Lecture 2: Frequency Moments, Heavy
Hitters

Michael Kapralov
EPFL

May 24, 2017

Linear sketching

sketching matrix

space requirement=number of rows

Sketching algorithms for basic statistics, and then graph
sketching

In this lecture:

» Frequency moments (AMS sketch)

» Heavy hitters (CountSketch)

In this lecture:

» Frequency moments (AMS sketch)

» Heavy hitters (CountSketch)

AMS sketch (Alon-Matias-Szegedy’96)

Goal: approximate
lixllz= [) x2
ie[n]

from a stream of increments/decrements to x;.

Vector interpretation of a data stream

xeR" 1 2 3 4 5 6 7 8

» Initially, x=0
» Insertion of / interpreted as

Xj = Xj+1

> Want to estimate ||x|[3

10

Vector interpretation of a data stream

xeR" 1 2 3 4 5 6 7 8

3
» Initially, x=0
» Insertion of / interpreted as

Xj = Xj+1

> Want to estimate ||x|[3

10

Vector interpretation of a data stream

[1[]
XeR" 1 2 3 4 5 6 7 8

3 4
» Initially, x=0
» Insertion of j interpreted as

Xj = Xj+1

> Want to estimate ||x|[3

9

10

Vector interpretation of a data stream

H o
XeR" 1 2 3 4 5 6 7 8

343
» Initially, x=0
» Insertion of / interpreted as

Xj = Xj+1

> Want to estimate ||x|[3

9

10

Vector interpretation of a data stream

3432
» Initially, x=0
» Insertion of / interpreted as

Xj = Xj+1

> Want to estimate ||x|[3

10

Vector interpretation of a data stream

343210
» Initially, x=0
» Insertion of j interpreted as

Xj = Xj+1

> Want to estimate ||x|[3

Vector interpretation of a data stream

I_Iﬂl_l
2 3 4

3432103

xeR™ 1 5 6 7 8

» Initially, x=0
» Insertion of / interpreted as

Xj = Xj+1

> Want to estimate ||x|[3

Vector interpretation of a data stream

34321031
» Initially, x=0
» Insertion of / interpreted as

Xj = Xj+1

> Want to estimate ||x|[3

Vector interpretation of a data stream

343210313
» Initially, x=0
» Insertion of j interpreted as

Xj = Xj+1

> Want to estimate ||x|[3

Vector interpretation of a data stream

HI_IHT

xeR" 1 2 3 5 6 7 8

3432103131
» Initially, x=0
» Insertion of / interpreted as

Xj = Xj+1

> Want to estimate ||x|[3

Vector interpretation of a data stream

HHHT

xeR" 1 2 3 5 6 7 8

34321031312
» Initially, x=0
» Insertion of / interpreted as

Xj = Xj+1

> Want to estimate ||x|[3

Vector interpretation of a data stream

HﬁHT

xeR" 1 2 3 5 6 7 8

343210313122
» Initially, x=0
» Insertion of j interpreted as

Xj = Xj+1

> Want to estimate ||x|[3

Vector interpretation of a data stream

HﬁHTT

xeR" 1 2 3 6 7 8

3432103131225
» Initially, x=0
» Insertion of / interpreted as

Xj = Xj+1

> Want to estimate ||x|[3

Vector interpretation of a data stream

34321031312255
» Initially, x=0
» Insertion of / interpreted as

Xj = Xj+1

> Want to estimate ||x|[3

Vector interpretation of a data stream

343210313122555
» Initially, x=0
» Insertion of / interpreted as

Xj = Xj+1

> Want to estimate ||x|[3

Vector interpretation of a data stream

3432103131225559
» Initially, x=0
» Insertion of j interpreted as

Xj = Xj+1

> Want to estimate ||x|[3

Vector interpretation of a data stream

3432103131225559
» Initially, x=0
» Insertion of j interpreted as

Xj = Xj+1

> Want to estimate ||x|[3

Vector interpretation of a data stream

34321031312255597
» Initially, x=0
» Insertion of / interpreted as

Xj = Xj+1

> Want to estimate ||x|[3

Vector interpretation of a data stream

343210313122555974
» Initially, x=0
» Insertion of / interpreted as

Xj = Xj+1

> Want to estimate ||x|[3

Vector interpretation of a data stream

3432103131225559744
» Initially, x=0
» Insertion of j interpreted as

Xj = Xj+1

> Want to estimate ||x|[3

Vector interpretation of a data stream

AR o oo

xeR" 1 2 3 7 8 9 10

3432103131225559744°2
» Initially, x=0
» Insertion of / interpreted as

Xj = Xj+1

> Want to estimate ||x|[3

Vector interpretation of a data stream

Haﬂﬂﬂﬂﬂ
XeR" 1 2 3 4 5 6 7 8 9 10

343210313122555974422
» Initially, x=0
» Insertion of / interpreted as

Xj = Xj+1

> Want to estimate ||x|[3

Vector interpretation of a data stream

H HHI_II_II_I
XeR" 1 2 3 4 5 6 7 8 9 10

3432103131225559744223
» Initially, x=0
» Insertion of j interpreted as

Xj = Xj+1

> Want to estimate ||x|[3

Vector interpretation of a data stream

H HHI_II_II_I
XeR" 1 2 3 4 5 6 7 8 9 10

34321031312255597442233
» Initially, x=0
» Insertion of / interpreted as

Xj = Xj+1

> Want to estimate ||x|[3

AMS sketch (Alon-Matias-Szegedy’96)

Goal: approximate
lixllz= [) x2
ie[n]

from a stream of increments/decrements to x;.

AMS sketch (Alon-Matias-Szegedy’96)

Goal: approximate
lixllz= [) x2
ie[n]

from a stream of increments/decrements to x;.

Choose ry,...,m to be i.i.d. r.v., with
Priri=+1]=Pr[ri=-1]=1/2.

AMS sketch (Alon-Matias-Szegedy’96)

Goal: approximate
lixllz= [3 x?
ie[n]

from a stream of increments/decrements to x;.

Choose ry,...,m to be i.i.d. r.v., with

Priri=+1]=Pr[ri=-1]=1/2.

Maintain .
Z= Z riXj
i=1
under increments/decrements of x.

AMS sketch (Alon-Matias-Szegedy’96)

Goal: approximate
lixllz= [3 x?
ie[n]

from a stream of increments/decrements to x;.
Choose ry,...,m to be i.i.d. r.v., with

Priri=+1]=Pr[ri=-1]=1/2.
Maintain

n
Z= Z riXi
i=1

under increments/decrements of x.

Basic algorithm: output Z2

AMS sketch (Alon-Matias-Szegedy’96)

Goal: approximate
lixllz= [3 x?
ie[n]

from a stream of increments/decrements to x;.

Choose ry,...,m to be i.i.d. r.v., with

Priri=+1]=Pr[ri=-1]=1/2.

Maintain

n
Z= Z riXi
i=1

under increments/decrements of x.

Basic algorithm: output Z2

Want to claim that Z2 is ‘close’ to ||x||§ with ‘high probability’

Alon-Matias-Szegedy — analysis (expectation)
Want to claim that Z2 is ‘close’ to [1x]13 with ‘high probability’

Alon-Matias-Szegedy — analysis (expectation)
Want to claim that Z2 is ‘close’ to ||x||§ with ‘high probability’

Compute expectation of Z2, then bound the variance

Alon-Matias-Szegedy — analysis (expectation)
Want to claim that Z2 is ‘close’ to ||x||§ with ‘high probability’

Compute expectation of Z2, then bound the variance

Expectation:

E[Z%] = [i rix;)?

Il
Ms
= 5

E[r/r/X/X/]

\
1l
-
~.
1l
-

1
s
™s

1]
—
~.
1]
-

2 Elrinlxix;

n
xF+ Y. E[R]E[n]xx;
i jii#]

Il
.M:

-
1l
-

Il
M=
=

NS

1]
—

Alon-Matias-Szegedy — analysis (expectation)
Want to claim that Z2 is ‘close’ to ||x||§ with ‘high probability’

Compute expectation of Z2, then bound the variance

Expectation:

E[Z%] = [i rix;)?

Il
Ms
M= 5

E[r/r/X/X/]

\
1l
-
~.
1l
-

1
s
™s

1]
-
~.
1]
-

E[r/r/]X/X/

n
xF+ Y. E[R]E[n]xx;
i jii#]

Il
.M:

\
1l
-

2
Xi

I
NagE

_L

||x||2 (our estimator is unbiased!)

Alon-Matias-Szegedy — analysis (variance)

Want to claim that Z2 is ‘close’ to ||x]13 with ‘high probability’

Bound the variance Var[Z?] = E[Z4] - (E[Z?])??

Alon-Matias-Szegedy — analysis (variance)

Want to claim that Z2 is ‘close’ to ||X||§ with ‘high probability’
Bound the variance Var[Z?] = E[Z4] - (E[Z?])??

Compute

E[Z* =E Zr,x, Zr/x/ kaXk Zr,x,)
j=1

i=1

Alon-Matias-Szegedy — analysis (variance)

Want to claim that Z2 is ‘close’ to ||x||§ with ‘high probability’
Bound the variance Var[Z?] = E[Z4] - (E[Z?])??
Compute

E[Z*]=E Zf:X/ Z"/X/ kaXk Zf/X/)
j=1

i=1

Can be decomposed as follows:

> Z,f':1(r,-x,) — expectation Y7, ,

> 6Xi<(ririxiX;)? — expectation 62,-<,-xl.2x/?2

» Terms involving a single rix; — expectation zero.

