Lecture 2: Frequency Moments, Heavy Hitters

Michael Kapralov

EPFL

May 24, 2017

Linear sketching

Sketching algorithms for basic statistics, and then graph sketching

In this lecture:

- Frequency moments (AMS sketch)
- Heavy hitters (CountSketch)

In this lecture:

- Frequency moments (AMS sketch)
- Heavy hitters (CountSketch)

AMS sketch (Alon-Matias-Szegedy'96)

Goal: approximate

$$
\|x\|_{2}=\sqrt{\sum_{i \in[n]} x_{i}^{2}}
$$

from a stream of increments/decrements to x_{i}.

Vector interpretation of a data stream

$x \in \mathbb{R}^{n}$| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate $\|x\|_{2}^{2}$

Vector interpretation of a data stream

3

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate $\|x\|_{2}^{2}$

Vector interpretation of a data stream

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate $\|x\|_{2}^{2}$

Vector interpretation of a data stream

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate $\|x\|_{2}^{2}$

Vector interpretation of a data stream

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate $\|x\|_{2}^{2}$

Vector interpretation of a data stream

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate $\|x\|_{2}^{2}$

Vector interpretation of a data stream

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate $\|x\|_{2}^{2}$

Vector interpretation of a data stream

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate $\|x\|_{2}^{2}$

Vector interpretation of a data stream

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate $\|x\|_{2}^{2}$

Vector interpretation of a data stream

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate $\|x\|_{2}^{2}$

Vector interpretation of a data stream

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate $\|x\|_{2}^{2}$

Vector interpretation of a data stream

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate $\|x\|_{2}^{2}$

Vector interpretation of a data stream

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate $\|x\|_{2}^{2}$

Vector interpretation of a data stream

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate $\|x\|_{2}^{2}$

Vector interpretation of a data stream

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate $\|x\|_{2}^{2}$

Vector interpretation of a data stream

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate $\|x\|_{2}^{2}$

Vector interpretation of a data stream

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate $\|x\|_{2}^{2}$

Vector interpretation of a data stream

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate $\|x\|_{2}^{2}$

Vector interpretation of a data stream

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate $\|x\|_{2}^{2}$

Vector interpretation of a data stream

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate $\|x\|_{2}^{2}$

Vector interpretation of a data stream

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate $\|x\|_{2}^{2}$

Vector interpretation of a data stream

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate $\|x\|_{2}^{2}$

Vector interpretation of a data stream

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate $\|x\|_{2}^{2}$

Vector interpretation of a data stream

- Initially, $x=0$
- Insertion of i interpreted as

$$
x_{i}:=x_{i}+1
$$

- Want to estimate $\|x\|_{2}^{2}$

AMS sketch (Alon-Matias-Szegedy'96)

Goal: approximate

$$
\|x\|_{2}=\sqrt{\sum_{i \in[n]} x_{i}^{2}}
$$

from a stream of increments/decrements to x_{i}.

AMS sketch (Alon-Matias-Szegedy'96)

Goal: approximate

$$
\|x\|_{2}=\sqrt{\sum_{i \in[n]} x_{i}^{2}}
$$

from a stream of increments/decrements to x_{i}.

Choose r_{1}, \ldots, r_{n} to be i.i.d. r.v., with

$$
\operatorname{Pr}\left[r_{i}=+1\right]=\operatorname{Pr}\left[r_{i}=-1\right]=1 / 2 .
$$

AMS sketch (Alon-Matias-Szegedy'96)

Goal: approximate

$$
\|x\|_{2}=\sqrt{\sum_{i \in[n]} x_{i}^{2}}
$$

from a stream of increments/decrements to x_{i}.

Choose r_{1}, \ldots, r_{n} to be i.i.d. r.v., with

$$
\operatorname{Pr}\left[r_{i}=+1\right]=\operatorname{Pr}\left[r_{i}=-1\right]=1 / 2 .
$$

Maintain

$$
Z=\sum_{i=1}^{n} r_{i} x_{i}
$$

under increments/decrements of x.

AMS sketch (Alon-Matias-Szegedy'96)

Goal: approximate

$$
\|x\|_{2}=\sqrt{\sum_{i \in[n]} x_{i}^{2}}
$$

from a stream of increments/decrements to x_{i}.

Choose r_{1}, \ldots, r_{n} to be i.i.d. r.v., with

$$
\operatorname{Pr}\left[r_{i}=+1\right]=\operatorname{Pr}\left[r_{i}=-1\right]=1 / 2 .
$$

Maintain

$$
Z=\sum_{i=1}^{n} r_{i} x_{i}
$$

under increments/decrements of x.

Basic algorithm: output Z^{2}

AMS sketch (Alon-Matias-Szegedy'96)

Goal: approximate

$$
\|x\|_{2}=\sqrt{\sum_{i \in[n]} x_{i}^{2}}
$$

from a stream of increments/decrements to x_{i}.

Choose r_{1}, \ldots, r_{n} to be i.i.d. r.v., with

$$
\operatorname{Pr}\left[r_{i}=+1\right]=\operatorname{Pr}\left[r_{i}=-1\right]=1 / 2 .
$$

Maintain

$$
Z=\sum_{i=1}^{n} r_{i} x_{i}
$$

under increments/decrements of x.
Basic algorithm: output Z^{2}
Want to claim that Z^{2} is 'close' to $\|x\|_{2}^{2}$ with 'high probability'

Alon-Matias-Szegedy - analysis (expectation)

Want to claim that Z^{2} is 'close' to $\|x\|_{2}^{2}$ with 'high probability'

Alon-Matias-Szegedy - analysis (expectation)

Want to claim that Z^{2} is 'close' to $\|x\|_{2}^{2}$ with 'high probability'
Compute expectation of Z^{2}, then bound the variance

Alon-Matias-Szegedy - analysis (expectation)

Want to claim that Z^{2} is 'close' to $\|x\|_{2}^{2}$ with 'high probability'
Compute expectation of Z^{2}, then bound the variance
Expectation:

$$
\begin{aligned}
\mathbf{E}\left[Z^{2}\right] & =\mathbf{E}\left[\left(\sum_{i=1}^{n} r_{i} x_{i}\right)^{2}\right] \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{E}\left[r_{i} r_{j} x_{i} x_{j}\right] \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{E}\left[r_{i} r_{j}\right] x_{i} x_{j} \\
& =\sum_{i=1}^{n} x_{i}^{2}+\sum_{i, j: i \neq j}^{n} \mathbf{E}\left[r_{i}\right] \mathbf{E}\left[r_{j}\right] x_{i} x_{j} \\
& =\sum_{i=1}^{n} x_{i}^{2} \\
& =\|x\|_{2}^{2}
\end{aligned}
$$

Alon-Matias-Szegedy - analysis (expectation)

Want to claim that Z^{2} is 'close' to $\|x\|_{2}^{2}$ with 'high probability'
Compute expectation of Z^{2}, then bound the variance
Expectation:

$$
\begin{aligned}
\mathbf{E}\left[Z^{2}\right] & =\mathbf{E}\left[\left(\sum_{i=1}^{n} r_{i} x_{i}\right)^{2}\right] \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{E}\left[r_{i} r_{j} x_{i} x_{j}\right] \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{E}\left[r_{i} r_{j}\right] x_{i} x_{j} \\
& =\sum_{i=1}^{n} x_{i}^{2}+\sum_{i, j i f j}^{n} \mathbf{E}\left[r_{i}\right] \mathbf{E}\left[r_{j}\right] x_{i} x_{j} \\
& =\sum_{i=1}^{n} x_{i}^{2} \\
& =\|x\|_{2}^{2} \quad \text { (our estimator is unbiased!) }
\end{aligned}
$$

Alon-Matias-Szegedy - analysis (variance)

Want to claim that Z^{2} is 'close' to $\|x\|_{2}^{2}$ with 'high probability' Bound the variance $\operatorname{Var}\left[Z^{2}\right]=\mathbf{E}\left[Z^{4}\right]-\left(E\left[Z^{2}\right]\right)^{2}$?

Alon-Matias-Szegedy - analysis (variance)

Want to claim that Z^{2} is 'close' to $\|x\|_{2}^{2}$ with 'high probability' Bound the variance $\operatorname{Var}\left[Z^{2}\right]=\mathbf{E}\left[Z^{4}\right]-\left(E\left[Z^{2}\right]\right)^{2}$?
Compute

$$
\mathbf{E}\left[Z^{4}\right]=\mathbf{E}\left[\left(\sum_{i=1}^{n} r_{i} x_{i}\right)\left(\sum_{j=1}^{n} r_{j} x_{j}\right)\left(\sum_{k=1}^{n} r_{k} x_{k}\right)\left(\sum_{l=1}^{n} r_{l} x_{l}\right)\right]
$$

Alon-Matias-Szegedy - analysis (variance)

Want to claim that Z^{2} is 'close' to $\|x\|_{2}^{2}$ with 'high probability'
Bound the variance $\operatorname{Var}\left[Z^{2}\right]=\mathbf{E}\left[Z^{4}\right]-\left(E\left[Z^{2}\right]\right)^{2}$?
Compute

$$
\mathbf{E}\left[Z^{4}\right]=\mathbf{E}\left[\left(\sum_{i=1}^{n} r_{i} x_{i}\right)\left(\sum_{j=1}^{n} r_{j} x_{j}\right)\left(\sum_{k=1}^{n} r_{k} x_{k}\right)\left(\sum_{l=1}^{n} r_{l} x_{l}\right)\right]
$$

Can be decomposed as follows:

- $\sum_{i=1}^{n}\left(r_{i} x_{i}\right)^{4}$ - expectation $\sum_{i=1}^{n} x_{i}^{4}$
- $6 \sum_{i<j}\left(r_{i} r_{j} x_{i} x_{j}\right)^{2}$ - expectation $6 \sum_{i<j} x_{i}^{2} x_{j}^{2}$
- Terms involving a single $r_{i} x_{i}$ - expectation zero.

