# Lecture 4: Spectral sparsification in dynamic streams

#### Michael Kapralov<sup>1</sup>

<sup>1</sup>EPFL

May 26, 2017

## Algorithms for massive graphs

Massive networks ubiquitous in data processing



Social distance between nodes, community detection,...

Compress the network while preserving useful properties?

- ≥ 100 billion edges
- graph does not fit into memory of single computer
- with metadata, does not fit on a single hard drive

- ► Let G = (V, E) be an undirected graph, where |V| = n, |E| = m.
- ► Find a smaller subgraph G' of G that approximates G



- ► Let G = (V, E) be an undirected graph, where |V| = n, |E| = m.
- ► Find a smaller subgraph G' of G that approximates G



- ► Let G = (V, E) be an undirected graph, where |V| = n, |E| = m.
- ► Find a smaller subgraph G' of G that approximates G



- ► Let G = (V, E) be an undirected graph, where |V| = n, |E| = m.
- ► Find a smaller subgraph G' of G that approximates G



- ► Let G = (V, E) be an undirected graph, where |V| = n, |E| = m.
- ▶ Find a smaller subgraph G' of G that approximates G



- 1. Spectral sparsification
- 2. Streaming model of computation
- 3. Dynamic streaming and linear sketching
- 4. Spectral sparsification via linear sketches

#### 1. Spectral sparsification

- 2. Streaming model of computation
- 3. Dynamic streaming and linear sketching
- 4. Spectral sparsification via linear sketches

value of cut = 
$$\sum_{e=(u,v)\in E} (x_u - x_v)^2$$



value of cut = 
$$\sum_{e=(u,v)\in E} (x_u - x_v)^2$$



value of cut = 
$$\sum_{e=(u,v)\in E} (x_u - x_v)^2 = ||z||^2$$



$$Z = \begin{bmatrix} 0 \\ x_1 - x_2 \\ 0 \\ x_4 - x_3 \\ 0 \\ x_4 - x_5 \\ \vdots \end{bmatrix}$$

value of cut = 
$$\sum_{e=(u,v)\in E} (x_u - x_v)^2 = ||z||^2$$



$$z = \begin{bmatrix} 0 \\ x_1 - x_2 \\ 0 \\ x_4 - x_3 \\ 0 \\ x_4 - x_5 \\ \vdots \end{bmatrix} = Bx$$

value of cut = 
$$\sum_{e=(u,v)\in E} (x_u - x_v)^2 = ||Bx||^2$$



value of cut = 
$$\sum_{e=(u,v)\in E} (x_u - x_v)^2 = ||Bx||^2$$



value of cut = 
$$\sum_{e=(u,v)\in E} (x_u - x_v)^2 = ||Bx||^2$$



value of cut = 
$$\sum_{e=(u,v)\in E} (x_u - x_v)^2 = ||Bx||^2 = x^T B^T B x$$

 $L = B^T B$  is the Laplacian of G



Definition (Karger'94, Cut sparsifiers) G' is an  $\varepsilon$ -cut sparsifier of G if

$$(1-\varepsilon)x^T L x \le x^T L' x \le (1+\varepsilon)x^T L x$$

for all  $x \in \{0, 1\}^V$  (all cuts).

#### Theorem (Karger'94, Benczur-Karger'96) For any *G* there exists an $\varepsilon$ -cut sparsifier *G'* with $O(\frac{1}{\varepsilon^2}n\log n)$ edges, and it can be constructed in $\widetilde{O}(m)$ time.

Definition (Spielman-Teng'04, Spectral sparsifiers) G' is an  $\varepsilon$ -spectral sparsifier of G if

$$(1-\varepsilon)x^T L x \le x^T L' x \le (1+\varepsilon)x^T L x$$

for all  $x \in \{0, 1\}^V$  (all cuts). all  $x \in \mathbb{R}^V$ . Equivalently,  $(1 - \varepsilon)L < L' < (1 + \varepsilon)L$ 

Theorem (Spielman-Teng'04, Spielman-Srivastava'09) For any *G* there exists an  $\varepsilon$ -spectral sparsifier *G'* with  $O(\frac{1}{\varepsilon^2}n\log n)$  edges, and it can be constructed in  $\widetilde{O}(m)$  time. Definition (Spielman-Teng'04, Spectral sparsifiers) G' is an  $\varepsilon$ -spectral sparsifier of G if

$$(1-\varepsilon)x^T L x \le x^T L' x \le (1+\varepsilon)x^T L x$$

for all  $x \in \{0, 1\}^V$  (all cuts). all  $x \in \mathbb{R}^V$ . Equivalently,  $(1 - \varepsilon)L < L' < (1 + \varepsilon)L$ 

Theorem (Spielman-Teng'04, Spielman-Srivastava'09) For any *G* there exists an  $\varepsilon$ -spectral sparsifier *G'* with  $O(\frac{1}{\varepsilon^2}n\log n)$  edges, and it can be constructed in  $\widetilde{O}(m)$  time.

