Lecture 3: CountSketch, Graph sketching, ℓ_{0} Samplers

Michael Kapralov

EPFL

May 26, 2017

- CountSketch (recap and proofs)
- Graph streaming
- Connectivity via sketching
- Designing ℓ_{0} samplers
- CountSketch (recap and proofs)
- Graph streaming
- Connectivity via sketching
- Designing ℓ_{0} samplers

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

1	2	3	4	5	6	7	8	9	10

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

3
46

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

3463

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

34632

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

3463210

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

346310103

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{lllllll}3 & 4 & 6 & 3 & 2 & 10 & 3\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{lllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{llllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{lllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{llllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{lllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

3
$\begin{array}{lllllllllllll}4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

3
$\begin{array}{llllllllllllll}4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{llllllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{lllllllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9 & 8\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{llllllllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9 & 8 & 7\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{lllllllllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9 & 8 & 7 & 4\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{llllllllllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9 & 8 & 7 & 4 & 4\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$$
2
$$

10
3
1
1
2
2
5
55
9
87
44
42

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

3
463
2
10
3
1312
2
5
5
5
9
87
44
42
2

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

Main primitive: ApproxPointQuery in small space

Observe a stream of updates, maintain small space data structure

Task: after observing the stream, given $i \in\{1,2, \ldots, m\}$, compute estimate \widehat{f}_{i} of f_{i}

Main primitive: ApPROXPOINTQUERY in small space

Observe a stream of updates, maintain small space data structure

Task: after observing the stream, given $i \in\{1,2, \ldots, m\}$, compute estimate \widehat{f}_{i} of f_{i}

To be specified:

- space complexity?
- quality of approximation?
- success probability?

ApproxPointQuery

Choose

- t random hash functions $h_{1}, h_{2}, \ldots, h_{t}$ from items $[m]$ to $b \approx k$ buckets $\{1,2, \ldots, b\}$
- t random hash functions $s_{1}, s_{2}, \ldots, s_{t}$ from items $[m]$ to $\{-1,+1\}$

ApproxPointQuery

Choose

- t random hash functions $h_{1}, h_{2}, \ldots, h_{t}$ from items $[m]$ to $b \approx k$ buckets $\{1,2, \ldots, b\}$
- t random hash functions $s_{1}, s_{2}, \ldots, s_{t}$ from items $[m]$ to $\{-1,+1\}$

The algorithm runs t independent copies of basic estimate:

Update(C, i) for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

end for

Estimate(C, i)
return median ${ }_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

ApproxPointQuery

Choose

- t random hash functions $h_{1}, h_{2}, \ldots, h_{t}$ from items $[m]$ to $b \approx k$ buckets $\{1,2, \ldots, b\}$
- t random hash functions $s_{1}, s_{2}, \ldots, s_{t}$ from items $[m]$ to $\{-1,+1\}$

The algorithm runs t independent copies of basic estimate:

Update(C, i) for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

end for

Estimate(C, i)
return median ${ }_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

end for
By basic estimate analysis for every $r \in[1: t]$

$$
\mathbf{E}\left[C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right]=f_{i}
$$

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

end for
By basic estimate analysis for every $r \in[1: t]$

$$
\mathbf{E}\left[C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right]=f_{i}
$$

and

$$
\mathbf{E}_{s}\left[\left(C\left[r, h_{r}(i)\right] \cdot s_{r}(i)-f_{i}\right)^{2}\right]=\sum_{j \neq i: h_{r}(\mathrm{j})=\mathbf{h}_{\mathbf{r}}(\mathrm{i})} f_{j}^{2}
$$

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

Estimate(C, i)

return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

end for

By basic estimate analysis for every $r \in[1: t]$

$$
\mathrm{E}\left[C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right]=f_{i}
$$

and

$$
\mathbf{E}_{s}\left[\left(C\left[r, h_{r}(i)\right] \cdot s_{r}(i)-f_{i}\right)^{2}\right]=\sum_{j \neq: \mathrm{h}_{r}(\mathrm{i})=\mathrm{h}_{r}(\mathrm{i})} f_{j}^{2}
$$

How large can the variance be? Can be be reduced by making number of buckets b large?

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

Estimate(C, i)

return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

end for

By basic estimate analysis for every $r \in[1: t]$

$$
\mathbf{E}\left[C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right]=f_{i}
$$

and

$$
\mathbf{E}_{s}\left[\left(C\left[r, h_{r}(i)\right] \cdot s_{r}(i)-f_{i}\right)^{2}\right]=\sum_{j \neq: h_{r}(\mathrm{i})=\mathbf{h}_{r}(\mathrm{i})} f_{j}^{2}
$$

How large can the variance be? Can be be reduced by making number of buckets b large?

YES: hashing into a sufficiently large number of buckets reduces estimation error to below $\varepsilon \cdot f_{k}$

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

Estimate(C, i)
return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

end for

By basic estimate analysis for every $r \in[1: t]$

$$
\mathbf{E}\left[C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right]=f_{i}
$$

and

$$
\mathbf{E}_{s}\left[\left(C\left[r, h_{r}(i)\right] \cdot s_{r}(i)-f_{i}\right)^{2}\right]=\sum_{j \neq: \mathbf{h}_{r}(\mathrm{i})=\mathbf{h}_{\mathbf{r}}(\mathrm{i})} f_{j}^{2}
$$

How large can the variance be? Can be be reduced by making number of buckets b large?