In total: $\sum_{i=1}^{n} x_{i}^{4}+6 \sum_{i<j} x_{i}^{2} x_{j}^{2}$

Alon-Matias-Szegedy - analysis (variance)
Bound the variance $\operatorname{Var}\left[Z^{2}\right]=\mathbf{E}\left[Z^{4}\right]-\left(E\left[Z^{2}\right]\right)^{2}$?
Computed

$$
\mathrm{E}\left[Z^{4}\right]=\sum_{i=1}^{n} x_{i}^{4}+6 \sum_{i<j} x_{i}^{2} x_{j}^{2}
$$

Alon-Matias-Szegedy - analysis (variance)
Bound the variance $\operatorname{Var}\left[Z^{2}\right]=\mathrm{E}\left[Z^{4}\right]-\left(E\left[Z^{2}\right]\right)^{2}$?
Computed

$$
\mathbf{E}\left[Z^{4}\right]=\sum_{i=1}^{n} x_{i}^{4}+6 \sum_{i<j} x_{i}^{2} x_{j}^{2}
$$

So

$$
\begin{aligned}
\operatorname{Var}\left[Z^{2}\right] & =\mathbf{E}\left[Z^{4}\right]-\left(\mathbf{E}\left[Z^{2}\right]\right)^{2} \\
& =\sum_{i=1}^{n} x_{i}^{4}+6 \sum_{i<j}^{2} x_{i}^{2} x_{j}^{2}-\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{2} \\
& =\sum_{i=1}^{n} x_{i}^{4}+6 \sum_{i<j} x_{i}^{2} x_{j}^{2}-\sum_{i=1}^{n} x_{i}^{4}-2 \sum_{i<j} x_{i}^{2} x_{j}^{2} \\
& \leq 4 \sum_{i<j} x_{i}^{2} x_{j}^{2} \\
& \leq 2\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{2}
\end{aligned}
$$

Analysis: putting it together

We showed that

- $\mathrm{E}\left[Z^{2}\right]=\|x\|_{2}^{2}$
- $\sigma^{2}=\operatorname{Var}\left[Z^{2}\right] \leq 2\|x\|_{2}^{4}$

Analysis: putting it together

We showed that

- $\mathrm{E}\left[Z^{2}\right]=\|x\|_{2}^{2}$
- $\sigma^{2}=\operatorname{Var}\left[Z^{2}\right] \leq 2\|x\|_{2}^{4}$

So by Chebyshev's inequality for $t \geq 1$

$$
\operatorname{Pr}\left[\left|Z^{2}-\mathbf{E}\left[Z^{2}\right]\right| \geq t \sigma\right] \leq 1 / t^{2}
$$

Analysis: putting it together

We showed that

- $\mathrm{E}\left[Z^{2}\right]=\|x\|_{2}^{2}$
- $\sigma^{2}=\operatorname{Var}\left[Z^{2}\right] \leq 2\|x\|_{2}^{4}$

So by Chebyshev's inequality for $t \geq 1$

$$
\operatorname{Pr}\left[\left|Z^{2}-\mathbf{E}\left[Z^{2}\right]\right| \geq t \sigma\right] \leq 1 / t^{2}
$$

and we get

$$
\operatorname{Pr}\left[\left|Z^{2}-\|x\|_{2}^{2}\right| \geq \sqrt{2} t\|x\|_{2}^{2}\right] \leq 1 / t^{2}
$$

Analysis: putting it together

We showed that

- $\mathrm{E}\left[Z^{2}\right]=\|x\|_{2}^{2}$
- $\sigma^{2}=\operatorname{Var}\left[Z^{2}\right] \leq 2\|x\|_{2}^{4}$

So by Chebyshev's inequality for $t \geq 1$

$$
\operatorname{Pr}\left[\left|Z^{2}-\mathbf{E}\left[Z^{2}\right]\right| \geq t \sigma\right] \leq 1 / t^{2}
$$

and we get

$$
\operatorname{Pr}\left[\left|Z^{2}-\|x\|_{2}^{2}\right| \geq \sqrt{2} t| | x \|_{2}^{2}\right] \leq 1 / t^{2}
$$

Not good...

Analysis: putting it together

We showed that

- $\mathrm{E}\left[Z^{2}\right]=\|x\|_{2}^{2}$
- $\sigma^{2}=\operatorname{Var}\left[Z^{2}\right] \leq 2\|x\|_{2}^{4}$

So by Chebyshev's inequality for $t \geq 1$

$$
\operatorname{Pr}\left[\left|Z^{2}-\mathbf{E}\left[Z^{2}\right]\right| \geq t \sigma\right] \leq 1 / t^{2}
$$

and we get

$$
\operatorname{Pr}\left[\left|Z^{2}-\|x\|_{2}^{2}\right| \geq \sqrt{2} t\|x\|_{2}^{2}\right] \leq 1 / t^{2}
$$

Not good...but can reduce variance by averaging!

Analysis: putting it together

Actual algorithm:

- Maintain $Z_{1}, \ldots, Z_{k}, Z_{i}=\sum_{j=1}^{n} r_{j}^{i} x_{j}$
- Output $A:=\frac{1}{k} \sum_{i=1}^{k} z_{i}^{2}$

Now

$$
\operatorname{Var}[A]=\operatorname{Var}\left[\frac{1}{k} \sum_{i=1}^{k} Z_{i}^{2}\right]=\frac{1}{k} \operatorname{Var}\left[Z^{2}\right] \leq(2 / k)\|x\|_{2}^{4},
$$

Analysis: putting it together

Actual algorithm:

- Maintain $Z_{1}, \ldots, Z_{k}, Z_{i}=\sum_{j=1}^{n} r_{j}^{i} x_{j}$
- Output $A:=\frac{1}{k} \sum_{i=1}^{k} z_{i}^{2}$

Now

$$
\operatorname{Var}[A]=\operatorname{Var}\left[\frac{1}{k} \sum_{i=1}^{k} Z_{i}^{2}\right]=\frac{1}{k} \operatorname{Var}\left[Z^{2}\right] \leq(2 / k)\|x\|_{2}^{4},
$$

and by Chebyshev's inequality

$$
\operatorname{Pr}\left[\left|A-\|x\|_{2}^{2}\right| \geq t \cdot(2 / k)^{1 / 2}\|x\|_{2}^{2}\right] \leq 1 / t^{2},
$$

so setting $k=O\left(1 / \varepsilon^{2}\right)$ and $t=10$ suffices for a
($1 \pm \varepsilon$)-approximation with probability $\geq 99 / 100$!

Space complexity

How much space do we need to store r_{i} 's?

4-wise independence suffices, hence $O(\log n)$ space

Some remarks

Can we reduce failure probability to $1-\delta$?

Some remarks

Can we reduce failure probability to $1-\delta$?

- Use $O\left(1 /\left(\varepsilon^{2} \delta\right)\right)$ repetitions - bad dependence on δ

Some remarks

Can we reduce failure probability to $1-\delta$?

- Use $O\left(1 /\left(\varepsilon^{2} \delta\right)\right)$ repetitions - bad dependence on δ
- Median trick: keep $T=O(\log (1 / \delta))$ copies of the estimator, output the median

Some remarks

Can we reduce failure probability to $1-\delta$?

- Use $O\left(1 /\left(\varepsilon^{2} \delta\right)\right)$ repetitions - bad dependence on δ
- Median trick: keep $T=O(\log (1 / \delta))$ copies of the estimator, output the median

Let $Y_{t}=1$ if t-th algorithm fails, and 0 otherwise.
We have $\mathbf{E}\left[Y_{t}\right] \leq 1 / 100$, so by the Chernoff bound

$$
\operatorname{Pr}\left[\left|\operatorname{median}_{i=1, \ldots ., T}\left(A_{i}\right)-\|x\|_{2}^{2}\right|>\varepsilon\|x\|_{2}^{2}\right]
$$

$\leq \operatorname{Pr}\left[\right.$ at least half of A_{i} fail, $\left.i=1, \ldots, T\right]$

$$
\begin{aligned}
& \leq \operatorname{Pr}\left[\sum_{t=1}^{T} Y_{i} \geq T / 2\right] \\
& \leq e^{-\Omega(T)}
\end{aligned}
$$

So setting $T=O(\log (1 / \delta))$ suffices.

Space complexity

Downside of the median trick: nonlinear embedding
Median trick not needed if we have enough independence
Johnson-Lindenstrauss transform (see llya's lecture)

Some remarks

Take (randomized) linear measurements of the input

space requirement=number of rows

Some remarks

Take (randomized) linear measurements of the input

Can get ($1 \pm \varepsilon$)-approximation to $\|x\|^{2}$ with $O\left(\frac{1}{\varepsilon^{2}} \log (1 / \delta)\right)$ rows

Some remarks

Take (randomized) linear measurements of the input

Can get ($1 \pm \varepsilon$)-approximation to $\|x\|^{2}$ with $O\left(\frac{1}{\varepsilon^{2}} \log (1 / \delta)\right)$ rows
Easy to maintain linear sketches in the (dynamic) streaming model

In this lecture:

- Frequency moments (AMS sketch)
- Heavy hitters (CountSketch)

In this lecture:

- Frequency moments (AMS sketch)
- Heavy hitters (CountSketch)

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

1	2	3	4	5	6	7	8	9	10

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

3
46

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

3463

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

34632

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

3463210

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

346310103

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{lllllll}3 & 4 & 6 & 3 & 2 & 10 & 3\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{lllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{llllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{lllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{llllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{lllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

3
$\begin{array}{lllllllllllll}4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

3
$\begin{array}{llllllllllllll}4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{llllllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{lllllllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9 & 8\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{llllllllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9 & 8 & 7\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{lllllllllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9 & 8 & 7 & 4\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{llllllllllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9 & 8 & 7 & 4 & 4\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$$
2
$$

10
3
1
1
2
2
5
55
9
87
44
42

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

3
463
2
10
3
1312
2
5
5
5
9
87
44
42
2

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

Estimating IP flows through a router

Estimate the dominant IP flows

 through a router| | destination | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\underset{\sim}{\cup}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\underset{y}{y}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Estimating IP flows through a router

Estimating IP flows through a router

Src	Dst
DATA	

Estimating IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
u	0	0	0	1	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0

Estimating IP flows through a router

Src	Dst
DATA	

Estimating IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
ن	0	0	0	1	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0

Estimating IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{\cup}{\cup}$	0	0	0	2	0	0	0	0	0
y	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	

Src	Dst
DATA	

Estimating IP flows through a router

Estimating IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{\circlearrowright}{\cup}$	0	0	0	2	0	0	0	0	0
$\begin{aligned} & \text { H1 } \\ & \hline \end{aligned}$	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0	1	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	

Src	Dst
DATA	

Estimating IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
$\underset{\sim}{0}$	0	0	0	2	0	0	0	0	0
y	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & i n \end{aligned}$	0	1	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0			

Estimating IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{\circlearrowright}{\cup}$	0	0	0	2	0	0	0	0	0
$\begin{aligned} & \text { H1 } \\ & \hline \end{aligned}$	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0	1	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	

