Sparse Fourier Transform (lecture 2)

Michael Kapralov ${ }^{1}$

${ }^{1}$ IBM Watson \rightarrow EPFL

St. Petersburg CS Club November 2015

Given $x \in \mathbb{C}^{n}$, compute the Discrete Fourier Transform of x :

$$
\widehat{x}_{f}=\frac{1}{n} \sum_{j \in[n]} x_{j} \omega^{-f \cdot j},
$$

where $\omega=e^{2 \pi i / n}$ is the n-th root of unity.

Given $x \in \mathbb{C}^{n}$, compute the Discrete Fourier Transform of x :

$$
\widehat{x}_{f}=\frac{1}{n} \sum_{j \in[n]} x_{j} \omega^{-f \cdot j},
$$

where $\omega=e^{2 \pi i / n}$ is the n-th root of unity.
Goal: find the top k coefficients of \widehat{x} approximately

In last lecture:

- 1-sparse noiseless case: two-point sampling

Given $x \in \mathbb{C}^{n}$, compute the Discrete Fourier Transform of x :

$$
\widehat{x}_{f}=\frac{1}{n} \sum_{j \in[n]} x_{j} \omega^{-f \cdot j},
$$

where $\omega=e^{2 \pi i / n}$ is the n-th root of unity.
Goal: find the top k coefficients of \widehat{x} approximately

In last lecture:

- 1-sparse noiseless case: two-point sampling
- 1-sparse noisy case: $O(\log n \log \log n)$ time and samples

Given $x \in \mathbb{C}^{n}$, compute the Discrete Fourier Transform of x :

$$
\widehat{x}_{f}=\frac{1}{n} \sum_{j \in[n]} x_{j} \omega^{-f \cdot j},
$$

where $\omega=e^{2 \pi i / n}$ is the n-th root of unity.
Goal: find the top k coefficients of \widehat{x} approximately

In last lecture:

- 1-sparse noiseless case: two-point sampling
- 1-sparse noisy case: $O(\log n \log \log n)$ time and samples
- reduction from k-sparse to 1 -sparse case, via filtering

Partition frequency domain into $B \approx k$ buckets

Partition frequency domain into $B \approx k$ buckets

Partition frequency domain into $B \approx k$ buckets

For each $j=0, \ldots, B-1$ let

$$
\widehat{u}_{f}^{j}=\left\{\begin{array}{cc}
\widehat{x}_{f}, & \text { if } f \in j \text {-th bucket } \\
0 & \text { o.w. }
\end{array}\right.
$$

Restricted to a bucket, signal is likely approximately 1 -sparse!

Partition frequency domain into $B \approx k$ buckets

For each $j=0, \ldots, B-1$ let

$$
\widehat{u}_{f}^{j}=\left\{\begin{array}{cc}
\widehat{x}_{f}, & \text { if } f \in j \text {-th bucket } \\
0 & \text { o.w. }
\end{array}\right.
$$

Restricted to a bucket, signal is likely approximately 1-sparse!

Partition frequency domain into $B \approx k$ buckets

For each $j=0, \ldots, B-1$ let

$$
\widehat{u}_{f}^{j}=\left\{\begin{array}{cc}
\widehat{x}_{f}, & \text { if } f \in j \text {-th bucket } \\
0 & \text { o.w. }
\end{array}\right.
$$

Restricted to a bucket, signal is likely approximately 1-sparse!

Partition frequency domain into $B \approx k$ buckets

For each $j=0, \ldots, B-1$ let

$$
\widehat{u}_{f}^{j}=\left\{\begin{array}{cc}
\widehat{x}_{f}, & \text { if } f \in j \text {-th bucket } \\
0 & \text { o.w. }
\end{array}\right.
$$

Restricted to a bucket, signal is likely approximately 1-sparse!

Partition frequency domain into $B \approx k$ buckets

For each $j=0, \ldots, B-1$ let

$$
\widehat{u}_{f}^{j}=\left\{\begin{array}{cc}
\widehat{x}_{f}, & \text { if } f \in j \text {-th bucket } \\
0 & \text { o.w. }
\end{array}\right.
$$

Restricted to a bucket, signal is likely approximately 1-sparse!

