Sparse Fourier Transform
(lecture 1)

Michael Kapralov'

1IBM Watson — EPFL

St. Petersburg CS Club
November 2015

/73

Given x € C", compute the Discrete Fourier Transform (DFT) of
X:

. 1 i
Xi=— 3 X0,
N jeln)

where w = 2™/ is the n-th root of unity.

73

Given x € C", compute the Discrete Fourier Transform (DFT) of
X:]
=) xpol,
N jeln

where w = 2™/ is the n-th root of unity.

Assume that nis a power of 2.

Given x € C", compute the Discrete Fourier Transform (DFT) of

X. 1
Xj=—3 X0
N jeln)

where w = 2™/ is the n-th root of unity.

Assume that nis a power of 2.

)

compression schemes
(JPEG, MPEG)
signal processing
data analysis
imaging (MRI, NMR)

DFT has numerous applications:

73

Fast Fourier Transform (FFT)

Computes Discrete Fourier Transform (DFT) of a length n
signal in O(nlogn) time

/73

Fast Fourier Transform (FFT)

Computes Discrete Fourier Transform (DFT) of a length n
signal in O(nlogn) time

Cooley and Tukey, 1964

4/73

Fast Fourier Transform (FFT)

Computes Discrete Fourier Transform (DFT) of a length n
signal in O(nlogn) time

a3l e
Cooley and Tukey, 1964 ; 1

Gauss, 1805

/73

Fast Fourier Transform (FFT)

Computes Discrete Fourier Transform (DFT) of a length n
signal in O(nlogn) time

a3l @
Cooley and Tukey, 1964 1

Gauss, 1805

Code=rrTw (Fastest Fourier Transform in the West)

/73

Sparse FFT

Say that X is k-sparse if X has k nonzero entries

/73

Sparse FFT

Say that X is k-sparse if X has k nonzero entries

Say that X is approximately k-sparse if X is close to k-sparse in
some norm (¢o for this lecture)

/73

Sparse approximations

Given x, compute X, then keep top k coefficients only for k < N

Used in image and video compression schemes
(e.g. JPEG, MPEG)

9/73

Sparse approximations

Given x, compute X, then keep top k coefficients only for k <« N

Used in image and video compression schemes
(e.g. JPEG, MPEG)

10/73

Computing approximation fast

Basic approach:

» FFT computes X from x in O(nlogn) time

» compute top k coefficients in O(n) time.

11/73

Computing approximation fast

Basic approach:

» FFT computes X from x in O(nlogn) time

» compute top k coefficients in O(n) time.

Sparse FFT:

» directly computes k largest coefficients of X (approximately
— formal def later)

» Running time O(klog® n) or faster

» Sublinear time!

11/73

Sample complexity

Sample complexity=number of samples accessed in time
domain.

12/73

Sample complexity

In medical imaging (MRI, NMR), one measures Fourier
coefficients X of imaged object x (which is often sparse)

13/73

Sample complexity

In medical imaging (MRI, NMR), one measures Fourier
coefficients X of imaged object x (which is often sparse)

13/73

Sample complexity

Measure X € C", compute the Inverse Discrete Fourier
Transform (IDFT) of X:

Xi= Z)?/(JJU
Jeln]

14/73

Sample complexity

Measure X € C", compute the Inverse Discrete Fourier
Transform (IDFT) of X:

Xj= Z)?] : (JJU
Jeln]

Given x € C", compute the Discrete Fourier Transform (DFT) of
X:]
)?,' =— Z X (JJ_ij.
N jem

14/73

Sample complexity

Measure X € C", compute the Inverse Discrete Fourier
Transform (IDFT) of X:

=) X

Jeln]

Given x € C", compute the Discrete Fourier Transform (DFT)

of x:
Z X0,
N jemn)

15/73

Sample complexity

Measure X € C", compute the Inverse Discrete Fourier
Transform (IDFT) of X:

=) X

Jeln]

Given x € C", compute the Discrete Fourier Transform (DFT)

of x:
Z X0,
N jemn)

Sample complexity=number of samples accessed in time
domain.
Governs the measurement complexity of imaging process.