Src	Dst
DATA	

Estimating IP flows through a router

Estimating IP flows through a router

destination									
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{0}{\cup}$	0	0	0	3	0	0	0	0	0
Y	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0	1	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	

Src	Dst
DATA	

Estimating IP flows through a router

Estimating IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{\circlearrowright}{\cup}$	0	0	0	3	0	0	0	0	0
$\begin{aligned} & \text { H1 } \\ & \hline \end{aligned}$	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0	1	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	

Src	Dst
DATA	

Estimating IP flows through a router

				st	na	io			
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0
©	0	0	0	3	0	0	0	0	0
y	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & i n \end{aligned}$	0	1	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0		0	

Estimating IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{\cup}{\cup}$	0	0	0	3	0	0	0	0	0
y	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	2	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	

Src	Dst
DATA	

Estimating IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0
$\underset{\sim}{\cup}$	0	0	0	3	0	0	0	0	0
$\underset{y}{y}$	0	0	0	0	0	0	0	0	0
0	0	2	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0

Estimating IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{\cup}{\cup}$	0	0	0	3	0	0	0	0	0
y	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0	2	0	0	0	0	0	1	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	

Src	Dst
DATA	

Estimating IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	3	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	2	0	0	0	0	0	1	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0

Estimating IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{\cup}{\cup}$	0	0	0	4	0	0	0	0	0
y	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0	2	0	0	0	0	0	1	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	

Src	Dst
DATA	

Estimating IP flows through a router

	destination								
	0	0	0	0	0	0	0	O	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0
$\underset{\sim}{0}$	0	0	0	4	0	0	0	0	0
y	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	2	0	0	0	0	0	1	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	

Estimating IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{\cup}{\cup}$	0	0	0	4	0	0	0	0	0
y	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0	3	0	0	0	0	0	1	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	

Src	Dst
DATA	

Estimating IP flows through a router

				st	na	io			
	0	0	0	0	0	0	0	O	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0
©	0	0	0	4	0	0	0	0	0
y	0	0	0	0	0	0	0	0	0
io	0	3	0	0	0	0	0	1	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0		0	

Estimating IP flows through a router

	destination								
	1	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{\otimes}{\cup}$	0	0	0	4	0	0	0	0	0
H	0	0	0	0	0	0	0	0	0
\bigcirc	0	3	0	0	0	0	0	1	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0

Src	Dst
DATA	

Estimating IP flows through a router

Estimating IP flows through a router

Estimating IP flows through a router

	destination								
	1	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{\cup}{\cup}$	0	0	0	4	0	0	0	0	0
y	0	0	0	0	0	0	0	0	0
0	0	4	0	0	0	0	0	1	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	

Src	Dst
DATA	

Estimating IP flows through a router

Estimating IP flows through a router

destination									
	1	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{\cup}{\cup}$	0	0	0	5	0	0	0	0	0
y	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	4	0	0	0	0	0	1	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0		

Src	Dst
DATA	

Estimating IP flows through a router

Estimating IP flows through a router

Estimating IP flows through a router

Estimate the dominant IP flows

 through a router| | destination | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| ن | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 |
| ! | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Estimating IP flows through a router

1 destination
1

0					
0			5		
0					
$\tilde{0}$		4			
0				$\mathbf{1}$	
				$\mathbf{1}$	

Estimate the dominant IP flows through a router

Estimating IP flows through a router

destination

1

0			5		
0			5		
0					
$\tilde{0}$					
0	4			1	1

Estimate the dominant IP flows through a router

Trivial: store all distinct IP pairs Space complexity: $\Theta(N)$

Estimating IP flows through a router

Estimate the dominant IP flows through a router

```
destination
```

1

0			5		
\cup			5		
0					
J					
0	4				
\sim				1	

Trivial: store all distinct IP pairs
Space complexity: $\Theta(N)$
1
This lecture: solve in space $O(\log N)$
Exponential improvement!

Estimating search statistics

Given a set of items as a stream (e.g. queries on google.com over a period of time)

Geneva to NYC, coffee in Geneva, Geneva to NYC

Estimating search statistics

Given a set of items as a stream (e.g. queries on google.com over a period of time)

Geneva to NYC, coffee in Geneva, Geneva to NYC
Find the most frequent items in the set
Geneva to NYC, coffee in Geneva

Estimating search statistics

Given a set of items as a stream (e.g. queries on google.com over a period of time)

Geneva to NYC, coffee in Geneva, Geneva to NYC
Find the most frequent items in the set
Geneva to NYC, coffee in Geneva

Estimating search statistics

Given a set of items as a stream (e.g. queries on google.com over a period of time)

Geneva to NYC, coffee in Geneva, Geneva to NYC
Find the most frequent items in the set

Geneva to NYC, coffee in Geneva		
	Trivial	This lecture
Solution	hash<string> h;	CoUNTSKETCH
Space	$\#$ of distinct items	$O(\log N)$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

Goal: design a small space data structure

FINDTOP (S, k) : returns top k most frequent items seen so far

Goal: design a small space data structure

FIndTop (S, k) : returns top k most frequent items seen so far

Useful to first design

PointQuery (S, i) : processes stream, then for any query item i can return $f_{i}=$ number of times item i appeared

Denote the number of times item i appears in the stream by f_{i} (frequency of i)

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

Denote the number of times item i appears in the stream by f_{i} (frequency of i)

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$
$\operatorname{PointQuery}(S, i)$ in space $O(k \log N)$?

Denote the number of times item i appears in the stream by f_{i} (frequency of i)

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

$\operatorname{PointQuery}(S, i)$ in space $O(k \log N)$?

Impossible in general...

Imagine a stream where all elements occur with about the same frequency

FindApproxTop (S, k, ε) : returns set of k items such that $f_{i} \geq(1-\varepsilon) f_{k}$ for all reported i

ApproxPointQuery (S, i, ε) : processes stream, then for any query item i can return approximation $\widehat{f}_{i} \in\left[f_{i}-\varepsilon f_{k}, f_{i}+\varepsilon f_{k}\right]$

FindApproxTop (S, k, ε) : returns set of k items such that $f_{i} \geq(1-\varepsilon) f_{k}$ for all reported i

ApproxPointQuery (S, i, ε) : processes stream, then for any query item i can return approximation $\widehat{f}_{i} \in\left[f_{i}-\varepsilon f_{k}, f_{i}+\varepsilon f_{k}\right]$

In this lecture: find most frequent (head) items if they contribute the bulk of the stream under some measure

1. Finding top k elements via (Approx)PointQuery
2. Basic version of ApproxPointQuery
3. ApproxPointQuery and the CountSketch algorithm
4. Finding top k elements via (Approx)PointQuery
5. Basic version of ApproxPointQuery
6. ApproxPointQuery and the CountSketch algorithm

PointQuery implies FindTop, $k=1$

Given: stream $S=\left(i_{1}, \ldots, i_{N}\right)$

PointQuery implies FindTop, $k=1$

Given: stream $S=\left(i_{1}, \ldots, i_{N}\right)$
Maintain: data structure for PointQuery
currMax=NULL; currFreq=0;

PointQuery implies FindTop, $k=1$

Given: stream $S=\left(i_{1}, \ldots, i_{N}\right)$
Maintain: data structure for PointQuery
currMax=NULL; currFreq=0;

For $p=1, \ldots, N$
Compute frequency $f \leftarrow \operatorname{POINTQUERY}\left(i_{p}\right)$

PointQuery implies FindTop, $k=1$

Given: stream $S=\left(i_{1}, \ldots, i_{N}\right)$
Maintain: data structure for PointQuery
currMax=NULL; currFreq=0;

For $p=1, \ldots, N$
Compute frequency $f \leftarrow \operatorname{POINTQUERY}\left(i_{p}\right)$
If currMax== i_{p}
currFreq=f; continue; end if

PointQuery implies FindTop, $k=1$

Given: stream $S=\left(i_{1}, \ldots, i_{N}\right)$
Maintain: data structure for PointQuery
currMax=NULL; currFreq=0;

For $p=1, \ldots, N$
Compute frequency $f \leftarrow \operatorname{POINTQUERY}\left(i_{p}\right)$
If currMax== i_{p}
currfreq=f; continue;
end if
If currMax==NULL
currMax=ip; currFreq=1;
else
If currFreq<f

$$
\text { currMax }=i_{p} ; \text { currFreq }=f ;
$$

end if
end if
end for

Why does this work?

At each point in the stream currmax is either nULL or the most frequent element so far...

Why does this work?

At each point in the stream currMax is either NULL or the most frequent element so far...

What about finding k most frequent elements for $k>1$?

PointQuery implies FindTop

Given: stream $S=\left(i_{1}, \ldots, i_{N}\right)$

PointQuery implies FindTop

Given: stream $S=\left(i_{1}, \ldots, i_{N}\right)$
Maintain: data structure for PointQuery
a heap H of at most k items, by count

PointQuery implies FindTop

Given: stream $S=\left(i_{1}, \ldots, i_{N}\right)$
Maintain: data structure for PointQuery
a heap H of at most k items, by count
For $p=1, \ldots, N$
Compute frequency $f \leftarrow \operatorname{POINTQUERY}\left(i_{p}\right)$

PointQuery implies FindTop

Given: stream $S=\left(i_{1}, \ldots, i_{N}\right)$
Maintain: data structure for POINTQUERY
a heap H of at most k items, by count
For $p=1, \ldots, N$
Compute frequency $f \leftarrow \operatorname{POINTQUERY}\left(i_{p}\right)$
If H contains i_{p}
update i_{p} 's key to f; continue;
end if

PointQuery implies FindTop

Given: stream $S=\left(i_{1}, \ldots, i_{N}\right)$
Maintain: data structure for PointQuery
a heap H of at most k items, by count
For $p=1, \ldots, N$
Compute frequency $f \leftarrow \operatorname{POINTQUERY}\left(i_{p}\right)$
If H contains i_{p}
update i_{p} 's key to f; continue;
end if
If H contains $<k$ elements,

$$
\text { add }<f, i_{p}>\text { to } H
$$

else
$<f_{\text {min }}, i_{\text {min }}>\leftarrow$ element in H with smallest key
If $f_{\text {min }}<f$, insert $<f, i_{p}>$ and evict $<f_{\text {min }}, i_{\text {min }}>$
end if
end for

Why does this work?

(Assume the set of top k items is unique for simplicity)

For every item i in top k let p_{i} denote the last position where i occurs

Why does this work?

