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Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klogN)

Much better than storing all items!
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Heavy hitters problem
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Heavy hitters problem
» Single pass over the data: i, b, ..., In
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Heavy hitters problem
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Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!
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Heavy hitters problem
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Heavy hitters problem
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Heavy hitters problem
» Single pass over the data: i, b, ..., In

Assume N is known

» Output kK most frequent items

(Heavy hitters)

» Small storage: will get O(klog N)

Much better than storing all items!
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Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!
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Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!
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Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!
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Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!
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Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!
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Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
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» Small storage: will get O(klog N)

Much better than storing all items!
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Heavy hitters problem
» Single pass over the data: i, b, ..., In
Assume N is known
» Output k most frequent items
(Heavy hitters)
» Small storage: will get O(klog N)

Much better than storing all items!
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Main primitive: APPROXPOINTQUERY in small space

Observe a stream of updates, maintain small space data
structure

Task: after observing the stream, given i€ {1,2,...,m}, compute
estimate f; of f;



Main primitive: APPROXPOINTQUERY in small space

Observe a stream of updates, maintain small space data
structure

Task: after observing the stream, given i€ {1,2,...,m}, compute
estimate f; of f;
To be specified:

» space complexity?

» quality of approximation?

» success probability?



ApproxPointQuery

Choose
» t random hash functions hy, h, ..., h; from items [m] to
b= k buckets {1,2,..., b}

» t random hash functions s, sy, ...,s; from items [m] to

b buckets

— array C

t hash functions
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end for
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Choose
» t random hash functions hy, h, ..., h; from items [m] to
b= k buckets {1,2,..., b}

» t random hash functions s, sy, ...,s; from items [m] to

b buckets

/75
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4 — array C

t hash functions
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The algorithm runs t independent copies of basic estimate:
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end for



UPDATE(C, i)
for re(1:1

Clr, hr()] < C[r, hr(D)] + sr(i)
end for

ESTIMATE(C, i)
return median,{C[r, h(i)]- sr(i)}

By basic estimate analysis for every re[1:{]

E[C[r, hr(D)]-sr(D)] = fi
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YES: hashing into a sufficiently large number of buckets
reduces estimation error to below ¢ - fy



UPDATE(C, i)
for re(1:1

Clr, hr()] < C[r, hr(D)] + sr(i)
end for

ESTIMATE(C, i)
return median,{C[r, h(i)]- sr(i)}

By basic estimate analysis for every re[1:{]
E[C[r, hr()]-sr(1)] =i
and

Es[(Clr.he(D]-s:()-f)F]= Y,
j#ihe(j)=h (i)

How large can the variance be? Can be be reduced by making
number of buckets b large?

YES: hashing into a sufficiently large number of buckets
reduces estimation error to below ¢ - fy

O(log N) repetitions ensure estimates are correct for all / with
high probability



UPDATE(C, i)
for re(1:1

Clr, hr()] < C[r, hr(D)] + sr(i)
end for

ESTIMATE(C, i)
return median,{C[r, h(i)]- sr(i)}



UPDATE(C, i) ESTIMATE(C, i)

for re[1:1 : N
Clr, he ()] = C[r, he(i)] + s (i) return median,{C[r, h(i)]- (i)}
end for
Lemma . .
itb= 8max{k, —(Zgj;k?zmj } andt= O(logN), then for every i € [m]

|median, {C[r, hy(i)] - s, (i)} — fi(p)| < ef
at every point pe [1: N] in the stream.

(fi(p) is the frequency of i up to position p)
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UPDATE(C, i) ESTIMATE(C, i)

for re[1:1 : N
Clr, he ()] = C[r, he(i)] + s (i) return median,{C[r, h(i)]- (i)}
end for
Lemma . .
itb= 8max{k, —(Zgj;k?zmj } andt= O(logN), then for every i € [m]

|median, {C[r, hy(i)] - s, (i)} — fi(p)| < ef
at every point pe [1: N] in the stream.

