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Linear sketching

sketching matrix

space requirement=number of rows

Sketching algorithms for basic statistics, and then graph
sketching
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AMS sketch (Alon-Matias-Szegedy’96)

Goal: approximate
lixllz= [ ) x2
ie[n]

from a stream of increments/decrements to x;.
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Vector interpretation of a data stream
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» Initially, x=0
» Insertion of / interpreted as

Xj = Xj+1

> Want to estimate ||x|[3
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Goal: approximate
lixllz= [ 3 x?
ie[n]

from a stream of increments/decrements to x;.

Choose ry,...,m to be i.i.d. r.v., with

Priri=+1]=Pr[ri=-1]=1/2.

Maintain

n
Z= Z riXi
i=1

under increments/decrements of x.

Basic algorithm: output Z2
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Alon-Matias-Szegedy — analysis (expectation)
Want to claim that Z2 is ‘close’ to ||x||§ with ‘high probability’

Compute expectation of Z2, then bound the variance

Expectation:
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Alon-Matias-Szegedy — analysis (variance)

Want to claim that Z2 is ‘close’ to ||x||§ with ‘high probability’
Bound the variance Var[Z?] = E[Z4] - (E[Z?])??
Compute

E[Z*]=E Zf:X/ Z"/X/ kaXk Zf/X/)
j=1

i=1

Can be decomposed as follows:

> Z,f':1(r,-x,) — expectation Y7, ,

> 6Xi<(ririxiX;)? — expectation 62,-<,-xl.2x/?2

» Terms involving a single rix; — expectation zero.

In total: £, x +6 X x?x?



Alon-Matias-Szegedy — analysis (variance)
Bound the variance Var[Z?] = E[Z4] - (E[Z?])??
Computed

n
E[z4=) x* +62x,-2xj2

i=1 i<f



Alon-Matias-Szegedy — analysis (variance)
Bound the variance Var[Z?] = E[Z4] - (E[Z?])??
Computed

n
E[Z%] :;xf'+6%xi2xj?
So
Var(Z?] = E[Z*] - (E[Z?])?
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Analysis: putting it together

We showed that
> E[Z2]=IxI13
> o? =Var[Z?] < 2||x|I3

So by Chebyshev’s inequality for { =1
Pr[|Z2 -E[Z?]| = to] < 1/1?

and we get
Pr(1Z2 - |IxI5| = V2t||x15] < 1/

Not good...but can reduce variance by averaging!
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> Output A:= YK 72
Now
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Analysis: putting it together

Actual algorithm:
» Maintain Z;,...,Z, Z; :Z/’.’:1 r/f)(j

> Output A:= YK 72

Now

1& 1
-y z,?] = . Var| 22| < (2/k)IIxII3,

Var[A] = Var k& P

and by Chebyshev’s inequality
Pr[|A—||x||§| > t-(2/k)1/2||x||§] <1/2,

so setting k = O(1/¢2) and ¢ = 10 suffices for a
(1 +€)-approximation with probability =99/100 !



Space complexity

How much space do we need to store r;’s?

4-wise independence suffices, hence O(logn) space
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Some remarks
Can we reduce failure probability to 1 -7

» Use O(1/(£28)) repetitions — bad dependence on &

» Median trick: keep T = O(log(1/6)) copies of the estimator,
output the median

Let Y; =1 if t-th algorithm fails, and 0 otherwise.
We have E[Y;] <1/100, so by the Chernoff bound

.....

< Pr[at least half of A, fail,i=1,..., T]

< Pr[i Yi=T/2]
t=1

<e A7),

So setting T = O(log(1/38)) suffices.



Space complexity

Downside of the median trick: nonlinear embedding
Median trick not needed if we have enough independence

Johnson-Lindenstrauss transform (see llya’s lecture)
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Some remarks

Take (randomized) linear measurements of the input

s -—=@

sketching matrix

space requirement=number of rows

Can get (1+¢)-approximation to ||x||% with O(J log(1/8)) rows

Easy to maintain linear sketches in the (dynamic) streaming
model
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Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
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(Heavy hitters)
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Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!
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Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!
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Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!
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Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!
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Heavy hitters problem
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Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!
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Heavy hitters problem
» Single pass over the data: i, b, ..., In

Assume N is known

» Output kK most frequent items

(Heavy hitters)

» Small storage: will get O(klog N)

Much better than storing all items!
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Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!

