
Lecture 1: Distinct Elements and Frequency
Moments in Data Streams

Michael Kapralov

EPFL

May 23, 2017

Streaming model

Observe a (very long) stream of data, e.g. IP packets, tweets,
search queries. . ..

Task: maintain (approximate) statistics of the stream

Streaming model

Ï Single pass over the data: i1, i2, . . . , ipoly(n)

Typically, assume n is known, ij ∈ [n]

Ï Small (sublinear) storage: typically nα,α< 1 or logO(1)n

Units of storage: bits, words or ‘data items’ (e.g., points, nodes/edges)

Ï Fast processing time per element

Ï Mostly randomized algorithms
Randomness often necessary

In this lecture:

Ï Distinct elements

Ï Frequency moments (AMS sketch)

In this lecture:

Ï Distinct elements

Ï Frequency moments (AMS sketch)

Distinct elements problem
Ï Single pass over the data: i1, i2, . . . , ipoly(n)

Typically, assume n is known, ij ∈ [n]

Ï Output number of distinct elements seen

(Approximately, randomness ok)

Ï Small storage: will get logO(1)n

Much better than storing all items!

1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 3 2 2 5 5 5 9 7 4 4 2 2 3 1

Distinct elements problem
Ï Single pass over the data: i1, i2, . . . , ipoly(n)

Typically, assume n is known, ij ∈ [n]

Ï Output number of distinct elements seen

(Approximately, randomness ok)

Ï Small storage: will get logO(1)n

Much better than storing all items!

1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3

4 1 2 10 1 5 1 1 2 2 3 3 3 9 7 4 4 2 2 1 5

Distinct elements problem
Ï Single pass over the data: i1, i2, . . . , ipoly(n)

Typically, assume n is known, ij ∈ [n]

Ï Output number of distinct elements seen

(Approximately, randomness ok)

Ï Small storage: will get logO(1)n

Much better than storing all items!

1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4

3 2 10 3 1 3 3 2 2 5 5 5 9 7 4 4 2 2 3 1

Distinct elements problem
Ï Single pass over the data: i1, i2, . . . , ipoly(n)

Typically, assume n is known, ij ∈ [n]

Ï Output number of distinct elements seen

(Approximately, randomness ok)

Ï Small storage: will get logO(1)n

Much better than storing all items!

1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3

2 10 3 1 3 3 2 2 5 5 5 9 7 4 4 2 2 3 1

Distinct elements problem
Ï Single pass over the data: i1, i2, . . . , ipoly(n)

Typically, assume n is known, ij ∈ [n]

Ï Output number of distinct elements seen

(Approximately, randomness ok)

Ï Small storage: will get logO(1)n

Much better than storing all items!

1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2

10 3 1 3 3 2 2 5 5 5 9 7 4 4 2 2 3 1

Distinct elements problem
Ï Single pass over the data: i1, i2, . . . , ipoly(n)

Typically, assume n is known, ij ∈ [n]

Ï Output number of distinct elements seen

(Approximately, randomness ok)

Ï Small storage: will get logO(1)n

Much better than storing all items!

1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10

3 1 3 3 2 2 5 5 5 9 7 4 4 2 2 3 1

Distinct elements problem
Ï Single pass over the data: i1, i2, . . . , ipoly(n)

Typically, assume n is known, ij ∈ [n]

Ï Output number of distinct elements seen

(Approximately, randomness ok)

Ï Small storage: will get logO(1)n

Much better than storing all items!

1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3

1 3 3 2 2 5 5 5 9 7 4 4 2 2 3 1

Distinct elements problem
Ï Single pass over the data: i1, i2, . . . , ipoly(n)

Typically, assume n is known, ij ∈ [n]

Ï Output number of distinct elements seen

(Approximately, randomness ok)

Ï Small storage: will get logO(1)n

Much better than storing all items!

1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1

3 3 2 2 5 5 5 9 7 4 4 2 2 3 1

Distinct elements problem
Ï Single pass over the data: i1, i2, . . . , ipoly(n)

Typically, assume n is known, ij ∈ [n]

Ï Output number of distinct elements seen

(Approximately, randomness ok)

Ï Small storage: will get logO(1)n

Much better than storing all items!

