left[c_{S}=0\right]>1 / e+\varepsilon / 3$

Full algorithm:

- Select sets $S_{1}, \ldots, S_{k}, k=O\left(\frac{1}{\varepsilon^{2}} \log (1 / \delta)\right)$
- $Z:=\left\|\left\{j \in[k]: c_{S_{j}}=0\right\}\right\|$
- If $Z<k / e$, say YES
- If $Z \geq k / e$, say NO

Space:

- Decision problem: $O\left(\frac{1}{\varepsilon^{2}} \log (1 / \delta)\right)$ numbers in $\left[0 . . n^{O(1)}\right]$
- Estimation: $O\left(\frac{1}{\varepsilon^{3}} \log n \log (1 / \delta)\right)$ numbers in $\left[0 . . n^{O(1)}\right]$ (error probability $O\left(\delta \cdot \frac{1}{\varepsilon} \log n\right)$)

Chernoff bound

Theorem
Let Z_{1}, \ldots, Z_{n} be i.i.d. Bernoulli random variables with $\mathrm{E}\left[Z_{i}\right]=p$, and let $Z=\sum_{i=1}^{n} Z_{i}$. Then for every $\varepsilon \in(0,1)$

$$
\operatorname{Pr}\left[\left|\sum_{i=1}^{n} Z_{i}-\mathbf{E}[Z]\right|>\varepsilon \mathbf{E}[Z]\right] \leq 2 \exp \left(-\varepsilon^{2} \mathbf{E}[Z] / 3\right)
$$

How do we store the set S ?

Choose a hash function

$$
h:[n] \rightarrow[1: T],
$$

let

$$
S=\{i \in[n]: h(i)=1\}
$$

How do we store the set S ?

Choose a hash function

$$
h:[n] \rightarrow[1: T],
$$

let

$$
S=\{i \in[n]: h(i)=1\}
$$

- How do we store h ? :)

How do we store the set S ?

Choose a hash function

$$
h:[n] \rightarrow[1: T],
$$

let

$$
S=\{i \in[n]: h(i)=1\}
$$

- How do we store h ? :)
- Use a pseudorandom number generator (e.g. Nisan's PRG)

How do we store the set S ?

Choose a hash function

$$
h:[n] \rightarrow[1: T],
$$

let

$$
S=\{i \in[n]: h(i)=1\}
$$

- How do we store h ? :)
- Use a pseudorandom number generator (e.g. Nisan's PRG)
or
- redo analysis (with slight modifications) for a pairwise independent h
- pairwise independent h can be stored using $O(\log n)$ bits (think $a x+b \bmod p$)
Ex: redo analysis assuming that h is pairwise independent only

Linear sketching

Maintain $S x$ for a matrix $S \in \mathbb{R}^{m \times n}, m$ small

$$
\left(m=O\left(\frac{1}{\varepsilon^{3}} \log ^{2} n \cdot \log (1 / \delta)\right)\right)
$$

So algorithm also works if some elements are deleted:

$$
x_{i}:=x_{i}-1,
$$

as long as $x \geq 0$ at the end of the stream.

Optimal space bounds, practical algorithms

Asymptotically tight space: $O\left(\frac{1}{\varepsilon^{2}}+\log n\right)$ bits Kane-Nelson-Woodruff'10
Practical: Durand-Flajolet'03
And recent practical improvements:
HyperLogLog in Practice: Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm

Stefan Heule
ETH Zurich and Google, Inc. stheule@ethz.ch

Marc Nunkesser Google, Inc. marcnunkesser @google.com

Alexander Hall
Google, Inc.
alexhall@google.com

Linear sketching

Later this week: more sketching algorithms for basic statistics, and then graph sketching

Approximate $\|x\|_{p}$ for other p ?

Approximate

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

in small space?
Note:

- $\|x\|_{\infty}=\max _{i \in[n]}\left|x_{i}\right|$
- $\|x\|_{0}=$ \#distinct elements in x

Approximate $\|x\|_{p}$ for other p ?

Approximate

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

in small space?
Note:

- $\|x\|_{\infty}=\max _{i \in[n]}\left|x_{i}\right|$
- $\|x\|_{0}=$ \#distinct elements in x

Frequency moments: $F_{p}=\|x\|_{p}^{p}$.

Approximate $\|x\|_{p}$ for other p ?

Approximate

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

in small space?
Note:

- $\|x\|_{\infty}=\max _{i \in[n]}\left|x_{i}\right|$
- $\|x\|_{0}=$ \#distinct elements in x

Frequency moments: $F_{p}=\|x\|_{p}^{p}$.
How much space is needed for $(1 \pm \varepsilon)$-approximation to $\|x\|_{p}$ for constant ε ?

