Lecture 4: Spectral sparsification in dynamic streams

Michael Kapralov ${ }^{1}$

${ }^{1}$ EPFL
May 26, 2017

Algorithms for massive graphs

Massive networks ubiquitous in data processing

Compress the network while preserving useful properties?

Social distance between nodes, community detection,...

- ≥ 100 billion edges
- graph does not fit into memory of single computer
- with metadata, does not fit on a single hard drive

Sparsification

- Let $G=(V, E)$ be an undirected graph, where $|V|=n,|E|=m$.
- Find a smaller subgraph G^{\prime} of G that approximates G

Sparsification

- Let $G=(V, E)$ be an undirected graph, where $|V|=n,|E|=m$.
- Find a smaller subgraph G^{\prime} of G that approximates G

Sparsification

- Let $G=(V, E)$ be an undirected graph, where $|V|=n,|E|=m$.
- Find a smaller subgraph G^{\prime} of G that approximates G

Sparsification

- Let $G=(V, E)$ be an undirected graph, where $|V|=n,|E|=m$.
- Find a smaller subgraph G^{\prime} of G that approximates G

Sparsification

- Let $G=(V, E)$ be an undirected graph, where $|V|=n,|E|=m$.
- Find a smaller subgraph G^{\prime} of G that approximates G

1. Spectral sparsification
2. Streaming model of computation
3. Dynamic streaming and linear sketching
4. Spectral sparsification via linear sketches

1. Spectral sparsification

2. Streaming model of computation
3. Dynamic streaming and linear sketching
4. Spectral sparsification via linear sketches

Sparsification

$$
\text { value of cut }=\sum_{e=(u, v) \in E}\left(x_{u}-x_{v}\right)^{2}
$$

Sparsification

$$
\text { value of cut }=\sum_{e=(u, v) \in E}\left(x_{u}-x_{v}\right)^{2}
$$

Sparsification

$$
\text { value of cut }=\sum_{e=(u, v) \in E}\left(x_{u}-x_{v}\right)^{2}=\|z\|^{2}
$$

$$
z=\left[\begin{array}{c}
0 \\
x_{1}-x_{2} \\
0 \\
x_{4}-x_{3} \\
0 \\
x_{4}-x_{5} \\
\vdots
\end{array}\right]
$$

Sparsification

$$
\text { value of cut }=\sum_{e=(u, v) \in E}\left(x_{u}-x_{v}\right)^{2}=\|z\|^{2}
$$

Sparsification

$$
\text { value of cut }=\sum_{e=(u, v) \in E}\left(x_{u}-x_{V}\right)^{2}=\|B x\|^{2}
$$

Sparsification

$$
\text { value of cut }=\sum_{e=(u, v) \in E}\left(x_{u}-x_{v}\right)^{2}=\|B x\|^{2}
$$

Sparsification

$$
\text { value of cut }=\sum_{e=(u, v) \in E}\left(x_{u}-x_{V}\right)^{2}=\|B x\|^{2}
$$

Sparsification

$$
\text { value of cut }=\sum_{e=(u, v) \in E}\left(x_{u}-x_{v}\right)^{2}=\|B x\|^{2}=x^{\top} B^{\top} B x
$$

$L=B^{T} B$ is the Laplacian of G

Definition (Karger'94, Cut sparsifiers)
G^{\prime} is an ε-cut sparsifier of G if

$$
(1-\varepsilon) x^{\top} L x \leq x^{\top} L^{\prime} x \leq(1+\varepsilon) x^{\top} L x
$$

for all $x \in\{0,1\}^{V}$ (all cuts).

Theorem (Karger'94, Benczur-Karger'96)
For any G there exists an ε-cut sparsifier G^{\prime} with
$O\left(\frac{1}{\varepsilon^{2}} n \log n\right)$ edges, and it can be constructed in $\widetilde{O}(m)$ time.

Definition (Spielman-Teng'04, Spectral sparsifiers) G^{\prime} is an ε-spectral sparsifier of G if

$$
(1-\varepsilon) x^{\top} L x \leq x^{\top} L^{\prime} x \leq(1+\varepsilon) x^{T} L x
$$

for all $* \in\{0,1\}^{V}$ (all cuts). all $x \in \mathbb{R}^{V}$.
Equivalently, $(1-\varepsilon) L<L^{\prime}<(1+\varepsilon) L$

Theorem (Spielman-Teng'04, Spielman-Srivastava'09)
For any G there exists an ε-spectral sparsifier G^{\prime} with
$O\left(\frac{1}{\varepsilon^{2}} n \log n\right)$ edges, and it can be constructed in $\widetilde{O}(m)$ time.