Karger'94, Benczur-Karger'96, Fung-Hariharan-Harvey-Panigrahi'11 Spielman-Teng'04, Spielman-Srivastava'08, Batson-Spielman-Srivastava'09, Kolla-Makarychev-Saberi-Teng'10, Koutis-Levin-Peng'12, Kapralov-Panigrahy'12

Implications for numerical linear algebra, combinatorial optimization etc

## Constructing spectral sparsifiers

Theorem (Spielman-Srivastava'09)

Let G = (V, E) be an undirected graph. Let G' be obtained by including every edge  $e \in E$  independently with probability proportional to its effective resistance:

$$p_e \ge \min\{1, \frac{C\log n}{\epsilon^2}R_e\}.$$

Assigning weight  $1/p_e$  if sampled. Then  $(1-\epsilon)L < L' < (1+\epsilon)L$  whp.

Sample edges according to a measure of importance, assign weights to make estimate unbiased





1. Spectral sparsification

#### 2. Streaming model of computation

- 3. Dynamic streaming and linear sketching
- 4. Spectral sparsification via linear sketches

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use  $\tilde{O}(n)$  space
- several passes over the stream



- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use  $\tilde{O}(n)$  space
- several passes over the stream



- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use  $\tilde{O}(n)$  space
- several passes over the stream



- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use  $\tilde{O}(n)$  space
- several passes over the stream



- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use  $\tilde{O}(n)$  space
- several passes over the stream



- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use  $\tilde{O}(n)$  space
- several passes over the stream



- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use  $\tilde{O}(n)$  space
- several passes over the stream



- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use  $\tilde{O}(n)$  space
- several passes over the stream



- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use  $\tilde{O}(n)$  space
- several passes over the stream



- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use  $\tilde{O}(n)$  space
- several passes over the stream



- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use  $\tilde{O}(n)$  space
- several passes over the stream



- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use  $\tilde{O}(n)$  space
- several passes over the stream


- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use  $\tilde{O}(n)$  space
- several passes over the stream



- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use  $\tilde{O}(n)$  space
- several passes over the stream



- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use  $\tilde{O}(n)$  space
- several passes over the stream



- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use  $\tilde{O}(n)$  space
- several passes over the stream



- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use  $\tilde{O}(n)$  space
- several passes over the stream (ideally one pass)



These algorithms are streamable: just keep resparsifying the graph as edges come in.

Ahn-Guha'09:  $O(\frac{1}{\epsilon^2}n\log^2 n)$  space for cut sparsifiers

Kelner-Levin'11:  $O(\frac{1}{\epsilon^2} n \log n)$  space for spectral sparsifiers

These algorithms are streamable: just keep resparsifying the graph as edges come in.

Ahn-Guha'09:  $O(\frac{1}{\epsilon^2}n\log^2 n)$  space for cut sparsifiers Kelner-Levin'11:  $O(\frac{1}{\epsilon^2}n\log n)$  space for spectral sparsifiers

Many modern networks evolve over time, edges both inserted and deleted



Construct sparsifiers in dynamic streams in small space?

- 1. Spectral sparsification
- 2. Streaming model of computation

### 3. Dynamic streaming and linear sketching

4. Spectral sparsification via linear sketches (main result)





















Very different algorithms are needed...

Classical data stream application: approximating frequency moments.

Goal: approximate  $||x||_2^2 = \sum_i x_i^2$  using  $\ll n$  space

Maintain  $x^T v_i = 1, ..., O(1/\epsilon^2)$  for random Gaussians  $v_i \in \mathbb{R}^n$ . Output average of  $(x^T v_i)^2$ .

Classical data stream application: approximating frequency moments.

Goal: approximate  $||x||_2^2 = \sum_i x_i^2$  using  $\ll n$  space

Maintain  $x^T v_i = 1, ..., O(1/\epsilon^2)$  for random Gaussians  $v_i \in \mathbb{R}^n$ . Output average of  $(x^T v_i)^2$ .