15/73

Given access to signal x in time domain, find best k-sparse
approximation to X approximately

Minimize
1. runtime

2. number of samples

16/73

Algorithms Signal processing

» Randomization » Fourier transform

» Approximation » Hadamard transform
» Hashing » Filters

» Sketching » Compressive sensing

17/73

Lecture 1: summary of techniques from
Gilbert-Guha-Indyk-Muthukrishnan-Strauss’02, Akavia-Goldwasser-Safra’03,
Gilbert-Muthukrishnan-Strauss’05, lwen’10, Akavia'10,
Hassanieh-Indyk-Katabi-Price’12a, Hassanieh-Indyk-Katabi-Price’12b

Lecture 2: Algorithm with O(klogn) runtime (noiseless
Case) Hassanieh-Indyk-Katabi-Price’12b

Lecture 3: Algorithm with O(klog? n) runtime (noisy case)
Hassanieh-Indyk-Katabi-Price’12b

Lecture 4: Algorithm with O(klog n) sample complexity
Indyk-Kapralov-Price’14, Indyk-Kapralov'14

18/73

Outline

1. Computing Fourier transform of 1-sparse signals fast

2. Sparsity k > 1: main ideas and challenges

19/73

Outline

1. Computing Fourier transform of 1-sparse signals fast

2. Sparsity k > 1: main ideas and challenges

20/73

Sparse Fourier Transform (k=1)

Warmup: X is exactly 1-sparse: X; =0 when f # f* for some f*

srequenc,

Note: signal is a pure frequency
Given: access to x

Need: find f* and X

21/73

Two-point sampling

Input signal x is a pure frequency, so

—a-of
Xj=a-w

22/73

Two-point sampling

Input signal x is a pure frequency, so

Sample X0, Xq

—a-of
Xj=a-w

22/73

Two-point sampling

. . _ .
Input signal x is a pure frequency, so | x;=a-w' /

Sample X0, X1 £
X{=a-w
We have
XO =a ///
X1 = a-mf* ///

23/73

Two-point sampling

. . _ .
Input signal x is a pure frequency, so | x;=a-w' /

Sample X0, Xq

Xq —a-of

We have

Xp=4a

X1 = a-mf*
So

X1 /XO = (JJf*

unit circle

24/73

Two-point sampling

. . _ .
Input signal x is a pure frequency, so | x;=a-w' /

Sample X0, Xq

Xq —a-of

We have

Xp=4a

X1 = a-mf*
So

Xq /XO = (JJf*

Can read frequency from the

25/73

Two-point sampling

. . _ .
Input signal x is a pure frequency, so | x;=a-w' /

Sample X0, Xq

Xq —a-of

We have

Xp=4a

X1 = a-u)f*
So

Xq /Xo = (JJf*

Can read frequency from the

Pro: constant time algorithm
Con: depends heavilv on the sianal beina pure 26/73

Two-point sampling

. . A _ fx.j .
Input signal x is a pure frequency+noise, so | x;=a-w' /+noise

Sample xg, X1 x1=a-o
We have
Xp = a+noise
x;=a-w’ +noise
So

f

X1/Xo =o' +noise

Can read frequency from the
angle!

unit circle

27/73

Two-point sampling

Input signal x is a pure frequency+noise, so

Sample xg, X4
We have

Xp = a+noise

x; =a-o' +noise
So

f

X1/Xo =o' +noise

Can read frequency from the
angle!

x;=a-o' J+noise

unit circle

28/73

Two-point sampling

. . A _ fx.j .
Input signal x is a pure frequency+noise, so | x;=a-w' /+noise

Sample xg, X4
We have
Xp =a+noise
x;=a-w’ +noise
So

f

X1/Xo =o' +noise

Can read frequency from the
angle!