SLE|E PPy

9 10

34632103 1312255529287



Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!
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Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!
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Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!
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Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!
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Heavy hitters problem
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Heavy hitters problem
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Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!
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Estimating IP flows through a router

destination

source

Estimate the dominant IP flows
through a router

Trivial: store all distinct 1P pairs
Space complexity: ©(N)

This lecture: solve in space O(logN)

Exponential improvement! ‘
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Estimating search statistics

Given a set of items as a stream (e.g. queries on google.com
over a period of time)

Geneva to NYC, coffee in Geneva, Geneva to NYC
Find the most frequent items in the set

Geneva to NYC, coffee in Geneva

| Trivial | This lecture
Solution hash<string> h; COUNTSKETCH
Space # of distinct items O(logN)




Heavy hitters problem

» Single pass over the data: i1, b, ..., In
Assume N is known
» Output kK most frequent items

(Heavy hitters)

» Small storage: will get O(klogN)

Much better than storing all items!
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FINDTOP(S, k): returns top kK most frequent items seen so far



Goal: design a small space data structure

FINDTOP(S, k): returns top kK most frequent items seen so far

Useful to first design

POINTQUERY(S,i): processes stream, then for any query item i
can return fi=number of times item / appeared
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(frequency of i)

Assume elements are ordered by frequency: fi=fh>...>f,
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Denote the number of times item / appears in the stream by f;
(frequency of i)

Assume elements are ordered by frequency: fi=fh>...>f,

POINTQUERY(S,/) in space O(klog N)?‘

Impossible in general...

Imagine a stream where all elements occur with about the same
frequency



FINDAPPROXTOP(S, k,¢): returns set of k items such that
fi= (1 —¢)fy for all reported /

APPROXPOINTQUERY(S, /,e): processes stream, then for any
query item i can return approximation f; € [f; —efy, f; + €fy]



FINDAPPROXTOP(S, k,¢): returns set of k items such that
fi= (1 —¢)fy for all reported i

APPROXPOINTQUERY(S,/,€): processes stream, then for any

query item /i can return approximation f € [f; — efy, f: + ef,]

In this lecture: find most frequent (head) items if they
contribute the bulk of the stream under some measure



1. Finding top k elements via (APPROX)POINTQUERY
2. Basic version of APPROXPOINTQUERY

3. APPROXPOINTQUERY and the COUNTSKETCH algorithm
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Given: stream S = (iy,...,iN)
Maintain: data structure for POINTQUERY
currMax=NULL; currFreqg=0;
Forp=1,....N
Compute frequency f — POINTQUERY (ip)

Iif currMax==ip
currFreqg=f; continue;
end if



POINTQUERY implies FINDTOP, k=1
Given: stream S = (iy,...,iN)

Maintain: data structure for POINTQUERY
currMax=NULL; currFreqg=0;
Forp=1,....N
Compute frequency f — POINTQUERY (ip)

Iif currMax==ip
currFreqg=f; continue;

end if
f currMax==NULL
currMax=ip; currFreg=1;
else
If currFreqg<f
currMax=lp; currFreqg=f;
end if
end if
end for



Why does this work?

At each point in the stream currMax is either NULL or the most
frequent element so far...



Why does this work?

At each point in the stream currMax is either NULL or the most
frequent element so far...

What about finding k most frequent elements for k> 17
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POINTQUERY implies FINDTOP

Given: stream S=(iy,...,IN)

Maintain: data structure for POINTQUERY
a heap H of at most k items, by count

Forp=1,....N
Compute frequency f — POINTQUERY (ip)
If H contains ip
update ip’s key to f; continue;
end if



POINTQUERY implies FINDTOP

Given: stream S=(iy,...,IN)
Maintain: data structure for POINTQUERY
a heap H of at most k items, by count
Forp=1,....N
Compute frequency f — POINTQUERY (ip)

If H contains ip
update ip’s key to f; continue;
end if

If H contains < k elements,
add <f,ip>to H

else
< Fmin, imin ><— element in H with smallest key
If fmin <f, insert <f,ip > and evict < fyipn, imin >
end if
end for



Why does this work?

