Lecture 4: Spectral sparsification in dynamic streams

Michael Kapralov¹

¹EPFL

May 26, 2017

Algorithms for massive graphs

Massive networks ubiquitous in data processing

Social distance between nodes, community detection,...

Compress the network while preserving useful properties?

- ≥ 100 billion edges
- graph does not fit into memory of single computer
- with metadata, does not fit on a single hard drive

- ► Let G = (V, E) be an undirected graph, where |V| = n, |E| = m.
- ► Find a smaller subgraph G' of G that approximates G

- ► Let G = (V, E) be an undirected graph, where |V| = n, |E| = m.
- ► Find a smaller subgraph G' of G that approximates G

- ► Let G = (V, E) be an undirected graph, where |V| = n, |E| = m.
- ► Find a smaller subgraph G' of G that approximates G

- ► Let G = (V, E) be an undirected graph, where |V| = n, |E| = m.
- ► Find a smaller subgraph G' of G that approximates G

- ► Let G = (V, E) be an undirected graph, where |V| = n, |E| = m.
- ▶ Find a smaller subgraph G' of G that approximates G

- 1. Spectral sparsification
- 2. Streaming model of computation
- 3. Dynamic streaming and linear sketching
- 4. Spectral sparsification via linear sketches

1. Spectral sparsification

- 2. Streaming model of computation
- 3. Dynamic streaming and linear sketching
- 4. Spectral sparsification via linear sketches

value of cut =
$$\sum_{e=(u,v)\in E} (x_u - x_v)^2$$

value of cut =
$$\sum_{e=(u,v)\in E} (x_u - x_v)^2$$

value of cut =
$$\sum_{e=(u,v)\in E} (x_u - x_v)^2 = ||z||^2$$

$$Z = \begin{bmatrix} 0 \\ x_1 - x_2 \\ 0 \\ x_4 - x_3 \\ 0 \\ x_4 - x_5 \\ \vdots \end{bmatrix}$$

value of cut =
$$\sum_{e=(u,v)\in E} (x_u - x_v)^2 = ||z||^2$$

$$z = \begin{bmatrix} 0 \\ x_1 - x_2 \\ 0 \\ x_4 - x_3 \\ 0 \\ x_4 - x_5 \\ \vdots \end{bmatrix} = Bx$$

value of cut =
$$\sum_{e=(u,v)\in E} (x_u - x_v)^2 = ||Bx||^2$$

value of cut =
$$\sum_{e=(u,v)\in E} (x_u - x_v)^2 = ||Bx||^2$$

value of cut =
$$\sum_{e=(u,v)\in E} (x_u - x_v)^2 = ||Bx||^2$$

value of cut =
$$\sum_{e=(u,v)\in E} (x_u - x_v)^2 = ||Bx||^2 = x^T B^T B x$$

 $L = B^T B$ is the Laplacian of G

Definition (Karger'94, Cut sparsifiers) G' is an ε -cut sparsifier of G if

$$(1-\varepsilon)x^T L x \le x^T L' x \le (1+\varepsilon)x^T L x$$

for all $x \in \{0, 1\}^V$ (all cuts).

Theorem (Karger'94, Benczur-Karger'96) For any *G* there exists an ε -cut sparsifier *G'* with $O(\frac{1}{\varepsilon^2}n\log n)$ edges, and it can be constructed in $\widetilde{O}(m)$ time.

Definition (Spielman-Teng'04, Spectral sparsifiers) G' is an ε -spectral sparsifier of G if

$$(1-\varepsilon)x^T L x \le x^T L' x \le (1+\varepsilon)x^T L x$$

for all $x \in \{0, 1\}^V$ (all cuts). all $x \in \mathbb{R}^V$. Equivalently, $(1 - \varepsilon)L < L' < (1 + \varepsilon)L$

Theorem (Spielman-Teng'04, Spielman-Srivastava'09) For any *G* there exists an ε -spectral sparsifier *G'* with $O(\frac{1}{\varepsilon^2}n\log n)$ edges, and it can be constructed in $\widetilde{O}(m)$ time. Definition (Spielman-Teng'04, Spectral sparsifiers) G' is an ε -spectral sparsifier of G if

$$(1-\varepsilon)x^T L x \le x^T L' x \le (1+\varepsilon)x^T L x$$

for all $x \in \{0, 1\}^V$ (all cuts). all $x \in \mathbb{R}^V$. Equivalently, $(1 - \varepsilon)L < L' < (1 + \varepsilon)L$

Theorem (Spielman-Teng'04, Spielman-Srivastava'09) For any *G* there exists an ε -spectral sparsifier *G'* with $O(\frac{1}{\varepsilon^2}n\log n)$ edges, and it can be constructed in $\widetilde{O}(m)$ time.