Definition (Spielman-Teng'04, Spectral sparsifiers)

G^{\prime} is an ε-spectral sparsifier of G if

$$
(1-\varepsilon) x^{\top} L x \leq x^{\top} L^{\prime} x \leq(1+\varepsilon) x^{\top} L x
$$

for all $x \in\{0,1)^{V}$ (all cuts). all $x \in \mathbb{R}^{V}$.
Equivalently, $(1-\varepsilon) L<L^{\prime}<(1+\varepsilon) L$

Theorem (Spielman-Teng'04, Spielman-Srivastava'09)
For any G there exists an ε-spectral sparsifier G^{\prime} with
$O\left(\frac{1}{\varepsilon^{2}} n \log n\right)$ edges, and it can be constructed in $\widetilde{O}(m)$ time.
Karger'94, Benczur-Karger'96, Fung-Hariharan-Harvey-Panigrahi'11
Spielman-Teng'04, Spielman-Srivastava'08, Batson-Spielman-Srivastava'09, Kolla-Makarychev-Saberi-Teng'10, Koutis-Levin-Peng'12, Kapralov-Panigrahy'12

Implications for numerical linear algebra, combinatorial optimization etc

Constructing spectral sparsifiers

Theorem (Spielman-Srivastava'09)
Let $G=(V, E)$ be an undirected graph. Let G^{\prime} be obtained by including every edge $e \in E$ independently with probability proportional to its effective resistance:

$$
p_{e} \geq \min \left\{1, \frac{C \log n}{\varepsilon^{2}} R_{e}\right\} .
$$

Assigning weight $1 / p_{e}$ if sampled. Then $(1-\varepsilon) L<L^{\prime}<(1+\varepsilon) L$ whp.

Sample edges according to a measure of importance, assign weights to make estimate unbiased

Sparsification

Sparsification

1. Spectral sparsification
2. Streaming model of computation
3. Dynamic streaming and linear sketching
4. Spectral sparsification via linear sketches

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\tilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream

Streaming model

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\widetilde{O}(n)$ space
- several passes over the stream (ideally one pass)

Insertion-only stream

These algorithms are streamable: just keep resparsifiying the graph as edges come in.

Ahn-Guha'09: $O\left(\frac{1}{\varepsilon^{2}} n \log ^{2} n\right)$ space for cut sparsifiers
Kelner-Levin'11: $O\left(\frac{1}{\varepsilon^{2}} n \log n\right)$ space for spectral sparsifiers

These algorithms are streamable: just keep resparsifiying the graph as edges come in.

Ahn-Guha'09: $O\left(\frac{1}{\varepsilon^{2}} n \log ^{2} n\right)$ space for cut sparsifiers
Kelner-Levin'11: $O\left(\frac{1}{\varepsilon^{2}} n \log n\right)$ space for spectral sparsifiers

Many modern networks evolve over time, edges both inserted and deleted

Construct sparsifiers in dynamic streams in small space?

1. Spectral sparsification
2. Streaming model of computation
3. Dynamic streaming and linear sketching
4. Spectral sparsification via linear sketches (main result)

What if we have deletions?

Very different algorithms are needed...

Linear sketching

Classical data stream application: approximating frequency moments.

0	0	0	0	0	0	0	0	0	0	0

Goal: approximate $\|x\|_{2}^{2}=\sum_{i} x_{i}^{2}$ using $\ll n$ space

Linear sketching

Classical data stream application: approximating frequency moments.

0	0	1	0	0	0	0	0	0	0	0

Goal: approximate $\|x\|_{2}^{2}=\sum_{i} x_{i}^{2}$ using $\ll n$ space

Linear sketching

Classical data stream application: approximating frequency moments.

0	0	1	0	1	0	0	0	0	0	0

Goal: approximate $\|x\|_{2}^{2}=\sum_{i} x_{i}^{2}$ using $\ll n$ space

Linear sketching

Classical data stream application: approximating frequency moments.