(Assume the set of top k items is unique for simplicity)

For every item i in top k let p; denote the last position where |
occurs



Why does this work?

(Assume the set of top k items is unique for simplicity)

For every item i in top k let p; denote the last position where |
occurs

Note that

1. at position p; element i is inserted into heap H if it was not
in H at that time

2. element i is never evicted after p;



POINTQUERY implies FINDTOP

Given: stream S=(iy,...,IN)
Maintain: data structure for POINTQUERY
a heap H of at most k items, by count
Forp=1,....N
Compute frequency f — POINTQUERY (ip)

If H contains ip
update ip’s key to f; continue;
end if

If H contains < k elements,
add <f,ip>to H

else
< Fminy imin ><— element in H with smallest key
If fmin <f, insert < f,ip > and evict < fiyipn, imin >
end if
end for



Why is this useful? We know that POINTQUERY requires
essentially storing the entire stream...



Why is this useful? We know that POINTQUERY requires
essentially storing the entire stream...

A similar reduction shows that APPROXPOINTQUERY implies
FINDAPPROXTOP!



APPROXPOINTQUERY implies FINDAPPROXTOP

Given: stream S=(iy,...,IN)
Maintain: data structure for APPROXPOINTQUERY
a heap H of at most k items, by count
Forp=1,....N R
Compute frequency f — APPROXPOINTQUERY (ip)
If H contains ip
update i’s key to 7; continue;
end if
If H contains < k elements,
add <f,ip>to H
else
< Fmin, imin > < element in H with smallest key

If frin <7, insert <f,ip> and evict < fin, imin >
end if
end for



FINDAPPROXTOP(S, k,€): returns set S of k items such that
fi=(1-¢)fy forallie S

APPROXPOINTQUERY(S,i,e): returns f; € [f; —efe, f: + efy]



In what follows: APPROXPOINTQUERY in small space

Observe a stream of updates, maintain small space data
structure

Task: after observing the stream, given i€ {1,2,...,m}, compute
estimate f; of f;



In what follows: APPROXPOINTQUERY in small space

Observe a stream of updates, maintain small space data
structure

Task: after observing the stream, given i€ {1,2,...,m}, compute
estimate f; of f;
To be specified:

» space complexity?

» quality of approximation?

» success probability?
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HI_I [1 [1 []
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Assume elements are ordered by frequency: f1=fHh>...>fp

ﬂI_II_IHI_I []
1 2 3 4 5 6

1461210151522 3



Assume elements are ordered by frequency: f1=fHh>...>fp

in.0- -
1 2 3 4 5 6
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Assume elements are ordered by frequency: f1=fHh>...>fp

ﬂﬂI_IHI_I []
1 2 3 4 5 6

7 8 9 10

1461210151522 333



Assume elements are ordered by frequency: f1=fHh>...>fp

ﬂﬂI_IHI_I [1[]
1 2 3 4 5 6

7 8 9 10

146121015152 23339



Assume elements are ordered by frequency: f1=fHh>...>fp

1HoAC

146121015152 2333938

(1117
7 8 9 10



Assume elements are ordered by frequency: f{ = >...>

Hﬂﬁﬂﬂﬂﬂﬂﬂﬂ
2 3 4 5 6 7 8 9

1 10

146121015152 2333987



Assume elements are ordered by frequency: f{ = >...>

HHAAGoon:
1 2 3 4 5 6 7 8 9

10

1461210151522 333987174



Assume elements are ordered by frequency: f{ = >...>

ﬂﬁﬂﬂﬂﬂﬂﬂﬂ
1 2 3 4 5 6 7 8 9

10

1461210151522 33398744314
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Assume elements are ordered by frequency: f1=fHh>...>fp