 $(1 \pm \varepsilon)$ -approximation with  $O(\frac{1}{\varepsilon^2} \log n)$  space

Take (randomized) linear measurements of the input



#### Take (randomized) linear measurements of the input



Can get  $(1 \pm \varepsilon)$ -approximation to  $||x||^2$  with  $\frac{1}{\varepsilon^2}$  poly(log *n*) rows

#### Take (randomized) linear measurements of the input



Can get  $(1 \pm \varepsilon)$ -approximation to  $||x||^2$  with  $\frac{1}{\varepsilon^2}$  poly(log *n*) rows Easy to maintain linear sketches in the (dynamic) streaming model

### Graph sketching

Represent adjacency matrix of input graph *G* as a vector of dimension  $\binom{n}{2}$ , sketch the vector.

Ahn-Guha-McGregor'SODA12 – connectivity in  $n \cdot poly(\log n)$  space.



### Graph sketching

Represent adjacency matrix of input graph *G* as a vector of dimension  $\binom{n}{2}$ , sketch the vector.

Ahn-Guha-McGregor'SODA12 – connectivity in  $n \cdot poly(\log n)$  space.



Sketch the adjacency matrix, then reconstruct edges of a sparsifier from the sketch?

#### Cut sparsifiers:

Spectral sparsifiers:

Streaming

Ahn-Guha'09

Kelner-Levin'11

Dynamic streaming

Ahn-Guha-McGregor'12 Goel-Kapralov-Post'12  $O(\frac{1}{\epsilon^2} n \text{poly}(\log n))$  space Ahn-Guha-McGregor'14 Kapralov-Woodruff'14  $\tilde{O}(\frac{1}{\epsilon^2}n^{5/3})$  space  $O(\text{poly}(\frac{1}{\epsilon})n^{1+o(1)})$  space,

two passes

#### Cut sparsifiers:

Spectral sparsifiers:

Streaming

Ahn-Guha'09

Kelner-Levin'11

Dynamic streaming

Ahn-Guha-McGregor'12 Goel-Kapralov-Post'12  $O(\frac{1}{r^2} n \text{poly}(\log n))$  space Ahn-Guha-McGregor'14 Kapralov-Woodruff'14  $\widetilde{O}(\frac{1}{\epsilon^2}n^{5/3})$  space  $O(\text{poly}(\frac{1}{\epsilon})n^{1+o(1)})$  space,

two passes

### Theorem (K.-Lee-Musco-Musco-Sidford'14)

There exists a single-pass streaming algorithm that constructs a spectral sparsifier of a graph given as a dynamic stream of edges using  $\tilde{O}(\frac{1}{r^2}npoly(\log n))$  space and poly(n) runtime.

#### Cut sparsifiers:

Spectral sparsifiers:

Streaming

Ahn-Guha'09

Kelner-Levin'11

Dynamic streaming

Ahn-Guha-McGregor'12 Goel-Kapralov-Post'12  $O(\frac{1}{\epsilon^2} n \text{poly}(\log n))$  space Ahn-Guha-McGregor'14 Kapralov-Woodruff'14  $\widetilde{O}(\frac{1}{\epsilon^2}n^{5/3})$  space  $O(\text{poly}(\frac{1}{\epsilon})n^{1+o(1)})$  space,

two passes

### Theorem (K.-Lee-Musco-Musco-Sidford'14)

There exists a single-pass streaming algorithm that constructs a spectral sparsifier of a graph given as a dynamic stream of edges using  $\tilde{O}(\frac{1}{r^2}npoly(\log n))$  space and poly(n) runtime.

Essentially optimal space complexity, oblivious compression scheme

- 1. Spectral sparsification
- 2. Streaming model of computation
- 3. Dynamic streaming and linear sketching
- 4. Spectral sparsification via linear sketches

# Constructing spectral sparsifiers

Theorem (Spielman-Srivastava'09) Let G = (V, E) be an undirected graph. Let G' be obtained by including every edge  $e \in E$  independently with probability proportional to its effective resistance:

$$p_e \ge \min\{1, \frac{C\log n}{\varepsilon^2}R_e\}.$$

Assign weight  $1/p_e$  if sampled. Then  $(1-\epsilon)G < G' < (1+\epsilon)G$  whp.