0	0	1	0	2	0	0	0	0	0	0

Goal: approximate $\|x\|_{2}^{2}=\sum_{i} x_{i}^{2}$ using $\ll n$ space

Linear sketching

Classical data stream application: approximating frequency moments.

0	0	1	0	2	0	0	0	0	0	0

Goal: approximate $\|x\|_{2}^{2}=\sum_{i} x_{i}^{2}$ using $\ll n$ space
Maintain $x^{T} v_{i}=1, \ldots, O\left(1 / \varepsilon^{2}\right)$ for random Gaussians $v_{i} \in \mathbb{R}^{n}$. Output average of $\left(x^{T} v_{i}\right)^{2}$.

Linear sketching

Classical data stream application: approximating frequency moments.

0	0	1	0	2	0	0	0	0	0	0

Goal: approximate $\|x\|_{2}^{2}=\sum_{i} x_{i}^{2}$ using $\ll n$ space
Maintain $x^{T} v_{i}=1, \ldots, O\left(1 / \varepsilon^{2}\right)$ for random Gaussians $v_{i} \in \mathbb{R}^{n}$. Output average of $\left(x^{T} v_{i}\right)^{2}$.
$(1 \pm \varepsilon)$-approximation with $O\left(\frac{1}{\varepsilon^{2}} \log n\right)$ space

Linear sketching

Take (randomized) linear measurements of the input

Linear sketching

Take (randomized) linear measurements of the input

Can get $(1 \pm \varepsilon)$-approximation to $\|x\|^{2}$ with $\frac{1}{\varepsilon^{2}}$ poly $(\log n)$ rows

Linear sketching

Take (randomized) linear measurements of the input

Can get $(1 \pm \varepsilon)$-approximation to $\|x\|^{2}$ with $\frac{1}{\varepsilon^{2}}$ poly ($\log n$) rows
Easy to maintain linear sketches in the (dynamic) streaming model

Graph sketching

Represent adjacency matrix of input graph G as a vector of dimension $\binom{n}{2}$, sketch the vector.

Ahn-Guha-McGregor'SODA12 - connectivity in $n \cdot p o l y(\log n)$ space.
$\binom{n}{2}$

Graph sketching

Represent adjacency matrix of input graph G as a vector of dimension $\binom{n}{2}$, sketch the vector.

Ahn-Guha-McGregor'SODA12 - connectivity in $n \cdot p o l y(\log n)$ space.
$\binom{n}{2}$

Sketch the adjacency matrix, then reconstruct edges of a sparsifier from the sketch?

Cut sparsifiers:

Streaming

Dynamic streaming

Ahn-Guha'09

Ahn-Guha-McGregor'12 Goel-Kapralov-Post'12 $O\left(\frac{1}{\varepsilon^{2}} n p o l y(\log n)\right)$ space

Spectral sparsifiers:

Kelner-Levin'11

Ahn-Guha-McGregor'14
Kapralov-Woodruff'14
$\widetilde{O}\left(\frac{1}{\varepsilon^{2}} n^{5 / 3}\right)$ space
$O\left(\right.$ poly $\left.\left(\frac{1}{\varepsilon}\right) n^{1+o(1)}\right)$ space,
two passes

Cut sparsifiers:
Streaming
Ahn-Guha'09

Ahn-Guha-McGregor'12
Dynamic streaming Goel-Kapralov-Post'12 $O\left(\frac{1}{\varepsilon^{2}} n p o l y(\log n)\right)$ space

Spectral sparsifiers:
Kelner-Levin'11

Ahn-Guha-McGregor'14
Kapralov-Woodruff'14
$\widetilde{O}\left(\frac{1}{\varepsilon^{2}} n^{5 / 3}\right)$ space $O\left(\right.$ poly $\left.\left(\frac{1}{\varepsilon}\right) n^{1+o(1)}\right)$ space,
two passes

Theorem (K.-Lee-Musco-Musco-Sidford'14)
There exists a single-pass streaming algorithm that constructs a spectral sparsifier of a graph given as a dynamic stream of edges using $\widetilde{O}\left(\frac{1}{\varepsilon^{2}} n p o l y(\log n)\right)$ space and poly (n) runtime.