In total: £, x +6 X x?x?

Alon-Matias-Szegedy — analysis (variance)
Bound the variance Var[Z?] = E[Z4] - (E[Z?])??
Computed

n
E[z4=) x* +62x,-2xj2

i=1 i<f

Alon-Matias-Szegedy — analysis (variance)
Bound the variance Var[Z?] = E[Z4] - (E[Z?])??
Computed

n
E[Z%] :;xf'+6%xi2xj?
So
Var(Z?] = E[Z*] - (E[Z?])?

Analysis: putting it together

We showed that
> E[Z?] =1IxII3
> o? =Var[Z?] < 2||x|I3

Analysis: putting it together

We showed that
> E[Z?] =1IxII3
> o? =Var[Z?] < 2||x|I3

So by Chebyshev’s inequality for { =1

Pr[|Z% —-E[Z?]| = to] <1/12

Analysis: putting it together

We showed that
> E[Z?] =1IxII3
> o? =Var[Z?] < 2||x|I3

So by Chebyshev’s inequality for { = 1
Pr[|Z2 -E[Z?]| = to] < 1/1?

and we get
Pr(1Z2 - |IxI5| = V2t||x15] < 1/

Analysis: putting it together

We showed that
> E[Z?] =1IxII3
> o? =Var[Z?] < 2||x|I3

So by Chebyshev’s inequality for { = 1
Pr[|Z2 -E[Z?]| = to] < 1/1?

and we get
Pr(1Z2 - |IxI5| = V2t||x15] < 1/

Not good...

Analysis: putting it together

We showed that
> E[Z2]=IxI13
> o? =Var[Z?] < 2||x|I3

So by Chebyshev’s inequality for { =1
Pr[|Z2 -E[Z?]| = to] < 1/1?

and we get
Pr(1Z2 - |IxI5| = V2t||x15] < 1/

Not good...but can reduce variance by averaging!

Analysis: putting it together

Actual algorithm:

» Maintain Z;,...,Z, Z; =Zf:1 r/f)(j
> Output A:= YK 72
Now

Var[A] = Var P

1k 1
) z,?] - _Var [ZZ] < (2/K)IIxII,
i=1

Analysis: putting it together

Actual algorithm:
» Maintain Z;,...,Z, Z; :Z/’.’:1 r/f)(j

> Output A:= YK 72

Now

1& 1
-y z,?] = . Var| 22| < (2/k)IIxII3,

Var[A] = Var k& P

and by Chebyshev’s inequality
Pr[|A—||x||§| > t-(2/k)1/2||x||§] <1/2,

so setting k = O(1/¢2) and ¢ = 10 suffices for a
(1 +€)-approximation with probability =99/100 !

Space complexity

How much space do we need to store r;’s?

4-wise independence suffices, hence O(logn) space

Some remarks
Can we reduce failure probability to 1 -7

Some remarks
Can we reduce failure probability to 1 -7

» Use O(1/(£28)) repetitions — bad dependence on &

Some remarks
Can we reduce failure probability to 1 -7

» Use O(1/(£28)) repetitions — bad dependence on &

» Median trick: keep T = O(log(1/6)) copies of the estimator,
output the median

Some remarks
Can we reduce failure probability to 1 -7

» Use O(1/(£28)) repetitions — bad dependence on &

» Median trick: keep T = O(log(1/6)) copies of the estimator,
output the median

Let Y; =1 if t-th algorithm fails, and 0 otherwise.
We have E[Y;] <1/100, so by the Chernoff bound

.....

< Pr[at least half of A, fail,i=1,..., T]

< Pr[i Yi=T/2]
t=1

<e A7),

So setting T = O(log(1/38)) suffices.

Space complexity

Downside of the median trick: nonlinear embedding
Median trick not needed if we have enough independence

Johnson-Lindenstrauss transform (see llya’s lecture)

Some remarks

Take (randomized) linear measurements of the input

S . =

sketching matrix

space requirement=number of rows

Some remarks

Take (randomized) linear measurements of the input

s -—=@

sketching matrix

space requirement=number of rows

Can get (1+¢)-approximation to ||x||% with O(J log(1/8)) rows

Some remarks

Take (randomized) linear measurements of the input

s -—=@

sketching matrix

space requirement=number of rows

Can get (1+¢)-approximation to ||x||% with O(J log(1/8)) rows

Easy to maintain linear sketches in the (dynamic) streaming
model

In this lecture:

» Frequency moments (AMS sketch)

» Heavy hitters (CountSketch)

In this lecture:

» Frequency moments (AMS sketch)

» Heavy hitters (CountSketch)

Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klogN)

Much better than storing all items!

Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klogN)

Much better than storing all items!

Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klogN)

Much better than storing all items!

(111
1 2 3 4 5 6 7

Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!

(101 T[]
1 2 3 4

Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!

HI_II_I
1 2 3 4

3463

Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!

I_IHI_II_I
1 2 3 4

346 32

Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!

I_IHI_II_I
1 2 3 4

346 3210

Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!

I_Iﬂl_ll_l
1 2 3 4 5 6 7

34632103

Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!

I_Il_lﬂl_l [
1 2 3 4

346321031

Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!

O[] [[

1 2 3 4 5 6 7

3463210313

Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!

HI_IHI_II_I
1 2 3 4 5 6

34632103131

Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!

GGETST

346321031312

Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!

?@ETST

3463210313122

Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!

HﬂHI_II_II_I
1 2 3 4 5 6

34632103 131225

Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!

?@ET5?7

34632103 1312255

Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!

?@ET@?

34632103 1312255H5

9

Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!

?@ET@?

34632103 1312255529

9

Heavy hitters problem
» Single pass over the data: i, b, ..., In

Assume N is known

» Output kK most frequent items

(Heavy hitters)

» Small storage: will get O(klog N)

Much better than storing all items!

?@ET@?

34632103 131225552938

[1[1T1]
7 8 9 10

Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!

SLE|E PPy

9 10

34632103 1312255529287

Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!

Hﬁﬁﬂﬁmmnmm
1 2 3 4 5 6 7 8 9 10

34632103 131225552928T714

Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!

1AHARnaas

9 10

34632103 13122555987414414

Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!

1 HHARnoas

9 10

34632103 131225559871442

Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!

SEELE Ly

9 10

34632103131225559874422

Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!

H ﬁﬁl_ll_ll_ll_ll_l
1 2 3 4 5 6 7 8 9 10

346321031312255598744223

Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!

H ﬁﬁl_ll_ll_ll_ll_l
1 2 3 4 5 6 7 8 9 10

3463210313122555987442233

Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!

H ﬁﬁl_ll_ll_ll_ll_l
1 2 3 4 5 6 7 8 9 10

3463210313122555987442233

through a router

2]
=
e
=
o
=
C
©
£
€
o
©
(O]
e
£
(]
Q
©
£
=
(7]
w

o O

o o

o o

o o

o o

o o

destination

o o

o o

o O

Estimating IP flows through a router

O O O OO

O O O OO

OO OOOo

O O OOO0o

O O OOO0o

O O OOO0o

O O O OO

O O O OO

O O O OO

20JN0s

0 0 0O0O0O 0 0 0O
0 0 00O 0O 0 O0 O

o o

o o

o o

o o

o o

o O

destination

o o

o o

o O

Estimating IP flows through a router

OO OoOOoOOo

SO OoOoOOo

[oNoloNeNe]

OO OOoOOo

OO OOoOOo

OO OOoOOo

OO OoOOoOOo

[eNelNeNole)

OO OoOOoOOo

20JN0s

0 0 0O0O0O 0 0 0O
0 0 00O 0O 0 O0 O

o o

o o

o o

o o

o o

o o

destination

o o

o o

o O

Estimating IP flows through a router

Dst

DATA

Src

SO OoOOoOOo

(el olNeNolo)

[oNoloNeNe]

[oNoloNeNe]

OO OOoOOo

O r™OO0OOo

OO OoOOoOOo

[eNelNeNole)

OO OoOOoOOo

20JN0s

0 0 0O0O0O 0 0 0O
0 0 00O 0O 0 0O

o o

o o

o o

o o

o o

o O

destination

o o

o o

o O

Estimating IP flows through a router

SO OoOOoOOo

(el olNeNolo)

[oNoloNeNe]

[oNoloNeNe]

OO OOoOOo

Orw™OO0OOo

OO OoOOoOOo

[eNelNeNole)

OO OoOOoOOo

20JN0s

0 0 0O0O0O 0 0 0O
0 0 00O 0O 0 0O

o o

o o

o o

o o

o o

o o

destination

o o

o o

o O

Estimating IP flows through a router

Dst

DATA

Src

SO OoOOoOOo

SO oOooOoOo

[oNeoloNeNe]

O OOO ™

OO OOoOOo

Orw™OO0OOo

OO OoOOoOOo

[eNelNeNole)

OO OoOOoOOo

20JN0s

0 0 0O0O0O 0 0 0O
0 0 00O 0O 0 O0 O

o o

o o

o o

o o

o o

o O

destination

o o

o o

o O

Estimating IP flows through a router

SO OoOOoOOo

SO oOooOoOo

[oNeoloNeNe]