Partition frequency domain into $B \approx k$ buckets

For each $j=0, \ldots, B-1$ let

$$
\widehat{u}_{f}^{j}=\left\{\begin{array}{cc}
\widehat{x}_{f}, & \text { if } f \in j \text {-th bucket } \\
0 & \text { o.w. }
\end{array}\right.
$$

Restricted to a bucket, signal is likely approximately 1-sparse!

Partition frequency domain into $B \approx k$ buckets

For each $j=0, \ldots, B-1$ let

$$
\widehat{u}_{f}^{j}=\left\{\begin{array}{cc}
\widehat{x}_{f}, & \text { if } f \in j \text {-th bucket } \\
0 & \text { o.w. }
\end{array}\right.
$$

Restricted to a bucket, signal is likely approximately 1-sparse!

Partition frequency domain into $B \approx k$ buckets

For each $j=0, \ldots, B-1$ let

$$
\widehat{u}_{f}^{j}=\left\{\begin{array}{cc}
\widehat{x}_{f}, & \text { if } f \in j \text {-th bucket } \\
0 & \text { o.w. }
\end{array}\right.
$$

Restricted to a bucket, signal is likely approximately 1-sparse!

We want time domain access to u^{0} : for any $a=0, \ldots, n-1$, compute

$$
u_{a}^{0}=\sum_{-\frac{n}{2 B} \leq f \leq \frac{n}{2 B}} \widehat{x}_{f} \cdot \omega^{f \cdot a} .
$$

Let

$$
\widehat{G}_{f}=\left\{\begin{array}{cc}
1, & \text { if } f \in\left[-\frac{n}{2 B}: \frac{n}{2 B}\right] \\
0 & \text { o.w. }
\end{array}\right.
$$

Then

$$
u_{a}^{0}=(\widehat{x++a} * \widehat{G})(0)
$$

We want time domain access to u^{0} : for any $a=0, \ldots, n-1$, compute

$$
u_{a}^{0}=\sum_{-\frac{n}{2 B} \leq f \leq \frac{n}{2 B}} \widehat{x}_{f} \cdot \omega^{f \cdot a} .
$$

Let

$$
\widehat{G}_{f}=\left\{\begin{array}{cc}
1, & \text { if } f \in\left[-\frac{n}{2 B}: \frac{n}{2 B}\right] \\
0 & \text { o.w. }
\end{array}\right.
$$

Then

$$
u_{a}^{0}=(\widehat{x++a} * \widehat{G})(0)
$$

For any $j=0, \ldots, B-1$

$$
u_{a}^{j}=\left(\widehat{x_{++a}} * \widehat{G}\right)\left(j \cdot \frac{n}{B}\right)
$$

Reducing k-sparse recovery to 1 -sparse recovery

For any $j=0, \ldots, B-1$

$$
u_{a}^{j}=(\widehat{X++a} * \widehat{G})\left(j \cdot \frac{n}{B}\right)
$$

Reducing k-sparse recovery to 1 -sparse recovery

For any $j=0, \ldots, B-1$

$$
u_{a}^{j}=(\widehat{X++a} * \widehat{G})\left(j \cdot \frac{n}{B}\right)
$$

Reducing k-sparse recovery to 1 -sparse recovery

For any $j=0, \ldots, B-1$

$$
u_{a}^{j}=(\widehat{X++a} * \widehat{G})\left(j \cdot \frac{n}{B}\right)
$$

Need to evaluate

$$
\left(\widehat{x}_{+a} * \widehat{G}\right)\left(j \cdot \frac{n}{B}\right)
$$

for $j=0, \ldots, B-1$.

We have access to x, not $\widehat{x} . .$.

Need to evaluate

$$
\left(\widehat{x}_{+a} * \widehat{G}\right)\left(j \cdot \frac{n}{B}\right)
$$

for $j=0, \ldots, B-1$.

We have access to x, not \widehat{x}...

By the convolution identity

$$
\widehat{x}_{+a} * \widehat{G}=(\widehat{x+a \cdot G})
$$

Need to evaluate

$$
\left(\widehat{x}_{+a} * \widehat{G}\right)\left(j \cdot \frac{n}{B}\right)
$$

for $j=0, \ldots, B-1$.

We have access to x, not \widehat{x}...