(Assume the set of top k items is unique for simplicity)

For every item i in top k let p_{i} denote the last position where i occurs

Note that

1. at position p_{i} element i is inserted into heap H if it was not in H at that time
2. element i is never evicted after p_{i}

PointQuery implies FindTop

Given: stream $S=\left(i_{1}, \ldots, i_{N}\right)$
Maintain: data structure for PointQuery
a heap H of at most k items, by count
For $p=1, \ldots, N$
Compute frequency $f \leftarrow \operatorname{POINTQUERY}\left(i_{p}\right)$
If H contains i_{p}
update i_{ρ} 's key to f; continue;
end if
If H contains $<k$ elements,

$$
\text { add }<f, i_{p}>\text { to } H
$$

else
$<f_{\text {min }}, i_{\text {min }}>\leftarrow$ element in H with smallest key
If $f_{\text {min }}<f$, insert $<f, i_{p}>$ and evict $<f_{\text {min }}, i_{\text {min }}>$
end if
end for

Why is this useful? We know that PointQuery requires essentially storing the entire stream...

Why is this useful? We know that PointQuery requires essentially storing the entire stream...

A similar reduction shows that ApproxPointQuery implies FindApproxTop!

ApproxPointQuery implies FindApproxTop

Given: stream $S=\left(i_{1}, \ldots, i_{N}\right)$
Maintain: data structure for ApproxPointQuery a heap H of at most k items, by count
For $p=1, \ldots, N$
Compute frequency $\hat{f} \leftarrow \operatorname{APPROXPOINTQUERY}\left(i_{p}\right)$
If H contains i_{p}
update i_{p} 's key to \widehat{f}; continue;
end if
If H contains $<k$ elements, add $<\hat{f}, i_{p}>$ to H
else
$<\widehat{f}_{\text {min }}, i_{\text {min }}>\leftarrow$ element in H with smallest key
If $\widehat{f}_{\text {min }}<\widehat{f}$, insert $<\widehat{f}, i_{p}>$ and evict $<\widehat{f}_{\text {min }}, i_{\text {min }}>$
end if
end for

FindApproxTop (S, k, ε) : returns set S of k items such that $f_{i} \geq(1-\varepsilon) f_{k}$ for all $i \in S$
$\operatorname{ApproxPointQuery}(S, i, \varepsilon)$: returns $\widehat{f}_{i} \in\left[f_{i}-\varepsilon f_{k}, f_{i}+\varepsilon f_{k}\right]$

In what follows: ApproxPointQuery in small space

Observe a stream of updates, maintain small space data structure

Task: after observing the stream, given $i \in\{1,2, \ldots, m\}$, compute estimate \widehat{f}_{i} of f_{i}

In what follows: ApproxPointQuery in small space

Observe a stream of updates, maintain small space data structure

Task: after observing the stream, given $i \in\{1,2, \ldots, m\}$, compute estimate \widehat{f}_{i} of f_{i}

To be specified:

- space complexity?
- quality of approximation?
- success probability?

1. Finding top k elements via (Approx)PointQuery
2. Basic version of ApproxPointQuery
3. ApproxPointQuery and the CountSketch algorithm
4. Finding top k elements via (Approx)PointQuery
5. Basic version of ApproxPointQuery
6. ApproxPointQuery and the CountSketch algorithm

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

1	2	3	4	5	6	7	8	9	10

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

14

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

146

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

1461

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

14612

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

1461210

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

14612101

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

$\begin{array}{llllllll}1 & 4 & 6 & 1 & 2 & 10 & 1 & 5\end{array}$

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

1461210151

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

14612101515

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

146121015152

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

146121015152233

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$


```
14 6 1 2 10 1 5 1 5 2 2 3 3 3 9 8 7 4 4 2
```

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

$\begin{array}{llllllllllllllllllllllll}1 & 4 & 6 & 1 & 2 & 10 & 1 & 5 & 1 & 1 & 2 & 2 & 3 & 3 & 3 & 9 & 8 & 7 & 4 & 4 & 2 & 2 & 1 & 5\end{array}$

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$
head

$\begin{array}{llllllllllllllllllllllll}1 & 4 & 6 & 1 & 2 & 10 & 1 & 5 & 1 & 1 & 2 & 2 & 3 & 3 & 3 & 9 & 8 & 7 & 4 & 4 & 2 & 2 & 1 & 5\end{array}$

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$
head

$\begin{array}{llllllllllllllllllllllll}1 & 4 & 6 & 1 & 2 & 10 & 1 & 5 & 1 & 1 & 2 & 2 & 3 & 3 & 3 & 9 & 8 & 7 & 4 & 4 & 2 & 2 & 1 & 5\end{array}$

Basic estimate

Will design a basic estimate with O (1) space complexity, analyze precision

Basic estimate

Will design a basic estimate with $O(1)$ space complexity, analyze precision

Choose a hash function $s:[m] \rightarrow\{-1,+1\}$ uniformly at random
InitiALIZE
$C \leftarrow 0$

Update(C, i)
$C \leftarrow C+s(i)$

Basic estimate

Will design a basic estimate with $O(1)$ space complexity, analyze precision

Choose a hash function $s:[m] \rightarrow\{-1,+1\}$ uniformly at random
Initialize
$C \leftarrow 0$

$$
\begin{aligned}
& \operatorname{UPDATE}(\mathrm{C}, \mathrm{i}) \\
& C \leftarrow C+s(i)
\end{aligned}
$$

for every $p=1, \ldots, N$ (every element in the stream)
$\operatorname{UPDATE}\left(C, i_{p}\right)$
end for

Basic estimate

Will design a basic estimate with $O(1)$ space complexity, analyze precision

Choose a hash function $s:[m] \rightarrow\{-1,+1\}$ uniformly at random

$$
\begin{aligned}
& \text { INITIALIZE } \\
& C \leftarrow 0
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{UPDATE}(\mathrm{C}, \mathrm{i}) \\
& C \leftarrow C+s(i)
\end{aligned}
$$

for every $p=1, \ldots, N$ (every element in the stream)
$\operatorname{UPDATE}\left(C, i_{p}\right)$
end for
Estimate(C, i)
return $C \cdot s(i)$

How does one argue that a randomized estimate works?

$$
\begin{aligned}
& \text { UPDATE(C, i) } \\
& \qquad C \leftarrow+s(i)
\end{aligned}
$$

Estimate(C, i)
return $C \cdot s(i)$

How does one argue that a randomized estimate works?

$$
\begin{aligned}
& \operatorname{UPDATE(C,~i)~} \\
& C \leftarrow C+s(i)
\end{aligned}
$$

Estimate(C, i)
 return $C \cdot s(i)$

How does one argue that a randomized estimate works?

Want to show that $C \cdot s(i)$ is close to f_{i} 'with high probability'

> UPDATE(C, i)
> $C \leftarrow C+s(i)$

How does one argue that a randomized estimate works?

Want to show that $C \cdot s(i)$ is close to f_{i} 'with high probability'

Typically show this in two steps:

- show that $\mathbf{E}_{s}[C \cdot s(i)]=f_{i}$
(so $C \cdot s(i)$ is an unbiased estimate of f_{i})
- show that $\operatorname{Var}_{s}[C \cdot s(i)]$ is 'small'

> UPDATE(C, i)
> $C \leftarrow C+s(i)$

Estimate(C, i)
 return $C \cdot s(i)$

How does one argue that a randomized estimate works?

Want to show that $C \cdot s(i)$ is close to f_{i} 'with high probability'

Typically show this in two steps:

- show that $\mathbf{E}_{s}[C \cdot s(i)]=f_{i}$
(so $C \cdot s(i)$ is an unbiased estimate of f_{i})
- show that $\operatorname{Var}_{s}[C \cdot s(i)]$ is 'small'

It then follows that $\left|C \cdot s(i)-f_{i}\right|$ is 'small' with high probability (essentially law of large numbers)

Basic estimate:mean

$$
\begin{aligned}
& \text { UPDATE(C, i) } \\
& \qquad C \leftarrow+s(i)
\end{aligned}
$$

Estimate(C, i) return $C \cdot s(i)$

$$
C \cdot s(i)=\sum_{p=1}^{N} s\left(i_{p}\right) s(i)
$$

Basic estimate:mean

$$
\begin{aligned}
& \text { UPDATE(C, i) } \\
& \qquad \leftarrow C+s(i)
\end{aligned}
$$

Estimate(C, i) return $C \cdot s(i)$

$$
C \cdot s(i)=\sum_{p=1}^{N} s\left(i_{p}\right) s(i)=\sum_{j \in[m]} f_{j} \cdot s(j) s(i)
$$

Basic estimate:mean

$$
\begin{aligned}
& \text { UPDATE(C, i) } \\
& C \leftarrow C+s(i)
\end{aligned}
$$

Estimate(C, i) return $C \cdot s(i)$

$$
\begin{aligned}
C \cdot s(i)=\sum_{p=1}^{N} s\left(i_{p}\right) s(i) & =\sum_{j \in[m]} f_{j} \cdot s(j) s(i) \\
& =f_{i} s(i)^{2}+\sum_{j \in[m] \backslash i} f_{j} \cdot s(j) s(i)
\end{aligned}
$$

Basic estimate:mean

$$
\begin{aligned}
& \operatorname{UPDATE}(\mathrm{C}, \mathrm{i}) \\
& \qquad C \leftarrow C+s(i)
\end{aligned}
$$

Estimate(C, i) return $C \cdot s(i)$

$$
\begin{aligned}
C \cdot s(i)=\sum_{p=1}^{N} s\left(i_{p}\right) s(i) & =\sum_{j \in[m]} f_{j} \cdot s(j) s(i) \\
& =f_{i} s(i)^{2}+\sum_{j \in[m] \backslash i} f_{j} \cdot s(j) s(i) \\
& =f_{i}+\sum_{j \in[m] \backslash i} f_{j} \cdot s(j) s(i) \longleftarrow \text { random } \pm 1 ' s
\end{aligned}
$$

Basic estimate:mean

$\operatorname{UPDATE}(\mathrm{C}, \mathrm{i})$
$C \leftarrow C+s(i)$

Estimate(C, i) return $C \cdot s(i)$

$$
C \cdot s(i)=f_{i}+\sum_{j \in[m] \backslash i} f_{j} \cdot s(j) s(i)
$$

Basic estimate:mean

$\operatorname{UPDATE}(\mathrm{C}, \mathrm{i})$
$C \leftarrow C+s(i)$

Estimate(C, i)

 return $C \cdot s(i)$$$
\mathrm{E}[C \cdot s(i)]=f_{i}+\mathrm{E}\left[\sum_{j \in[m] \backslash i} f_{j} \cdot s(j) s(i)\right]
$$