1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3

1 2 2 5 5 5 9 7 4 4 2 2 3 1

Distinct elements problem
Ï Single pass over the data: i1, i2, . . . , ipoly(n)

Typically, assume n is known, ij ∈ [n]

Ï Output number of distinct elements seen

(Approximately, randomness ok)

Ï Small storage: will get logO(1)n

Much better than storing all items!

1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1

2 2 5 5 5 9 7 4 4 2 2 3 1

Distinct elements problem
Ï Single pass over the data: i1, i2, . . . , ipoly(n)

Typically, assume n is known, ij ∈ [n]

Ï Output number of distinct elements seen

(Approximately, randomness ok)

Ï Small storage: will get logO(1)n

Much better than storing all items!

1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2

2 5 5 5 9 7 4 4 2 2 3 3

Distinct elements problem
Ï Single pass over the data: i1, i2, . . . , ipoly(n)

Typically, assume n is known, ij ∈ [n]

Ï Output number of distinct elements seen

(Approximately, randomness ok)

Ï Small storage: will get logO(1)n

Much better than storing all items!

1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2

5 5 5 9 7 4 4 2 2 3 1

Distinct elements problem
Ï Single pass over the data: i1, i2, . . . , ipoly(n)

Typically, assume n is known, ij ∈ [n]

Ï Output number of distinct elements seen

(Approximately, randomness ok)

Ï Small storage: will get logO(1)n

Much better than storing all items!

1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5

5 5 9 7 4 4 2 2 3 1

Distinct elements problem
Ï Single pass over the data: i1, i2, . . . , ipoly(n)

Typically, assume n is known, ij ∈ [n]

Ï Output number of distinct elements seen

(Approximately, randomness ok)

Ï Small storage: will get logO(1)n

Much better than storing all items!

1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5

5 9 7 4 4 2 2 3 1

Distinct elements problem
Ï Single pass over the data: i1, i2, . . . , ipoly(n)

Typically, assume n is known, ij ∈ [n]

Ï Output number of distinct elements seen

(Approximately, randomness ok)

Ï Small storage: will get logO(1)n

Much better than storing all items!

1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5

9 7 4 4 2 2 3 1

Distinct elements problem
Ï Single pass over the data: i1, i2, . . . , ipoly(n)

Typically, assume n is known, ij ∈ [n]

Ï Output number of distinct elements seen

(Approximately, randomness ok)

Ï Small storage: will get logO(1)n

Much better than storing all items!

1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5 9

7 4 4 2 2 3 1

Distinct elements problem
Ï Single pass over the data: i1, i2, . . . , ipoly(n)

Typically, assume n is known, ij ∈ [n]

Ï Output number of distinct elements seen

(Approximately, randomness ok)

Ï Small storage: will get logO(1)n

Much better than storing all items!

1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5 9

7 4 4 2 2 3 1

Distinct elements problem
Ï Single pass over the data: i1, i2, . . . , ipoly(n)

Typically, assume n is known, ij ∈ [n]

Ï Output number of distinct elements seen

(Approximately, randomness ok)

Ï Small storage: will get logO(1)n

Much better than storing all items!

1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5 9 7

4 4 2 2 3 1

Distinct elements problem
Ï Single pass over the data: i1, i2, . . . , ipoly(n)

Typically, assume n is known, ij ∈ [n]

Ï Output number of distinct elements seen

(Approximately, randomness ok)

Ï Small storage: will get logO(1)n

Much better than storing all items!

1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5 9 7 4

4 2 2 3 1

Distinct elements problem
Ï Single pass over the data: i1, i2, . . . , ipoly(n)

Typically, assume n is known, ij ∈ [n]

Ï Output number of distinct elements seen

(Approximately, randomness ok)

Ï Small storage: will get logO(1)n

Much better than storing all items!

1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5 9 7 4 4

2 2 3 1

Distinct elements problem
Ï Single pass over the data: i1, i2, . . . , ipoly(n)

Typically, assume n is known, ij ∈ [n]

Ï Output number of distinct elements seen

(Approximately, randomness ok)

Ï Small storage: will get logO(1)n

Much better than storing all items!