unit circle

Pro: constant time algorithm
Con: depends heavily on the signal being pure

29/73

Sparse Fourier Transform (k=1)

Warmup - part 2: X is 1-sparse plus noise

Note: signal is a pure frequency plus noise
Given: access to x

Need: find f* and X

30/73

Sparse Fourier Transform (k=1)

Warmup - part 2: X is 1-sparse plus noise

head

Note: signal is a pure frequency plus noise
Given: access to x

Need: find f* and X

31/73

Sparse Fourier Transform (k=1)

Warmup - part 2: X is 1-sparse plus noise

head

tail noise

Note: signal is a pure frequency plus noise
Given: access to x

Need: find f* and X

s00

32/73

Sparse Fourier Transform (k =1)
Warmup - part 2: X is 1-sparse plus noise

e

head tail noise

Note: signal is a pure frequency plus noise

Ideally, find pure frequency X’ that approximates X best:

min _[IX-X'll2
1-sparse X’

33/73

Sparse Fourier Transform (k =1)
Warmup - part 2: X is 1-sparse plus noise

e

head

Note: signal is a pure frequency plus noise

Ideally, find pure frequency X’ that approximates X best:

min _[IX-X'll2
1-sparse X’

34/73

Sparse Fourier Transform (k =1)
Warmup - part 2: X is 1-sparse plus noise

e

head

Note: signal is a pure frequency plus noise

Ideally, find pure frequency X’ that approximates X best:

min _ [IX - X'[l2 = ||tail noisello
1-sparse X’

35/73

0> /0, sparse recovery

Ideally, find pure frequency X’ that approximates X best
Need to allow approximation: find y such that

IIX = Yll2 < C-||tail noisellp

where C > 1 is the approximation factor.

36/73

0> /0, sparse recovery

Ideally, find pure frequency X’ that approximates X best
Need to allow approximation: find y such that

[1X — Yl < 3-||tail noise||»

37/73

Approximation guarantee
Find ¥ such that

[1X —¥Il2 < 3-||tail noisel|»

38/73

Approximation guarantee
Find ¥ such that

[1X —¥Il2 < 3-||tail noisel|»

39/73

Approximation guarantee
Find ¥ such that

[1X —¥|lo < 3-[|tail noise]|o

Note: only meaningful if
[1X]]2 > 3 -||tail noise||s
or, equivalently,

Y X2 <elal
fte

40/73

Approximation guarantee
Find ¥ such that

[1X —¥Il2 < 3-||tail noisel|»

Note: only meaningful if
[1X]]2 > 3 -||tail noise||s
or, equivalently,

> 1X¢1% < ¢lal? (assume this for the lecture)
f£f*

41/73

Approximation guarantee
Find ¥ such that

[1X —¥Il2 < 3-||tail noisel|»

Note: only meaningful if
[1X]]2 > 3 -||tail noise||s
or, equivalently,

> 1X¢1% < ¢lal? (assume this for the lecture)
f£f*

42/73

Approximation guarantee
Find ¥ such that

[1X —¥Il2 < 3-||tail noisel|»

Note: only meaningful if
[1X]]2 > 3 -||tail noise||s
or, equivalently,

> 1X¢1% < ¢lal? (assume this for the lecture)
f£f*

head tail noise

| I 43/73

A robust algorithm for finding the heavy hitter

head

tail noise

Assume that Y [%¢/% <elal®

Describe algorithm for the noiseless case first (e = 0)

Suppose that x;=a- o' 7.

f#f*

00

44/73

A robust algorithm for finding the heavy hitter

head

tail noise

Assume that Y [%¢/% <elal®

Describe algorithm for the noiseless case first (e = 0)

Suppose that x;=a- o' 7.

00

Will find 7* bit by bit (binary search).

