
Lecture 2: Frequency Moments, Heavy
Hitters

Michael Kapralov

EPFL

May 24, 2017

Linear sketching

S

n

m

sketching matrix

space requirement=number of rows

•

x

b=

Sketching algorithms for basic statistics, and then graph
sketching

In this lecture:

Ï Frequency moments (AMS sketch)

Ï Heavy hitters (CountSketch)

In this lecture:

Ï Frequency moments (AMS sketch)

Ï Heavy hitters (CountSketch)

AMS sketch (Alon-Matias-Szegedy’96)
Goal: approximate

||x ||2 =
√ ∑

i∈[n]
x2

i

from a stream of increments/decrements to xi .

Choose r1, . . . ,rn to be i.i.d. r.v., with

Pr[ri =+1]=Pr[ri =−1]= 1/2.

Maintain

Z =
n∑

i=1
rixi

under increments/decrements of x .

Basic algorithm: output Z 2

Want to claim that Z 2 is ‘close’ to ||x ||22 with ‘high probability’

Vector interpretation of a data stream

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 3 2 2 5 5 5 9 7 4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate ||x ||22

Vector interpretation of a data stream

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3

4 1 2 10 1 5 1 1 2 2 3 3 3 9 7 4 4 2 2 1 5

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate ||x ||22

Vector interpretation of a data stream

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4

3 2 10 3 1 3 3 2 2 5 5 5 9 7 4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate ||x ||22

Vector interpretation of a data stream

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3

2 10 3 1 3 3 2 2 5 5 5 9 7 4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate ||x ||22

Vector interpretation of a data stream

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2

10 3 1 3 3 2 2 5 5 5 9 7 4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate ||x ||22

Vector interpretation of a data stream

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10

3 1 3 3 2 2 5 5 5 9 7 4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate ||x ||22

Vector interpretation of a data stream

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3

1 3 3 2 2 5 5 5 9 7 4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate ||x ||22

Vector interpretation of a data stream

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1

3 3 2 2 5 5 5 9 7 4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate ||x ||22

Vector interpretation of a data stream

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3

1 2 2 5 5 5 9 7 4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate ||x ||22

Vector interpretation of a data stream

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1

2 2 5 5 5 9 7 4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate ||x ||22

Vector interpretation of a data stream

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2

2 5 5 5 9 7 4 4 2 2 3 3

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate ||x ||22

Vector interpretation of a data stream

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2

5 5 5 9 7 4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate ||x ||22

Vector interpretation of a data stream

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5

5 5 9 7 4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate ||x ||22

Vector interpretation of a data stream

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5

5 9 7 4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate ||x ||22

Vector interpretation of a data stream

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5

9 7 4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate ||x ||22

Vector interpretation of a data stream

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5 9

7 4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate ||x ||22

Vector interpretation of a data stream

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5 9

7 4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate ||x ||22

Vector interpretation of a data stream

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5 9 7

4 4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate ||x ||22

Vector interpretation of a data stream

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5 9 7 4

4 2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate ||x ||22

Vector interpretation of a data stream

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5 9 7 4 4

2 2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate ||x ||22

Vector interpretation of a data stream

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5 9 7 4 4 2

2 3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate ||x ||22

Vector interpretation of a data stream

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5 9 7 4 4 2 2

3 1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate ||x ||22

Vector interpretation of a data stream

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5 9 7 4 4 2 2 3

1

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate ||x ||22

Vector interpretation of a data stream

x ∈Rn 1

#distinct elements=#{1, 2, 3, 4, 5, 7, 9, 10}=8

2 3 4 5 6 7 8 9 10

head

tail

head

3 4 3 2 10 3 1 3 1 2 2 5 5 5 9 7 4 4 2 2 3 3

Ï Initially, x = 0
Ï Insertion of i interpreted as

xi := xi +1

Ï Want to estimate ||x ||22

AMS sketch (Alon-Matias-Szegedy’96)
Goal: approximate

||x ||2 =
√ ∑

i∈[n]
x2

i

from a stream of increments/decrements to xi .

Choose r1, . . . ,rn to be i.i.d. r.v., with

Pr[ri =+1]=Pr[ri =−1]= 1/2.

Maintain

Z =
n∑

i=1
rixi

under increments/decrements of x .

Basic algorithm: output Z 2

Want to claim that Z 2 is ‘close’ to ||x ||22 with ‘high probability’

AMS sketch (Alon-Matias-Szegedy’96)
Goal: approximate

||x ||2 =
√ ∑

i∈[n]
x2

i

from a stream of increments/decrements to xi .

Choose r1, . . . ,rn to be i.i.d. r.v., with

Pr[ri =+1]=Pr[ri =−1]= 1/2.

Maintain

Z =
n∑

i=1
rixi

under increments/decrements of x .

Basic algorithm: output Z 2

Want to claim that Z 2 is ‘close’ to ||x ||22 with ‘high probability’

AMS sketch (Alon-Matias-Szegedy’96)
Goal: approximate

||x ||2 =
√ ∑

i∈[n]
x2

i

from a stream of increments/decrements to xi .

Choose r1, . . . ,rn to be i.i.d. r.v., with

Pr[ri =+1]=Pr[ri =−1]= 1/2.

Maintain

Z =
n∑

i=1
rixi

under increments/decrements of x .

Basic algorithm: output Z 2

Want to claim that Z 2 is ‘close’ to ||x ||22 with ‘high probability’

AMS sketch (Alon-Matias-Szegedy’96)
Goal: approximate

||x ||2 =
√ ∑

i∈[n]
x2

i

from a stream of increments/decrements to xi .

Choose r1, . . . ,rn to be i.i.d. r.v., with

Pr[ri =+1]=Pr[ri =−1]= 1/2.

Maintain

Z =
n∑

i=1
rixi

under increments/decrements of x .

Basic algorithm: output Z 2

Want to claim that Z 2 is ‘close’ to ||x ||22 with ‘high probability’

AMS sketch (Alon-Matias-Szegedy’96)
Goal: approximate

||x ||2 =
√ ∑

i∈[n]
x2

i

from a stream of increments/decrements to xi .

Choose r1, . . . ,rn to be i.i.d. r.v., with

Pr[ri =+1]=Pr[ri =−1]= 1/2.

Maintain

Z =
n∑

i=1
rixi

under increments/decrements of x .

Basic algorithm: output Z 2

Want to claim that Z 2 is ‘close’ to ||x ||22 with ‘high probability’

Alon-Matias-Szegedy – analysis (expectation)
Want to claim that Z 2 is ‘close’ to ||x ||22 with ‘high probability’

Compute expectation of Z 2, then bound the variance

Expectation:

E[Z 2]=E

[
(

n∑
i=1

rixi)
2

]

=
n∑

i=1

n∑
j=1

E[ri rjxixj]

=
n∑

i=1

n∑
j=1

E[ri rj]xixj

=
n∑

i=1
x2

i +
n∑

i ,j :i 6=j
E[ri]E[rj]xixj

=
n∑

i=1
x2

i

= ||x ||22

(our estimator is unbiased!)

Alon-Matias-Szegedy – analysis (expectation)
Want to claim that Z 2 is ‘close’ to ||x ||22 with ‘high probability’

Compute expectation of Z 2, then bound the variance

Expectation:

E[Z 2]=E

[
(

n∑
i=1

rixi)
2

]

=
n∑

i=1

n∑
j=1

E[ri rjxixj]

=
n∑

i=1

n∑
j=1

E[ri rj]xixj

=
n∑

i=1
x2

i +
n∑

i ,j :i 6=j
E[ri]E[rj]xixj

=
n∑

i=1
x2

i

= ||x ||22

(our estimator is unbiased!)

Alon-Matias-Szegedy – analysis (expectation)
Want to claim that Z 2 is ‘close’ to ||x ||22 with ‘high probability’

Compute expectation of Z 2, then bound the variance

Expectation:

E[Z 2]=E

[
(

n∑
i=1

rixi)
2

]

=
n∑

i=1

n∑
j=1

E[ri rjxixj]

=
n∑

i=1

n∑
j=1

E[ri rj]xixj

=
n∑

i=1
x2

i +
n∑

i ,j :i 6=j
E[ri]E[rj]xixj

=
n∑

i=1
x2

i

= ||x ||22

(our estimator is unbiased!)

Alon-Matias-Szegedy – analysis (expectation)
Want to claim that Z 2 is ‘close’ to ||x ||22 with ‘high probability’

Compute expectation of Z 2, then bound the variance

Expectation:

E[Z 2]=E

[
(

n∑
i=1

rixi)
2

]

=
n∑

i=1

n∑
j=1

E[ri rjxixj]

=
n∑

i=1

n∑
j=1

E[ri rj]xixj

=
n∑

i=1
x2

i +
n∑

i ,j :i 6=j
E[ri]E[rj]xixj

=
n∑

i=1
x2

i

= ||x ||22 (our estimator is unbiased!)

Alon-Matias-Szegedy – analysis (variance)

Want to claim that Z 2 is ‘close’ to ||x ||22 with ‘high probability’

Bound the variance Var[Z 2]=E[Z 4]− (E[Z 2])2?

