Sparse Fourier Transform (lecture 1)

Michael Kapralov¹

¹IBM Watson \rightarrow EPFL

St. Petersburg CS Club November 2015 Given $x \in \mathbb{C}^n$, compute the Discrete Fourier Transform (DFT) of *x*:

$$\widehat{x}_{i} = \frac{1}{n} \sum_{j \in [n]} x_{j} \cdot \omega^{-ij},$$

where $\omega = e^{2\pi i/n}$ is the *n*-th root of unity.

Given $x \in \mathbb{C}^n$, compute the Discrete Fourier Transform (DFT) of *x*:

$$\widehat{x}_{j} = \frac{1}{n} \sum_{j \in [n]} x_{j} \cdot \omega^{-ij},$$

where $\omega = e^{2\pi i/n}$ is the *n*-th root of unity.

Assume that *n* is a power of 2.

Given $x \in \mathbb{C}^n$, compute the Discrete Fourier Transform (DFT) of *x*:

$$\widehat{x}_{j} = \frac{1}{n} \sum_{j \in [n]} x_{j} \cdot \boldsymbol{\omega}^{-ij},$$

where $\omega = e^{2\pi i/n}$ is the *n*-th root of unity.

Assume that *n* is a power of 2.

compression schemes (JPEG, MPEG) signal processing data analysis imaging (MRI, NMR)

DFT has numerous applications:

Computes Discrete Fourier Transform (DFT) of a length nsignal in $O(n \log n)$ time

Computes Discrete Fourier Transform (DFT) of a length nsignal in $O(n \log n)$ time

Cooley and Tukey, 1964

Computes Discrete Fourier Transform (DFT) of a length nsignal in $O(n \log n)$ time

Cooley and Tukey, 1964

Gauss, 1805

Computes Discrete Fourier Transform (DFT) of a length nsignal in $O(n \log n)$ time

Cooley and Tukey, 1964

Gauss, 1805

Code=FFTW (Fastest Fourier Transform in the West)

Sparse FFT

Say that \hat{x} is *k*-sparse if \hat{x} has *k* nonzero entries

Sparse FFT

Say that \hat{x} is *k*-sparse if \hat{x} has *k* nonzero entries

Say that \hat{x} is approximately *k*-sparse if \hat{x} is close to *k*-sparse in some norm (ℓ_2 for this lecture)

Sparse approximations

Given x, compute \hat{x} , then keep top k coefficients only for $k \ll N$

Used in image and video compression schemes (e.g. JPEG, MPEG)

Sparse approximations

Given x, compute \hat{x} , then keep top k coefficients only for $k \ll N$

JPEG

Used in image and video compression schemes (e.g. JPEG, MPEG)

Computing approximation fast

Basic approach:

- FFT computes \hat{x} from x in $O(n \log n)$ time
- compute top k coefficients in O(n) time.

Computing approximation fast

Basic approach:

- FFT computes \hat{x} from x in $O(n \log n)$ time
- compute top k coefficients in O(n) time.

Sparse FFT:

- directly computes k largest coefficients of \hat{x} (approximately formal def later)
- Running time O(k log² n) or faster
- Sublinear time!

Sample complexity=number of samples accessed in time domain.

In medical imaging (MRI, NMR), one measures Fourier coefficients \hat{x} of imaged object x (which is often sparse)

In medical imaging (MRI, NMR), one measures Fourier coefficients \hat{x} of imaged object x (which is often sparse)

Measure $\hat{x} \in \mathbb{C}^n$, compute the Inverse Discrete Fourier Transform (IDFT) of \hat{x} :

$$x_i = \sum_{j \in [n]} \widehat{x}_j \cdot \omega^{ij}.$$

Measure $\hat{x} \in \mathbb{C}^n$, compute the Inverse Discrete Fourier Transform (IDFT) of \hat{x} :

$$x_i = \sum_{j \in [n]} \widehat{x}_j \cdot \omega^{ij}.$$

Given $x \in \mathbb{C}^n$, compute the Discrete Fourier Transform (DFT) of *x*:

$$\widehat{x}_{j} = \frac{1}{n} \sum_{j \in [n]} x_{j} \cdot \omega^{-ij}.$$

Measure $\hat{x} \in \mathbb{C}^n$, compute the Inverse Discrete Fourier Transform (IDFT) of \hat{x} :

$$x_i = \sum_{j \in [n]} \widehat{x}_j \cdot \omega^{ij}.$$

Given $x \in \mathbb{C}^n$, compute the Discrete Fourier Transform (DFT) of *x*:

$$\widehat{x}_{j} = \frac{1}{n} \sum_{j \in [n]} x_{j} \cdot \boldsymbol{\omega}^{-ij}.$$

Measure $\hat{x} \in \mathbb{C}^n$, compute the Inverse Discrete Fourier Transform (IDFT) of \hat{x} :

$$x_i = \sum_{j \in [n]} \widehat{x}_j \cdot \omega^{ij}.$$

Given $x \in \mathbb{C}^n$, compute the Discrete Fourier Transform (DFT) of x:

$$\widehat{x}_{j} = \frac{1}{n} \sum_{j \in [n]} x_{j} \cdot \omega^{-ij}.$$

Sample complexity=number of samples accessed in time domain.

Governs the measurement complexity of imaging process.

Given access to signal x in time domain, find best k-sparse approximation to \hat{x} approximately

Minimize

- 1. runtime
- 2. number of samples

Algorithms

- Randomization
- Approximation
- Hashing
- Sketching
- ▶ ...

Signal processing

- Fourier transform
- Hadamard transform
- Filters
- Compressive sensing

▶ ...