(fi(p) is the frequency of i up to position p)

Space complexity is O(blogN)

How large is b?‘




Space complexity

325 12
Setb:8max{k, Zjera }

(ef)?

Note that b= O(k/€2) if %Zj(—:TAIL 73.2 = O(fE)

head —

tail

In practice, choose b subject to space constraints, detect

elements with counts above O(s, /%Zje TAIL flz)
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Set k = 1. Suppose that 1 appears /N times in the stream, and
other N - VN elements are distinct
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Space complexity

Set k = 1. Suppose that 1 appears /N times in the stream, and
other N - VN elements are distinct

Then fy =vN, fi=1fori=2,N-vN.

325y 12
Setb:8max{1,%}

We have Yjeran f?=N-vVN=N,and ff =N

= O(1/¢?) suffices

So b=8max { 1, 25 f? }

(ef1)?

Remarkable, as 1 appears only in V'N positions out of N: a
vanishingly small fraction of positions!



Final algorithm: COUNTSKETCH

FINDAPPROXTOP(S, k,€): returns set of k items such that
fi= (1 —¢)fy for all returned i

(In fact also every i with f; = (1 —¢)fy is reported)

APPROXPOINTQUERY(S, i,€): returns f € [f; — efy, f; + efy]

Find head items if they contribute the bulk of the stream in £5
sense



CountSketch: proof details



UPDATE(C, i)
for re(1:1
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UPDATE(C, i)
for re(1:1

Clr, hr()] < C[r, hr(D)] + sr(i)
end for

ESTIMATE(C, i)
return median,{C[r, h(i)]- sr(i)}

By basic estimate analysis for every re[1:{]
E[C[r, hr(D)]-sr(1)] = fi
and

Es[(Clr.he(D]-s:()-f)F]= Y,
j?ﬁiihr(i):hr(i)
How large can the variance be? Does it reduce by about a
factor of b?

Consider contribution of head and tail items separately:
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» NO-COLLISIONS,(f) — i does not collide with any of the
head items under hashing r
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Consider contribution of head and tail items separately:

2 _ 2 2

VDN I VR P D
Jj#i:he(j)=h.(i) JEHEAD, j#i JETAIL,j#i
he(j)=h (i) he(1)=he (i)

For each re[1:t] and each item i € [m] define three events:

» NO-COLLISIONS,(f) — i does not collide with any of the
head items under hashing r

» SMALL-VARIANCE, (/) — i does not collide with too many of
tail items under hashing r

» SMALL-DEVIATION,(/) — success event from basic analysis

Show that all three events hold simultaneously with probability
strictly bigger than 1/2 — so median gives good estimate



(No) collisions with head items

NO-COLLISIONS,(/):=event that
{je HEAD\i: he(j)=he ()} = o,

i.e. that i collides with none of top k elements under h;.



(No) collisions with head items

NO-COLLISIONS,(/):=event that

{je HEAD\i: h.(j) = he ()} = @,
i.e. that i collides with none of top k elements under h;.
For every j#iand every re[1:{

Prih.(i)=he(j)]<1/b



(No) collisions with head items

NO-COLLISIONS,(/):=event that
{je HEAD\i: he(j)=he ()} = o,
i.e. that i collides with none of top k elements under h;.
For every j#iand every re[1:{
Pr[h.(i)=hr(j)]<1/b
Suppose that b= 8k. Then by the union bound

Pr[NO-COLLISIONS,(/)]=1—-k/b
>1-1/8



Consider contribution of head and tail items separately:
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Jj#i:he(j)=h.(i) JEHEAD, j#i JETAIL,j#i
he(j)=h (i) he(1)=he (i)

For each re[1:t] and each item i € [m] define three events:

» NO-COLLISIONS,(f) — i does not collide with any of the
head items under hashing r

» SMALL-VARIANCE, (/) — i does not collide with too many of
tail items under hashing r

» SMALL-DEVIATION,(/) — success event from basic analysis

Show that all three events hold simulaneously with probability
strictly bigger than 1/2 — so median gives good estimate