YES: hashing into a sufficiently large number of buckets reduces estimation error to below $\varepsilon \cdot f_{k}$
$O(\log N)$ repetitions ensure estimates are correct for all i with high probability

Update(C, i)
for $r \in[1: t]$
$C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)$
end for

Estimate(C, i)
return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

Estimate(C, i)

return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

end for

Lemma
If $b \geq 8 \max \left\{k, \frac{32 \Sigma_{j \in \text { TAA }} f_{j}^{2}}{\left(\varepsilon \varepsilon_{k}\right)^{2}}\right\}$ and $t=O(\log N)$, then for every $i \in[m]$

$$
\left|\operatorname{median}_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}-f_{i}(p)\right| \leq \varepsilon f_{k}
$$

at every point $p \in[1: N]$ in the stream.
($f_{i}(p)$ is the frequency of i up to position p)

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

Estimate(C, i)

return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

end for

Lemma
If $b \geq 8 \max \left\{k, \frac{32 \Sigma_{j \in \text { TAA }} f_{j}^{2}}{\left(\varepsilon \varepsilon_{k}\right)^{2}}\right\}$ and $t=O(\log N)$, then for every $i \in[m]$

$$
\left|\operatorname{median}_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}-f_{i}(p)\right| \leq \varepsilon f_{k}
$$

at every point $p \in[1: N]$ in the stream.
($f_{i}(p)$ is the frequency of i up to position p)
Space complexity is $O(b \log N)$

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

Estimate(C, i)

return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

end for

Lemma
If $b \geq 8 \max \left\{k, \frac{32 \sum_{j \in \text { TAA }} f_{j}^{2}}{\left(\varepsilon \varepsilon_{k}\right)^{2}}\right\}$ and $t=O(\log N)$, then for every $i \in[m]$

$$
\left|\operatorname{median}_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}-f_{i}(p)\right| \leq \varepsilon f_{k}
$$

at every point $p \in[1: N]$ in the stream.
($f_{i}(p)$ is the frequency of i up to position p)
Space complexity is $O(b \log N)$

Space complexity

$$
\text { Set } b=8 \max \left\{k, \frac{32 \sum_{j \in \text { TALL }} f_{j}^{2}}{\left(\varepsilon f_{k}\right)^{2}}\right\}
$$

Note that $b=O\left(k / \varepsilon^{2}\right)$ if $\frac{1}{k} \sum_{j \in T A / L} f_{j}^{2}=O\left(f_{k}^{2}\right)$

In practice, choose b subject to space constraints, detect elements with counts above $O\left(\varepsilon \sqrt{\frac{1}{k} \sum_{j \in \text { TAIL }} f_{j}^{2}}\right)$

Space complexity

Set $k=1$. Suppose that 1 appears \sqrt{N} times in the stream, and other $N-\sqrt{N}$ elements are distinct

Space complexity

Set $k=1$. Suppose that 1 appears \sqrt{N} times in the stream, and other $N-\sqrt{N}$ elements are distinct

Then $f_{1}=\sqrt{N}, f_{i}=1$ for $i=2, N-\sqrt{N}$.

$$
\text { Set } b=8 \max \left\{1, \frac{32 \sum_{j \in \text { TALL }} f_{j}^{2}}{\left(\varepsilon f_{1}\right)^{2}}\right\}
$$

Space complexity

Set $k=1$. Suppose that 1 appears \sqrt{N} times in the stream, and other $N-\sqrt{N}$ elements are distinct

Then $f_{1}=\sqrt{N}, f_{i}=1$ for $i=2, N-\sqrt{N}$.

$$
\text { Set } b=8 \max \left\{1, \frac{32 \Sigma_{j \epsilon \text { TALL }} f_{j}^{2}}{\left(\varepsilon f_{1}\right)^{2}}\right\}
$$

We have $\sum_{j \in \text { TAIL }} f_{j}^{2}=N-\sqrt{N} \leq N$, and $f_{1}^{2}=N$

Space complexity

Set $k=1$. Suppose that 1 appears \sqrt{N} times in the stream, and other $N-\sqrt{N}$ elements are distinct

Then $f_{1}=\sqrt{N}, f_{i}=1$ for $i=2, N-\sqrt{N}$.

$$
\text { Set } b=8 \max \left\{1, \frac{32 \Sigma_{j \in \text { TALL }} f_{j}^{2}}{\left(\varepsilon f_{1}\right)^{2}}\right\}
$$

$$
\text { We have } \sum_{j \in \text { TAIL }} f_{j}^{2}=N-\sqrt{N} \leq N \text {, and } f_{1}^{2}=N
$$

So $b=8 \max \left\{1, \frac{32 \sum_{j \in \text { TALL }} f_{j}^{2}}{\left(\varepsilon f_{1}\right)^{2}}\right\}=O\left(1 / \varepsilon^{2}\right)$ suffices

Space complexity

Set $k=1$. Suppose that 1 appears \sqrt{N} times in the stream, and other $N-\sqrt{N}$ elements are distinct

Then $f_{1}=\sqrt{N}, f_{i}=1$ for $i=2, N-\sqrt{N}$.

$$
\text { Set } b=8 \max \left\{1, \frac{32 \Sigma_{j \in \operatorname{TILL}} f_{j}^{2}}{\left(\varepsilon f_{1}\right)^{2}}\right\}
$$

$$
\text { We have } \sum_{j \in \text { TAlL }} f_{j}^{2}=N-\sqrt{N} \leq N \text {, and } f_{1}^{2}=N
$$

$$
\text { So } b=8 \max \left\{1, \frac{32 \sum_{j \in \operatorname{TALL}} f_{j}^{2}}{\left(\varepsilon \epsilon_{1}\right)^{2}}\right\}=O\left(1 / \varepsilon^{2}\right) \text { suffices }
$$

Remarkable, as 1 appears only in \sqrt{N} positions out of N : a vanishingly small fraction of positions!

Final algorithm: COuntSketch

FINDAPPROXTOP (S, k, ε) : returns set of k items such that $f_{i} \geq(1-\varepsilon) f_{k}$ for all returned i
(In fact also every i with $f_{i} \geq(1-\varepsilon) f_{k}$ is reported)
$\operatorname{ApproxPointQuery}(S, i, \varepsilon)$: returns $\widehat{f}_{i} \in\left[f_{i}-\varepsilon f_{k}, f_{i}+\varepsilon f_{k}\right]$

Find head items if they contribute the bulk of the stream in ℓ_{2} sense

CountSketch: proof details

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

end for
By basic estimate analysis for every $r \in[1: t]$

$$
\mathbf{E}\left[C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right]=f_{i}
$$

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

end for
By basic estimate analysis for every $r \in[1: t]$

$$
\mathbf{E}\left[C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right]=f_{i}
$$

and

$$
\mathbf{E}_{s}\left[\left(C\left[r, h_{r}(i)\right] \cdot s_{r}(i)-f_{i}\right)^{2}\right]=\sum_{j \neq i: h_{r}(\mathrm{j})=\mathbf{h}_{\mathbf{r}}(\mathrm{i})} f_{j}^{2}
$$

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

Estimate(C, i)

return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

end for

By basic estimate analysis for every $r \in[1: t]$

$$
\mathrm{E}\left[C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right]=f_{i}
$$

and

$$
\mathbf{E}_{s}\left[\left(C\left[r, h_{r}(i)\right] \cdot s_{r}(i)-f_{i}\right)^{2}\right]=\sum_{j \neq: h_{r}(\mathrm{i})=h_{r}(\mathrm{i})} f_{j}^{2}
$$

How large can the variance be? Does it reduce by about a factor of b ?