Cut sparsifiers:
Streaming
Ahn-Guha'09

Ahn-Guha-McGregor'12
Dynamic streaming

Goel-Kapralov-Post'12 $O\left(\frac{1}{\varepsilon^{2}} n p o l y(\log n)\right)$ space

Spectral sparsifiers:
Kelner-Levin'11

Ahn-Guha-McGregor'14 Kapralov-Woodruff'14
$\widetilde{O}\left(\frac{1}{\varepsilon^{2}} n^{5 / 3}\right)$ space $O\left(\right.$ poly $\left.\left(\frac{1}{\varepsilon}\right) n^{1+o(1)}\right)$ space,
two passes

Theorem (K.-Lee-Musco-Musco-Sidford'14)
There exists a single-pass streaming algorithm that constructs a spectral sparsifier of a graph given as a dynamic stream of edges using $\widetilde{O}\left(\frac{1}{\varepsilon^{2}} n p o l y(\log n)\right)$ space and poly (n) runtime.

Essentially optimal space complexity, oblivious compression scheme

1. Spectral sparsification
2. Streaming model of computation
3. Dynamic streaming and linear sketching
4. Spectral sparsification via linear sketches

Constructing spectral sparsifiers

Theorem (Spielman-Srivastava'09)
Let $G=(V, E)$ be an undirected graph. Let G^{\prime} be obtained by including every edge $e \in E$ independently with probability proportional to its effective resistance:

$$
p_{e} \geq \min \left\{1, \frac{C \log n}{\varepsilon^{2}} R_{e}\right\} .
$$

Assign weight $1 / p_{e}$ if sampled. Then $(1-\varepsilon) G<G^{\prime}<(1+\varepsilon) G$ whp.

Sample edges according to a measure of importance, assign weights to make estimate unbiased

Note: edges e with resistance $R_{e}=\Omega(1 / \log n)$ included with probability 1

Constructing spectral sparsifiers offline

Maintain: sketch $S \cdot B$ of the incidence matrix B
Step 1. Compute sampling probabilities p_{e} for each $e \in E$

Step 2. Sample edges independently with probability p_{e}, give weight $1 / p_{e}$.

Constructing spectral sparsifiers offline

Maintain: sketch $S \cdot B$ of the incidence matrix B

Step 1. Compute sampling probabilities p_{e} for each $e \in E$
[Q] How? We do not know which edges are present in the graph...
Step 2. Sample edges independently with probability p_{e}, give weight $1 / p_{e}$.
[Q] Sample from the sketch?

Refining a sparsifier

Goal: design a sketch S that allows sampling edges of G according to effective resistance given

- $S \cdot B$ (sketch of edge incidence matrix)

Refining a sparsifier

Goal: design a sketch S that allows sampling edges of G according to effective resistance given

- S. B (sketch of edge incidence matrix)
- crude constant factor spectral sparsifier \tilde{G}

$$
\frac{1}{C} \cdot L<\tilde{L}<L
$$

Construct a $1+\varepsilon$ sparsifier G^{\prime} of G

Refining a sparsifier

Goal: design a sketch S that allows recovery of high resistance $(\geq 1 / \log n)$ edges of G given

- S. B (sketch of edge incidence matrix)
- crude constant factor spectral sparsifier \tilde{G}

$$
\frac{1}{C} \cdot L<\tilde{L}<L
$$

Construct a $1+\varepsilon$ sparsifier G^{\prime} of G

Effective resistance

$$
R_{u v}=b_{u v}^{T} L^{+} b_{u v}
$$

Note: defined for any pair (u, v).

Inject current at u, take out at v.

Effective resistance

$$
R_{u v}=b_{u v}^{T} L^{+} b_{u v}
$$

Note: defined for any pair (u, v).
Inject current at u, take out at v.

$\phi=L^{+} b_{u v}=$ vertex potentials

$$
b_{u v}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
-1 \\
0 \\
0 \\
0
\end{array}\right]
$$

Effective resistance

$$
R_{u v}=b_{u v}^{T} L^{+} b_{u v}
$$

Note: defined for any pair (u, v).

Inject current at u, take out at v.
$\phi=L^{+} b_{u v}=$ vertex potentials

Effective resistance

$$
R_{u v}=b_{u v}^{T} L^{+} b_{u v}
$$

Note: defined for any pair (u, v).

Inject current at u, take out at v.
$\phi=L^{+} b_{u v}=$ vertex potentials

Effective resistance

$$
R_{u v}=b_{u v}^{T} L^{+} b_{u v}
$$

Note: defined for any pair (u, v).