Consider contribution of head and tail items separately:
2 _ 2 2
D SRR NP VR D D
JZi:h(j)=h (i) JEHEAD, j#i JETAIL,j#i
he (i) =he (i) hy (1)=h (i)

For each re[1:t] and each item i € [m] define three events:

» NO-COLLISIONS,(f) — i does not collide with any of the
head items under hashing r

» SMALL-VARIANCE,(/) — i does not collide with too many
of tail items under hashing r

» SMALL-DEVIATION,(/) — success event from basic analysis

Show that all three events hold simulaneously with probability
strictly bigger than 1/2 — so median gives good estimate



Small variance from tail elements
SMALL-VARIANCE,(/):=event that
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he())=hr (i)



Small variance from tail elements
SMALL-VARIANCE,(/):=event that
8
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Prp. [hr(i)=h(j)] =1/b (bis the number of buckets)



Small variance from tail elements
SMALL-VARIANCE,(/):=event that

8

2 2
> =% 2
je TAIL j#i jeTAIL

hr(j)=hr (i)

Forevery i,je[m],i#jand re[1:{]
Prp. [hr(i)=h(j)] =1/b (bis the number of buckets)

So by linearity of expectation

E Z fj2 = Z 7;'2 -Prp[he () = hr(j)]
JeTAIL,j#i JeTAIL,j#i
hr(j)=hr (1)

1 2
2

S —
b T



Markov’s inequality

Theorem
For every non-negative random variable X
with mean p =0, and every k =1 one has

PriX=k-p]<1/k




We proved that

1

2 2

El > fl=g5 2 f
JeTAIL j#i JeTAIL
he())=he(7)

By Markov’s inequality one has, for every i and every r,

Pr[SMALL-VARIANCE,(i/)]=1-1/8



NO-COLLISIONS,(/) and SMALL-VARIANCE,(/): recap

Consider contribution of head and tail items separately:
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Conditioned on NO-COLLISIONS,(i) and SMALL-VARIANCE (/)
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hr(7)=h (i) he(7)=hr (i)
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» first term is zero



NO-COLLISIONS,(/) and SMALL-VARIANCE,(/): recap

Consider contribution of head and tail items separately:

2 _ 2 2

P SN NP SRS P D
JZi:he (j)=hr (i) JeHEAD, j#i JeTAIL,j#i
hr(7)=h (i) he(7)=hr (i)

Conditioned on NO-COLLISIONS, (i) and SMALL-VARIANCE (/)

» first term is zero

» second term is at most

(0]

2
r

jeTAIL

ol



Small deviation event

SMALL-DEVIATION,(/)=event that

(C[r, he(D)]- (i) - £)? < 8Var(Clr, hy(1)] - s+ (i)).



Small deviation event

SMALL-DEVIATION,(/)=event that

(C[r, he(D)]- (i) - £)? < 8Var(Clr, hy(1)] - s+ (i)).

By Chebyshev’s inequality one has, for every i and every r,

Pr[SMALL-DEVIATION/(/)]=1-1/8



Pr[SMALL-VARIANCE,(/)]=1-1/8

Pr[NO-COLLISIONS,(/)]=1-1/8

Pr[SMALL-DEVIATION/(/)]=1-1/8
So by the union bound

Pr[SMALL-VARIANCE,(i) and NO-COLLISIONS,(/)
and SMALL-DEVIATION,(i)] = 5/8.



Let
1

— | 2
Y=z 2

jeTAIL

o

For every pe[1: N] let fi(p) :=frequency of i up to position p

Lemma
If b= 8k, then for every i, every re[1:1],

Pr(IC[r, hr(1)]-sr(i) - il <8Y] =5/8



Let
1

— | 2
Y=z 2

jeTAIL

o

For every pe[1: N] let fi(p) :=frequency of i up to position p

Lemma
Ifb=8k and t = Alog N for an absolute constant A> 0, then for
every i, with probability =1 -1 /N*

|median, {Cl[r, hy(i)]- s:(i)} - fi| =8y

at the end of the stream.