Compute

E[Z 4]=E

[
(

n∑
i=1

rixi)(
n∑

j=1
rjxj)(

n∑
k=1

rkxk)(
n∑

l=1
rlxl)

]

Can be decomposed as follows:
Ï ∑n

i=1(rixi)
4 – expectation

∑n
i=1 x4

i

Ï 6
∑

i<j(ri rjxixj)
2 – expectation 6

∑
i<j x2

i x2
j

Ï Terms involving a single rixi – expectation zero.

In total:
∑n

i=1 x4
i +6

∑
i<j x2

i x2
j

Alon-Matias-Szegedy – analysis (variance)

Want to claim that Z 2 is ‘close’ to ||x ||22 with ‘high probability’

Bound the variance Var[Z 2]=E[Z 4]− (E[Z 2])2?

Compute

E[Z 4]=E

[
(

n∑
i=1

rixi)(
n∑

j=1
rjxj)(

n∑
k=1

rkxk)(
n∑

l=1
rlxl)

]

Can be decomposed as follows:
Ï ∑n

i=1(rixi)
4 – expectation

∑n
i=1 x4

i

Ï 6
∑

i<j(ri rjxixj)
2 – expectation 6

∑
i<j x2

i x2
j

Ï Terms involving a single rixi – expectation zero.

In total:
∑n

i=1 x4
i +6

∑
i<j x2

i x2
j

Alon-Matias-Szegedy – analysis (variance)

Want to claim that Z 2 is ‘close’ to ||x ||22 with ‘high probability’

Bound the variance Var[Z 2]=E[Z 4]− (E[Z 2])2?

Compute

E[Z 4]=E

[
(

n∑
i=1

rixi)(
n∑

j=1
rjxj)(

n∑
k=1

rkxk)(
n∑

l=1
rlxl)

]

Can be decomposed as follows:
Ï ∑n

i=1(rixi)
4 – expectation

∑n
i=1 x4

i

Ï 6
∑

i<j(ri rjxixj)
2 – expectation 6

∑
i<j x2

i x2
j

Ï Terms involving a single rixi – expectation zero.

In total:
∑n

i=1 x4
i +6

∑
i<j x2

i x2
j

Alon-Matias-Szegedy – analysis (variance)
Bound the variance Var[Z 2]=E[Z 4]− (E[Z 2])2?

Computed

E[Z 4]=
n∑

i=1
x4

i +6
∑
i<j

x2
i x2

j

So

Var[Z 2]=E[Z 4]− (E[Z 2])2

=
n∑

i=1
x4

i +6
∑
i<j

x2
i x2

j − (
n∑

i=1
x2

i)
2

=
n∑

i=1
x4

i +6
∑
i<j

x2
i x2

j −
n∑

i=1
x4

i −2
∑
i<j

x2
i x2

j

≤ 4
∑
i<j

x2
i x2

j

≤ 2(
n∑

i=1
x2

i)
2

Alon-Matias-Szegedy – analysis (variance)
Bound the variance Var[Z 2]=E[Z 4]− (E[Z 2])2?

Computed

E[Z 4]=
n∑

i=1
x4

i +6
∑
i<j

x2
i x2

j

So

Var[Z 2]=E[Z 4]− (E[Z 2])2

=
n∑

i=1
x4

i +6
∑
i<j

x2
i x2

j − (
n∑

i=1
x2

i)
2

=
n∑

i=1
x4

i +6
∑
i<j

x2
i x2

j −
n∑

i=1
x4

i −2
∑
i<j

x2
i x2

j

≤ 4
∑
i<j

x2
i x2

j

≤ 2(
n∑

i=1
x2

i)
2

Analysis: putting it together

We showed that
Ï E[Z 2]= ||x ||22
Ï σ2 =Var[Z 2]≤ 2||x ||42

So by Chebyshev’s inequality for t ≥ 1

Pr[|Z 2 −E[Z 2]| ≥ tσ]≤ 1/t2

and we get
Pr[|Z 2 −||x ||22| ≥

p
2t ||x ||22]≤ 1/t2

Not good...but can reduce variance by averaging!

Analysis: putting it together

We showed that
Ï E[Z 2]= ||x ||22
Ï σ2 =Var[Z 2]≤ 2||x ||42

So by Chebyshev’s inequality for t ≥ 1

Pr[|Z 2 −E[Z 2]| ≥ tσ]≤ 1/t2

and we get
Pr[|Z 2 −||x ||22| ≥

p
2t ||x ||22]≤ 1/t2

Not good...but can reduce variance by averaging!

Analysis: putting it together

We showed that
Ï E[Z 2]= ||x ||22
Ï σ2 =Var[Z 2]≤ 2||x ||42

So by Chebyshev’s inequality for t ≥ 1

Pr[|Z 2 −E[Z 2]| ≥ tσ]≤ 1/t2

and we get
Pr[|Z 2 −||x ||22| ≥

p
2t ||x ||22]≤ 1/t2

Not good...but can reduce variance by averaging!

Analysis: putting it together

We showed that
Ï E[Z 2]= ||x ||22
Ï σ2 =Var[Z 2]≤ 2||x ||42

So by Chebyshev’s inequality for t ≥ 1

Pr[|Z 2 −E[Z 2]| ≥ tσ]≤ 1/t2

and we get
Pr[|Z 2 −||x ||22| ≥

p
2t ||x ||22]≤ 1/t2

Not good...

but can reduce variance by averaging!

Analysis: putting it together

We showed that
Ï E[Z 2]= ||x ||22
Ï σ2 =Var[Z 2]≤ 2||x ||42

So by Chebyshev’s inequality for t ≥ 1

Pr[|Z 2 −E[Z 2]| ≥ tσ]≤ 1/t2

and we get
Pr[|Z 2 −||x ||22| ≥

p
2t ||x ||22]≤ 1/t2

Not good...but can reduce variance by averaging!

Analysis: putting it together

Actual algorithm:
Ï Maintain Z1, . . . ,Zk , Zi =

∑n
j=1 r i

j xj

Ï Output A := 1
k

∑k
i=1 Z 2

i

Now

Var[A]=Var

[
1
k

k∑
i=1

Z 2
i

]
= 1

k
Var

[
Z 2

]
≤ (2/k)||x ||42,

and by Chebyshev’s inequality

Pr
[
|A−||x ||22| ≥ t · (2/k)1/2||x ||22

]
≤ 1/t2,

so setting k =O(1/ε2) and t = 10 suffices for a
(1±ε)-approximation with probability ≥ 99/100 !

Analysis: putting it together

Actual algorithm:
Ï Maintain Z1, . . . ,Zk , Zi =

∑n
j=1 r i

j xj

Ï Output A := 1
k

∑k
i=1 Z 2

i

Now

Var[A]=Var

[
1
k

k∑
i=1

Z 2
i

]
= 1

k
Var

[
Z 2

]
≤ (2/k)||x ||42,

and by Chebyshev’s inequality

Pr
[
|A−||x ||22| ≥ t · (2/k)1/2||x ||22

]
≤ 1/t2,

so setting k =O(1/ε2) and t = 10 suffices for a
(1±ε)-approximation with probability ≥ 99/100 !

Space complexity

How much space do we need to store ri ’s?

4-wise independence suffices, hence O(logn) space

Some remarks
Can we reduce failure probability to 1−δ?

Ï Use O(1/(ε2δ)) repetitions – bad dependence on δ

Ï Median trick: keep T =O(log(1/δ)) copies of the estimator,
output the median

Let Yt = 1 if t-th algorithm fails, and 0 otherwise.

We have E[Yt]≤ 1/100, so by the Chernoff bound

Pr
[
|mediani=1,...,T (Ai)−||x ||22| > ε||x ||22

]
≤Pr[at least half of Ai fail, i = 1, . . . ,T]

≤Pr[
T∑

t=1
Yi ≥T/2]

≤ e−Ω(T).

So setting T =O(log(1/δ)) suffices.

Some remarks
Can we reduce failure probability to 1−δ?

Ï Use O(1/(ε2δ)) repetitions – bad dependence on δ

Ï Median trick: keep T =O(log(1/δ)) copies of the estimator,
output the median

Let Yt = 1 if t-th algorithm fails, and 0 otherwise.

We have E[Yt]≤ 1/100, so by the Chernoff bound

Pr
[
|mediani=1,...,T (Ai)−||x ||22| > ε||x ||22

]
≤Pr[at least half of Ai fail, i = 1, . . . ,T]

≤Pr[
T∑

t=1
Yi ≥T/2]

≤ e−Ω(T).

So setting T =O(log(1/δ)) suffices.

Some remarks
Can we reduce failure probability to 1−δ?

Ï Use O(1/(ε2δ)) repetitions – bad dependence on δ

Ï Median trick: keep T =O(log(1/δ)) copies of the estimator,
output the median

Let Yt = 1 if t-th algorithm fails, and 0 otherwise.

We have E[Yt]≤ 1/100, so by the Chernoff bound

Pr
[
|mediani=1,...,T (Ai)−||x ||22| > ε||x ||22

]
≤Pr[at least half of Ai fail, i = 1, . . . ,T]

≤Pr[
T∑

t=1
Yi ≥T/2]

≤ e−Ω(T).

So setting T =O(log(1/δ)) suffices.

Some remarks
Can we reduce failure probability to 1−δ?

Ï Use O(1/(ε2δ)) repetitions – bad dependence on δ

Ï Median trick: keep T =O(log(1/δ)) copies of the estimator,
output the median

Let Yt = 1 if t-th algorithm fails, and 0 otherwise.