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

Estimate(C, i)

return median ${ }_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

end for

By basic estimate analysis for every $r \in[1: t]$

$$
\mathbf{E}\left[C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right]=f_{i}
$$

and

$$
\mathbf{E}_{s}\left[\left(C\left[r, h_{r}(i)\right] \cdot s_{r}(i)-f_{i}\right)^{2}\right]=\sum_{j \neq: h_{r}(\mathrm{i})=\mathbf{h}_{r}(\mathrm{i})} f_{j}^{2}
$$

How large can the variance be? Does it reduce by about a factor of b ?

Consider contribution of head and tail items separately:

$$
\sum_{j \neq: h_{r}(j)=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H \in A D, j \neq i \\ h_{r}(\mathbf{j})=h_{r}(i)}} f_{j}^{2}+\sum_{\substack{j \in T A L L, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}
$$

Consider contribution of head and tail items separately:

$$
\sum_{j \neq i: h_{r}(j)=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H E A D, j \neq i \\ \mathbf{h}_{\mathbf{r}}(\mathbf{j})=\mathbf{h}_{\mathbf{r}}(\mathbf{i})}} f_{j}^{2}+\sum_{\substack{j \in T A I L, j \neq i \\ \mathbf{h}_{\mathbf{r}}(\mathbf{j})=\mathbf{h}_{\mathbf{r}}(\mathbf{i})}} f_{j}^{2}
$$

Consider contribution of head and tail items separately:

$$
\sum_{j \neq i: h_{r}(j)=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H E A D, j \neq i \\ \mathbf{h}_{\mathbf{r}}(\mathbf{j})=\mathbf{h}_{\mathbf{r}}(\mathbf{i})}} f_{j}^{2}+\sum_{\substack{j \in T A / L, j \neq i \\ \mathbf{h}_{\mathbf{r}}(\mathbf{j})=\mathbf{h}_{\mathbf{r}}(\mathbf{i})}} f_{j}^{2}
$$

For each $r \in[1: t]$ and each item $i \in[m]$ define three events:

- No-Collisions $r(i)-i$ does not collide with any of the head items under hashing r

Consider contribution of head and tail items separately:

$$
\sum_{j \neq i: h_{r}(j)=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H E A D, j \neq i \\ \mathbf{h}_{\mathbf{r}}(\mathbf{j})=\mathbf{h}_{\mathbf{r}}(\mathbf{i})}} f_{j}^{2}+\sum_{\substack{j \in T A M L, j \neq i \\ \mathbf{h}_{\mathbf{r}}(\mathbf{j})=\mathbf{h}_{\mathbf{r}}(\mathbf{i})}} f_{j}^{2}
$$

For each $r \in[1: t]$ and each item $i \in[m]$ define three events:

- No-Collisions $r(i)-i$ does not collide with any of the head items under hashing r
- $\operatorname{SmaLL-VARIANCE}_{r}(i)-i$ does not collide with too many of tail items under hashing r

Consider contribution of head and tail items separately:

$$
\sum_{j \neq i: h_{r}(j)=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H E A D, j \neq i \\ \mathbf{h}_{\mathbf{r}}(\mathbf{j})=h_{\mathbf{r}}(\mathbf{i})}} f_{j}^{2}+\sum_{\substack{j \in T A / L, j \neq i \\ \mathbf{h}_{\mathbf{r}}(\mathbf{j})=h_{\mathbf{r}}(\mathbf{i})}} f_{j}^{2}
$$

For each $r \in[1: t]$ and each item $i \in[m]$ define three events:

- No-Collisions $r(i)-i$ does not collide with any of the head items under hashing r
- Small-Variancer $(i)-i$ does not collide with too many of tail items under hashing r
- SmaLL-Deviation $r_{r}(i)$ - success event from basic analysis

Consider contribution of head and tail items separately:

$$
\sum_{j \neq: h_{r}(\bar{j})=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H \in A D, j \neq i \\ h_{r}(\mathbf{j})=h_{r}(i)}} f_{j}^{2}+\sum_{\substack{j \in T A / L, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}
$$

For each $r \in[1: t]$ and each item $i \in[m]$ define three events:

- No-Collisions $r(i)-i$ does not collide with any of the head items under hashing r
- Small-Variance $r(i)-i$ does not collide with too many of tail items under hashing r
- Small-Deviation (i) - success event from basic analysis

Show that all three events hold simultaneously with probability strictly bigger than $1 / 2$ - so median gives good estimate

(No) collisions with head items

No-Collisions $_{r}(i):=$ event that

$$
\left\{j \in H E A D \backslash i: h_{r}(j)=h_{r}(i)\right\}=\varnothing,
$$

i.e. that i collides with none of top k elements under h_{r}.

(No) collisions with head items

No-Collisions $_{r}(i):=$ event that

$$
\left\{j \in H E A D \backslash i: h_{r}(j)=h_{r}(i)\right\}=\varnothing,
$$

i.e. that i collides with none of top k elements under h_{r}.

For every $j \neq i$ and every $r \in[1: t]$

$$
\operatorname{Pr}\left[h_{r}(i)=h_{r}(j)\right] \leq 1 / b
$$

(No) collisions with head items

$\mathrm{No}^{-C O L L I S I O N S}{ }_{r}(i):=$ event that

$$
\left\{j \in H E A D \backslash i: h_{r}(j)=h_{r}(i)\right\}=\varnothing,
$$

i.e. that i collides with none of top k elements under h_{r}.

