
Lecture 4: Spectral sparsification in dynamic
streams

Michael Kapralov1

1EPFL

May 26, 2017

1 / 47

Algorithms for massive graphs
Massive networks ubiquitous in data

processing

Ï ≥ 100 billion edges
Ï graph does not fit into memory

of single computer
Ï with metadata, does not fit on a

single hard drive

Social distance between
nodes,

community detection,...

Compress the network
while preserving useful

properties?

2 / 47

Sparsification

Ï Let G = (V ,E) be an undirected graph, where
|V | = n, |E | =m.

Ï Find a smaller subgraph G′ of G that approximates G

weights on edges

G

G′

3 / 47

Sparsification

Ï Let G = (V ,E) be an undirected graph, where
|V | = n, |E | =m.

Ï Find a smaller subgraph G′ of G that approximates G

weights on edges

G G′

3 / 47

Sparsification

Ï Let G = (V ,E) be an undirected graph, where
|V | = n, |E | =m.

Ï Find a smaller subgraph G′ of G that approximates G

weights on edges

G G′

3 / 47

Sparsification

Ï Let G = (V ,E) be an undirected graph, where
|V | = n, |E | =m.

Ï Find a smaller subgraph G′ of G that approximates G

weights on edges

G G′

3 / 47

Sparsification

Ï Let G = (V ,E) be an undirected graph, where
|V | = n, |E | =m.

Ï Find a smaller subgraph G′ of G that approximates G

weights on edges

G G′

1±ε

3 / 47

1. Spectral sparsification

2. Streaming model of computation

3. Dynamic streaming and linear sketching

4. Spectral sparsification via linear sketches

3 / 47

1. Spectral sparsification

2. Streaming model of computation

3. Dynamic streaming and linear sketching

4. Spectral sparsification via linear sketches

3 / 47

Sparsification

value of cut= ∑
e=(u,v)∈E

(xu −xv)
2

L=BT B is the Laplacian of G

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

B =

1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 0 0 0 0
−1 0 0 1 0 0
0 0 1 0 0 −1
0 0 0 0 0 0
...

...

4 / 47

Sparsification

value of cut= ∑
e=(u,v)∈E

(xu −xv)
2

L=BT B is the Laplacian of G

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

B =

1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 0 0 0 0
−1 0 0 1 0 0
0 0 1 0 0 −1
0 0 0 0 0 0
...

...

4 / 47

Sparsification

value of cut= ∑
e=(u,v)∈E

(xu −xv)
2 = ||z||2

L=BT B is the Laplacian of G

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

z =

0
x1 −x2

0
x4 −x3

0
x4 −x5

...

=Bx

4 / 47

Sparsification

value of cut= ∑
e=(u,v)∈E

(xu −xv)
2 = ||z||2

L=BT B is the Laplacian of G

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

z =

0
x1 −x2

0
x4 −x3

0
x4 −x5

...

=Bx

4 / 47

Sparsification

value of cut= ∑
e=(u,v)∈E

(xu −xv)
2 = ||Bx ||2

L=BT B is the Laplacian of G

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

Bx =

1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 0 0 0 0
−1 0 0 1 0 0
0 0 1 0 0 −1
0 0 0 0 0 0
...

...

·

x1
x2
...

xn

(n
2
)×n

4 / 47

Sparsification

value of cut= ∑
e=(u,v)∈E

(xu −xv)
2 = ||Bx ||2

L=BT B is the Laplacian of G

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

Bx =

1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 0 0 0 0
−1 0 0 1 0 0
0 0 1 0 0 −1
0 0 0 0 0 0
...

...

·

x1
x2
...

xn

(n
2
)×n

4 / 47

Sparsification

value of cut= ∑
e=(u,v)∈E

(xu −xv)
2 = ||Bx ||2

L=BT B is the Laplacian of G

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

Bx =

1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 0 0 0 0
−1 0 0 1 0 0
0 0 1 0 0 −1
0 0 0 0 0 0
...

...

·

x1
x2
...

xn

(n
2
)×n

4 / 47

Sparsification

value of cut= ∑
e=(u,v)∈E

(xu −xv)
2 = ||Bx ||2 = xT BT Bx

L=BT B is the Laplacian of G

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

Bx =

1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 0 0 0 0
−1 0 0 1 0 0
0 0 1 0 0 −1
0 0 0 0 0 0
...

...

·

x1
x2
...

xn

(n
2
)×n

4 / 47

Definition (Karger’94, Cut sparsifiers)
G′ is an ε-cut sparsifier of G if

(1−ε)xT Lx ≤ xT L′x ≤ (1+ε)xT Lx

for all x ∈ {0,1}V (all cuts).

all x ∈RV .
Equivalently, (1−ε)L≺ L′ ≺ (1+ε)L

Theorem (Karger’94, Benczur-Karger’96)
For any G there exists an ε-cut sparsifier G′ with
O(1

ε2 n logn) edges, and it can be constructed in Õ(m) time.