1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5 9 7 4 4 2

2 3 1

Distinct elements problem
Ï Single pass over the data: i1, i2, . . . , ipoly(n)

Typically, assume n is known, ij ∈ [n]

Ï Output number of distinct elements seen

(Approximately, randomness ok)

Ï Small storage: will get logO(1)n

Much better than storing all items!

1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5 9 7 4 4 2 2

3 1

Distinct elements problem
Ï Single pass over the data: i1, i2, . . . , ipoly(n)

Typically, assume n is known, ij ∈ [n]

Ï Output number of distinct elements seen

(Approximately, randomness ok)

Ï Small storage: will get logO(1)n

Much better than storing all items!

1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5 9 7 4 4 2 2 3

1

Distinct elements problem
Ï Single pass over the data: i1, i2, . . . , ipoly(n)

Typically, assume n is known, ij ∈ [n]

Ï Output number of distinct elements seen

(Approximately, randomness ok)

Ï Small storage: will get logO(1)n

Much better than storing all items!

1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5 9 7 4 4 2 2 3 3

Distinct elements problem
Ï Single pass over the data: i1, i2, . . . , ipoly(n)

Typically, assume n is known, ij ∈ [n]

Ï Output number of distinct elements seen

(Approximately, randomness ok)

Ï Small storage: will get logO(1)n

Much better than storing all items!

1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5 9 7 4 4 2 2 3 3

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 5 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 5 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 5 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 5 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

1
1

5

4 1
1

1

Src Dst

DATA

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

1
1

5

4 1
1

1

Src Dst

DATA

Trivial: store all distinct IP pairs

Space complexity: Ω(n)

This lecture: solve in space O(logn)

Exponential improvement!

Estimating number of IP flows through a router

Estimate the # of IP flows
through a router

destination

s
o
u
r
c
e

1
1

5

4 1
1

1

Src Dst

DATA

Trivial: store all distinct IP pairs

Space complexity: Θ(n)

This lecture: solve in space logO(1)n

Exponential improvement!

Estimating search statistics

Given a set of items as a stream (e.g. queries on google.com
over a period of time)

Geneva to NYC, coffee in Geneva, Geneva to NYC

Find the # of distinct items in the set

Geneva to NYC, coffee in Geneva

Trivial Streaming
Solution hash<string> h; HYPERLOGLOG

Space # of distinct items logO(1)n

Estimating search statistics

Given a set of items as a stream (e.g. queries on google.com
over a period of time)

Geneva to NYC, coffee in Geneva, Geneva to NYC

Find the # of distinct items in the set

Geneva to NYC, coffee in Geneva

Trivial Streaming
Solution hash<string> h; HYPERLOGLOG

Space # of distinct items logO(1)n

Streaming model
Trivial This lecture

Solution hash<string> h; HYPERLOGLOG

Space # of distinct items logO(1)n

Are constants small?

HyperLogLog: estimate
Shakespeare’s vocabulary
using 128 bits of memory

Streaming model
Trivial This lecture

Solution hash<string> h; HYPERLOGLOG

Space # of distinct items logO(1)n

Are constants small?

HyperLogLog: estimate
Shakespeare’s vocabulary
using 128 bits of memory

Streaming model
Trivial This lecture

Solution hash<string> h; HYPERLOGLOG

Space # of distinct items logO(1)n

Are constants small?

HyperLogLog: estimate
Shakespeare’s vocabulary
using 128 bits of memory

Streaming model

Widely used in practice for scalable data analytics

most frequent searches on google.com
over a time period

most frequent tweets

Distinct elements problem

Ï Single pass over the data: i1, i2, . . . , in

integers between 1 and poly(n)

Ï Output (1±ε)-approximation to # of distinct elements

(1−ε)DE≤ D̂E≤ (1+ε)DE

Ï Small storage: will get logO(1)n

Much better than storing all items!