By the convolution identity

$$
\widehat{x}_{+a} * \widehat{G}=\left(\widehat{x_{+2} \cdot G}\right)
$$

Suffices to compute

$$
{\widehat{X+a}+G_{j \cdot \frac{n}{B}}}, j=0, \ldots, B-1
$$

Suffices to compute

$$
\widehat{X+a}+G_{j \cdot \frac{n}{B}}, j=0, \ldots, B-1
$$

Suffices to compute

$$
\widehat{x \cdot G}_{j \cdot \frac{n}{B}}, j=0, \ldots, B-1
$$

Suffices to compute

$$
\widehat{x \cdot G}_{j \cdot \frac{n}{B}}, j=0, \ldots, B-1
$$

Sample complexity? Runtime?

Suffices to compute

$$
\widehat{x \cdot G}_{j \cdot \frac{n}{B}}, j=0, \ldots, B-1
$$

Sample complexity? Runtime?

To sample all signals $u^{j}, j=0, \ldots, B-1$ in time domain, it suffices to compute

$$
\widehat{x \cdot G}_{j \cdot \frac{n}{B}}, j=0, \ldots, B-1
$$

Computing $x \cdot G$ takes $\operatorname{supp}(G)$ samples.
Design G with $\operatorname{supp}(G) \approx k$ that approximates rectangular filter?

In this lecture:

- permuting frequencies
- filter construction

1. Pseudorandom spectrum permutations
2. Filter construction
3. Pseudorandom spectrum permutations
4. Filter construction

Pseudorandom spectrum permutations

Permutation in time domain plus phase shift \Longrightarrow permutation in frequency domain

Pseudorandom spectrum permutations

Permutation in time domain plus phase shift \Longrightarrow permutation in frequency domain

Claim
Let $\sigma, b \in[n]$, σ invertible modulo n. Let $y_{j}=x_{\sigma j} \omega^{-j b}$. Then

$$
\widehat{y}_{f}=\widehat{x}_{\sigma^{-1}(f+b)}
$$

(proof on next slide; a close relative of time shift theorem)

Pseudorandom spectrum permutations

Permutation in time domain plus phase shift \Longrightarrow permutation in frequency domain

Claim
Let $\sigma, b \in[n], \sigma$ invertible modulo n. Let $y_{j}=x_{\sigma j} \omega^{-j b}$. Then

$$
\widehat{y}_{f}=\widehat{x}_{\sigma^{-1}(f+b)}
$$

(proof on next slide; a close relative of time shift theorem)

Pseudorandom permutation:

- select b uniformly at random from [n]
- select σ uniformly at random from $\{1,3,5, \ldots, n-1\}$ (invertible numbers modulo n)

Pseudorandom spectrum permutations

Claim

Let $y_{j}=x_{\sigma j} \omega^{-j b}$. Then $\widehat{y}_{f}=\widehat{x}_{\sigma^{-1}}(f+b)$.
Proof.

$$
\begin{aligned}
\widehat{y}_{f} & =\frac{1}{n} \sum_{j \in[n]} y_{j} \omega^{-f \cdot j} \\
& =\frac{1}{n} \sum_{j \in[n]} x_{\sigma j} \omega^{-(f+b) \cdot j} \\
& \left.=\frac{1}{n} \sum_{i \in[n]} x_{i} \omega^{-(f+b) \cdot \sigma^{-1} i} \quad \text { (change of variables } i=\sigma j\right) \\
& =\frac{1}{n} \sum_{i \in[n]} x_{i} \omega^{-\sigma^{-1}(f+b) \cdot i} \\
& =\widehat{x}_{\sigma^{-1}(f+b)}
\end{aligned}
$$

Design G with $\operatorname{supp}(G) \approx k$ that approximates rectangular filter?
Our filter \widehat{G} will approximate the boxcar. Bound collision probability now.

Partition frequency domain into buckets, permute spectrum

Partition frequency domain into buckets, permute spectrum

Partition frequency domain into buckets, permute spectrum

Frequency i collides with frequency j only if $|\sigma i-\sigma j| \leq \frac{n}{B}$.

Partition frequency domain into buckets, permute spectrum

Frequency i collides with frequency j only if $|\sigma i-\sigma j| \leq \frac{n}{B}$.

