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Given x ∈Cn, compute the Discrete Fourier Transform (DFT) of
x :

x̂i =
1
n

∑
j∈[n]

xj ·ω−ij ,

where ω= e2πi/n is the n-th root of unity.

Assume that n is a power of 2.

compression schemes
(JPEG, MPEG)

signal processing
data analysis

imaging (MRI, NMR)

2 / 73



Given x ∈Cn, compute the Discrete Fourier Transform (DFT) of
x :

x̂i =
1
n

∑
j∈[n]

xj ·ω−ij ,

where ω= e2πi/n is the n-th root of unity.

Assume that n is a power of 2.

compression schemes
(JPEG, MPEG)

signal processing
data analysis

imaging (MRI, NMR)

2 / 73



Given x ∈Cn, compute the Discrete Fourier Transform (DFT) of
x :

x̂i =
1
n

∑
j∈[n]

xj ·ω−ij ,

where ω= e2πi/n is the n-th root of unity.

Assume that n is a power of 2.

compression schemes
(JPEG, MPEG)

signal processing
data analysis

imaging (MRI, NMR)

2 / 73



DFT has numerous applications:
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Fast Fourier Transform (FFT)

Computes Discrete Fourier Transform (DFT) of a length n
signal in O(n logn) time

Cooley and Tukey, 1964

Gauss, 1805

Code=FFTW (Fastest Fourier Transform in the West)
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Sparse FFT

Say that x̂ is k -sparse if x̂ has k nonzero entries

Say that x̂ is approximately k -sparse if x̂ is close to k -sparse in
some norm (`2 for this lecture)
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Sparse approximations

JPEG=⇒

Given x , compute x̂ , then keep top k coefficients only for k ¿N

Used in image and video compression schemes
(e.g. JPEG, MPEG)
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Computing approximation fast

Basic approach:

Ï FFT computes x̂ from x in O(n logn) time

Ï compute top k coefficients in O(n) time.

Sparse FFT:
Ï directly computes k largest coefficients of x̂ (approximately

– formal def later)

Ï Running time O(k log2 n) or faster

Ï Sublinear time!
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Sample complexity

Sample complexity=number of samples accessed in time
domain.
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Sample complexity

In medical imaging (MRI, NMR), one measures Fourier
coefficients x̂ of imaged object x (which is often sparse)
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Sample complexity

Measure x̂ ∈Cn, compute the Inverse Discrete Fourier
Transform (IDFT) of x̂ :

xi =
∑

j∈[n]
x̂j ·ωij .

Given x ∈Cn, compute the Discrete Fourier Transform (DFT) of
x :

x̂i =
1
n

∑
j∈[n]

xj ·ω−ij .

Sample complexity=number of samples accessed in time
domain.

Governs the measurement complexity of imaging process.
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Given access to signal x in time domain, find best k -sparse
approximation to x̂ approximately

Minimize

1. runtime

2. number of samples
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Algorithms

Ï Randomization
Ï Approximation
Ï Hashing
Ï Sketching
Ï . . .

Signal processing

Ï Fourier transform
Ï Hadamard transform
Ï Filters
Ï Compressive sensing
Ï . . .
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Ï Lecture 1: summary of techniques from
Gilbert-Guha-Indyk-Muthukrishnan-Strauss’02, Akavia-Goldwasser-Safra’03,

Gilbert-Muthukrishnan-Strauss’05, Iwen’10, Akavia’10,

Hassanieh-Indyk-Katabi-Price’12a, Hassanieh-Indyk-Katabi-Price’12b

Ï Lecture 2: Algorithm with O(k logn) runtime (noiseless
case) Hassanieh-Indyk-Katabi-Price’12b

Ï Lecture 3: Algorithm with O(k log2 n) runtime (noisy case)
Hassanieh-Indyk-Katabi-Price’12b

Ï Lecture 4: Algorithm with O(k logn) sample complexity
Indyk-Kapralov-Price’14, Indyk-Kapralov’14
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Outline

1. Computing Fourier transform of 1-sparse signals fast

2. Sparsity k > 1: main ideas and challenges
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Sparse Fourier Transform (k = 1)

Warmup: x̂ is exactly 1-sparse: x̂f = 0 when f 6= f ∗ for some f ∗
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Note: signal is a pure frequency

Given: access to x

Need: find f ∗ and x̂f ∗
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Two-point sampling
Input signal x is a pure frequency, so xj = a ·ωf ∗·j

+noise

Sample x0,x1

We have

x0 = a

+noise

x1 = a ·ωf ∗

+noise

So

x1/x0 =ωf ∗

+noise

Can read frequency from the
angle!