Proof.
Chernoff bounds. O
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Y=z 2

jeTAIL

o

For every pe[1: N] let fi(p) :=frequency of i up to position p

Lemma
Ifb=8k and t= AlogN for an absolute constant A> 0, then with
probability =1 —1/N° for every i € [m]

|median, {CI[r, hy(i)]- s:(i)} - fi(p)| = 8y

at the end of the stream.

Proof.
Chernoff bounds. O
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jeTAIL

For every pe[1: N] let fi(p) :=frequency of i up to position p

Lemma ,
If b=8max {k BeXjemaly
P (efy)?

constant A> 0, then with probability =1 —1/N? for every i € [m]

} and t = Alog N for an absolute

|median, {Cl[r, hr(i)] - sr(i)} - fi(p)| < efy

at the end of the stream.



Let

1
vi=\|5 2 f
jeTAIL

For every pe[1: N] let fi(p) :=frequency of i up to position p

Lemma ,
If b=8max {k BeXjemaly
P (efy)?

constant A> 0, then with probability =1 —1/N? for every i € [m]

} and t = Alog N for an absolute

|median, {Cl[r, hr(i)] - sr(i)} - fi(p)| < efy

at the end of the stream.

Proof.
Substitute value of b into definition of y:

]
Y=\|5 L fPsch/8
jeTAIL
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> algorithm can only use O(n) space
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Streaming model

» streaming model: edges of G arrive in an arbitrary order in
a stream;

> algorithm can only use O(n) space

» several passes over the stream (ideally one pass)

Insertion-only stream




Construct a spanning tree of the graph G in a single pass?



Construct a spanning tree of the graph G in a single pass?

Very easy in insertion only streams:
» maintain a spanning forest

» add incoming edge if it connects two components, discard
otherwise
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Construct a spanning tree of the graph G in a single pass?

Very easy in insertion only streams:
» maintain a spanning forest

» add incoming edge if it connects two components, discard
otherwise

Many modern networks evolve over

time, edges both inserted and deleted twlttef’

Construct spanning trees in dynamic streams in small space?‘




What if we have deletions?



What if we have deletions?



What if we have deletions?



What if we have deletions?




What if we have deletions?




What if we have deletions?




What if we have deletions?




What if we have deletions?




What if we have deletions?



What if we have deletions?

Very different algorithms are needed...



Graph sketching

Main idea: apply classical sketching techniques on the edge
incidence matrix of a graph

1 -1 0 00 0]

0 1 -100 0

0 0 0 00 O

B -|-1 0 0 100

0 0 1 00 -1

0 0 0 00 O
(2)xn

Each row of B=potential edge in G.

If e=(u,v) e E, then be = xuy—Xv, otherwise bg =0




Graph sketching

Main idea: apply classical sketching techniques on the edge
incidence matrix of a graph
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0 0 1 00 -1
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Each row of B=potential edge in G.
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Graph sketching

Main idea: apply classical sketching techniques on the edge
incidence matrix of a graph

1 -1 0 00 0]

0 1 -100 0

0 0 0 00 O

B -|-1 0 0 100

0 0 1 00 -1

0 0 0 00 O
(2)xn

Each row of B=potential edge in G.

If e=(u,v) e E, then be = xuy—Xv, otherwise bg =0




Graph sketching
For every Sc V let
3(S):=En(Sx(V\S))
denote the edges crossing the cut. Let x =1g (indicator of S).