Collision probability

Lemma
Let σ be a uniformly random odd number in $1,2, \ldots, n$. Then for any $i, j \in[n], i \neq j$ one has

$$
\operatorname{Pr}_{\sigma}\left[|\sigma \cdot i-\sigma j| \leq \frac{n}{B}\right]=O(1 / B)
$$

Collision probability

Lemma

Let σ be a uniformly random odd number in $1,2, \ldots, n$. Then for any $i, j \in[n], i \neq j$ one has

$$
\operatorname{Pr}_{\sigma}\left[|\sigma \cdot i-\sigma j| \leq \frac{n}{B}\right]=O(1 / B)
$$

Proof.
Let $\Delta:=i-j=d 2^{s}$ for some odd d.
The orbit of $\sigma \cdot \Delta$ is $2^{s} \cdot d^{\prime}$ for all odd d^{\prime}.

There are $O\left(\frac{n}{B 2^{s}}\right)$ values of d^{\prime} that make $\sigma \cdot \Delta$ fall into $\left[-\frac{n}{B}, \frac{n}{B}\right]$, out of $n / 2^{s+1}$.

Collision probability

Lemma

Let σ be a uniformly random odd number in $1,2, \ldots, n$. Then for any $i, j \in[n], i \neq j$ one has

$$
\operatorname{Pr}_{\sigma}\left[|\sigma \cdot i-\sigma j| \leq \frac{n}{B}\right]=O(1 / B)
$$

Proof.
Let $\Delta:=i-j=d 2^{s}$ for some odd d.
The orbit of $\sigma \cdot \Delta$ is $2^{s} \cdot d^{\prime}$ for all odd d^{\prime}.

There are $O\left(\frac{n}{B 2^{s}}\right)$ values of d^{\prime} that make $\sigma \cdot \Delta$ fall into $\left[-\frac{n}{B}, \frac{n}{B}\right]$, out of $n / 2^{s+1}$.

Collision probability

Lemma

Let σ be a uniformly random odd number in $1,2, \ldots, n$. Then for any $i, j \in[n], i \neq j$ one has

$$
\operatorname{Pr}_{\sigma}\left[|\sigma \cdot i-\sigma j| \leq \frac{n}{B}\right]=O(1 / B)
$$

Proof.
Let $\Delta:=i-j=d 2^{s}$ for some odd d.
The orbit of $\sigma \cdot \Delta$ is $2^{s} \cdot d^{\prime}$ for all odd d^{\prime}.

There are $O\left(\frac{n}{B 2^{s}}\right)$ values of $d^{\prime \prime}$ that make $\sigma \cdot \Delta$ fall into $\left[-\frac{n}{B}, \frac{n}{B}\right]$, out of $n / 2^{s+1}$.

Collision probability

Lemma

Let σ be a uniformly random odd number in $1,2, \ldots, n$. Then for any $i, j \in[n], i \neq j$ one has

$$
\operatorname{Pr}_{\sigma}\left[|\sigma \cdot i-\sigma j| \leq \frac{n}{B}\right]=O(1 / B)
$$

Proof.
Let $\Delta:=i-j=d 2^{s}$ for some odd d.
The orbit of $\sigma \cdot \Delta$ is $2^{s} \cdot d^{\prime}$ for all odd d^{\prime}.

There are $O\left(\frac{n}{B 2^{s}}\right)$ values of $d^{\prime \prime}$ that make $\sigma \cdot \Delta$ fall into $\left[-\frac{n}{B}, \frac{n}{B}\right]$, out of $n / 2^{s+1}$.

1. Pseudorandom spectrum permutations
2. Filter construction

Rectangular buckets \widehat{G} have full support in time domain...

Approximate rectangular filter with a filter G with small support?

Need $\operatorname{supp}(G) \approx k$, so perhaps turn the filter around?

Let

$$
G_{j}:=\left\{\begin{array}{cc}
1 /(B+1) & \text { if } j \in[-B / 2, B / 2] \\
0 & \text { o.w. }
\end{array}\right.
$$

Have $\operatorname{supp}(G)=B \approx k$, but buckets leak

In what follows: reduce leakage at the expense of increasing $\operatorname{supp}(G)$

Window functions

Definition

A symmetric filter G is a (B, δ)-standard window function if

1. $\widehat{G}_{0}=1$
2. $\widehat{G}_{f} \geq 0$
3. $\left|\widehat{G}_{f}\right| \leq \delta$ for $f \notin\left[-\frac{n}{2 B}, \frac{n}{2 B}\right]$