Sample edges according to a measure of importance, assign weights to make estimate unbiased

Note: edges *e* with resistance  $R_e = \Omega(1/\log n)$  included with probability 1

Constructing spectral sparsifiers offline

Maintain: sketch  $S \cdot B$  of the incidence matrix B

**Step 1.** Compute sampling probabilities  $p_e$  for each  $e \in E$ 

**Step 2.** Sample edges independently with probability  $p_e$ , give weight  $1/p_e$ .

## Constructing spectral sparsifiers offline

Maintain: sketch  $S \cdot B$  of the incidence matrix B

**Step 1.** Compute sampling probabilities  $p_e$  for each  $e \in E$ [Q] How? We do not know which edges are present in the graph...

**Step 2.** Sample edges independently with probability  $p_e$ , give weight  $1/p_e$ .

[Q] Sample from the sketch?
Goal: design a sketch *S* that allows sampling edges of *G* according to effective resistance given

•  $S \cdot B$  (sketch of edge incidence matrix)

Goal: design a sketch S that allows sampling edges of G according to effective resistance given

- ► S · B (sketch of edge incidence matrix)
- crude constant factor spectral sparsifier  $\widetilde{G}$

$$\frac{1}{C} \cdot L \prec \widetilde{L} \prec L$$



Construct a  $1 + \varepsilon$  sparsifier G' of G

Goal: design a sketch *S* that allows recovery of high resistance  $(\geq 1/\log n)$  edges of *G* given

- $S \cdot B$  (sketch of edge incidence matrix)
- crude constant factor spectral sparsifier  $\tilde{G}$

$$\frac{1}{C} \cdot L \prec \widetilde{L} \prec L$$



Construct a  $1 + \varepsilon$  sparsifier G' of G

$$R_{uv} = b_{uv}^T L^+ b_{uv}$$

Note: defined for any pair (u, v).

Inject current at *u*, take out at *v*.



$$R_{uv} = b_{uv}^T L^+ b_{uv}$$

Note: defined for any pair (u, v).

Inject current at u, take out at v.

 $\phi = L^+ b_{uv}$ =vertex potentials





$$R_{uv} = b_{uv}^T L^+ b_{uv}$$

Note: defined for any pair (u, v).



Inject current at *u*, take out at *v*.  $\phi = L^+ b_{uv}$ =vertex potentials

$$R_{uv} = b_{uv}^T L^+ b_{uv}$$

Note: defined for any pair (u, v).



Inject current at *u*, take out at *v*.  $\phi = L^+ b_{uv}$ =vertex potentials

$$R_{uv} = b_{uv}^T L^+ b_{uv}$$

Note: defined for any pair (u, v).



Inject current at *u*, take out at *v*.  $\phi = L^+ b_{uv}$ =vertex potentials  $f_{xy} = \phi_y - \phi_x = b_{xy}^T L^+ b_{uv}$ 

$$R_{uv} = b_{uv}^T L^+ b_{uv}$$

Note: defined for any pair (u, v).



Inject current at u, take out at v.

 $\phi = L^+ b_{uv}$ =vertex potentials

 $f = B\varphi$ =currents on edges

$$R_{uv} = b_{uv}^T L^+ b_{uv}$$

Note: defined for any pair (u, v).



Inject current at *u*, take out at *v*.  $\phi = L^+ b_{uv}$ =vertex potentials  $f = B\phi$ =currents on edges

We have

$$R_e = \frac{f_e^2}{||f||^2}.$$

$$R_{uv} = b_{uv}^T L^+ b_{uv}$$

Note: defined for any pair (u, v).



- ▶ a sketch S · B of G
- crude sparsifier G
- pair  $(u, v) \in V \times V$

#### Need:

- a sketch S·B of G
- crude sparsifier G
- pair  $(u, v) \in V \times V$

Need:



- a sketch S·B of G
- crude sparsifier G
- pair  $(u, v) \in V \times V$

Need:



- a sketch S·B of G
- crude sparsifier G
- pair  $(u, v) \in V \times V$

Need:



- a sketch S·B of G
- crude sparsifier G
- pair  $(u, v) \in V \times V$

Need:



- a sketch S·B of G
- crude sparsifier G
- pair  $(u, v) \in V \times V$

Need:



Linear sketching and sparse recovery

# 0 0 0.01 0 200 1 0 2 0 0 0

Let y be a vector of reals. Then  $i \in [n]$  is an  $\ell_2$ -heavy hitter if

 $y_i^2 \ge \eta ||y||_2^2$ .