Karger’94, Benczur-Karger’96, Fung-Hariharan-Harvey-Panigrahi’11

Spielman-Teng’04, Spielman-Srivastava’08, Batson-Spielman-Srivastava’09,

Kolla-Makarychev-Saberi-Teng’10, Koutis-Levin-Peng’12, Kapralov-Panigrahy’12

Implications for numerical linear algebra, combinatorial optimization
etc

5 / 47

Definition (Spielman-Teng’04, Spectral sparsifiers)
G′ is an ε-spectral sparsifier of G if

(1−ε)xT Lx ≤ xT L′x ≤ (1+ε)xT Lx

for all x ∈ {0,1}V (all cuts). all x ∈RV .
Equivalently, (1−ε)L≺ L′ ≺ (1+ε)L

Theorem (Spielman-Teng’04, Spielman-Srivastava’09)
For any G there exists an ε-spectral sparsifier G′ with
O(1

ε2 n logn) edges, and it can be constructed in Õ(m) time.

Karger’94, Benczur-Karger’96, Fung-Hariharan-Harvey-Panigrahi’11

Spielman-Teng’04, Spielman-Srivastava’08, Batson-Spielman-Srivastava’09,

Kolla-Makarychev-Saberi-Teng’10, Koutis-Levin-Peng’12, Kapralov-Panigrahy’12

Implications for numerical linear algebra, combinatorial optimization
etc

6 / 47

Definition (Spielman-Teng’04, Spectral sparsifiers)
G′ is an ε-spectral sparsifier of G if

(1−ε)xT Lx ≤ xT L′x ≤ (1+ε)xT Lx

for all x ∈ {0,1}V (all cuts). all x ∈RV .
Equivalently, (1−ε)L≺ L′ ≺ (1+ε)L

Theorem (Spielman-Teng’04, Spielman-Srivastava’09)
For any G there exists an ε-spectral sparsifier G′ with
O(1

ε2 n logn) edges, and it can be constructed in Õ(m) time.

Karger’94, Benczur-Karger’96, Fung-Hariharan-Harvey-Panigrahi’11

Spielman-Teng’04, Spielman-Srivastava’08, Batson-Spielman-Srivastava’09,

Kolla-Makarychev-Saberi-Teng’10, Koutis-Levin-Peng’12, Kapralov-Panigrahy’12

Implications for numerical linear algebra, combinatorial optimization
etc

6 / 47

Constructing spectral sparsifiers

Theorem (Spielman-Srivastava’09)
Let G = (V ,E) be an undirected graph. Let G′ be obtained by
including every edge e ∈E independently with probability
proportional to its effective resistance:

pe ≥min{1,
C logn
ε2 Re}.

Assigning weight 1/pe if sampled. Then (1−ε)L≺ L′ ≺ (1+ε)L
whp.

Sample edges according to a measure of importance,
assign weights to make estimate unbiased

7 / 47

Sparsification

weights on edges

G

G′

8 / 47

Sparsification

weights on edges

G G′

9 / 47

1. Spectral sparsification

2. Streaming model of computation

3. Dynamic streaming and linear sketching

4. Spectral sparsification via linear sketches

9 / 47

Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

10 / 47

Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

10 / 47

Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

10 / 47

Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

10 / 47

Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

10 / 47

Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

10 / 47

Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

10 / 47

Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

10 / 47

Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

10 / 47

Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

10 / 47

Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

10 / 47

Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

10 / 47

Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

10 / 47

Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

10 / 47

Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

10 / 47

Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

10 / 47

Streaming model
Ï streaming model: edges of G arrive in an arbitrary order in

a stream;
Ï algorithm can only use Õ(n) space
Ï several passes over the stream (ideally one pass)

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

10 / 47

These algorithms are streamable: just keep resparsifiying the
graph as edges come in.

Ahn-Guha’09: O(1
ε2 n log2 n) space for cut sparsifiers

Kelner-Levin’11: O(1
ε2 n logn) space for spectral sparsifiers

Many modern networks evolve over
time, edges both inserted and deleted

Construct sparsifiers in dynamic streams in small space?

11 / 47

These algorithms are streamable: just keep resparsifiying the
graph as edges come in.

Ahn-Guha’09: O(1
ε2 n log2 n) space for cut sparsifiers

Kelner-Levin’11: O(1
ε2 n logn) space for spectral sparsifiers

Many modern networks evolve over
time, edges both inserted and deleted

Construct sparsifiers in dynamic streams in small space?

11 / 47

1. Spectral sparsification

2. Streaming model of computation

3. Dynamic streaming and linear sketching

4. Spectral sparsification via linear sketches (main result)

11 / 47

What if we have deletions?

weights on edges

Very different algorithms are needed...

12 / 47

What if we have deletions?

weights on edges

Very different algorithms are needed...

12 / 47

What if we have deletions?

weights on edges

Very different algorithms are needed...