ωf ∗

unit circle

x0 = a

x1 = a ·ωf ∗

Pro: constant time algorithm
Con: depends heavily on the signal being pure
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Sparse Fourier Transform (k = 1)
Warmup – part 2: x̂ is 1-sparse plus noise
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Note: signal is a pure frequency plus noise

Given: access to x

Need: find f ∗ and x̂f ∗

Ideally, find pure frequency x̂ ′ that approximates x̂ best
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`2/`2 sparse recovery

Ideally, find pure frequency x̂ ′ that approximates x̂ best

Need to allow approximation: find ŷ such that

||x̂ − ŷ ||2 ≤C · ||tail noise||2
where C > 1 is the approximation factor.
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`2/`2 sparse recovery

Ideally, find pure frequency x̂ ′ that approximates x̂ best

Need to allow approximation: find ŷ such that

||x̂ − ŷ ||2 ≤ 3 · ||tail noise||2
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Approximation guarantee
Find ŷ such that

||x̂ − ŷ ||2 ≤ 3 · ||tail noise||2

Note: only meaningful if

||x̂ ||2 > 3 · ||tail noise||2
or, equivalently,∑

f 6=f ∗
|x̂f |2 ≤ ε|a|2

(assumethisforthelecture)
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frequency

Assume that this holds for a small enough ε> 0
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||x̂ − ŷ ||2 ≤ 3 · ||tail noise||2

Note: only meaningful if

||x̂ ||2 > 3 · ||tail noise||2
or, equivalently,∑

f 6=f ∗
|x̂f |2 ≤ ε|a|2 (assumethisforthelecture)

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

Assume that this holds for a small enough ε> 0

39 / 73



Approximation guarantee
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A robust algorithm for finding the heavy hitter
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Assume that
∑

f 6=f ∗
|x̂f |2 ≤ ε|a|2

Describe algorithm for the noiseless case first (ε= 0)

Suppose that xj = a ·ωf ∗·j .

Will find f ∗ bit by bit (binary search).
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Bit 0
Suppose that f ∗ = 2f +b, we want b

Compute
Ï x0 = a
Ï xn/2 = a ·ωf ∗·(n/2)

Claim
We have

xn/2 = x0 · (−1)b

(Even frequencies are n/2-periodic, odd are n/2-antiperiodic)

Proof.

xn/2 = a ·ωf ∗(n/2) = a · (−1)2f+b = x0 · (−1)b

Will need arbitrary r ’s for the noisy setting
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Bit 0
Suppose that f ∗ = 2f +b, we want b
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Bit 0 test

Set

and

b0 ← 0 if |xn/2+r +xr | > |xn/2+r −xr |

Set and

b0 ← 1 o.w.

Correctness:

If b = 0, then |xn/2+r +xr | = 2|xr | = 2|a|

If b = 0,

and

n

|xn/2+r −xr | = 0

If b = 1, then |xn/2+r +xr | = 0

If b = 0,

and

n

|xn/2+r −xr | = 2|xr | = 2|a|
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Bit 1
Can pretend that b0 = 0. Why?

Claim (Time shift theorem)
If yj = xj ·ωj ·∆, then ŷf = x̂f−∆.

Proof.

ŷf =
1
n

∑
j∈[n]

yj ·ω−fj = 1
n

∑
j∈[n]

xj ·ωj ·∆ ·ω−fj

= 1
n

∑
j∈[n]

xj ·ω−j ·(f−∆)

= x̂f−∆

If b0 = 1, then replace x with yj := xj ·ωj ·b0 .
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Bit 1
Assume b0 = 0. Then we have f ∗ = 2f , so

xj = a ·ωf ∗j = a ·ω2f ·j = a ·ωf ·j
N/2.

