Lecture 1: Distinct Elements and Frequency Moments in Data Streams

Michael Kapralov

EPFL

May 23, 2017

Observe a (very long) stream of data, e.g. IP packets, tweets, search queries....

Task: maintain (approximate) statistics of the stream

Streaming model

Single pass over the data: $i_1, i_2, \dots, i_{poly(n)}$

Typically, assume *n* is known, $i_j \in [n]$

- Small (sublinear) storage: typically n^α, α < 1 or log^{O(1)} n Units of storage: bits, words or 'data items' (e.g., points, nodes/edges)
- Fast processing time per element
- Mostly randomized algorithms
 Randomness often necessary

In this lecture:

- Distinct elements
- Frequency moments (AMS sketch)

In this lecture:

Distinct elements

Frequency moments (AMS sketch)

Single pass over the data: $i_1, i_2, \dots, i_{poly(n)}$

Typically, assume *n* is known, $i_j \in [n]$

Output number of distinct elements seen

(Approximately, randomness ok)

Small storage: will get log^{O(1)} n

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

Single pass over the data: $i_1, i_2, \dots, i_{poly(n)}$

Typically, assume *n* is known, $i_j \in [n]$

Output number of distinct elements seen

(Approximately, randomness ok)

Small storage: will get log^{O(1)} n

Single pass over the data: $i_1, i_2, \dots, i_{poly(n)}$

Typically, assume *n* is known, $i_i \in [n]$

Output number of distinct elements seen

(Approximately, randomness ok)

Small storage: will get log^{O(1)} n

Single pass over the data: $i_1, i_2, \dots, i_{poly(n)}$

Typically, assume *n* is known, $i_j \in [n]$

Output number of distinct elements seen

(Approximately, randomness ok)

Small storage: will get log^{O(1)} n

Single pass over the data: $i_1, i_2, \dots, i_{poly(n)}$

Typically, assume *n* is known, $i_i \in [n]$

Output number of distinct elements seen

(Approximately, randomness ok)

Small storage: will get log^{O(1)} n

Single pass over the data: $i_1, i_2, \dots, i_{poly(n)}$

Typically, assume *n* is known, $i_i \in [n]$

Output number of distinct elements seen

(Approximately, randomness ok)

Small storage: will get log^{O(1)} n

Much better than storing all items!

3 4 3 2 10

Single pass over the data: $i_1, i_2, \dots, i_{poly(n)}$

Typically, assume *n* is known, $i_i \in [n]$

Output number of distinct elements seen

(Approximately, randomness ok)

Small storage: will get log^{O(1)} n

Single pass over the data: $i_1, i_2, \dots, i_{poly(n)}$

Typically, assume *n* is known, $i_i \in [n]$

Output number of distinct elements seen

(Approximately, randomness ok)

Small storage: will get log^{O(1)} n

Single pass over the data: $i_1, i_2, \dots, i_{poly(n)}$

Typically, assume *n* is known, $i_i \in [n]$

Output number of distinct elements seen

(Approximately, randomness ok)

► Small storage: will get log^{O(1)} n

Much better than storing all items!

3 4 3 2 10 3 1 3

Single pass over the data: $i_1, i_2, \dots, i_{poly(n)}$

Typically, assume *n* is known, $i_j \in [n]$

Output number of distinct elements seen

(Approximately, randomness ok)

Small storage: will get log^{O(1)} n

Much better than storing all items!

3 4 3 2 10 3 1 3 1

Single pass over the data: $i_1, i_2, \dots, i_{poly(n)}$

Typically, assume *n* is known, $i_i \in [n]$

Output number of distinct elements seen

(Approximately, randomness ok)

► Small storage: will get log^{O(1)} n

Single pass over the data: $i_1, i_2, \dots, i_{poly(n)}$

Typically, assume *n* is known, $i_j \in [n]$

Output number of distinct elements seen

(Approximately, randomness ok)

► Small storage: will get log^{O(1)} n

Single pass over the data: $i_1, i_2, \dots, i_{poly(n)}$

Typically, assume *n* is known, $i_j \in [n]$

Output number of distinct elements seen

(Approximately, randomness ok)