12 / 47

What if we have deletions?

weights on edges

Very different algorithms are needed...

12 / 47

What if we have deletions?

weights on edges

Very different algorithms are needed...

12 / 47

What if we have deletions?

weights on edges

Very different algorithms are needed...

12 / 47

What if we have deletions?

weights on edges

Very different algorithms are needed...

12 / 47

What if we have deletions?

weights on edges

Very different algorithms are needed...

12 / 47

What if we have deletions?

weights on edges

Very different algorithms are needed...

12 / 47

What if we have deletions?

weights on edges

Very different algorithms are needed...

12 / 47

Linear sketching

Classical data stream application: approximating frequency
moments.

0 0 0 0 0 0 0 0 0 0 0

Goal: approximate ||x ||22 =∑
i x2

i using ¿ n space

Maintain xT vi = 1, . . . ,O(1/ε2) for random Gaussians vi ∈Rn.
Output average of (xT vi)

2.

(1±ε)-approximation with O(1
ε2 logn) space

13 / 47

Linear sketching

Classical data stream application: approximating frequency
moments.

0 0 1 0 0 0 0 0 0 0 0

Goal: approximate ||x ||22 =∑
i x2

i using ¿ n space

Maintain xT vi = 1, . . . ,O(1/ε2) for random Gaussians vi ∈Rn.
Output average of (xT vi)

2.

(1±ε)-approximation with O(1
ε2 logn) space

13 / 47

Linear sketching

Classical data stream application: approximating frequency
moments.

0 0 1 0 1 0 0 0 0 0 0

Goal: approximate ||x ||22 =∑
i x2

i using ¿ n space

Maintain xT vi = 1, . . . ,O(1/ε2) for random Gaussians vi ∈Rn.
Output average of (xT vi)

2.

(1±ε)-approximation with O(1
ε2 logn) space

13 / 47

Linear sketching

Classical data stream application: approximating frequency
moments.

0 0 1 0 2 0 0 0 0 0 0

Goal: approximate ||x ||22 =∑
i x2

i using ¿ n space

Maintain xT vi = 1, . . . ,O(1/ε2) for random Gaussians vi ∈Rn.
Output average of (xT vi)

2.

(1±ε)-approximation with O(1
ε2 logn) space

13 / 47

Linear sketching

Classical data stream application: approximating frequency
moments.

0 0 1 0 2 0 0 0 0 0 0

Goal: approximate ||x ||22 =∑
i x2

i using ¿ n space

Maintain xT vi = 1, . . . ,O(1/ε2) for random Gaussians vi ∈Rn.
Output average of (xT vi)

2.

(1±ε)-approximation with O(1
ε2 logn) space

13 / 47

Linear sketching

Classical data stream application: approximating frequency
moments.

0 0 1 0 2 0 0 0 0 0 0

Goal: approximate ||x ||22 =∑
i x2

i using ¿ n space

Maintain xT vi = 1, . . . ,O(1/ε2) for random Gaussians vi ∈Rn.
Output average of (xT vi)

2.

(1±ε)-approximation with O(1
ε2 logn) space

13 / 47

Linear sketching

Take (randomized) linear measurements of the input

S

sketching matrix

space requirement=number of rows

•

x

b=

Can get (1±ε)-approximation to ||x ||2 with 1
ε2 poly(logn) rows

Easy to maintain linear sketches in the (dynamic) streaming
model

14 / 47

Linear sketching

Take (randomized) linear measurements of the input

S

sketching matrix

space requirement=number of rows

•

x

b=

Can get (1±ε)-approximation to ||x ||2 with 1
ε2 poly(logn) rows

Easy to maintain linear sketches in the (dynamic) streaming
model

14 / 47

Linear sketching

Take (randomized) linear measurements of the input

S

sketching matrix

space requirement=number of rows

•

x

b=

Can get (1±ε)-approximation to ||x ||2 with 1
ε2 poly(logn) rows

Easy to maintain linear sketches in the (dynamic) streaming
model

14 / 47

Graph sketching
Represent adjacency matrix of input graph G as a vector of
dimension

(n
2
)
, sketch the vector.

Ahn-Guha-McGregor’SODA12 – connectivity in n ·poly(logn) space.

S

(n
2
)

n · logC n

space requirement=number of rows in S

•

x dimension
(n
2
)

b=

Sketch the adjacency matrix, then reconstruct edges of a
sparsifier from the sketch?

15 / 47

Graph sketching
Represent adjacency matrix of input graph G as a vector of
dimension

(n
2
)
, sketch the vector.

Ahn-Guha-McGregor’SODA12 – connectivity in n ·poly(logn) space.

S

(n
2
)

n · logC n

space requirement=number of rows in S

•

x dimension
(n
2
)

b=

Sketch the adjacency matrix, then reconstruct edges of a
sparsifier from the sketch?