44/73

Bit 0
Suppose that f* =2f+ b, we want b

Compute
> XO =a
> xn/zza.wf*'(”/Z)

45/73

Bit 0
Suppose that f* =2f+ b, we want b

Compute
> XO =a

> Xpj2 =a-uf (/2

Claim
We have

Xpj2=Xo-(~1)°
(Even frequencies are n/2-periodic, odd are n/2-antiperiodic)

Proof.

Xn/2 —a-o(n/2) - a.(_1)2f+b = XO.(_1)b

45/73

Bit 0
Suppose that f* =2f+ b, we want b

Compute
> Xoir=a-o
> Xpjoir=a- ! (n/2+r)

Claim
For all r € [n]| we have

Xp/2+r = Xo1r+ (=1)b

(Even frequencies are n/2-periodic, odd are n/2-antiperiodic)

Proof.

Xnj2er = of (/240 — g 1T (L1)2Fb =y (—1)b

46/73

Bit 0
Suppose that f* =2f+ b, we want b

Compute
> Xp=a- (l)f*r

> Xpj2ir =q-uf (n/2+1)

Claim
For all r € [n]| we have

Xpj2+r =X (=1)b

(Even frequencies are n/2-periodic, odd are n/2-antiperiodic)

Proof.

Xpj24r = a_wf*(n/2+r) — a_U)f*r . (_1)2f+b =X - (_1)b

47/73

Bit 0
Suppose that f* =2f+ b, we want b

Compute
> Xr=a- (l)f*r

> Xpj2ir =q-uf (n/2+1)

Claim
For all r € [n]| we have

Xn/2+r = X (=1)°

(Even frequencies are n/2-periodic, odd are n/2-antiperiodic)

Proof.

Xp/2sr = a_wl"‘(n/2+r) — a_(Df*r . (_1)2f+b =X - (_1)b

Will need arbitrary r’s for the noisy setting ‘

48/73

Bit O test

Set by — 0 if [Xp 241 + Xrl > | Xp/24r — Xr|

bo —1ow.

49/73

Bit O test

Set by — 0 if [Xp 241 + Xrl > | Xp/24r — Xr|
bo —1ow.
Correctness:

If b=0, then |xp/2.r+ X1 =2]%|=2al

and |Xn/2+r_xr| :0

49/73

Bit O test

Set by — 0 if [Xp 241 + Xrl > | Xp/24r — Xr|
bo —1ow.
Correctness:

If b=0, then |xp/2.r+ X1 =2]%|=2al

and |Xn/2+r_xr| :0

If b=1, then |xn/2.r+X1=0

and [Xp/24r— Xl =2|%| =2|a]

49/73

Bit 1
Can pretend that by =0. Why?
Claim (Time shift theorem)
/fy/ = X; -(x)j'A, then Vs = X¢_x.

Proof.

F=r ¥ ypol=1 ¥ oo
N jefn) N jefn)

L SIS

50/73

Bit 1
Can pretend that by =0. Why?
Claim (Time shift theorem)
/fy/ = X; -(x)j'A, then Vs = X¢_x.

Proof.

F=r ¥ ypol=1 ¥ oo
N jefn) N jefn)

L SIS

If bo = 1, then replace x with y; := x; - w/.

50/73

Bit 1
Assume by =0. Then we have f* = 2f, so

ff

—a-owl=za-0f=a.
Xji=a-w ‘=a-w”’'=a UL)N/2.

51/73

Bit 1
Assume by =0. Then we have f* = 2f, so

ff

2fj _
= Ny2:

X/'=a-u)f*/':a‘m a-w

Let Z; := Xo;, i.e. spectrum of z contains even components of
spectrum of X

51/73

Bit 1
Assume by =0. Then we have f* = 2f, so

f.j

2fj _
= Ny2:

xi=a-o'/=a-w a-o

Let Z; := Xo;, i.e. spectrum of z contains even components of
spectrum of X

Then
> (X0,---» XN/2-1) = (20, -+, 2Zn/2-1) are time samples of z;;
and
» Zs=a s the heavy hitter in z.