Small storage: will get log^{O(1)} n

Single pass over the data: $i_1, i_2, \dots, i_{poly(n)}$

Typically, assume *n* is known, $i_j \in [n]$

Output number of distinct elements seen

(Approximately, randomness ok)

Small storage: will get log^{O(1)} n

Single pass over the data: $i_1, i_2, \dots, i_{poly(n)}$

Typically, assume *n* is known, $i_i \in [n]$

Output number of distinct elements seen

(Approximately, randomness ok)

Small storage: will get log^{O(1)} n

Single pass over the data: $i_1, i_2, \dots, i_{poly(n)}$

Typically, assume *n* is known, $i_i \in [n]$

Output number of distinct elements seen

(Approximately, randomness ok)

► Small storage: will get log^{O(1)} n

Single pass over the data: $i_1, i_2, \dots, i_{poly(n)}$

Typically, assume *n* is known, $i_i \in [n]$

Output number of distinct elements seen

(Approximately, randomness ok)

► Small storage: will get log^{O(1)} n

Single pass over the data: $i_1, i_2, \dots, i_{poly(n)}$

Typically, assume *n* is known, $i_j \in [n]$

Output number of distinct elements seen

(Approximately, randomness ok)

► Small storage: will get log^{O(1)} n

Single pass over the data: $i_1, i_2, \dots, i_{poly(n)}$

Typically, assume *n* is known, $i_j \in [n]$

Output number of distinct elements seen

(Approximately, randomness ok)

► Small storage: will get log^{O(1)} n

Single pass over the data: $i_1, i_2, \dots, i_{poly(n)}$

Typically, assume *n* is known, $i_j \in [n]$

Output number of distinct elements seen

(Approximately, randomness ok)

► Small storage: will get log^{O(1)} n

Single pass over the data: $i_1, i_2, \dots, i_{poly(n)}$

Typically, assume *n* is known, $i_j \in [n]$

Output number of distinct elements seen

(Approximately, randomness ok)

Small storage: will get log^{O(1)} n

Single pass over the data: $i_1, i_2, \dots, i_{poly(n)}$

Typically, assume *n* is known, $i_j \in [n]$

Output number of distinct elements seen

(Approximately, randomness ok)

Small storage: will get log^{O(1)} n

Single pass over the data: $i_1, i_2, \dots, i_{poly(n)}$

Typically, assume *n* is known, $i_j \in [n]$

Output number of distinct elements seen

(Approximately, randomness ok)

Small storage: will get log^{O(1)} n

Single pass over the data: $i_1, i_2, \dots, i_{poly(n)}$

Typically, assume *n* is known, $i_i \in [n]$

Output number of distinct elements seen

(Approximately, randomness ok)

Small storage: will get log^{O(1)} n

Single pass over the data: $i_1, i_2, \dots, i_{poly(n)}$

Typically, assume *n* is known, $i_j \in [n]$

Output number of distinct elements seen

(Approximately, randomness ok)

Small storage: will get log^{O(1)} n

Estimate the **#** of IP flows through a router

destination									
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
Λ	Ο	Ο	Ο	Ο	Ο	Ο	Ο	Ω	

source

destination									
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
Δ	Ο	Ο	Δ	Δ	Δ	Δ	Δ	Ο	

source

destination										
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	1	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		

Src	Dst				
DATA					

destination									
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	1	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
Ο	Ο	Ο	Ο	Ο	Ο	Ο	Ο	Ο	

source

destination										
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	1	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	1	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		

Src	Dst				
DATA					

source

destination										
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	1	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	1	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		

destination										
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	2	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	1	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		

Src	Dst			
DA	TA			

destination										
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	2	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	1	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		

destination										
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	2	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	1	0	0	0	0	0	0	0		
0	0	0	0	0	1	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		

Src	Dst			
DA	TA			

destination										
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	2	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	1	0	0	0	0	0	0	0		
0	0	0	0	0	1	0	0	0		
0	0	0	0	0	0	0	0	0		
Δ	Ο	Ο	Ο	Ο	Ο	Ο	Λ	Ο		

destination										
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	2	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	1	0	0	0	0	0	0	0		
0	0	0	0	0	1	0	0	0		
0	0	1	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		

