
Lecture 3: CountSketch, Graph sketching, `0

Samplers

Michael Kapralov

EPFL

May 26, 2017



Ï CountSketch (recap and proofs)

Ï Graph streaming

Ï Connectivity via sketching

Ï Designing `0 samplers



Ï CountSketch (recap and proofs)

Ï Graph streaming

Ï Connectivity via sketching

Ï Designing `0 samplers



Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1



Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3

4 6 1 2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5



Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4

6 3 2 10 3 1 3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1



Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6

3 2 10 3 1 3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1



Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3

2 10 3 1 3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1



Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2

10 3 1 3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1



Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10

3 1 3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1



Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3

1 3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1



Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1

3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1



Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3

1 2 2 5 5 5 9 8 7 4 4 2 2 3 1



Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1

2 2 5 5 5 9 8 7 4 4 2 2 3 1



Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2

2 5 5 5 9 8 7 4 4 2 2 3 3



Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2

5 5 5 9 8 7 4 4 2 2 3 1



Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5

5 5 9 8 7 4 4 2 2 3 1



Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5

5 9 8 7 4 4 2 2 3 1



Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5

9 8 7 4 4 2 2 3 1



Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9

8 7 4 4 2 2 3 1



Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8

7 4 4 2 2 3 1



Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7

4 4 2 2 3 1



Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7 4

4 2 2 3 1



Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7 4 4

2 2 3 1



Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7 4 4 2

2 3 1



Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7 4 4 2 2

3 1



Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7 4 4 2 2 3

1



Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7 4 4 2 2 3 3



Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7 4 4 2 2 3 3



Main primitive: APPROXPOINTQUERY in small space

Observe a stream of updates, maintain small space data
structure

Task: after observing the stream, given i ∈ {1,2, . . . ,m}, compute
estimate f̂i of fi

To be specified:

Ï space complexity?

Ï quality of approximation?

Ï success probability?



Main primitive: APPROXPOINTQUERY in small space

Observe a stream of updates, maintain small space data
structure

Task: after observing the stream, given i ∈ {1,2, . . . ,m}, compute
estimate f̂i of fi

To be specified:

Ï space complexity?

Ï quality of approximation?

Ï success probability?



ApproxPointQuery
Choose

Ï t random hash functions h1,h2, . . . ,ht from items [m] to
b ≈ k buckets {1,2, . . . ,b}

Ï t random hash functions s1,s2, . . . ,st from items [m] to
{−1,+1}

b buckets

t
ha

sh
fu

nc
tio

ns

5

← array C

The algorithm runs t independent copies of basic estimate:

UPDATE(C, i)
for r ∈ [1 : t ]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}



ApproxPointQuery
Choose

Ï t random hash functions h1,h2, . . . ,ht from items [m] to
b ≈ k buckets {1,2, . . . ,b}

Ï t random hash functions s1,s2, . . . ,st from items [m] to
{−1,+1}

b buckets

t
ha

sh
fu

nc
tio

ns

5

← array C

The algorithm runs t independent copies of basic estimate:

UPDATE(C, i)
for r ∈ [1 : t ]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}



ApproxPointQuery
Choose

Ï t random hash functions h1,h2, . . . ,ht from items [m] to
b ≈ k buckets {1,2, . . . ,b}

Ï t random hash functions s1,s2, . . . ,st from items [m] to
{−1,+1}

b buckets

t
ha

sh
fu

nc
tio

ns

5

← array C

The algorithm runs t independent copies of basic estimate:

UPDATE(C, i)
for r ∈ [1 : t ]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}



UPDATE(C, i)
for r ∈ [1 : t ]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

By basic estimate analysis for every r ∈ [1 : t ]

E[C[r ,hr (i)] ·sr (i)]= fi

and

Es[(C[r ,hr (i)] ·sr (i)− fi)2]= ∑
j 6=i :hr(j)=hr(i)

f 2
j

How large can the variance be? Can be be reduced by making
number of buckets b large?

YES: hashing into a sufficiently large number of buckets
reduces estimation error to below ε · fk

O(logN) repetitions ensure estimates are correct for all i with
high probability



UPDATE(C, i)
for r ∈ [1 : t ]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

By basic estimate analysis for every r ∈ [1 : t ]

E[C[r ,hr (i)] ·sr (i)]= fi

and

Es[(C[r ,hr (i)] ·sr (i)− fi)2]= ∑
j 6=i :hr(j)=hr(i)

f 2
j

How large can the variance be? Can be be reduced by making
number of buckets b large?

YES: hashing into a sufficiently large number of buckets
reduces estimation error to below ε · fk

O(logN) repetitions ensure estimates are correct for all i with
high probability



UPDATE(C, i)
for r ∈ [1 : t ]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

By basic estimate analysis for every r ∈ [1 : t ]

E[C[r ,hr (i)] ·sr (i)]= fi

and

Es[(C[r ,hr (i)] ·sr (i)− fi)2]= ∑
j 6=i :hr(j)=hr(i)

f 2
j

How large can the variance be? Can be be reduced by making
number of buckets b large?

YES: hashing into a sufficiently large number of buckets
reduces estimation error to below ε · fk

O(logN) repetitions ensure estimates are correct for all i with
high probability



UPDATE(C, i)
for r ∈ [1 : t ]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

By basic estimate analysis for every r ∈ [1 : t ]

E[C[r ,hr (i)] ·sr (i)]= fi

and

Es[(C[r ,hr (i)] ·sr (i)− fi)2]= ∑
j 6=i :hr(j)=hr(i)

f 2
j

How large can the variance be? Can be be reduced by making
number of buckets b large?

YES: hashing into a sufficiently large number of buckets
reduces estimation error to below ε · fk

O(logN) repetitions ensure estimates are correct for all i with
high probability



UPDATE(C, i)
for r ∈ [1 : t ]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

By basic estimate analysis for every r ∈ [1 : t ]

E[C[r ,hr (i)] ·sr (i)]= fi

and

Es[(C[r ,hr (i)] ·sr (i)− fi)2]= ∑
j 6=i :hr(j)=hr(i)

f 2
j

How large can the variance be? Can be be reduced by making
number of buckets b large?

