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Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!
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Main primitive: APPROXPOINTQUERY in small space

Observe a stream of updates, maintain small space data
structure

Task: after observing the stream, given i ∈ {1,2, . . . ,m}, compute
estimate f̂i of fi

To be specified:

Ï space complexity?

Ï quality of approximation?

Ï success probability?
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ApproxPointQuery
Choose

Ï t random hash functions h1,h2, . . . ,ht from items [m] to
b ≈ k buckets {1,2, . . . ,b}

Ï t random hash functions s1,s2, . . . ,st from items [m] to
{−1,+1}

b buckets

t
ha

sh
fu

nc
tio

ns

5

← array C

The algorithm runs t independent copies of basic estimate:

UPDATE(C, i)
for r ∈ [1 : t ]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}



ApproxPointQuery
Choose

Ï t random hash functions h1,h2, . . . ,ht from items [m] to
b ≈ k buckets {1,2, . . . ,b}

Ï t random hash functions s1,s2, . . . ,st from items [m] to
{−1,+1}

b buckets

t
ha

sh
fu

nc
tio

ns

5

← array C

The algorithm runs t independent copies of basic estimate:

UPDATE(C, i)
for r ∈ [1 : t ]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}



ApproxPointQuery
Choose

Ï t random hash functions h1,h2, . . . ,ht from items [m] to
b ≈ k buckets {1,2, . . . ,b}

Ï t random hash functions s1,s2, . . . ,st from items [m] to
{−1,+1}

b buckets

t
ha

sh
fu

nc
tio

ns

5

← array C

The algorithm runs t independent copies of basic estimate:

UPDATE(C, i)
for r ∈ [1 : t ]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}



UPDATE(C, i)
for r ∈ [1 : t ]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

By basic estimate analysis for every r ∈ [1 : t ]

E[C[r ,hr (i)] ·sr (i)]= fi

and

Es[(C[r ,hr (i)] ·sr (i)− fi)2]= ∑
j 6=i :hr(j)=hr(i)

f 2
j

How large can the variance be? Can be be reduced by making
number of buckets b large?

YES: hashing into a sufficiently large number of buckets
reduces estimation error to below ε · fk

O(logN) repetitions ensure estimates are correct for all i with
high probability
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C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

Lemma
If b ≥ 8max

{
k ,

32
∑

j∈TAIL f 2
j

(εfk )2

}
and t =O(logN), then for every i ∈ [m]

|medianr
{
C[r ,hr (i)] ·sr (i)

}− fi(p)| ≤ εfk
at every point p ∈ [1 :N] in the stream.

(fi(p) is the frequency of i up to position p)

Space complexity is O(b logN)

How large is b?
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Space complexity

Set b = 8max
{

k ,
32

∑
j∈TAIL f 2

j

(εfk )2

}
Note that b =O(k/ε2) if 1

k
∑

j∈TAIL f 2
j =O(f 2

k )

head

tail

In practice, choose b subject to space constraints, detect
elements with counts above O

(
ε
√

1
k

∑
j∈TAIL f 2

j

)



Space complexity

Set k = 1. Suppose that 1 appears
p

N times in the stream, and
other N −p

N elements are distinct

Then f1 =p
N, fi = 1 for i = 2,N −p

N.

Set b = 8max
{

1,
32

∑
j∈TAIL f 2

j

(εf1)2

}

We have
∑

j∈TAIL f 2
j =N −p

N ≤N, and f 2
1 =N

So b = 8max
{

1,
32

∑
j∈TAIL f 2

j

(εf1)2

}
=O(1/ε2) suffices

Remarkable, as 1 appears only in
p

N positions out of N: a
vanishingly small fraction of positions!



Space complexity

Set k = 1. Suppose that 1 appears
p

N times in the stream, and
other N −p

N elements are distinct

Then f1 =p
N, fi = 1 for i = 2,N −p

N.

Set b = 8max
{

1,
32

∑
j∈TAIL f 2

j

(εf1)2

}

We have
∑

j∈TAIL f 2
j =N −p

N ≤N, and f 2
1 =N

So b = 8max
{

1,
32

∑
j∈TAIL f 2

j

(εf1)2

}
=O(1/ε2) suffices

Remarkable, as 1 appears only in
p

N positions out of N: a
vanishingly small fraction of positions!