We have E[Yt]≤ 1/100, so by the Chernoff bound

Pr
[
|mediani=1,...,T (Ai)−||x ||22| > ε||x ||22

]
≤Pr[at least half of Ai fail, i = 1, . . . ,T]

≤Pr[
T∑

t=1
Yi ≥T/2]

≤ e−Ω(T).

So setting T =O(log(1/δ)) suffices.

Space complexity

Downside of the median trick: nonlinear embedding

Median trick not needed if we have enough independence

Johnson-Lindenstrauss transform (see Ilya’s lecture)

Some remarks

Take (randomized) linear measurements of the input

S

sketching matrix

space requirement=number of rows

•

x

b=

Can get (1±ε)-approximation to ||x ||2 with O(1
ε2 log(1/δ)) rows

Easy to maintain linear sketches in the (dynamic) streaming
model

Some remarks

Take (randomized) linear measurements of the input

S

sketching matrix

space requirement=number of rows

•

x

b=

Can get (1±ε)-approximation to ||x ||2 with O(1
ε2 log(1/δ)) rows

Easy to maintain linear sketches in the (dynamic) streaming
model

Some remarks

Take (randomized) linear measurements of the input

S

sketching matrix

space requirement=number of rows

•

x

b=

Can get (1±ε)-approximation to ||x ||2 with O(1
ε2 log(1/δ)) rows

Easy to maintain linear sketches in the (dynamic) streaming
model

In this lecture:

Ï Frequency moments (AMS sketch)

Ï Heavy hitters (CountSketch)

In this lecture:

Ï Frequency moments (AMS sketch)

Ï Heavy hitters (CountSketch)

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3

4 6 1 2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4

6 3 2 10 3 1 3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6

3 2 10 3 1 3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3

2 10 3 1 3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2

10 3 1 3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10

3 1 3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3

1 3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1

3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3

1 2 2 5 5 5 9 8 7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1

2 2 5 5 5 9 8 7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2

2 5 5 5 9 8 7 4 4 2 2 3 3

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2

5 5 5 9 8 7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5

5 5 9 8 7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5

5 9 8 7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5

9 8 7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9

8 7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8

7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7

4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7 4

4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7 4 4

2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7 4 4 2

2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7 4 4 2 2

3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7 4 4 2 2 3

1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7 4 4 2 2 3 3

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7 4 4 2 2 3 3

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 5 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 5 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 5 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 5 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1
1

5

4 1
1

1

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1
1

5

4 1
1

1

Src Dst

DATA

Trivial: store all distinct IP pairs

Space complexity: Θ(N)

This lecture: solve in space O(logN)

Exponential improvement!

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1
1

5

4 1
1

1

Src Dst

DATA

Trivial: store all distinct IP pairs

Space complexity: Θ(N)

This lecture: solve in space O(logN)

Exponential improvement!

Estimating search statistics

Given a set of items as a stream (e.g. queries on google.com
over a period of time)

Geneva to NYC, coffee in Geneva, Geneva to NYC

Find the most frequent items in the set

Geneva to NYC, coffee in Geneva

Trivial This lecture
Solution hash<string> h; COUNTSKETCH

Space # of distinct items O(logN)

Estimating search statistics

Given a set of items as a stream (e.g. queries on google.com
over a period of time)

Geneva to NYC, coffee in Geneva, Geneva to NYC

Find the most frequent items in the set

Geneva to NYC, coffee in Geneva

Trivial This lecture
Solution hash<string> h; COUNTSKETCH

Space # of distinct items O(logN)

Estimating search statistics

Given a set of items as a stream (e.g. queries on google.com
over a period of time)

Geneva to NYC, coffee in Geneva, Geneva to NYC

Find the most frequent items in the set

Geneva to NYC, coffee in Geneva

Trivial This lecture
Solution hash<string> h; COUNTSKETCH

Space # of distinct items O(logN)

Estimating search statistics

Given a set of items as a stream (e.g. queries on google.com
over a period of time)

Geneva to NYC, coffee in Geneva, Geneva to NYC

Find the most frequent items in the set

Geneva to NYC, coffee in Geneva

Trivial This lecture
Solution hash<string> h; COUNTSKETCH

Space # of distinct items O(logN)

Heavy hitters problem

Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

Goal: design a small space data structure

FINDTOP(S,k): returns top k most frequent items seen so far

Useful to first design

POINTQUERY(S, i): processes stream, then for any query item i
can return fi=number of times item i appeared

Goal: design a small space data structure

FINDTOP(S,k): returns top k most frequent items seen so far

Useful to first design

POINTQUERY(S, i): processes stream, then for any query item i
can return fi=number of times item i appeared

Denote the number of times item i appears in the stream by fi
(frequency of i)

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

POINTQUERY(S, i) in space O(k logN)?

Impossible in general...

Imagine a stream where all elements occur with about the same
frequency

Denote the number of times item i appears in the stream by fi
(frequency of i)

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

POINTQUERY(S, i) in space O(k logN)?

Impossible in general...

Imagine a stream where all elements occur with about the same
frequency

Denote the number of times item i appears in the stream by fi
(frequency of i)

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

POINTQUERY(S, i) in space O(k logN)?

Impossible in general...

Imagine a stream where all elements occur with about the same
frequency

FINDAPPROXTOP(S,k ,ε): returns set of k items such that
fi ≥ (1−ε)fk for all reported i

APPROXPOINTQUERY(S, i ,ε): processes stream, then for any
query item i can return approximation f̂i ∈ [fi −εfk , fi +εfk]

In this lecture: find most frequent (head) items if they
contribute the bulk of the stream under some measure

FINDAPPROXTOP(S,k ,ε): returns set of k items such that
fi ≥ (1−ε)fk for all reported i

APPROXPOINTQUERY(S, i ,ε): processes stream, then for any
query item i can return approximation f̂i ∈ [fi −εfk , fi +εfk]

In this lecture: find most frequent (head) items if they
contribute the bulk of the stream under some measure

1. Finding top k elements via (APPROX)POINTQUERY

2. Basic version of APPROXPOINTQUERY

3. APPROXPOINTQUERY and the COUNTSKETCH algorithm

1. Finding top k elements via (APPROX)POINTQUERY

2. Basic version of APPROXPOINTQUERY

3. APPROXPOINTQUERY and the COUNTSKETCH algorithm

POINTQUERY implies FINDTOP, k = 1
Given: stream S = (i1, . . . , iN)

Maintain: data structure for POINTQUERY

Maintain:

currMax=NULL; currFreq=0;

For p = 1, . . . ,N
Compute frequency f ← POINTQUERY(ip)

If currMax==ip
currFreq=f; continue;

end if

If currMax==NULL

currMax=ip; currFreq=1;

else
If currFreq<f
currMax=ip; currFreq=f;

end if
end if

end for

POINTQUERY implies FINDTOP, k = 1
Given: stream S = (i1, . . . , iN)

Maintain: data structure for POINTQUERY

Maintain:

currMax=NULL; currFreq=0;

For p = 1, . . . ,N
Compute frequency f ← POINTQUERY(ip)

If currMax==ip
currFreq=f; continue;

end if

If currMax==NULL

currMax=ip; currFreq=1;

else
If currFreq<f
currMax=ip; currFreq=f;

end if
end if

end for

POINTQUERY implies FINDTOP, k = 1
Given: stream S = (i1, . . . , iN)

Maintain: data structure for POINTQUERY

Maintain:

currMax=NULL; currFreq=0;

For p = 1, . . . ,N
Compute frequency f ← POINTQUERY(ip)

If currMax==ip
currFreq=f; continue;

end if

If currMax==NULL

currMax=ip; currFreq=1;

else
If currFreq<f
currMax=ip; currFreq=f;

end if
end if

end for

POINTQUERY implies FINDTOP, k = 1
Given: stream S = (i1, . . . , iN)

Maintain: data structure for POINTQUERY

Maintain:

currMax=NULL; currFreq=0;

For p = 1, . . . ,N
Compute frequency f ← POINTQUERY(ip)

If currMax==ip
currFreq=f; continue;

end if

If currMax==NULL

currMax=ip; currFreq=1;

else
If currFreq<f
currMax=ip; currFreq=f;

end if
end if

end for

POINTQUERY implies FINDTOP, k = 1
Given: stream S = (i1, . . . , iN)

Maintain: data structure for POINTQUERY

Maintain:

currMax=NULL; currFreq=0;

For p = 1, . . . ,N
Compute frequency f ← POINTQUERY(ip)

If currMax==ip
currFreq=f; continue;

end if

If currMax==NULL

currMax=ip; currFreq=1;

else
If currFreq<f
currMax=ip; currFreq=f;

end if
end if

end for

Why does this work?

At each point in the stream currMax is either NULL or the most
frequent element so far...

What about finding k most frequent elements for k > 1?

Why does this work?

At each point in the stream currMax is either NULL or the most
frequent element so far...

What about finding k most frequent elements for k > 1?