15 / 47

Streaming

Dynamic streaming

Cut sparsifiers:
Ahn-Guha’09

Ahn-Guha-McGregor’12
Goel-Kapralov-Post’12

O(1
ε2

npoly(logn)) space

O(1
ε2

npoly(logn)) space

O(1
ε2

npoly(logn)) space

Spectral sparsifiers:
Kelner-Levin’11

Ahn-Guha-McGregor’14
Kapralov-Woodruff’14

Õ(1
ε2

n5/3) space

O(poly(1
ε)n

1+o(1)) space,

two passes

Õ(1
ε2

)

Theorem (K.-Lee-Musco-Musco-Sidford’14)
There exists a single-pass streaming algorithm that constructs
a spectral sparsifier of a graph given as a dynamic stream of
edges using Õ(1

ε2 npoly(logn)) space and poly(n) runtime.

Essentially optimal space complexity, oblivious compression
scheme

16 / 47

Streaming

Dynamic streaming

Cut sparsifiers:
Ahn-Guha’09

Ahn-Guha-McGregor’12
Goel-Kapralov-Post’12

O(1
ε2

npoly(logn)) space

O(1
ε2

npoly(logn)) space

O(1
ε2

npoly(logn)) space

Spectral sparsifiers:
Kelner-Levin’11

Ahn-Guha-McGregor’14
Kapralov-Woodruff’14

Õ(1
ε2

n5/3) space

O(poly(1
ε)n

1+o(1)) space,

two passes

Õ(1
ε2

)

Theorem (K.-Lee-Musco-Musco-Sidford’14)
There exists a single-pass streaming algorithm that constructs
a spectral sparsifier of a graph given as a dynamic stream of
edges using Õ(1

ε2 npoly(logn)) space and poly(n) runtime.

Essentially optimal space complexity, oblivious compression
scheme

16 / 47

Streaming

Dynamic streaming

Cut sparsifiers:
Ahn-Guha’09

Ahn-Guha-McGregor’12
Goel-Kapralov-Post’12

O(1
ε2

npoly(logn)) space

O(1
ε2

npoly(logn)) space

O(1
ε2

npoly(logn)) space

Spectral sparsifiers:
Kelner-Levin’11

Ahn-Guha-McGregor’14
Kapralov-Woodruff’14

Õ(1
ε2

n5/3) space

O(poly(1
ε)n

1+o(1)) space,

two passes

Õ(1
ε2

)

Theorem (K.-Lee-Musco-Musco-Sidford’14)
There exists a single-pass streaming algorithm that constructs
a spectral sparsifier of a graph given as a dynamic stream of
edges using Õ(1

ε2 npoly(logn)) space and poly(n) runtime.

Essentially optimal space complexity, oblivious compression
scheme

16 / 47

1. Spectral sparsification

2. Streaming model of computation

3. Dynamic streaming and linear sketching

4. Spectral sparsification via linear sketches

16 / 47

Constructing spectral sparsifiers
Theorem (Spielman-Srivastava’09)
Let G = (V ,E) be an undirected graph. Let G′ be obtained by
including every edge e ∈E independently with probability
proportional to its effective resistance:

pe ≥min{1,
C logn
ε2 Re}.

Assign weight 1/pe if sampled. Then (1−ε)G ≺G′ ≺ (1+ε)G
whp.

Sample edges according to a measure of importance,
assign weights to make estimate unbiased

Note: edges e with resistance Re =Ω(1/ logn) included with
probability 1

17 / 47

Constructing spectral sparsifiers offline

Maintain: sketch S ·B of the incidence matrix B

Step 1. Compute sampling probabilities pe for each e ∈E

[Q] How? We do not know which edges are present in the graph...

Step 2. Sample edges independently with probability pe, give
weight 1/pe.

[Q] Sample from the sketch?

18 / 47

Constructing spectral sparsifiers offline

Maintain: sketch S ·B of the incidence matrix B

Step 1. Compute sampling probabilities pe for each e ∈E

[Q] How? We do not know which edges are present in the graph...

Step 2. Sample edges independently with probability pe, give
weight 1/pe.

[Q] Sample from the sketch?

19 / 47

Refining a sparsifier
Goal: design a sketch S that allows sampling edges of G
according to effective resistance given

Ï S ·B (sketch of edge incidence matrix)

Ï crude constant factor spectral sparsifier G̃
1
C

·L≺ L̃≺ L

weights on edges

G G̃

Construct a 1+ε sparsifier G′ of G

19 / 47

Refining a sparsifier
Goal: design a sketch S that allows sampling edges of G
according to effective resistance given

Ï S ·B (sketch of edge incidence matrix)
Ï crude constant factor spectral sparsifier G̃

1
C

·L≺ L̃≺ L

weights on edges

G G̃

Construct a 1+ε sparsifier G′ of G

19 / 47

Refining a sparsifier
Goal: design a sketch S that allows recovery of high resistance
(≥ 1/ logn) edges of G given

Ï S ·B (sketch of edge incidence matrix)
Ï crude constant factor spectral sparsifier G̃

1
C

·L≺ L̃≺ L

weights on edges

G G̃

Construct a 1+ε sparsifier G′ of G

19 / 47

Effective resistance

Ruv = bT
uv L+buv

Note: defined for any pair (u,v).