Let ẑj := x̂2j , i.e. spectrum of z contains even components of
spectrum of x̂

Then
Ï (x0, . . . ,xN/2−1)= (z0, . . . ,zN/2−1) are time samples of zj ;

and
Ï ẑf = a is the heavy hitter in z.

So by previous derivation zN/4+r = zr · (−1)b1

And hence
xn/4+rω

(n/4+r)b0 = xrω
r ·b0 · (−1)b1
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Let ẑj := x̂2j , i.e. spectrum of z contains even components of
spectrum of x̂

Then
Ï (x0, . . . ,xN/2−1)= (z0, . . . ,zN/2−1) are time samples of zj ;

and
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Let ẑj := x̂2j , i.e. spectrum of z contains even components of
spectrum of x̂

Then
Ï (x0, . . . ,xN/2−1)= (z0, . . . ,zN/2−1) are time samples of zj ;

and
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Decoding bit by bit

Set

and

b0 ← 0 if |xn/2+r +xr | > |xn/2+r −xr |

Set and

b0 ← 1 o.w.

Set

and

b1 ← 0 if |ω(n/4)b0xn/4+r +xr | > |ω(n/4)b0xn/4+r −xr |

Set and

b1 ← 1 o.w.

. . . |ω(n/8)(2b1+b0)xn/8+r +xr | > |ω(n/8)(2b1+b0)xn/8+r −xr | . . .

Overall: O(logn) samples to identify f ∗. Runtime O(logn)
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Noisy setting (dealing with ε)
We now have

xj = a ·ωf ∗·j + ∑
f 6=f ∗

x̂fω
fj

= a ·ωf ∗·j +µj (µj is the noise in time domain)

Argue that µj is usually small?

Parseval’s equality: noise energy in time domain is proportional
to noise energy in frequency domain:

N−1∑
j=0

|µj |2 = n
∑

f 6=f ∗
|x̂f |2.

So on average |µj |2 is small:

Ej [|µj |2]≤
∑

f 6=f ∗
|x̂f |2 ≤ ε|a|2
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Need to ensure that:

1. f ∗ is decoded correctly

2. a is estimated well enough to satisfy `2/`2 guarantees:

||x̂ − ŷ ||2 ≤C · ||x̂ − x̂ ′||2
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Decoding in the noisy setting
Bit 0: set b0 ← 0 if |xn/2+r +xr | > |xn/2+r −xr | and b0 ← 1 o.w.

Claim
If µn/2+r < |a|/2 and µr < |a|/2, then outcome of the bit test is
the same.

Suppose b0 = 1.

Then

|xn/2+r +xr | ≤ |µn/2+r |+ |µr | < |a|

and

|xn/2+r−xr | ≥ 2|a|−|µn/2+r |−|µr | > |a|

xr = a ·ωf ∗·r +µr

xn/2+r = a ·ωf ∗·(n/2+r)+µn/2+r
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Decoding in the noisy setting

On average |µj |2 is small:

Ej [|µj |2]≤
∑

f 6=f ∗
|x̂f |2 ≤ ε|a|2

By Markov’s inequality

Prj [|µj |2 > |a|2/4]≤Prj [|µj |2 > (1/(4ε)) ·Ej [|µj |2]]≤ 4ε

By a union bound

Prr [|µr | ≤ |a|/2 and |µn/2+r | ≤ |a|/2]≥ 1−8ε

Thus, a bit test is correct with probability at least 1−8ε.
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Decoding in the noisy setting

Bit 0: set b0 to zero if

|xn/2+r +xr | > |xn/2+r −xr |

and to 1 otherwise

For ε< 1/64 each test is correct with probability ≥ 3/4.

Final test: perform T À 1 independent tests, use majority vote.

How large should T be? Success probability?
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Decoding in the noisy setting
For j = 1, . . . ,T let

Zj =
{

1 if j-th test is correct
0 o.w.

We have E[Zj ]≥ 3/4.

Chernoff bounds

Pr[
T∑

j=1
Zj <T/2]< e−Ω(T ).

Set T =O(loglogn)

Majority is correct with probability at least 1−1/(16log2 n)

So all bits correct with probability ≥ 15/16
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Estimating the value of heavy hitter
Recall that

xr = a ·ωf ∗·r +µr (noise)

Our estimate: pick random r ∈ [n] and output

est← xrω
−f∗·r

Expected squared error?