Karger'94, Benczur-Karger'96, Fung-Hariharan-Harvey-Panigrahi'11 Spielman-Teng'04, Spielman-Srivastava'08, Batson-Spielman-Srivastava'09, Kolla-Makarychev-Saberi-Teng'10, Koutis-Levin-Peng'12, Kapralov-Panigrahy'12

Implications for numerical linear algebra, combinatorial optimization etc

Constructing spectral sparsifiers

Theorem (Spielman-Srivastava'09)

Let G = (V, E) be an undirected graph. Let G' be obtained by including every edge $e \in E$ independently with probability proportional to its effective resistance:

$$p_e \ge \min\{1, \frac{C\log n}{\epsilon^2}R_e\}.$$

Assigning weight $1/p_e$ if sampled. Then $(1-\epsilon)L < L' < (1+\epsilon)L$ whp.

Sample edges according to a measure of importance, assign weights to make estimate unbiased

1. Spectral sparsification

2. Streaming model of computation

- 3. Dynamic streaming and linear sketching
- 4. Spectral sparsification via linear sketches

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\tilde{O}(n)$ space
- several passes over the stream

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\tilde{O}(n)$ space
- several passes over the stream

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\tilde{O}(n)$ space
- several passes over the stream

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\tilde{O}(n)$ space
- several passes over the stream

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\tilde{O}(n)$ space
- several passes over the stream

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\tilde{O}(n)$ space
- several passes over the stream

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\tilde{O}(n)$ space
- several passes over the stream

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\tilde{O}(n)$ space
- several passes over the stream

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\tilde{O}(n)$ space
- several passes over the stream

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\tilde{O}(n)$ space
- several passes over the stream

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\tilde{O}(n)$ space
- several passes over the stream

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\tilde{O}(n)$ space
- several passes over the stream

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\tilde{O}(n)$ space
- several passes over the stream

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\tilde{O}(n)$ space
- several passes over the stream

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\tilde{O}(n)$ space
- several passes over the stream

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\tilde{O}(n)$ space
- several passes over the stream

- streaming model: edges of G arrive in an arbitrary order in a stream;
- algorithm can only use $\tilde{O}(n)$ space
- several passes over the stream (ideally one pass)

These algorithms are streamable: just keep resparsifying the graph as edges come in.

Ahn-Guha'09: $O(\frac{1}{\epsilon^2}n\log^2 n)$ space for cut sparsifiers

Kelner-Levin'11: $O(\frac{1}{\epsilon^2} n \log n)$ space for spectral sparsifiers

These algorithms are streamable: just keep resparsifying the graph as edges come in.

Ahn-Guha'09: $O(\frac{1}{\epsilon^2}n\log^2 n)$ space for cut sparsifiers Kelner-Levin'11: $O(\frac{1}{\epsilon^2}n\log n)$ space for spectral sparsifiers

Many modern networks evolve over time, edges both inserted and deleted

Construct sparsifiers in dynamic streams in small space?

- 1. Spectral sparsification
- 2. Streaming model of computation

3. Dynamic streaming and linear sketching

4. Spectral sparsification via linear sketches (main result)

Very different algorithms are needed...

Classical data stream application: approximating frequency moments.

Goal: approximate $||x||_2^2 = \sum_i x_i^2$ using $\ll n$ space

Maintain $x^T v_i = 1, ..., O(1/\epsilon^2)$ for random Gaussians $v_i \in \mathbb{R}^n$. Output average of $(x^T v_i)^2$.

Classical data stream application: approximating frequency moments.

Goal: approximate $||x||_2^2 = \sum_i x_i^2$ using $\ll n$ space

Maintain $x^T v_i = 1, ..., O(1/\epsilon^2)$ for random Gaussians $v_i \in \mathbb{R}^n$. Output average of $(x^T v_i)^2$.