51/73

Bit 1
Assume by =0. Then we have f* = 2f, so

ff

2fj _
= Ny2:

Xl'=a-(uf*j:am a-w

Let Z; := Xo;, i.e. spectrum of z contains even components of
spectrum of X

Then
> (X0,---» XN/2-1) = (20, -+, 2Zn/2-1) are time samples of z;;
and
» Zs=a s the heavy hitter in z.

So by previous derivation zy 4, =z, - (1)bi

And hence

Xn/4+r(0(n/4+r)bo = Xr(l)r.b0 (-1)b1

51/73

Bit 1
Assume by =0. Then we have f* = 2f, so

ff

2fj _
= Ny2:

Xl'=a-(uf*j:am a-w

Let Z; := Xo;, i.e. spectrum of z contains even components of
spectrum of X

Then
> (X0,---» XN/2-1) = (20, -+, Zn/2-1) are time samples of z;;
and
» Zs=a s the heavy hitter in z.

So by previous derivation zy 4, =z, - (1)bi

And hence

Xn/4+r00(n/4)b° =X -(—1)P

52/73

Decoding bit by bit

Set bo — 0 if [Xp 241+ Xr| > [Xp/24r — Xr|

bo —1ow.

53/73

Decoding bit by bit

Set bo — 0 if [Xp 241+ Xr| > [Xp/24r — Xr|
bo —1ow.
Set by <0 if |(U(n/4)b°Xn/4+r + Xr| > |00(n/4)boxn/4+r = Xrl

b1 —1ow.

53/73

Decoding bit by bit

Set bo — 0 if [Xp 241+ Xr| > [Xp/24r — Xr|
bo —1ow.

Set by <0 if |w(n/4)boxn/4+r + Xr| > |(D(n/4)boxn/4+r = Xrl
b1 —1ow.

. |o(/8)(2br +bo)xn/8+r +Xp| > |w(7/8)(2D1 +b0)xn/8+r = Xrl...

53/73

Decoding bit by bit

Set bo 0 if 1Xn /241 + Xr| > | Xn /247 — Xr|
bo —1ow.

Set by <0 if |‘U(n/4)boxn/4+r + Xr| > |00(n/4)boxn/4+r = Xrl
b1 —1ow.

---|(D(n/8)(2b1+b°)xn/8+r +Xr| > |(D(n/8)(2b1+b0)xn/8+r = Xrl...

Overall: O(logn) samples to identify f*. Runtime O(logn)

53/73

Noisy setting (dealing with €)
We now have

fr.j o
XjZa'(D /4 Z Xfou/
f#f*

—a-0 T+ H; (ujis the noise in time domain)

Argue that y; is usually small?

54/73

Noisy setting (dealing with €)
We now have

fr.j o
Xj=a'(1) /4 Z XfU)j
f#f*

—a-0 T+ H; (ujis the noise in time domain)

Argue that y; is usually small?

Parseval’s equality: noise energy in time domain is proportional
to noise energy in frequency domain:

Z |H/| =n Z |Xf|

f#f*

54/73

Noisy setting (dealing with €)
We now have

fr.j o
Xj=a'(1) /4 Z Xfw/
f#f*

—a-0 T+ H; (ujis the noise in time domain)

Argue that y; is usually small?

Parseval’s equality: noise energy in time domain is proportional
to noise energy in frequency domain:

Z |H/| =n Z |Xf|

f#f*

So on average |y;[? is small:

Ejlw?] < ,Zf IX1° <elal®
*

54/73

Need to ensure that:
1. f* is decoded correctly
2. ais estimated well enough to satisfy ¢, /¢, guarantees:

S S
IX=Yll2<C-lIX=X'll2

55/73

Decoding in the noisy setting
Bit 0: set by — 0 if |Xn/2+r+Xr| > |Xn/2+r_xr| and by — 1 o.w.