Ï Success probability ≥ 1−δ

Simpler goal: for a given T > 0, provide an algorithm ALG that,
with probability 1−δ:

Ï answers YES if DE> (1+ε)T
Ï answers NO if DE< (1−ε)T

To achieve the original goal, run in ALG with thresholds

T = 1,1+ε,(1+ε)2, . . . ,n

Ï total space multiplied by log1+εn ≈ 1
ε logn

Ï failure probability multiplied by same factor

Simpler goal: for a given T > 0, provide an algorithm ALG that,
with probability 1−δ:

Ï answers YES if DE> (1+ε)T
Ï answers NO if DE< (1−ε)T

To achieve the original goal, run in ALG with thresholds

T = 1,1+ε,(1+ε)2, . . . ,n

Ï total space multiplied by log1+εn ≈ 1
ε logn

Ï failure probability multiplied by same factor

Simpler goal: for a given T > 0, provide an algorithm ALG that,
with probability 1−δ:

Ï answers YES if DE> (1+ε)T
Ï answers NO if DE< (1−ε)T

To achieve the original goal, run in ALG with thresholds

T = 1,1+ε,(1+ε)2, . . . ,n

Ï total space multiplied by log1+εn ≈ 1
ε logn

Ï failure probability multiplied by same factor

Vector interpretation

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 3 2 2 5 5 5 9 7 4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate DE(x)

Vector interpretation

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3

4 1 2 10 1 5 1 1 2 2 3 3 3 9 7 4 4 2 2 1 5

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate DE(x)

Vector interpretation

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4

3 2 10 3 1 3 3 2 2 5 5 5 9 7 4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate DE(x)

Vector interpretation

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3

2 10 3 1 3 3 2 2 5 5 5 9 7 4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate DE(x)

Vector interpretation

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2

10 3 1 3 3 2 2 5 5 5 9 7 4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate DE(x)

Vector interpretation

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10

3 1 3 3 2 2 5 5 5 9 7 4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate DE(x)

Vector interpretation

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3

1 3 3 2 2 5 5 5 9 7 4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate DE(x)

Vector interpretation

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1

3 3 2 2 5 5 5 9 7 4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate DE(x)

Vector interpretation

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3

1 2 2 5 5 5 9 7 4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate DE(x)

Vector interpretation

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1

2 2 5 5 5 9 7 4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate DE(x)

Vector interpretation

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2

2 5 5 5 9 7 4 4 2 2 3 3

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate DE(x)

Vector interpretation

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2

5 5 5 9 7 4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate DE(x)

Vector interpretation

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5

5 5 9 7 4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate DE(x)

Vector interpretation

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5

5 9 7 4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate DE(x)

Vector interpretation

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5

9 7 4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate DE(x)

Vector interpretation

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5 9

7 4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate DE(x)

Vector interpretation

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5 9

7 4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate DE(x)

Vector interpretation

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5 9 7

4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate DE(x)

Vector interpretation

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5 9 7 4

4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate DE(x)

Vector interpretation

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5 9 7 4 4

2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate DE(x)

Vector interpretation

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5 9 7 4 4 2

2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate DE(x)

Vector interpretation

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5 9 7 4 4 2 2

3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate DE(x)

Vector interpretation

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5 9 7 4 4 2 2 3

1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate DE(x)

Vector interpretation

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5 9 7 4 4 2 2 3 3

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate DE(x)

Vector interpretation

1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5 9 7 4 4 2 2 3 3

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate DE(x)

Estimating DE(x) – decision problem

1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

Ï Choose a random set S ⊆ [n] s.t. for each i ∈ [n]
Pr[i ∈S]= 1/T

Ï Maintain cS :=∑
i∈S xi

Ï Estimation:
Ï If cS > 0, output YES
Ï If cS = 0, output NO

Estimating DE(x) – decision problem

1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

Ï Choose a random set S ⊆ [n] s.t. for each i ∈ [n]
Pr[i ∈S]= 1/T

Ï Maintain cS :=∑
i∈S xi

Ï Estimation:
Ï If cS > 0, output YES
Ï If cS = 0, output NO

Estimating DE(x) – decision problem

1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

Ï Choose a random set S ⊆ [n] s.t. for each i ∈ [n]
Pr[i ∈S]= 1/T

Ï Maintain cS :=∑
i∈S xi

Ï Estimation:
Ï If cS > 0, output YES
Ï If cS = 0, output NO

Estimating DE(x) – decision problem

1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

Ï Choose a random set S ⊆ [n] s.t. for each i ∈ [n]
Pr[i ∈S]= 1/T

Ï Maintain cS :=∑
i∈S xi

Ï Estimation:
Ï If cS > 0, output YES
Ï If cS = 0, output NO

Basic algorithm (decision problem)