YES: hashing into a sufficiently large number of buckets
reduces estimation error to below ε · fk

O(logN) repetitions ensure estimates are correct for all i with
high probability



UPDATE(C, i)
for r ∈ [1 : t ]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

Lemma
If b ≥ 8max

{
k ,

32
∑

j∈TAIL f 2
j

(εfk )2

}
and t =O(logN), then for every i ∈ [m]

|medianr
{
C[r ,hr (i)] ·sr (i)

}− fi(p)| ≤ εfk
at every point p ∈ [1 :N] in the stream.

(fi(p) is the frequency of i up to position p)

Space complexity is O(b logN)

How large is b?



UPDATE(C, i)
for r ∈ [1 : t ]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

Lemma
If b ≥ 8max

{
k ,

32
∑

j∈TAIL f 2
j

(εfk )2

}
and t =O(logN), then for every i ∈ [m]

|medianr
{
C[r ,hr (i)] ·sr (i)

}− fi(p)| ≤ εfk
at every point p ∈ [1 :N] in the stream.

(fi(p) is the frequency of i up to position p)

Space complexity is O(b logN)

How large is b?



UPDATE(C, i)
for r ∈ [1 : t ]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

Lemma
If b ≥ 8max

{
k ,

32
∑

j∈TAIL f 2
j

(εfk )2

}
and t =O(logN), then for every i ∈ [m]

|medianr
{
C[r ,hr (i)] ·sr (i)

}− fi(p)| ≤ εfk
at every point p ∈ [1 :N] in the stream.

(fi(p) is the frequency of i up to position p)

Space complexity is O(b logN)

How large is b?



UPDATE(C, i)
for r ∈ [1 : t ]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

Lemma
If b ≥ 8max

{
k ,

32
∑

j∈TAIL f 2
j

(εfk )2

}
and t =O(logN), then for every i ∈ [m]

|medianr
{
C[r ,hr (i)] ·sr (i)

}− fi(p)| ≤ εfk
at every point p ∈ [1 :N] in the stream.

(fi(p) is the frequency of i up to position p)

Space complexity is O(b logN)

How large is b?



Space complexity

Set b = 8max
{

k ,
32

∑
j∈TAIL f 2

j

(εfk )2

}
Note that b =O(k/ε2) if 1

k
∑

j∈TAIL f 2
j =O(f 2

k )

head

tail

In practice, choose b subject to space constraints, detect
elements with counts above O

(
ε
√

1
k

∑
j∈TAIL f 2

j

)



Space complexity

Set k = 1. Suppose that 1 appears
p

N times in the stream, and
other N −p

N elements are distinct

Then f1 =p
N, fi = 1 for i = 2,N −p

N.

Set b = 8max
{

1,
32

∑
j∈TAIL f 2

j

(εf1)2

}

We have
∑

j∈TAIL f 2
j =N −p

N ≤N, and f 2
1 =N

So b = 8max
{

1,
32

∑
j∈TAIL f 2

j

(εf1)2

}
=O(1/ε2) suffices

Remarkable, as 1 appears only in
p

N positions out of N: a
vanishingly small fraction of positions!



Space complexity

Set k = 1. Suppose that 1 appears
p

N times in the stream, and
other N −p

N elements are distinct

Then f1 =p
N, fi = 1 for i = 2,N −p

N.

Set b = 8max
{

1,
32

∑
j∈TAIL f 2

j

(εf1)2

}

We have
∑

j∈TAIL f 2
j =N −p

N ≤N, and f 2
1 =N

So b = 8max
{

1,
32

∑
j∈TAIL f 2

j

(εf1)2

}
=O(1/ε2) suffices

Remarkable, as 1 appears only in
p

N positions out of N: a
vanishingly small fraction of positions!



Space complexity

Set k = 1. Suppose that 1 appears
p

N times in the stream, and
other N −p

N elements are distinct

Then f1 =p
N, fi = 1 for i = 2,N −p

N.

Set b = 8max
{

1,
32

∑
j∈TAIL f 2

j

(εf1)2

}

We have
∑

j∈TAIL f 2
j =N −p

N ≤N, and f 2
1 =N

So b = 8max
{

1,
32

∑
j∈TAIL f 2

j

(εf1)2

}
=O(1/ε2) suffices

Remarkable, as 1 appears only in
p

N positions out of N: a
vanishingly small fraction of positions!



Space complexity

Set k = 1. Suppose that 1 appears
p

N times in the stream, and
other N −p

N elements are distinct

Then f1 =p
N, fi = 1 for i = 2,N −p

N.

Set b = 8max
{

1,
32

∑
j∈TAIL f 2

j

(εf1)2

}

We have
∑

j∈TAIL f 2
j =N −p

N ≤N, and f 2
1 =N

So b = 8max
{

1,
32

∑
j∈TAIL f 2

j

(εf1)2

}
=O(1/ε2) suffices

Remarkable, as 1 appears only in
p

N positions out of N: a
vanishingly small fraction of positions!



Space complexity

Set k = 1. Suppose that 1 appears
p

N times in the stream, and
other N −p

N elements are distinct

Then f1 =p
N, fi = 1 for i = 2,N −p

N.

Set b = 8max
{

1,
32

∑
j∈TAIL f 2

j

(εf1)2

}

We have
∑

j∈TAIL f 2
j =N −p

N ≤N, and f 2
1 =N

So b = 8max
{

1,
32

∑
j∈TAIL f 2

j

(εf1)2

}
=O(1/ε2) suffices

Remarkable, as 1 appears only in
p

N positions out of N: a
vanishingly small fraction of positions!



Final algorithm: COUNTSKETCH

FINDAPPROXTOP(S,k ,ε): returns set of k items such that
fi ≥ (1−ε)fk for all returned i

(In fact also every i with fi ≥ (1−ε)fk is reported)

APPROXPOINTQUERY(S, i ,ε): returns f̂i ∈ [fi −εfk , fi +εfk ]

Find head items if they contribute the bulk of the stream in `2
sense



CountSketch: proof details



UPDATE(C, i)
for r ∈ [1 : t ]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

By basic estimate analysis for every r ∈ [1 : t ]

E[C[r ,hr (i)] ·sr (i)]= fi

and

Es[(C[r ,hr (i)] ·sr (i)− fi)2]= ∑
j 6=i :hr(j)=hr(i)

f 2
j

How large can the variance be? Does it reduce by about a
factor of b?