POINTQUERY implies FINDTOP

Given: stream S = (i1, . . . , iN)

Maintain: data structure for POINTQUERY

Maintain:

a heap H of at most k items, by count

For p = 1, . . . ,N
Compute frequency f ← POINTQUERY(ip)

If H contains ip
update ip ’s key to f ; continue;

end if

If H contains < k elements,

add < f , ip > to H

else
< fmin, imin >← element in H with smallest key

If fmin < f , insert < f , ip > and evict < fmin, imin >
end if

end for

POINTQUERY implies FINDTOP

Given: stream S = (i1, . . . , iN)

Maintain: data structure for POINTQUERY

Maintain:

a heap H of at most k items, by count

For p = 1, . . . ,N
Compute frequency f ← POINTQUERY(ip)

If H contains ip
update ip ’s key to f ; continue;

end if

If H contains < k elements,

add < f , ip > to H

else
< fmin, imin >← element in H with smallest key

If fmin < f , insert < f , ip > and evict < fmin, imin >
end if

end for

POINTQUERY implies FINDTOP

Given: stream S = (i1, . . . , iN)

Maintain: data structure for POINTQUERY

Maintain:

a heap H of at most k items, by count

For p = 1, . . . ,N
Compute frequency f ← POINTQUERY(ip)

If H contains ip
update ip ’s key to f ; continue;

end if

If H contains < k elements,

add < f , ip > to H

else
< fmin, imin >← element in H with smallest key

If fmin < f , insert < f , ip > and evict < fmin, imin >
end if

end for

POINTQUERY implies FINDTOP

Given: stream S = (i1, . . . , iN)

Maintain: data structure for POINTQUERY

Maintain:

a heap H of at most k items, by count

For p = 1, . . . ,N
Compute frequency f ← POINTQUERY(ip)

If H contains ip
update ip ’s key to f ; continue;

end if

If H contains < k elements,

add < f , ip > to H

else
< fmin, imin >← element in H with smallest key

If fmin < f , insert < f , ip > and evict < fmin, imin >
end if

end for

POINTQUERY implies FINDTOP

Given: stream S = (i1, . . . , iN)

Maintain: data structure for POINTQUERY

Maintain:

a heap H of at most k items, by count

For p = 1, . . . ,N
Compute frequency f ← POINTQUERY(ip)

If H contains ip
update ip ’s key to f ; continue;

end if

If H contains < k elements,

add < f , ip > to H

else
< fmin, imin >← element in H with smallest key

If fmin < f , insert < f , ip > and evict < fmin, imin >
end if

end for

Why does this work?

(Assume the set of top k items is unique for simplicity)

For every item i in top k let pi denote the last position where i
occurs

Note that

1. at position pi element i is inserted into heap H if it was not
in H at that time

2. element i is never evicted after pi

Why does this work?

(Assume the set of top k items is unique for simplicity)

For every item i in top k let pi denote the last position where i
occurs

Note that

1. at position pi element i is inserted into heap H if it was not
in H at that time

2. element i is never evicted after pi

POINTQUERY implies FINDTOP

Given: stream S = (i1, . . . , iN)

Maintain: data structure for POINTQUERY

Maintain:

a heap H of at most k items, by count

For p = 1, . . . ,N
Compute frequency f ← POINTQUERY(ip)

If H contains ip
update ip ’s key to f ; continue;

end if

If H contains < k elements,

add < f , ip > to H

else
< fmin, imin >← element in H with smallest key

If fmin < f , insert < f , ip > and evict < fmin, imin >
end if

end for

Why is this useful? We know that POINTQUERY requires
essentially storing the entire stream...

A similar reduction shows that APPROXPOINTQUERY implies
FINDAPPROXTOP!

Why is this useful? We know that POINTQUERY requires
essentially storing the entire stream...

A similar reduction shows that APPROXPOINTQUERY implies
FINDAPPROXTOP!

APPROXPOINTQUERY implies FINDAPPROXTOP

Given: stream S = (i1, . . . , iN)

Maintain: data structure for APPROXPOINTQUERY

Maintain:

a heap H of at most k items, by count

For p = 1, . . . ,N
Compute frequency f̂ ← APPROXPOINTQUERY(ip)

If H contains ip
update ip ’s key to f̂ ; continue;

end if

If H contains < k elements,

add < f̂ , ip > to H

else
< f̂min, imin >← element in H with smallest key

If f̂min < f̂ , insert < f̂ , ip > and evict < f̂min, imin >
end if

end for

FINDAPPROXTOP(S,k ,ε): returns set S of k items such that
fi ≥ (1−ε)fk for all i ∈S

APPROXPOINTQUERY(S, i ,ε): returns f̂i ∈ [fi −εfk , fi +εfk]

In what follows: APPROXPOINTQUERY in small space

Observe a stream of updates, maintain small space data
structure

Task: after observing the stream, given i ∈ {1,2, . . . ,m}, compute
estimate f̂i of fi

To be specified:

Ï space complexity?

Ï quality of approximation?

Ï success probability?

In what follows: APPROXPOINTQUERY in small space

Observe a stream of updates, maintain small space data
structure

Task: after observing the stream, given i ∈ {1,2, . . . ,m}, compute
estimate f̂i of fi

To be specified:

Ï space complexity?

Ï quality of approximation?

Ï success probability?

1. Finding top k elements via (APPROX)POINTQUERY

2. Basic version of APPROXPOINTQUERY

3. APPROXPOINTQUERY and the COUNTSKETCH algorithm

1. Finding top k elements via (APPROX)POINTQUERY

2. Basic version of APPROXPOINTQUERY

3. APPROXPOINTQUERY and the COUNTSKETCH algorithm

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1

4 6 1 2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4

6 1 2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6

1 2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1

2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2

10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10

1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1

5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5

1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1

5 2 2 3 3 3 9 8 7 4 4 2 2 1 1

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5

2 2 3 3 3 9 8 7 4 4 2 2 1 1

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2

2 3 3 3 9 8 7 4 4 2 2 1 1

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2

3 3 3 9 8 7 4 4 2 2 1 1

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3

3 3 9 8 7 4 4 2 2 1 1

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 3

3 9 8 7 4 4 2 2 1 1

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 3 3

9 8 7 4 4 2 2 1 1

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 3 3 9

8 7 4 4 2 2 1 1

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 3 3 9 8

7 4 4 2 2 1 1

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 3 3 9 8 7

4 4 2 2 1 1

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 3 3 9 8 7 4

4 2 2 1 1

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 3 3 9 8 7 4 4

2 2 1 1

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 3 3 9 8 7 4 4 2

2 1 1

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 3 3 9 8 7 4 4 2 2

1 1

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 3 3 9 8 7 4 4 2 2 1

1

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

Basic estimate
Will design a basic estimate with O(1) space complexity,
analyze precision

Choose a hash function s : [m]→ {−1,+1} uniformly at random

INITIALIZE

C ← 0
UPDATE(C, i)

C ←C+s(i)

for every p = 1, . . . ,N (every element in the stream)
UPDATE(C, ip)

end for

ESTIMATE(C, i)
return C ·s(i)

How does one argue that a randomized estimate works?

Basic estimate
Will design a basic estimate with O(1) space complexity,
analyze precision

Choose a hash function s : [m]→ {−1,+1} uniformly at random

INITIALIZE

C ← 0
UPDATE(C, i)

C ←C+s(i)

for every p = 1, . . . ,N (every element in the stream)
UPDATE(C, ip)

end for

ESTIMATE(C, i)
return C ·s(i)

How does one argue that a randomized estimate works?

Basic estimate
Will design a basic estimate with O(1) space complexity,
analyze precision

Choose a hash function s : [m]→ {−1,+1} uniformly at random

INITIALIZE

C ← 0
UPDATE(C, i)

C ←C+s(i)

for every p = 1, . . . ,N (every element in the stream)
UPDATE(C, ip)

end for

ESTIMATE(C, i)
return C ·s(i)

How does one argue that a randomized estimate works?

Basic estimate
Will design a basic estimate with O(1) space complexity,
analyze precision

Choose a hash function s : [m]→ {−1,+1} uniformly at random

INITIALIZE

C ← 0
UPDATE(C, i)

C ←C+s(i)

for every p = 1, . . . ,N (every element in the stream)
UPDATE(C, ip)

end for

ESTIMATE(C, i)
return C ·s(i)

How does one argue that a randomized estimate works?

UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

How does one argue that a randomized estimate works?

Want to show that C ·s(i) is close to fi ‘with high probability’

Typically show this in two steps:

Ï show that Es[C ·s(i)]= fi
(so C ·s(i) is an unbiased estimate of fi)

Ï show that Vars[C ·s(i)] is ‘small’

It then follows that |C ·s(i)− fi | is ‘small’ with high probability
(essentially law of large numbers)

UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

How does one argue that a randomized estimate works?

Want to show that C ·s(i) is close to fi ‘with high probability’

Typically show this in two steps:

Ï show that Es[C ·s(i)]= fi
(so C ·s(i) is an unbiased estimate of fi)

Ï show that Vars[C ·s(i)] is ‘small’

It then follows that |C ·s(i)− fi | is ‘small’ with high probability
(essentially law of large numbers)

UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

How does one argue that a randomized estimate works?

Want to show that C ·s(i) is close to fi ‘with high probability’

Typically show this in two steps:

Ï show that Es[C ·s(i)]= fi
(so C ·s(i) is an unbiased estimate of fi)

Ï show that Vars[C ·s(i)] is ‘small’

It then follows that |C ·s(i)− fi | is ‘small’ with high probability
(essentially law of large numbers)

UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

How does one argue that a randomized estimate works?