For every $j \neq i$ and every $r \in[1: t]$

$$
\operatorname{Pr}\left[h_{r}(i)=h_{r}(j)\right] \leq 1 / b
$$

Suppose that $b \geq 8 k$. Then by the union bound

$$
\begin{aligned}
\operatorname{Pr}\left[\text { No-COLLISIONS }_{r}(i)\right] & \geq 1-k / b \\
& \geq 1-1 / 8
\end{aligned}
$$

Consider contribution of head and tail items separately:

$$
\sum_{j \neq: h_{r}(\bar{j})=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H \in A D, j \neq i \\ h_{r}(\mathbf{j})=h_{r}(i)}} f_{j}^{2}+\sum_{\substack{j \in T A / L, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}
$$

For each $r \in[1: t]$ and each item $i \in[m]$ define three events:

- No-Collisions $r(i)-i$ does not collide with any of the head items under hashing r
- Small-Variancer $(i)-i$ does not collide with too many of tail items under hashing r
- Small-Deviation (i) - success event from basic analysis

Show that all three events hold simulaneously with probability strictly bigger than $1 / 2$ - so median gives good estimate

Consider contribution of head and tail items separately:

$$
\sum_{j \neq: h_{r}(\bar{j})=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H \in A D, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}+\sum_{\substack{j \in T A / L, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}
$$

For each $r \in[1: t]$ and each item $i \in[m]$ define three events:

- No-Collisions $r(i)-i$ does not collide with any of the head items under hashing r
- Small-Variancer (i) - i does not collide with too many of tail items under hashing r
- SmalL-Deviation $r(i)$ - success event from basic analysis

Show that all three events hold simulaneously with probability strictly bigger than $1 / 2$ - so median gives good estimate

Small variance from tail elements

Small-Variancer $_{r}(i):=e \mathrm{event}$ that

$$
\sum_{\substack{j \in T A / L, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2} \leq \frac{8}{b} \sum_{j \in T A / L} f_{j}^{2}
$$

Small variance from tail elements

Small-VARIANCE $_{r}(i):=e \mathrm{event}$ that

$$
\sum_{\substack{j \in T A / L . j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2} \leq \frac{8}{b_{j \in T A M L}} \sum_{j} f_{j}^{2}
$$

For every $i, j \in[m], i \neq j$ and $r \in[1: t]$

$$
\operatorname{Pr}_{h_{r}}\left[h_{r}(i)=h_{r}(j)\right]=1 / b \quad(b \text { is the number of buckets })
$$

Small variance from tail elements

Small-VARIANCE $_{r}(i):=e \mathrm{event}$ that

$$
\sum_{\substack{j \in T A / L . j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2} \leq \frac{8}{b_{j \in T A M L}} \sum_{j} f_{j}^{2}
$$

For every $i, j \in[m], i \neq j$ and $r \in[1: t]$

$$
\operatorname{Pr}_{h_{r}}\left[h_{r}(i)=h_{r}(j)\right]=1 / b \quad(b \text { is the number of buckets })
$$

So by linearity of expectation

$$
\begin{aligned}
\mathbf{E}\left[\sum_{\substack{j \in T A L L, j \neq i \\
h_{r}(j)=h_{r}(i)}} f_{j}^{2}\right] & =\sum_{j \in T A L L, j \neq i} f_{j}^{2} \cdot \mathbf{P r}_{h_{r}}\left[h_{r}(i)=h_{r}(j)\right] \\
& \leq \frac{1}{b_{j \in T A L L}} \sum_{j} f_{j}^{2}
\end{aligned}
$$

Markov's inequality

Theorem
For every non-negative random variable X with mean $\mu \geq 0$, and every $k \geq 1$ one has

$$
\operatorname{Pr}[X \geq k \cdot \mu] \leq 1 / k
$$

We proved that

$$
\mathbf{E}\left[\sum_{\substack{j \in T A / L, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}\right] \leq \frac{1}{b} \sum_{j \in T A / L} f_{j}^{2}
$$

By Markov's inequality one has, for every i and every r, $\operatorname{Pr}\left[\right.$ Small- $^{\left.- \text {VARIANCE }_{r}(i)\right] \geq 1-1 / 8}$

No-Collisions $_{r}(i)$ and Small-Variance $_{r}(i)$: recap

Consider contribution of head and tail items separately:

$$
\sum_{j \neq: h_{r}(j)=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H \in A D, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}+\sum_{\substack{j \in T A L L, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}
$$

Conditioned on $\mathrm{No}^{-\mathrm{Collisions}_{r}(i)}$ and $\mathrm{SmalL-VARIANCE}_{r}(i)$

No-Collisions $_{r}(i)$ and Small-Variance $_{r}(i)$: recap

Consider contribution of head and tail items separately:

$$
\sum_{j \neq: h_{r}(j)=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H \in A D, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}+\sum_{\substack{j \in T A L L, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}
$$

Conditioned on $\mathrm{No}^{-\mathrm{Collisions}_{r}(i)}$ and $\mathrm{SmalL-VARIANCE}_{r}(i)$

- first term is zero

No-Collisions $_{r}(i)$ and Small-Variance $_{r}(i)$: recap

Consider contribution of head and tail items separately:

$$
\sum_{j \neq: h_{r}(j)=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H \in A D, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}+\sum_{\substack{j \in T A L L, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}
$$

Conditioned on No-Collisıons r ((i) and Small-Variance $_{r}(i)$

- first term is zero
- second term is at most

$$
\frac{8}{b} \sum_{j \in T A / L} f_{j}^{2}
$$

Small deviation event

SmALL-DeVIATION $_{r}(i)=$ event that

$$
\left(C\left[r, h_{r}(i)\right] \cdot s_{r}(i)-f_{i}\right)^{2} \leq 8 \operatorname{Var}\left(C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right)
$$

Small deviation event

SmALL-Deviation $_{r}(i)=$ event that

$$
\left(C\left[r, h_{r}(i)\right] \cdot s_{r}(i)-f_{i}\right)^{2} \leq 8 \operatorname{Var}\left(C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right)
$$

By Chebyshev's inequality one has, for every i and every r,

$$
\operatorname{Pr}\left[\operatorname{SmALL}^{-D_{2}} \operatorname{liation} r(i)\right] \geq 1-1 / 8
$$

$\operatorname{Pr}\left[\operatorname{SmaLL-VARIANCE~}_{r}(i)\right] \geq 1-1 / 8$

$$
\operatorname{Pr}\left[\mathrm{No}^{-C O L L I S I O N S}(i)\right] \geq 1-1 / 8
$$

$\operatorname{Pr}\left[\right.$ Small-Deviation $\left._{r}(i)\right] \geq 1-1 / 8$

So by the union bound
$\operatorname{Pr}\left[\right.$ Small-Variance $_{r}(i)$ and No-Collisions $r(i)$ and Small-Deviation $r(i)] \geq 5 / 8$.