Lecture 1: summary of techniques from

Gilbert-Guha-Indyk-Muthukrishnan-Strauss'02, Akavia-Goldwasser-Safra'03, Gilbert-Muthukrishnan-Strauss'05, Iwen'10, Akavia'10, Hassanieh-Indyk-Katabi-Price'12a, Hassanieh-Indyk-Katabi-Price'12b

- Lecture 2: Algorithm with O(k log n) runtime (noiseless case) Hassanieh-Indyk-Katabi-Price'12b
- Lecture 3: Algorithm with O(k log² n) runtime (noisy case) Hassanieh-Indyk-Katabi-Price'12b
- Lecture 4: Algorithm with O(k log n) sample complexity Indyk-Kapralov-Price'14, Indyk-Kapralov'14

Outline

- 1. Computing Fourier transform of 1-sparse signals fast
- 2. Sparsity k > 1: main ideas and challenges

Outline

- 1. Computing Fourier transform of 1-sparse signals fast
- 2. Sparsity k > 1: main ideas and challenges

Sparse Fourier Transform (k = 1)

Warmup: \hat{x} is exactly 1-sparse: $\hat{x}_f = 0$ when $f \neq f^*$ for some f^*

Note: signal is a pure frequency

Given: access to x

Need: find f^* and \hat{x}_{f^*}

Input signal *x* is a pure frequency, so $|x_j = \mathbf{a} \cdot \omega^{f^* \cdot j}|$

Input signal *x* is a pure frequency, so $|x_j = \mathbf{a} \cdot \omega^{f^* \cdot j}|$

Sample x_0, x_1

Input signal x is a pure frequency, so $x_j = \mathbf{a} \cdot \omega^{f^* \cdot j}$

Sample x_0, x_1

We have

$$x_0 = \mathbf{a}$$

 $x_1 = \mathbf{a} \cdot \omega^{f^*}$

Input signal *x* is a pure frequency, so $x_j = \mathbf{a} \cdot \omega^{f^* \cdot f}$

Sample x_0, x_1

We have

$$x_0 = \mathbf{a}$$
$$x_1 = \mathbf{a} \cdot \omega^{f^*}$$

So

$$x_1/x_0=\omega^{f^*}$$

$$x_1 = \mathbf{a} \cdot \omega^{f^*}$$

Input signal *x* is a pure frequency, so $x_j = \mathbf{a} \cdot \omega^{f^* \cdot j}$

Sample x_0, x_1

We have

$$x_0 = \mathbf{a}$$
$$x_1 = \mathbf{a} \cdot \omega^{f^*}$$

So

$$x_1/x_0 = \omega^{f^*}$$

Can read frequency from the angle!

$$x_1 = \mathbf{a} \cdot \mathbf{\omega}$$

 $\mathbf{\omega}^{f^*}$ $x_0 = \mathbf{a}$
unit circle

 $\mathbf{v} = \mathbf{o} \circ f^*$

Input signal x is a pure frequency, so $x_j = \mathbf{a} \cdot \omega^{f^* \cdot j}$

Sample x_0, x_1

We have

$$x_0 = \mathbf{a}$$

 $x_1 = \mathbf{a} \cdot \omega^f$

So

$$x_1/x_0 = \omega^{f^*}$$

Can read frequency from the angle!

Pro: constant time algorithm Con: depends heavily on the signal being pure

$$x_1 = \mathbf{a} \cdot \omega^{f^*}$$

Input signal x is a pure frequency**+noise**, so $|x_j = \mathbf{a} \cdot \omega^{f^* \cdot j} + noise$

Sample x_0, x_1

We have

 $x_0 = \mathbf{a} + \text{noise}$ $x_1 = \mathbf{a} \cdot \omega^{f^*} + \text{noise}$

So

$$x_1/x_0 = \omega^{f^*} + \text{noise}$$

Can read frequency from the angle!

$$x_1 = \mathbf{a} \cdot \boldsymbol{\omega}^{f^*}$$

Input signal x is a pure frequency+noise, so $|x_j = \mathbf{a} \cdot \omega^{f^* \cdot j}$ +noise

Sample x_0, x_1

We have

 $x_0 = \mathbf{a} + \text{noise}$ $x_1 = \mathbf{a} \cdot \omega^{f^*} + \text{noise}$

So

$$x_1/x_0 = \omega^{f^*} + \text{noise}$$

Can read frequency from the angle!

Two-point sampling

Input signal *x* is a pure frequency**+noise**, so $|x_j = \mathbf{a} \cdot \omega^{f^* \cdot j} + noise$

Sample x_0, x_1

We have

 $x_0 = \mathbf{a} + \text{noise}$ $x_1 = \mathbf{a} \cdot \omega^{f^*} + \text{noise}$

So

$$x_1/x_0 = \omega^{f^*} + \text{noise}$$

Can read frequency from the angle!

Pro: constant time algorithm Con: depends heavily on the signal being pure

Warmup – part 2: \hat{x} is 1-sparse plus noise

Note: signal is a pure frequency plus noise

Given: access to x

Need: find f^* and \hat{x}_{f^*}

Warmup – part 2: \hat{x} is 1-sparse plus noise

Note: signal is a pure frequency plus noise

Given: access to x

Need: find f^* and \hat{x}_{f^*}

Warmup – part 2: \hat{x} is 1-sparse plus noise

Note: signal is a pure frequency plus noise

Given: access to x

Need: find f^* and \hat{x}_{f^*}

Warmup – part 2: \hat{x} is 1-sparse plus noise

Note: signal is a pure frequency plus noise

Ideally, find pure frequency \hat{x}' that approximates \hat{x} best:

$$\min_{\substack{1-\text{sparse } \widehat{x}'}} ||\widehat{x} - \widehat{x}'||_2$$

Warmup – part 2: \hat{x} is 1-sparse plus noise

Note: signal is a pure frequency plus noise

Ideally, find pure frequency \hat{x}' that approximates \hat{x} best:

$$\min_{\substack{1-\text{sparse } \widehat{x}'}} ||\widehat{x} - \widehat{x}'||_2$$

Warmup – part 2: \hat{x} is 1-sparse plus noise

Note: signal is a pure frequency plus noise

Ideally, find pure frequency \hat{x}' that approximates \hat{x} best:

$$\min_{\substack{1-\text{sparse } \widehat{x}'}} ||\widehat{x} - \widehat{x}'||_2 = ||\text{tail noise}||_2$$

Ideally, find pure frequency \hat{x}' that approximates \hat{x} best

Need to allow approximation: find \hat{y} such that

 $||\widehat{x} - \widehat{y}||_2 \le C \cdot ||\text{tail noise}||_2$

where C > 1 is the approximation factor.