Want to show that C ·s(i) is close to fi ‘with high probability’

Typically show this in two steps:

Ï show that Es[C ·s(i)]= fi
(so C ·s(i) is an unbiased estimate of fi)

Ï show that Vars[C ·s(i)] is ‘small’

It then follows that |C ·s(i)− fi | is ‘small’ with high probability
(essentially law of large numbers)

Basic estimate:mean
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

C ·s(i)=
N∑

p=1
s(ip)s(i)

= ∑
j∈[m]

fj ·s(j)s(i)

= fis(i)2 + ∑
j∈[m]\i

fj ·s(j)s(i)

= fi +
∑

j∈[m]\i
fj ·s(j)s(i) ←− random ±1’s

= fi +
∑

j∈[m]\i
fj ·s(j)s(i) ←− random ±1’s

Our estimator is unbiased!

Is the estimate C ·s(i) close to fi with high probability?

Basic estimate:mean
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

C ·s(i)=
N∑

p=1
s(ip)s(i)=

∑
j∈[m]

fj ·s(j)s(i)

= fis(i)2 + ∑
j∈[m]\i

fj ·s(j)s(i)

= fi +
∑

j∈[m]\i
fj ·s(j)s(i) ←− random ±1’s

= fi +
∑

j∈[m]\i
fj ·s(j)s(i) ←− random ±1’s

Our estimator is unbiased!

Is the estimate C ·s(i) close to fi with high probability?

Basic estimate:mean
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

C ·s(i)=
N∑

p=1
s(ip)s(i)=

∑
j∈[m]

fj ·s(j)s(i)

= fis(i)2 + ∑
j∈[m]\i

fj ·s(j)s(i)

= fi +
∑

j∈[m]\i
fj ·s(j)s(i) ←− random ±1’s

= fi +
∑

j∈[m]\i
fj ·s(j)s(i) ←− random ±1’s

Our estimator is unbiased!

Is the estimate C ·s(i) close to fi with high probability?

Basic estimate:mean
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

C ·s(i)=
N∑

p=1
s(ip)s(i)=

∑
j∈[m]

fj ·s(j)s(i)

= fis(i)2 + ∑
j∈[m]\i

fj ·s(j)s(i)

= fi +
∑

j∈[m]\i
fj ·s(j)s(i) ←− random ±1’s

= fi +
∑

j∈[m]\i
fj ·s(j)s(i) ←− random ±1’s

Our estimator is unbiased!

Is the estimate C ·s(i) close to fi with high probability?

Basic estimate:mean
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

E[

C ·s(i)

]

= fi +
∑

j∈[m]\i
fj ·s(j)s(i)

(by independence of s(i))

= fi +
∑

j∈[m]\i
fj ·E[s(j)]E[s(i)] (by independence of s(i))

= fi

The mean is correct: our estimator is unbiased!

Is the estimate C ·s(i) close to fi with high probability?

Basic estimate:mean
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

E[C ·s(i)]= fi +E[
∑

j∈[m]\i
fj ·s(j)s(i)]

(by independence of s(i))

= fi +
∑

j∈[m]\i
fj ·E[s(j)]E[s(i)] (by independence of s(i))

= fi

The mean is correct: our estimator is unbiased!

Is the estimate C ·s(i) close to fi with high probability?

Basic estimate:mean
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

E[C ·s(i)]= fi +E[
∑

j∈[m]\i
fj ·s(j)s(i)]

(by independence of s(i))

= fi +
∑

j∈[m]\i
fj ·E[s(j)]E[s(i)] (by independence of s(i))

= fi

The mean is correct: our estimator is unbiased!

Is the estimate C ·s(i) close to fi with high probability?

Basic estimate:mean
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

E[C ·s(i)]= fi +E[
∑

j∈[m]\i
fj ·s(j)s(i)]

(by independence of s(i))

= fi +
∑

j∈[m]\i
fj ·E[s(j)]E[s(i)] (by independence of s(i))

= fi

The mean is correct: our estimator is unbiased!

Is the estimate C ·s(i) close to fi with high probability?

Basic estimate:mean
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

E[C ·s(i)]= fi +E[
∑

j∈[m]\i
fj ·s(j)s(i)]

(by independence of s(i))

= fi +
∑

j∈[m]\i
fj ·E[s(j)]E[s(i)] (by independence of s(i))

= fi

The mean is correct: our estimator is unbiased!

Is the estimate C ·s(i) close to fi with high probability?

Basic estimate:mean
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

E[C ·s(i)]= fi +E[
∑

j∈[m]\i
fj ·s(j)s(i)]

(by independence of s(i))

= fi +
∑

j∈[m]\i
fj ·E[s(j)]E[s(i)] (by independence of s(i))

= fi

The mean is correct: our estimator is unbiased!

Is the estimate C ·s(i) close to fi with high probability?

Chebyshev’s inequality

Theorem
For every random variable X with mean µ

and variance σ2, and every t ≥ 1 one has

Pr[|X −µ| ≥ t ·σ]≤ 1/t2

Apply Chebyshev’s inequality with X =C ·s(i) and
µ=E[C ·s(i)]?

A quantitative form of the ‘law of large numbers’

Need to compute the variance σ2 =E[(C ·s(i)−µ)2]

Chebyshev’s inequality

Theorem
For every random variable X with mean µ

and variance σ2, and every t ≥ 1 one has

Pr[|X −µ| ≥ t ·σ]≤ 1/t2

Apply Chebyshev’s inequality with X =C ·s(i) and
µ=E[C ·s(i)]?

A quantitative form of the ‘law of large numbers’

Need to compute the variance σ2 =E[(C ·s(i)−µ)2]

Chebyshev’s inequality

Theorem
For every random variable X with mean µ

and variance σ2, and every t ≥ 1 one has

Pr[|X −µ| ≥ t ·σ]≤ 1/t2

Apply Chebyshev’s inequality with X =C ·s(i) and
µ=E[C ·s(i)]?

A quantitative form of the ‘law of large numbers’

Need to compute the variance σ2 =E[(C ·s(i)−µ)2]

Chebyshev’s inequality

Theorem
For every random variable X with mean µ

and variance σ2, and every t ≥ 1 one has

Pr[|X −µ| ≥ t ·σ]≤ 1/t2

Apply Chebyshev’s inequality with X =C ·s(i) and
µ=E[C ·s(i)]?

A quantitative form of the ‘law of large numbers’

Need to compute the variance σ2 =E[(C ·s(i)−µ)2]

Basic estimate: variance
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

We have

C ·s(i)= fi +
∑

j∈[m]\i
fj ·s(j)s(i)

and

E[C ·s(i)]= fi .

We need to bound

Var(C ·s(i))=E[(C ·s(i)−E[C ·s(i)])2]

=E[(C ·s(i)− fi)2]

=E

(∑
j∈[m]\i

fj ·s(j)s(i)
)2

Basic estimate: variance
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

We have

C ·s(i)= fi +
∑

j∈[m]\i
fj ·s(j)s(i)

and

E[C ·s(i)]= fi .

We need to bound

Var(C ·s(i))=E[(C ·s(i)−E[C ·s(i)])2]

=E[(C ·s(i)− fi)2]

=E

(∑
j∈[m]\i

fj ·s(j)s(i)
)2

Basic estimate: variance
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

(C ·s(i)− fi)2 =
(∑

j∈[m]\i
fj ·s(j)s(i)

)2

= ∑
j∈[m]\i

∑
j ′∈[m]\i

fj fj ′ ·s(j)s(j ′) ·s2(i)

= ∑
j∈[m]\i

∑
j ′∈[m]\i

fj fj ′ ·s(j)s(j ′)

Ï s(j)2 = 1 for all j

Ï E[s(j)s(j ′)]=E[s(j)]E[s(j ′)]= 0 for j 6= j ′.

Basic estimate: variance
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

E[(C ·s(i)− fi)2]=E[
∑

j∈[m]\i

∑
j ′∈[m]\i

fj fj ′ ·s(j)s(j ′)]

= ∑
j∈[m]\i

∑
j ′∈[m]\i

fj fj ′ ·E[s(j)s(j ′)]

= ∑
j∈[m]\i

f 2
j

since

Ï s(j)2 = 1 for all j

Ï E[s(j)s(j ′)]=E[s(j)]E[s(j ′)]= 0 for j 6= j ′.