OO OO ™

OO OOoOOo

Orw™OO0OOo

OO OoOOoOOo

[eNelNeNole)

OO OoOOoOOo

20JN0s

0 0 0O0O0O 0 0 0O
0 0 00O 0O 0 O0 O

o o

o o

o o

o o

o o

o o

destination

o o

o o

o O

Estimating IP flows through a router

Dst

DATA

Src

SO OoOOoOOo

SO oOooOoOo

[oNeoloNeNe]

OO OO ™

OO OOoOOo

ONOOOo

OO OoOOoOOo

[eNelNeNole)

OO OoOOoOOo

20JN0s

0 0 0O0O0O 0 0 0O
0 0 00O 0O 0 O0 O

o o

o o

o o

o o

o o

o O

destination

o o

o o

o O

Estimating IP flows through a router

SO OoOOoOOo

SO oOooOoOo

[oNeoloNeNe]

OO OO ™

OO OOoOOo

ONOOOoO

OO OoOOoOOo

[eNelNeNole)

OO OoOOoOOo

20JN0s

0 0 0O0O0O 0 0 0O
0 0 00O 0O 0 O0 O

o o

o o

o o

o o

o o

o o

destination

o o

o o

o O

Estimating IP flows through a router

Dst

DATA

Src

SO OoOOoOOo

(el oleNolo)

[oNeoloNeNe]

OO OO ™

OO OOoOOo

ONOOOoO

[eNoNeNole)

[eNoNal o)

OO OoOOoOOo

20JN0s

0 0 0O0O0O 0 0 0O
0 0 00O 0O 0 O0 O

o o

o o

o o

o o

o o

o O

destination

o o

o o

o O

Estimating IP flows through a router

SO OoOOoOOo

(el oleNolo)

[oNeoloNeNe]

OO OO ™

OO OOoOOo

ONOOOoO

[eNoNeNole)

[eNoNal o)

OO OoOOoOOo

20JN0s

0 0 0O0O0O 0 0 0O
0 0 00O 0O 0 O0 O

o o

o o

o o

o o

o o

o o

destination

o o

o o

o O

Estimating IP flows through a router

Dst

DATA

Src

SO OoOOoOOo

(el oleNolo)

[oNeoloNeNe]

OO OO ™

OO OOoOOo

ONOOOoO

[eNoNeNole)

[eNoNal o)

OO OoOOoOOo

20JN0s

1 0 0 0 0 0O
0 0 00O 0O 0 O0 O

0

0

o o

o o

o o

o o

o o

o O

destination

o o

o o

o O

Estimating IP flows through a router

SO OoOOoOOo

(el oleNolo)

[oNeoloNeNe]

OO OO ™

OO OOoOOo

ONOOOoO

[eNoNeNole)

[eNoNal o)

OO OoOOoOOo

20JN0s

1 0 0 0 0 0O
0 0 00O 0O 0 O0 O

0

0

o o

o o

o o

o o

o o

o O

destination

o o

o o

o O

Estimating IP flows through a router

Dst

DATA

Src

SO OoOOoOOo

(el oleNolo)

[oNeoloNeNe]

OO OO ™

OO OOoOOo

oMo oo

[eNoNeNole)

[eNoNal o)

OO OoOOoOOo

20JN0s

1 0 0 0 0 0O
0 0 00O 0O 0 O0 O

0

0

o o

o o

o o

o o

o o

o O

destination

o o

o o

o O

Estimating IP flows through a router

SO OoOOoOOo

(el oleNolo)

[oNeoloNeNe]

OO OO ™

OO OOoOOo

oOMmO oo

[eNoNeNole)

[eNoNal o)

OO OoOOoOOo

20JN0s

1 0 0 0 0 0O
0 0 00O 0O 0 O0 O

0

0

o o

o o

[o

o o

o o

o o

destination

o o

o o

o O

Estimating IP flows through a router

Dst

DATA

Src

OO OoOOoOOo

(el oleNolo)

[oNeoloNeNe]

OO OO ™

OO OOoOOo

oOMmO oo

[eNoNeNole)

[eNoNal)

OO OoOOoOOo

20JN0s

1 0 0 0 0 0O
0 0 00O 0O 0 O0 O

0

0

o o

o o

[o

o o

o o

o O

destination

o o

o o

o O

Estimating IP flows through a router

O O O OO

O O O OO

OO OOO0o

oNoNaNal -

O O OOO0o

OoOMO OO

O O O OO

O O OO

O O O OO

20JN0s

1 0 0 0 0 0O
0 0 00O 0O 0 O0 O

0

0

o o

o o

[o

o o

o o

o o

destination

o o

o o

o O

Estimating IP flows through a router

Dst

DATA

Src

OO OoOOoOOo

(el oleNolo)

[oNeoloNeNe]

OO OO ™

OO OOoOOo

oOMmO oo

[eNoNeNole)

OO OoOAN o

OO OoOOoOOo

20JN0s

1 0 0 0 0 0O
0 0 00O 0O 0 O0 O

0

0

o o

o o

[o

o o

o o

o O

destination

o o

o o

o O

Estimating IP flows through a router

O O O OO

O O O OO

OO OOO0o

oNoNaNal -

O O OOO0o

OoOMO OO

O O O OO

O O OWN O

O O O OO

20JN0s

1 0 0 0 0 0O
0 0 00O 0O 0 O0 O

0

0

o o

o o

[o

o o

o o

o o

destination

o o

o o

o O

Estimating IP flows through a router

Dst

DATA

Src

(el elNeNolo)

[oNoNal o)

[oNeoloNeNe]

OO OO ™

OO OOoOOo

oOMmO oo

[eNoNeNole)

OO ON O

OO OoOOoOOo

20JN0s

1 0 0 0 0 0O
0 0 00O 0O 0 O0 O

0

0

o o

o o

[o

o o

o o

o O

destination

o o

o o

o O

Estimating IP flows through a router

O O O OO

O O OO

OO OOO0o

oNoNaNal -

O O OOO0o

OoOMO OO

O O O OO

O O OWN O

O O O OO

20JN0s

1 0 0 0 0 0O
0 0 00O 0O 0 O0 O

0

0

o o

o o

[o

o o

o o

o o

destination

o o

o o

o O

Estimating IP flows through a router

Dst

DATA

Src

(el elNeNolo)

[eoNoNal N

[oNeoloNeNe]

OO OO ™

OO OOoOOo

O OOOo

[eNoNeNole)

OO ON O

OO OoOOoOOo

20JN0s

1 0 0 0 0 0O
0 0 00O 0O 0 O0 O

0

0

o o

o o

[o

o o

o o

o O

destination

o o

o o

o O

Estimating IP flows through a router

O O O OO

O O OO

OO OOO0o

oNoNaNal -

O O OOO0o

o OO O

O O O OO

O O OWN O

O O O OO

20JN0s

1 0 0 0 0 0O
0 0 00O 0O 0 O0 O

0

0

o o

o o

[o

o o

o o

o o

destination

o o

o o

o O

Estimating IP flows through a router

Dst

DATA

Src

(el elNeNolo)

[eoNoNal N

[oNeoloNeNe]

OO OO ™

OO OOoOOo

o OO Oo

[eNoNeNole)

SO oOoOmOo

OO OoOOoOOo

20JN0s

1 0 0 0 0 0O
0 0 00O 0O 0 O0 O

0

0

o o

o o

[o

o o

o o

o O

destination

o o

o o

o O

Estimating IP flows through a router

O O O OO

O O OO

OO OOO0o

oNoNaNal -

O O OOO0o

o OO O

O O O OO

O OO MmO

O O O OO

20JN0s

1 0 0 0 0 0O
0 0 00O 0O 0 O0 O

0

0

o o

o o

O -

o o

o o

o o

destination

o o

o o

- O

Estimating IP flows through a router

Dst

DATA

Src

(el elNeNolo)

[eoNoNal N

[oNeoloNeNe]

OO OO ™

OO OOoOOo

o OO Oo

[eNoNeNole)

SO oOoOmOo

OO OoOOoOOo

20JN0s

1 0 0 0 0 0O
0 0 00O 0O 0 O0 O

0

0

o o

o o

O -

o o

o o

o O

destination

o o

o o

- O

Estimating IP flows through a router

O O O OO

O O OO

OO OOO0o

oNoNaNal -

O O OOO0o

o OO O

O O O OO

O OO MmO

O O O OO

20JN0s

1 0 0 0 0 0O
0 0 00O 0O 0 O0 O

0

0

o o

o o

O -

o o

o o

o O

destination

o o

o o

- O

Estimating IP flows through a router

O O O OO

O O OO

OO OOO0o

oNoNaNal -

O O OOO0o

o OO O

O O O OO

O OO MmO

O O O OO

20JN0s

1 0 0 0 0 0O
0 0 00O 0O 0 O0 O

0

0

o o

o o

O -

o o

o o

o o

destination

o o

o o

- O

Estimating IP flows through a router

Dst

DATA

Src

(el elNeNolo)

[eoNoNal N

[oNeoloNeNe]