Let

$$
\gamma:=\sqrt{\frac{1}{b} \sum_{j \in T A / L} f_{j}^{2}}
$$

For every $p \in[1: N]$ let $f_{i}(p):=$ frequency of i up to position p
Lemma
If $b \geq 8 k$, then for every i, every $r \in[1: t]$,

$$
\operatorname{Pr}\left[\left|C\left[r, h_{r}(i)\right] \cdot s_{r}(i)-f_{i}\right| \leq 8 \gamma\right] \geq 5 / 8
$$

Let

$$
\gamma:=\sqrt{\frac{1}{b} \sum_{j \in T A / L} f_{j}^{2}}
$$

For every $p \in[1: N]$ let $f_{i}(p):=$ frequency of i up to position p
Lemma
If $b \geq 8 k$ and $t \geq A \log N$ for an absolute constant $A>0$, then for every i, with probability $\geq 1-1 / N^{4}$

$$
\mid \text { median }_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}-f_{i} \mid \leq 8 \gamma
$$

at the end of the stream.
Proof.
Chernoff bounds.

Let

$$
\gamma:=\sqrt{\frac{1}{b} \sum_{j \in T A / L} f_{j}^{2}}
$$

For every $p \in[1: N]$ let $f_{i}(p):=$ frequency of i up to position p
Lemma
If $b \geq 8 k$ and $t \geq A \log N$ for an absolute constant $A>0$, then with probability $\geq 1-1 / N^{3}$ for every $i \in[m]$

$$
\mid \text { median }_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}-f_{i}(p) \mid \leq 8 \gamma
$$

at the end of the stream.
Proof.
Chernoff bounds.

Let

$$
\gamma:=\sqrt{\frac{1}{b} \sum_{j \in T A / L} f_{i}^{2}}
$$

For every $p \in[1: N]$ let $f_{i}(p):=$ frequency of i up to position p
Lemma
If $b \geq 8 \max \left\{k, \frac{32 \sum_{j \in \text { TAlL }} f_{j}^{2}}{\left(\varepsilon f_{k}\right)^{2}}\right\}$ and $t \geq A \log N$ for an absolute constant $A>0$, then with probability $\geq 1-1 / N^{3}$ for every $i \in[m]$

$$
\mid \text { median }_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}-f_{i}(p) \mid \leq \varepsilon f_{k}
$$

at the end of the stream.

Let

$$
\gamma:=\sqrt{\frac{1}{b} \sum_{j \in T A / L} f_{i}^{2}}
$$

For every $p \in[1: N]$ let $f_{i}(p):=$ frequency of i up to position p
Lemma
If $b \geq 8 \max \left\{k, \frac{32 \sum_{j \in \text { TAlL }} f_{j}^{2}}{\left(\varepsilon f_{k}\right)^{2}}\right\}$ and $t \geq A \log N$ for an absolute constant $A>0$, then with probability $\geq 1-1 / N^{3}$ for every $i \in[m]$

$$
\mid \text { median }_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}-f_{i}(p) \mid \leq \varepsilon f_{k}
$$

at the end of the stream.
Proof.
Substitute value of b into definition of γ :

$$
\gamma=\sqrt{\frac{1}{b} \sum_{j \in T A / L} f_{i}^{2}} \leq \varepsilon f_{k} / 8
$$

- CountSketch (recap and proofs)
- Graph streaming
- Connectivity via sketching
- Designing ℓ_{0} samplers
- CountSketch (recap and proofs)
- Graph streaming
- Connectivity via sketching
- Designing ℓ_{0} samplers

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream (ideally one pass)

Insertion-only stream

Construct a spanning tree of the graph G in a single pass?

Construct a spanning tree of the graph G in a single pass?

Very easy in insertion only streams:

- maintain a spanning forest
- add incoming edge if it connects two components, discard otherwise

Spanning trees in insertion-only streams

Spanning trees in insertion-only streams

Spanning trees in insertion-only streams

Spanning trees in insertion-only streams

Spanning trees in insertion-only streams

Spanning trees in insertion-only streams

Spanning trees in insertion-only streams

Spanning trees in insertion-only streams

Spanning trees in insertion-only streams

Spanning trees in insertion-only streams

Construct a spanning tree of the graph G in a single pass?

Very easy in insertion only streams:

- maintain a spanning forest
- add incoming edge if it connects two components, discard otherwise

Construct a spanning tree of the graph G in a single pass?
Very easy in insertion only streams:

- maintain a spanning forest
- add incoming edge if it connects two components, discard otherwise

Many modern networks evolve over time, edges both inserted and deleted

What if we have deletions?

Very different algorithms are needed...

Graph sketching

Main idea: apply classical sketching techniques on the edge incidence matrix of a graph

Each row of $B=$ potential edge in G.
If $e=(u, v) \in E$, then $b_{e}=\chi_{u}-\chi_{v}$, otherwise $b_{e}=0$

Graph sketching

Main idea: apply classical sketching techniques on the edge incidence matrix of a graph

Each row of $B=$ potential edge in G.
If $e=(u, v) \in E$, then $b_{e}=\chi_{u}-\chi_{v}$, otherwise $b_{e}=0$

Graph sketching

Main idea: apply classical sketching techniques on the edge incidence matrix of a graph

Each row of $B=$ potential edge in G.
If $e=(u, v) \in E$, then $b_{e}=\chi_{u}-\chi_{v}$, otherwise $b_{e}=0$

Graph sketching

For every $S \subseteq V$ let

$$
\delta(S):=E \cap(S \times(V \backslash S))
$$

denote the edges crossing the cut. Let $x=\mathbf{1}_{S}$ (indicator of S).
$B x$ is the (signed) indicator of $\delta(S)$