 $(1 \pm \varepsilon)$ -approximation with $O(\frac{1}{\varepsilon^2} \log n)$ space

Take (randomized) linear measurements of the input

Take (randomized) linear measurements of the input

Can get $(1 \pm \varepsilon)$ -approximation to $||x||^2$ with $\frac{1}{\varepsilon^2}$ poly(log *n*) rows

Take (randomized) linear measurements of the input

Can get $(1 \pm \varepsilon)$ -approximation to $||x||^2$ with $\frac{1}{\varepsilon^2}$ poly(log *n*) rows Easy to maintain linear sketches in the (dynamic) streaming model

Graph sketching

Represent adjacency matrix of input graph *G* as a vector of dimension $\binom{n}{2}$, sketch the vector.

Ahn-Guha-McGregor'SODA12 – connectivity in $n \cdot poly(\log n)$ space.

Graph sketching

Represent adjacency matrix of input graph *G* as a vector of dimension $\binom{n}{2}$, sketch the vector.

Ahn-Guha-McGregor'SODA12 – connectivity in $n \cdot poly(\log n)$ space.

Sketch the adjacency matrix, then reconstruct edges of a sparsifier from the sketch?

Cut sparsifiers:

Spectral sparsifiers:

Streaming

Ahn-Guha'09

Kelner-Levin'11

Dynamic streaming

Ahn-Guha-McGregor'12 Goel-Kapralov-Post'12 $O(\frac{1}{\epsilon^2} n \text{poly}(\log n))$ space Ahn-Guha-McGregor'14 Kapralov-Woodruff'14 $\tilde{O}(\frac{1}{\epsilon^2}n^{5/3})$ space $O(\text{poly}(\frac{1}{\epsilon})n^{1+o(1)})$ space,

two passes

Cut sparsifiers:

Spectral sparsifiers:

Streaming

Ahn-Guha'09

Kelner-Levin'11

Dynamic streaming

Ahn-Guha-McGregor'12 Goel-Kapralov-Post'12 $O(\frac{1}{r^2} n \text{poly}(\log n))$ space Ahn-Guha-McGregor'14 Kapralov-Woodruff'14 $\widetilde{O}(\frac{1}{\epsilon^2}n^{5/3})$ space $O(\text{poly}(\frac{1}{\epsilon})n^{1+o(1)})$ space,

two passes

Theorem (K.-Lee-Musco-Musco-Sidford'14)

There exists a single-pass streaming algorithm that constructs a spectral sparsifier of a graph given as a dynamic stream of edges using $\tilde{O}(\frac{1}{r^2}npoly(\log n))$ space and poly(n) runtime.

Cut sparsifiers:

Spectral sparsifiers:

Streaming

Ahn-Guha'09

Kelner-Levin'11

Dynamic streaming

Ahn-Guha-McGregor'12 Goel-Kapralov-Post'12 $O(\frac{1}{\epsilon^2} n \text{poly}(\log n))$ space Ahn-Guha-McGregor'14 Kapralov-Woodruff'14 $\widetilde{O}(\frac{1}{\epsilon^2}n^{5/3})$ space $O(\text{poly}(\frac{1}{\epsilon})n^{1+o(1)})$ space,

two passes

Theorem (K.-Lee-Musco-Musco-Sidford'14)

There exists a single-pass streaming algorithm that constructs a spectral sparsifier of a graph given as a dynamic stream of edges using $\tilde{O}(\frac{1}{r^2}npoly(\log n))$ space and poly(n) runtime.

Essentially optimal space complexity, oblivious compression scheme

- 1. Spectral sparsification
- 2. Streaming model of computation
- 3. Dynamic streaming and linear sketching
- 4. Spectral sparsification via linear sketches

Constructing spectral sparsifiers

Theorem (Spielman-Srivastava'09) Let G = (V, E) be an undirected graph. Let G' be obtained by including every edge $e \in E$ independently with probability proportional to its effective resistance:

$$p_e \ge \min\{1, \frac{C\log n}{\varepsilon^2}R_e\}.$$

Assign weight $1/p_e$ if sampled. Then $(1-\epsilon)G < G' < (1+\epsilon)G$ whp.