ﬂHHI_II_II_II_II_I
1 2 3 4 5 6 7 8 9 10

1461210151522 3339874422



Assume elements are ordered by frequency: f1=fHh>...>fp

ﬂHHI_II_II_II_II_I
1 2 3 4 5 6 7 8 9 10

146121015152233398744221



Assume elements are ordered by frequency: f1=fHh>...>fp

ﬂHHI_II_II_II_II_I
1 2 3 4 5 6 7 8 9 10

1461210151122 333987442215



Assume elements are ordered by frequency: f1=fHh>...>fp

head

N

ﬂﬂHI_II_II_II_II_I
1 2 3 4 5 6 7 8 9 10

1461210151 122333987442215



Assume elements are ordered by frequency: f1=fHh>...>fp

head

1461210151122 333987442215
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Basic estimate

Will design a basic estimate with O(1) space complexity,
analyze precision

Choose a hash function s: [m] — {-1,+1} uniformly at random

INITIALIZE

UPDATE(C, i)
C—0

C—C+s(i)

for every p=1,...,N (every element in the stream)
UPDATE(C, ip)

end for

ESTIMATE(C, i)
return C-s(/)

’ How does one argue that a randomized estimate works?
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UPDATE(C, i) ESTIMATE(C, i)
C—C+s(i) return C-s(/)

’ How does one argue that a randomized estimate works?

Want to show that C- s(/) is close to f; ‘with high probability’

Typically show this in two steps:

» show that Es[C-s(/)] =f;

(so C-s(i) is an unbiased estimate of f;)

» show that Vars[C - s(/)] is ‘small’

It then follows that |C- s(i) — f;| is ‘small’ with high probability
(essentially law of large numbers)
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N
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p=1 /E[m]
=fis(i)*+ ), fi-s(j)s
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=fi+ Y fi-s(j)s(i) — random +1’s

Je[m]\i
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Basic estimate:mean

UPDATE(C, i) ESTIMATE(C, i)
C—C+s(i) return C-s(/)

E[C-s()]=fi+E[ Y fi-s(j)s(i)]

jelmi
=fi+ Y fi-E[s(j)]E[s(/)] (by independence of s(/))
jelmi
=1i

The mean is correct: our estimator is unbiased! |

Is the estimate C- s(/) close to f; with high probability?



Chebyshev’s inequality

Theorem
For every random variable X with mean p
and variance o2, and every t=1 one has

Pr[ X —ul=t-o]<1/?
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Chebyshev’s inequality

Theorem
For every random variable X with mean p
and variance o2, and every t=1 one has

Pr[ X —ul=t-o]<1/?

Apply Chebyshev’s inequality with X = C- s(/) and
u=E[C-s()]?

A quantitative form of the ‘law of large numbers’

Need to compute the variance o2 = E[(C- s(i) - u)?]



Basic estimate: variance

UPDATE(C, i) ESTIMATE(C, i)
C—C+s(i) return C-s(/)
We have

C-s(iy="fi+ Y f-s(j)s(i)

je[m\i

and

E[C-s())] = 1.



Basic estimate: variance

UPDATE(C, i) ESTIMATE(C, i)
C—C+s(i) return C-s(/)
We have

C-s(iy="fi+ Y f-s(j)s(i)

je[m\i
and
E[C-s(i)] = .
We need to bound
Var(C-s(i)) = E[(C-s(i) - E[C-s(I)])?]
=E[(C-s(i)-£)?]

( )3 ﬁ-so')s(i))z]

=E
je[m\i




Basic estimate: variance

UPDATE(C, i) ESTIMATE(C, i)
C—C+s(i) return C-s(/)

2
(C-s(i) (Z fi-s(f) s(/)
j

je[m)\i

= Y X fity-s()s(i)-s*(i)

je[m\ijre[m\i

ZZ” ("

]E[m]\I]€



Basic estimate: variance

UPDATE(C, i) ESTIMATE(C, i)
C—C+s(i) return C-s(/)