OO OO ™

OO OOoOOo

o OO Oo

[eNoNeNole)

ool Nel

OO OoOOoOOo

20JN0s

1 0 0 0 0 0O
0 0 00O 0O 0 O0 O

0

0

o o

o o

O -

o o

o o

o O

destination

o o

o o

- O

Estimating IP flows through a router

O O O OO

O O OO

OO OOO0o

oNoNaNal -

O O OOO0o

o OO O

O O O OO

[cNoNaR Ne

O O O OO

20JN0s

1 0 0 0 0 0O
0 0 00O 0O 0 O0 O

0

0

o o

o o

O -

o o

o o

o o

destination

o o

o o

- O

Estimating IP flows through a router

Dst

DATA

Src

(el elNeNolo)

[eoNoNal N

[oNeoloNeNe]

OO OO ™

OO OOoOOo

omooo

[eNoNeNole)

ool Nel

OO OoOOoOOo

20JN0s

1 0 0 0 0 0O
0 0 00O 0O 0 O0 O

0

0

o o

o o

O -

o o

o o

o O

destination

o o

o o

- O

Estimating IP flows through a router

O O O OO

O O OO

OO OOO0o

oNoNaNal -

O O OOO0o

omooo

O O O OO

[cNoNaR Ne

O O O OO

20JN0s

1 0 0 0 0 0O
0 0 00O 0O 0 O0 O

0

0

o o

o o

O -

o o

o o

o O

destination

o o

o o

- O

Estimating IP flows through a router

O O O OO

O O OO

OO OOO0o

oNoNaNal -

O O OOO0o

omooo

O O O OO

[cNoNaR Ne

O O O OO

20JN0s

1 0 0 0 0 0O
0 0 00O 0O 0 O0 O

0

0

through a router

2]
=
e
=
o
=
C
©
£
€
o
©
(O]
e
£
(]
Q
©
£
=
(7]
w

o O

o o

O -

o o

o o

o o

destination

o o

o o

- O

Estimating IP flows through a router

O O O OO

O O OO

OO OOO0o

oNoNaNal -

O O OOO0o

omooo

O O O OO

[eNeoNaRS Ne

O O O OO

20JN0s

0 0 0 0 O O

1
0 0 00O 0O 0 O0 O

0

0

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

source

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

Trivial: store all distinct 1P pairs
S Space complexity: ©(N)

source

Estimating IP flows through a router

destination

source

Estimate the dominant IP flows
through a router

Trivial: store all distinct 1P pairs
Space complexity: ©(N)

This lecture: solve in space O(logN)

Exponential improvement! ‘

Estimating search statistics

Given a set of items as a stream (e.g. queries on google.com
over a period of time)

Geneva to NYC, coffee in Geneva, Geneva to NYC

Estimating search statistics

Given a set of items as a stream (e.g. queries on google.com
over a period of time)

Geneva to NYC, coffee in Geneva, Geneva to NYC
Find the most frequent items in the set

Geneva to NYC, coffee in Geneva

Estimating search statistics

Given a set of items as a stream (e.g. queries on google.com
over a period of time)

Geneva to NYC, coffee in Geneva, Geneva to NYC
Find the most frequent items in the set

Geneva to NYC, coffee in Geneva

Estimating search statistics

Given a set of items as a stream (e.g. queries on google.com
over a period of time)

Geneva to NYC, coffee in Geneva, Geneva to NYC
Find the most frequent items in the set

Geneva to NYC, coffee in Geneva

| Trivial | This lecture
Solution hash<string> h; COUNTSKETCH
Space # of distinct items O(logN)

Heavy hitters problem

» Single pass over the data: i1, b, ..., In
Assume N is known
» Output kK most frequent items

(Heavy hitters)

» Small storage: will get O(klogN)

Much better than storing all items!

Goal: design a small space data structure

FINDTOP(S, k): returns top kK most frequent items seen so far

Goal: design a small space data structure

FINDTOP(S, k): returns top kK most frequent items seen so far

Useful to first design

POINTQUERY(S,i): processes stream, then for any query item i
can return fi=number of times item / appeared

Denote the number of times item / appears in the stream by f;
(frequency of i)

Assume elements are ordered by frequency: fi=fh>...>f,

Denote the number of times item / appears in the stream by f;
(frequency of i)

Assume elements are ordered by frequency: fi=fh>...>f,

POINTQUERY(S,/) in space O(klog N)?‘

Denote the number of times item / appears in the stream by f;
(frequency of i)

Assume elements are ordered by frequency: fi=fh>...>f,

POINTQUERY(S,/) in space O(klog N)?‘

Impossible in general...

Imagine a stream where all elements occur with about the same
frequency

FINDAPPROXTOP(S, k,¢): returns set of k items such that
fi= (1 —¢)fy for all reported /

APPROXPOINTQUERY(S, /,e): processes stream, then for any
query item i can return approximation f; € [f; —efy, f; + €fy]

FINDAPPROXTOP(S, k,¢): returns set of k items such that
fi= (1 —¢)fy for all reported i

APPROXPOINTQUERY(S,/,€): processes stream, then for any

query item /i can return approximation f € [f; — efy, f: + ef,]

In this lecture: find most frequent (head) items if they
contribute the bulk of the stream under some measure

1. Finding top k elements via (APPROX)POINTQUERY
2. Basic version of APPROXPOINTQUERY

3. APPROXPOINTQUERY and the COUNTSKETCH algorithm

1. Finding top k elements via (APPROX)POINTQUERY
2. Basic version of APPROXPOINTQUERY

3. APPROXPOINTQUERY and the COUNTSKETCH algorithm

POINTQUERY implies FINDTOP, k=1

Given: stream S= (i, ..., iN)

POINTQUERY implies FINDTOP, k=1
Given: stream S=(iy,...,IN)

Maintain: data structure for POINTQUERY
currMax=NULL; currFreqg=0;

POINTQUERY implies FINDTOP, k=1
Given: stream S=(iy,...,IN)

Maintain: data structure for POINTQUERY
currMax=NULL; currFreqg=0;
Forp=1,....N
Compute frequency f — POINTQUERY (ip)

POINTQUERY implies FINDTOP, k=1
Given: stream S = (iy,...,iN)
Maintain: data structure for POINTQUERY
currMax=NULL; currFreqg=0;
Forp=1,....N
Compute frequency f — POINTQUERY (ip)

Iif currMax==ip
currFreqg=f; continue;
end if

POINTQUERY implies FINDTOP, k=1
Given: stream S = (iy,...,iN)

Maintain: data structure for POINTQUERY
currMax=NULL; currFreqg=0;
Forp=1,....N
Compute frequency f — POINTQUERY (ip)

Iif currMax==ip
currFreqg=f; continue;

end if
f currMax==NULL
currMax=ip; currFreg=1;
else
If currFreqg<f
currMax=lp; currFreqg=f;
end if
end if
end for

Why does this work?

At each point in the stream currMax is either NULL or the most
frequent element so far...

Why does this work?

At each point in the stream currMax is either NULL or the most
frequent element so far...

What about finding k most frequent elements for k> 17

POINTQUERY implies FINDTOP

Given: stream S=(iy,...,IN)

POINTQUERY implies FINDTOP

Given: stream S=(iy,...,IN)

Maintain: data structure for POINTQUERY
a heap H of at most k items, by count

POINTQUERY implies FINDTOP

Given: stream S=(iy,...,IN)
Maintain: data structure for POINTQUERY
a heap H of at most k items, by count

Forp=1,....N
Compute frequency f — POINTQUERY (ip)

POINTQUERY implies FINDTOP

Given: stream S=(iy,...,IN)

Maintain: data structure for POINTQUERY
a heap H of at most k items, by count

Forp=1,....N
Compute frequency f — POINTQUERY (ip)
If H contains ip
update ip’s key to f; continue;
end if

POINTQUERY implies FINDTOP

Given: stream S=(iy,...,IN)
Maintain: data structure for POINTQUERY
a heap H of at most k items, by count
Forp=1,....N
Compute frequency f — POINTQUERY (ip)

If H contains ip
update ip’s key to f; continue;
end if

If H contains < k elements,
add <f,ip>to H

else
< Fmin, imin ><— element in H with smallest key
If fmin <f, insert <f,ip > and evict < fyipn, imin >
end if
end for

Why does this work?

(Assume the set of top k items is unique for simplicity)

For every item i in top k let p; denote the last position where |
occurs

Why does this work?

(Assume the set of top k items is unique for simplicity)

For every item i in top k let p; denote the last position where |
occurs

Note that

1. at position p; element i is inserted into heap H if it was not
in H at that time

2. element i is never evicted after p;

POINTQUERY implies FINDTOP

Given: stream S=(iy,...,IN)
Maintain: data structure for POINTQUERY
a heap H of at most k items, by count
Forp=1,....N
Compute frequency f — POINTQUERY (ip)

If H contains ip
update ip’s key to f; continue;
end if

If H contains < k elements,
add <f,ip>to H

else
< Fminy imin ><— element in H with smallest key
If fmin <f, insert < f,ip > and evict < fiyipn, imin >
end if
end for

Why is this useful? We know that POINTQUERY requires
essentially storing the entire stream...

Why is this useful? We know that POINTQUERY requires
essentially storing the entire stream...

A similar reduction shows that APPROXPOINTQUERY implies
FINDAPPROXTOP!