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr(j)=hr(i)

f 2
j + ∑

j∈TAIL,j 6=i
hr(j)=hr(i)

f 2
j



UPDATE(C, i)
for r ∈ [1 : t ]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

By basic estimate analysis for every r ∈ [1 : t ]

E[C[r ,hr (i)] ·sr (i)]= fi

and

Es[(C[r ,hr (i)] ·sr (i)− fi)2]= ∑
j 6=i :hr(j)=hr(i)

f 2
j

How large can the variance be? Does it reduce by about a
factor of b?

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr(j)=hr(i)

f 2
j + ∑

j∈TAIL,j 6=i
hr(j)=hr(i)

f 2
j



UPDATE(C, i)
for r ∈ [1 : t ]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

By basic estimate analysis for every r ∈ [1 : t ]

E[C[r ,hr (i)] ·sr (i)]= fi

and

Es[(C[r ,hr (i)] ·sr (i)− fi)2]= ∑
j 6=i :hr(j)=hr(i)

f 2
j

How large can the variance be? Does it reduce by about a
factor of b?

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr(j)=hr(i)

f 2
j + ∑

j∈TAIL,j 6=i
hr(j)=hr(i)

f 2
j



UPDATE(C, i)
for r ∈ [1 : t ]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

By basic estimate analysis for every r ∈ [1 : t ]

E[C[r ,hr (i)] ·sr (i)]= fi

and

Es[(C[r ,hr (i)] ·sr (i)− fi)2]= ∑
j 6=i :hr(j)=hr(i)

f 2
j

How large can the variance be? Does it reduce by about a
factor of b?

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr(j)=hr(i)

f 2
j + ∑

j∈TAIL,j 6=i
hr(j)=hr(i)

f 2
j



Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr(j)=hr(i)

f 2
j + ∑

j∈TAIL,j 6=i
hr(j)=hr(i)

f 2
j

For each r ∈ [1 : t ] and each item i ∈ [m] define three events:

Ï NO-COLLISIONSr (i) – i does not collide with any of the
head items under hashing r

Ï SMALL-VARIANCEr (i) – i does not collide with too many of
tail items under hashing r

Ï SMALL-DEVIATIONr (i) – success event from basic analysis

Show that all three events hold simultaneously with probability
strictly bigger than 1/2 – so median gives good estimate



Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr(j)=hr(i)

f 2
j + ∑

j∈TAIL,j 6=i
hr(j)=hr(i)

f 2
j

For each r ∈ [1 : t ] and each item i ∈ [m] define three events:

Ï NO-COLLISIONSr (i) – i does not collide with any of the
head items under hashing r

Ï SMALL-VARIANCEr (i) – i does not collide with too many of
tail items under hashing r

Ï SMALL-DEVIATIONr (i) – success event from basic analysis

Show that all three events hold simultaneously with probability
strictly bigger than 1/2 – so median gives good estimate



Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr(j)=hr(i)

f 2
j + ∑

j∈TAIL,j 6=i
hr(j)=hr(i)

f 2
j

For each r ∈ [1 : t ] and each item i ∈ [m] define three events:

Ï NO-COLLISIONSr (i) – i does not collide with any of the
head items under hashing r

Ï SMALL-VARIANCEr (i) – i does not collide with too many of
tail items under hashing r

Ï SMALL-DEVIATIONr (i) – success event from basic analysis

Show that all three events hold simultaneously with probability
strictly bigger than 1/2 – so median gives good estimate



Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr(j)=hr(i)

f 2
j + ∑

j∈TAIL,j 6=i
hr(j)=hr(i)

f 2
j

For each r ∈ [1 : t ] and each item i ∈ [m] define three events:

Ï NO-COLLISIONSr (i) – i does not collide with any of the
head items under hashing r

Ï SMALL-VARIANCEr (i) – i does not collide with too many of
tail items under hashing r

Ï SMALL-DEVIATIONr (i) – success event from basic analysis

Show that all three events hold simultaneously with probability
strictly bigger than 1/2 – so median gives good estimate



Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr(j)=hr(i)

f 2
j + ∑

j∈TAIL,j 6=i
hr(j)=hr(i)

f 2
j

For each r ∈ [1 : t ] and each item i ∈ [m] define three events:

Ï NO-COLLISIONSr (i) – i does not collide with any of the
head items under hashing r

Ï SMALL-VARIANCEr (i) – i does not collide with too many of
tail items under hashing r

Ï SMALL-DEVIATIONr (i) – success event from basic analysis

Show that all three events hold simultaneously with probability
strictly bigger than 1/2 – so median gives good estimate



(No) collisions with head items

NO-COLLISIONSr (i):=event that{
j ∈HEAD \ i : hr (j)= hr (i)

}=;,

i.e. that i collides with none of top k elements under hr .

For every j 6= i and every r ∈ [1 : t ]

Pr[hr (i)= hr (j)]≤ 1/b

Suppose that b ≥ 8k . Then by the union bound

Pr[NO-COLLISIONSr (i)]≥ 1−k/b
≥ 1−1/8



(No) collisions with head items

NO-COLLISIONSr (i):=event that{
j ∈HEAD \ i : hr (j)= hr (i)

}=;,

i.e. that i collides with none of top k elements under hr .

For every j 6= i and every r ∈ [1 : t ]

Pr[hr (i)= hr (j)]≤ 1/b

Suppose that b ≥ 8k . Then by the union bound

Pr[NO-COLLISIONSr (i)]≥ 1−k/b
≥ 1−1/8



(No) collisions with head items

NO-COLLISIONSr (i):=event that{
j ∈HEAD \ i : hr (j)= hr (i)

}=;,

i.e. that i collides with none of top k elements under hr .