Sample edges according to a measure of importance, assign weights to make estimate unbiased

Note: edges *e* with resistance $R_e = \Omega(1/\log n)$ included with probability 1

Constructing spectral sparsifiers offline

Maintain: sketch $S \cdot B$ of the incidence matrix B

Step 1. Compute sampling probabilities p_e for each $e \in E$

Step 2. Sample edges independently with probability p_e , give weight $1/p_e$.

Constructing spectral sparsifiers offline

Maintain: sketch $S \cdot B$ of the incidence matrix B

Step 1. Compute sampling probabilities p_e for each $e \in E$ [Q] How? We do not know which edges are present in the graph...

Step 2. Sample edges independently with probability p_e , give weight $1/p_e$.

[Q] Sample from the sketch?
Goal: design a sketch *S* that allows sampling edges of *G* according to effective resistance given

• $S \cdot B$ (sketch of edge incidence matrix)

Goal: design a sketch S that allows sampling edges of G according to effective resistance given

- ► S · B (sketch of edge incidence matrix)
- crude constant factor spectral sparsifier \widetilde{G}

$$\frac{1}{C} \cdot L \prec \widetilde{L} \prec L$$

Construct a $1 + \varepsilon$ sparsifier G' of G

Goal: design a sketch *S* that allows recovery of high resistance $(\geq 1/\log n)$ edges of *G* given

- $S \cdot B$ (sketch of edge incidence matrix)
- crude constant factor spectral sparsifier \tilde{G}

$$\frac{1}{C} \cdot L \prec \widetilde{L} \prec L$$

Construct a $1 + \varepsilon$ sparsifier G' of G

$$R_{uv} = b_{uv}^T L^+ b_{uv}$$

Note: defined for any pair (u, v).

Inject current at *u*, take out at *v*.

$$R_{uv} = b_{uv}^T L^+ b_{uv}$$

Note: defined for any pair (u, v).

Inject current at u, take out at v.

 $\phi = L^+ b_{uv}$ =vertex potentials

$$R_{uv} = b_{uv}^T L^+ b_{uv}$$

Note: defined for any pair (u, v).

Inject current at *u*, take out at *v*. $\phi = L^+ b_{uv}$ =vertex potentials

$$R_{uv} = b_{uv}^T L^+ b_{uv}$$

Note: defined for any pair (u, v).

Inject current at *u*, take out at *v*. $\phi = L^+ b_{uv}$ =vertex potentials

$$R_{uv} = b_{uv}^T L^+ b_{uv}$$

Note: defined for any pair (u, v).

Inject current at *u*, take out at *v*. $\phi = L^+ b_{uv}$ =vertex potentials $f_{xy} = \phi_y - \phi_x = b_{xy}^T L^+ b_{uv}$

$$R_{uv} = b_{uv}^T L^+ b_{uv}$$

Note: defined for any pair (u, v).

Inject current at u, take out at v.

 $\phi = L^+ b_{uv}$ =vertex potentials

 $f = B\varphi$ =currents on edges

$$R_{uv} = b_{uv}^T L^+ b_{uv}$$

Note: defined for any pair (u, v).

Inject current at *u*, take out at *v*. $\phi = L^+ b_{uv}$ =vertex potentials $f = B\phi$ =currents on edges

We have

$$R_e = \frac{f_e^2}{||f||^2}.$$

$$R_{uv} = b_{uv}^T L^+ b_{uv}$$

Note: defined for any pair (u, v).

- ▶ a sketch S · B of G
- crude sparsifier G
- pair $(u, v) \in V \times V$

Need:

- a sketch S·B of G
- crude sparsifier G
- pair $(u, v) \in V \times V$

Need:

- a sketch S·B of G
- crude sparsifier G
- pair $(u, v) \in V \times V$

Need:

- a sketch S·B of G
- crude sparsifier G
- pair $(u, v) \in V \times V$

Need:

- a sketch S·B of G
- crude sparsifier G
- pair $(u, v) \in V \times V$

Need:

- a sketch S·B of G
- crude sparsifier G
- pair $(u, v) \in V \times V$

Need:

Linear sketching and sparse recovery

0 0 0.01 0 200 1 0 2 0 0 0

Let y be a vector of reals. Then $i \in [n]$ is an ℓ_2 -heavy hitter if

 $y_i^2 \ge \eta ||y||_2^2$.