Claim
If upj2.r <lal/2 and y, <|al/2, then outcome of the bit test is
the same.

56/73

Decoding in the noisy setting
Bit 0: set by — 0 if |Xn/2+r+Xr| > |Xn/2+r_xr| and by — 1 o.w.

Claim
If upj2.r <lal/2 and y, <|al/2, then outcome of the bit test is
the same.

Suppose by =1.

56/73

Decoding in the noisy setting
Bit 0: set by — 0 if |Xn/2+r+Xr| > |Xn/2+r_xr| and by — 1 o.w.

Claim
If upj2.r <lal/2 and y, <|al/2, then outcome of the bit test is
the same.

Suppose by =1.
Then

[Xnj24r + Xrl < [Hpj24rl + el <Al

56/73

Decoding in the noisy setting

Bit 0: set by — 0 if |Xn/2+r+Xr| > |Xn/2+r_xr| and by — 1 o.w.

Claim

If upj2.r <lal/2 and y, <|al/2, then outcome of the bit test is
the same.

Xr=a-o T4y
Suppose by =1. e

Then /

[Xnj24r + Xrl < [Hpj24rl + el <Al ‘

and

| Xn/2+r—=Xrl = 21@l=Iptp 24,1 ptr] > 1@

Decoding in the noisy setting
On average [;|? is small:

FEE fzf %12 < elal?
*

By Markov’s inequality

Pr;[I12 > 1a?/4] < Pr[lw1? > (1/(4¢)) - E;[Iw1?]] < 4e

57/73

Decoding in the noisy setting
On average [;|? is small:
EjllwlP] < Y X <elal?
f£f*
By Markov’s inequality
Pr;[Iul? > 12 /4] < Pri[Iw? > (1/(4¢)) - E/[Iw;[?]] < e

By a union bound

Pr/[lu/l <lal/2 and |up o4l <1al/2] 21 -8¢

57/73

Decoding in the noisy setting
On average [;|? is small:
EjllwlP] < Y X <elal?
f£f*
By Markov’s inequality
Pr[Iw1° > 1al? /4] < Pry[lw1* > (1/(4¢)) - Ejll?]] < 4e

By a union bound

Pr/[lu/l <lal/2 and |up o4l <1al/2] 21 -8¢

Thus, a bit test is correct with probability at least 1 —8e.

57/73

Decoding in the noisy setting

Bit 0: set by to zero if
[Xnj2+r + Xrl > [Xn/24r = Xr|

and to 1 otherwise
For e <1/64 each test is correct with probability > 3/4.

Final test: perform T > 1 independent tests, use majority vote.

How large should 7 be? Success probability?

58/73

Decoding in the noisy setting
Forj=1,...,T let

{ 1 if j-th test is correct
Zi=
0 0.W.

We have E[Z]] = 3/4.

59/73

Decoding in the noisy setting
Forj=1,...,T let

{ 1 if j-th test is correct
Zi=
0 0.W.

We have E[Z]] = 3/4.
Chernoff bounds

.
Pr}.Z < T/2]<e 7).
j=1
Set T = O(loglogn)

Majority is correct with probability at least 1 —1/(1610g, n)
So all bits correct with probability = 15/16

59/73

Estimating the value of heavy hitter
Recall that

r

xr=a-o' "+p, (noise)

Our estimate: pick random r € [n] and output

est—x;0 FF

60/73

Estimating the value of heavy hitter
Recall that

Xr = a'(JJf*'r

+u, (noise)
Our estimate: pick random r € [n] and output

est—x;0 FF

] Expected squared error?

E/[lest-al?]

60/73

Estimating the value of heavy hitter
Recall that

Xr = a'(JJf*'r

+u, (noise)
Our estimate: pick random r € [n] and output

est—x;0 FF

] Expected squared error?