APPROXPOINTQUERY implies FINDAPPROXTOP

Given: stream S=(iy,...,IN)
Maintain: data structure for APPROXPOINTQUERY
a heap H of at most k items, by count
Forp=1,....N R
Compute frequency f — APPROXPOINTQUERY (ip)
If H contains ip
update i’s key to 7; continue;
end if
If H contains < k elements,
add <f,ip>to H
else
< Fmin, imin > < element in H with smallest key

If frin <7, insert <f,ip> and evict < fin, imin >
end if
end for

FINDAPPROXTOP(S, k,€): returns set S of k items such that
fi=(1-¢)fy forallie S

APPROXPOINTQUERY(S,i,e): returns f; € [f; —efe, f: + efy]

In what follows: APPROXPOINTQUERY in small space

Observe a stream of updates, maintain small space data
structure

Task: after observing the stream, given i€ {1,2,...,m}, compute
estimate f; of f;

In what follows: APPROXPOINTQUERY in small space

Observe a stream of updates, maintain small space data
structure

Task: after observing the stream, given i€ {1,2,...,m}, compute
estimate f; of f;
To be specified:

» space complexity?

» quality of approximation?

» success probability?

1. Finding top k elements via (APPROX)POINTQUERY
2. Basic version of APPROXPOINTQUERY

3. APPROXPOINTQUERY and the COUNTSKETCH algorithm

1. Finding top k elements via (APPROX)POINTQUERY
2. Basic version of APPROXPOINTQUERY

3. APPROXPOINTQUERY and the COUNTSKETCH algorithm

Assume elements are ordered by frequency: f1=fHh>...>fp

Assume elements are ordered by frequency: f1=fHh>...>fp

Assume elements are ordered by frequency: f1=fHh>...>fp

Assume elements are ordered by frequency: f1=fHh>...>fp

Assume elements are ordered by frequency: f1=fHh>...>fp

1461

Assume elements are ordered by frequency: f1=fHh>...>fp

Assume elements are ordered by frequency: f{ = >...>

HI_I [1 [1 []
1 2

1461210

Assume elements are ordered by frequency: f{ = >...>

HI_II_II_I []
1 2 3 4 5 6 7 8 9 10

14612101

Assume elements are ordered by frequency: f{ = >...>

1
1 2

146121015

[1][] []
3 4 5 6

Assume elements are ordered by frequency: f{ = >...>

(1 10101 []
1 2 3 4 5 6

1461210151

Assume elements are ordered by frequency: f{ = >...>

I_II_IHI_I []
1 2 3 4 5 6

14612101515

Assume elements are ordered by frequency: f1=fHh>...>fp

HI_IHI_I []
1 2 3 4 5 6 7 8 9 10

146121015152

Assume elements are ordered by frequency: f1=fHh>...>fp

ﬂI_IHI_I []
1 2 3 4 5 6

7 8 9 10

1461210151522

Assume elements are ordered by frequency: f1=fHh>...>fp

ﬂI_II_IHI_I []
1 2 3 4 5 6

1461210151522 3

Assume elements are ordered by frequency: f1=fHh>...>fp

in.0- -
1 2 3 4 5 6

7 8 9 10

1461210151522 33

Assume elements are ordered by frequency: f1=fHh>...>fp

ﬂﬂI_IHI_I []
1 2 3 4 5 6

7 8 9 10

1461210151522 333

Assume elements are ordered by frequency: f1=fHh>...>fp

ﬂﬂI_IHI_I [1[]
1 2 3 4 5 6

7 8 9 10

146121015152 23339

Assume elements are ordered by frequency: f1=fHh>...>fp

1HoAC

146121015152 2333938

(1117
7 8 9 10

Assume elements are ordered by frequency: f{ = >...>

Hﬂﬁﬂﬂﬂﬂﬂﬂﬂ
2 3 4 5 6 7 8 9

1 10

146121015152 2333987

Assume elements are ordered by frequency: f{ = >...>

HHAAGoon:
1 2 3 4 5 6 7 8 9

10

1461210151522 333987174

Assume elements are ordered by frequency: f{ = >...>

ﬂﬁﬂﬂﬂﬂﬂﬂﬂ
1 2 3 4 5 6 7 8 9

10

1461210151522 33398744314

Assume elements are ordered by frequency: f1=fHh>...>fp

ﬂHHI_II_II_II_II_I
1 2 3 4 5 6 7 8 9 10

1461210151522 333987442

Assume elements are ordered by frequency: f1=fHh>...>fp

ﬂHHI_II_II_II_II_I
1 2 3 4 5 6 7 8 9 10

1461210151522 3339874422

Assume elements are ordered by frequency: f1=fHh>...>fp

ﬂHHI_II_II_II_II_I
1 2 3 4 5 6 7 8 9 10

146121015152233398744221

Assume elements are ordered by frequency: f1=fHh>...>fp

ﬂHHI_II_II_II_II_I
1 2 3 4 5 6 7 8 9 10

1461210151122 333987442215

Assume elements are ordered by frequency: f1=fHh>...>fp

head

N

ﬂﬂHI_II_II_II_II_I
1 2 3 4 5 6 7 8 9 10

1461210151 122333987442215

Assume elements are ordered by frequency: f1=fHh>...>fp

head

1461210151122 333987442215

Basic estimate

Will design a basic estimate with O(1) space complexity,
analyze precision

Basic estimate

Will design a basic estimate with O(1) space complexity,
analyze precision

Choose a hash function s: [m] — {-1,+1} uniformly at random

INITIALIZE UPDATE(G, i)
C-0 C—C+s(i)

Basic estimate

Will design a basic estimate with O(1) space complexity,
analyze precision

Choose a hash function s: [m] — {-1,+1} uniformly at random

INITIALIZE UPDATE(G, i)
C-0 C—C+s(i)

for every p=1,...,N (every element in the stream)
UPDATE(C, ip)
end for

Basic estimate

Will design a basic estimate with O(1) space complexity,
analyze precision

Choose a hash function s: [m] — {-1,+1} uniformly at random

INITIALIZE

UPDATE(C, i)
C—0

C—C+s(i)

for every p=1,...,N (every element in the stream)
UPDATE(C, ip)

end for

ESTIMATE(C, i)
return C-s(/)

’ How does one argue that a randomized estimate works?

UPDATE(C, i) ESTIMATE(C, i)
C—C+s(i) return C-s(/)

’ How does one argue that a randomized estimate works?

UPDATE(C, i) ESTIMATE(C, i)
C—C+s(i) return C-s(/)

’ How does one argue that a randomized estimate works?

Want to show that C- s(/) is close to f; ‘with high probability’

UPDATE(C, i) ESTIMATE(C, i)
C—C+s(i) return C-s(/)

’ How does one argue that a randomized estimate works?

Want to show that C- s(/) is close to f; ‘with high probability’

Typically show this in two steps:

» show that Es[C-s(/)] =f;

(so C-s(i) is an unbiased estimate of f;)

» show that Vars[C - s(/)] is ‘small’

UPDATE(C, i) ESTIMATE(C, i)
C—C+s(i) return C-s(/)

’ How does one argue that a randomized estimate works?

Want to show that C- s(/) is close to f; ‘with high probability’

Typically show this in two steps:

» show that Es[C-s(/)] =f;

(so C-s(i) is an unbiased estimate of f;)

» show that Vars[C - s(/)] is ‘small’

It then follows that |C- s(i) — f;| is ‘small’ with high probability
(essentially law of large numbers)

Basic estimate:mean

UPDATE(C, i)
C—C+s(i)

ESTIMATE(C, i)
return C-s(/)

Basic estimate:mean

UPDATE(C, i) ESTIMATE(C, i)
C—C+s(i) return C-s(/)

Basic estimate:mean

UPDATE(C, i) ESTIMATE(C, i)
C—C+s(i) return C-s(/)

Basic estimate:mean

UPDATE(C, i) ESTIMATE(C, i)
C—C+s(i) return C-s(/)

N
C-s(i)=3_ s(ip)s(i)= 3 fi-s(j)s(i)

p=1 /E[m]
=fis(i)*+), fi-s(j)s
je[m\l
=fi+ Y fi-s(j)s(i) — random +1’s

Je[m]\i

Basic estimate:mean

UPDATE(C, i) ESTIMATE(C, i)
C—C+s(i) return C-s(/)

C-s(i) =fi+ Y f-s(j)s(i)

je[mi

Basic estimate:mean

UPDATE(C, i) ESTIMATE(C, i)
C—C+s(i) return C-s(/)

E[C-s()]=fi+E[Y fi-s(j)s(i)]

je[mi

Basic estimate:mean

UPDATE(C, i) ESTIMATE(C, i)
C—C+s(i) return C-s(/)

E[C-s()]=fi+E[Y fi-s(j)s(i)]

je[mi

=fi+ Y fi-E[s(j)]E[s(/)] (by independence of s(/))
jelmi

Basic estimate:mean

UPDATE(C, i) ESTIMATE(C, i)
C—C+s(i) return C-s(/)

E[C-s()]=fi+E[Y fi-s(j)s(i)]

jelmi
=fi+ Y fi-E[s(j)]E[s(/)] (by independence of s(/))
jelmi
=1i

Basic estimate:mean

UPDATE(C, i) ESTIMATE(C, i)
C—C+s(i) return C-s(/)

E[C-s()]=fi+E[Y fi-s(j)s(i)]

jelmi
=fi+ Y fi-E[s(j)]E[s(/)] (by independence of s(/))
jelmi
=1i

The mean is correct: our estimator is unbiased! |

Basic estimate:mean

UPDATE(C, i) ESTIMATE(C, i)
C—C+s(i) return C-s(/)

E[C-s()]=fi+E[Y fi-s(j)s(i)]

jelmi
=fi+ Y fi-E[s(j)]E[s(/)] (by independence of s(/))
jelmi
=1i

The mean is correct: our estimator is unbiased! |

Is the estimate C- s(/) close to f; with high probability?