Lemma (*l*₂-heavy hitters)

For any $\eta > 0$ there exists a (randomized) sketch in dimension $\frac{1}{\eta}$ poly(log *n*) from which one reconstruct all η -heavy hitters. The recovery works in time $O(\frac{1}{\eta} \cdot \text{poly}(\log n))$.

Linear sketching and sparse recovery

0 0 0.01 0 200 1 0 2 0 0 0

Let y be a vector of reals. Then $i \in [n]$ is an ℓ_2 -heavy hitter if

 $y_i^2 \ge \eta ||y||_2^2$.

Lemma (*l*₂-heavy hitters)

For any $\eta > 0$ there exists a (randomized) sketch in dimension $O(\frac{1}{\eta} \log n)$ from which one reconstruct all η -heavy hitters. The recovery works in time $O(\frac{1}{\eta} \cdot poly(\log n))$.

Linear sketching and sparse recovery Need to recover 'heavy' coordinates of

$$S\Delta := (SB)\phi = S \cdot \begin{bmatrix} \phi_1 - \phi_2 \\ \phi_2 - \phi_3 \\ 0 \\ \phi_4 - \phi_3 \\ \phi_3 - \phi_6 \\ 0 \\ \phi_3 - \phi_1 \\ 0 \\ \vdots \end{bmatrix}$$

A coordinate $e \in \binom{n}{2}$ is heavy if $\Delta_e^2 = \Omega(||\Delta||_2^2/(C\log n))$

This is the ℓ_2 heavy hitters problem!

Problem: we do not know Δ in advance!

$$\boldsymbol{S} \cdot \boldsymbol{B} = \boldsymbol{S} \cdot \begin{bmatrix} 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & & & \vdots \end{bmatrix}$$

$$S \cdot B = S \cdot \begin{bmatrix} \mathbf{1} & -1 & 0 & 0 & 0 & 0 \\ \mathbf{0} & 1 & -1 & 0 & 0 & 0 \\ \mathbf{0} & 0 & 0 & 0 & 0 & 0 \\ -\mathbf{1} & 0 & 1 & 0 & 0 & 0 \\ \mathbf{0} & 0 & 1 & 0 & 0 & -1 \\ \mathbf{0} & 0 & 0 & 0 & 0 & 0 \\ \vdots & & & \vdots \end{bmatrix}$$

$$\boldsymbol{S} \cdot \boldsymbol{B} = \boldsymbol{S} \cdot \begin{bmatrix} 1 & -\mathbf{1} & 0 & 0 & 0 & 0 \\ 0 & \mathbf{1} & -\mathbf{1} & 0 & 0 & 0 \\ 0 & \mathbf{0} & 0 & 0 & 0 & 0 \\ -\mathbf{1} & \mathbf{0} & \mathbf{1} & 0 & 0 & 0 \\ 0 & \mathbf{0} & \mathbf{1} & 0 & 0 & -\mathbf{1} \\ 0 & \mathbf{0} & 0 & 0 & 0 & 0 \\ \vdots & & & \vdots \end{bmatrix}$$

$$\boldsymbol{S} \cdot \boldsymbol{B} = \boldsymbol{S} \cdot \begin{bmatrix} 1 & -1 & \boldsymbol{0} & 0 & 0 & 0 \\ 0 & 1 & -\boldsymbol{1} & 0 & 0 & 0 \\ 0 & 0 & \boldsymbol{0} & 0 & 0 & 0 \\ -1 & 0 & \boldsymbol{1} & 0 & 0 & 0 \\ 0 & 0 & \boldsymbol{1} & 0 & 0 & -1 \\ 0 & 0 & \boldsymbol{0} & 0 & 0 & 0 \\ \vdots & & & \vdots \end{bmatrix}$$

$$\boldsymbol{S} \cdot \boldsymbol{B} = \boldsymbol{S} \cdot \begin{bmatrix} 1 & -1 & 0 & \boldsymbol{0} & 0 & 0 \\ 0 & 1 & -1 & \boldsymbol{0} & 0 & 0 \\ 0 & 0 & 0 & \boldsymbol{0} & 0 & 0 \\ -1 & 0 & 1 & \boldsymbol{0} & 0 & 0 \\ 0 & 0 & 1 & \boldsymbol{0} & 0 & -1 \\ 0 & 0 & 0 & \boldsymbol{0} & \boldsymbol{0} & 0 \\ \vdots & & & \vdots \end{bmatrix}$$

- ▶ a sketch S · B of G
- crude sparsifier \tilde{G}
- pair $(u, v) \in V \times V$

Need:

- a sketch S·B of G
- crude sparsifier \tilde{G}
- pair $(u, v) \in V \times V$

Need:

• is (u, v) an edge in G of resistance $\Omega(1/\log n)$?