For every j 6= i and every r ∈ [1 : t ]

Pr[hr (i)= hr (j)]≤ 1/b

Suppose that b ≥ 8k . Then by the union bound

Pr[NO-COLLISIONSr (i)]≥ 1−k/b
≥ 1−1/8



Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr(j)=hr(i)

f 2
j + ∑

j∈TAIL,j 6=i
hr(j)=hr(i)

f 2
j

For each r ∈ [1 : t ] and each item i ∈ [m] define three events:

Ï NO-COLLISIONSr (i) – i does not collide with any of the
head items under hashing r

Ï SMALL-VARIANCEr (i) – i does not collide with too many of
tail items under hashing r

Ï SMALL-DEVIATIONr (i) – success event from basic analysis

Show that all three events hold simulaneously with probability
strictly bigger than 1/2 – so median gives good estimate



Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr(j)=hr(i)

f 2
j + ∑

j∈TAIL,j 6=i
hr(j)=hr(i)

f 2
j

For each r ∈ [1 : t ] and each item i ∈ [m] define three events:

Ï NO-COLLISIONSr (i) – i does not collide with any of the
head items under hashing r

Ï SMALL-VARIANCEr (i) – i does not collide with too many
of tail items under hashing r

Ï SMALL-DEVIATIONr (i) – success event from basic analysis

Show that all three events hold simulaneously with probability
strictly bigger than 1/2 – so median gives good estimate



Small variance from tail elements
SMALL-VARIANCEr (i):=event that

∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j ≤ 8

b
∑

j∈TAIL
f 2
j

For every i , j ∈ [m], i 6= j and r ∈ [1 : t ]

Prhr [hr (i)= hr (j)]= 1/b (b is the number of buckets)

So by linearity of expectation

E

 ∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j

= ∑
j∈TAIL,j 6=i

f 2
j ·Prhr [hr (i)= hr (j)]

≤ 1
b

∑
j∈TAIL

f 2
j



Small variance from tail elements
SMALL-VARIANCEr (i):=event that

∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j ≤ 8

b
∑

j∈TAIL
f 2
j

For every i , j ∈ [m], i 6= j and r ∈ [1 : t ]

Prhr [hr (i)= hr (j)]= 1/b (b is the number of buckets)

So by linearity of expectation

E

 ∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j

= ∑
j∈TAIL,j 6=i

f 2
j ·Prhr [hr (i)= hr (j)]

≤ 1
b

∑
j∈TAIL

f 2
j



Small variance from tail elements
SMALL-VARIANCEr (i):=event that

∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j ≤ 8

b
∑

j∈TAIL
f 2
j

For every i , j ∈ [m], i 6= j and r ∈ [1 : t ]

Prhr [hr (i)= hr (j)]= 1/b (b is the number of buckets)

So by linearity of expectation

E

 ∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j

= ∑
j∈TAIL,j 6=i

f 2
j ·Prhr [hr (i)= hr (j)]

≤ 1
b

∑
j∈TAIL

f 2
j



Markov’s inequality

Theorem
For every non-negative random variable X
with mean µ≥ 0, and every k ≥ 1 one has

Pr[X ≥ k ·µ]≤ 1/k



We proved that

E

 ∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j

≤ 1
b

∑
j∈TAIL

f 2
j

By Markov’s inequality one has, for every i and every r ,

Pr[SMALL-VARIANCEr (i)]≥ 1−1/8



NO-COLLISIONSr(i) and SMALL-VARIANCEr(i): recap

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr (j)=hr (i)

f 2
j + ∑

j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j

Conditioned on NO-COLLISIONSr (i) and SMALL-VARIANCEr (i)

Ï first term is zero

Ï second term is at most

8
b

∑
j∈TAIL

f 2
j



NO-COLLISIONSr(i) and SMALL-VARIANCEr(i): recap

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr (j)=hr (i)

f 2
j + ∑

j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j

Conditioned on NO-COLLISIONSr (i) and SMALL-VARIANCEr (i)

Ï first term is zero

Ï second term is at most

8
b

∑
j∈TAIL

f 2
j



NO-COLLISIONSr(i) and SMALL-VARIANCEr(i): recap

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr (j)=hr (i)

f 2
j + ∑

j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j

Conditioned on NO-COLLISIONSr (i) and SMALL-VARIANCEr (i)

Ï first term is zero

Ï second term is at most

8
b

∑
j∈TAIL

f 2
j



Small deviation event

SMALL-DEVIATIONr (i)=event that

(C[r ,hr (i)] ·sr (i)− fi)
2 ≤ 8Var(C[r ,hr (i)] ·sr (i)).

By Chebyshev’s inequality one has, for every i and every r ,

Pr[SMALL-DEVIATIONr (i)]≥ 1−1/8



Small deviation event

SMALL-DEVIATIONr (i)=event that

(C[r ,hr (i)] ·sr (i)− fi)
2 ≤ 8Var(C[r ,hr (i)] ·sr (i)).

By Chebyshev’s inequality one has, for every i and every r ,

Pr[SMALL-DEVIATIONr (i)]≥ 1−1/8



Pr[SMALL-VARIANCEr (i)]≥ 1−1/8

Pr[NO-COLLISIONSr (i)]≥ 1−1/8

Pr[SMALL-DEVIATIONr (i)]≥ 1−1/8

So by the union bound

Pr[SMALL-VARIANCEr (i) and NO-COLLISIONSr (i)
and SMALL-DEVIATIONr (i)]≥ 5/8.



Let

γ :=
√√√√1

b
∑

j∈TAIL
f 2
j

For every p ∈ [1 :N] let fi(p) :=frequency of i up to position p

Lemma
If b ≥ 8k, then for every i, every r ∈ [1 : t ],

123

Pr [|C[r ,hr (i)] ·sr (i)− fi | ≤ 8γ]≥ 5/8

123

Proof.
Chernoff bounds.