Space complexity

Set k = 1. Suppose that 1 appears
p

N times in the stream, and
other N −p

N elements are distinct

Then f1 =p
N, fi = 1 for i = 2,N −p

N.

Set b = 8max
{

1,
32

∑
j∈TAIL f 2

j

(εf1)2

}

We have
∑

j∈TAIL f 2
j =N −p

N ≤N, and f 2
1 =N

So b = 8max
{

1,
32

∑
j∈TAIL f 2

j

(εf1)2

}
=O(1/ε2) suffices

Remarkable, as 1 appears only in
p

N positions out of N: a
vanishingly small fraction of positions!



Space complexity

Set k = 1. Suppose that 1 appears
p

N times in the stream, and
other N −p

N elements are distinct

Then f1 =p
N, fi = 1 for i = 2,N −p

N.

Set b = 8max
{

1,
32

∑
j∈TAIL f 2

j

(εf1)2

}

We have
∑

j∈TAIL f 2
j =N −p

N ≤N, and f 2
1 =N

So b = 8max
{

1,
32

∑
j∈TAIL f 2

j

(εf1)2

}
=O(1/ε2) suffices

Remarkable, as 1 appears only in
p

N positions out of N: a
vanishingly small fraction of positions!



Space complexity

Set k = 1. Suppose that 1 appears
p

N times in the stream, and
other N −p

N elements are distinct

Then f1 =p
N, fi = 1 for i = 2,N −p

N.

Set b = 8max
{

1,
32

∑
j∈TAIL f 2

j

(εf1)2

}

We have
∑

j∈TAIL f 2
j =N −p

N ≤N, and f 2
1 =N

So b = 8max
{

1,
32

∑
j∈TAIL f 2

j

(εf1)2

}
=O(1/ε2) suffices

Remarkable, as 1 appears only in
p

N positions out of N: a
vanishingly small fraction of positions!



Final algorithm: COUNTSKETCH

FINDAPPROXTOP(S,k ,ε): returns set of k items such that
fi ≥ (1−ε)fk for all returned i

(In fact also every i with fi ≥ (1−ε)fk is reported)

APPROXPOINTQUERY(S, i ,ε): returns f̂i ∈ [fi −εfk , fi +εfk ]

Find head items if they contribute the bulk of the stream in `2
sense



CountSketch: proof details



UPDATE(C, i)
for r ∈ [1 : t ]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

By basic estimate analysis for every r ∈ [1 : t ]

E[C[r ,hr (i)] ·sr (i)]= fi

and

Es[(C[r ,hr (i)] ·sr (i)− fi)2]= ∑
j 6=i :hr(j)=hr(i)

f 2
j

How large can the variance be? Does it reduce by about a
factor of b?

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr(j)=hr(i)

f 2
j + ∑

j∈TAIL,j 6=i
hr(j)=hr(i)

f 2
j
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For each r ∈ [1 : t ] and each item i ∈ [m] define three events:

Ï NO-COLLISIONSr (i) – i does not collide with any of the
head items under hashing r

Ï SMALL-VARIANCEr (i) – i does not collide with too many of
tail items under hashing r

Ï SMALL-DEVIATIONr (i) – success event from basic analysis

Show that all three events hold simultaneously with probability
strictly bigger than 1/2 – so median gives good estimate
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(No) collisions with head items

NO-COLLISIONSr (i):=event that{
j ∈HEAD \ i : hr (j)= hr (i)

}=;,

i.e. that i collides with none of top k elements under hr .

For every j 6= i and every r ∈ [1 : t ]

Pr[hr (i)= hr (j)]≤ 1/b

Suppose that b ≥ 8k . Then by the union bound

Pr[NO-COLLISIONSr (i)]≥ 1−k/b
≥ 1−1/8
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Small variance from tail elements
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So by linearity of expectation

E

 ∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j

= ∑
j∈TAIL,j 6=i

f 2
j ·Prhr [hr (i)= hr (j)]

≤ 1
b

∑
j∈TAIL

f 2
j



Small variance from tail elements
SMALL-VARIANCEr (i):=event that

∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j ≤ 8

b
∑

j∈TAIL
f 2
j

For every i , j ∈ [m], i 6= j and r ∈ [1 : t ]