#### Lemma (*l*<sub>2</sub>-heavy hitters)

For any  $\eta > 0$  there exists a (randomized) sketch in dimension  $\frac{1}{\eta}$  poly(log *n*) from which one reconstruct all  $\eta$ -heavy hitters. The recovery works in time  $O(\frac{1}{\eta} \cdot \text{poly}(\log n))$ .

Linear sketching and sparse recovery

## 0 0 0.01 0 200 1 0 2 0 0 0

Let y be a vector of reals. Then  $i \in [n]$  is an  $\ell_2$ -heavy hitter if

 $y_i^2 \ge \eta ||y||_2^2$ .

#### Lemma (*l*<sub>2</sub>-heavy hitters)

For any  $\eta > 0$  there exists a (randomized) sketch in dimension  $O(\frac{1}{\eta} \log n)$  from which one reconstruct all  $\eta$ -heavy hitters. The recovery works in time  $O(\frac{1}{\eta} \cdot poly(\log n))$ .

### Linear sketching and sparse recovery Need to recover 'heavy' coordinates of

$$S\Delta := (SB)\phi = S \cdot \begin{bmatrix} \phi_1 - \phi_2 \\ \phi_2 - \phi_3 \\ 0 \\ \phi_4 - \phi_3 \\ \phi_3 - \phi_6 \\ 0 \\ \phi_3 - \phi_1 \\ 0 \\ \vdots \end{bmatrix}$$

A coordinate  $e \in \binom{n}{2}$  is heavy if  $\Delta_e^2 = \Omega(||\Delta||_2^2/(C\log n))$ 

This is the  $\ell_2$  heavy hitters problem!

Problem: we do not know  $\Delta$  in advance!

$$\boldsymbol{S} \cdot \boldsymbol{B} = \boldsymbol{S} \cdot \begin{bmatrix} 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & & & \vdots \end{bmatrix}$$

$$S \cdot B = S \cdot \begin{bmatrix} \mathbf{1} & -1 & 0 & 0 & 0 & 0 \\ \mathbf{0} & 1 & -1 & 0 & 0 & 0 \\ \mathbf{0} & 0 & 0 & 0 & 0 & 0 \\ -\mathbf{1} & 0 & 1 & 0 & 0 & 0 \\ \mathbf{0} & 0 & 1 & 0 & 0 & -1 \\ \mathbf{0} & 0 & 0 & 0 & 0 & 0 \\ \vdots & & & \vdots \end{bmatrix}$$

$$\boldsymbol{S} \cdot \boldsymbol{B} = \boldsymbol{S} \cdot \begin{bmatrix} 1 & -\mathbf{1} & 0 & 0 & 0 & 0 \\ 0 & \mathbf{1} & -\mathbf{1} & 0 & 0 & 0 \\ 0 & \mathbf{0} & 0 & 0 & 0 & 0 \\ -\mathbf{1} & \mathbf{0} & \mathbf{1} & 0 & 0 & 0 \\ 0 & \mathbf{0} & \mathbf{1} & 0 & 0 & -\mathbf{1} \\ 0 & \mathbf{0} & 0 & 0 & 0 & 0 \\ \vdots & & & \vdots \end{bmatrix}$$

$$\boldsymbol{S} \cdot \boldsymbol{B} = \boldsymbol{S} \cdot \begin{bmatrix} 1 & -1 & \boldsymbol{0} & 0 & 0 & 0 \\ 0 & 1 & -\boldsymbol{1} & 0 & 0 & 0 \\ 0 & 0 & \boldsymbol{0} & 0 & 0 & 0 \\ -1 & 0 & \boldsymbol{1} & 0 & 0 & 0 \\ 0 & 0 & \boldsymbol{1} & 0 & 0 & -1 \\ 0 & 0 & \boldsymbol{0} & 0 & 0 & 0 \\ \vdots & & & \vdots \end{bmatrix}$$

$$\boldsymbol{S} \cdot \boldsymbol{B} = \boldsymbol{S} \cdot \begin{bmatrix} 1 & -1 & 0 & \boldsymbol{0} & 0 & 0 \\ 0 & 1 & -1 & \boldsymbol{0} & 0 & 0 \\ 0 & 0 & 0 & \boldsymbol{0} & 0 & 0 \\ -1 & 0 & 1 & \boldsymbol{0} & 0 & 0 \\ 0 & 0 & 1 & \boldsymbol{0} & 0 & -1 \\ 0 & 0 & 0 & \boldsymbol{0} & \boldsymbol{0} & 0 \\ \vdots & & & \vdots \end{bmatrix}$$

- ▶ a sketch S · B of G
- crude sparsifier  $\tilde{G}$
- pair  $(u, v) \in V \times V$

Need:

- a sketch S·B of G
- crude sparsifier  $\tilde{G}$
- pair  $(u, v) \in V \times V$

Need:

• is (u, v) an edge in G of resistance  $\Omega(1/\log n)$ ?