Ideally, find pure frequency \hat{x}' that approximates \hat{x} best

Need to allow approximation: find \hat{y} such that

 $||\widehat{x} - \widehat{y}||_2 \le 3 \cdot ||\text{tail noise}||_2$

Find \hat{y} such that

 $||\widehat{x} - \widehat{y}||_2 \le 3 \cdot ||\text{tail noise}||_2$

Find \hat{y} such that

 $||\widehat{x} - \widehat{y}||_2 \le 3 \cdot ||\text{tail noise}||_2$

Find \hat{y} such that

 $||\widehat{x} - \widehat{y}||_2 \le 3 \cdot ||\text{tail noise}||_2$

Note: only meaningful if

 $||\hat{x}||_2 > 3 \cdot ||\text{tail noise}||_2$

or, equivalently,

$$\sum_{f \neq f^*} |\widehat{X}_f|^2 \le \varepsilon |\mathbf{a}|^2$$

Find \hat{y} such that

 $||\widehat{x} - \widehat{y}||_2 \le 3 \cdot ||\text{tail noise}||_2$

Note: only meaningful if

 $||\hat{x}||_2 > 3 \cdot ||\text{tail noise}||_2$

or, equivalently,

 $\sum_{f \neq f^*} |\widehat{x}_f|^2 \le \varepsilon |\mathbf{a}|^2 \quad (\text{assume this for the lecture})$

Find \hat{y} such that

 $||\widehat{x} - \widehat{y}||_2 \le 3 \cdot ||\text{tail noise}||_2$

Note: only meaningful if

 $||\hat{x}||_2 > 3 \cdot ||\text{tail noise}||_2$

or, equivalently,

 $\sum_{f \neq f^*} |\widehat{x}_f|^2 \le \varepsilon |\mathbf{a}|^2 \quad (\text{assume this for the lecture})$

Find \hat{y} such that

 $||\widehat{x} - \widehat{y}||_2 \le 3 \cdot ||\text{tail noise}||_2$

Note: only meaningful if

 $||\hat{x}||_2 > 3 \cdot ||\text{tail noise}||_2$

or, equivalently,

 $\sum_{f \neq f^*} |\widehat{x}_f|^2 \le \varepsilon |\mathbf{a}|^2 \quad (\text{assume this for the lecture})$

43/73

A robust algorithm for finding the heavy hitter

Assume that
$$\sum_{f \neq f^*} |\widehat{X}_f|^2 \le \varepsilon |\mathbf{a}|^2$$

Describe algorithm for the noiseless case first ($\epsilon = 0$)

Suppose that $x_j = \mathbf{a} \cdot \omega^{f^* \cdot j}$.

A robust algorithm for finding the heavy hitter

Assume that
$$\sum_{f \neq f^*} |\widehat{X}_f|^2 \le \varepsilon |\mathbf{a}|^2$$

Describe algorithm for the noiseless case first ($\varepsilon = 0$)

Suppose that $x_j = \mathbf{a} \cdot \omega^{f^* \cdot j}$.

Will find f^* bit by bit (binary search).

Suppose that $f^* = 2f + b$, we want b

Compute

$$\bullet \ x_{n/2} = \mathbf{a} \cdot \omega^{f^* \cdot (n/2)}$$

Suppose that $f^* = 2f + b$, we want b

Compute

•
$$x_0 = \mathbf{a}$$

• $x_{n/2} = \mathbf{a} \cdot \omega^{f^* \cdot (n/2)}$

Claim We have

$$x_{n/2} = x_0 \cdot (-1)^b$$

(Even frequencies are n/2-periodic, odd are n/2-antiperiodic) Proof.

$$x_{n/2} = \mathbf{a} \cdot \omega^{f^*(n/2)} = \mathbf{a} \cdot (-1)^{2f+b} = x_0 \cdot (-1)^b$$

Suppose that $f^* = 2f + b$, we want b

Compute

 $x_{0+\mathbf{r}} = \mathbf{a} \cdot \boldsymbol{\omega}^{\mathbf{f}^* \mathbf{r}}$ $x_{n/2+\mathbf{r}} = \mathbf{a} \cdot \boldsymbol{\omega}^{f^*(n/2+\mathbf{r})}$

Claim For all $r \in [n]$ we have

$$x_{n/2+r} = x_{0+r} \cdot (-1)^b$$

(Even frequencies are n/2-periodic, odd are n/2-antiperiodic) Proof.

$$x_{n/2+r} = \mathbf{a} \cdot \omega^{f^*(n/2+\mathbf{r})} = \mathbf{a} \cdot \omega^{\mathbf{f}^*\mathbf{r}} \cdot (-1)^{2f+b} = x_{0+\mathbf{r}} \cdot (-1)^b$$

Suppose that $f^* = 2f + b$, we want b

Compute

• $X_{\mathbf{r}} = \mathbf{a} \cdot \boldsymbol{\omega}^{\mathbf{f}^* \mathbf{r}}$ • $X_{n/2+\mathbf{r}} = \mathbf{a} \cdot \boldsymbol{\omega}^{f^*(n/2+\mathbf{r})}$

Claim For all $r \in [n]$ we have

$$x_{n/2+\mathbf{r}} = x_{\mathbf{r}} \cdot (-1)^b$$

(Even frequencies are n/2-periodic, odd are n/2-antiperiodic) Proof.

$$x_{n/2+r} = \mathbf{a} \cdot \boldsymbol{\omega}^{f^*(n/2+\mathbf{r})} = \mathbf{a} \cdot \boldsymbol{\omega}^{f^*\mathbf{r}} \cdot (-1)^{2f+b} = x_{\mathbf{r}} \cdot (-1)^b$$

Suppose that $f^* = 2f + b$, we want b

Compute

 $X_{\mathbf{r}} = \mathbf{a} \cdot \boldsymbol{\omega}^{\mathbf{f}^* \mathbf{r}}$ $X_{n/2+\mathbf{r}} = \mathbf{a} \cdot \boldsymbol{\omega}^{f^*(n/2+\mathbf{r})}$

Claim For all $r \in [n]$ we have

$$x_{n/2+\mathbf{r}} = x_{\mathbf{r}} \cdot (-1)^b$$

(Even frequencies are n/2-periodic, odd are n/2-antiperiodic) Proof.

$$x_{n/2+r} = \mathbf{a} \cdot \omega^{f^*(n/2+\mathbf{r})} = \mathbf{a} \cdot \omega^{f^*\mathbf{r}} \cdot (-1)^{2f+b} = x_{\mathbf{r}} \cdot (-1)^b$$

Will need arbitrary r's for the noisy setting

Bit 0 test

Set $b_0 \leftarrow 0$ if $|x_{n/2+r} + x_r| > |x_{n/2+r} - x_r|$ $b_0 \leftarrow 1$ o.w.