Algorithm:
Ï Choose a random set S ⊆ [n] s.t. for each i ∈ [n]

Pr[i ∈S]= 1/T

Ï Maintain cS :=∑
i∈S xi

Ï Estimation:
Ï If cS > 0, output YES
Ï If cS = 0, output NO

Analysis:
Ï For T large enough: Pr[cS = 0]= (1−1/T)DE ≈ e−DE/T

Ï So for small enough ε
Ï If DE> (1+ε)T , then Pr[cS = 0]≈ e−(1+ε) < 1/e−ε/3
Ï If DE< (1−ε)T , then Pr[cS = 0]≈ e−(1−ε) > 1/e+ε/3

Full algorithm for decision problem
Basic algorithm:

Ï If DE> (1+ε)T , then Pr[cS = 0]< 1/e−ε/3

Ï If DE< (1−ε)T , then Pr[cS = 0]> 1/e+ε/3

Full algorithm:
Ï Select sets S1, . . . ,Sk , k =O(1

ε2 log(1/δ))

Ï Maintain counters cSj , j ∈ [k]
Ï Z := ‖{j ∈ [k] : cSj = 0}‖
Ï If Z < k/e, say YES

Ï If Z ≥ k/e, say NO

Space complexity? Correctness?

Full algorithm for decision problem
Basic algorithm:

Ï If DE> (1+ε)T , then Pr[cS = 0]< 1/e−ε/3

Ï If DE< (1−ε)T , then Pr[cS = 0]> 1/e+ε/3

Full algorithm:
Ï Select sets S1, . . . ,Sk , k =O(1

ε2 log(1/δ))

Ï Maintain counters cSj , j ∈ [k]
Ï Z := ‖{j ∈ [k] : cSj = 0}‖
Ï If Z < k/e, say YES

Ï If Z ≥ k/e, say NO

Space complexity? Correctness?

Full algorithm for decision problem – space complexity

Basic algorithm:

Ï If DE> (1+ε)T , then Pr[cS = 0]< 1/e−ε/3

Ï If DE< (1−ε)T , then Pr[cS = 0]> 1/e+ε/3

Full algorithm:
Ï Select sets S1, . . . ,Sk , k =O(1

ε2 log(1/δ))
Ï Z := ‖{j ∈ [k] : cSj = 0}‖
Ï If Z < k/e, say YES
Ï If Z ≥ k/e, say NO

Space:
Ï Decision problem: O(1

ε2 log(1/δ)) numbers in [0..nO(1)]

Ï Estimation: O(1
ε3 logn log(1/δ)) numbers in [0..nO(1)]

(error probability O(δ · 1
ε logn))

Chernoff bound

Theorem
Let Z1, . . . ,Zn be i.i.d. Bernoulli random variables with E[Zi]= p,
and let Z =∑n

i=1 Zi . Then for every ε ∈ (0,1)

Pr

[∣∣∣∣∣ n∑
i=1

Zi −E[Z]

∣∣∣∣∣> εE[Z]

]
≤ 2exp(−ε2E[Z]/3).