Let

γ :=
√√√√1

b
∑

j∈TAIL
f 2
j

For every p ∈ [1 :N] let fi(p) :=frequency of i up to position p

Lemma
If b ≥ 8k and t ≥A logN for an absolute constant A> 0, then for
every i, with probability ≥ 1−1/N4

∣∣medianr
{
C[r ,hr (i)] ·sr (i)

}− fi
∣∣≤ 8γ

at the end of the stream.

Proof.
Chernoff bounds.



Let

γ :=
√√√√1

b
∑

j∈TAIL
f 2
j

For every p ∈ [1 :N] let fi(p) :=frequency of i up to position p

Lemma
If b ≥ 8k and t ≥A logN for an absolute constant A> 0, then with
probability ≥ 1−1/N3 for every i ∈ [m]∣∣medianr

{
C[r ,hr (i)] ·sr (i)

}− fi(p)
∣∣≤ 8γ

at the end of the stream.

Proof.
Chernoff bounds.



Let

γ :=
√√√√1

b
∑

j∈TAIL
f 2
i

For every p ∈ [1 :N] let fi(p) :=frequency of i up to position p

Lemma
If b ≥ 8max

{
k ,

32
∑

j∈TAIL f 2
j

(εfk )2

}
and t ≥A logN for an absolute

constant A> 0, then with probability ≥ 1−1/N3 for every i ∈ [m]∣∣medianr
{
C[r ,hr (i)] ·sr (i)

}− fi(p)
∣∣≤ εfk

at the end of the stream.

Proof.
Substitute value of b into definition of γ:

γ=
√√√√1

b
∑

j∈TAIL
f 2
i ≤ εfk/8



Let

γ :=
√√√√1

b
∑

j∈TAIL
f 2
i

For every p ∈ [1 :N] let fi(p) :=frequency of i up to position p

Lemma
If b ≥ 8max

{
k ,

32
∑

j∈TAIL f 2
j

(εfk )2

}
and t ≥A logN for an absolute

constant A> 0, then with probability ≥ 1−1/N3 for every i ∈ [m]∣∣medianr
{
C[r ,hr (i)] ·sr (i)

}− fi(p)
∣∣≤ εfk

at the end of the stream.

Proof.
Substitute value of b into definition of γ:

γ=
√√√√1

b
∑

j∈TAIL
f 2
i ≤ εfk/8



Ï CountSketch (recap and proofs)

Ï Graph streaming

Ï Connectivity via sketching

Ï Designing `0 samplers



Ï CountSketch (recap and proofs)

Ï Graph streaming

Ï Connectivity via sketching

Ï Designing `0 samplers



Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream (ideally one pass)

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Construct a spanning tree of the graph G in a single pass?

Very easy in insertion only streams:

Ï maintain a spanning forest

Ï add incoming edge if it connects two components, discard
otherwise



Construct a spanning tree of the graph G in a single pass?

Very easy in insertion only streams:

Ï maintain a spanning forest

Ï add incoming edge if it connects two components, discard
otherwise



Spanning trees in insertion-only streams

weights on edges

Insertion-only stream



Spanning trees in insertion-only streams

weights on edges

Insertion-only stream



Spanning trees in insertion-only streams

weights on edges

Insertion-only stream



Spanning trees in insertion-only streams

weights on edges

Insertion-only stream



Spanning trees in insertion-only streams

weights on edges

Insertion-only stream



Spanning trees in insertion-only streams

weights on edges

Insertion-only stream



Spanning trees in insertion-only streams

weights on edges

Insertion-only stream



Spanning trees in insertion-only streams

weights on edges

Insertion-only stream



Spanning trees in insertion-only streams

weights on edges

Insertion-only stream



Spanning trees in insertion-only streams

weights on edges

Insertion-only stream



Spanning trees in insertion-only streams

weights on edges

Insertion-only stream



Spanning trees in insertion-only streams

weights on edges

Insertion-only stream



Spanning trees in insertion-only streams

weights on edges

Insertion-only stream



Spanning trees in insertion-only streams

weights on edges

Insertion-only stream



Spanning trees in insertion-only streams

weights on edges

Insertion-only stream



Spanning trees in insertion-only streams

weights on edges

Insertion-only stream



Construct a spanning tree of the graph G in a single pass?

Very easy in insertion only streams:

Ï maintain a spanning forest

Ï add incoming edge if it connects two components, discard
otherwise

Many modern networks evolve over
time, edges both inserted and deleted

Construct spanning trees in dynamic streams in small space?



Construct a spanning tree of the graph G in a single pass?

Very easy in insertion only streams:

Ï maintain a spanning forest

Ï add incoming edge if it connects two components, discard
otherwise

Many modern networks evolve over
time, edges both inserted and deleted

Construct spanning trees in dynamic streams in small space?



What if we have deletions?

weights on edges

Very different algorithms are needed...



What if we have deletions?

weights on edges

Very different algorithms are needed...



What if we have deletions?

weights on edges

Very different algorithms are needed...



What if we have deletions?

weights on edges

Very different algorithms are needed...



What if we have deletions?

weights on edges

Very different algorithms are needed...



What if we have deletions?

weights on edges

Very different algorithms are needed...



What if we have deletions?

weights on edges

Very different algorithms are needed...



What if we have deletions?

weights on edges

Very different algorithms are needed...



What if we have deletions?

weights on edges

Very different algorithms are needed...



What if we have deletions?

weights on edges

Very different algorithms are needed...



Graph sketching
Main idea: apply classical sketching techniques on the edge

incidence matrix of a graph

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

B

x

=



1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 0 0 0 0
−1 0 0 1 0 0
0 0 1 0 0 −1
0 0 0 0 0 0
...

...



·


x1
x2
...

xn



(n
2
)×n

Each row of B=potential edge in G.

If e = (u,v) ∈E , then be = χu −χv , otherwise be = 0



Graph sketching
Main idea: apply classical sketching techniques on the edge

incidence matrix of a graph

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

B

x

=



1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 0 0 0 0
−1 0 0 1 0 0
0 0 1 0 0 −1
0 0 0 0 0 0
...

...



·


x1
x2
...

xn



(n
2
)×n

Each row of B=potential edge in G.