Compute $\phi = \tilde{\mathbf{L}}^+ b_{\mu\nu}$ – vertex potentials 0.45 0.58 0.45 0 0.83 -0.4 0 -0.16

- ▶ a sketch S · B of G
- crude sparsifier \tilde{G}
- pair $(u, v) \in V \times V$

Need:

• is (u, v) an edge in G of resistance $\Omega(1/\log n)$?

0.45 0.45 0.45 0.45 0.83 -0.4

Compute $\phi = \widetilde{\mathbf{L}}^+ b_{uv}$ – vertex potentials

Compute $S \cdot \Delta = \mathbf{S} \cdot \mathbf{B} \phi$ =potential differences

- a sketch S·B of G
- crude sparsifier G
- pair $(u, v) \in V \times V$

Need:

Need to recover 'heavy' coordinates of

$$S\Delta := (SB)\phi = S \cdot \begin{bmatrix} \phi_1 - \phi_2 \\ \phi_2 - \phi_3 \\ 0 \\ \phi_4 - \phi_3 \\ \phi_3 - \phi_6 \\ 0 \\ \phi_3 - \phi_1 \\ 0 \\ \vdots \end{bmatrix}$$

Need to recover 'heavy' coordinates of

$$S\Delta := (SB)\phi = S \cdot \begin{bmatrix} \phi_1 - \phi_2 \\ \phi_2 - \phi_3 \\ 0 \\ \phi_4 - \phi_3 \\ \phi_3 - \phi_6 \\ 0 \\ \phi_3 - \phi_1 \\ 0 \\ \vdots \end{bmatrix}$$

Sample edges with probability 2^{-j}

If edge (a,b) is in *G* and is sampled, it contributes $\Omega(\frac{1}{C\log n})$ fraction of mass whp – can recover.

Need to recover 'heavy' coordinates of

$$S\Delta := (SB)\phi = S \cdot \begin{bmatrix} 0 \\ 0 \\ 0 \\ \phi_4 - \phi_3 \\ \phi_3 - \phi_6 \\ 0 \\ 0 \\ \vdots \end{bmatrix}$$

Sample edges with probability 2^{-j}

If edge (a,b) is in *G* and is sampled, it contributes $\Omega(\frac{1}{C\log n})$ fraction of mass whp – can recover.

Store sketches of subsampled edge incidence matrix:

$$S\Pi_j B, j = 0, \dots, \log_2 n.$$

 Π_j is a diagonal matrix with Bernoulli $(0/1, 2^{-j})$ entries

REFINESPARSIFIER $(G, \tilde{G}, \varepsilon, c)$

For
$$e = (a,b) \in {\binom{V}{2}}$$

 $\widetilde{R}_e \leftarrow b_e^T \widetilde{L}^+ b_e$
Round: $\widetilde{R}_e \approx 2^{-j}$
 $x_e \leftarrow \widetilde{L}^+ b_e$

If TESTEDGE($S\Pi_j B, x_e, e$) then add *e* to sparsifier with weight 2^j

Repeat (C/ϵ^2) times, take union

resistance in *G̃* determine sampling level

Designed a sketch S that allows sampling edges of G according to effective resistance given

- ► S · B (sketch of edge incidence matrix)
- crude constant factor spectral sparsifier \widetilde{G}

$$\frac{1}{C} \cdot L \prec \widetilde{L} \prec L$$

Chain of coarse sparsifiers

Approach of Miller and Peng in Iterative approaches to row sampling Add a weighted complete graph to *G*:

 $G(\lambda) = G + \lambda K_n$

Approach of Miller and Peng in Iterative approaches to row sampling Add a weighted complete graph to *G*:

Approach of Miller and Peng in Iterative approaches to row sampling Add a weighted complete graph to *G*:

Approach of Miller and Peng in Iterative approaches to row sampling Add a weighted complete graph to *G*:

Approach of Miller and Peng in Iterative approaches to row sampling Add a weighted complete graph to *G*:

$$L(\lambda) = L + \lambda \cdot nI^*$$

Nonzero eigenvalues of G are between n and $\frac{8}{n^2}$, so

- K_n is a C-spectral approximation to G(1)
- ► G(1/poly(n)) approximates G well spectrally.