E[(C-s()-f)*]=E[ 3. X fify-s(j)s(i")]

jelm\ij'e[m)\i

= 2 X ff-Els()s()]

je[m)\ije[m\i
=y 2
je[m)\i

since
» 5(j)2=1forallj

> E[s())s(/)] = E[s(/)]E[s(/)] =0 for j#]'.
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UPDATE(C, i) ESTIMATE(C, i)
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We have proved that
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By Chebyshev’s inequality
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Basic estimate: variance

UPDATE(C, i) ESTIMATE(C, i)
C—C+s(i) return C-s(/)

We have proved that
Var(C-s(i)) =E[(C-s(i)-f)?]= ) f?
j(—:[m]\l

By Chebyshev’s inequality

Pr

IC-s(i)-f1>8- | ¥ ff] <1/64

je[m)\i

So C-s(i) is close (?) to f; with high probability |




Basic estimate: summary
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Estimate f; up to
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Basic estimate: summary

UPDATE(C, i) ESTIMATE(C, i)
C— C+s(i) return C-s(/)

Estimate f; up to
2
N
je[mN\i

item to be estimated

1] HI—I []
2 3 5 6 7 8 9 10

1 4

Pro: works well for most frequent item, if other items are small

Con: estimate for a small items contaminated by large items



Next: final APPROXPOINTQUERY and the
COUNTSKETCH algorithm

COUNTSKETCH algorithm: find top k elements (approximately)

» hash items into O(k) buckets (i.e. substreams)
» run simple estimate on every bucket

» repeat O(log N) times independently, take median as
answer



Main intuition: estimate large items from substreams like

item to be estimated

/

1]
2 3

HI—I []
1 4 5 6



Main intuition: estimate large items from substreams like

item to be estimated

/

1]
2 3

1

HI—I []
4 5 6

7 8 9 10

and small items from substreams like

item to be estimated

(111 HFI []
2 3 5 6 7 8 9 10

1 4
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Main ideas:

1. run basic estimate on subsampled/hashed stream
(reduces variance)

2. aggregate independent estimates to boost confidence
(take medians)
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Hashing the items

12345678910

— <

Hashed into b =8 buckets, get 8 subsampled streams
For item i its stream consists of j € [m] such that h(j) = h(/)

For example,
» subsampled stream of item 1is {1, 6}

» subsampled stream of item 5is {5, 7}



Note: hashing the universe [m], not positions in the stream
head

E /tail
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Note: hashing the universe [m], not positions in the stream
head

E /ail

AMnNnn

7 910

1 2 4

1461210151 122333987442215
E.x. the subsampled stream of item 1is {1, 6}

head

\\’ k//}a“
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Note: hashing the universe [m], not positions in the stream
head

E /tail

AMnNnn

7 910

1 2 4

1461210151122 333987442215



Note: hashing the universe [m], not positions in the stream
head

E /tan

AMnNnn

7 9 10

1 2 4

1461210151 122333987442215
E.x. the subsampled stream of item 5is {5, 7}
head
/il
H

0O
123456 728 910




Final ApproxPointQuery

Choose
» t random hash functions hy, h, ..., h; from items [m] to
b= k buckets {1,2,..., b}

» t random hash functions s, sy, ...,s; from items [m] to

b buckets

— array C

t hash functions
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Final ApproxPointQuery

Choose
» t random hash functions hy, h, ..., h; from items [m] to
b= k buckets {1,2,..., b}

» t random hash functions s, sy, ...,s; from items [m] to

b buckets

/75
i«

4 — array C

t hash functions
\

The algorithm runs t independent copies of basic estimate:

UPDATE(C, i) ESTIMATE(C, i)

for rC€[r[,1h:r€]i)]<—C[r,hr(i)]+sr(i) return median, {C[r, h(i)] - sr(i)}

end for
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end for

ESTIMATE(C, i)
return median,{C[r, h(i)]- sr(i)}

By basic estimate analysis for every re[1:{]

E[C[r, hr(D)]-sr(D)] = fi
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YES: hashing into a sufficiently large number of buckets
reduces estimation error to below ¢ - fy



UPDATE(C, i)
for re(1:1

Clr, hr()] < C[r, hr(D)] + sr(i)
end for

ESTIMATE(C, i)
return median,{C[r, h(i)]- sr(i)}

By basic estimate analysis for every re[1:{]
E[C[r, hr()]-sr(1)] =i
and

Es[(Clr.he(D]-s:()-f)F]= Y,
j#ihe(j)=h (i)

How large can the variance be? Can be be reduced by making
number of buckets b large?