Prhr [hr (i)= hr (j)]= 1/b (b is the number of buckets)

So by linearity of expectation

E

 ∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j

= ∑
j∈TAIL,j 6=i

f 2
j ·Prhr [hr (i)= hr (j)]

≤ 1
b

∑
j∈TAIL

f 2
j



Small variance from tail elements
SMALL-VARIANCEr (i):=event that

∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j ≤ 8

b
∑

j∈TAIL
f 2
j

For every i , j ∈ [m], i 6= j and r ∈ [1 : t ]

Prhr [hr (i)= hr (j)]= 1/b (b is the number of buckets)

So by linearity of expectation

E

 ∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j

= ∑
j∈TAIL,j 6=i

f 2
j ·Prhr [hr (i)= hr (j)]

≤ 1
b

∑
j∈TAIL

f 2
j



Markov’s inequality

Theorem
For every non-negative random variable X
with mean µ≥ 0, and every k ≥ 1 one has

Pr[X ≥ k ·µ]≤ 1/k



We proved that

E

 ∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j

≤ 1
b

∑
j∈TAIL

f 2
j

By Markov’s inequality one has, for every i and every r ,

Pr[SMALL-VARIANCEr (i)]≥ 1−1/8



NO-COLLISIONSr(i) and SMALL-VARIANCEr(i): recap

Consider contribution of head and tail items separately:∑
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Conditioned on NO-COLLISIONSr (i) and SMALL-VARIANCEr (i)

Ï first term is zero

Ï second term is at most
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Small deviation event

SMALL-DEVIATIONr (i)=event that

(C[r ,hr (i)] ·sr (i)− fi)
2 ≤ 8Var(C[r ,hr (i)] ·sr (i)).

By Chebyshev’s inequality one has, for every i and every r ,

Pr[SMALL-DEVIATIONr (i)]≥ 1−1/8
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Pr[SMALL-VARIANCEr (i)]≥ 1−1/8

Pr[NO-COLLISIONSr (i)]≥ 1−1/8

Pr[SMALL-DEVIATIONr (i)]≥ 1−1/8

So by the union bound

Pr[SMALL-VARIANCEr (i) and NO-COLLISIONSr (i)
and SMALL-DEVIATIONr (i)]≥ 5/8.
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γ :=
√√√√1

b
∑

j∈TAIL
f 2
j

For every p ∈ [1 :N] let fi(p) :=frequency of i up to position p

Lemma
If b ≥ 8k, then for every i, every r ∈ [1 : t ],

123

Pr [|C[r ,hr (i)] ·sr (i)− fi | ≤ 8γ]≥ 5/8

123

Proof.
Chernoff bounds.
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For every p ∈ [1 :N] let fi(p) :=frequency of i up to position p

Lemma
If b ≥ 8k and t ≥A logN for an absolute constant A> 0, then for
every i, with probability ≥ 1−1/N4

∣∣medianr
{
C[r ,hr (i)] ·sr (i)

}− fi
∣∣≤ 8γ

at the end of the stream.
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For every p ∈ [1 :N] let fi(p) :=frequency of i up to position p

Lemma
If b ≥ 8k and t ≥A logN for an absolute constant A> 0, then with
probability ≥ 1−1/N3 for every i ∈ [m]∣∣medianr

{
C[r ,hr (i)] ·sr (i)

}− fi(p)
∣∣≤ 8γ

at the end of the stream.

Proof.
Chernoff bounds.



Let

γ :=
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For every p ∈ [1 :N] let fi(p) :=frequency of i up to position p

Lemma
If b ≥ 8max

{
k ,
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j

(εfk )2

}
and t ≥A logN for an absolute

constant A> 0, then with probability ≥ 1−1/N3 for every i ∈ [m]∣∣medianr
{
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Proof.
Substitute value of b into definition of γ:
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Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream
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Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream (ideally one pass)

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Construct a spanning tree of the graph G in a single pass?

Very easy in insertion only streams:

Ï maintain a spanning forest

Ï add incoming edge if it connects two components, discard
otherwise
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Graph sketching
Main idea: apply classical sketching techniques on the edge

incidence matrix of a graph

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

B

x

=



1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 0 0 0 0
−1 0 0 1 0 0
0 0 1 0 0 −1
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...