Bit 0 test

Set
$$b_0 \leftarrow 0$$
 if $|x_{n/2+r} + x_r| > |x_{n/2+r} - x_r|$
 $b_0 \leftarrow 1$ o.w.

Correctness:

If
$$b = 0$$
, then $|x_{n/2+r} + x_r| = 2|x_r| = 2|\mathbf{a}|$
and $|x_{n/2+r} - x_r| = 0$

Bit 0 test

Set
$$b_0 \leftarrow 0$$
 if $|x_{n/2+r} + x_r| > |x_{n/2+r} - x_r|$
 $b_0 \leftarrow 1$ o.w.

Correctness:

If
$$b = 0$$
, then $|x_{n/2+r} + x_r| = 2|x_r| = 2|\mathbf{a}|$
and $|x_{n/2+r} - x_r| = 0$
If $b = 1$, then $|x_{n/2+r} + x_r| = 0$
and $|x_{n/2+r} - x_r| = 2|x_r| = 2|\mathbf{a}|$

Can pretend that $b_0 = 0$. Why?

Claim (Time shift theorem) If $y_j = x_j \cdot \omega^{j \cdot \Delta}$, then $\hat{y}_f = \hat{x}_{f-\Delta}$.

Proof.

$$\begin{split} \widehat{y}_{f} &= \frac{1}{n} \sum_{j \in [n]} y_{j} \cdot \omega^{-fj} = \frac{1}{n} \sum_{j \in [n]} x_{j} \cdot \omega^{j \cdot \Delta} \cdot \omega^{-fj} \\ &= \frac{1}{n} \sum_{j \in [n]} x_{j} \cdot \omega^{-j \cdot (f - \Delta)} \\ &= \widehat{x}_{f - \Delta} \end{split}$$

Can pretend that $b_0 = 0$. Why?

Claim (Time shift theorem) If $y_j = x_j \cdot \omega^{j \cdot \Delta}$, then $\hat{y}_f = \hat{x}_{f-\Delta}$.

Proof.

$$\begin{split} \widehat{y}_{f} &= \frac{1}{n} \sum_{j \in [n]} y_{j} \cdot \omega^{-fj} = \frac{1}{n} \sum_{j \in [n]} x_{j} \cdot \omega^{j \cdot \Delta} \cdot \omega^{-fj} \\ &= \frac{1}{n} \sum_{j \in [n]} x_{j} \cdot \omega^{-j \cdot (f - \Delta)} \\ &= \widehat{x}_{f - \Delta} \end{split}$$

If $b_0 = 1$, then replace x with $y_j := x_j \cdot \omega^{j \cdot b_0}$.

Assume $b_0 = 0$. Then we have $f^* = 2f$, so

$$x_j = \mathbf{a} \cdot \omega^{f^* j} = \mathbf{a} \cdot \omega^{2f \cdot j} = \mathbf{a} \cdot \omega_{N/2}^{f \cdot j}.$$

Assume $b_0 = 0$. Then we have $f^* = 2f$, so

$$x_j = \mathbf{a} \cdot \omega^{f^* j} = \mathbf{a} \cdot \omega^{2f \cdot j} = \mathbf{a} \cdot \omega_{N/2}^{f \cdot j}.$$

Let $\hat{z}_j := \hat{x}_{2j}$, i.e. spectrum of *z* contains even components of spectrum of \hat{x}

Assume $b_0 = 0$. Then we have $f^* = 2f$, so

$$x_j = \mathbf{a} \cdot \omega^{f^* j} = \mathbf{a} \cdot \omega^{2f \cdot j} = \mathbf{a} \cdot \omega_{N/2}^{f \cdot j}.$$

Let $\hat{z}_j := \hat{x}_{2j}$, i.e. spectrum of *z* contains even components of spectrum of \hat{x}

Then

(x₀,...,x_{N/2-1}) = (z₀,...,z_{N/2-1}) are time samples of z_j;
 and

• $\hat{z}_f = \mathbf{a}$ is the heavy hitter in z.

Assume $b_0 = 0$. Then we have $f^* = 2f$, so

$$x_j = \mathbf{a} \cdot \omega^{f^* j} = \mathbf{a} \cdot \omega^{2f \cdot j} = \mathbf{a} \cdot \omega_{N/2}^{f \cdot j}.$$

Let $\hat{z}_j := \hat{x}_{2j}$, i.e. spectrum of *z* contains even components of spectrum of \hat{x}

Then

- (x₀,...,x_{N/2-1}) = (z₀,...,z_{N/2-1}) are time samples of z_j;
 and
- $\hat{z}_f = \mathbf{a}$ is the heavy hitter in z.

So by previous derivation $z_{N/4+r} = z_r \cdot (-1)^{b_1}$

And hence

$$x_{n/4+r}\omega^{(n/4+r)b_0} = x_r\omega^{r\cdot b_0} \cdot (-1)^{b_1}$$

Assume $b_0 = 0$. Then we have $f^* = 2f$, so

$$x_j = \mathbf{a} \cdot \omega^{f^* j} = \mathbf{a} \cdot \omega^{2f \cdot j} = \mathbf{a} \cdot \omega_{N/2}^{f \cdot j}.$$

Let $\hat{z}_j := \hat{x}_{2j}$, i.e. spectrum of *z* contains even components of spectrum of \hat{x}

Then

- (x₀,...,x_{N/2-1}) = (z₀,...,z_{N/2-1}) are time samples of z_j;
 and
- $\hat{z}_f = \mathbf{a}$ is the heavy hitter in z.