Chebyshev’s inequality

Theorem
For every random variable X with mean p
and variance o2, and every t=1 one has

Pr[X —ul=t-o]<1/?

Chebyshev’s inequality

Theorem
For every random variable X with mean p
and variance o2, and every t=1 one has

Pr[X —ul=t-o]<1/?

Apply Chebyshev’s inequality with X = C- s(/) and
u=E[C-s()]?

Chebyshev’s inequality

Theorem
For every random variable X with mean p
and variance o2, and every t=1 one has

Pr[X —ul=t-o]<1/?

Apply Chebyshev’s inequality with X = C- s(/) and
u=E[C-s()]?

A quantitative form of the ‘law of large numbers’

Chebyshev’s inequality

Theorem
For every random variable X with mean p
and variance o2, and every t=1 one has

Pr[X —ul=t-o]<1/?

Apply Chebyshev’s inequality with X = C- s(/) and
u=E[C-s()]?

A quantitative form of the ‘law of large numbers’

Need to compute the variance o2 = E[(C- s(i) - u)?]

Basic estimate: variance

UPDATE(C, i) ESTIMATE(C, i)
C—C+s(i) return C-s(/)
We have

C-s(iy="fi+ Y f-s(j)s(i)

je[m\i

and

E[C-s())] = 1.

Basic estimate: variance

UPDATE(C, i) ESTIMATE(C, i)
C—C+s(i) return C-s(/)
We have

C-s(iy="fi+ Y f-s(j)s(i)

je[m\i
and
E[C-s(i)] = .
We need to bound
Var(C-s(i)) = E[(C-s(i) - E[C-s(I)])?]
=E[(C-s(i)-£)?]

()3 ﬁ-so')s(i))z]

=E
je[m\i

Basic estimate: variance

UPDATE(C, i) ESTIMATE(C, i)
C—C+s(i) return C-s(/)

2
(C-s(i) (Z fi-s(f) s(/)
j

je[m)\i

= Y X fity-s()s(i)-s*(i)

je[m\ijre[m\i

ZZ” ("

]E[m]\I]€

Basic estimate: variance

UPDATE(C, i) ESTIMATE(C, i)
C—C+s(i) return C-s(/)

E[(C-s()-f)*]=E[3. X fify-s(j)s(i")]

jelm\ij'e[m)\i

= 2 X ff-Els()s()]

je[m)\ije[m\i
=y 2
je[m)\i

since
» 5(j)2=1forallj

> E[s())s(/)] = E[s(/)]E[s(/)] =0 for j#]'.

Basic estimate: variance

UPDATE(C, i) ESTIMATE(C, i)
C—C+s(i) return C-s(/)

Basic estimate: variance

UPDATE(C, i) ESTIMATE(C, i)
C—C+s(i) return C-s(/)

We have proved that
Var(C-s(i)) =E[(C-s(i)-f)?]=) f?

j(—:[m]\l

Basic estimate: variance

UPDATE(C, i) ESTIMATE(C, i)
C—C+s(i) return C-s(/)

We have proved that
Var(C-s(i)) =E[(C-s(i)-f)?]=) f?
j(—:[m]\l

By Chebyshev’s inequality

Pr

|IC-s(i)-fil=8- |). 62151/64

Je[m]\i

Basic estimate: variance

UPDATE(C, i) ESTIMATE(C, i)
C—C+s(i) return C-s(/)

We have proved that
Var(C-s(i)) =E[(C-s(i)-f)?]=) f?
j(—:[m]\l

By Chebyshev’s inequality

Pr

|IC-s(i)-fil=8- |). 132] <1/64

Je[m]\i

’So C-s(i) is close (?) to f; with high probablllty‘

Basic estimate: variance

UPDATE(C, i) ESTIMATE(C, i)
C—C+s(i) return C-s(/)

We have proved that
Var(C-s(i)) =E[(C-s(i)-f)?]=) f?
j(—:[m]\l

By Chebyshev’s inequality

Pr

IC-s(i)-f1>8- | ¥ ff] <1/64

je[m)\i

So C-s(i) is close (?) to f; with high probability |

Basic estimate: summary

UPDATE(C, i) ESTIMATE(C, i)
C— C+s(i) return C-s(/)
Estimate f; up to
8- /> fj2
jelmi

item to be estimated

/

1]
2 3

HI—I []
5 6 7 8 9 10

1 4

Pro: works well for most frequent item, if other items are small

Basic estimate: summary

UPDATE(C, i) ESTIMATE(C, i)
C— C+s(i) return C-s(/)

Estimate f; up to
2
N
je[mN\i

item to be estimated

1] HI—I []
2 3 5 6 7 8 9 10

1 4

Pro: works well for most frequent item, if other items are small

Con: estimate for a small items contaminated by large items

Next: final APPROXPOINTQUERY and the
COUNTSKETCH algorithm

COUNTSKETCH algorithm: find top k elements (approximately)

» hash items into O(k) buckets (i.e. substreams)
» run simple estimate on every bucket

» repeat O(log N) times independently, take median as
answer

Main intuition: estimate large items from substreams like

item to be estimated

/

1]
2 3

HI—I []
1 4 5 6

Main intuition: estimate large items from substreams like

item to be estimated

/

1]
2 3

1

HI—I []
4 5 6

7 8 9 10

and small items from substreams like

item to be estimated

(111 HFI []
2 3 5 6 7 8 9 10

1 4

1. Finding top k elements via (APPROX)POINTQUERY
2. Basic version of APPROXPOINTQUERY

3. APPROXPOINTQUERY and the COUNTSKETCH algorithm

1. Finding top k elements via (APPROX)POINTQUERY
2. Basic version of APPROXPOINTQUERY

3. APPROXPOINTQUERY and the COUNTSKETCH algorithm

APPROXPOINTQUERY and COUNTSKETCH

Main ideas:

1. run basic estimate on subsampled/hashed stream
(reduces variance)

APPROXPOINTQUERY and COUNTSKETCH

Main ideas:

1. run basic estimate on subsampled/hashed stream
(reduces variance)

2. aggregate independent estimates to boost confidence
(take medians)

APPROXPOINTQUERY and COUNTSKETCH

Main ideas:

1. run basic estimate on subsampled/hashed stream
(reduces variance)

2. aggregate independent estimates to boost confidence
(take medians)

12345678910

Hashing the items

12 345678910

Hashed into b =8 buckets, get 8 subsampled streams

For item i its stream consists of j € [m] such that h(j) = h(/)

Hashing the items

12345678910

— <

Hashed into b =8 buckets, get 8 subsampled streams
For item i its stream consists of j € [m] such that h(j) = h(/)

For example,
» subsampled stream of item 1is {1, 6}

» subsampled stream of item 5is {5, 7}

Note: hashing the universe [m], not positions in the stream
head

E /tail

AMnNnn

7 910

1 2 4

1461210151122 333987442215

Note: hashing the universe [m], not positions in the stream
head

E /ail

AMnNnn

7 910

1 2 4

1461210151 122333987442215
E.x. the subsampled stream of item 1is {1, 6}

head

\\’ k//}a“

Qo
123456 728 910

Note: hashing the universe [m], not positions in the stream
head

E /tail

AMnNnn

7 910

1 2 4

1461210151122 333987442215

Note: hashing the universe [m], not positions in the stream
head

E /tan

AMnNnn

7 9 10

1 2 4

1461210151 122333987442215
E.x. the subsampled stream of item 5is {5, 7}
head
/il
H

0O
123456 728 910

Final ApproxPointQuery

Choose
» t random hash functions hy, h, ..., h; from items [m] to
b= k buckets {1,2,..., b}

» t random hash functions s, sy, ...,s; from items [m] to

b buckets

— array C

t hash functions

Final ApproxPointQuery

Choose
» t random hash functions hy, h, ..., h; from items [m] to
b= k buckets {1,2,..., b}

» t random hash functions s, sy, ...,s; from items [m] to

b buckets

— array C

t hash functions

The algorithm runs t independent copies of basic estimate:

UPDATE(C, i) ESTIMATE(C, i)

for rC€[r[,1h:r€]i)]<—C[r,hr(i)]+sr(i) return median, {C[r, h(i)] - sr(i)}

end for

Final ApproxPointQuery

Choose
» t random hash functions hy, h, ..., h; from items [m] to
b= k buckets {1,2,..., b}

» t random hash functions s, sy, ...,s; from items [m] to

b buckets

/75
i«

4 — array C

t hash functions
\

The algorithm runs t independent copies of basic estimate:

UPDATE(C, i) ESTIMATE(C, i)

for rC€[r[,1h:r€]i)]<—C[r,hr(i)]+sr(i) return median, {C[r, h(i)] - sr(i)}

end for

UPDATE(C, i)
for re(1:1

Clr, hr()] < C[r, hr(D)] + sr(i)
end for

ESTIMATE(C, i)
return median,{C[r, h(i)]- sr(i)}

By basic estimate analysis for every re[1:{]

E[C[r, hr(D)]-sr(D)] = fi

UPDATE(C, i)
for re(1:1

Clr, hr()] < C[r, hr(D)] + sr(i)
end for

ESTIMATE(C, i)
return median,{C[r, h(i)]- sr(i)}

By basic estimate analysis for every re[1:{]
E[C[r, hr()]-sr(1)] =i
and

Es[(Clr.he(D]-s:()-f)F]= Y,
j#ihe(j)=h (i)

UPDATE(C, i)
for re(1:1

Clr, hr()] < C[r, hr(D)] + sr(i)
end for

ESTIMATE(C, i)
return median,{C[r, h(i)]- sr(i)}

By basic estimate analysis for every re[1:{]
E[C[r, hr()]-sr(1)] =i
and

Es[(Clr.he(D]-s:()-f)F]= Y,
j#ihe(j)=h (i)

How large can the variance be? Can be be reduced by making
number of buckets b large?