- CountSketch (recap and proofs)
- Graph streaming
- Connectivity via sketching
- Designing ℓ_{0} samplers
- CountSketch (recap and proofs)
- Graph streaming
- Connectivity via sketching
- Designing ℓ_{0} samplers

A simple algorithm for connectivity

$F^{0} \leftarrow \varnothing$
$C^{0} \leftarrow V \quad \triangleright$ current connected components
For $t=0$ to $T \quad \triangleright T=O(\log n)$
For each $u \in C^{t}$
Choose an edge in $\delta(u)$
End For
$F^{t+1} \leftarrow F^{t} \cup$ \{spanning forest on selected edges\}
$C^{t+1} \leftarrow$ \{new connected components\}
End
return F^{T+1}

A simple algorithm for connectivity

$F^{0} \leftarrow \varnothing$
$C^{0} \leftarrow V \quad \triangleright$ current connected components
For $t=0$ to $T \quad \triangleright T=O(\log n)$
For each $u \in C^{t}$
Choose an edge in $\delta(u)$
End For
$F^{t+1} \leftarrow F^{t} \cup\{$ spanning forest on selected edges\}
$C^{t+1} \leftarrow$ \{new connected components\}
End
return F^{T+1}

A simple algorithm for connectivity

$F^{0} \leftarrow \varnothing$

$C^{0} \leftarrow V \quad \triangleright$ current connected components
For $t=0$ to $T \quad \triangleright T=O(\log n)$
For each $u \in C^{t}$
Choose an edge in $\delta(u)$
End For
$F^{t+1} \leftarrow F^{t} \cup\{$ spanning forest on selected edges\}
$C^{t+1} \leftarrow$ \{new connected components\}
End
return F^{T+1}

A simple algorithm for connectivity

$F^{0} \leftarrow \varnothing$

$C^{0} \leftarrow V \quad \triangleright$ current connected components
For $t=0$ to $T \quad \triangleright T=O(\log n)$
For each $u \in C^{t}$
Choose an edge in $\delta(u)$
End For
$F^{t+1} \leftarrow F^{t} \cup\{$ spanning forest on selected edges\}
$C^{t+1} \leftarrow$ \{new connected components\}
End
return F^{T+1}

A simple algorithm for connectivity

$F^{0} \leftarrow \varnothing$

$C^{0} \leftarrow V \quad \triangleright$ current connected components
For $t=0$ to $T \quad \triangleright T=O(\log n)$
For each $u \in C^{t}$
Choose an edge in $\delta(u)$
End For
$F^{t+1} \leftarrow F^{t} \cup$ \{spanning forest on selected edges\}
$C^{t+1} \leftarrow$ \{new connected components\}
End
return F^{T+1}

A simple algorithm for connectivity

$F^{0} \leftarrow \varnothing$

$C^{0} \leftarrow V \quad \triangleright$ current connected components
For $t=0$ to $T \quad \triangleright T=O(\log n)$
For each $u \in C^{t}$
Choose an edge in $\delta(u)$
End For
$F^{t+1} \leftarrow F^{t} \cup$ \{spanning forest on selected edges\}
$C^{t+1} \leftarrow$ \{new connected components\}
End
return F^{T+1}

A simple algorithm for connectivity

$F^{0} \leftarrow \varnothing$
$C^{0} \leftarrow V \quad \triangleright$ current connected components
For $t=0$ to $T \quad \triangleright T=O(\log n)$
For each $u \in C^{t}$
Choose an edge in $\delta(u)$ End For
$F^{t+1} \leftarrow F^{t} \cup$ \{spanning forest on selected edges\}
$C^{t+1} \leftarrow$ \{new connected components\}
End
return F^{T+1}

ℓ_{0}-samplers

Definition

A δ-error ℓ_{0} sampler is

- a linear sketch $S \in \mathbb{R}^{m \times n}$
- a decoding primitive $\operatorname{Dec}: \mathbb{R}^{m} \rightarrow[n]$
such that for every $x \in \mathbb{R}^{n}$ with integer entries $J \leftarrow \operatorname{Dec}(S x)$ satisfies

$$
\left\|J-U N I F_{\text {supp }(x)}\right\|_{T V D} \leq \delta .
$$

ℓ_{0}-samplers

Definition

A δ-error ℓ_{0} sampler is

- a linear sketch $S \in \mathbb{R}^{m \times n}$
- a decoding primitive $D e c: \mathbb{R}^{m} \rightarrow[n]$
such that for every $x \in \mathbb{R}^{n}$ with integer entries $J \leftarrow \operatorname{Dec}(S x)$ satisfies

$$
\left\|J-U N I F_{\text {supp }(x)}\right\|_{T V D} \leq \delta .
$$

Informally: sample a uniformly random element, output FAIL or just garbage with probability at most δ

ℓ_{0}-samplers

Definition

A δ-error ℓ_{0} sampler is

- a linear sketch $S \in \mathbb{R}^{m \times n}$
- a decoding primitive $\operatorname{Dec}: \mathbb{R}^{m} \rightarrow[n]$
such that for every $x \in \mathbb{R}^{n}$ with integer entries $J \leftarrow \operatorname{Dec}(S x)$ satisfies

$$
\left\|J-U N I F_{\text {supp }(x)}\right\| T V D \leq \delta .
$$

Informally: sample a uniformly random element, output FAIL or just garbage with probability at most δ

Recent constructions of ℓ_{p} samplers due to
Frahling-Indyk-Sohler'08, Andoni-Krauthgamer-Onak'11, Jowhari-Saglam-Tardos'11, Nelson-Pachocki-Wang'17, Kapralov-Nelson-Pachocki-Wang-Woodruff-Yahyazadeh'17

Connectivity via sketching (Ahn-Guha-McGregor'12)

$F^{0} \leftarrow \varnothing$
$C^{0} \leftarrow V \quad \triangleright$ current connected components
For $t=0$ to $T \quad \triangleright T=O(\log n)$
For each $u \in C^{t}$
Choose an edge in $\delta(u)$
End For
$F^{t+1} \leftarrow F^{t} \cup$ \{spanning forest on selected edges\}
$C^{t+1} \leftarrow$ \{new connected components\}
End
return F^{T+1}
$S^{1}, \ldots, S^{T} \leftarrow \ell_{0}$-samplers
Maintain $S^{1} B, \ldots, S^{T} B$

Some remarks

Why did we need T sketches S^{1}, \ldots, S^{T} ?
Very surprising: decoding is adaptive ($T=O(\log n)$ rounds), but sketch is not

Which other graph problems admit sketching solutions?