Er [|est −a|2]

=Er [|xrω
−f ∗·r −a|2]=Er [|xr −a ·ωf ∗·r |2]=Er [|µr |2]

Now by Markov’s inequality

Prr [|est −a|2 > 4ε|a|2]< 1/4.
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Putting it together: algorithm for 1-sparse signals

Let

ŷf =
{

est if f = f ∗

0 o.w.

By triangle inequality

||ŷ − x̂ ||2 ≤ ||ŷf ∗ −a||2 +||ŷ−f ∗ − x̂−f ∗ ||2
≤ 2

p
ε|a|+p

ε|a|
= 3||x̂ − x̂ ′||2.

Thus, with probability ≥ 2/3 our algorithm satisfies `2/`2
guarantee with C = 3.
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Runtime=O(logn loglogn)

Sample complexity=O(logn loglogn)

Ex. 1: reduce sample complexity to O(logn), keep
O(poly(logn)) runtime

Ex. 2: reduce sample complexity to O(log1/εn)

What about k > 1
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Outline

1. Sparsity: definitions, motivation

2. Computing Fourier transform of 1-sparse signals fast

3. Sparsity k > 1: main ideas and challenges
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Sparsity k > 1
Let x̂ ′ ← best k -sparse approximation of x̂

Our goal: find ŷ such that

||x̂ − ŷ ||2 ≤C · ||x̂ − x̂ ′||2
where C > 1 is the approximation factor.

(This is the `2/`2 guarantee)

-0.5

0

0.5

1

-1000 -500 0 500 1000

frequency

head
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Sparsity k > 1

Main idea: implement hashing to reduce to 1-sparse case:

Ï ‘hash’ frequencies into ≈ k bins

Ï run 1-sparse algo on isolated elements

Assumption: can randomly permute frequencies (will remove in
next lecture)

Implement hashing? Need to design a bucketing scheme for
the frequency domain
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Partition frequency domain into B ≈ k buckets

-0.001

-0.0005

0

0.0005

0.001

-1000 -500 0 500 1000

time

-0.5

0

0.5

1

-1000 -500 0 500 1000

frequency

For each j = 0, . . . ,B−1 let

ûj
f =

{
x̂f , if f ∈ j-th bucket
0 o.w.

Restricted to a bucket, signal is likely approximately 1-sparse!
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Zero-th bucket signal u0:

û0
f =

{
x̂f , if f ∈ [− n

2B : n
2B

]
0 o.w.
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1

-1000 -500 0 500 1000

frequency

We want time domain access to u0: for any a= 0, . . . ,n−1,
compute

u0
a =∑

f
û0

f ·ωf ·a = ∑
− n

2B ≤f≤ n
2B

x̂f ·ωf ·a = ∑
− n

2B ≤f≤ n
2B

ŷf ,

where yj = xj+a
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Zero-th bucket signal u0:

û0
f =
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compute

u0
a =∑
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f ·ωf ·a = ∑
− n

2B ≤f≤ n
2B

x̂f ·ωf ·a

= ∑
− n

2B ≤f≤ n
2B

ŷf ,

where yj = xj+a (y is a time shift of x by the time shift theorem).
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û0
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x̂f , if f ∈ [− n

2B : n
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]
0 o.w.
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f∈[n]

ŷf Ĝf = (ŷ ∗ Ĝ)(0)= (x̂·+a ∗ Ĝ)(0)
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ŷf ,

where yj = xj+a (y is a time shift of x).

Let
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71 / 73



Need to evaluate
(x̂ ∗ Ĝ)

(
j · n

B

)
for j = 0, . . . ,B−1.

We have access to x , not x̂ ...

By the convolution identity

x̂ ∗ Ĝ = à(x ·G)

Suffices to compute

�x ·Gj · n
B

, j = 0, . . . ,B−1
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Suffices to compute

�x ·Gj · n
B

, j =−B/2, . . . ,B/2−1

Sample complexity? Runtime?
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Computing x ·G takes Ω(N) time and samples!
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Computing x ·G takes Ω(N) time and samples!

Design a filter supp(G)≈ k? Truncate sinc? Tolerate imprecise
hashing? Collisions in buckets?
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