Inject current at u, take out at v.
$\phi=L^{+} b_{u v}=$ vertex potentials
$f_{x y}=\phi_{y}-\phi_{x}=b_{x y}^{T} L^{+} b_{u v}$

Effective resistance

$$
R_{u v}=b_{u v}^{T} L^{+} b_{u v}
$$

Note: defined for any pair (u, v).

Inject current at u, take out at v.
$\phi=L^{+} b_{u v}=$ vertex potentials
$f=B \phi=$ currents on edges

Effective resistance

$$
R_{u v}=b_{u v}^{T} L^{+} b_{u v}
$$

Note: defined for any pair (u, v).

Inject current at u, take out at v.
$\phi=L^{+} b_{u v}=$ vertex potentials
$f=B \phi=$ currents on edges
We have

$$
R_{e}=\frac{f_{e}^{2}}{\|f\|^{2}}
$$

Effective resistance

$$
R_{u v}=b_{u v}^{T} L^{+} b_{u v}
$$

Note: defined for any pair (u, v).

Inject current at u, take out at v.
$\phi=L^{+} b_{u v}=$ vertex potentials
$f=B \phi=$ currents on edges
We have

$$
R_{e}=\frac{f_{e}^{2}}{\|f\|^{2}}
$$

$R_{u v}=$ fraction of $\|f\|_{2}^{2}$ contributed by $e=(u, v)$

Given:

- a sketch $S \cdot B$ of G
- crude sparsifier \tilde{G}
- pair $(u, v) \in V \times V$

Need:

- is (u, v) an edge in G of resistance $\Omega(1 / \log n)$?

Given:

- a sketch $S \cdot B$ of G
- crude sparsifier \widetilde{G}
- pair $(u, v) \in V \times V$

Need:

- is (u, v) an edge in G of resistance $\Omega(1 / \log n)$?

Given:

- a sketch $S \cdot B$ of G
- crude sparsifier \widetilde{G}
- pair $(u, v) \in V \times V$

Need:

- is (u, v) an edge in G of resistance $\Omega(1 / \log n)$?

Given:

- a sketch $S \cdot B$ of G
- crude sparsifier \widetilde{G}
- pair $(u, v) \in V \times V$

Need:

- is (u, v) an edge in G of resistance $\Omega(1 / \log n)$?

Given:

- a sketch $S \cdot B$ of G
- crude sparsifier \widetilde{G}
- pair $(u, v) \in V \times V$

Need:

- is (u, v) an edge in G of resistance $\Omega(1 / \log n)$?

Given:

- a sketch $S \cdot B$ of G
- crude sparsifier \widetilde{G}
- pair $(u, v) \in V \times V$

Need:

- is (u, v) an edge in G of resistance $\Omega(1 / \log n)$?

Linear sketching and sparse recovery

0	0	0.01	0	$\mathbf{2 0 0}$	1	0	2	0	0	0

Let y be a vector of reals. Then $i \in[n]$ is an ℓ_{2}-heavy hitter if

$$
y_{i}^{2} \geq \eta\|y\|_{2}^{2}
$$

Lemma (ℓ_{2}-heavy hitters)
For any $\eta>0$ there exists a (randomized) sketch in dimension $\frac{1}{\eta} p o l y(\log n)$ from which one reconstruct all η-heavy hitters. The recovery works in time $O\left(\frac{1}{\eta} \cdot p o l y(\log n)\right)$.

Linear sketching and sparse recovery

0	0	0.01	0	$\mathbf{2 0 0}$	1	0	2	0	0	0

Let y be a vector of reals. Then $i \in[n]$ is an ℓ_{2}-heavy hitter if

$$
y_{i}^{2} \geq \eta\|y\|_{2}^{2}
$$

Lemma (ℓ_{2}-heavy hitters)
For any $\eta>0$ there exists a (randomized) sketch in dimension $O\left(\frac{1}{\eta} \log n\right)$ from which one reconstruct all η-heavy hitters. The recovery works in time $O\left(\frac{1}{\eta} \cdot p o l y(\log n)\right)$.