If e = (u,v) ∈E , then be = χu −χv , otherwise be = 0



Graph sketching
Main idea: apply classical sketching techniques on the edge

incidence matrix of a graph

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

B

x

=



1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 0 0 0 0
−1 0 0 1 0 0
0 0 1 0 0 −1
0 0 0 0 0 0
...

...



·


x1
x2
...

xn



(n
2
)×n

Each row of B=potential edge in G.

If e = (u,v) ∈E , then be = χu −χv , otherwise be = 0



Graph sketching
For every S ⊆V let

δ(S) :=E ∩ (S× (V \ S))

denote the edges crossing the cut. Let x = 1S (indicator of S).

Bx is the (signed) indicator of δ(S)

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

B

x

=



1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 0 0 0 0
−1 0 0 1 0 0
0 0 1 0 0 −1
0 0 0 0 0 0
...

...



·


x1
x2
...

xn



(n
2
)×n



Ï CountSketch (recap and proofs)

Ï Graph streaming

Ï Connectivity via sketching

Ï Designing `0 samplers



Ï CountSketch (recap and proofs)

Ï Graph streaming

Ï Connectivity via sketching

Ï Designing `0 samplers



A simple algorithm for connectivity

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

F 0 ←;
C0 ←V B current connected components

For t = 0 to T B T =O(logn)

For each u ∈Ct

Choose an edge in δ(u)
End For

F t+1 ←F t ∪ {spanning forest on selected edges}
Ct+1 ← {new connected components}

End
return F T+1

F 0 ←;
C0 ←V
For t = 0
For each

(nonzero of B ·1u)

F t+1

Ct+1

End For
End
return F T+1



A simple algorithm for connectivity

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

F 0 ←;
C0 ←V B current connected components

For t = 0 to T B T =O(logn)

For each u ∈Ct

Choose an edge in δ(u)
End For

F t+1 ←F t ∪ {spanning forest on selected edges}
Ct+1 ← {new connected components}

End
return F T+1

F 0 ←;
C0 ←V
For t = 0
For each

(nonzero of B ·1u)

F t+1

Ct+1

End For
End
return F T+1



A simple algorithm for connectivity

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

F 0 ←;
C0 ←V B current connected components

For t = 0 to T B T =O(logn)

For each u ∈Ct

Choose an edge in δ(u)
End For

F t+1 ←F t ∪ {spanning forest on selected edges}
Ct+1 ← {new connected components}

End
return F T+1

F 0 ←;
C0 ←V
For t = 0
For each

(nonzero of B ·1u)

F t+1

Ct+1

End For
End
return F T+1



A simple algorithm for connectivity

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

F 0 ←;
C0 ←V B current connected components

For t = 0 to T B T =O(logn)

For each u ∈Ct

Choose an edge in δ(u)
End For

F t+1 ←F t ∪ {spanning forest on selected edges}
Ct+1 ← {new connected components}

End
return F T+1

F 0 ←;
C0 ←V
For t = 0
For each

(nonzero of B ·1u)

F t+1

Ct+1

End For
End
return F T+1



A simple algorithm for connectivity

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

F 0 ←;
C0 ←V B current connected components

For t = 0 to T B T =O(logn)

For each u ∈Ct

Choose an edge in δ(u)
End For

F t+1 ←F t ∪ {spanning forest on selected edges}
Ct+1 ← {new connected components}

End
return F T+1

F 0 ←;
C0 ←V
For t = 0
For each

(Sample nnz of B ·1u?)

F t+1

Ct+1

End For
End
return F T+1



A simple algorithm for connectivity

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

F 0 ←;
C0 ←V B current connected components

For t = 0 to T B T =O(logn)

For each u ∈Ct

Choose an edge in δ(u)
End For

F t+1 ←F t ∪ {spanning forest on selected edges}
Ct+1 ← {new connected components}

End
return F T+1

F 0 ←;
C0 ←V
For t = 0
For each

(Sample nnz of B ·1u?)

F t+1

Ct+1

End For
End
return F T+1



A simple algorithm for connectivity

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

F 0 ←;
C0 ←V B current connected components

For t = 0 to T B T =O(logn)

For each u ∈Ct

Choose an edge in δ(u)
End For

F t+1 ←F t ∪ {spanning forest on selected edges}
Ct+1 ← {new connected components}

End
return F T+1

F 0 ←;
C0 ←V
For t = 0
For each

(Sample nnz of B ·1u?)

F t+1

Ct+1

End For
End
return F T+1



`0-samplers

Definition
A δ-error `0 sampler is

Ï a linear sketch S ∈Rm×n

Ï a decoding primitive Dec :Rm → [n]

such that for every x ∈Rn with integer entries J ←Dec(Sx)
satisfies

||J −UNIFsupp(x)||TVD ≤ δ.

Informally: sample a uniformly random element, output FAIL or
just garbage with probability at most δ

Recent constructions of `p samplers due to

Frahling-Indyk-Sohler’08, Andoni-Krauthgamer-Onak’11, Jowhari-Saglam-Tardos’11,

Nelson-Pachocki-Wang’17, Kapralov-Nelson-Pachocki-Wang-Woodruff-Yahyazadeh’17



`0-samplers

Definition
A δ-error `0 sampler is

Ï a linear sketch S ∈Rm×n

Ï a decoding primitive Dec :Rm → [n]

such that for every x ∈Rn with integer entries J ←Dec(Sx)
satisfies

||J −UNIFsupp(x)||TVD ≤ δ.

Informally: sample a uniformly random element, output FAIL or
just garbage with probability at most δ

Recent constructions of `p samplers due to

Frahling-Indyk-Sohler’08, Andoni-Krauthgamer-Onak’11, Jowhari-Saglam-Tardos’11,

Nelson-Pachocki-Wang’17, Kapralov-Nelson-Pachocki-Wang-Woodruff-Yahyazadeh’17



`0-samplers

Definition
A δ-error `0 sampler is

Ï a linear sketch S ∈Rm×n

Ï a decoding primitive Dec :Rm → [n]

such that for every x ∈Rn with integer entries J ←Dec(Sx)
satisfies

||J −UNIFsupp(x)||TVD ≤ δ.