Basic estimate:mean

$\operatorname{UPDATE}(\mathrm{C}, \mathrm{i})$
$C \leftarrow C+s(i)$

Estimate(C, i)
 return $C \cdot s(i)$

$$
\begin{aligned}
\mathbf{E}[C \cdot s(i)] & =f_{i}+\mathbf{E}\left[\sum_{j \in[m] \backslash i} f_{j} \cdot s(j) s(i)\right] \\
& \left.=f_{i}+\sum_{j \in[m] \backslash i} f_{j} \cdot \mathbf{E}[s(j)] \mathbf{E}[s(i)] \text { (by independence of } s(i)\right)
\end{aligned}
$$

Basic estimate:mean

$\operatorname{UPDATE}(\mathrm{C}, \mathrm{i})$
$C \leftarrow C+s(i)$

Estimate(C, i)
 return $C \cdot s(i)$

$$
\begin{aligned}
\mathbf{E}[C \cdot s(i)] & =f_{i}+\mathbf{E}\left[\sum_{j \in[m] \backslash i} f_{j} \cdot s(j) s(i)\right] \\
& \left.=f_{i}+\sum_{j \in[m] \backslash i} f_{j} \cdot \mathbf{E}[s(j)] \mathbf{E}[s(i)] \quad \text { (by independence of } s(i)\right) \\
& =f_{i}
\end{aligned}
$$

Basic estimate:mean

$$
\begin{aligned}
& \text { UPDATE(C, i) } \\
& \qquad \leftarrow C+s(i)
\end{aligned}
$$

Estimate(C, i)
 return $C \cdot s(i)$

$$
\begin{aligned}
\mathbf{E}[C \cdot s(i)] & =f_{i}+\mathbf{E}\left[\sum_{j \in[m] \backslash i} f_{j} \cdot s(j) s(i)\right] \\
& \left.=f_{i}+\sum_{j \in[m] \backslash i} f_{j} \cdot \mathbf{E}[s(j)] \mathbf{E}[s(i)] \quad \text { (by independence of } s(i)\right) \\
& =f_{i}
\end{aligned}
$$

The mean is correct: our estimator is unbiased!

Basic estimate:mean

Update(C, i)
$C \leftarrow C+s(i)$

Estimate(C, i)
 return $C \cdot s(i)$

$$
\begin{aligned}
\mathbf{E}[C \cdot s(i)] & =f_{i}+\mathbf{E}\left[\sum_{j \in[m] \backslash i} f_{j} \cdot s(j) s(i)\right] \\
& \left.=f_{i}+\sum_{j \in[m] \backslash i} f_{j} \cdot \mathbf{E}[s(j)] \mathbf{E}[s(i)] \quad \text { (by independence of } s(i)\right) \\
& =f_{i}
\end{aligned}
$$

The mean is correct: our estimator is unbiased!
Is the estimate $C \cdot s(i)$ close to f_{i} with high probability?

Chebyshev's inequality

Theorem

For every random variable X with mean μ and variance σ^{2}, and every $t \geq 1$ one has

$$
\operatorname{Pr}[|X-\mu| \geq t \cdot \sigma] \leq 1 / t^{2}
$$

Chebyshev's inequality

Theorem

For every random variable X with mean μ and variance σ^{2}, and every $t \geq 1$ one has

$$
\operatorname{Pr}[|X-\mu| \geq t \cdot \sigma] \leq 1 / t^{2}
$$

Apply Chebyshev's inequality with $X=C \cdot s(i)$ and

$$
\mu=\mathrm{E}[C \cdot s(i)] ?
$$

Chebyshev's inequality

Theorem

For every random variable X with mean μ and variance σ^{2}, and every $t \geq 1$ one has

$$
\operatorname{Pr}[|X-\mu| \geq t \cdot \sigma] \leq 1 / t^{2}
$$

Apply Chebyshev's inequality with $X=C \cdot s(i)$ and

$$
\mu=\mathbf{E}[C \cdot s(i)] ?
$$

A quantitative form of the 'law of large numbers'

Chebyshev's inequality

Theorem

For every random variable X with mean μ and variance σ^{2}, and every $t \geq 1$ one has

$$
\operatorname{Pr}[|X-\mu| \geq t \cdot \sigma] \leq 1 / t^{2}
$$

Apply Chebyshev's inequality with $X=C \cdot s(i)$ and

$$
\mu=\mathbf{E}[C \cdot s(i)] ?
$$

A quantitative form of the 'law of large numbers'

Need to compute the variance $\sigma^{2}=\mathbf{E}\left[(C \cdot s(i)-\mu)^{2}\right]$

Basic estimate: variance

$$
\begin{aligned}
& \operatorname{UPDATE}(\mathrm{C}, \mathrm{i}) \\
& \qquad C \leftarrow C+s(i)
\end{aligned}
$$

Estimate(C, i) return $C \cdot s(i)$

We have

$$
C \cdot s(i)=f_{i}+\sum_{j \in[m] \backslash i} f_{j} \cdot s(j) s(i)
$$

and
$E[C \cdot s(i)]=f_{i}$.

Basic estimate: variance

$\operatorname{UPDATE}(\mathrm{C}, \mathrm{i})$
$C \leftarrow C+s(i)$

Estimate(C, i) return $C \cdot s(i)$

We have

$$
C \cdot s(i)=f_{i}+\sum_{j \in[m] \backslash i} f_{j} \cdot s(j) s(i)
$$

and

$$
\mathrm{E}[C \cdot s(i)]=f_{j}
$$

We need to bound

$$
\begin{aligned}
\operatorname{Var}(C \cdot s(i)) & =\mathbf{E}\left[(C \cdot s(i)-\mathbf{E}[C \cdot s(i)])^{2}\right] \\
& =\mathbf{E}\left[\left(C \cdot s(i)-f_{i}\right)^{2}\right] \\
& =\mathbf{E}\left[\left(\sum_{j \in[m] \backslash i} f_{j} \cdot s(j) s(i)\right)^{2}\right]
\end{aligned}
$$

Basic estimate: variance

Update(C, i)
$C \leftarrow C+s(i)$

Estimate(C, i) return $C \cdot s(i)$

$$
\begin{aligned}
\left(c \cdot s(i)-f_{i}\right)^{2} & =\left(\sum_{j \in[m] \backslash i} f_{j} \cdot s(j) s(i)\right)^{2} \\
& =\sum_{j \in[m] i \backslash j^{\prime} \in[m] i} \sum_{j} f_{j} f_{j} \cdot s(j) s\left(j^{\prime}\right) \cdot s^{2}(i) \\
& =\sum_{j \in[m] \backslash i j^{\prime} \in[m] i i^{\prime}} f_{j} f_{j} \cdot s(j) s\left(j^{\prime}\right)
\end{aligned}
$$

Basic estimate: variance

Update(C, i)
$C \leftarrow C+s(i)$
Estimate(C, i)
return $C \cdot s(i)$

$$
\begin{aligned}
\mathbf{E}\left[\left(C \cdot s(i)-f_{i}\right)^{2}\right] & =\mathbf{E}\left[\sum_{j \in[m] \backslash i j^{\prime} \in[m] \backslash i} f_{j} f_{j^{\prime}} \cdot s(j) s\left(j^{\prime}\right)\right] \\
& =\sum_{j \in[m] \backslash i j^{\prime} \in[m] \backslash i} f_{j} f_{j^{\prime}} \cdot \mathbf{E}\left[s(j) s\left(j^{\prime}\right)\right] \\
& =\sum_{j \in[m] \backslash i} f_{j}^{2}
\end{aligned}
$$

since

- $s(j)^{2}=1$ for all j
- $\mathbf{E}\left[s(j) s\left(j^{\prime}\right)\right]=\mathbf{E}[s(j)] \mathbf{E}\left[s\left(j^{\prime}\right)\right]=0$ for $j \neq j^{\prime}$.

Basic estimate: variance

$$
\begin{aligned}
& \text { UPDATE(C, i) } \\
& C \leftarrow C+s(i)
\end{aligned}
$$

Basic estimate: variance

$$
\begin{aligned}
& \operatorname{UPDATE}(\mathrm{C}, \mathrm{i}) \\
& \qquad C \leftarrow+s(i)
\end{aligned}
$$

Estimate(C, i) return $C \cdot s(i)$

We have proved that

$$
\operatorname{Var}(C \cdot s(i))=\mathbf{E}\left[\left(C \cdot s(i)-f_{i}\right)^{2}\right]=\sum_{j \in[m] \backslash i} f_{j}^{2}
$$

Basic estimate: variance

$$
\begin{aligned}
& \text { UPDATE(C, i) } \\
& C \leftarrow C+s(i)
\end{aligned}
$$

Estimate(C, i)
 return $C \cdot s(i)$

We have proved that

$$
\operatorname{Var}(C \cdot s(i))=\mathbf{E}\left[\left(C \cdot s(i)-f_{i}\right)^{2}\right]=\sum_{j \in[m] \backslash i} f_{j}^{2}
$$

By Chebyshev's inequality

$$
\operatorname{Pr}\left[\left|C \cdot s(i)-f_{i}\right| \geq 8 \cdot \sqrt{\sum_{j \in[m] \backslash i} f_{j}^{2}}\right] \leq 1 / 64
$$

Basic estimate: variance

> UPDATE(C, i)
> $C \leftarrow C+s(i)$

Estimate(C, i)
 return $C \cdot s(i)$

We have proved that

$$
\operatorname{Var}(C \cdot s(i))=\mathbf{E}\left[\left(C \cdot s(i)-f_{i}\right)^{2}\right]=\sum_{j \in[m] \backslash i} f_{j}^{2}
$$

By Chebyshev's inequality

$$
\operatorname{Pr}\left[\left|C \cdot s(i)-f_{i}\right| \geq 8 \cdot \sqrt{\sum_{j \in[m] \backslash i} f_{j}^{2}}\right] \leq 1 / 64
$$

Basic estimate: variance

> UPDATE(C, i)
> $C \leftarrow C+s(i)$

Estimate(C, i)
 return $C \cdot s(i)$

We have proved that

$$
\operatorname{Var}(C \cdot s(i))=\mathbf{E}\left[\left(C \cdot s(i)-f_{i}\right)^{2}\right]=\sum_{j \in[m] \backslash i} f_{j}^{2}
$$