0.43

0.27

0.35

0

−0.2
−0.16

0.35

−0.14

Inject current at u, take out at v .

φ= L+buv =vertex potentials

f =Bφ=currents on edges

We have

Re = f 2
e

||f ||2 .

Ruv = fraction of ||f ||22 contributed by e = (u,v)

20 / 47

Effective resistance

Ruv = bT
uv L+buv

Note: defined for any pair (u,v).

0.43

0.27

0.35

0

−0.2
−0.16

0.35

−0.14

Inject current at u, take out at v .

φ= L+buv =vertex potentials

buv =

0
1
0
−1
0
0
0

Ruv = fraction of ||f ||22 contributed by e = (u,v)

21 / 47

Effective resistance

Ruv = bT
uv L+buv

Note: defined for any pair (u,v).

0.43

0.27

0.35

0

−0.2
−0.16

0.35

−0.14

Inject current at u, take out at v .

φ= L+buv =vertex potentials

f =Bφ=currents on edges

We have

Re = f 2
e

||f ||2 .

Ruv = fraction of ||f ||22 contributed by e = (u,v)

22 / 47

Effective resistance

Ruv = bT
uv L+buv

Note: defined for any pair (u,v).

0.43

0.27

0.35

0

−0.2
−0.16

0.35

−0.14

Inject current at u, take out at v .

φ= L+buv =vertex potentials

f =Bφ=currents on edges

We have

Re = f 2
e

||f ||2 .

Ruv = fraction of ||f ||22 contributed by e = (u,v)

22 / 47

Effective resistance

Ruv = bT
uv L+buv

Note: defined for any pair (u,v).

0.43

0.27

0.35

0

−0.2
−0.16

0.35

−0.14

Inject current at u, take out at v .

φ= L+buv =vertex potentials

fxy =φy −φx = bT
xyL+buv

We have

Re = f 2
e

||f ||2 .

Ruv = fraction of ||f ||22 contributed by e = (u,v)

22 / 47

Effective resistance

Ruv = bT
uv L+buv

Note: defined for any pair (u,v).

0.43

0.27

0.35

0

−0.2
−0.16

0.35

−0.14

Inject current at u, take out at v .

φ= L+buv =vertex potentials

f =Bφ=currents on edges

We have

Re = f 2
e

||f ||2 .

Ruv = fraction of ||f ||22 contributed by e = (u,v)

23 / 47

Effective resistance

Ruv = bT
uv L+buv

Note: defined for any pair (u,v).

0.43

0.27

0.35

0

−0.2
−0.16

0.35

−0.14

Inject current at u, take out at v .

φ= L+buv =vertex potentials

f =Bφ=currents on edges

We have

Re = f 2
e

||f ||2 .

Ruv = fraction of ||f ||22 contributed by e = (u,v)

24 / 47

Effective resistance

Ruv = bT
uv L+buv

Note: defined for any pair (u,v).

0.43

0.27

0.35

0

−0.2
−0.16

0.35

−0.14

Inject current at u, take out at v .

φ= L+buv =vertex potentials

f =Bφ=currents on edges

We have

Re = f 2
e

||f ||2 .

Ruv = fraction of ||f ||22 contributed by e = (u,v)

25 / 47

Given:
Ï a sketch S ·B of G
Ï crude sparsifier G̃
Ï pair (u,v) ∈V ×V

Need:
Ï is (u,v) an edge in G of resistance Ω(1/ logn)?

26 / 47

Given:
Ï a sketch S ·B of G
Ï crude sparsifier G̃
Ï pair (u,v) ∈V ×V

Need:
Ï is (u,v) an edge in G of resistance Ω(1/ logn)?

0.43

0.27

0.35

0

−0.2

−0.16

0.35

−0.14

Compute φ= L+buv – vertex potentials

Compute f =Bφ=currents on edges

Check if

Re = f 2
e

||f ||2 =Ω(1/ logn).

0 0 0.01 0 200 1 0 2 0 0 0

27 / 47

Given:
Ï a sketch S ·B of G
Ï crude sparsifier G̃
Ï pair (u,v) ∈V ×V

Need:
Ï is (u,v) an edge in G of resistance Ω(1/ logn)?

0.45

0.45

0.58

0

0

−0.16

0.83

−0.4

Compute φ= L+buv – vertex potentials

Compute f =Bφ=currents on edges

Check if

Re = f 2
e

||f ||2 =Ω(1/ logn).

0 0 0.01 0 200 1 0 2 0 0 0

28 / 47

Given:
Ï a sketch S ·B of G
Ï crude sparsifier G̃
Ï pair (u,v) ∈V ×V

Need:
Ï is (u,v) an edge in G of resistance Ω(1/ logn)?