So by previous derivation $z_{N/4+r} = z_r \cdot (-1)^{b_1}$

And hence

$$x_{n/4+r}\omega^{(n/4)b_0} = x_r \cdot (-1)^{b_1}$$

Set
$$b_0 \leftarrow 0$$
 if $|x_{n/2+r} + x_r| > |x_{n/2+r} - x_r|$
 $b_0 \leftarrow 1$ o.w.

Set
$$b_0 \leftarrow 0$$
 if $|x_{n/2+r} + x_r| > |x_{n/2+r} - x_r|$
 $b_0 \leftarrow 1$ o.w.
Set $b_1 \leftarrow 0$ if $|\omega^{(n/4)b_0}x_{n/4+r} + x_r| > |\omega^{(n/4)b_0}x_{n/4+r} - x_r|$
 $b_1 \leftarrow 1$ o.w.

Set
$$b_0 \leftarrow 0$$
 if $|x_{n/2+r} + x_r| > |x_{n/2+r} - x_r|$
 $b_0 \leftarrow 1$ o.w.
Set $b_1 \leftarrow 0$ if $|\omega^{(n/4)b_0}x_{n/4+r} + x_r| > |\omega^{(n/4)b_0}x_{n/4+r} - x_r|$
 $b_1 \leftarrow 1$ o.w.

$$\dots |\omega^{(n/8)(2b_1+b_0)} X_{n/8+r} + X_r| > |\omega^{(n/8)(2b_1+b_0)} X_{n/8+r} - X_r| \dots$$

Set
$$b_0 \leftarrow 0$$
 if $|x_{n/2+r} + x_r| > |x_{n/2+r} - x_r|$
 $b_0 \leftarrow 1$ o.w.
Set $b_1 \leftarrow 0$ if $|\omega^{(n/4)b_0}x_{n/4+r} + x_r| > |\omega^{(n/4)b_0}x_{n/4+r} - x_r|$
 $b_1 \leftarrow 1$ o.w.
 $\dots |\omega^{(n/8)(2b_1+b_0)}x_{n/8+r} + x_r| > |\omega^{(n/8)(2b_1+b_0)}x_{n/8+r} - x_r| \dots$

Overall: $O(\log n)$ samples to identify f^* . Runtime $O(\log n)$
Noisy setting (dealing with ε)

We now have

$$\begin{aligned} x_j &= \mathbf{a} \cdot \omega^{f^* \cdot j} + \sum_{f \neq f^*} \widehat{x}_f \omega^{fj} \\ &= \mathbf{a} \cdot \omega^{f^* \cdot j} + \mu_j \quad (\mu_j \text{ is the noise in time domain}) \end{aligned}$$

Argue that μ_i is usually small?

Noisy setting (dealing with ε)

We now have

$$\begin{aligned} x_j &= \mathbf{a} \cdot \omega^{f^* \cdot j} + \sum_{f \neq f^*} \widehat{x}_f \omega^{fj} \\ &= \mathbf{a} \cdot \omega^{f^* \cdot j} + \mu_j \quad (\mu_j \text{ is the noise in time domain}) \end{aligned}$$

Argue that μ_j is usually small?

Parseval's equality: noise energy in time domain is proportional to noise energy in frequency domain:

$$\sum_{j=0}^{N-1} |\mu_j|^2 = n \sum_{f \neq f^*} |\hat{x}_f|^2.$$

Noisy setting (dealing with ε)

We now have

$$\begin{aligned} x_j &= \mathbf{a} \cdot \omega^{f^* \cdot j} + \sum_{f \neq f^*} \widehat{x}_f \omega^{fj} \\ &= \mathbf{a} \cdot \omega^{f^* \cdot j} + \mu_j \quad (\mu_j \text{ is the noise in time domain}) \end{aligned}$$

Argue that μ_j is usually small?

Parseval's equality: noise energy in time domain is proportional to noise energy in frequency domain:

$$\sum_{j=0}^{N-1} |\mu_j|^2 = n \sum_{f \neq f^*} |\widehat{x}_f|^2.$$

So on average $|\mu_j|^2$ is small:

$$\mathbf{E}_{j}[|\boldsymbol{\mu}_{j}|^{2}] \leq \sum_{f \neq f^{*}} |\widehat{\boldsymbol{X}}_{f}|^{2} \leq \varepsilon |\mathbf{a}|^{2}$$

Need to ensure that:

1. *f*^{*} is decoded correctly

2. **a** is estimated well enough to satisfy ℓ_2/ℓ_2 guarantees:

$$||\widehat{x} - \widehat{y}||_2 \le C \cdot ||\widehat{x} - \widehat{x}'||_2$$

Bit 0: set $b_0 \leftarrow 0$ if $|x_{n/2+r} + x_r| > |x_{n/2+r} - x_r|$ and $b_0 \leftarrow 1$ o.w.

Claim

If $\mu_{n/2+r} < |\mathbf{a}|/2$ and $\mu_r < |\mathbf{a}|/2$, then outcome of the bit test is the same.

Bit 0: set $b_0 \leftarrow 0$ if $|x_{n/2+r} + x_r| > |x_{n/2+r} - x_r|$ and $b_0 \leftarrow 1$ o.w.

Claim

If $\mu_{n/2+r} < |\mathbf{a}|/2$ and $\mu_r < |\mathbf{a}|/2$, then outcome of the bit test is the same.

Suppose $b_0 = 1$.

Bit 0: set $b_0 \leftarrow 0$ if $|x_{n/2+r} + x_r| > |x_{n/2+r} - x_r|$ and $b_0 \leftarrow 1$ o.w.

Claim

If $\mu_{n/2+r} < |\mathbf{a}|/2$ and $\mu_r < |\mathbf{a}|/2$, then outcome of the bit test is the same.