Src	Dst			
DA	TA			

destination										
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	2	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	1	0	0	0	0	0	0	0		
0	0	0	0	0	1	0	0	0		
0	0	1	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		

destination										
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	3	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	1	0	0	0	0	0	0	0		
0	0	0	0	0	1	0	0	0		
0	0	1	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		

Src	Dst			
DA	ТА			

destination										
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	3	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	1	0	0	0	0	0	0	0		
0	0	0	0	0	1	0	0	0		
0	0	1	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		

destination										
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	1	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	3	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	1	0	0	0	0	0	0	0		
0	0	0	0	0	1	0	0	0		
0	0	1	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		

Src	Dst				
DA	TA				

destination										
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	1	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	3	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	1	0	0	0	0	0	0	0		
0	0	0	0	0	1	0	0	0		
0	0	1	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		

destination										
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	1	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	3	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	2	0	0	0	0	0	0	0		
0	0	0	0	0	1	0	0	0		
0	0	1	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		

Src	Dst				
DA	TA				

	destination										
0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	1	0	0			
0	0	0	0	0	0	0	0	0			
0	0	0	3	0	0	0	0	0			
0	0	0	0	0	0	0	0	0			
0	2	0	0	0	0	0	0	0			
0	0	0	0	0	1	0	0	0			
0	0	1	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0			

destination										
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	1	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	3	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	2	0	0	0	0	0	1	0		
0	0	0	0	0	1	0	0	0		
0	0	1	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		

Src	Dst				
DA	TA				

	destination										
0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	1	0	0			
0	0	0	0	0	0	0	0	0			
0	0	0	3	0	0	0	0	0			
0	0	0	0	0	0	0	0	0			
0	2	0	0	0	0	0	1	0			
0	0	0	0	0	1	0	0	0			
0	0	1	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0			

destination										
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	1	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	4	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	2	0	0	0	0	0	1	0		
0	0	0	0	0	1	0	0	0		
0	0	1	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		

Src	Dst				
DA	TA				

	destination										
0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	1	0	0			
0	0	0	0	0	0	0	0	0			
0	0	0	4	0	0	0	0	0			
0	0	0	0	0	0	0	0	0			
0	2	0	0	0	0	0	1	0			
0	0	0	0	0	1	0	0	0			
0	0	1	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0			

		de	esti	Lnat	cio	n			
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	1	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	4	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	3	0	0	0	0	0	1	0	
0	0	0	0	0	1	0	0	0	
0	0	1	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	

Src	Dst						
DA	DATA						

	destination							
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0
0	0	0	4	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	3	0	0	0	0	0	1	0
0	0	0	0	0	1	0	0	0
0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

		de	esti	Lnat	cio	n			
1	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	1	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	4	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	3	0	0	0	0	0	1	0	
0	0	0	0	0	1	0	0	0	
0	0	1	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	

Src	Dst						
DA	DATA						

	destination							
1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0
0	0	0	4	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	3	0	0	0	0	0	1	0
0	0	0	0	0	1	0	0	0
0	0	1	0	0	0	0	0	0
Δ	Ο	Ο	Ο	Ο	Ο	Ο	Ο	Ο

	destination							
1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0
0	0	0	4	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	3	0	0	0	0	0	1	0
0	0	0	0	0	1	0	0	0
0	0	1	0	0	0	0	0	0
Λ	Ο	Ο	Ο	Ο	Ο	Ο	Ο	Ο

		de	esti	Lnat	cio	n			
1	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	1	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	4	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	4	0	0	0	0	0	1	0	
0	0	0	0	0	1	0	0	0	
0	0	1	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	

Src	Dst			
DA	TA			

	destination							
1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0
0	0	0	4	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	4	0	0	0	0	0	1	0
0	0	0	0	0	1	0	0	0
0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

		de	esti	Lnat	cio	n			
1	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	1	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	5	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	4	0	0	0	0	0	1	0	
0	0	0	0	0	1	0	0	0	
0	0	1	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	