Consider powers of 2 from 1 to 1/poly(n).

Two adjacent graphs in the chain are similar:

$$\frac{1}{2}G(\lambda) < G(\lambda/2) < G(\lambda)$$

This is exactly what we need for **REFINESPARSIFIER**...

$\widetilde{G}_{1/2} \leftarrow \mathsf{RefineSparsifier}(S \cdot G(1/2), K_n, \varepsilon, 3)$

 $\widetilde{G}_{1/2} \leftarrow \mathsf{REFINESPARSIFIER}(S \cdot G(1/2), \ K_n, \varepsilon, 3)$ $\widetilde{G}_{1/4} \leftarrow \mathsf{REFINESPARSIFIER}(S \cdot G(1/4), \widetilde{G}_{1/2}, \varepsilon, 3)$

 $\widetilde{G}_{1/2} \leftarrow \mathsf{REFINESPARSIFIER}(S \cdot G(1/2), K_n, \varepsilon, 3)$ $\widetilde{G}_{1/4} \leftarrow \mathsf{REFINESPARSIFIER}(S \cdot G(1/4), \widetilde{G}_{1/2}, \varepsilon, 3)$ $\widetilde{G}_{1/8} \leftarrow \mathsf{REFINESPARSIFIER}(S \cdot G(1/8), \widetilde{G}_{1/4}, \varepsilon, 3)$ \vdots

```
\begin{split} \widetilde{G}_{1/2} \leftarrow \mathsf{REFINE}\mathsf{SPARSIFIER}(\boldsymbol{S} \cdot \boldsymbol{G}(1/2), \ \boldsymbol{K}_n, \varepsilon, 3) \\ \widetilde{G}_{1/4} \leftarrow \mathsf{REFINE}\mathsf{SPARSIFIER}(\boldsymbol{S} \cdot \boldsymbol{G}(1/4), \widetilde{G}_{1/2}, \varepsilon, 3) \\ \widetilde{G}_{1/8} \leftarrow \mathsf{REFINE}\mathsf{SPARSIFIER}(\boldsymbol{S} \cdot \boldsymbol{G}(1/8), \widetilde{G}_{1/4}, \varepsilon, 3) \\ \vdots \\ \mathbf{return} \ \widetilde{G}_{1/\text{poly}(n)} \end{split}
```

```
\begin{split} \widetilde{G}_{1/2} \leftarrow \mathsf{REFINESPARSIFIER}(S \cdot G(1/2), \ K_n, \varepsilon, 3) \\ \widetilde{G}_{1/4} \leftarrow \mathsf{REFINESPARSIFIER}(S \cdot G(1/4), \widetilde{G}_{1/2}, \varepsilon, 3) \\ \widetilde{G}_{1/8} \leftarrow \mathsf{REFINESPARSIFIER}(S \cdot G(1/8), \widetilde{G}_{1/4}, \varepsilon, 3) \\ \vdots \\ \mathbf{return} \ \widetilde{G}_{1/\text{poly}(n)} \end{split}
```

Space requirement

- $O(\log n)$ sampling levels, $O(\frac{1}{\epsilon^2} \log n)$ repetitions
- O(log n) long chain of coarse sparsifiers
- ► an ℓ₂-heavy hitters sketch of O(poly(log n)) size for each node.

Summary

- AMS sketch (approximating $||x||_2^2$)
- Heavy hitters (CountSketch)
- ▶ ℓ₀ samplers
- Graph connectivity
- Graph sparsification

Summary

- AMS sketch (approximating $||x||_2^2$)
- Heavy hitters (CountSketch)
- ℓ₀ samplers
- Graph connectivity
- Graph sparsification

Which other graph problems admit sketching solutions?