- CountSketch (recap and proofs)
- Graph streaming
- Connectivity via sketching
- Designing ℓ_{0} samplers
- CountSketch (recap and proofs)
- Graph streaming
- Connectivity via sketching
- Designing ℓ_{0} samplers

ℓ_{0}-samplers

Definition

A δ-error ℓ_{0} sampler is

- a linear sketch $S \in \mathbb{R}^{m \times n}$
- a decoding primitive $\operatorname{Dec}: \mathbb{R}^{m} \rightarrow[n]$
such that for every $x \in \mathbb{R}^{n}$ with integer entries $J \leftarrow \operatorname{Dec}(S x)$ satisfies

$$
\left\|J-U N I F_{\text {supp }(x)}\right\|_{T V D} \leq \delta .
$$

ℓ_{0}-samplers

Definition

A δ-error ℓ_{0} sampler is

- a linear sketch $S \in \mathbb{R}^{m \times n}$
- a decoding primitive $D e c: \mathbb{R}^{m} \rightarrow[n]$
such that for every $x \in \mathbb{R}^{n}$ with integer entries $J \leftarrow \operatorname{Dec}(S x)$ satisfies

$$
\left\|J-U N I F_{\text {supp }(x)}\right\|_{T V D} \leq \delta .
$$

Informally: sample a uniformly random element, output FAIL or just garbage with probability at most δ

ℓ_{0}-samplers

Definition

A δ-error ℓ_{0} sampler is

- a linear sketch $S \in \mathbb{R}^{m \times n}$
- a decoding primitive $\operatorname{Dec}: \mathbb{R}^{m} \rightarrow[n]$
such that for every $x \in \mathbb{R}^{n}$ with integer entries $J \leftarrow \operatorname{Dec}(S x)$ satisfies

$$
\left\|J-U N I F_{\text {supp }(x)}\right\| T V D \leq \delta .
$$

Informally: sample a uniformly random element, output FAIL or just garbage with probability at most δ

Recent constructions of ℓ_{p} samplers due to
Frahling-Indyk-Sohler'08, Andoni-Krauthgamer-Onak'11, Jowhari-Saglam-Tardos'11, Nelson-Pachocki-Wang'17, Kapralov-Nelson-Pachocki-Wang-Woodruff-Yahyazadeh'17

ℓ_{p} sampling problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output item i with probability $\sim f_{i}^{P}$
($f_{i}=$ number of occurrences of i)
- Small storage: will get $\log ^{O(1)} N$

1	2	3	4	5	6	7	8	9	10

ℓ_{p} sampling problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output item i with probability $\sim f_{i}^{P}$
($f_{i}=$ number of occurrences of i)
- Small storage: will get $\log ^{O(1)} N$

ℓ_{p} sampling problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output item i with probability $\sim f_{i}^{P}$
($f_{i}=$ number of occurrences of i)
- Small storage: will get $\log ^{O(1)} N$

34

ℓ_{p} sampling problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output item i with probability $\sim f_{i}^{P}$
($f_{i}=$ number of occurrences of i)
- Small storage: will get $\log ^{O(1)} N$

346

ℓ_{p} sampling problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output item i with probability $\sim f_{i}^{P}$
($f_{i}=$ number of occurrences of i)
- Small storage: will get $\log ^{O(1)} N$

3463

ℓ_{p} sampling problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output item i with probability $\sim f_{i}^{P}$
($f_{i}=$ number of occurrences of i)
- Small storage: will get $\log ^{O(1)} N$

34632

ℓ_{p} sampling problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output item i with probability $\sim f_{i}^{p}$
($f_{i}=$ number of occurrences of i)
- Small storage: will get $\log ^{O(1)} N$

3463210

ℓ_{p} sampling problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output item i with probability $\sim f_{i}^{p}$
($f_{i}=$ number of occurrences of i)
- Small storage: will get $\log ^{O(1)} N$

346310103

ℓ_{p} sampling problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output item i with probability $\sim f_{i}^{p}$
($f_{i}=$ number of occurrences of i)
- Small storage: will get $\log ^{O(1)} N$

$\begin{array}{lllllll}3 & 4 & 6 & 3 & 2 & 10 & 3\end{array}$

ℓ_{p} sampling problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output item i with probability $\sim f_{i}^{p}$
($f_{i}=$ number of occurrences of i)
- Small storage: will get $\log ^{O(1)} N$

$\begin{array}{lllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3\end{array}$

ℓ_{p} sampling problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output item i with probability $\sim f_{i}^{p}$
($f_{i}=$ number of occurrences of i)
- Small storage: will get $\log ^{O(1)} N$

$\begin{array}{llllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1\end{array}$

ℓ_{p} sampling problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output item i with probability $\sim f_{i}^{p}$
($f_{i}=$ number of occurrences of i)
- Small storage: will get $\log ^{O(1)} N$

$\begin{array}{lllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2\end{array}$

ℓ_{p} sampling problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output item i with probability $\sim f_{i}^{p}$
($f_{i}=$ number of occurrences of i)
- Small storage: will get $\log ^{O(1)} N$

$\begin{array}{lllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2\end{array}$

ℓ_{p} sampling problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output item i with probability $\sim f_{i}^{p}$
($f_{i}=$ number of occurrences of i)
- Small storage: will get $\log ^{O(1)} N$

$\begin{array}{lllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5\end{array}$

ℓ_{p} sampling problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output item i with probability $\sim f_{i}^{p}$
($f_{i}=$ number of occurrences of i)
- Small storage: will get $\log ^{O(1)} N$

$\begin{array}{llllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5\end{array}$

ℓ_{p} sampling problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output item i with probability $\sim f_{i}^{p}$
($f_{i}=$ number of occurrences of i)
- Small storage: will get $\log ^{O(1)} N$

$\begin{array}{lllllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5\end{array}$