Src	Dst							
DA	DATA							

destination								
1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0
0	0	0	5	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	4	0	0	0	0	0	1	0
0	0	0	0	0	1	0	0	0
0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

destination								
1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0
0	0	0	5	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	4	0	0	0	0	0	1	0
0	0	0	0	0	1	0	0	0
0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Estimate the **#** of IP flows through a router

destination								
1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0
0	0	0	5	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	4	0	0	0	0	0	1	0
0	0	0	0	0	1	0	0	0
0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Estimate the **#** of IP flows through a router

Estimate the **#** of IP flows through a router

Trivial: store all distinct IP pairs Space complexity: $\Omega(n)$

Estimate the **#** of IP flows through a router

Trivial: store all distinct IP pairs Space complexity: $\Theta(n)$

This lecture: solve in space $\log^{O(1)} n$

Exponential improvement!

Estimating search statistics

Given a set of items as a stream (e.g. queries on google.com over a period of time)

Geneva to NYC, coffee in Geneva, Geneva to NYC

Estimating search statistics

Given a set of items as a stream (e.g. queries on google.com over a period of time)

Geneva to NYC, coffee in Geneva, Geneva to NYC

Find the # of distinct items in the set

Geneva to NYC, coffee in Geneva

	Trivial	This lecture
Solution	hash <string> h;</string>	HyperLogLog
Space	# of distinct items	log ^{<i>O</i>(1)} <i>n</i>

	Trivial	This lecture
Solution	hash <string> h;</string>	HyperLogLog
Space	# of distinct items	log ^{<i>O</i>(1)} <i>n</i>

Are constants small?

	Trivial	This lecture
Solution	hash <string> h;</string>	HyperLogLog
Space	<pre># of distinct items</pre>	log ^{<i>O</i>(1)} <i>n</i>

Are constants small?

HyperLogLog: estimate Shakespeare's vocabulary using 128 bits of memory

Widely used in practice for scalable data analytics

most frequent searches on google.com over a time period

most frequent tweets
Distinct elements problem

Single pass over the data: i_1, i_2, \ldots, i_n

integers between 1 and poly(n)

- Output (1 ± ε)-approximation to # of distinct elements (1-ε)DE ≤ DE ≤ (1+ε)DE
- Small storage: will get log^{O(1)} n

Much better than storing all items!

• Success probability $\geq 1 - \delta$

Simpler goal: for a given T > 0, provide an algorithm ALG that, with probability $1 - \delta$:

- answers YES if $DE > (1 + \varepsilon)T$
- answers NO if $DE < (1 \varepsilon)T$

Simpler goal: for a given T > 0, provide an algorithm ALG that, with probability $1 - \delta$:

- answers YES if $DE > (1 + \varepsilon)T$
- answers NO if $DE < (1 \varepsilon)T$

To achieve the original goal, run in ALG with thresholds

$$T = 1, 1 + \varepsilon, (1 + \varepsilon)^2, \dots, n$$

Simpler goal: for a given T > 0, provide an algorithm ALG that, with probability $1 - \delta$:

- answers YES if $DE > (1 + \varepsilon)T$
- answers NO if $DE < (1 \varepsilon)T$

To achieve the original goal, run in ALG with thresholds

$$T = 1, 1 + \varepsilon, (1 + \varepsilon)^2, \dots, n$$

- total space multiplied by $\log_{1+\varepsilon} n \approx \frac{1}{\varepsilon} \log n$
- failure probability multiplied by same factor