‘ Bx is the (signed) indicator of §(S) ‘

Xu=1

1 -1 0 00 0°
0 1 -1 00 0
0 0 0 00 O
" B =|-1 0 0100
K 0 0 1 00 -1
0 0 0 00 O
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A simple algorithm for connectivity

FO—¢
CO ~V [> current connected components
Fort=0to T > T =0(logn)
For each ue C!
Choose an edge in §(u) (nonzero of B-1,)
End For
Ft+1 — Ft {spanning forest on selected edges}
Ct+1 «<— {new connected components}
End
return F7+1
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FO—¢
CO ~V [> current connected components
Fort=0to T > T =0(logn)
For each ue C!
Choose an edge in §(u) (Sample nnz of B-1,7)
End For
Ft+1 — Ft {spanning forest on selected edges}
Ct+1 «<— {new connected components}
End
return F7+1
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FO—¢
CO ~V [> current connected components
Fort=0to T > T =0(logn)
For each ue C!
Choose an edge in §(u) (Sample nnz of B-1,7)
End For
Ft+1 — Ft {spanning forest on selected edges}
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return F7+1



A simple algorithm for connectivity

FO—g
CY—V > current connected components
Fort=0to T > T=0(logn)
For each ue C!
Choose an edge in 5(u) | (Sample nnz of B-1,7)]
End For
F1+1 — Fty {spanning forest on selected edges}

Ct+1 «<— {new connected components}

End
return FT+1
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A 5-error €5 sampler is

» alinear sketch SeR™"
» a decoding primitive Dec: R™ — [n]

such that for every x e R" with integer entries J — Dec(Sx)
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¢p-samplers

Definition
A 5-error €5 sampler is

» alinear sketch SeR™"
» a decoding primitive Dec: R™ — [n]

such that for every x e R" with integer entries J — Dec(Sx)
satisfies

Informally: sample a uniformly random element, output FAIL or
just garbage with probability at most &
Recent constructions of £, samplers due to

Frahling-Indyk-Sohler’'08, Andoni-Krauthgamer-Onak’11, Jowhari-Saglam-Tardos’11,
Nelson-Pachocki-Wang'17, Kapralov-Nelson-Pachocki-Wang-Woodruff-Yahyazadeh’17



Connectivity via sketching (Ahn-Guha-McGregor’12)

FO— g S',...,ST — tg-samplers
CY«—V > current connected components Maintain S'B,...,S™B
Fort=0to T > T=0(logn)

For each ue C!

Choose an edge in §(u) Run Dec(S!B-1y)

End For

F+1 — F {spanning forest on selected edges}

C"+1 «<— {new connected components}
End
return F7+1



Some remarks

Why did we need T sketches S',...,S7?

Very surprising: decoding is adaptive (T = O(log n) rounds), but
sketch is not

Which other graph problems admit sketching solutions?
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¢p-samplers

Definition
A 5-error €5 sampler is

» alinear sketch SeR™"
» a decoding primitive Dec: R™ — [n]

such that for every x e R" with integer entries J — Dec(Sx)
satisfies

Informally: sample a uniformly random element, output FAIL or
just garbage with probability at most &
Recent constructions of £, samplers due to

Frahling-Indyk-Sohler’'08, Andoni-Krauthgamer-Onak’11, Jowhari-Saglam-Tardos’11,
Nelson-Pachocki-Wang'17, Kapralov-Nelson-Pachocki-Wang-Woodruff-Yahyazadeh’17



¢, sampling problem
» Single pass over the data: iy, b, ..., Iy
Assume N is known
> Output item / with probability ~
(fr=number of occurrences of /)
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» Small storage: will get log®") N
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» Small storage: will get log®") N
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¢, sampling problem
» Single pass over the data: iy, b, ..., Iy
Assume N is known
> Output item / with probability ~
(fr=number of occurrences of /)

» Small storage: will get log®") N
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¢, sampling problem
» Single pass over the data: iy, b, ..., Iy
Assume N is known
> Output item / with probability ~
(fr=number of occurrences of /)

» Small storage: will get log®") N
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¢, sampling problem
» Single pass over the data: iy, b, ..., Iy
Assume N is known
> Output item / with probability ~
(fr=number of occurrences of /)