Basic estimate: variance
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

We have proved that

Var(C ·s(i))=E[(C ·s(i)− fi)2]= ∑
j∈[m]\i

f 2
j

By Chebyshev’s inequality

Pr

|C ·s(i)− fi | ≥ 8 ·
√ ∑

j∈[m]\i
f 2
j

≤ 1/64

So C ·s(i) is close (?) to fi with high probability

Basic estimate: variance
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

We have proved that

Var(C ·s(i))=E[(C ·s(i)− fi)2]= ∑
j∈[m]\i

f 2
j

By Chebyshev’s inequality

Pr

|C ·s(i)− fi | ≥ 8 ·
√ ∑

j∈[m]\i
f 2
j

≤ 1/64

So C ·s(i) is close (?) to fi with high probability

Basic estimate: variance
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

We have proved that

Var(C ·s(i))=E[(C ·s(i)− fi)2]= ∑
j∈[m]\i

f 2
j

By Chebyshev’s inequality

Pr

|C ·s(i)− fi | ≥ 8 ·
√ ∑

j∈[m]\i
f 2
j

≤ 1/64

So C ·s(i) is close (?) to fi with high probability

Basic estimate: variance
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

We have proved that

Var(C ·s(i))=E[(C ·s(i)− fi)2]= ∑
j∈[m]\i

f 2
j

By Chebyshev’s inequality

Pr

|C ·s(i)− fi | ≥ 8 ·
√ ∑

j∈[m]\i
f 2
j

≤ 1/64

So C ·s(i) is close (?) to fi with high probability

Basic estimate: variance
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

We have proved that

Var(C ·s(i))=E[(C ·s(i)− fi)2]= ∑
j∈[m]\i

f 2
j

By Chebyshev’s inequality

Pr

|C ·s(i)− fi | > 8 ·
√ ∑

j∈[m]\i
f2
j

≤ 1/64

So C ·s(i) is close (?) to fi with high probability

Basic estimate: summary
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

Estimate fi up to

8 ·
√ ∑

j∈[m]\i
f 2
j

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

item to be estimated

tail

head

Pro: works well for most frequent item, if other items are small

Con: estimate for a small items contaminated by large items

Basic estimate: summary
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

Estimate fi up to

8 ·
√ ∑

j∈[m]\i
f 2
j

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

tail

item to be estimated

head

Pro: works well for most frequent item, if other items are small

Con: estimate for a small items contaminated by large items

Next: final APPROXPOINTQUERY and the
COUNTSKETCH algorithm

COUNTSKETCH algorithm: find top k elements (approximately)

Ï hash items into O(k) buckets (i.e. substreams)

Ï run simple estimate on every bucket

Ï repeat O(logN) times independently, take median as
answer

Main intuition: estimate large items from substreams like

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

item to be estimated

tail

head

and small items from substreams like

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

tail

item to be estimated

head

Main intuition: estimate large items from substreams like

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

item to be estimated

tail

head

and small items from substreams like

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

tail

item to be estimated

head

1. Finding top k elements via (APPROX)POINTQUERY

2. Basic version of APPROXPOINTQUERY

3. APPROXPOINTQUERY and the COUNTSKETCH algorithm

1. Finding top k elements via (APPROX)POINTQUERY

2. Basic version of APPROXPOINTQUERY

3. APPROXPOINTQUERY and the COUNTSKETCH algorithm

APPROXPOINTQUERY and COUNTSKETCH

Main ideas:

1. run basic estimate on subsampled/hashed stream
(reduces variance)

2. aggregate independent estimates to boost confidence
(take medians)

1 2 3 4 5 6 7 8 9 10

11

APPROXPOINTQUERY and COUNTSKETCH

Main ideas:

1. run basic estimate on subsampled/hashed stream
(reduces variance)

2. aggregate independent estimates to boost confidence
(take medians)

1 2 3 4 5 6 7 8 9 10

11

APPROXPOINTQUERY and COUNTSKETCH

Main ideas:

1. run basic estimate on subsampled/hashed stream
(reduces variance)

2. aggregate independent estimates to boost confidence
(take medians)

1 2 3 4 5 6 7 8 9 10

11

Hashing the items

1 2 3 4 5 6 7 8 9 10

11

Hashed into b = 8 buckets, get 8 subsampled streams

For item i its stream consists of j ∈ [m] such that h(j)= h(i)

For example,

Ï subsampled stream of item 1 is {1, 6}

Ï subsampled stream of item 5 is {5, 7}

Hashing the items

1 2 3 4 5 6 7 8 9 10

11

Hashed into b = 8 buckets, get 8 subsampled streams

For item i its stream consists of j ∈ [m] such that h(j)= h(i)

For example,

Ï subsampled stream of item 1 is {1, 6}

Ï subsampled stream of item 5 is {5, 7}

Note: hashing the universe [m], not positions in the stream

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

E.x. the subsampled stream of item 1 is {1, 6}

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

tail

head

1

4

6 1

2 10

1

5

1 1

2 2 3 3 3 9 8 7 4 4 2 2

1

5

Note: hashing the universe [m], not positions in the stream

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

E.x. the subsampled stream of item 1 is {1, 6}

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

tail

head

1

4

6 1

2 10

1

5

1 1

2 2 3 3 3 9 8 7 4 4 2 2

1

5

Note: hashing the universe [m], not positions in the stream

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

E.x. the subsampled stream of item 5 is {5, 7}

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1

5

1 1 2 2 3 3 3 9 8

7

4 4 2 2 1

5

Note: hashing the universe [m], not positions in the stream

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

E.x. the subsampled stream of item 5 is {5, 7}

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1

5

1 1 2 2 3 3 3 9 8

7

4 4 2 2 1

5

Final ApproxPointQuery
Choose

Ï t random hash functions h1,h2, . . . ,ht from items [m] to
b ≈ k buckets {1,2, . . . ,b}

Ï t random hash functions s1,s2, . . . ,st from items [m] to
{−1,+1}

b buckets

t
ha

sh
fu

nc
tio

ns

5

← array C

The algorithm runs t independent copies of basic estimate:

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

Final ApproxPointQuery
Choose

Ï t random hash functions h1,h2, . . . ,ht from items [m] to
b ≈ k buckets {1,2, . . . ,b}

Ï t random hash functions s1,s2, . . . ,st from items [m] to
{−1,+1}

b buckets

t
ha

sh
fu

nc
tio

ns

5

← array C

The algorithm runs t independent copies of basic estimate:

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

Final ApproxPointQuery
Choose

Ï t random hash functions h1,h2, . . . ,ht from items [m] to
b ≈ k buckets {1,2, . . . ,b}

Ï t random hash functions s1,s2, . . . ,st from items [m] to
{−1,+1}

b buckets

t
ha

sh
fu

nc
tio

ns

5

← array C

The algorithm runs t independent copies of basic estimate:

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

By basic estimate analysis for every r ∈ [1 : t]

E[C[r ,hr (i)] ·sr (i)]= fi

and

Es[(C[r ,hr (i)] ·sr (i)− fi)2]= ∑
j 6=i :hr(j)=hr(i)

f 2
j

How large can the variance be? Can be be reduced by making
number of buckets b large?

YES: hashing into a sufficiently large number of buckets
reduces estimation error to below ε · fk

O(logN) repetitions ensure estimates are correct for all i with
high probability

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

By basic estimate analysis for every r ∈ [1 : t]

E[C[r ,hr (i)] ·sr (i)]= fi

and

Es[(C[r ,hr (i)] ·sr (i)− fi)2]= ∑
j 6=i :hr(j)=hr(i)

f 2
j

How large can the variance be? Can be be reduced by making
number of buckets b large?

YES: hashing into a sufficiently large number of buckets
reduces estimation error to below ε · fk

O(logN) repetitions ensure estimates are correct for all i with
high probability

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

By basic estimate analysis for every r ∈ [1 : t]

E[C[r ,hr (i)] ·sr (i)]= fi

and

Es[(C[r ,hr (i)] ·sr (i)− fi)2]= ∑
j 6=i :hr(j)=hr(i)

f 2
j

How large can the variance be? Can be be reduced by making
number of buckets b large?

YES: hashing into a sufficiently large number of buckets
reduces estimation error to below ε · fk

O(logN) repetitions ensure estimates are correct for all i with
high probability

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

By basic estimate analysis for every r ∈ [1 : t]

E[C[r ,hr (i)] ·sr (i)]= fi

and

Es[(C[r ,hr (i)] ·sr (i)− fi)2]= ∑
j 6=i :hr(j)=hr(i)

f 2
j

How large can the variance be? Can be be reduced by making
number of buckets b large?

YES: hashing into a sufficiently large number of buckets
reduces estimation error to below ε · fk

O(logN) repetitions ensure estimates are correct for all i with
high probability

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

By basic estimate analysis for every r ∈ [1 : t]

E[C[r ,hr (i)] ·sr (i)]= fi

and

Es[(C[r ,hr (i)] ·sr (i)− fi)2]= ∑
j 6=i :hr(j)=hr(i)

f 2
j

How large can the variance be? Can be be reduced by making
number of buckets b large?

YES: hashing into a sufficiently large number of buckets
reduces estimation error to below ε · fk

O(logN) repetitions ensure estimates are correct for all i with
high probability

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

Lemma
If b ≥ 8max

{
k ,

32
∑

j∈TAIL f 2
j

(εfk)2

}
and t =O(logN), then for every i ∈ [m]

|medianr
{
C[r ,hr (i)] ·sr (i)

}− fi(p)| ≤ εfk
at every point p ∈ [1 :N] in the stream.

(fi(p) is the frequency of i up to position p)

Space complexity is O(b logN)

How large is b?

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

Lemma
If b ≥ 8max

{
k ,

32
∑

j∈TAIL f 2
j

(εfk)2

}
and t =O(logN), then for every i ∈ [m]

|medianr
{
C[r ,hr (i)] ·sr (i)

}− fi(p)| ≤ εfk
at every point p ∈ [1 :N] in the stream.

(fi(p) is the frequency of i up to position p)

Space complexity is O(b logN)

How large is b?

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

Lemma
If b ≥ 8max

{
k ,

32
∑

j∈TAIL f 2
j

(εfk)2

}
and t =O(logN), then for every i ∈ [m]

|medianr
{
C[r ,hr (i)] ·sr (i)

}− fi(p)| ≤ εfk
at every point p ∈ [1 :N] in the stream.

(fi(p) is the frequency of i up to position p)

Space complexity is O(b logN)

How large is b?

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

Lemma
If b ≥ 8max

{
k ,

32
∑

j∈TAIL f 2
j

(εfk)2

}
and t =O(logN), then for every i ∈ [m]

|medianr
{
C[r ,hr (i)] ·sr (i)

}− fi(p)| ≤ εfk
at every point p ∈ [1 :N] in the stream.