$x \in \mathbb{R}^n$ 1 2 3 4 5 6 7 8 9 10

- Initially, x = 0
- Insertion of *i* interpreted as

$$x_i := x_i + 1$$

- Initially, x = 0
- Insertion of *i* interpreted as

$$x_i := x_i + 1$$

- Initially, x = 0
- Insertion of *i* interpreted as

$$x_i := x_i + 1$$

- Initially, x = 0
- Insertion of *i* interpreted as

$$x_i := x_i + 1$$

3 4 3 2

- ► Initially, x = 0
- Insertion of *i* interpreted as

$$x_i := x_i + 1$$

3 4 3 2 10

- Initially, x = 0
- Insertion of *i* interpreted as

$$x_i := x_i + 1$$

3 4 3 2 10 3

- Initially, x = 0
- Insertion of *i* interpreted as

$$x_i := x_i + 1$$

- Initially, x = 0
- Insertion of *i* interpreted as

$$x_i := x_i + 1$$

- ► Initially, x = 0
- Insertion of *i* interpreted as

$$x_i := x_i + 1$$

- ► Initially, x = 0
- Insertion of *i* interpreted as

$$x_i := x_i + 1$$

- ► Initially, x = 0
- Insertion of *i* interpreted as

$$x_i := x_i + 1$$

- ► Initially, x = 0
- Insertion of *i* interpreted as

$$x_i := x_i + 1$$

- ► Initially, x = 0
- Insertion of *i* interpreted as

$$x_i := x_i + 1$$

- ► Initially, x = 0
- Insertion of *i* interpreted as

$$x_i := x_i + 1$$

- ► Initially, x = 0
- Insertion of *i* interpreted as

$$x_i := x_i + 1$$

- Initially, x = 0
- Insertion of *i* interpreted as

$$x_i := x_i + 1$$

- Initially, x = 0
- Insertion of *i* interpreted as

$$x_i := x_i + 1$$

- Initially, x = 0
- Insertion of *i* interpreted as

$$x_i := x_i + 1$$

- Initially, x = 0
- Insertion of *i* interpreted as

$$x_i := x_i + 1$$

- Initially, x = 0
- Insertion of *i* interpreted as

$$x_i := x_i + 1$$

- Initially, x = 0
- Insertion of *i* interpreted as

$$x_i := x_i + 1$$

- Initially, x = 0
- Insertion of *i* interpreted as

$$x_i := x_i + 1$$

- Initially, x = 0
- Insertion of *i* interpreted as

$$x_i := x_i + 1$$

- Initially, x = 0
- Insertion of *i* interpreted as

$$x_i := x_i + 1$$

- ► Initially, *x* = 0
- Insertion of *i* interpreted as

$$x_i := x_i + 1$$

► Choose a random set $S \subseteq [n]$ s.t. for each $i \in [n]$ $\Pr[i \in S] = 1/T$

► Choose a random set $S \subseteq [n]$ s.t. for each $i \in [n]$ $\Pr[i \in S] = 1/T$

► Choose a random set $S \subseteq [n]$ s.t. for each $i \in [n]$ $\Pr[i \in S] = 1/T$

• Maintain
$$c_S := \sum_{i \in S} x_i$$

▶ Choose a random set $S \subseteq [n]$ s.t. for each $i \in [n]$

 $\Pr[i \in S] = 1/T$

- Maintain $c_S := \sum_{i \in S} x_i$
- Estimation:
 - If $c_S > 0$, output YES
 - If $c_S = 0$, output NO

Basic algorithm (decision problem)

Algorithm:

• Choose a random set $S \subseteq [n]$ s.t. for each $i \in [n]$

 $\mathbf{Pr}[i \in S] = 1/T$

- Maintain $c_S := \sum_{i \in S} x_i$
- Estimation:
 - If $c_S > 0$, output YES
 - If $c_S = 0$, output NO

Analysis:

- For *T* large enough: $\mathbf{Pr}[c_S = 0] = (1 1/T)^{DE} \approx e^{-DE/T}$
- So for small enough ε

• If DE >
$$(1 + \varepsilon)T$$
, then **Pr**[$c_S = 0$] $\approx e^{-(1+\varepsilon)} < 1/e - \varepsilon/3$

• If DE < $(1-\varepsilon)T$, then $\Pr[c_S = 0] \approx e^{-(1-\varepsilon)} > 1/e + \varepsilon/3$

Full algorithm for decision problem Basic algorithm:

- If DE > $(1 + \varepsilon)T$, then **Pr**[$c_S = 0$] < $1/e \varepsilon/3$
- If $DE < (1-\varepsilon)T$, then $Pr[c_S = 0] > 1/e + \varepsilon/3$

Full algorithm for decision problem Basic algorithm:

- If $DE > (1 + \varepsilon)T$, then $Pr[c_S = 0] < 1/e \varepsilon/3$
- If $DE < (1-\varepsilon)T$, then $Pr[c_S = 0] > 1/e + \varepsilon/3$

Full algorithm:

- Select sets S_1, \ldots, S_k , $k = O(\frac{1}{\epsilon^2} \log(1/\delta))$
- Maintain counters $c_{S_i}, j \in [k]$
- $Z := \|\{j \in [k] : c_{S_j} = 0\}\|$
- If Z < k/e, say YES</p>
- If $Z \ge k/e$, say NO

Space complexity? Correctness?
Full algorithm for decision problem – space complexity Basic algorithm:

- If $DE > (1 + \varepsilon)T$, then $Pr[c_S = 0] < 1/e \varepsilon/3$
- If DE < $(1-\varepsilon)T$, then **Pr**[$c_S = 0$] > $1/e + \varepsilon/3$

Full algorithm:

- Select sets $S_1, \ldots, S_k, k = O(\frac{1}{\epsilon^2} \log(1/\delta))$
- $Z := \|\{j \in [k] : C_{S_j} = 0\}\|$
- If Z < k/e, say YES</p>
- If $Z \ge k/e$, say NO

Space:

- Decision problem: $O(\frac{1}{\epsilon^2}\log(1/\delta))$ numbers in $[0..n^{O(1)}]$
- Estimation: O(¹/_{ε³} log nlog(1/δ)) numbers in [0..n^{O(1)}] (error probability O(δ · ¹/_ε log n))

Theorem

Let $Z_1, ..., Z_n$ be i.i.d. Bernoulli random variables with $\mathbf{E}[Z_i] = p$, and let $Z = \sum_{i=1}^n Z_i$. Then for every $\varepsilon \in (0, 1)$

$$\Pr\left[\left|\sum_{i=1}^{n} Z_{i} - \mathbf{E}[Z]\right| > \varepsilon \mathbf{E}[Z]\right] \le 2 \exp(-\varepsilon^{2} \mathbf{E}[Z]/3)$$

Choose a hash function

 $h:[n]\to [1:T],$

let

$$S = \{i \in [n] : h(i) = 1\}$$

Choose a hash function

 $h:[n]\to [1:T],$

let

$$S = \{i \in [n] : h(i) = 1\}$$

How do we store h? :)

Choose a hash function

 $h:[n]\to [1:T],$

let

$$S = \{i \in [n] : h(i) = 1\}$$

- How do we store h? :)
- Use a pseudorandom number generator (e.g. Nisan's PRG)

Choose a hash function

 $h:[n]\to [1:T],$

let

```
S = \{i \in [n] : h(i) = 1\}
```

- How do we store h? :)
- Use a pseudorandom number generator (e.g. Nisan's PRG)

or

- redo analysis (with slight modifications) for a pairwise independent h
- pairwise independent *h* can be stored using O(log *n*) bits (think *ax* + *b* mod *p*)

Ex: redo analysis assuming that h is pairwise independent only

Linear sketching

Maintain Sx for a matrix $S \in \mathbb{R}^{m \times n}$, m small $(m = O(\frac{1}{\epsilon^3} \log^2 n \cdot \log(1/\delta)))$

So algorithm also works if some elements are deleted:

$$x_i := x_i - 1,$$

as long as $x \ge 0$ at the end of the stream.

Optimal space bounds, practical algorithms

Asymptotically tight space: $O(\frac{1}{\epsilon^2} + \log n)$ bits Kane-Nelson-Woodruff'10 Practical: Durand-Flajolet'03

And recent practical improvements:

HyperLogLog in Practice: Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm

Stefan Heule ETH Zurich and Google, Inc. stheule@ethz.ch Marc Nunkesser Google, Inc. marcnunkesser @google.com Alexander Hall Google, Inc. alexhall@google.com

Linear sketching

Later this week: more sketching algorithms for basic statistics, and then graph sketching

Approximate $||x||_p$ for other p?

Approximate

$$|x||_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}$$

in small space?

Note:

- $||x||_{\infty} = \max_{i \in [n]} |x_i|$
- $||x||_0 = #$ distinct elements in x

Approximate $||x||_p$ for other p?