0.45

0.45

0.58

0

0

−0.16

0.83

−0.4

Compute φ=L+buv – vertex potentials

Compute f =Bφ=currents on edges

Check if

Re = f 2
e

||f ||2 =Ω(1/ logn).

0 0 0.01 0 200 1 0 2 0 0 0

29 / 47

Given:
Ï a sketch S ·B of G
Ï crude sparsifier G̃
Ï pair (u,v) ∈V ×V

Need:
Ï is (u,v) an edge in G of resistance Ω(1/ logn)?

0.45

0.45

0.58

0

0

−0.16

0.83

−0.4

Compute φ= L̃+buv – vertex potentials

Compute ∆=Bφ=potential differences

Check if

R̃e = ∆2
e

||∆||2 =Ω(1/(C logn)).

0 0 0.01 0 200 1 0 2 0 0 0

30 / 47

Given:
Ï a sketch S ·B of G
Ï crude sparsifier G̃
Ï pair (u,v) ∈V ×V

Need:
Ï is (u,v) an edge in G of resistance Ω(1/ logn)?

0.43

0.27

0.35

0

−0.2

−0.16

0.35

−0.14

Compute φ= L̃+buv – vertex potentials

Compute ∆=Bφ=potential differences

Check if

R̃e = ∆2
e

||∆||2 =Ω(1/(C logn)).

0 0 0.01 0 200 1 0 2 0 0 0

31 / 47

Linear sketching and sparse recovery

0 0 0.01 0 200 1 0 2 0 0 0

Let y be a vector of reals. Then i ∈ [n] is an `2-heavy hitter if

y2
i ≥ η||y ||22.

Lemma (`2-heavy hitters)
For any η> 0 there exists a (randomized) sketch in dimension
1
ηpoly(logn) from which one reconstruct all η-heavy hitters. The
recovery works in time O(1

η ·poly(logn)).

32 / 47

Linear sketching and sparse recovery

0 0 0.01 0 200 1 0 2 0 0 0

Let y be a vector of reals. Then i ∈ [n] is an `2-heavy hitter if

y2
i ≥ η||y ||22.

Lemma (`2-heavy hitters)
For any η> 0 there exists a (randomized) sketch in dimension
O(1

η logn) from which one reconstruct all η-heavy hitters. The
recovery works in time O(1

η ·poly(logn)).

33 / 47

Linear sketching and sparse recovery
Need to recover ’heavy’ coordinates of

S∆ := (SB)φ=S ·

φ1 −φ2
φ2 −φ3

0
φ4 −φ3
φ3 −φ6

0
φ3 −φ1

0
...

A coordinate e ∈ (n

2
)

is heavy if ∆2
e =Ω(||∆||22/(C logn))

This is the `2 heavy hitters problem!

Problem: we do not know ∆ in advance!

34 / 47

Sketching the edge incidence matrix

S ·B =S ·

1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 0 0 0 0
−1 0 1 0 0 0
0 0 1 0 0 −1
0 0 0 0 0 0
...

...

Apply `2-heavy hitters sketch S to every column bu ,u ∈V of B

Store the n sketches, n · logC n space.

35 / 47

Sketching the edge incidence matrix

S ·B =S ·

1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 0 0 0 0
−1 0 1 0 0 0
0 0 1 0 0 −1
0 0 0 0 0 0
...

...

Apply `2-heavy hitters sketch S to every column bu ,u ∈V of B

Store the n sketches, n · logC n space.

36 / 47

Sketching the edge incidence matrix

S ·B =S ·

1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 0 0 0 0
−1 0 1 0 0 0
0 0 1 0 0 −1
0 0 0 0 0 0
...

...

Apply `2-heavy hitters sketch S to every column bu ,u ∈V of B

Store the n sketches, n · logC n space.

37 / 47

Sketching the edge incidence matrix

S ·B =S ·

1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 0 0 0 0
−1 0 1 0 0 0
0 0 1 0 0 −1
0 0 0 0 0 0
...

...

Apply `2-heavy hitters sketch S to every column bu ,u ∈V of B

Store the n sketches, n · logC n space.

38 / 47

Sketching the edge incidence matrix

S ·B =S ·

1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 0 0 0 0
−1 0 1 0 0 0
0 0 1 0 0 −1
0 0 0 0 0 0
...

...

Apply `2-heavy hitters sketch S to every column bu ,u ∈V of B

Store the n sketches, n · logC n space.

39 / 47

Given:
Ï a sketch S ·B of G
Ï crude sparsifier G̃
Ï pair (u,v) ∈V ×V

Need:
Ï is (u,v) an edge in G of resistance Ω(1/ logn)?