Linear sketching and sparse recovery

Need to recover 'heavy' coordinates of

$$
S \Delta:=(S B) \phi=S \cdot\left[\begin{array}{c}
\phi_{1}-\phi_{2} \\
\phi_{2}-\phi_{3} \\
0 \\
\phi_{4}-\phi_{3} \\
\phi_{3}-\phi_{6} \\
0 \\
\phi_{3}-\phi_{1} \\
0 \\
\vdots
\end{array}\right]
$$

A coordinate $e \in\binom{n}{2}$ is heavy if $\Delta_{e}^{2}=\Omega\left(\|\Delta\|_{2}^{2} /(C \log n)\right)$
This is the ℓ_{2} heavy hitters problem!
Problem: we do not know Δ in advance!

Sketching the edge incidence matrix

$$
S \cdot B=S \cdot\left[\begin{array}{cccccc}
1 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\vdots & & & & & \vdots
\end{array}\right]
$$

Apply ℓ_{2}-heavy hitters sketch S to every column $b_{u}, u \in V$ of B Store the n sketches, $n \cdot \log ^{C} n$ space.

Sketching the edge incidence matrix

$$
S \cdot B=S \cdot\left[\begin{array}{cccccc}
1 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\vdots & & & & & \vdots
\end{array}\right]
$$

Apply ℓ_{2}-heavy hitters sketch S to every column $b_{u}, u \in V$ of B Store the n sketches, $n \cdot \log ^{C} n$ space.

Sketching the edge incidence matrix

$$
S \cdot B=S \cdot\left[\begin{array}{cccccc}
1 & -1 & 0 & 0 & 0 & 0 \\
0 & \mathbf{1} & -1 & 0 & 0 & 0 \\
0 & \mathbf{0} & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\vdots & & & & & \vdots
\end{array}\right]
$$

Apply ℓ_{2}-heavy hitters sketch S to every column $b_{u}, u \in V$ of B Store the n sketches, $n \cdot \log ^{C} n$ space.

Sketching the edge incidence matrix

$$
S \cdot B=S \cdot\left[\begin{array}{cccccc}
1 & -1 & \mathbf{0} & 0 & 0 & 0 \\
0 & 1 & -\mathbf{1} & 0 & 0 & 0 \\
0 & 0 & \mathbf{0} & 0 & 0 & 0 \\
-1 & 0 & \mathbf{1} & 0 & 0 & 0 \\
0 & 0 & \mathbf{1} & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\vdots & & & & & \vdots
\end{array}\right]
$$

Apply ℓ_{2}-heavy hitters sketch S to every column $b_{u}, u \in V$ of B Store the n sketches, $n \cdot \log ^{C} n$ space.

Sketching the edge incidence matrix

$$
S \cdot B=S \cdot\left[\begin{array}{cccccc}
1 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\vdots & & & & & \vdots
\end{array}\right]
$$

Apply ℓ_{2}-heavy hitters sketch S to every column $b_{u}, u \in V$ of B Store the n sketches, $n \cdot \log ^{C} n$ space.

Given:

- a sketch $S \cdot B$ of G
- crude sparsifier \tilde{G}
- pair $(u, v) \in V \times V$

Need:

- is (u, v) an edge in G of resistance $\Omega(1 / \log n)$?

Given:

- a sketch $S \cdot B$ of G
- crude sparsifier \tilde{G}
- pair $(u, v) \in V \times V$

Need:

- is (u, v) an edge in G of resistance $\Omega(1 / \log n)$?

Compute $\phi=\widetilde{\mathbf{L}}^{+} b_{u v}$ - vertex potentials

Given:

- a sketch $S \cdot B$ of G
- crude sparsifier \tilde{G}
- pair $(u, v) \in V \times V$

Need:

- is (u, v) an edge in G of resistance $\Omega(1 / \log n)$?

Compute $\phi=\widetilde{\mathbf{L}}^{+} b_{u v}$ - vertex potentials
Compute $S \cdot \Delta=\mathbf{S} \cdot \mathbf{B} \phi=$ potential differences

Given:

- a sketch $S \cdot B$ of G
- crude sparsifier \widetilde{G}
- pair $(u, v) \in V \times V$

Need:

- is (u, v) an edge in G of resistance $\Omega(1 / \log n)$?

Compute $\phi=\widetilde{\mathbf{L}}^{+} b_{u v}-$ vertex potentials
Compute $S \cdot \Delta=\mathbf{S} \cdot \mathbf{B} \phi=$ potential differences

Check if

$$
\widetilde{R}_{e}=\frac{\Delta_{e}^{2}}{\|\Delta\|^{2}}=\Omega(1 /(C \log n))
$$

using heavy-hitters sketch S

0	0	0.01	0	200	1	0	2	0	0	0

What about an edge of resistance $r \approx 2^{-j}=o(1)$? it only contributes $a \approx 2^{-j}$ fraction of ℓ_{2} mass...