(fi(p) is the frequency of i up to position p)

Space complexity is O(b logN)

How large is b?

Space complexity

Set b = 8max
{

k ,
32

∑
j∈TAIL f 2

j

(εfk)2

}
Note that b =O(k/ε2) if 1

k
∑

j∈TAIL f 2
j =O(f 2

k)

head

tail

In practice, choose b subject to space constraints, detect
elements with counts above O

(
ε
√

1
k

∑
j∈TAIL f 2

j

)

Space complexity

Set k = 1. Suppose that 1 appears
p

N times in the stream, and
other N −p

N elements are distinct

Then f1 =p
N, fi = 1 for i = 2,N −p

N.

Set b = 8max
{

1,
32

∑
j∈TAIL f 2

j

(εf1)2

}

We have
∑

j∈TAIL f 2
j =N −p

N ≤N, and f 2
1 =N

So b = 8max
{

1,
32

∑
j∈TAIL f 2

j

(εf1)2

}
=O(1/ε2) suffices

Remarkable, as 1 appears only in
p

N positions out of N: a
vanishingly small fraction of positions!

Space complexity

Set k = 1. Suppose that 1 appears
p

N times in the stream, and
other N −p

N elements are distinct

Then f1 =p
N, fi = 1 for i = 2,N −p

N.

Set b = 8max
{

1,
32

∑
j∈TAIL f 2

j

(εf1)2

}

We have
∑

j∈TAIL f 2
j =N −p

N ≤N, and f 2
1 =N

So b = 8max
{

1,
32

∑
j∈TAIL f 2

j

(εf1)2

}
=O(1/ε2) suffices

Remarkable, as 1 appears only in
p

N positions out of N: a
vanishingly small fraction of positions!

Space complexity

Set k = 1. Suppose that 1 appears
p

N times in the stream, and
other N −p

N elements are distinct

Then f1 =p
N, fi = 1 for i = 2,N −p

N.

Set b = 8max
{

1,
32

∑
j∈TAIL f 2

j

(εf1)2

}

We have
∑

j∈TAIL f 2
j =N −p

N ≤N, and f 2
1 =N

So b = 8max
{

1,
32

∑
j∈TAIL f 2

j

(εf1)2

}
=O(1/ε2) suffices

Remarkable, as 1 appears only in
p

N positions out of N: a
vanishingly small fraction of positions!

Space complexity

Set k = 1. Suppose that 1 appears
p

N times in the stream, and
other N −p

N elements are distinct

Then f1 =p
N, fi = 1 for i = 2,N −p

N.

Set b = 8max
{

1,
32

∑
j∈TAIL f 2

j

(εf1)2

}

We have
∑

j∈TAIL f 2
j =N −p

N ≤N, and f 2
1 =N

So b = 8max
{

1,
32

∑
j∈TAIL f 2

j

(εf1)2

}
=O(1/ε2) suffices

Remarkable, as 1 appears only in
p

N positions out of N: a
vanishingly small fraction of positions!

Space complexity

Set k = 1. Suppose that 1 appears
p

N times in the stream, and
other N −p

N elements are distinct

Then f1 =p
N, fi = 1 for i = 2,N −p

N.

Set b = 8max
{

1,
32

∑
j∈TAIL f 2

j

(εf1)2

}

We have
∑

j∈TAIL f 2
j =N −p

N ≤N, and f 2
1 =N

So b = 8max
{

1,
32

∑
j∈TAIL f 2

j

(εf1)2

}
=O(1/ε2) suffices

Remarkable, as 1 appears only in
p

N positions out of N: a
vanishingly small fraction of positions!

Final algorithm: COUNTSKETCH

FINDAPPROXTOP(S,k ,ε): returns set of k items such that
fi ≥ (1−ε)fk for all returned i

(In fact also every i with fi ≥ (1−ε)fk is reported)

APPROXPOINTQUERY(S, i ,ε): returns f̂i ∈ [fi −εfk , fi +εfk]

Find head items if they contribute the bulk of the stream in `2
sense

CountSketch: proof details

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

Lemma
If b ≥ 8max

{
k ,

32
∑

j∈TAIL f 2
j

(εfk)2

}
and t ≥A logN for an absolute

constant A> 0, then for every i ∈ [m]∣∣medianr
{
C[r ,hr (i)] ·sr (i)

}− fi(p)
∣∣≤ εfk

at every point p ∈ [1 :N] in the stream with high probability.

(fi(p) is the frequency of i up to position p)

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

Lemma
If b ≥ 8max

{
k ,

32
∑

j∈TAIL f 2
j

(εfk)2

}
and t ≥A logN for an absolute

constant A> 0, then for every i ∈ [m]∣∣medianr
{
C[r ,hr (i)] ·sr (i)

}− fi
∣∣≤ εfk

with high probability.

(fi is the frequency of i)

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

By basic estimate analysis for every r ∈ [1 : t]

E[C[r ,hr (i)] ·sr (i)]= fi

and

Es[(C[r ,hr (i)] ·sr (i)− fi)2]= ∑
j 6=i :hr(j)=hr(i)

f 2
j

How large can the variance be? Does it reduce by about a
factor of b?

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr(j)=hr(i)

f 2
j + ∑

j∈TAIL,j 6=i
hr(j)=hr(i)

f 2
j

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

By basic estimate analysis for every r ∈ [1 : t]

E[C[r ,hr (i)] ·sr (i)]= fi

and

Es[(C[r ,hr (i)] ·sr (i)− fi)2]= ∑
j 6=i :hr(j)=hr(i)

f 2
j

How large can the variance be? Does it reduce by about a
factor of b?

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr(j)=hr(i)

f 2
j + ∑

j∈TAIL,j 6=i
hr(j)=hr(i)

f 2
j

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

By basic estimate analysis for every r ∈ [1 : t]

E[C[r ,hr (i)] ·sr (i)]= fi

and

Es[(C[r ,hr (i)] ·sr (i)− fi)2]= ∑
j 6=i :hr(j)=hr(i)

f 2
j

How large can the variance be? Does it reduce by about a
factor of b?

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr(j)=hr(i)

f 2
j + ∑

j∈TAIL,j 6=i
hr(j)=hr(i)

f 2
j

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

By basic estimate analysis for every r ∈ [1 : t]

E[C[r ,hr (i)] ·sr (i)]= fi

and

Es[(C[r ,hr (i)] ·sr (i)− fi)2]= ∑
j 6=i :hr(j)=hr(i)

f 2
j

How large can the variance be? Does it reduce by about a
factor of b?

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr(j)=hr(i)

f 2
j + ∑

j∈TAIL,j 6=i
hr(j)=hr(i)

f 2
j

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr(j)=hr(i)

f 2
j + ∑

j∈TAIL,j 6=i
hr(j)=hr(i)

f 2
j

For each r ∈ [1 : t] and each item i ∈ [m] define three events:

Ï NO-COLLISIONSr (i) – i does not collide with any of the
head items under hashing r

Ï SMALL-VARIANCEr (i) – i does not collide with too many of
tail items under hashing r

Ï SMALL-DEVIATIONr (i) – success event from basic analysis

Show that all three events hold simultaneously with probability
strictly bigger than 1/2 – so median gives good estimate

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr(j)=hr(i)

f 2
j + ∑

j∈TAIL,j 6=i
hr(j)=hr(i)

f 2
j

For each r ∈ [1 : t] and each item i ∈ [m] define three events:

Ï NO-COLLISIONSr (i) – i does not collide with any of the
head items under hashing r

Ï SMALL-VARIANCEr (i) – i does not collide with too many of
tail items under hashing r

Ï SMALL-DEVIATIONr (i) – success event from basic analysis

Show that all three events hold simultaneously with probability
strictly bigger than 1/2 – so median gives good estimate

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr(j)=hr(i)

f 2
j + ∑

j∈TAIL,j 6=i
hr(j)=hr(i)

f 2
j

For each r ∈ [1 : t] and each item i ∈ [m] define three events:

Ï NO-COLLISIONSr (i) – i does not collide with any of the
head items under hashing r

Ï SMALL-VARIANCEr (i) – i does not collide with too many of
tail items under hashing r

Ï SMALL-DEVIATIONr (i) – success event from basic analysis

Show that all three events hold simultaneously with probability
strictly bigger than 1/2 – so median gives good estimate

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr(j)=hr(i)

f 2
j + ∑

j∈TAIL,j 6=i
hr(j)=hr(i)

f 2
j

For each r ∈ [1 : t] and each item i ∈ [m] define three events:

Ï NO-COLLISIONSr (i) – i does not collide with any of the
head items under hashing r

Ï SMALL-VARIANCEr (i) – i does not collide with too many of
tail items under hashing r

Ï SMALL-DEVIATIONr (i) – success event from basic analysis

Show that all three events hold simultaneously with probability
strictly bigger than 1/2 – so median gives good estimate

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr(j)=hr(i)

f 2
j + ∑

j∈TAIL,j 6=i
hr(j)=hr(i)

f 2
j

For each r ∈ [1 : t] and each item i ∈ [m] define three events:

Ï NO-COLLISIONSr (i) – i does not collide with any of the
head items under hashing r

Ï SMALL-VARIANCEr (i) – i does not collide with too many of
tail items under hashing r

Ï SMALL-DEVIATIONr (i) – success event from basic analysis

Show that all three events hold simultaneously with probability
strictly bigger than 1/2 – so median gives good estimate

(No) collisions with head items

NO-COLLISIONSr (i):=event that{
j ∈HEAD \ i : hr (j)= hr (i)

}=;,

i.e. that i collides with none of top k elements under hr .