By Chebyshev's inequality

$$
\operatorname{Pr}\left[\left|C \cdot s(i)-f_{i}\right|>8 \cdot \sqrt{\sum_{j \in[m] \backslash i} f_{j}^{2}}\right] \leq 1 / 64
$$

So $C \cdot s(i)$ is close (?) to f_{i} with high probability

Basic estimate: summary

$$
\begin{aligned}
& \text { UPDATE(C, i) } \\
& C \leftarrow C+s(i)
\end{aligned}
$$

Estimate(C, i)
 return $C \cdot s(i)$

Estimate f_{i} up to

$$
8 \cdot \sqrt{\sum_{j \in[m] i} f_{j}^{2}}
$$

item to be estimated

Pro: works well for most frequent item, if other items are small

Basic estimate: summary

$\operatorname{UPDATE(C,~i)~}$
$C \leftarrow C+s(i)$

Estimate(C, i)
 return $C \cdot s(i)$

Estimate f_{i} up to

$$
8 \cdot \sqrt{\sum_{j \in[m] i} f_{j}^{2}}
$$

item to be estimated

Pro: works well for most frequent item, if other items are small
Con: estimate for a small items contaminated by large items

Next: final ApproxPointQuery and the CountSketch algorithm

COUNTSKETCH algorithm: find top k elements (approximately)

- hash items into $O(k)$ buckets (i.e. substreams)
- run simple estimate on every bucket
- repeat $O(\log N)$ times independently, take median as answer

Main intuition: estimate large items from substreams like

item to be estimated

Main intuition: estimate large items from substreams like

and small items from substreams like

1. Finding top k elements via (Approx)PointQuery
2. Basic version of ApproxPointQuery
3. ApproxPointQuery and the CountSketch algorithm
4. Finding top k elements via (Approx)PointQuery
5. Basic version of ApproxPointQuery
6. ApproxPointQuery and the CountSketch algorithm

ApproxPointQuery and CountSketch

Main ideas:

1. run basic estimate on subsampled/hashed stream (reduces variance)

ApproxPointQuery and CountSketch

Main ideas:

1. run basic estimate on subsampled/hashed stream (reduces variance)
2. aggregate independent estimates to boost confidence (take medians)

ApproxPointQuery and CountSketch

Main ideas:

1. run basic estimate on subsampled/hashed stream (reduces variance)
2. aggregate independent estimates to boost confidence (take medians)

Hashing the items

Hashed into $b=8$ buckets, get 8 subsampled streams
For item i its stream consists of $j \in[m]$ such that $h(j)=h(i)$

Hashing the items

Hashed into $b=8$ buckets, get 8 subsampled streams
For item i its stream consists of $j \in[m]$ such that $h(j)=h(i)$
For example,

- subsampled stream of item 1 is $\{1,6\}$
- subsampled stream of item 5 is $\{5,7\}$

Note: hashing the universe [m], not positions in the stream head

$\begin{array}{lllllllllllllllllllllll}1 & 4 & 6 & 1 & 2 & 10 & 1 & 5 & 1 & 1 & 2 & 2 & 3 & 3 & 3 & 9 & 8 & 7 & 4 & 4 & 2 & 2 & 1\end{array}$

Note: hashing the universe [m], not positions in the stream head

E.x. the subsampled stream of item 1 is $\{1,6\}$
head

Note: hashing the universe [m], not positions in the stream head

$\begin{array}{lllllllllllllllllllllll}1 & 4 & 6 & 1 & 2 & 10 & 1 & 5 & 1 & 1 & 2 & 2 & 3 & 3 & 3 & 9 & 8 & 7 & 4 & 4 & 2 & 2 & 1\end{array}$

Note: hashing the universe [m], not positions in the stream
head

$1461 \begin{array}{llllllllllllllllll}1 & 6 & 1\end{array}$
E.x. the subsampled stream of item 5 is $\{5,7\}$
head

Final ApproxPointQuery

Choose

- t random hash functions $h_{1}, h_{2}, \ldots, h_{t}$ from items $[m]$ to $b \approx k$ buckets $\{1,2, \ldots, b\}$
- t random hash functions $s_{1}, s_{2}, \ldots, s_{t}$ from items $[m]$ to $\{-1,+1\}$

Final ApproxPointQuery

Choose

- t random hash functions $h_{1}, h_{2}, \ldots, h_{t}$ from items $[m$ to $b \approx k$ buckets $\{1,2, \ldots, b\}$
- t random hash functions $s_{1}, s_{2}, \ldots, s_{t}$ from items $[m]$ to $\{-1,+1\}$

The algorithm runs t independent copies of basic estimate:

Update(C, i) for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

Estimate(C, i)
return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

Final ApproxPointQuery

Choose

- t random hash functions $h_{1}, h_{2}, \ldots, h_{t}$ from items $[m$ to $b \approx k$ buckets $\{1,2, \ldots, b\}$
- t random hash functions $s_{1}, s_{2}, \ldots, s_{t}$ from items $[m]$ to $\{-1,+1\}$

The algorithm runs t independent copies of basic estimate:

Update(C, i) for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

Estimate(C, i)
return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

end for
By basic estimate analysis for every $r \in[1: t]$

$$
\mathbf{E}\left[C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right]=f_{i}
$$

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

end for
By basic estimate analysis for every $r \in[1: t]$

$$
\mathbf{E}\left[C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right]=f_{i}
$$

and

$$
\mathbf{E}_{s}\left[\left(C\left[r, h_{r}(i)\right] \cdot s_{r}(i)-f_{i}\right)^{2}\right]=\sum_{j \neq i: h_{r}(\mathrm{j})=\mathbf{h}_{\mathbf{r}}(\mathrm{i})} f_{j}^{2}
$$

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

Estimate(C, i)

return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

end for

By basic estimate analysis for every $r \in[1: t]$

$$
\mathrm{E}\left[C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right]=f_{i}
$$

and

$$
\mathbf{E}_{s}\left[\left(C\left[r, h_{r}(i)\right] \cdot s_{r}(i)-f_{i}\right)^{2}\right]=\sum_{j \neq: \mathrm{h}_{r}(\mathrm{i})=\mathrm{h}_{r}(\mathrm{i})} f_{j}^{2}
$$

How large can the variance be? Can be be reduced by making number of buckets b large?

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

Estimate(C, i)

return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

end for

By basic estimate analysis for every $r \in[1: t]$

$$
\mathbf{E}\left[C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right]=f_{i}
$$

and

$$
\mathbf{E}_{s}\left[\left(C\left[r, h_{r}(i)\right] \cdot s_{r}(i)-f_{i}\right)^{2}\right]=\sum_{j \neq: h_{r}(\mathrm{i})=\mathbf{h}_{r}(\mathrm{i})} f_{j}^{2}
$$

How large can the variance be? Can be be reduced by making number of buckets b large?

YES: hashing into a sufficiently large number of buckets reduces estimation error to below $\varepsilon \cdot f_{k}$

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

Estimate(C, i)
return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

end for

By basic estimate analysis for every $r \in[1: t]$

$$
\mathrm{E}\left[C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right]=f_{i}
$$

and

$$
\mathbf{E}_{s}\left[\left(C\left[r, h_{r}(i)\right] \cdot s_{r}(i)-f_{i}\right)^{2}\right]=\sum_{j \neq: \mathbf{h}_{r}(\mathrm{i})=\mathbf{h}_{\mathbf{r}}(\mathrm{i})} f_{j}^{2}
$$

How large can the variance be? Can be be reduced by making number of buckets b large?

YES: hashing into a sufficiently large number of buckets reduces estimation error to below $\varepsilon \cdot f_{k}$
$O(\log N)$ repetitions ensure estimates are correct for all i with high probability

Update(C, i)
for $r \in[1: t]$
$C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)$
end for

Estimate(C, i)
return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

Estimate(C, i)

return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

end for

Lemma
If $b \geq 8 \max \left\{k, \frac{32 \Sigma_{j \in \text { TAA }} f_{i}^{2}}{\left(\varepsilon \varepsilon_{k}\right)^{2}}\right\}$ and $t=O(\log N)$, then for every $i \in[m]$

$$
\left|\operatorname{median}_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}-f_{i}(p)\right| \leq \varepsilon f_{k}
$$

at every point $p \in[1: N]$ in the stream.
($f_{i}(p)$ is the frequency of i up to position p)

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

Estimate(C, i)

return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

end for

Lemma
If $b \geq 8 \max \left\{k, \frac{32 \Sigma_{j \in \text { TAA }} f_{j}^{2}}{\left(\varepsilon \varepsilon_{k}\right)^{2}}\right\}$ and $t=O(\log N)$, then for every $i \in[m]$

$$
\left|\operatorname{median}_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}-f_{i}(p)\right| \leq \varepsilon f_{k}
$$

at every point $p \in[1: N]$ in the stream.
($f_{i}(p)$ is the frequency of i up to position p)
Space complexity is $O(b \log N)$

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

Estimate(C, i)

return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

end for

Lemma
If $b \geq 8 \max \left\{k, \frac{32 \sum_{j \in \text { TAA }} f_{j}^{2}}{\left(\varepsilon \varepsilon_{k}\right)^{2}}\right\}$ and $t=O(\log N)$, then for every $i \in[m]$

$$
\left|\operatorname{median}_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}-f_{i}(p)\right| \leq \varepsilon f_{k}
$$

at every point $p \in[1: N]$ in the stream.
($f_{i}(p)$ is the frequency of i up to position p)
Space complexity is $O(b \log N)$

Space complexity

$$
\text { Set } b=8 \max \left\{k, \frac{32 \sum_{j \in \text { TALL }} f_{j}^{2}}{\left(\varepsilon f_{k}\right)^{2}}\right\}
$$

Note that $b=O\left(k / \varepsilon^{2}\right)$ if $\frac{1}{k} \sum_{j \in T A / L} f_{j}^{2}=O\left(f_{k}^{2}\right)$

In practice, choose b subject to space constraints, detect elements with counts above $O\left(\varepsilon \sqrt{\frac{1}{k} \sum_{j \in \text { TAIL }} f_{j}^{2}}\right)$

Space complexity

Set $k=1$. Suppose that 1 appears \sqrt{N} times in the stream, and other $N-\sqrt{N}$ elements are distinct

Space complexity

Set $k=1$. Suppose that 1 appears \sqrt{N} times in the stream, and other $N-\sqrt{N}$ elements are distinct

Then $f_{1}=\sqrt{N}, f_{i}=1$ for $i=2, N-\sqrt{N}$.