YES: hashing into a sufficiently large number of buckets
reduces estimation error to below ¢ - fy

O(log N) repetitions ensure estimates are correct for all / with
high probability



UPDATE(C, i)
for re(1:1

Clr, hr()] < C[r, hr(D)] + sr(i)
end for

ESTIMATE(C, i)
return median,{C[r, h(i)]- sr(i)}



UPDATE(C, i) ESTIMATE(C, i)

for re[1:1 : N
Clr, he ()] = C[r, he(i)] + s (i) return median,{C[r, h(i)]- (i)}
end for
Lemma . .
itb= 8max{k, —(Zgj;k?zmj } andt= O(logN), then for every i € [m]

|median, {C[r, hy(i)] - s, (i)} — fi(p)| < ef
at every point pe [1: N] in the stream.

(fi(p) is the frequency of i up to position p)
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UPDATE(C, i) ESTIMATE(C, i)

for re[1:1 : N
Clr, he ()] = C[r, he(i)] + s (i) return median,{C[r, h(i)]- (i)}
end for
Lemma . .
itb= 8max{k, —(Zgj;k?zmj } andt= O(logN), then for every i € [m]

|median, {C[r, hy(i)] - s, (i)} — fi(p)| < ef
at every point pe [1: N] in the stream.

(fi(p) is the frequency of i up to position p)

Space complexity is O(blogN)

How large is b?‘




Space complexity

325 12
Setb:8max{k, Zjera }

(ef)?

Note that b= O(k/€2) if %Zj(—:TAIL 73.2 = O(fE)

head —

tail

In practice, choose b subject to space constraints, detect

elements with counts above O(s, /%Zje TAIL flz)
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Space complexity

Set k = 1. Suppose that 1 appears /N times in the stream, and
other N - VN elements are distinct

Then fy =vN, fi=1fori=2,N-vN.

325y 12
Setb:8max{1,%}

We have Yjeran f?=N-vVN=N,and ff =N

= O(1/¢?) suffices

So b=8max { 1, 25 f? }

(ef1)?

Remarkable, as 1 appears only in V'N positions out of N: a
vanishingly small fraction of positions!



Final algorithm: COUNTSKETCH

FINDAPPROXTOP(S, k,€): returns set of k items such that
fi= (1 —¢)fy for all returned i

(In fact also every i with f; = (1 —¢)fy is reported)

APPROXPOINTQUERY(S, i,€): returns f € [f; — efy, f; + efy]

Find head items if they contribute the bulk of the stream in £5
sense



CountSketch: proof details



UPDATE(C, i)
forre[1:1

Clr, hr(i)] < C[r, hr(i)] + s, (i)
end for

ESTIMATE(C, i)
return median, {C[r, h.(i)] - sr(i)}

Lemma ,
If b= 8max {k Brjeme;
b (efy)?

constant A> 0, then for every i € [m]

} and t = Alog N for an absolute

|median, {Cl[r, hr(i)] - sr(i)} - fi(p)| < efy
at every point pe [1: N] in the stream with high probability.

(fi(p) is the frequency of i up to position p)



UPDATE(C, i)
forre[1:1]

C[r, hr()] < C[r, hr(D)] + sr(i)
end for

ESTIMATE(C, i)
return median,{C[r, h(i)]- sr(i)}

Lemma

Ifb= 8max{k %} and t= AlogN for an absolute

constant A> 0, then for every i € [m]
|median; {C[r, hr(i)]- s, (i)} — f;] = ef
with high probability.

(fi is the frequency of i)
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UPDATE(C, i)
for re(1:1

Clr, hr()] < C[r, hr(D)] + sr(i)
end for

ESTIMATE(C, i)
return median,{C[r, h(i)]- sr(i)}

By basic estimate analysis for every re[1:{]
E[C[r, hr(D)]-sr(1)] = fi
and

Es[(Clr.he(D]-s:()-f)F]= Y,
j?ﬁiihr(i):hr(i)
How large can the variance be? Does it reduce by about a
factor of b?