...



·


x1
x2
...

xn



(n
2
)×n

Each row of B=potential edge in G.

If e = (u,v) ∈E , then be = χu −χv , otherwise be = 0
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Graph sketching
For every S ⊆V let

δ(S) :=E ∩ (S× (V \ S))

denote the edges crossing the cut. Let x = 1S (indicator of S).

Bx is the (signed) indicator of δ(S)
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A simple algorithm for connectivity

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

F 0 ←;
C0 ←V B current connected components

For t = 0 to T B T =O(logn)

For each u ∈Ct

Choose an edge in δ(u)
End For

F t+1 ←F t ∪ {spanning forest on selected edges}
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(nonzero of B ·1u)
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End For
End
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`0-samplers

Definition
A δ-error `0 sampler is

Ï a linear sketch S ∈Rm×n

Ï a decoding primitive Dec :Rm → [n]

such that for every x ∈Rn with integer entries J ←Dec(Sx)
satisfies

||J −UNIFsupp(x)||TVD ≤ δ.

Informally: sample a uniformly random element, output FAIL or
just garbage with probability at most δ

Recent constructions of `p samplers due to

Frahling-Indyk-Sohler’08, Andoni-Krauthgamer-Onak’11, Jowhari-Saglam-Tardos’11,

Nelson-Pachocki-Wang’17, Kapralov-Nelson-Pachocki-Wang-Woodruff-Yahyazadeh’17
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Connectivity via sketching (Ahn-Guha-McGregor’12)

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

F 0 ←;
C0 ←V B current connected components

For t = 0 to T B T =O(logn)

For each u ∈Ct

Choose an edge in δ(u)
End For

F t+1 ←F t ∪ {spanning forest on selected edges}
Ct+1 ← {new connected components}

End
return F T+1

S1, . . . ,ST ← `0-samplers
Maintain S1B, . . . ,ST B

For t = 0
For each

Run Dec(StB ·1u)

F t+1

Ct+1

End For
End
return F T+1



Some remarks

Why did we need T sketches S1, . . . ,ST ?

Very surprising: decoding is adaptive (T =O(logn) rounds), but
sketch is not

Which other graph problems admit sketching solutions?
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`p sampling problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output item i with probability ∼ f p
i

(fi =number of occurrences of i)

Ï Small storage: will get logO(1)N
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tail
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`0 sampler construction (sketch)

Main idea:

Ï if x is 1-sparse (has a single nonzero), can recover x using
few rows

Ï if x is t-sparse, a subsampling of x at rate ≈ 1/t is likely
1-sparse
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Recovering 1-sparse signals
Design a sketch S from which any x ∈Rn with supp(x)= 1 can
be recovered with probability 1?

1 1 1 1 1 1 ...

1

1 1
1 2 3 4 5 6 ... n-1 n

S

sketching matrix

space requirement=number of rows

•

x

b=

Suppose x has one nonzero: x = α ·ei∗

Compute
A=

n∑
i=1

xi = 〈u,x〉 = α

B =
n∑

i=1
i ·xi = 〈v ,x〉 = α · i∗

So
α= 〈x ,u〉

and
i∗ = 〈x ,v〉

〈x ,u〉
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What if x is not sparse?

Let 2j be the closest power of 2 to ||x ||0.

Choose a subset S ⊆ [n] such that for every i ∈ [n]

Pr[i ∈S]= 2−j

Then
Pr [|supp(x)∩S| = 1]=Ω(1)

Try O(logn) powers of 2, run 1-sparse recovery on xS!

Also need to verify that recovery was successful (can be done)
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Optimal bounds for `0-samplers

Definition
A δ-error `0 sampler is

Ï a linear sketch S ∈Rm×n

Ï a decoding primitive Dec :Rm → [n]

such that for every x ∈Rn with integer entries J ←Dec(Sx)
satisfies

||J −UNIFsupp(x)||TVD ≤ δ.

Jowhari-Saglam-Tardos’11: there exist δ-error `0-samplers with
m =O(logn log(1/δ)) rows.

Kapralov-Nelson-Pachocki-Wang-Woodruff-Yahyazadeh’17: this space bound
is optimal for δ> 2−n0.99

(and more results)