$$
\text { Set } b=8 \max \left\{1, \frac{32 \sum_{j \in \text { TALL }} f_{j}^{2}}{\left(\varepsilon f_{1}\right)^{2}}\right\}
$$

Space complexity

Set $k=1$. Suppose that 1 appears \sqrt{N} times in the stream, and other $N-\sqrt{N}$ elements are distinct

Then $f_{1}=\sqrt{N}, f_{i}=1$ for $i=2, N-\sqrt{N}$.

$$
\text { Set } b=8 \max \left\{1, \frac{32 \Sigma_{j \epsilon \text { TALL }} f_{j}^{2}}{\left(\varepsilon f_{1}\right)^{2}}\right\}
$$

We have $\sum_{j \in \text { TAIL }} f_{j}^{2}=N-\sqrt{N} \leq N$, and $f_{1}^{2}=N$

Space complexity

Set $k=1$. Suppose that 1 appears \sqrt{N} times in the stream, and other $N-\sqrt{N}$ elements are distinct

Then $f_{1}=\sqrt{N}, f_{i}=1$ for $i=2, N-\sqrt{N}$.

$$
\text { Set } b=8 \max \left\{1, \frac{32 \Sigma_{j \in \text { TALL }} f_{j}^{2}}{\left(\varepsilon f_{1}\right)^{2}}\right\}
$$

$$
\text { We have } \sum_{j \in \text { TAIL }} f_{j}^{2}=N-\sqrt{N} \leq N \text {, and } f_{1}^{2}=N
$$

So $b=8 \max \left\{1, \frac{32 \sum_{j \in \text { TALL }} f_{j}^{2}}{\left(\varepsilon f_{1}\right)^{2}}\right\}=O\left(1 / \varepsilon^{2}\right)$ suffices

Space complexity

Set $k=1$. Suppose that 1 appears \sqrt{N} times in the stream, and other $N-\sqrt{N}$ elements are distinct

Then $f_{1}=\sqrt{N}, f_{i}=1$ for $i=2, N-\sqrt{N}$.

$$
\text { Set } b=8 \max \left\{1, \frac{32 \Sigma_{j \in \operatorname{TILL}} f_{j}^{2}}{\left(\varepsilon f_{1}\right)^{2}}\right\}
$$

$$
\text { We have } \sum_{j \in \text { TAlL }} f_{j}^{2}=N-\sqrt{N} \leq N \text {, and } f_{1}^{2}=N
$$

$$
\text { So } b=8 \max \left\{1, \frac{32 \sum_{j \in \operatorname{TALL}} f_{j}^{2}}{\left(\varepsilon \epsilon_{1}\right)^{2}}\right\}=O\left(1 / \varepsilon^{2}\right) \text { suffices }
$$

Remarkable, as 1 appears only in \sqrt{N} positions out of N : a vanishingly small fraction of positions!

Final algorithm: COuntSketch

FINDAPPROXTOP (S, k, ε) : returns set of k items such that $f_{i} \geq(1-\varepsilon) f_{k}$ for all returned i
(In fact also every i with $f_{i} \geq(1-\varepsilon) f_{k}$ is reported)
$\operatorname{ApproxPointQuery}(S, i, \varepsilon)$: returns $\widehat{f}_{i} \in\left[f_{i}-\varepsilon f_{k}, f_{i}+\varepsilon f_{k}\right]$

Find head items if they contribute the bulk of the stream in ℓ_{2} sense

CountSketch: proof details

Update(C, i)
for $r \in[1: t]$
$C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)$
end for

Lemma
If $b \geq 8 \max \left\{k, \frac{32 \sum_{j \in \tau \tan } f_{j}^{2}}{\left(\varepsilon_{k}\right)^{2}}\right\}$ and $t \geq A \log N$ for an absolute constant $A>0$, then for every $i \in[m]$

$$
\mid \text { median }\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}-f_{i}(p) \mid \leq \varepsilon f_{k}
$$

at every point $p \in[1: N]$ in the stream with high probability.
($f_{i}(p)$ is the frequency of i up to position p)

Update(C, i)
for $r \in[1: t]$
$C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)$
Estimate(C, i)
return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

end for

Lemma
If $b \geq 8 \max \left\{k, \frac{32 \sum_{j \in T A N} f_{j}^{2}}{\left(\varepsilon \varepsilon_{k}\right)^{2}}\right\}$ and $t \geq A \log N$ for an absolute constant $A>0$, then for every $i \in[m]$

$$
\mid \text { median }_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}-f_{i} \mid \leq \varepsilon f_{k}
$$

with high probability.
(f_{i} is the frequency of i)

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

end for
By basic estimate analysis for every $r \in[1: t]$

$$
\mathbf{E}\left[C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right]=f_{i}
$$

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

end for
By basic estimate analysis for every $r \in[1: t]$

$$
\mathbf{E}\left[C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right]=f_{i}
$$

and

$$
\mathbf{E}_{s}\left[\left(C\left[r, h_{r}(i)\right] \cdot s_{r}(i)-f_{i}\right)^{2}\right]=\sum_{j \neq i: h_{r}(\mathrm{j})=\mathbf{h}_{\mathbf{r}}(\mathrm{i})} f_{j}^{2}
$$

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

Estimate(C, i)

return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

end for

By basic estimate analysis for every $r \in[1: t]$

$$
\mathrm{E}\left[C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right]=f_{i}
$$

and

$$
\mathbf{E}_{s}\left[\left(C\left[r, h_{r}(i)\right] \cdot s_{r}(i)-f_{i}\right)^{2}\right]=\sum_{j \neq: h_{r}(\mathrm{i})=h_{r}(\mathrm{i})} f_{j}^{2}
$$

How large can the variance be? Does it reduce by about a factor of b ?

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

Estimate(C, i)

return median ${ }_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

end for

By basic estimate analysis for every $r \in[1: t]$

$$
\mathbf{E}\left[C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right]=f_{i}
$$

and

$$
\mathbf{E}_{s}\left[\left(C\left[r, h_{r}(i)\right] \cdot s_{r}(i)-f_{i}\right)^{2}\right]=\sum_{j \neq: h_{r}(\mathrm{i})=\mathbf{h}_{r}(\mathrm{i})} f_{j}^{2}
$$

How large can the variance be? Does it reduce by about a factor of b ?

Consider contribution of head and tail items separately:

$$
\sum_{j \neq: h_{r}(j)=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H \in A D, j \neq i \\ h_{r}(\mathbf{j})=h_{r}(i)}} f_{j}^{2}+\sum_{\substack{j \in T A L L, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}
$$

Consider contribution of head and tail items separately:

$$
\sum_{j \neq i: h_{r}(j)=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H E A D, j \neq i \\ \mathbf{h}_{\mathbf{r}}(\mathbf{j})=\mathbf{h}_{\mathbf{r}}(\mathbf{i})}} f_{j}^{2}+\sum_{\substack{j \in T A I L, j \neq i \\ \mathbf{h}_{\mathbf{r}}(\mathbf{j})=\mathbf{h}_{\mathbf{r}}(\mathbf{i})}} f_{j}^{2}
$$

Consider contribution of head and tail items separately:

$$
\sum_{j \neq i: h_{r}(j)=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H E A D, j \neq i \\ \mathbf{h}_{\mathbf{r}}(\mathbf{j})=\mathbf{h}_{\mathbf{r}}(\mathbf{i})}} f_{j}^{2}+\sum_{\substack{j \in T A / L, j \neq i \\ \mathbf{h}_{\mathbf{r}}(\mathbf{j})=\mathbf{h}_{\mathbf{r}}(\mathbf{i})}} f_{j}^{2}
$$

For each $r \in[1: t]$ and each item $i \in[m]$ define three events:

- No-Collisions $r(i)-i$ does not collide with any of the head items under hashing r

Consider contribution of head and tail items separately:

$$
\sum_{j \neq i: h_{r}(j)=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H E A D, j \neq i \\ \mathbf{h}_{\mathbf{r}}(\mathbf{j})=\mathbf{h}_{\mathbf{r}}(\mathbf{i})}} f_{j}^{2}+\sum_{\substack{j \in T A M L, j \neq i \\ \mathbf{h}_{\mathbf{r}}(\mathbf{j})=\mathbf{h}_{\mathbf{r}}(\mathbf{i})}} f_{j}^{2}
$$

For each $r \in[1: t]$ and each item $i \in[m]$ define three events:

- No-Collisions $r(i)-i$ does not collide with any of the head items under hashing r
- Small-Variance $_{r}(i)-i$ does not collide with too many of tail items under hashing r

Consider contribution of head and tail items separately:

$$
\sum_{j \neq i: h_{r}(j)=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H E A D, j \neq i \\ \mathbf{h}_{\mathbf{r}}(\mathbf{j})=h_{\mathbf{r}}(\mathbf{i})}} f_{j}^{2}+\sum_{\substack{j \in T A / L, j \neq i \\ \mathbf{h}_{\mathbf{r}}(\mathbf{j})=h_{\mathbf{r}}(\mathbf{i})}} f_{j}^{2}
$$

For each $r \in[1: t]$ and each item $i \in[m]$ define three events:

- No-Collisions $r(i)-i$ does not collide with any of the head items under hashing r
- Small-Variancer $(i)-i$ does not collide with too many of tail items under hashing r
- SmaLL-Deviation $r_{r}(i)$ - success event from basic analysis

Consider contribution of head and tail items separately:

$$
\sum_{j \neq: h_{r}(\bar{j})=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H \in A D, j \neq i \\ h_{r}(\mathbf{j})=h_{r}(i)}} f_{j}^{2}+\sum_{\substack{j \in T A / L, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}
$$

For each $r \in[1: t]$ and each item $i \in[m]$ define three events:

- No-Collisions $r(i)-i$ does not collide with any of the head items under hashing r
- Small-Variance $r(i)-i$ does not collide with too many of tail items under hashing r
- Small-Deviation (i) - success event from basic analysis

Show that all three events hold simultaneously with probability strictly bigger than $1 / 2$ - so median gives good estimate

(No) collisions with head items

No-Collisions $_{r}(i):=$ event that

$$
\left\{j \in H E A D \backslash i: h_{r}(j)=h_{r}(i)\right\}=\varnothing,
$$

i.e. that i collides with none of top k elements under h_{r}.

(No) collisions with head items

No-Collisions $_{r}(i):=$ event that

$$
\left\{j \in H E A D \backslash i: h_{r}(j)=h_{r}(i)\right\}=\varnothing,
$$

i.e. that i collides with none of top k elements under h_{r}.