Consider contribution of head and tail items separately:
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» SMALL-DEVIATION,(/) — success event from basic analysis



Consider contribution of head and tail items separately:

2 _ 2 2

VDN I VR P D
Jj#i:he(j)=h.(i) JEHEAD, j#i JETAIL,j#i
he(j)=h (i) he(1)=he (i)

For each re[1:t] and each item i € [m] define three events:

» NO-COLLISIONS,(f) — i does not collide with any of the
head items under hashing r

» SMALL-VARIANCE, (/) — i does not collide with too many of
tail items under hashing r

» SMALL-DEVIATION,(/) — success event from basic analysis

Show that all three events hold simultaneously with probability
strictly bigger than 1/2 — so median gives good estimate
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i.e. that i collides with none of top k elements under h;.
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(No) collisions with head items

NO-COLLISIONS,(/):=event that
{je HEAD\i: he(j)=he ()} = o,
i.e. that i collides with none of top k elements under h;.
For every j#iand every re[1:{
Pr[h.(i)=hr(j)]<1/b
Suppose that b= 8k. Then by the union bound

Pr[NO-COLLISIONS,(/)]=1—-k/b
>1-1/8



Consider contribution of head and tail items separately:

2 _ 2 2

VDN I VR P D
Jj#i:he(j)=h.(i) JEHEAD, j#i JETAIL,j#i
he(j)=h (i) he(1)=he (i)

For each re[1:t] and each item i € [m] define three events:

» NO-COLLISIONS,(f) — i does not collide with any of the
head items under hashing r

» SMALL-VARIANCE, (/) — i does not collide with too many of
tail items under hashing r

» SMALL-DEVIATION,(/) — success event from basic analysis

Show that all three events hold simulaneously with probability
strictly bigger than 1/2 — so median gives good estimate



Consider contribution of head and tail items separately:
2 _ 2 2
D SRR NP VR D D
JZi:h(j)=h (i) JEHEAD, j#i JETAIL,j#i
he (i) =he (i) hy (1)=h (i)

For each re[1:t] and each item i € [m] define three events:

» NO-COLLISIONS,(f) — i does not collide with any of the
head items under hashing r

» SMALL-VARIANCE,(/) — i does not collide with too many
of tail items under hashing r

» SMALL-DEVIATION,(/) — success event from basic analysis

Show that all three events hold simulaneously with probability
strictly bigger than 1/2 — so median gives good estimate



Small variance from tail elements
SMALL-VARIANCE,(/):=event that
8
2 2
) =g X f
JETAIL,j#i JeTAIL
he())=hr (i)



Small variance from tail elements
SMALL-VARIANCE,(/):=event that
8
2 2
) =g X f
JETAIL,j#i JeTAIL
he(7)=h: (i)
Forevery i,je[m],i#jand re[1:{]

Prp. [hr(i)=h(j)] =1/b (bis the number of buckets)



Small variance from tail elements
SMALL-VARIANCE,(/):=event that

8

2 2
> =% 2
je TAIL j#i jeTAIL

hr(j)=hr (i)

Forevery i,je[m],i#jand re[1:{]
Prp. [hr(i)=h(j)] =1/b (bis the number of buckets)

So by linearity of expectation

E Z fj2 = Z 7;'2 -Prp[he () = hr(j)]
JeTAIL,j#i JeTAIL,j#i
hr(j)=hr (1)

1 2
2

S —
b T



Markov’s inequality

Theorem
For every non-negative random variable X
with mean p =0, and every k =1 one has

PriX=k-p]<1/k




We proved that

1

2 2

El > fl=g5 2 f
JeTAIL j#i JeTAIL
he())=he(7)

By Markov’s inequality one has, for every i and every r,

Pr[SMALL-VARIANCE,(i/)]=1-1/8



NO-COLLISIONS,(/) and SMALL-VARIANCE,(/): recap

Consider contribution of head and tail items separately:

2 _ 2 2

P SN NP SRS P D
JZi:he (j)=hr (i) JeHEAD, j#i JeTAIL,j#i
hr(7)=h (i) he(7)=hr (i)

Conditioned on NO-COLLISIONS,(i) and SMALL-VARIANCE (/)



NO-COLLISIONS,(/) and SMALL-VARIANCE,(/): recap

Consider contribution of head and tail items separately:

2 _ 2 2

P SN NP SRS P D
JZi:he (j)=hr (i) JeHEAD, j#i JeTAIL,j#i
hr(7)=h (i) he(7)=hr (i)

Conditioned on NO-COLLISIONS,(i) and SMALL-VARIANCE (/)

» first term is zero



NO-COLLISIONS,(/) and SMALL-VARIANCE,(/): recap

Consider contribution of head and tail items separately:

2 _ 2 2

P SN NP SRS P D
JZi:he (j)=hr (i) JeHEAD, j#i JeTAIL,j#i
hr(7)=h (i) he(7)=hr (i)

Conditioned on NO-COLLISIONS, (i) and SMALL-VARIANCE (/)

» first term is zero

» second term is at most

(0]

2
r

jeTAIL

ol



Small deviation event

SMALL-DEVIATION,(/)=event that

(C[r, he(D)]- (i) - £)? < 8Var(Clr, hy(1)] - s+ (i)).



Small deviation event

SMALL-DEVIATION,(/)=event that

(C[r, he(D)]- (i) - £)? < 8Var(Clr, hy(1)] - s+ (i)).

By Chebyshev’s inequality one has, for every i and every r,

Pr[SMALL-DEVIATION/(/)]=1-1/8



Pr[SMALL-VARIANCE,(/)]=1-1/8

Pr[NO-COLLISIONS,(/)]=1-1/8

Pr[SMALL-DEVIATION/(/)]=1-1/8
So by the union bound

Pr[SMALL-VARIANCE,(i) and NO-COLLISIONS,(/)
and SMALL-DEVIATION,(i)] = 5/8.



Let
1

— | 2
Y=z 2

jeTAIL

o

For every pe[1: N] let fi(p) :=frequency of i up to position p

Lemma
If b= 8k, then for every i, every re[1:1],

Pr(IC[r, hr(1)]-sr(i) - il <8Y] =5/8



Let
1

— | 2
Y=z 2

jeTAIL

o

For every pe[1: N] let fi(p) :=frequency of i up to position p

Lemma
Ifb=8k and t = Alog N for an absolute constant A> 0, then for
every i, with probability =1 -1 /N*

|median, {Cl[r, hy(i)]- s:(i)} - fi| =8y

at the end of the stream.

Proof.
Chernoff bounds. O



Let
1

— | 2
Y=z 2

jeTAIL

o

For every pe[1: N] let fi(p) :=frequency of i up to position p

Lemma
Ifb=8k and t= AlogN for an absolute constant A> 0, then with
probability =1 —1/N° for every i € [m]

|median, {CI[r, hy(i)]- s:(i)} - fi(p)| = 8y

at the end of the stream.

Proof.
Chernoff bounds. O



Let

1
vi=\|5 2 f
jeTAIL

For every pe[1: N] let fi(p) :=frequency of i up to position p

Lemma ,
If b=8max {k BeXjemaly
P (efy)?

constant A> 0, then with probability =1 —1/N? for every i € [m]

} and t = Alog N for an absolute

|median, {Cl[r, hr(i)] - sr(i)} - fi(p)| < efy

at the end of the stream.



Let

1
vi=\|5 2 f
jeTAIL

For every pe[1: N] let fi(p) :=frequency of i up to position p

Lemma ,
If b=8max {k BeXjemaly
P (efy)?

constant A> 0, then with probability =1 —1/N? for every i € [m]

} and t = Alog N for an absolute

|median, {Cl[r, hr(i)] - sr(i)} - fi(p)| < efy

at the end of the stream.

Proof.
Substitute value of b into definition of y:

]
Y=\|5 L fPsch/8
jeTAIL