Er[lest_alz] = Er[er(L)_f*.r _a|2]

60/73

Estimating the value of heavy hitter
Recall that

Xr = a'(JJf*'r

+u, (noise)
Our estimate: pick random r € [n] and output

est—x;0 FF

] Expected squared error? \

Erllest-alP] =E/[x0 " -a?] =E/lx, —a -0 ?]

60/73

Estimating the value of heavy hitter
Recall that

f*r

xr=a-o "+y, (noise)

Our estimate: pick random r € [n] and output

est—x;0 FY

] Expected squared error? \

Ellest-al®] =E/[Ix0 " " -aP]=E/[Ix, —a-o” "1?] = E[In]
Now by Markov’s inequality

Pr.[lest—al® > 4elal?] < 1/4.

60/73

Putting it together: algorithm for 1-sparse signals

Let
- _{ est iff=f*
Y'=1 0 ow.

By triangle inequality

Y = Xll2 < Yf —allag + 1Y = X_ps1l2
<2+velal + velal

<> </
=3[Ix=X'll2.

Thus, with probability = 2/3 our algorithm satisfies £5 /€2
guarantee with C = 3.

61/73

Runtime=0O(log nloglogn)

Sample complexity=0O(log nloglog n)

62/73

Runtime=0O(log nloglogn)

Sample complexity=0O(log nloglog n)

Ex. 1: reduce sample complexity to O(logn), keep
O(poly(logn)) runtime

Ex. 2: reduce sample complexity to O(log /. n)

62/73

Runtime=0O(log nloglogn)

Sample complexity=0O(log nloglog n)

Ex. 1: reduce sample complexity to O(logn), keep
O(poly(logn)) runtime

Ex. 2: reduce sample complexity to O(log /. n)

| What about k > 1]

62/73

Outline

1. Sparsity: definitions, motivation
2. Computing Fourier transform of 1-sparse signals fast

3. Sparsity k > 1: main ideas and challenges

63/73

Sparsity k > 1

Let X’ — best k-sparse approximation of X

Our goal: find ¥ such that

IX=Pllo< C- IR =Xl

where C > 1 is the approximation factor.

(This is the ¢, /€5 guarantee)

head

64/73

Sparsity k > 1

Main idea: implement hashing to reduce to 1-sparse case:

» ‘hash’ frequencies into = k bins

» run 1-sparse algo on isolated elements

Assumption: can randomly permute frequencies (will remove in
next lecture)

Implement hashing? Need to design a bucketing scheme for
the frequency domain

65/73

Partition frequency domain into B = k buckets

100c

66/73

Partition frequency domain into B = k buckets

100c

67/73

Partition frequency domain into B = k buckets

100c

Foreachj=0,...,B-1 let

o=

)?f, if fe
f

0 o.W.
Restricted to a bucket, signal is likely approximately 1-sparse!

67/73

Partition frequency domain into B = k buckets
- |

Foreachj=0,...,B-1 let

o=

)?f, if fe
f

0 o.W.
Restricted to a bucket, signal is likely approximately 1-sparse!

68/73

Partition frequency domain into B = k buckets

Foreachj=0,...,B-1 let

o=

)?f, if fe
f

0 o.W.
Restricted to a bucket, signal is likely approximately 1-sparse!

69/73

Partition frequency domain into B = k buckets

‘‘‘‘‘‘‘

Foreachj=0,...,B-1 let

o=

)?f, if fe
f

0 o.W.
Restricted to a bucket, signal is likely approximately 1-sparse!

69/73

Partition frequency domain into B = k buckets

‘‘‘‘‘‘‘

Foreachj=0,...,B-1 let

o=

)?f, if fe
f

0 o.W.
Restricted to a bucket, signal is likely approximately 1-sparse!