Suppose $b_0 = 1$.

Then

 $|x_{n/2+r} + x_r| \le |\mu_{n/2+r}| + |\mu_r| < |\mathbf{a}|$

Bit 0: set $b_0 \leftarrow 0$ if $|x_{n/2+r} + x_r| > |x_{n/2+r} - x_r|$ and $b_0 \leftarrow 1$ o.w.

Claim

If $\mu_{n/2+r} < |\mathbf{a}|/2$ and $\mu_r < |\mathbf{a}|/2$, then outcome of the bit test is the same.

Suppose $b_0 = 1$.

Then

 $|x_{n/2+r} + x_r| \le |\mu_{n/2+r}| + |\mu_r| < |\pmb{a}|$

and

$$|x_{n/2+r} - x_r| \ge 2|\mathbf{a}| - |\mu_{n/2+r}| - |\mu_r| > |\mathbf{a}|$$

 $x_{n/2+r} = \mathbf{a} \cdot \boldsymbol{\omega}^{f^* \cdot (n/2+r)} + \boldsymbol{\mu}_{n/2+r}$

On average $|\mu_j|^2$ is small:

$$\mathbf{E}_{j}[|\mu_{j}|^{2}] \leq \sum_{f \neq f^{*}} |\widehat{x}_{f}|^{2} \leq \varepsilon |\mathbf{a}|^{2}$$

By Markov's inequality

$$\mathbf{Pr}_{j}[|\boldsymbol{\mu}_{j}|^{2} > |\mathbf{a}|^{2}/4] \leq \mathbf{Pr}_{j}[|\boldsymbol{\mu}_{j}|^{2} > (1/(4\epsilon)) \cdot \mathbf{E}_{j}[|\boldsymbol{\mu}_{j}|^{2}]] \leq 4\epsilon$$

On average $|\mu_j|^2$ is small:

$$\mathbf{E}_{j}[|\mu_{j}|^{2}] \leq \sum_{f \neq f^{*}} |\widehat{x}_{f}|^{2} \leq \varepsilon |\mathbf{a}|^{2}$$

By Markov's inequality

$$\textbf{Pr}_{j}[|\boldsymbol{\mu}_{j}|^{2} > |\textbf{a}|^{2}/4] \leq \textbf{Pr}_{j}[|\boldsymbol{\mu}_{j}|^{2} > (1/(4\epsilon)) \cdot \textbf{E}_{j}[|\boldsymbol{\mu}_{j}|^{2}]] \leq 4\epsilon$$

By a union bound

 $\Pr[|\mu_r| \le |a|/2 \text{ and } |\mu_{n/2+r}| \le |a|/2] \ge 1 - 8\epsilon$

On average $|\mu_j|^2$ is small:

$$\mathbf{E}_{j}[|\mu_{j}|^{2}] \leq \sum_{f \neq f^{*}} |\widehat{x}_{f}|^{2} \leq \varepsilon |\mathbf{a}|^{2}$$

By Markov's inequality

$$\textbf{Pr}_{j}[|\boldsymbol{\mu}_{j}|^{2} > |\textbf{a}|^{2}/4] \leq \textbf{Pr}_{j}[|\boldsymbol{\mu}_{j}|^{2} > (1/(4\epsilon)) \cdot \textbf{E}_{j}[|\boldsymbol{\mu}_{j}|^{2}]] \leq 4\epsilon$$

By a union bound

$$\Pr[|\mu_r| \le |a|/2 \text{ and } |\mu_{n/2+r}| \le |a|/2] \ge 1 - 8\epsilon$$

Thus, a bit test is correct with probability at least $1 - 8\epsilon$.

Bit 0: set b₀ to zero if

$$|x_{n/2+r} + x_r| > |x_{n/2+r} - x_r|$$

and to 1 otherwise

For $\varepsilon < 1/64$ each test is correct with probability $\ge 3/4$.

Final test: perform $T \gg 1$ independent tests, use majority vote.

How large should T be? Success probability?

Decoding in the noisy setting For j = 1, ..., T let $Z_j = \begin{cases} 1 & \text{if } j\text{-th test is correct} \\ 0 & \text{o.w.} \end{cases}$

We have $\mathbf{E}[Z_j] \ge 3/4$.

Decoding in the noisy setting For j = 1, ..., T let $Z_j = \begin{cases} 1 & \text{if } j\text{-th test is correct} \\ 0 & 0 \end{bmatrix}$

We have $\mathbf{E}[Z_j] \ge 3/4$.

Chernoff bounds

$$\Pr[\sum_{j=1}^{T} Z_j < T/2] < e^{-\Omega(T)}.$$

Set $T = O(\log \log n)$

Majority is correct with probability at least $1 - 1/(16 \log_2 n)$ So all bits correct with probability $\ge 15/16$

$$x_r = \mathbf{a} \cdot \omega^{f^* \cdot r} + \mu_r$$
 (noise)

Our estimate: pick random $r \in [n]$ and output est $\leftarrow \mathbf{x}_{\mathbf{r}} \omega^{-\mathbf{f}^* \cdot \mathbf{r}}$

$$x_r = \mathbf{a} \cdot \omega^{f^* \cdot r} + \mu_r$$
 (noise)

Our estimate: pick random $r \in [n]$ and output est $\leftarrow \mathbf{x}_{\mathbf{r}} \omega^{-\mathbf{f}^* \cdot \mathbf{r}}$

Expected squared error?

$$\mathbf{E}_r[|est-\mathbf{a}|^2]$$

$$x_r = \mathbf{a} \cdot \omega^{f^* \cdot r} + \mu_r$$
 (noise)

Our estimate: pick random $r \in [n]$ and output est $\leftarrow \mathbf{x}_{\mathbf{r}} \omega^{-\mathbf{f}^* \cdot \mathbf{r}}$

Expected squared error?

$$\mathbf{E}_{r}[|est-\mathbf{a}|^{2}] = \mathbf{E}_{r}[|x_{r}\omega^{-f^{*}\cdot r}-\mathbf{a}|^{2}]$$

$$x_r = \mathbf{a} \cdot \omega^{f^* \cdot r} + \mu_r$$
 (noise)