Compute  $\phi = \tilde{\mathbf{L}}^+ b_{\mu\nu}$  – vertex potentials 0.45 0.58 0.45 0 0.83 -0.4 0 -0.16

- ▶ a sketch S · B of G
- crude sparsifier  $\tilde{G}$
- pair  $(u, v) \in V \times V$

Need:

• is (u, v) an edge in G of resistance  $\Omega(1/\log n)$ ?

0.45 0.45 0.45 0.45 0.83 -0.4

Compute  $\phi = \widetilde{\mathbf{L}}^+ b_{uv}$  – vertex potentials

Compute  $S \cdot \Delta = \mathbf{S} \cdot \mathbf{B} \phi$ =potential differences

- a sketch S·B of G
- crude sparsifier G
- pair  $(u, v) \in V \times V$

Need:



Need to recover 'heavy' coordinates of

$$S\Delta := (SB)\phi = S \cdot \begin{bmatrix} \phi_1 - \phi_2 \\ \phi_2 - \phi_3 \\ 0 \\ \phi_4 - \phi_3 \\ \phi_3 - \phi_6 \\ 0 \\ \phi_3 - \phi_1 \\ 0 \\ \vdots \end{bmatrix}$$

Need to recover 'heavy' coordinates of

$$S\Delta := (SB)\phi = S \cdot \begin{bmatrix} \phi_1 - \phi_2 \\ \phi_2 - \phi_3 \\ 0 \\ \phi_4 - \phi_3 \\ \phi_3 - \phi_6 \\ 0 \\ \phi_3 - \phi_1 \\ 0 \\ \vdots \end{bmatrix}$$

Sample edges with probability  $2^{-j}$ 

If edge (a,b) is in *G* and is sampled, it contributes  $\Omega(\frac{1}{C\log n})$  fraction of mass whp – can recover.

Need to recover 'heavy' coordinates of

$$S\Delta := (SB)\phi = S \cdot \begin{bmatrix} 0 \\ 0 \\ 0 \\ \phi_4 - \phi_3 \\ \phi_3 - \phi_6 \\ 0 \\ 0 \\ \vdots \end{bmatrix}$$

Sample edges with probability  $2^{-j}$ 

If edge (a,b) is in *G* and is sampled, it contributes  $\Omega(\frac{1}{C\log n})$  fraction of mass whp – can recover.

Store sketches of subsampled edge incidence matrix:

$$S\Pi_j B, j = 0, \dots, \log_2 n.$$

 $\Pi_j$  is a diagonal matrix with Bernoulli $(0/1, 2^{-j})$  entries

#### **REFINESPARSIFIER** $(G, \tilde{G}, \varepsilon, c)$

For 
$$e = (a,b) \in {\binom{V}{2}}$$
  
 $\widetilde{R}_e \leftarrow b_e^T \widetilde{L}^+ b_e$   
Round:  $\widetilde{R}_e \approx 2^{-j}$   
 $x_e \leftarrow \widetilde{L}^+ b_e$ 

If TESTEDGE( $S\Pi_j B, x_e, e$ ) then add *e* to sparsifier with weight  $2^j$ 

Repeat  $(C/\epsilon^2)$  times, take union

resistance in *G̃* determine sampling level

Designed a sketch S that allows sampling edges of G according to effective resistance given

- ► S · B (sketch of edge incidence matrix)
- crude constant factor spectral sparsifier  $\widetilde{G}$

$$\frac{1}{C} \cdot L \prec \widetilde{L} \prec L$$



## Chain of coarse sparsifiers

Approach of Miller and Peng in Iterative approaches to row sampling Add a weighted complete graph to *G*:

 $G(\lambda) = G + \lambda K_n$ 


Approach of Miller and Peng in Iterative approaches to row sampling Add a weighted complete graph to *G*:



Approach of Miller and Peng in Iterative approaches to row sampling Add a weighted complete graph to *G*:



Approach of Miller and Peng in Iterative approaches to row sampling Add a weighted complete graph to *G*:



Approach of Miller and Peng in Iterative approaches to row sampling Add a weighted complete graph to *G*:



$$L(\lambda) = L + \lambda \cdot nI^*$$

Nonzero eigenvalues of G are between n and  $\frac{8}{n^2}$ , so

- $K_n$  is a C-spectral approximation to G(1)
- ► G(1/poly(n)) approximates G well spectrally.