UPDATE(C, i)
for re(1:1

Clr, hr()] < C[r, hr(D)] + sr(i)
end for

ESTIMATE(C, i)
return median,{C[r, h(i)]- sr(i)}

By basic estimate analysis for every re[1:{]
E[C[r, hr()]-sr(1)] =i
and

Es[(Clr.he(D]-s:()-f)F]= Y,
j#ihe(j)=h (i)

How large can the variance be? Can be be reduced by making
number of buckets b large?

YES: hashing into a sufficiently large number of buckets
reduces estimation error to below ¢ - fy

UPDATE(C, i)
for re(1:1

Clr, hr()] < C[r, hr(D)] + sr(i)
end for

ESTIMATE(C, i)
return median,{C[r, h(i)]- sr(i)}

By basic estimate analysis for every re[1:{]
E[C[r, hr()]-sr(1)] =i
and

Es[(Clr.he(D]-s:()-f)F]= Y,
j#ihe(j)=h (i)

How large can the variance be? Can be be reduced by making
number of buckets b large?

YES: hashing into a sufficiently large number of buckets
reduces estimation error to below ¢ - fy

O(log N) repetitions ensure estimates are correct for all / with
high probability

UPDATE(C, i)
for re(1:1

Clr, hr()] < C[r, hr(D)] + sr(i)
end for

ESTIMATE(C, i)
return median,{C[r, h(i)]- sr(i)}

UPDATE(C, i) ESTIMATE(C, i)

for re[1:1 : N
Clr, he ()] = C[r, he(i)] + s (i) return median,{C[r, h(i)]- (i)}
end for
Lemma . .
itb= 8max{k, —(Zgj;k?zmj } andt= O(logN), then for every i € [m]

|median, {C[r, hy(i)] - s, (i)} — fi(p)| < ef
at every point pe [1: N] in the stream.

(fi(p) is the frequency of i up to position p)

UPDATE(C, i) ESTIMATE(C, i)

for re[1:1 : N
Clr, he ()] = C[r, he(i)] + s (i) return median,{C[r, h(i)]- (i)}
end for
Lemma . .
itb= 8max{k, —(Zgj;k?zmj } andt= O(logN), then for every i € [m]

|median, {C[r, hy(i)] - s, (i)} — fi(p)| < ef
at every point pe [1: N] in the stream.

(fi(p) is the frequency of i up to position p)

Space complexity is O(blogN)

UPDATE(C, i) ESTIMATE(C, i)

for re[1:1 : N
Clr, he ()] = C[r, he(i)] + s (i) return median,{C[r, h(i)]- (i)}
end for
Lemma . .
itb= 8max{k, —(Zgj;k?zmj } andt= O(logN), then for every i € [m]

|median, {C[r, hy(i)] - s, (i)} — fi(p)| < ef
at every point pe [1: N] in the stream.

(fi(p) is the frequency of i up to position p)

Space complexity is O(blogN)

How large is b?‘

Space complexity

325 12
Setb:8max{k, Zjera }

(ef)?

Note that b= O(k/€2) if %Zj(—:TAIL 73.2 = O(fE)

head —

tail

In practice, choose b subject to space constraints, detect

elements with counts above O(s, /%Zje TAIL flz)

Space complexity

Set k = 1. Suppose that 1 appears /N times in the stream, and
other N - VN elements are distinct

Space complexity

Set k = 1. Suppose that 1 appears /N times in the stream, and
other N - VN elements are distinct

Then fy =vN, fi=1fori=2,N-vN.

325y 12
Setb:8max{1,%}

Space complexity

Set k = 1. Suppose that 1 appears /N times in the stream, and
other N - VN elements are distinct

Then fy =vN, fi=1fori=2,N-vN.

325y 12
Setb:8max{1,%}

We have Yjeran f?=N-vVN=N,and ff =N

Space complexity

Set k = 1. Suppose that 1 appears /N times in the stream, and
other N - VN elements are distinct

Then fy =vN, fi=1fori=2,N-vN.

325y 12
Setb:8max{1,%}

We have Yjeran f?=N-vVN=N,and ff =N

So b:8max{1,?’22js—m);'2}

e (= o0 /€?) suffices

Space complexity

Set k = 1. Suppose that 1 appears /N times in the stream, and
other N - VN elements are distinct

Then fy =vN, fi=1fori=2,N-vN.

325y 12
Setb:8max{1,%}

We have Yjeran f?=N-vVN=N,and ff =N

= O(1/¢?) suffices

So b=8max { 1, 25 f? }

(ef1)?

Remarkable, as 1 appears only in V'N positions out of N: a
vanishingly small fraction of positions!

Final algorithm: COUNTSKETCH

FINDAPPROXTOP(S, k,€): returns set of k items such that
fi= (1 —¢)fy for all returned i

(In fact also every i with f; = (1 —¢)fy is reported)

APPROXPOINTQUERY(S, i,€): returns f € [f; — efy, f; + efy]

Find head items if they contribute the bulk of the stream in £5
sense

CountSketch: proof details

UPDATE(C, i)
forre[1:1

Clr, hr(i)] < C[r, hr(i)] + s, (i)
end for

ESTIMATE(C, i)
return median, {C[r, h.(i)] - sr(i)}

Lemma ,
If b= 8max {k Brjeme;
b (efy)?

constant A> 0, then for every i € [m]

} and t = Alog N for an absolute

|median, {Cl[r, hr(i)] - sr(i)} - fi(p)| < efy
at every point pe [1: N] in the stream with high probability.

(fi(p) is the frequency of i up to position p)

UPDATE(C, i)
forre[1:1]

C[r, hr()] < C[r, hr(D)] + sr(i)
end for

ESTIMATE(C, i)
return median,{C[r, h(i)]- sr(i)}

Lemma

Ifb= 8max{k %} and t= AlogN for an absolute

constant A> 0, then for every i € [m]
|median; {C[r, hr(i)]- s, (i)} — f;] = ef
with high probability.

(fi is the frequency of i)

UPDATE(C, i)
for re(1:1

Clr, hr()] < C[r, hr(D)] + sr(i)
end for

ESTIMATE(C, i)
return median,{C[r, h(i)]- sr(i)}

By basic estimate analysis for every re[1:{]

E[C[r, hr ()] s (i)] = f;

UPDATE(C, i)
for re(1:1

Clr, hr()] < C[r, hr(D)] + sr(i)
end for

ESTIMATE(C, i)
return median,{C[r, h(i)]- sr(i)}

By basic estimate analysis for every re[1:{]
E[C[r, hr(D)]-sr(1)] = fi
and

El(Clrh()]-s()-f)2)= Y F
JZi-he(j)=he (i)

UPDATE(C, i)
for re(1:1

Clr, hr()] < C[r, hr(D)] + sr(i)
end for

ESTIMATE(C, i)
return median,{C[r, h(i)]- sr(i)}

By basic estimate analysis for every re[1:{]
E[C[r, hr(D)]-sr(1)] = fi
and

Es[(Clr.he(D]-s:()-f)F]= Y,
j?ﬁiihr(i):hr(i)
How large can the variance be? Does it reduce by about a
factor of b?

UPDATE(C, i)
for re(1:1

Clr, hr()] < C[r, hr(D)] + sr(i)
end for

ESTIMATE(C, i)
return median,{C[r, h(i)]- sr(i)}

By basic estimate analysis for every re[1:{]
E[C[r, hr(D)]-sr(1)] = fi
and

Es[(Clr.he(D]-s:()-f)F]= Y,
j?ﬁiihr(i):hr(i)
How large can the variance be? Does it reduce by about a
factor of b?