0.45

0.45

0.58

0

0

−0.16

0.83

−0.4

Compute φ= L̃+buv – vertex potentials

Compute S ·∆=S ·Bφ=potential
differences

Check if

R̃e = ∆2
e

||∆||2 =Ω(1/(C logn))

using heavy-hitters sketch S

0 0 0.01 0 200 1 0 2 0 0 0

40 / 47

Given:
Ï a sketch S ·B of G
Ï crude sparsifier G̃
Ï pair (u,v) ∈V ×V

Need:
Ï is (u,v) an edge in G of resistance Ω(1/ logn)?

0.45

0.45

0.58

0

0

−0.16

0.83

−0.4

Compute φ= L̃+buv – vertex potentials

Compute S ·∆=S ·Bφ=potential
differences

Check if

R̃e = ∆2
e

||∆||2 =Ω(1/(C logn))

using heavy-hitters sketch S

0 0 0.01 0 200 1 0 2 0 0 0

40 / 47

Given:
Ï a sketch S ·B of G
Ï crude sparsifier G̃
Ï pair (u,v) ∈V ×V

Need:
Ï is (u,v) an edge in G of resistance Ω(1/ logn)?

0.45

0.45

0.58

0

0

−0.16

0.83

−0.4

Compute φ= L̃+buv – vertex potentials

Compute S ·∆=S ·Bφ=potential
differences

Check if

R̃e = ∆2
e

||∆||2 =Ω(1/(C logn))

using heavy-hitters sketch S

0 0 0.01 0 200 1 0 2 0 0 0

40 / 47

Given:
Ï a sketch S ·B of G
Ï crude sparsifier G̃
Ï pair (u,v) ∈V ×V

Need:
Ï is (u,v) an edge in G of resistance Ω(1/ logn)?

0.45

0.45

0.58

0

0

−0.16

0.83

−0.4

Compute φ= L̃+buv – vertex potentials

Compute S ·∆=S ·Bφ=potential
differences

Check if

R̃e = ∆2
e

||∆||2 =Ω(1/(C logn))

using heavy-hitters sketch S

0 0 0.01 0 200 1 0 2 0 0 0

40 / 47

What about an edge of resistance r ≈ 2−j = o(1)? it only
contributes a ≈ 2−j fraction of `2 mass...

Need to recover ’heavy’ coordinates of

S∆ := (SB)φ=S ·

φ1 −φ2
φ2 −φ3

0
φ4 −φ3
φ3 −φ6

0
φ3 −φ1

0
...

Sample edges with probability 2−j

If edge (a,b) is in G and is sampled, it contributes Ω(1
C logn)

fraction of mass whp – can recover.

41 / 47

What about an edge of resistance r ≈ 2−j = o(1)? it only
contributes a ≈ 2−j fraction of `2 mass...

Need to recover ’heavy’ coordinates of

S∆ := (SB)φ=S ·

φ1 −φ2
φ2 −φ3

0
φ4 −φ3
φ3 −φ6

0
φ3 −φ1

0
...

Sample edges with probability 2−j

If edge (a,b) is in G and is sampled, it contributes Ω(1
C logn)

fraction of mass whp – can recover.

41 / 47

What about an edge of resistance r ≈ 2−j = o(1)? it only
contributes a ≈ 2−j fraction of `2 mass...

Need to recover ’heavy’ coordinates of

S∆ := (SB)φ=S ·

φ1 −φ2
φ2 −φ3

0
φ4 −φ3
φ3 −φ6

0
φ3 −φ1

0
...

Sample edges with probability 2−j

If edge (a,b) is in G and is sampled, it contributes Ω(1
C logn)

fraction of mass whp – can recover.

41 / 47

What about an edge of resistance r ≈ 2−j = o(1)? it only
contributes a ≈ 2−j fraction of `2 mass...

Need to recover ’heavy’ coordinates of

S∆ := (SB)φ=S ·

0
0
0

φ4 −φ3
φ3 −φ6

0
0
0
...

Sample edges with probability 2−j

If edge (a,b) is in G and is sampled, it contributes Ω(1
C logn)

fraction of mass whp – can recover.

42 / 47

Store sketches of subsampled edge incidence matrix:

SΠjB, j = 0, . . . , log2 n.

Πj is a diagonal matrix with Bernoulli(0/1,2−j) entries

REFINESPARSIFIER(G,G̃,ε,c)

For e = (a,b) ∈ (V
2
)

R̃e ← bT
e L̃+be

Round: R̃e ≈ 2−j

xe ← L̃+be

If TESTEDGE(SΠjB,xe,e) then
add e to sparsifier with weight 2j

Repeat (C/ε2) times, take union

B resistance in G̃

B determine sampling
level

43 / 47

Refining a sparsifier
Designed a sketch S that allows sampling edges of G
according to effective resistance given

Ï S ·B (sketch of edge incidence matrix)
Ï crude constant factor spectral sparsifier G̃