For every j 6= i and every r ∈ [1 : t]

Pr[hr (i)= hr (j)]≤ 1/b

Suppose that b ≥ 8k . Then by the union bound

Pr[NO-COLLISIONSr (i)]≥ 1−k/b
≥ 1−1/8

(No) collisions with head items

NO-COLLISIONSr (i):=event that{
j ∈HEAD \ i : hr (j)= hr (i)

}=;,

i.e. that i collides with none of top k elements under hr .

For every j 6= i and every r ∈ [1 : t]

Pr[hr (i)= hr (j)]≤ 1/b

Suppose that b ≥ 8k . Then by the union bound

Pr[NO-COLLISIONSr (i)]≥ 1−k/b
≥ 1−1/8

(No) collisions with head items

NO-COLLISIONSr (i):=event that{
j ∈HEAD \ i : hr (j)= hr (i)

}=;,

i.e. that i collides with none of top k elements under hr .

For every j 6= i and every r ∈ [1 : t]

Pr[hr (i)= hr (j)]≤ 1/b

Suppose that b ≥ 8k . Then by the union bound

Pr[NO-COLLISIONSr (i)]≥ 1−k/b
≥ 1−1/8

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr(j)=hr(i)

f 2
j + ∑

j∈TAIL,j 6=i
hr(j)=hr(i)

f 2
j

For each r ∈ [1 : t] and each item i ∈ [m] define three events:

Ï NO-COLLISIONSr (i) – i does not collide with any of the
head items under hashing r

Ï SMALL-VARIANCEr (i) – i does not collide with too many of
tail items under hashing r

Ï SMALL-DEVIATIONr (i) – success event from basic analysis

Show that all three events hold simulaneously with probability
strictly bigger than 1/2 – so median gives good estimate

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr(j)=hr(i)

f 2
j + ∑

j∈TAIL,j 6=i
hr(j)=hr(i)

f 2
j

For each r ∈ [1 : t] and each item i ∈ [m] define three events:

Ï NO-COLLISIONSr (i) – i does not collide with any of the
head items under hashing r

Ï SMALL-VARIANCEr (i) – i does not collide with too many
of tail items under hashing r

Ï SMALL-DEVIATIONr (i) – success event from basic analysis

Show that all three events hold simulaneously with probability
strictly bigger than 1/2 – so median gives good estimate

Small variance from tail elements
SMALL-VARIANCEr (i):=event that

∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j ≤ 8

b
∑

j∈TAIL
f 2
j

For every i , j ∈ [m], i 6= j and r ∈ [1 : t]

Prhr [hr (i)= hr (j)]= 1/b (b is the number of buckets)

So by linearity of expectation

E

 ∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j

= ∑
j∈TAIL,j 6=i

f 2
j ·Prhr [hr (i)= hr (j)]

≤ 1
b

∑
j∈TAIL

f 2
j

Small variance from tail elements
SMALL-VARIANCEr (i):=event that

∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j ≤ 8

b
∑

j∈TAIL
f 2
j

For every i , j ∈ [m], i 6= j and r ∈ [1 : t]

Prhr [hr (i)= hr (j)]= 1/b (b is the number of buckets)

So by linearity of expectation

E

 ∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j

= ∑
j∈TAIL,j 6=i

f 2
j ·Prhr [hr (i)= hr (j)]

≤ 1
b

∑
j∈TAIL

f 2
j

Small variance from tail elements
SMALL-VARIANCEr (i):=event that

∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j ≤ 8

b
∑

j∈TAIL
f 2
j

For every i , j ∈ [m], i 6= j and r ∈ [1 : t]

Prhr [hr (i)= hr (j)]= 1/b (b is the number of buckets)

So by linearity of expectation

E

 ∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j

= ∑
j∈TAIL,j 6=i

f 2
j ·Prhr [hr (i)= hr (j)]

≤ 1
b

∑
j∈TAIL

f 2
j

Markov’s inequality

Theorem
For every non-negative random variable X
with mean µ≥ 0, and every k ≥ 1 one has

Pr[X ≥ k ·µ]≤ 1/k

We proved that

E

 ∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j

≤ 1
b

∑
j∈TAIL

f 2
j

By Markov’s inequality one has, for every i and every r ,

Pr[SMALL-VARIANCEr (i)]≥ 1−1/8

NO-COLLISIONSr(i) and SMALL-VARIANCEr(i): recap

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr (j)=hr (i)

f 2
j + ∑

j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j

Conditioned on NO-COLLISIONSr (i) and SMALL-VARIANCEr (i)

Ï first term is zero

Ï second term is at most

8
b

∑
j∈TAIL

f 2
j

NO-COLLISIONSr(i) and SMALL-VARIANCEr(i): recap

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr (j)=hr (i)

f 2
j + ∑

j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j

Conditioned on NO-COLLISIONSr (i) and SMALL-VARIANCEr (i)

Ï first term is zero

Ï second term is at most

8
b

∑
j∈TAIL

f 2
j

NO-COLLISIONSr(i) and SMALL-VARIANCEr(i): recap

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr (j)=hr (i)

f 2
j + ∑

j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j

Conditioned on NO-COLLISIONSr (i) and SMALL-VARIANCEr (i)

Ï first term is zero

Ï second term is at most

8
b

∑
j∈TAIL

f 2
j

Small deviation event

SMALL-DEVIATIONr (i)=event that

(C[r ,hr (i)] ·sr (i)− fi)
2 ≤ 8Var(C[r ,hr (i)] ·sr (i)).

By Chebyshev’s inequality one has, for every i and every r ,

Pr[SMALL-DEVIATIONr (i)]≥ 1−1/8

Small deviation event

SMALL-DEVIATIONr (i)=event that

(C[r ,hr (i)] ·sr (i)− fi)
2 ≤ 8Var(C[r ,hr (i)] ·sr (i)).

By Chebyshev’s inequality one has, for every i and every r ,

Pr[SMALL-DEVIATIONr (i)]≥ 1−1/8

Pr[SMALL-VARIANCEr (i)]≥ 1−1/8

Pr[NO-COLLISIONSr (i)]≥ 1−1/8

Pr[SMALL-DEVIATIONr (i)]≥ 1−1/8

So by the union bound

Pr[SMALL-VARIANCEr (i) and NO-COLLISIONSr (i)
and SMALL-DEVIATIONr (i)]≥ 5/8.

Let

γ :=
√√√√1

b
∑

j∈TAIL
f 2
j

For every p ∈ [1 :N] let fi(p) :=frequency of i up to position p

Lemma
If b ≥ 8k, then for every i, every r ∈ [1 : t],

123

Pr [|C[r ,hr (i)] ·sr (i)− fi | ≤ 8γ]≥ 5/8

123

Proof.
Chernoff bounds.

Let

γ :=
√√√√1

b
∑

j∈TAIL
f 2
j

For every p ∈ [1 :N] let fi(p) :=frequency of i up to position p

Lemma
If b ≥ 8k and t ≥A logN for an absolute constant A> 0, then for
every i, with probability ≥ 1−1/N4

∣∣medianr
{
C[r ,hr (i)] ·sr (i)

}− fi
∣∣≤ 8γ

at the end of the stream.

Proof.
Chernoff bounds.

Let

γ :=
√√√√1

b
∑

j∈TAIL
f 2
j

For every p ∈ [1 :N] let fi(p) :=frequency of i up to position p

Lemma
If b ≥ 8k and t ≥A logN for an absolute constant A> 0, then with
probability ≥ 1−1/N3 for every i ∈ [m]∣∣medianr

{
C[r ,hr (i)] ·sr (i)

}− fi(p)
∣∣≤ 8γ

at the end of the stream.

Proof.
Chernoff bounds.

Let

γ :=
√√√√1

b
∑

j∈TAIL
f 2
i

For every p ∈ [1 :N] let fi(p) :=frequency of i up to position p

Lemma
If b ≥ 8max

{
k ,

32
∑

j∈TAIL f 2
j

(εfk)2

}
and t ≥A logN for an absolute

constant A> 0, then with probability ≥ 1−1/N3 for every i ∈ [m]∣∣medianr
{
C[r ,hr (i)] ·sr (i)

}− fi(p)
∣∣≤ εfk

at the end of the stream.

Proof.
Substitute value of b into definition of γ:

γ=
√√√√1

b
∑

j∈TAIL
f 2
i ≤ εfk/8

Let

γ :=
√√√√1

b
∑

j∈TAIL
f 2
i

For every p ∈ [1 :N] let fi(p) :=frequency of i up to position p

Lemma
If b ≥ 8max

{
k ,

32
∑

j∈TAIL f 2
j

(εfk)2

}
and t ≥A logN for an absolute

constant A> 0, then with probability ≥ 1−1/N3 for every i ∈ [m]∣∣medianr
{
C[r ,hr (i)] ·sr (i)

}− fi(p)
∣∣≤ εfk

at the end of the stream.

Proof.
Substitute value of b into definition of γ:

γ=
√√√√1

b
∑

j∈TAIL
f 2
i ≤ εfk/8