- $\log ^{O(1)} n$ suffices for $p \in(0,2]$
- $\Omega\left(n^{1-2 / p}\right)$ needed for $p>2$.

In this lecture:

- Distinct elements
- Frequency moments (AMS sketch)

In this lecture:

- Distinct elements
- Frequency moments (AMS sketch)

AMS sketch (Alon-Matias-Szegedy'96)

Goal: approximate

$$
\|x\|_{2}=\sqrt{\sum_{i \in[n]} x_{i}^{2}}
$$

from a stream of increments/decrements to x_{i}.

AMS sketch (Alon-Matias-Szegedy'96)

Goal: approximate

$$
\|x\|_{2}=\sqrt{\sum_{i \in[n]} x_{i}^{2}}
$$

from a stream of increments/decrements to x_{i}.

Choose r_{1}, \ldots, r_{n} to be i.i.d. r.v., with

$$
\operatorname{Pr}\left[r_{i}=+1\right]=\operatorname{Pr}\left[r_{i}=-1\right]=1 / 2 .
$$

AMS sketch (Alon-Matias-Szegedy'96)

Goal: approximate

$$
\|x\|_{2}=\sqrt{\sum_{i \in[n]} x_{i}^{2}}
$$

from a stream of increments/decrements to x_{i}.

Choose r_{1}, \ldots, r_{n} to be i.i.d. r.v., with

$$
\operatorname{Pr}\left[r_{i}=+1\right]=\operatorname{Pr}\left[r_{i}=-1\right]=1 / 2 .
$$

Maintain

$$
Z=\sum_{i=1}^{n} r_{i} x_{i}
$$

under increments/decrements of x.

AMS sketch (Alon-Matias-Szegedy'96)

Goal: approximate

$$
\|x\|_{2}=\sqrt{\sum_{i \in[n]} x_{i}^{2}}
$$

from a stream of increments/decrements to x_{i}.

Choose r_{1}, \ldots, r_{n} to be i.i.d. r.v., with

$$
\operatorname{Pr}\left[r_{i}=+1\right]=\operatorname{Pr}\left[r_{i}=-1\right]=1 / 2 .
$$

Maintain

$$
Z=\sum_{i=1}^{n} r_{i} x_{i}
$$

under increments/decrements of x.

Basic algorithm: output Z^{2}

AMS sketch (Alon-Matias-Szegedy'96)

Goal: approximate

$$
\|x\|_{2}=\sqrt{\sum_{i \in[n]} x_{i}^{2}}
$$

from a stream of increments/decrements to x_{i}.

Choose r_{1}, \ldots, r_{n} to be i.i.d. r.v., with

$$
\operatorname{Pr}\left[r_{i}=+1\right]=\operatorname{Pr}\left[r_{i}=-1\right]=1 / 2 .
$$

Maintain

$$
Z=\sum_{i=1}^{n} r_{i} x_{i}
$$

under increments/decrements of x.
Basic algorithm: output Z^{2}
Want to claim that Z^{2} is 'close' to $\|x\|_{2}^{2}$ with 'high probability'

Alon-Matias-Szegedy - analysis (expectation)

Want to claim that Z^{2} is 'close' to $\|x\|_{2}^{2}$ with 'high probability'

Alon-Matias-Szegedy - analysis (expectation)

Want to claim that Z^{2} is 'close' to $\|x\|_{2}^{2}$ with 'high probability'
Compute expectation of Z^{2}, then bound the variance

Alon-Matias-Szegedy - analysis (expectation)

Want to claim that Z^{2} is 'close' to $\|x\|_{2}^{2}$ with 'high probability'
Compute expectation of Z^{2}, then bound the variance
Expectation:

$$
\begin{aligned}
\mathbf{E}\left[Z^{2}\right] & =\mathbf{E}\left[\left(\sum_{i=1}^{n} r_{i} x_{i}\right)^{2}\right] \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{E}\left[r_{i} r_{j} x_{i} x_{j}\right] \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{E}\left[r_{i} r_{j}\right] x_{i} x_{j} \\
& =\sum_{i=1}^{n} x_{i}^{2}+\sum_{i, j: i \neq j}^{n} \mathbf{E}\left[r_{i}\right] \mathbf{E}\left[r_{j}\right] x_{i} x_{j} \\
& =\sum_{i=1}^{n} x_{i}^{2} \\
& =\|x\|_{2}^{2}
\end{aligned}
$$