For every $j \neq i$ and every $r \in[1: t]$

$$
\operatorname{Pr}\left[h_{r}(i)=h_{r}(j)\right] \leq 1 / b
$$

(No) collisions with head items

$\mathrm{No}^{-C O L L I S I O N S}{ }_{r}(i):=$ event that

$$
\left\{j \in H E A D \backslash i: h_{r}(j)=h_{r}(i)\right\}=\varnothing,
$$

i.e. that i collides with none of top k elements under h_{r}.

For every $j \neq i$ and every $r \in[1: t]$

$$
\operatorname{Pr}\left[h_{r}(i)=h_{r}(j)\right] \leq 1 / b
$$

Suppose that $b \geq 8 k$. Then by the union bound

$$
\begin{aligned}
\operatorname{Pr}\left[\text { No-COLLISIONS }_{r}(i)\right] & \geq 1-k / b \\
& \geq 1-1 / 8
\end{aligned}
$$

Consider contribution of head and tail items separately:

$$
\sum_{j \neq: h_{r}(\bar{j})=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H \in A D, j \neq i \\ h_{r}(\mathbf{j})=h_{r}(i)}} f_{j}^{2}+\sum_{\substack{j \in T A / L, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}
$$

For each $r \in[1: t]$ and each item $i \in[m]$ define three events:

- No-Collisions $r(i)-i$ does not collide with any of the head items under hashing r
- Small-Variancer $(i)-i$ does not collide with too many of tail items under hashing r
- Small-Deviation (i) - success event from basic analysis

Show that all three events hold simulaneously with probability strictly bigger than $1 / 2$ - so median gives good estimate

Consider contribution of head and tail items separately:

$$
\sum_{j \neq: h_{r}(\bar{j})=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H \in A D, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}+\sum_{\substack{j \in T A / L, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}
$$

For each $r \in[1: t]$ and each item $i \in[m]$ define three events:

- No-Collisions $r(i)-i$ does not collide with any of the head items under hashing r
- Small-Variancer (i) - i does not collide with too many of tail items under hashing r
- SmalL-Deviation $r(i)$ - success event from basic analysis

Show that all three events hold simulaneously with probability strictly bigger than $1 / 2$ - so median gives good estimate

Small variance from tail elements

Small-Variancer $_{r}(i):=e \mathrm{event}$ that

$$
\sum_{\substack{j \in T A / L, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2} \leq \frac{8}{b} \sum_{j \in T A / L} f_{j}^{2}
$$

Small variance from tail elements

Small-VARIANCE $_{r}(i):=e \mathrm{event}$ that

$$
\sum_{\substack{j \in T A / L . j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2} \leq \frac{8}{b_{j \in T A M L}} \sum_{j} f_{j}^{2}
$$

For every $i, j \in[m], i \neq j$ and $r \in[1: t]$

$$
\operatorname{Pr}_{h_{r}}\left[h_{r}(i)=h_{r}(j)\right]=1 / b \quad(b \text { is the number of buckets })
$$

Small variance from tail elements

Small-VARIANCE $_{r}(i):=e \mathrm{event}$ that

$$
\sum_{\substack{j \in T A / L . j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2} \leq \frac{8}{b_{j \in T A M L}} \sum_{j} f_{j}^{2}
$$

For every $i, j \in[m], i \neq j$ and $r \in[1: t]$

$$
\operatorname{Pr}_{h_{r}}\left[h_{r}(i)=h_{r}(j)\right]=1 / b \quad(b \text { is the number of buckets })
$$

So by linearity of expectation

$$
\begin{aligned}
\mathbf{E}\left[\sum_{\substack{j \in T A L L, j \neq i \\
h_{r}(j)=h_{r}(i)}} f_{j}^{2}\right] & =\sum_{j \in T A L L, j \neq i} f_{j}^{2} \cdot \mathbf{P r}_{h_{r}}\left[h_{r}(i)=h_{r}(j)\right] \\
& \leq \frac{1}{b_{j \in T A L L}} \sum_{j} f_{j}^{2}
\end{aligned}
$$

Markov's inequality

Theorem
For every non-negative random variable X with mean $\mu \geq 0$, and every $k \geq 1$ one has

$$
\operatorname{Pr}[X \geq k \cdot \mu] \leq 1 / k
$$

We proved that

$$
\mathbf{E}\left[\sum_{\substack{j \in T A / L, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}\right] \leq \frac{1}{b} \sum_{j \in T A / L} f_{j}^{2}
$$

By Markov's inequality one has, for every i and every r, $\operatorname{Pr}\left[\right.$ Small- $^{\left.- \text {VARIANCE }_{r}(i)\right] \geq 1-1 / 8}$

No-Collisions $_{r}(i)$ and Small-Variance $_{r}(i)$: recap

Consider contribution of head and tail items separately:

$$
\sum_{j \neq: h_{r}(j)=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H \in A D, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}+\sum_{\substack{j \in T A L L, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}
$$

Conditioned on $\mathrm{No}^{-\mathrm{Collisions}_{r}(i)}$ and $\mathrm{SmalL-VARIANCE}_{r}(i)$

No-Collisions $_{r}(i)$ and Small-Variance $_{r}(i)$: recap

Consider contribution of head and tail items separately:

$$
\sum_{j \neq: h_{r}(j)=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H \in A D, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}+\sum_{\substack{j \in T A L L, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}
$$

Conditioned on $\mathrm{No}^{-\mathrm{Collisions}_{r}(i)}$ and $\mathrm{SmalL-VARIANCE}_{r}(i)$

- first term is zero

No-Collisions $_{r}(i)$ and Small-Variance $_{r}(i)$: recap

Consider contribution of head and tail items separately:

$$
\sum_{j \neq: h_{r}(j)=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H \in A D, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}+\sum_{\substack{j \in T A L L, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}
$$

Conditioned on No-Collisions r ((i) and Small-Variance $_{r}(i)$

- first term is zero
- second term is at most

$$
\frac{8}{b} \sum_{j \in T A / L} f_{j}^{2}
$$

Small deviation event

SmALL-DeVIATION $_{r}(i)=$ event that

$$
\left(C\left[r, h_{r}(i)\right] \cdot s_{r}(i)-f_{i}\right)^{2} \leq 8 \operatorname{Var}\left(C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right)
$$

Small deviation event

SmALL-Deviation $_{r}(i)=$ event that

$$
\left(C\left[r, h_{r}(i)\right] \cdot s_{r}(i)-f_{i}\right)^{2} \leq 8 \operatorname{Var}\left(C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right)
$$

By Chebyshev's inequality one has, for every i and every r,

$$
\operatorname{Pr}\left[\operatorname{SmALL}^{-D_{2}} \operatorname{liation} r(i)\right] \geq 1-1 / 8
$$

$\operatorname{Pr}\left[\operatorname{SmaLL-VARIANCE~}_{r}(i)\right] \geq 1-1 / 8$

$$
\operatorname{Pr}\left[\mathrm{No}^{-C O L L I S I O N S}(i)\right] \geq 1-1 / 8
$$

$\operatorname{Pr}\left[\right.$ Small-Deviation $\left._{r}(i)\right] \geq 1-1 / 8$

So by the union bound
$\operatorname{Pr}\left[\right.$ Small-Variance $_{r}(i)$ and No-Collisions $r(i)$ and Small-Deviation $r(i)] \geq 5 / 8$.

Let

$$
\gamma:=\sqrt{\frac{1}{b} \sum_{j \in T A / L} f_{j}^{2}}
$$

For every $p \in[1: N]$ let $f_{i}(p):=$ frequency of i up to position p
Lemma
If $b \geq 8 k$, then for every i, every $r \in[1: t]$,

$$
\operatorname{Pr}\left[\left|C\left[r, h_{r}(i)\right] \cdot s_{r}(i)-f_{i}\right| \leq 8 \gamma\right] \geq 5 / 8
$$

Let

$$
\gamma:=\sqrt{\frac{1}{b} \sum_{j \in T A / L} f_{j}^{2}}
$$

For every $p \in[1: N]$ let $f_{i}(p):=$ frequency of i up to position p
Lemma
If $b \geq 8 k$ and $t \geq A \log N$ for an absolute constant $A>0$, then for every i, with probability $\geq 1-1 / N^{4}$

$$
\mid \text { median }_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}-f_{i} \mid \leq 8 \gamma
$$

at the end of the stream.
Proof.
Chernoff bounds.

Let

$$
\gamma:=\sqrt{\frac{1}{b} \sum_{j \in T A / L} f_{j}^{2}}
$$

For every $p \in[1: N]$ let $f_{i}(p):=$ frequency of i up to position p
Lemma
If $b \geq 8 k$ and $t \geq A \log N$ for an absolute constant $A>0$, then with probability $\geq 1-1 / N^{3}$ for every $i \in[m]$

$$
\mid \text { median }_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}-f_{i}(p) \mid \leq 8 \gamma
$$

at the end of the stream.
Proof.
Chernoff bounds.

Let

$$
\gamma:=\sqrt{\frac{1}{b} \sum_{j \in T A / L} f_{i}^{2}}
$$

For every $p \in[1: N]$ let $f_{i}(p):=$ frequency of i up to position p
Lemma
If $b \geq 8 \max \left\{k, \frac{32 \sum_{j \in \text { TAlL }} f_{j}^{2}}{\left(\varepsilon f_{k}\right)^{2}}\right\}$ and $t \geq A \log N$ for an absolute constant $A>0$, then with probability $\geq 1-1 / N^{3}$ for every $i \in[m]$

$$
\mid \text { median }_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}-f_{i}(p) \mid \leq \varepsilon f_{k}
$$

at the end of the stream.

Let

$$
\gamma:=\sqrt{\frac{1}{b} \sum_{j \in T A / L} f_{i}^{2}}
$$

For every $p \in[1: N]$ let $f_{i}(p):=$ frequency of i up to position p
Lemma
If $b \geq 8 \max \left\{k, \frac{32 \sum_{j \in \text { TAlL }} f_{j}^{2}}{\left(\varepsilon f_{k}\right)^{2}}\right\}$ and $t \geq A \log N$ for an absolute constant $A>0$, then with probability $\geq 1-1 / N^{3}$ for every $i \in[m]$

$$
\mid \text { median }_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}-f_{i}(p) \mid \leq \varepsilon f_{k}
$$

at the end of the stream.
Proof.
Substitute value of b into definition of γ :

$$
\gamma=\sqrt{\frac{1}{b} \sum_{j \in T A / L} f_{i}^{2}} \leq \varepsilon f_{k} / 8
$$