Informally: sample a uniformly random element, output FAIL or
just garbage with probability at most δ

Recent constructions of `p samplers due to

Frahling-Indyk-Sohler’08, Andoni-Krauthgamer-Onak’11, Jowhari-Saglam-Tardos’11,

Nelson-Pachocki-Wang’17, Kapralov-Nelson-Pachocki-Wang-Woodruff-Yahyazadeh’17



Connectivity via sketching (Ahn-Guha-McGregor’12)

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

F 0 ←;
C0 ←V B current connected components

For t = 0 to T B T =O(logn)

For each u ∈Ct

Choose an edge in δ(u)
End For

F t+1 ←F t ∪ {spanning forest on selected edges}
Ct+1 ← {new connected components}

End
return F T+1

S1, . . . ,ST ← `0-samplers
Maintain S1B, . . . ,ST B

For t = 0
For each

Run Dec(StB ·1u)

F t+1

Ct+1

End For
End
return F T+1



Some remarks

Why did we need T sketches S1, . . . ,ST ?

Very surprising: decoding is adaptive (T =O(logn) rounds), but
sketch is not

Which other graph problems admit sketching solutions?



Ï CountSketch (recap and proofs)

Ï Graph streaming

Ï Connectivity via sketching

Ï Designing `0 samplers



Ï CountSketch (recap and proofs)

Ï Graph streaming

Ï Connectivity via sketching

Ï Designing `0 samplers



`0-samplers

Definition
A δ-error `0 sampler is

Ï a linear sketch S ∈Rm×n

Ï a decoding primitive Dec :Rm → [n]

such that for every x ∈Rn with integer entries J ←Dec(Sx)
satisfies

||J −UNIFsupp(x)||TVD ≤ δ.

Informally: sample a uniformly random element, output FAIL or
just garbage with probability at most δ

Recent constructions of `p samplers due to

Frahling-Indyk-Sohler’08, Andoni-Krauthgamer-Onak’11, Jowhari-Saglam-Tardos’11,

Nelson-Pachocki-Wang’17, Kapralov-Nelson-Pachocki-Wang-Woodruff-Yahyazadeh’17



`0-samplers

Definition
A δ-error `0 sampler is

Ï a linear sketch S ∈Rm×n

Ï a decoding primitive Dec :Rm → [n]

such that for every x ∈Rn with integer entries J ←Dec(Sx)
satisfies

||J −UNIFsupp(x)||TVD ≤ δ.

Informally: sample a uniformly random element, output FAIL or
just garbage with probability at most δ

Recent constructions of `p samplers due to

Frahling-Indyk-Sohler’08, Andoni-Krauthgamer-Onak’11, Jowhari-Saglam-Tardos’11,

Nelson-Pachocki-Wang’17, Kapralov-Nelson-Pachocki-Wang-Woodruff-Yahyazadeh’17



`0-samplers

Definition
A δ-error `0 sampler is

Ï a linear sketch S ∈Rm×n

Ï a decoding primitive Dec :Rm → [n]

such that for every x ∈Rn with integer entries J ←Dec(Sx)
satisfies

||J −UNIFsupp(x)||TVD ≤ δ.

Informally: sample a uniformly random element, output FAIL or
just garbage with probability at most δ

Recent constructions of `p samplers due to

Frahling-Indyk-Sohler’08, Andoni-Krauthgamer-Onak’11, Jowhari-Saglam-Tardos’11,

Nelson-Pachocki-Wang’17, Kapralov-Nelson-Pachocki-Wang-Woodruff-Yahyazadeh’17



`p sampling problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output item i with probability ∼ f p
i

(fi =number of occurrences of i)

Ï Small storage: will get logO(1)N

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1



`p sampling problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output item i with probability ∼ f p
i

(fi =number of occurrences of i)

Ï Small storage: will get logO(1)N

1 2 3 4 5 6 7 8 9 10

head

tail

head

3

4 6 1 2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5



`p sampling problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output item i with probability ∼ f p
i

(fi =number of occurrences of i)

Ï Small storage: will get logO(1)N

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4

6 3 2 10 3 1 3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1



`p sampling problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output item i with probability ∼ f p
i

(fi =number of occurrences of i)

Ï Small storage: will get logO(1)N

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6

3 2 10 3 1 3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1



`p sampling problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output item i with probability ∼ f p
i

(fi =number of occurrences of i)

Ï Small storage: will get logO(1)N

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3

2 10 3 1 3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1



`p sampling problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output item i with probability ∼ f p
i

(fi =number of occurrences of i)

Ï Small storage: will get logO(1)N

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2

10 3 1 3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1



`p sampling problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output item i with probability ∼ f p
i

(fi =number of occurrences of i)

Ï Small storage: will get logO(1)N

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10

3 1 3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1



`p sampling problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output item i with probability ∼ f p
i

(fi =number of occurrences of i)

Ï Small storage: will get logO(1)N

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3

1 3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1



`p sampling problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output item i with probability ∼ f p
i

(fi =number of occurrences of i)

Ï Small storage: will get logO(1)N

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1

3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1



`p sampling problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output item i with probability ∼ f p
i

(fi =number of occurrences of i)

Ï Small storage: will get logO(1)N

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3

1 2 2 5 5 5 9 8 7 4 4 2 2 3 1



`p sampling problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output item i with probability ∼ f p
i

(fi =number of occurrences of i)

Ï Small storage: will get logO(1)N

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1

2 2 5 5 5 9 8 7 4 4 2 2 3 1



`p sampling problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output item i with probability ∼ f p
i

(fi =number of occurrences of i)

Ï Small storage: will get logO(1)N

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2

2 5 5 5 9 8 7 4 4 2 2 3 3



`p sampling problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output item i with probability ∼ f p
i

(fi =number of occurrences of i)

Ï Small storage: will get logO(1)N

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2

5 5 5 9 8 7 4 4 2 2 3 1



`p sampling problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output item i with probability ∼ f p
i

(fi =number of occurrences of i)