69/73

Partition frequency domain into B = k buckets

‘‘‘‘‘‘‘

Foreachj=0,...,B-1 let

o=

)?f, if fe
f

0 o.W.
Restricted to a bucket, signal is likely approximately 1-sparse!

69/73

Partition frequency domain into B = k buckets

Foreachj=0,...,B-1 let

o=

)?f, if fe
f

0 o.W.
Restricted to a bucket, signal is likely approximately 1-sparse!

69/73

Partition frequency domain into B = k buckets

Foreachj=0,...,B-1 let

o=

)?f, if fe
f

0 o.W.
Restricted to a bucket, signal is likely approximately 1-sparse!

69/73

;=

Zero-th bucket signal u°: ‘ ‘ Hﬂ’i
-y % vl L ‘| L1

"1 o0 o.W.

70/73

f71 0 0.W.

Zero-th bucket signal u°: ‘ ‘ Hﬂ’i
s |
o0 {Xf’ itfel-2p: 28] L | | :

We want time domain access to u: for any a=0,...,n-1,
compute

70/73

Zero-th bucket signal u°:

H?:{ X, iffe[—i:iB]
0 O.W.

il

We want time domain access to u%: for any a=0,...,n-1,

compute

70/73

Zero-th bucket signal u°: ‘ ‘ HH'ﬁ
L N . ‘| Ll

710 0.W.

We want time domain access to u%: for any a=0,...,n-1,
compute

f —Jp=f=4

where y; = x;,., (v is a time shift of x by the time shift theorem).

70/73

We want time domain access to u: for any a=0,...,n-1,
compute

B
where y; = x;., (v is a time shift of x).

71/73

We want time domain access to u%: for any a=0,...,n

compute

B
where y; = x;., (v is a time shift of x).

Let Cr [5 n]
~ 1, iffe|l-35:55
= ’ 2B 2B
Gr { 0 o.W.
Then
ud= Y

_1,

71/73

We want time domain access to u: for any a=0,...,n-1,
compute

B
where y; = x;., (v is a time shift of x).

Let

N
os]
S

71/73

We want time domain access to u: for any a=0,...,n-1,
compute

B
where y; = x;., (v is a time shift of x).

Let 0on
éf:{ 1, Iffe[o_V%I_Bﬁ]
Then
ud= yr= Y 7:Gr= (7 * G)(0)

71/73

We want time domain access to u°: for any a=0,...,n-1,
compute

B
where y; = Xj,., (v is a time shift of x).

et 1 ffe[-25: 55|
= , | € _ﬁ:ﬁ
Gf_{ 0 o.w
Then
ud = Y=Y ¥:Gr=(7* G)(0) = (xz2* G)(0)

71/73

Need to evaluate R n
(x+G) (j-g)
forj=0,...,B-1.

| We have access to x, not %... |

72/73

Need to evaluate R n
(x+G) (j-g)
forj=0,...,B-1.

| We have access to x, not %... |

By the convolution identity

x+G=(x-G)

72/73

Need to evaluate R n
(x+G) ('E)
forj=0,...,B-1.

| We have access to x, not %... |

By the convolution identity

x+G=(x-G)

Suffices to compute

72/73

Suffices to compute
x-Gjgj=-B/2,...,B/2-1

Sample complexity? Runtime?

72/73

Suffices to compute
x-Gjgj=-B/2,...,B/2-1

Sample complexity? Runtime?

72/73

Suffices to compute
x-Gjgj=-B/2,...,B/2-1

Sample complexity? Runtime?

72/73

Suffices to compute
x-Gjgj=-B/2,...,B/2-1

Sample complexity? Runtime?

Computing x - G takes Q(N) time and samples!

73/73

Suffices to compute
x-Gjgj=-B/2,...,B/2-1

Sample complexity? Runtime?

Computing x - G takes Q(N) time and samples!

Design a filter supp(G) = k? Truncate sinc? Tolerate imprecise
hashing? Collisions in buckets?

73/73