Approximate

$$|x||_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}$$

in small space?

Note:

- $||x||_{\infty} = \max_{i \in [n]} |x_i|$
- $||x||_0 = #$ distinct elements in x

Frequency moments: $F_p = ||x||_p^p$.

Approximate $||x||_p$ for other p?

Approximate

$$|x||_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}$$

in small space?

Note:

- $||x||_{\infty} = \max_{i \in [n]} |x_i|$
- $||x||_0 = #$ distinct elements in x

Frequency moments: $F_{\rho} = ||x||_{\rho}^{\rho}$.

How much space is needed for $(1 \pm \varepsilon)$ -approximation to $||x||_p$ for constant ε ?

- ▶ $\log^{O(1)} n$ suffices for $p \in (0, 2]$
- $\Omega(n^{1-2/p})$ needed for p > 2.

In this lecture:

- Distinct elements
- Frequency moments (AMS sketch)

In this lecture:

- Distinct elements
- Frequency moments (AMS sketch)

Goal: approximate

$$||x||_2 = \sqrt{\sum_{i \in [n]} x_i^2}$$

from a stream of increments/decrements to x_i .

Goal: approximate

$$||x||_2 = \sqrt{\sum_{i \in [n]} x_i^2}$$

from a stream of increments/decrements to x_i .

Choose r_1, \ldots, r_n to be i.i.d. r.v., with

$$\Pr[r_i = +1] = \Pr[r_i = -1] = 1/2.$$

Goal: approximate

$$||x||_2 = \sqrt{\sum_{i \in [n]} x_i^2}$$

from a stream of increments/decrements to x_i .

Choose r_1, \ldots, r_n to be i.i.d. r.v., with

$$\Pr[r_i = +1] = \Pr[r_i = -1] = 1/2.$$

Maintain

$$Z = \sum_{i=1}^{n} r_i x_i$$

under increments/decrements of x.

Goal: approximate

$$||x||_2 = \sqrt{\sum_{i \in [n]} x_i^2}$$

from a stream of increments/decrements to x_i .

Choose r_1, \ldots, r_n to be i.i.d. r.v., with

$$\Pr[r_i = +1] = \Pr[r_i = -1] = 1/2.$$

Maintain

$$Z = \sum_{i=1}^{n} r_i x_i$$

under increments/decrements of x.

Basic algorithm: output Z^2

Goal: approximate

$$||x||_2 = \sqrt{\sum_{i \in [n]} x_i^2}$$

from a stream of increments/decrements to x_i .

Choose r_1, \ldots, r_n to be i.i.d. r.v., with

$$\Pr[r_i = +1] = \Pr[r_i = -1] = 1/2.$$

Maintain

$$Z = \sum_{i=1}^{n} r_i x_i$$

under increments/decrements of x.

Basic algorithm: output Z^2

Want to claim that Z^2 is 'close' to $||x||_2^2$ with 'high probability'

Alon-Matias-Szegedy – analysis (expectation) Want to claim that Z^2 is 'close' to $||x||_2^2$ with 'high probability'

Alon-Matias-Szegedy – analysis (expectation)

Want to claim that Z^2 is 'close' to $||x||_2^2$ with 'high probability'

Compute expectation of Z^2 , then bound the variance

Alon-Matias-Szegedy – analysis (expectation)

Want to claim that Z^2 is 'close' to $||x||_2^2$ with 'high probability'

Compute expectation of Z^2 , then bound the variance

Expectation:

$$\mathbf{E}[Z^{2}] = \mathbf{E}\left[\left(\sum_{i=1}^{n} r_{i} x_{i}\right)^{2}\right]$$

= $\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{E}[r_{i} r_{j} x_{i} x_{j}]$
= $\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{E}[r_{i} r_{j}] x_{i} x_{j}$
= $\sum_{i=1}^{n} x_{i}^{2} + \sum_{i,j:i\neq j}^{n} \mathbf{E}[r_{i}] \mathbf{E}[r_{j}] x_{i} x_{j}$
= $\sum_{i=1}^{n} x_{i}^{2}$
= $||x||_{2}^{2}$