Ï Small storage: will get logO(1)N

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5

5 5 9 8 7 4 4 2 2 3 1



`p sampling problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output item i with probability ∼ f p
i

(fi =number of occurrences of i)

Ï Small storage: will get logO(1)N

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5

5 9 8 7 4 4 2 2 3 1



`p sampling problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output item i with probability ∼ f p
i

(fi =number of occurrences of i)

Ï Small storage: will get logO(1)N

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5

9 8 7 4 4 2 2 3 1



`p sampling problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output item i with probability ∼ f p
i

(fi =number of occurrences of i)

Ï Small storage: will get logO(1)N

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9

8 7 4 4 2 2 3 1



`p sampling problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output item i with probability ∼ f p
i

(fi =number of occurrences of i)

Ï Small storage: will get logO(1)N

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8

7 4 4 2 2 3 1



`p sampling problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output item i with probability ∼ f p
i

(fi =number of occurrences of i)

Ï Small storage: will get logO(1)N

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7

4 4 2 2 3 1



`p sampling problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output item i with probability ∼ f p
i

(fi =number of occurrences of i)

Ï Small storage: will get logO(1)N

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7 4

4 2 2 3 1



`p sampling problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output item i with probability ∼ f p
i

(fi =number of occurrences of i)

Ï Small storage: will get logO(1)N

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7 4 4

2 2 3 1



`p sampling problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output item i with probability ∼ f p
i

(fi =number of occurrences of i)

Ï Small storage: will get logO(1)N

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7 4 4 2

2 3 1



`p sampling problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output item i with probability ∼ f p
i

(fi =number of occurrences of i)

Ï Small storage: will get logO(1)N

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7 4 4 2 2

3 1



`p sampling problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output item i with probability ∼ f p
i

(fi =number of occurrences of i)

Ï Small storage: will get logO(1)N

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7 4 4 2 2 3

1



`p sampling problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output item i with probability ∼ f p
i

(fi =number of occurrences of i)

Ï Small storage: will get logO(1)N

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7 4 4 2 2 3 3



`p sampling problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output item i with probability ∼ f p
i

(fi =number of occurrences of i)

Ï Small storage: will get logO(1)N

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7 4 4 2 2 3 3



`0 sampler construction (sketch)

Main idea:

Ï if x is 1-sparse (has a single nonzero), can recover x using
few rows

Ï if x is t-sparse, a subsampling of x at rate ≈ 1/t is likely
1-sparse



`0 sampler construction (sketch)

Main idea:

Ï if x is 1-sparse (has a single nonzero), can recover x using
few rows

Ï if x is t-sparse, a subsampling of x at rate ≈ 1/t is likely
1-sparse



Recovering 1-sparse signals
Design a sketch S from which any x ∈Rn with supp(x)= 1 can
be recovered with probability 1?

1 1 1 1 1 1 ...

1

1 1
1 2 3 4 5 6 ... n-1 n

S

sketching matrix

space requirement=number of rows

•

x

b=

Suppose x has one nonzero: x = α ·ei∗

Compute
A=

n∑
i=1

xi = 〈u,x〉 = α

B =
n∑

i=1
i ·xi = 〈v ,x〉 = α · i∗

So
α= 〈x ,u〉

and
i∗ = 〈x ,v〉

〈x ,u〉



Recovering 1-sparse signals
Design a sketch S from which any x ∈Rn with supp(x)= 1 can
be recovered with probability 1?

1 1 1 1 1 1 ...

1

1 1
1 2 3 4 5 6 ... n-1 nS

sketching matrix

space requirement=number of rows

•

x

b=

Suppose x has one nonzero: x = α ·ei∗

Compute
A=

n∑
i=1

xi = 〈u,x〉 = α

B =
n∑

i=1
i ·xi = 〈v ,x〉 = α · i∗

So
α= 〈x ,u〉

and
i∗ = 〈x ,v〉

〈x ,u〉



What if x is not sparse?

Let 2j be the closest power of 2 to ||x ||0.

Choose a subset S ⊆ [n] such that for every i ∈ [n]

Pr[i ∈S]= 2−j

Then
Pr [|supp(x)∩S| = 1]=Ω(1)

Try O(logn) powers of 2, run 1-sparse recovery on xS!

Also need to verify that recovery was successful (can be done)



What if x is not sparse?

Let 2j be the closest power of 2 to ||x ||0.

Choose a subset S ⊆ [n] such that for every i ∈ [n]

Pr[i ∈S]= 2−j

Then
Pr [|supp(x)∩S| = 1]=Ω(1)

Try O(logn) powers of 2, run 1-sparse recovery on xS!

Also need to verify that recovery was successful (can be done)



What if x is not sparse?

Let 2j be the closest power of 2 to ||x ||0.

Choose a subset S ⊆ [n] such that for every i ∈ [n]

Pr[i ∈S]= 2−j

Then
Pr [|supp(x)∩S| = 1]=Ω(1)

Try O(logn) powers of 2, run 1-sparse recovery on xS!

Also need to verify that recovery was successful (can be done)



What if x is not sparse?

Let 2j be the closest power of 2 to ||x ||0.

Choose a subset S ⊆ [n] such that for every i ∈ [n]

Pr[i ∈S]= 2−j

Then
Pr [|supp(x)∩S| = 1]=Ω(1)

Try O(logn) powers of 2, run 1-sparse recovery on xS!

Also need to verify that recovery was successful (can be done)



Optimal bounds for `0-samplers

Definition
A δ-error `0 sampler is

Ï a linear sketch S ∈Rm×n

Ï a decoding primitive Dec :Rm → [n]

such that for every x ∈Rn with integer entries J ←Dec(Sx)
satisfies

||J −UNIFsupp(x)||TVD ≤ δ.

Jowhari-Saglam-Tardos’11: there exist δ-error `0-samplers with
m =O(logn log(1/δ)) rows.

Kapralov-Nelson-Pachocki-Wang-Woodruff-Yahyazadeh’17: this space bound
is optimal for δ> 2−n0.99

(and more results)