Our estimate: pick random $r \in [n]$ and output est $\leftarrow \mathbf{x}_{\mathbf{r}} \omega^{-\mathbf{f}^* \cdot \mathbf{r}}$

Expected squared error?

$$\mathbf{E}_r[|est - \mathbf{a}|^2] = \mathbf{E}_r[|x_r \omega^{-f^* \cdot r} - \mathbf{a}|^2] = \mathbf{E}_r[|x_r - \mathbf{a} \cdot \omega^{f^* \cdot r}|^2]$$

$$x_r = \mathbf{a} \cdot \boldsymbol{\omega}^{f^* \cdot r} + \boldsymbol{\mu}_r \quad (noise)$$

Our estimate: pick random $r \in [n]$ and output

est $\leftarrow \mathbf{x}_{\mathbf{r}} \omega^{-\mathbf{f}^* \cdot \mathbf{r}}$

Expected squared error?

$$\mathbf{E}_{r}[|est - \mathbf{a}|^{2}] = \mathbf{E}_{r}[|x_{r}\omega^{-f^{*} \cdot r} - \mathbf{a}|^{2}] = \mathbf{E}_{r}[|x_{r} - \mathbf{a} \cdot \omega^{f^{*} \cdot r}|^{2}] = \mathbf{E}_{r}[|\mu_{r}|^{2}]$$

Now by Markov's inequality

$$\mathbf{Pr}_{r}[|est-a|^{2} > 4\epsilon|a|^{2}] < 1/4.$$

Putting it together: algorithm for 1-sparse signals

Let

$$\widehat{y}_f = \begin{cases} est & \text{if } f = f^* \\ 0 & \text{o.w.} \end{cases}$$

By triangle inequality

$$\begin{split} ||\widehat{y} - \widehat{x}||_2 &\leq ||\widehat{y}_{f^*} - \mathbf{a}||_2 + ||\widehat{y}_{-f^*} - \widehat{x}_{-f^*}||_2 \\ &\leq 2\sqrt{\varepsilon}|\mathbf{a}| + \sqrt{\varepsilon}|\mathbf{a}| \\ &= 3||\widehat{x} - \widehat{x}'||_2. \end{split}$$

Thus, with probability $\ge 2/3$ our algorithm satisfies ℓ_2/ℓ_2 guarantee with C = 3.

Runtime=O(log nlog log n)

Sample complexity=O(log nlog log n)

Runtime=O(log nlog log n)

Sample complexity=O(log nlog log n)

Ex. 1: reduce sample complexity to $O(\log n)$, keep $O(\operatorname{poly}(\log n))$ runtime

Ex. 2: reduce sample complexity to $O(\log_{1/\epsilon} n)$

Runtime=O(log nlog log n)

Sample complexity=O(log nlog log n)

Ex. 1: reduce sample complexity to $O(\log n)$, keep $O(\operatorname{poly}(\log n))$ runtime

Ex. 2: reduce sample complexity to $O(\log_{1/\epsilon} n)$

What about k > 1

Outline

- 1. Sparsity: definitions, motivation
- 2. Computing Fourier transform of 1-sparse signals fast
- 3. Sparsity k > 1: main ideas and challenges

Sparsity k > 1

Let $\widehat{x}' \leftarrow$ best *k*-sparse approximation of \widehat{x}

Our goal: find \hat{y} such that

 $||\widehat{x} - \widehat{y}||_2 \le C \cdot ||\widehat{x} - \widehat{x}'||_2$

where C > 1 is the approximation factor.

(This is the ℓ_2/ℓ_2 guarantee)

Sparsity k > 1

Main idea: implement hashing to reduce to 1-sparse case:

- 'hash' frequencies into $\approx k$ bins
- run 1-sparse algo on isolated elements

Assumption: can randomly permute frequencies (will remove in next lecture)

Implement hashing? Need to design a bucketing scheme for the frequency domain

For each $j = 0, \dots, B - 1$ let

 $\widehat{u}_{f}^{j} = \begin{cases} \widehat{x}_{f}, & \text{if } f \in j\text{-th bucket} \\ 0 & \text{o.w.} \end{cases}$

For each $j = 0, \dots, B - 1$ let

 $\widehat{u}_{f}^{j} = \begin{cases} \widehat{x}_{f}, & \text{if } f \in j\text{-th bucket} \\ 0 & \text{o.w.} \end{cases}$

For each $j = 0, \dots, B - 1$ let

 $\widehat{u}_{f}^{j} = \begin{cases} \widehat{x}_{f}, & \text{if } f \in j\text{-th bucket} \\ 0 & \text{o.w.} \end{cases}$

For each $j = 0, \ldots, B - 1$ let

 $\widehat{u}_{f}^{j} = \begin{cases} \widehat{x}_{f}, & \text{if } f \in j\text{-th bucket} \\ 0 & \text{o.w.} \end{cases}$

For each $j = 0, \dots, B - 1$ let

 $\widehat{u}_{f}^{j} = \begin{cases} \widehat{x}_{f}, & \text{if } f \in j\text{-th bucket} \\ 0 & \text{o.w.} \end{cases}$

For each $j = 0, \dots, B - 1$ let

 $\widehat{u}_{f}^{j} = \begin{cases} \widehat{x}_{f}, & \text{if } f \in j\text{-th bucket} \\ 0 & \text{o.w.} \end{cases}$

For each $j = 0, \ldots, B - 1$ let

 $\widehat{u}_{f}^{j} = \begin{cases} \widehat{x}_{f}, & \text{if } f \in j\text{-th bucket} \\ 0 & \text{o.w.} \end{cases}$