» Small storage: will get log®") N
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¢, sampling problem
» Single pass over the data: iy, b, ..., Iy
Assume N is known
> Output item / with probability ~
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» Small storage: will get log®") N
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¢, sampling problem
» Single pass over the data: iy, b, ..., Iy
Assume N is known
> Output item / with probability ~
(fr=number of occurrences of /)

» Small storage: will get log®") N
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¢, sampling problem
» Single pass over the data: iy, b, ..., Iy
Assume N is known
> Output item / with probability ~
(fr=number of occurrences of /)

» Small storage: will get log®") N
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¢, sampling problem
» Single pass over the data: iy, b, ..., Iy
Assume N is known
> Output item / with probability ~
(fr=number of occurrences of /)

» Small storage: will get log®") N
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¢, sampling problem
» Single pass over the data: iy, b, ..., Iy
Assume N is known
> Output item / with probability ~
(fr=number of occurrences of /)

» Small storage: will get log®") N
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¢, sampling problem
» Single pass over the data: iy, b, ..., Iy
Assume N is known
> Output item / with probability ~
(fr=number of occurrences of /)

» Small storage: will get log®") N
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¢, sampling problem
» Single pass over the data: iy, b, ..., Iy
Assume N is known
> Output item / with probability ~
(fr=number of occurrences of /)

» Small storage: will get log®") N
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H ﬁﬁl_ll_ll_ll_ll_l
1 2 3 4 5 6 7 8 9 10

346321031312255598744223



¢, sampling problem
» Single pass over the data: iy, b, ..., Iy
Assume N is known
> Output item / with probability ~
(fr=number of occurrences of /)
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¢, sampling problem
» Single pass over the data: iy, b, ..., Iy
Assume N is known
> Output item / with probability ~
(fr=number of occurrences of /)

» Small storage: will get log®") N
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1 2 3 4 5 6 7 8 9 10
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¢, sampler construction (sketch)

Main idea:

» if x is 1-sparse (has a single nonzero), can recover x using
few rows

» if x is t-sparse, a subsampling of x at rate = 1/t is likely
1-sparse



Recovering 1-sparse signals
Design a sketch S from which any x € R" with supp(x) =1 can
be recovered with probability 1?

s | \-—=E

sketching matrix

space requirement=number of rows




Recovering 1-sparse signals
Design a sketch S from which any x € R" with supp(x) =1 can
be recovered with probability 1?

(=
5=

[1 11111 ...
S|[123456 ... n

sketching matrix

space requirement=number of rows

Suppose x has one nonzero: x = a-ej:
m
Co pute So

A=) Xi =Uux) =« o= (X, U)
i=1

and RCA%)

* =
<X7u>

n
B=)i-xj=(v,x)=a-i*
i=1
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Let 2/ be the closest power of 2 to ||x]]o.



What if x is not sparse?

Let 2/ be the closest power of 2 to ||x]]o.

Choose a subset S < [n] such that for every i € [n]

Prlic S]=277



What if x is not sparse?

Let 2/ be the closest power of 2 to ||x]]o.

Choose a subset S < [n] such that for every i € [n]
Prlic S]=277

Then
Pr{isupp(x)n SI=1]=Q(1)



What if x is not sparse?

Let 2/ be the closest power of 2 to ||x]]o.
Choose a subset S < [n] such that for every i € [n]
Prlic S]=277
Then
Pr[Isupp(x)nSI=1]=Q(1)

Try O(logn) powers of 2, run 1-sparse recovery on xg!

Also need to verify that recovery was successful (can be done)



Optimal bounds for €y-samplers
Definition
A 6-error €9 sampler is
» alinear sketch SeR™"
» a decoding primitive Dec: R — [n]

such that for every x € R” with integer entries J — Dec(Sx)
satisfies
IJ = UNIFsypp(x)llTvp < 6.

Jowhari-Saglam-Tardos'11: there exist 8-error £y-samplers with
m = O(lognlog(1/8)) rows.

Kapralov-Nelson-Pachocki-Wang-Woodruff-Yahyazadeh'17: this space bound
. . 0.99
is optimal for §>2"""" (and more results)