ℓ_{p} sampling problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output item i with probability $\sim f_{i}^{P}$
($f_{i}=$ number of occurrences of i)
- Small storage: will get $\log ^{O(1)} N$

$\begin{array}{llllllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9\end{array}$

ℓ_{p} sampling problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output item i with probability $\sim f_{i}^{P}$
($f_{i}=$ number of occurrences of i)
- Small storage: will get $\log ^{O(1)} N$

$\begin{array}{lllllllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9 & 8\end{array}$

ℓ_{p} sampling problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output item i with probability $\sim f_{i}^{P}$
($f_{i}=$ number of occurrences of i)
- Small storage: will get $\log ^{O(1)} N$

$\begin{array}{llllllllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9 & 8 & 7\end{array}$

ℓ_{p} sampling problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output item i with probability $\sim f_{i}^{P}$
($f_{i}=$ number of occurrences of i)
- Small storage: will get $\log ^{O(1)} N$

$\begin{array}{lllllllllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9 & 8 & 7 & 4\end{array}$

ℓ_{p} sampling problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output item i with probability $\sim f_{i}^{P}$
($f_{i}=$ number of occurrences of i)
- Small storage: will get $\log ^{O(1)} N$

$\begin{array}{llllllllllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9 & 8 & 7 & 4 & 4\end{array}$

ℓ_{p} sampling problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output item i with probability $\sim f_{i}^{p}$
($f_{i}=$ number of occurrences of i)
- Small storage: will get $\log ^{O(1)} N$

$\begin{array}{lllllllllllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9 & 8 & 7 & 4 & 4 & 2\end{array}$

ℓ_{p} sampling problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output item i with probability $\sim f_{i}^{p}$
($f_{i}=$ number of occurrences of i)
- Small storage: will get $\log ^{O(1)} N$

$\begin{array}{llllllllllllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9 & 8 & 7 & 4 & 4 & 2 & 2\end{array}$

ℓ_{p} sampling problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output item i with probability $\sim f_{i}^{p}$
($f_{i}=$ number of occurrences of i)
- Small storage: will get $\log ^{O(1)} N$

$\begin{array}{lllllllllllllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9 & 8 & 7 & 4 & 4 & 2 & 2 & 3\end{array}$

ℓ_{p} sampling problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output item i with probability $\sim f_{i}^{p}$
($f_{i}=$ number of occurrences of i)
- Small storage: will get $\log ^{O(1)} N$

$\begin{array}{lllllllllllllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9 & 8 & 7 & 4 & 4 & 2 & 2 & 3\end{array}$

ℓ_{p} sampling problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output item i with probability $\sim f_{i}^{p}$
($f_{i}=$ number of occurrences of i)
- Small storage: will get $\log ^{O(1)} N$

$\begin{array}{llllllllllllllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9 & 8 & 7 & 4 & 4 & 2 & 2 & 3 & 3\end{array}$

ℓ_{0} sampler construction (sketch)

Main idea:

- if x is 1 -sparse (has a single nonzero), can recover x using few rows

ℓ_{0} sampler construction (sketch)

Main idea:

- if x is 1-sparse (has a single nonzero), can recover x using few rows
- if x is t-sparse, a subsampling of x at rate $\approx 1 / t$ is likely 1-sparse

Recovering 1-sparse signals

Design a sketch S from which any $x \in \mathbb{R}^{n}$ with $\operatorname{supp}(x)=1$ can be recovered with probability 1 ?

Recovering 1-sparse signals

Design a sketch S from which any $x \in \mathbb{R}^{n}$ with $\operatorname{supp}(x)=1$ can be recovered with probability 1 ?

Suppose x has one nonzero: $x=\alpha \cdot \mathbf{e}_{i^{*}}$
Compute

$$
\begin{array}{lll}
A=\sum_{i=1}^{m p u t e} x_{i} & =\langle u, x\rangle=\alpha & \text { So } \\
B=\sum_{i=1}^{n} i \cdot x_{i}=\langle v, x\rangle=\alpha \cdot i^{*} & \text { and } & \alpha=\langle x, u\rangle
\end{array}
$$

What if x is not sparse?

Let 2^{j} be the closest power of 2 to $\|x\|_{0}$.

What if x is not sparse?

Let 2^{j} be the closest power of 2 to $\|x\|_{0}$.
Choose a subset $S \subseteq[n]$ such that for every $i \in[n]$

$$
\operatorname{Pr}[i \in S]=2^{-j}
$$

What if x is not sparse?

Let 2^{j} be the closest power of 2 to $\|x\|_{0}$.
Choose a subset $S \subseteq[n]$ such that for every $i \in[n]$

$$
\operatorname{Pr}[i \in S]=2^{-j}
$$

Then

$$
\operatorname{Pr}[|\operatorname{supp}(x) \cap S|=1]=\Omega(1)
$$

What if x is not sparse?

Let 2^{j} be the closest power of 2 to $\|x\|_{0}$.
Choose a subset $S \subseteq[n]$ such that for every $i \in[n]$

$$
\operatorname{Pr}[i \in S]=2^{-j}
$$

Then

$$
\operatorname{Pr}[|\operatorname{supp}(x) \cap S|=1]=\Omega(1)
$$

Try $O(\log n)$ powers of 2 , run 1 -sparse recovery on x_{S} !
Also need to verify that recovery was successful (can be done)

Optimal bounds for ℓ_{0}-samplers

Definition
A δ-error ℓ_{0} sampler is

- a linear sketch $S \in \mathbb{R}^{m \times n}$
- a decoding primitive $\operatorname{Dec}: \mathbb{R}^{m} \rightarrow[n]$
such that for every $x \in \mathbb{R}^{n}$ with integer entries $J \leftarrow \operatorname{Dec}(S x)$ satisfies

$$
\left\|J-U N I F_{\text {supp }(x)}\right\|_{T V D} \leq \delta .
$$

Jowhari-Saglam-Tardos'11: there exist δ-error ℓ_{0}-samplers with $m=O(\log n \log (1 / \delta))$ rows.

Kapralov-Nelson-Pachocki-Wang-Woodruff-Yahyazadeh'17: this space bound is optimal for $\delta>2^{-n^{0.99}}$ (and more results)