Consider contribution of head and tail items separately:

2 _ 2 2

ox = b e 2
JZi:h:(j)=h (i) JEHEAD, j#i JeTAIL,j#i
he(i)=he (i) he(j)=hr (i)

Consider contribution of head and tail items separately:

2 _ 2 2

B0 SHN NP VR P DR
Jj#i:he(j)=h.(i) JEHEAD, j#i JETAIL,j#i
he(j)=he(i) he(j)=hr (i)

Consider contribution of head and tail items separately:

2 _ 2 2

B0 SHN NP VR P DR
Jj#i:he(j)=h.(i) JEHEAD, j#i JETAIL,j#i
he(j)=he(i) he(1)=he(i)

For each re[1:t] and each item i € [m] define three events:

» NO-COLLISIONS,(f) — i does not collide with any of the
head items under hashing r

Consider contribution of head and tail items separately:

2 _ 2 2

B0 SHN NP VR P DR
Jj#i:he(j)=h.(i) JEHEAD, j#i JETAIL,j#i
he(j)=he(i) he(1)=he(i)

For each re[1:t] and each item i € [m] define three events:

» NO-COLLISIONS,(f) — i does not collide with any of the
head items under hashing r

» SMALL-VARIANCE, (/) — i does not collide with too many of
tail items under hashing r

Consider contribution of head and tail items separately:

2 _ 2 2

VDN I VR P D
Jj#i:he(j)=h.(i) JEHEAD, j#i JETAIL,j#i
he(j)=h (i) he(1)=he (i)

For each re[1:t] and each item i € [m] define three events:

» NO-COLLISIONS,(f) — i does not collide with any of the
head items under hashing r

» SMALL-VARIANCE, (/) — i does not collide with too many of
tail items under hashing r

» SMALL-DEVIATION,(/) — success event from basic analysis

Consider contribution of head and tail items separately:

2 _ 2 2

VDN I VR P D
Jj#i:he(j)=h.(i) JEHEAD, j#i JETAIL,j#i
he(j)=h (i) he(1)=he (i)

For each re[1:t] and each item i € [m] define three events:

» NO-COLLISIONS,(f) — i does not collide with any of the
head items under hashing r

» SMALL-VARIANCE, (/) — i does not collide with too many of
tail items under hashing r

» SMALL-DEVIATION,(/) — success event from basic analysis

Show that all three events hold simultaneously with probability
strictly bigger than 1/2 — so median gives good estimate

(No) collisions with head items

NO-COLLISIONS,(/):=event that
{je HEAD\i: he(j)=he ()} = o,

i.e. that i collides with none of top k elements under h;.

(No) collisions with head items

NO-COLLISIONS,(/):=event that

{je HEAD\i: h.(j) = he ()} = @,
i.e. that i collides with none of top k elements under h;.
For every j#iand every re[1:{

Prih.(i)=he(j)]<1/b

(No) collisions with head items

NO-COLLISIONS,(/):=event that
{je HEAD\i: he(j)=he ()} = o,
i.e. that i collides with none of top k elements under h;.
For every j#iand every re[1:{
Pr[h.(i)=hr(j)]<1/b
Suppose that b= 8k. Then by the union bound

Pr[NO-COLLISIONS,(/)]=1—-k/b
>1-1/8

Consider contribution of head and tail items separately:

2 _ 2 2

VDN I VR P D
Jj#i:he(j)=h.(i) JEHEAD, j#i JETAIL,j#i
he(j)=h (i) he(1)=he (i)

For each re[1:t] and each item i € [m] define three events:

» NO-COLLISIONS,(f) — i does not collide with any of the
head items under hashing r

» SMALL-VARIANCE, (/) — i does not collide with too many of
tail items under hashing r

» SMALL-DEVIATION,(/) — success event from basic analysis

Show that all three events hold simulaneously with probability
strictly bigger than 1/2 — so median gives good estimate

Consider contribution of head and tail items separately:
2 _ 2 2
D SRR NP VR D D
JZi:h(j)=h (i) JEHEAD, j#i JETAIL,j#i
he (i) =he (i) hy (1)=h (i)

For each re[1:t] and each item i € [m] define three events:

» NO-COLLISIONS,(f) — i does not collide with any of the
head items under hashing r

» SMALL-VARIANCE,(/) — i does not collide with too many
of tail items under hashing r

» SMALL-DEVIATION,(/) — success event from basic analysis

Show that all three events hold simulaneously with probability
strictly bigger than 1/2 — so median gives good estimate

Small variance from tail elements
SMALL-VARIANCE,(/):=event that
8
2 2
) =g X f
JETAIL,j#i JeTAIL
he())=hr (i)

Small variance from tail elements
SMALL-VARIANCE,(/):=event that
8
2 2
) =g X f
JETAIL,j#i JeTAIL
he(7)=h: (i)
Forevery i,je[m],i#jand re[1:{]

Prp. [hr(i)=h(j)] =1/b (bis the number of buckets)

Small variance from tail elements
SMALL-VARIANCE,(/):=event that

8

2 2
> =% 2
je TAIL j#i jeTAIL

hr(j)=hr (i)

Forevery i,je[m],i#jand re[1:{]
Prp. [hr(i)=h(j)] =1/b (bis the number of buckets)

So by linearity of expectation

E Z fj2 = Z 7;'2 -Prp[he () = hr(j)]
JeTAIL,j#i JeTAIL,j#i
hr(j)=hr (1)

1 2
2

S —
b T

Markov’s inequality

Theorem
For every non-negative random variable X
with mean p =0, and every k =1 one has

PriX=k-p]<1/k

We proved that

1

2 2

El > fl=g5 2 f
JeTAIL j#i JeTAIL
he())=he(7)

By Markov’s inequality one has, for every i and every r,

Pr[SMALL-VARIANCE,(i/)]=1-1/8

NO-COLLISIONS,(/) and SMALL-VARIANCE,(/): recap

Consider contribution of head and tail items separately:

2 _ 2 2

P SN NP SRS P D
JZi:he (j)=hr (i) JeHEAD, j#i JeTAIL,j#i
hr(7)=h (i) he(7)=hr (i)

Conditioned on NO-COLLISIONS,(i) and SMALL-VARIANCE (/)

NO-COLLISIONS,(/) and SMALL-VARIANCE,(/): recap

Consider contribution of head and tail items separately:

2 _ 2 2

P SN NP SRS P D
JZi:he (j)=hr (i) JeHEAD, j#i JeTAIL,j#i
hr(7)=h (i) he(7)=hr (i)

Conditioned on NO-COLLISIONS,(i) and SMALL-VARIANCE (/)

» first term is zero

NO-COLLISIONS,(/) and SMALL-VARIANCE,(/): recap

Consider contribution of head and tail items separately:

2 _ 2 2

P SN NP SRS P D
JZi:he (j)=hr (i) JeHEAD, j#i JeTAIL,j#i
hr(7)=h (i) he(7)=hr (i)

Conditioned on NO-COLLISIONS, (i) and SMALL-VARIANCE (/)

» first term is zero

» second term is at most

(0]

2
r

jeTAIL

ol

Small deviation event

SMALL-DEVIATION,(/)=event that

(C[r, he(D)]- (i) - £)? < 8Var(Clr, hy(1)] - s+ (i)).

Small deviation event

SMALL-DEVIATION,(/)=event that

(C[r, he(D)]- (i) - £)? < 8Var(Clr, hy(1)] - s+ (i)).

By Chebyshev’s inequality one has, for every i and every r,

Pr[SMALL-DEVIATION/(/)]=1-1/8

Pr[SMALL-VARIANCE,(/)]=1-1/8

Pr[NO-COLLISIONS,(/)]=1-1/8

Pr[SMALL-DEVIATION/(/)]=1-1/8
So by the union bound

Pr[SMALL-VARIANCE,(i) and NO-COLLISIONS,(/)
and SMALL-DEVIATION,(i)] = 5/8.

Let
1

— | 2
Y=z 2

jeTAIL

o

For every pe[1: N] let fi(p) :=frequency of i up to position p

Lemma
If b= 8k, then for every i, every re[1:1],

Pr(IC[r, hr(1)]-sr(i) - il <8Y] =5/8

Let
1

— | 2
Y=z 2

jeTAIL

o

For every pe[1: N] let fi(p) :=frequency of i up to position p

Lemma
Ifb=8k and t = Alog N for an absolute constant A> 0, then for
every i, with probability =1 -1 /N*

|median, {Cl[r, hy(i)]- s:(i)} - fi| =8y

at the end of the stream.

Proof.
Chernoff bounds. O

Let
1

— | 2
Y=z 2

jeTAIL

o

For every pe[1: N] let fi(p) :=frequency of i up to position p

Lemma
Ifb=8k and t= AlogN for an absolute constant A> 0, then with
probability =1 —1/N° for every i € [m]

|median, {CI[r, hy(i)]- s:(i)} - fi(p)| = 8y

at the end of the stream.

Proof.
Chernoff bounds. O

Let

1
vi=\|5 2 f
jeTAIL

For every pe[1: N] let fi(p) :=frequency of i up to position p

Lemma ,
If b=8max {k BeXjemaly
P (efy)?

constant A> 0, then with probability =1 —1/N? for every i € [m]

} and t = Alog N for an absolute

|median, {Cl[r, hr(i)] - sr(i)} - fi(p)| < efy

at the end of the stream.

Let

1
vi=\|5 2 f
jeTAIL

For every pe[1: N] let fi(p) :=frequency of i up to position p

Lemma ,
If b=8max {k BeXjemaly
P (efy)?

constant A> 0, then with probability =1 —1/N? for every i € [m]

} and t = Alog N for an absolute

|median, {Cl[r, hr(i)] - sr(i)} - fi(p)| < efy

at the end of the stream.

Proof.
Substitute value of b into definition of y:

]
Y=\|5 L fPsch/8
jeTAIL