How do we store the set S?
Choose a hash function

h : [n]→ [1 :T],

let
S = {

i ∈ [n] : h(i)= 1
}

Ï How do we store h? :)

Ï Use a pseudorandom number generator
(e.g. Nisan’s PRG)

or

Ï redo analysis (with slight modifications) for a pairwise
independent h

Ï pairwise independent h can be stored using O(logn) bits
(think ax +b mod p)

Ex: redo analysis assuming that h is pairwise independent only

How do we store the set S?
Choose a hash function

h : [n]→ [1 :T],

let
S = {

i ∈ [n] : h(i)= 1
}

Ï How do we store h? :)

Ï Use a pseudorandom number generator
(e.g. Nisan’s PRG)

or

Ï redo analysis (with slight modifications) for a pairwise
independent h

Ï pairwise independent h can be stored using O(logn) bits
(think ax +b mod p)

Ex: redo analysis assuming that h is pairwise independent only

How do we store the set S?
Choose a hash function

h : [n]→ [1 :T],

let
S = {

i ∈ [n] : h(i)= 1
}

Ï How do we store h? :)

Ï Use a pseudorandom number generator
(e.g. Nisan’s PRG)

or

Ï redo analysis (with slight modifications) for a pairwise
independent h

Ï pairwise independent h can be stored using O(logn) bits
(think ax +b mod p)

Ex: redo analysis assuming that h is pairwise independent only

How do we store the set S?
Choose a hash function

h : [n]→ [1 :T],

let
S = {

i ∈ [n] : h(i)= 1
}

Ï How do we store h? :)

Ï Use a pseudorandom number generator
(e.g. Nisan’s PRG)

or

Ï redo analysis (with slight modifications) for a pairwise
independent h

Ï pairwise independent h can be stored using O(logn) bits
(think ax +b mod p)

Ex: redo analysis assuming that h is pairwise independent only

Linear sketching

Maintain Sx for a matrix S ∈Rm×n, m small
(m =O(1

ε3 log2 n · log(1/δ)))

S

n

m

sketching matrix

space requirement=number of rows

•

x

b=

So algorithm also works if some elements are deleted:

xi := xi −1,

as long as x ≥ 0 at the end of the stream.

Optimal space bounds, practical algorithms

Asymptotically tight space: O(1
ε2 + logn) bits Kane-Nelson-Woodruff’10

Practical: Durand-Flajolet’03

And recent practical improvements:

Linear sketching

S

n

m

sketching matrix

space requirement=number of rows

•

x

b=

Later this week: more sketching algorithms for basic statistics,
and then graph sketching

Approximate ||x ||p for other p?

Approximate

||x ||p =
(

n∑
i=1

|xi |p
)1/p

in small space?

Note:
Ï ||x ||∞ =maxi∈[n] |xi |
Ï ||x ||0 =#distinct elements in x

Frequency moments: Fp = ||x ||pp.

How much space is needed for (1±ε)-approximation to ||x ||p for
constant ε?

Ï logO(1)n suffices for p ∈ (0,2]
Ï Ω(n1−2/p) needed for p > 2.

Approximate ||x ||p for other p?

Approximate

||x ||p =
(

n∑
i=1

|xi |p
)1/p

in small space?

Note:
Ï ||x ||∞ =maxi∈[n] |xi |
Ï ||x ||0 =#distinct elements in x

Frequency moments: Fp = ||x ||pp.

How much space is needed for (1±ε)-approximation to ||x ||p for
constant ε?

Ï logO(1)n suffices for p ∈ (0,2]
Ï Ω(n1−2/p) needed for p > 2.

Approximate ||x ||p for other p?

Approximate

||x ||p =
(

n∑
i=1

|xi |p
)1/p

in small space?

Note:
Ï ||x ||∞ =maxi∈[n] |xi |
Ï ||x ||0 =#distinct elements in x

Frequency moments: Fp = ||x ||pp.

How much space is needed for (1±ε)-approximation to ||x ||p for
constant ε?

Ï logO(1)n suffices for p ∈ (0,2]
Ï Ω(n1−2/p) needed for p > 2.

In this lecture:

Ï Distinct elements

Ï Frequency moments (AMS sketch)

In this lecture:

Ï Distinct elements

Ï Frequency moments (AMS sketch)

AMS sketch (Alon-Matias-Szegedy’96)
Goal: approximate

||x ||2 =
√ ∑

i∈[n]
x2

i

from a stream of increments/decrements to xi .

Choose r1, . . . ,rn to be i.i.d. r.v., with

Pr[ri =+1]=Pr[ri =−1]= 1/2.

Maintain

Z =
n∑

i=1
rixi

under increments/decrements of x .