Consider powers of 2 from 1 to 1/poly(n).

Two adjacent graphs in the chain are similar:

$$\frac{1}{2}G(\lambda) < G(\lambda/2) < G(\lambda)$$

#### This is exactly what we need for **REFINESPARSIFIER**...

## $\widetilde{G}_{1/2} \leftarrow \mathsf{RefineSparsifier}(S \cdot G(1/2), K_n, \varepsilon, 3)$

 $\widetilde{G}_{1/2} \leftarrow \mathsf{REFINESPARSIFIER}(S \cdot G(1/2), \ K_n, \varepsilon, 3)$  $\widetilde{G}_{1/4} \leftarrow \mathsf{REFINESPARSIFIER}(S \cdot G(1/4), \widetilde{G}_{1/2}, \varepsilon, 3)$ 

 $\widetilde{G}_{1/2} \leftarrow \mathsf{REFINESPARSIFIER}(S \cdot G(1/2), K_n, \varepsilon, 3)$  $\widetilde{G}_{1/4} \leftarrow \mathsf{REFINESPARSIFIER}(S \cdot G(1/4), \widetilde{G}_{1/2}, \varepsilon, 3)$  $\widetilde{G}_{1/8} \leftarrow \mathsf{REFINESPARSIFIER}(S \cdot G(1/8), \widetilde{G}_{1/4}, \varepsilon, 3)$  $\vdots$ 

```
\begin{split} \widetilde{G}_{1/2} \leftarrow \mathsf{REFINE}\mathsf{SPARSIFIER}(\boldsymbol{S} \cdot \boldsymbol{G}(1/2), \ \boldsymbol{K}_n, \varepsilon, 3) \\ \widetilde{G}_{1/4} \leftarrow \mathsf{REFINE}\mathsf{SPARSIFIER}(\boldsymbol{S} \cdot \boldsymbol{G}(1/4), \widetilde{G}_{1/2}, \varepsilon, 3) \\ \widetilde{G}_{1/8} \leftarrow \mathsf{REFINE}\mathsf{SPARSIFIER}(\boldsymbol{S} \cdot \boldsymbol{G}(1/8), \widetilde{G}_{1/4}, \varepsilon, 3) \\ \vdots \\ \mathbf{return} \ \widetilde{G}_{1/\text{poly}(n)} \end{split}
```

```
\begin{split} \widetilde{G}_{1/2} \leftarrow \mathsf{REFINESPARSIFIER}(S \cdot G(1/2), \ K_n, \varepsilon, 3) \\ \widetilde{G}_{1/4} \leftarrow \mathsf{REFINESPARSIFIER}(S \cdot G(1/4), \widetilde{G}_{1/2}, \varepsilon, 3) \\ \widetilde{G}_{1/8} \leftarrow \mathsf{REFINESPARSIFIER}(S \cdot G(1/8), \widetilde{G}_{1/4}, \varepsilon, 3) \\ \vdots \\ \mathbf{return} \ \widetilde{G}_{1/\text{poly}(n)} \end{split}
```

Space requirement

- $O(\log n)$  sampling levels,  $O(\frac{1}{\epsilon^2} \log n)$  repetitions
- O(log n) long chain of coarse sparsifiers
- ► an ℓ<sub>2</sub>-heavy hitters sketch of O(poly(log n)) size for each node.

#### Summary

- AMS sketch (approximating  $||x||_2^2$ )
- Heavy hitters (CountSketch)
- ▶ ℓ<sub>0</sub> samplers
- Graph connectivity
- Graph sparsification

#### Summary

- AMS sketch (approximating  $||x||_2^2$ )
- Heavy hitters (CountSketch)
- ℓ<sub>0</sub> samplers
- Graph connectivity
- Graph sparsification

# Which other graph problems admit sketching solutions?