What about an edge of resistance $r \approx 2^{-j}=o(1)$? it only contributes $a \approx 2^{-j}$ fraction of ℓ_{2} mass...

Need to recover 'heavy' coordinates of

$$
S \Delta:=(S B) \phi=S \cdot\left[\begin{array}{c}
\phi_{1}-\phi_{2} \\
\phi_{2}-\phi_{3} \\
0 \\
\phi_{4}-\phi_{3} \\
\phi_{3}-\phi_{6} \\
0 \\
\phi_{3}-\phi_{1} \\
0 \\
\vdots
\end{array}\right]
$$

What about an edge of resistance $r \approx 2^{-j}=o(1)$? it only contributes $\mathrm{a} \approx 2^{-j}$ fraction of ℓ_{2} mass...

Need to recover 'heavy' coordinates of

$$
S \Delta:=(S B) \phi=S \cdot\left[\begin{array}{c}
\phi_{1}-\phi_{2} \\
\phi_{2}-\phi_{3} \\
0 \\
\phi_{4}-\phi_{3} \\
\phi_{3}-\phi_{6} \\
0 \\
\phi_{3}-\phi_{1} \\
0 \\
\vdots
\end{array}\right]
$$

Sample edges with probability 2^{-j}
If edge (a, b) is in G and is sampled, it contributes $\Omega\left(\frac{1}{C \log n}\right)$ fraction of mass whp - can recover.

What about an edge of resistance $r \approx 2^{-j}=o(1)$? it only contributes $a \approx 2^{-j}$ fraction of ℓ_{2} mass...

Need to recover 'heavy' coordinates of

$$
S \Delta:=(S B) \phi=S \cdot\left[\begin{array}{c}
0 \\
0 \\
0 \\
\phi_{4}-\phi_{3} \\
\phi_{3}-\phi_{6} \\
0 \\
0 \\
0 \\
\vdots
\end{array}\right]
$$

Sample edges with probability 2^{-j}
If edge (a, b) is in G and is sampled, it contributes $\Omega\left(\frac{1}{C \log n}\right)$ fraction of mass whp - can recover.

Store sketches of subsampled edge incidence matrix:

$$
S \Pi_{j} B, j=0, \ldots, \log _{2} n
$$

Π_{j} is a diagonal matrix with Bernoulli($0 / 1,2^{-j}$) entries
$\operatorname{RefineSparsifier}(G, \widetilde{G}, \varepsilon, c)$
For $e=(a, b) \in\binom{V}{2}$
$\widetilde{R}_{e} \leftarrow b_{e}^{T} \widetilde{L}^{+} b_{e}$
Round: $\widetilde{R}_{e} \approx 2^{-j}$
$x_{e} \leftarrow \widetilde{L}^{+} b_{e}$
\triangleright resistance in \widetilde{G}
\triangleright determine sampling level

If TestEdge $\left(S \Pi_{j} B, x_{e}, e\right)$ then add e to sparsifier with weight 2^{j}

Repeat $\left(C / \varepsilon^{2}\right)$ times, take union

Refining a sparsifier

Designed a sketch S that allows sampling edges of G according to effective resistance given

- $S \cdot B$ (sketch of edge incidence matrix)
- crude constant factor spectral sparsifier \widetilde{G}

$$
\frac{1}{C} \cdot L<\widetilde{L}<L
$$

Chain of coarse sparsifiers

Approach of Miller and Peng in Iterative approaches to row sampling Add a weighted complete graph to G :

$$
G(\lambda)=G+\lambda K_{n}
$$

Chain of coarse sparsifiers

Approach of Miller and Peng in Iterative approaches to row sampling Add a weighted complete graph to G :

$$
G(\lambda)=G+\lambda K_{n}
$$

Chain of coarse sparsifiers

Approach of Miller and Peng in Iterative approaches to row sampling Add a weighted complete graph to G :

$$
G(\lambda)=G+\lambda K_{n}
$$

Chain of coarse sparsifiers

Approach of Miller and Peng in Iterative approaches to row sampling Add a weighted complete graph to G :

$$
G(\lambda)=G+\lambda K_{n}
$$

Chain of coarse sparsifiers

Approach of Miller and Peng in Iterative approaches to row sampling Add a weighted complete graph to G :

$$
G(\lambda)=G+\lambda K_{n}
$$

$$
L(\lambda)=L+\lambda \cdot n I^{*}
$$

Nonzero eigenvalues of G are between n and $8 / n^{2}$, so

- K_{n} is a C-spectral approximation to $G(1)$
- $G(1 / \operatorname{poly}(n))$ approximates G well spectrally.