Basic algorithm: output Z 2

Want to claim that Z 2 is ‘close’ to ||x ||22 with ‘high probability’

AMS sketch (Alon-Matias-Szegedy’96)
Goal: approximate

||x ||2 =
√ ∑

i∈[n]
x2

i

from a stream of increments/decrements to xi .

Choose r1, . . . ,rn to be i.i.d. r.v., with

Pr[ri =+1]=Pr[ri =−1]= 1/2.

Maintain

Z =
n∑

i=1
rixi

under increments/decrements of x .

Basic algorithm: output Z 2

Want to claim that Z 2 is ‘close’ to ||x ||22 with ‘high probability’

AMS sketch (Alon-Matias-Szegedy’96)
Goal: approximate

||x ||2 =
√ ∑

i∈[n]
x2

i

from a stream of increments/decrements to xi .

Choose r1, . . . ,rn to be i.i.d. r.v., with

Pr[ri =+1]=Pr[ri =−1]= 1/2.

Maintain

Z =
n∑

i=1
rixi

under increments/decrements of x .

Basic algorithm: output Z 2

Want to claim that Z 2 is ‘close’ to ||x ||22 with ‘high probability’

AMS sketch (Alon-Matias-Szegedy’96)
Goal: approximate

||x ||2 =
√ ∑

i∈[n]
x2

i

from a stream of increments/decrements to xi .

Choose r1, . . . ,rn to be i.i.d. r.v., with

Pr[ri =+1]=Pr[ri =−1]= 1/2.

Maintain

Z =
n∑

i=1
rixi

under increments/decrements of x .

Basic algorithm: output Z 2

Want to claim that Z 2 is ‘close’ to ||x ||22 with ‘high probability’

AMS sketch (Alon-Matias-Szegedy’96)
Goal: approximate

||x ||2 =
√ ∑

i∈[n]
x2

i

from a stream of increments/decrements to xi .

Choose r1, . . . ,rn to be i.i.d. r.v., with

Pr[ri =+1]=Pr[ri =−1]= 1/2.

Maintain

Z =
n∑

i=1
rixi

under increments/decrements of x .

Basic algorithm: output Z 2

Want to claim that Z 2 is ‘close’ to ||x ||22 with ‘high probability’

Alon-Matias-Szegedy – analysis (expectation)
Want to claim that Z 2 is ‘close’ to ||x ||22 with ‘high probability’

Compute expectation of Z 2, then bound the variance

Expectation:

E[Z 2]=E

[
(

n∑
i=1

rixi)
2

]

=
n∑

i=1

n∑
j=1

E[ri rjxixj]

=
n∑

i=1

n∑
j=1

E[ri rj]xixj

=
n∑

i=1
x2

i +
n∑

i ,j :i 6=j
E[ri]E[rj]xixj

=
n∑

i=1
x2

i

= ||x ||22

(our estimator is unbiased!)

Alon-Matias-Szegedy – analysis (expectation)
Want to claim that Z 2 is ‘close’ to ||x ||22 with ‘high probability’

Compute expectation of Z 2, then bound the variance

Expectation:

E[Z 2]=E

[
(

n∑
i=1

rixi)
2

]

=
n∑

i=1

n∑
j=1

E[ri rjxixj]

=
n∑

i=1

n∑
j=1

E[ri rj]xixj

=
n∑

i=1
x2

i +
n∑

i ,j :i 6=j
E[ri]E[rj]xixj

=
n∑

i=1
x2

i

= ||x ||22

(our estimator is unbiased!)

Alon-Matias-Szegedy – analysis (expectation)
Want to claim that Z 2 is ‘close’ to ||x ||22 with ‘high probability’

Compute expectation of Z 2, then bound the variance

Expectation:

E[Z 2]=E

[
(

n∑
i=1

rixi)
2

]

=
n∑

i=1

n∑
j=1

E[ri rjxixj]

=
n∑

i=1

n∑
j=1

E[ri rj]xixj

=
n∑

i=1
x2

i +
n∑

i ,j :i 6=j
E[ri]E[rj]xixj

=
n∑

i=1
x2

i

= ||x ||22

(our estimator is unbiased!)