For each $j = 0, \ldots, B - 1$ let

 $\widehat{u}_{f}^{j} = \begin{cases} \widehat{x}_{f}, & \text{if } f \in j\text{-th bucket} \\ 0 & \text{o.w.} \end{cases}$
Zero-th bucket signal u^0 :

$$\widehat{u}_{f}^{0} = \begin{cases} \widehat{x}_{f}, & \text{if } f \in \left[-\frac{n}{2B} : \frac{n}{2B}\right] \\ 0 & \text{o.w.} \end{cases}$$

$$u_{a}^{0} = \sum_{f} \widehat{u}_{f}^{0} \cdot \omega^{f \cdot a}$$

$$U_{a}^{0} = \sum_{f} \widehat{U}_{f}^{0} \cdot \omega^{f \cdot a} = \sum_{-\frac{n}{2B} \le f \le \frac{n}{2B}} \widehat{X}_{f} \cdot \omega^{f \cdot a}$$

$$U_a^0 = \sum_f \widehat{U}_f^0 \cdot \omega^{f \cdot a} = \sum_{-\frac{n}{2B} \le f \le \frac{n}{2B}} \widehat{X}_f \cdot \omega^{f \cdot a} = \sum_{-\frac{n}{2B} \le f \le \frac{n}{2B}} \widehat{Y}_f,$$

where $y_j = x_{j+a}$ (*y* is a time shift of *x* by the time shift theorem).

$$u_{a}^{0} = \sum_{-\frac{n}{2B} \le f \le \frac{n}{2B}} \widehat{y}_{f},$$

where $y_j = x_{j+a}$ (*y* is a time shift of *x*).

$$u_{a}^{0} = \sum_{-\frac{n}{2B} \le f \le \frac{n}{2B}} \widehat{y}_{f},$$

where $y_j = x_{j+a}$ (*y* is a time shift of *x*).

Let

$$\widehat{G}_f = \begin{cases} 1, & \text{if } f \in \left[-\frac{n}{2B} : \frac{n}{2B}\right] \\ 0 & \text{o.w.} \end{cases}$$

$$u_{a}^{0} = \sum_{-\frac{n}{2B} \le f \le \frac{n}{2B}} \widehat{y}_{f}$$

$$u_{a}^{0} = \sum_{-\frac{n}{2B} \le f \le \frac{n}{2B}} \widehat{y}_{f},$$

where $y_j = x_{j+a}$ (*y* is a time shift of *x*).

Let

$$\widehat{G}_f = \begin{cases} 1, & \text{if } f \in \left[-\frac{n}{2B} : \frac{n}{2B}\right] \\ 0 & \text{o.w.} \end{cases}$$

$$u_{a}^{0} = \sum_{-\frac{n}{2B} \le f \le \frac{n}{2B}} \widehat{y}_{f} = \sum_{f \in [n]} \widehat{y}_{f} \widehat{G}_{f}$$

$$u_{a}^{0} = \sum_{-\frac{n}{2B} \le f \le \frac{n}{2B}} \widehat{y}_{f},$$

where $y_j = x_{j+a}$ (*y* is a time shift of *x*).

Let

$$\widehat{G}_f = \begin{cases} 1, & \text{if } f \in \left[-\frac{n}{2B} : \frac{n}{2B}\right] \\ 0 & \text{o.w.} \end{cases}$$

$$u_{a}^{0} = \sum_{-\frac{n}{2B} \le f \le \frac{n}{2B}} \widehat{y}_{f} = \sum_{f \in [n]} \widehat{y}_{f} \widehat{G}_{f} = (\widehat{y} * \widehat{G})(0)$$

$$u_{a}^{0} = \sum_{-\frac{n}{2B} \le f \le \frac{n}{2B}} \widehat{y}_{f},$$

where $y_j = x_{j+a}$ (*y* is a time shift of *x*).

Let

$$\widehat{G}_f = \begin{cases} 1, & \text{if } f \in \left[-\frac{n}{2B} : \frac{n}{2B}\right] \\ 0 & \text{o.w.} \end{cases}$$

$$u_{\mathbf{a}}^{0} = \sum_{-\frac{n}{2B} \le f \le \frac{n}{2B}} \widehat{y}_{f} = \sum_{f \in [n]} \widehat{y}_{f} \widehat{G}_{f} = (\widehat{y} \ast \widehat{G})(0) = (\widehat{x_{\cdot + a}} \ast \widehat{G})(0)$$

Need to evaluate

$$(\widehat{x} * \widehat{G}) \left(\mathbf{j} \cdot \frac{\mathbf{n}}{\mathbf{B}} \right)$$

for j = 0, ..., B - 1.

We have access to x, not \hat{x} ...

Need to evaluate

$$(\widehat{x} * \widehat{G}) \left(\mathbf{j} \cdot \frac{\mathbf{n}}{\mathbf{B}} \right)$$

for j = 0, ..., B - 1.

We have access to x, not \hat{x} ...

By the convolution identity

$$\widehat{X} * \widehat{G} = \widehat{(X \cdot G)}$$

Need to evaluate

$$(\widehat{x} * \widehat{G}) \left(\mathbf{j} \cdot \frac{\mathbf{n}}{\mathbf{B}} \right)$$

for j = 0, ..., B - 1.

We have access to x, not \hat{x} ...

By the convolution identity

$$\widehat{X} * \widehat{G} = \widehat{(X \cdot G)}$$

Suffices to compute

$$\widehat{x \cdot G_{j \cdot \frac{n}{B}}}, j = 0, \dots, B-1$$

$$\widehat{x \cdot G_{j \cdot \frac{n}{B}}}, j = -B/2, \dots, B/2-1$$

$$\widehat{x \cdot G_{j \cdot \frac{n}{B}}}, j = -B/2, \dots, B/2-1$$

$$\widehat{x \cdot G_{j \cdot \frac{n}{B}}}, j = -B/2, \dots, B/2-1$$

$$\widehat{x \cdot G_{j \cdot \frac{n}{B}}}, j = -B/2, \dots, B/2-1$$

Computing $x \cdot G$ takes $\Omega(N)$ time and samples!

$$\widehat{x \cdot G_{j \cdot \frac{n}{B}}}, j = -B/2, \dots, B/2-1$$

Sample complexity? Runtime?

Computing $x \cdot G$ takes $\Omega(N)$ time and samples!

Design a filter supp(G) $\approx k$? Truncate sinc? Tolerate imprecise hashing? Collisions in buckets?