1
C

·L≺ L̃≺ L

weights on edges

G G̃

43 / 47

Chain of coarse sparsifiers

Approach of Miller and Peng in Iterative approaches to row sampling

Add a weighted complete graph to G:

G(λ)=G+λKn

44 / 47

Chain of coarse sparsifiers

Approach of Miller and Peng in Iterative approaches to row sampling

Add a weighted complete graph to G:

G(λ)=G+λKn

44 / 47

Chain of coarse sparsifiers

Approach of Miller and Peng in Iterative approaches to row sampling

Add a weighted complete graph to G:

G(λ)=G+λKn

44 / 47

Chain of coarse sparsifiers

Approach of Miller and Peng in Iterative approaches to row sampling

Add a weighted complete graph to G:

G(λ)=G+λKn

44 / 47

Chain of coarse sparsifiers

Approach of Miller and Peng in Iterative approaches to row sampling

Add a weighted complete graph to G:

G(λ)=G+λKn

44 / 47

L(λ)= L+λ ·nI∗

Nonzero eigenvalues of G are between n and 8/n2, so
Ï Kn is a C-spectral approximation to G(1)
Ï G(1/poly(n)) approximates G well spectrally.

Consider powers of 2 from 1 to 1/poly(n).

Two adjacent graphs in the chain are similar:

1
2

G(λ)≺G(λ/2)≺G(λ)

This is exactly what we need for REFINESPARSIFIER...

45 / 47

Final algorithm

G̃1/2 ← REFINESPARSIFIER(S ·G(1/2), Kn,ε,3)

G̃1/4 ← REFINESPARSIFIER(S ·G(1/4),G̃1/2,ε,3)

G̃1/8 ← REFINESPARSIFIER(S ·G(1/8),G̃1/4,ε,3)
...
return G̃1/poly(n)

Space requirement
Ï O(logn) sampling levels, O(1

ε2 logn) repetitions
Ï O(logn) long chain of coarse sparsifiers
Ï an `2-heavy hitters sketch of O(poly(logn)) size for each

node.

46 / 47

Final algorithm

G̃1/2 ← REFINESPARSIFIER(S ·G(1/2), Kn,ε,3)

G̃1/4 ← REFINESPARSIFIER(S ·G(1/4),G̃1/2,ε,3)

G̃1/8 ← REFINESPARSIFIER(S ·G(1/8),G̃1/4,ε,3)
...
return G̃1/poly(n)

Space requirement
Ï O(logn) sampling levels, O(1

ε2 logn) repetitions
Ï O(logn) long chain of coarse sparsifiers
Ï an `2-heavy hitters sketch of O(poly(logn)) size for each

node.

46 / 47

Final algorithm

G̃1/2 ← REFINESPARSIFIER(S ·G(1/2), Kn,ε,3)

G̃1/4 ← REFINESPARSIFIER(S ·G(1/4),G̃1/2,ε,3)

G̃1/8 ← REFINESPARSIFIER(S ·G(1/8),G̃1/4,ε,3)
...

return G̃1/poly(n)

Space requirement
Ï O(logn) sampling levels, O(1

ε2 logn) repetitions
Ï O(logn) long chain of coarse sparsifiers
Ï an `2-heavy hitters sketch of O(poly(logn)) size for each

node.

46 / 47

Final algorithm

G̃1/2 ← REFINESPARSIFIER(S ·G(1/2), Kn,ε,3)

G̃1/4 ← REFINESPARSIFIER(S ·G(1/4),G̃1/2,ε,3)

G̃1/8 ← REFINESPARSIFIER(S ·G(1/8),G̃1/4,ε,3)
...
return G̃1/poly(n)

Space requirement
Ï O(logn) sampling levels, O(1

ε2 logn) repetitions
Ï O(logn) long chain of coarse sparsifiers
Ï an `2-heavy hitters sketch of O(poly(logn)) size for each

node.

46 / 47

Final algorithm

G̃1/2 ← REFINESPARSIFIER(S ·G(1/2), Kn,ε,3)

G̃1/4 ← REFINESPARSIFIER(S ·G(1/4),G̃1/2,ε,3)

G̃1/8 ← REFINESPARSIFIER(S ·G(1/8),G̃1/4,ε,3)
...
return G̃1/poly(n)

Space requirement
Ï O(logn) sampling levels, O(1

ε2 logn) repetitions
Ï O(logn) long chain of coarse sparsifiers
Ï an `2-heavy hitters sketch of O(poly(logn)) size for each

node.

46 / 47

Summary

Ï AMS sketch (approximating ||x ||22)
Ï Heavy hitters (CountSketch)
Ï `0 samplers
Ï Graph connectivity
Ï Graph sparsification

Which other graph problems admit sketching
solutions?

47 / 47

Summary

Ï AMS sketch (approximating ||x ||22)
Ï Heavy hitters (CountSketch)
Ï `0 samplers
Ï Graph connectivity
Ï Graph sparsification

Which other graph problems admit sketching
solutions?

47 / 47