Consider powers of 2 from 1 to $1 / \operatorname{poly}(n)$.
Two adjacent graphs in the chain are similar:

$$
\frac{1}{2} G(\lambda)<G(\lambda / 2)<G(\lambda)
$$

This is exactly what we need for RefineSparsifier...

Final algorithm

$\widetilde{G}_{1 / 2} \leftarrow \operatorname{RefineSpARSIFIER}\left(S \cdot G(1 / 2), \quad K_{n}, \varepsilon, 3\right)$

Final algorithm

$\widetilde{G}_{1 / 2} \leftarrow \operatorname{RefineSparsifier}\left(S \cdot G(1 / 2), K_{n}, \varepsilon, 3\right)$
$\widetilde{G}_{1 / 4} \leftarrow \operatorname{REFINESPARSIFIER}\left(S \cdot G(1 / 4), \widetilde{G}_{1 / 2}, \varepsilon, 3\right)$

Final algorithm

$\widetilde{G}_{1 / 2} \leftarrow \operatorname{RefineSparsifier}\left(S \cdot G(1 / 2), K_{n}, \varepsilon, 3\right)$
$\widetilde{G}_{1 / 4} \leftarrow \operatorname{REFINESPARSIFIER}\left(S \cdot G(1 / 4), \widetilde{G}_{1 / 2}, \varepsilon, 3\right)$
$\widetilde{G}_{1 / 8} \leftarrow \operatorname{REFINESPARSIFIER}\left(S \cdot G(1 / 8), \widetilde{G}_{1 / 4, \varepsilon, 3}\right)$

Final algorithm

$\widetilde{G}_{1 / 2} \leftarrow \operatorname{RefineSparsifier}\left(S \cdot G(1 / 2), K_{n}, \varepsilon, 3\right)$
$\widetilde{G}_{1 / 4} \leftarrow \operatorname{REFINESPARSIFIER}\left(S \cdot G(1 / 4), \widetilde{G}_{1 / 2}, \varepsilon, 3\right)$
$\widetilde{G}_{1 / 8} \leftarrow \operatorname{REFINESPARSIFIER}\left(S \cdot G(1 / 8), \widetilde{G}_{1 / 4, \varepsilon, 3}\right)$
:
return $\widetilde{G}_{1 / \text { poly }(n)}$

Final algorithm

$\widetilde{G}_{1 / 2} \leftarrow \operatorname{RefineSpARSIFIER}\left(S \cdot G(1 / 2), \quad K_{n}, \varepsilon, 3\right)$
$\widetilde{G}_{1 / 4} \leftarrow \operatorname{REFINESPARSIFIER}\left(S \cdot G(1 / 4), \widetilde{G}_{1 / 2}, \varepsilon, 3\right)$
$\widetilde{G}_{1 / 8} \leftarrow \operatorname{REFINESPARSIFIER}\left(S \cdot G(1 / 8), \widetilde{G}_{1 / 4, \varepsilon, 3}\right)$
:
return $\widetilde{G}_{1 / \text { poly }(n)}$
Space requirement

- $O(\log n)$ sampling levels, $O\left(\frac{1}{\varepsilon^{2}} \log n\right)$ repetitions
- $O(\log n)$ long chain of coarse sparsifiers
- an ℓ_{2}-heavy hitters sketch of $O($ poly $(\log n))$ size for each node.

Summary

- AMS sketch (approximating $\|x\|_{2}^{2}$)
- Heavy hitters (CountSketch)
- ℓ_{0} samplers
- Graph connectivity
- Graph sparsification

Summary

- AMS sketch (approximating $\|x\|_{2}^{2}$)
- Heavy hitters (CountSketch)
- ℓ_{0} samplers
- Graph connectivity
- Graph sparsification

Which other graph problems admit sketching solutions?