Window functions

Start with the sinc function:

$$
\widehat{G}_{f}:=\frac{\sin (\pi(B+1) f / n)}{(B+1) \cdot \pi f / n}
$$

Window functions

Start with the sinc function:

$$
\widehat{G}_{f}:=\frac{\sin (\pi(B+1) f / n)}{(B+1) \cdot \pi f / n}
$$

For all $|f|>\frac{n}{2 B}$ we have

$$
\left|\widehat{G}_{f}\right| \leq \frac{1}{(B+1) \pi f / n} \leq \frac{1}{\pi / 2} \leq 2 / \pi \leq 0.9
$$

Window functions

Consider powers of the sinc function:

$$
\widehat{G}_{f}^{r}:=\left(\frac{\sin (\pi(B+1) f / n)}{(B+1) \cdot \pi f / n}\right)^{r}
$$

For all $|f|>\frac{n}{2 B}$ we have

$$
\left|\widehat{G}_{f}\right|^{r} \leq(0.9)^{r}
$$

Window functions

Consider powers of the sinc function:

$$
\widehat{G}_{f}^{r}:=\left(\frac{\sin (\pi(B+1) f / n)}{(B+1) \cdot \pi f / n}\right)^{r}
$$

For all $|f|>\frac{n}{2 B}$ we have

$$
\left|\widehat{G}_{f}\right|^{r} \leq(0.9)^{r}
$$

Window functions

Consider powers of the sinc function: \widehat{G}_{f}^{r}
For all $|f|>\frac{n}{2 B}$ we have

$$
\left|\widehat{G}_{f}\right|^{r} \leq(0.9)^{r}
$$

Window functions

Consider powers of the sinc function: \widehat{G}_{f}^{r}
For all $|f|>\frac{n}{2 B}$ we have

$$
\left|\widehat{G}_{f}\right|^{r} \leq(0.9)^{r}
$$

So setting $r=O(\log (1 / \delta))$ is sufficient!

Window functions

Definition

A symmetric filter G is a (B, δ)-standard window function if

1. $\widehat{G}_{0}=1$
2. $\widehat{G}_{f} \geq 0$
3. $\left|\widehat{G}_{f}\right| \leq \delta$ for $f \notin\left[-\frac{n}{2 B}, \frac{n}{2 B}\right]$

Window functions

Definition
A symmetric filter G is a (B, δ)-standard window function if

1. $\widehat{G}_{0}=1$
2. $\widehat{G}_{f} \geq 0$
3. $\left|\widehat{G}_{f}\right| \leq \delta$ for $f \notin\left[-\frac{n}{2 B}, \frac{n}{2 B}\right]$

How large is $\operatorname{supp}(G) \subseteq[-T, T]$?

Let

$$
G_{j}:=\left\{\begin{array}{cc}
1 /(B+1) & \text { if } j \in[-B / 2, B / 2] \\
0 & \text { o.w. }
\end{array}\right.
$$

Let $\widehat{G}^{r}:=\left(\widehat{G}^{0}\right)^{r}$. How large is the support of G^{r} ?

Let

$$
G_{j}:=\left\{\begin{array}{cc}
1 /(B+1) & \text { if } j \in[-B / 2, B / 2] \\
0 & \text { o.w. }
\end{array}\right.
$$

Let $\widehat{G}^{r}:=\left(\widehat{G}^{0}\right)^{r}$. How large is the support of G^{r} ?
By the convolution identity $G^{r}=G^{0} * G^{0} * \ldots * G^{0}$

Let

$$
G_{j}:=\left\{\begin{array}{cc}
1 /(B+1) & \text { if } j \in[-B / 2, B / 2] \\
0 & \text { o.w. }
\end{array}\right.
$$

Let $\widehat{G}^{r}:=\left(\widehat{G}^{0}\right)^{r}$. How large is the support of G^{r} ?
By the convolution identity $G^{r}=G^{0} * G^{0} * \ldots * G^{0}$
Support of G^{0} is in $[-B / 2, B / 2]$, so

$$
\operatorname{supp}(G * \ldots * G) \subseteq[-r \cdot B / 2, r \cdot B / 2]
$$

Let

$$
G_{j}:=\left\{\begin{array}{cc}
1 /(B+1) & \text { if } j \in[-B / 2, B / 2] \\
0 & \text { o.w. }
\end{array}\right.
$$

Let $\widehat{G}^{r}:=\left(\widehat{G}^{0}\right)^{r}$. How large is the support of G^{r} ?
By the convolution identity $G^{r}=G^{0} * G^{0} * \ldots * G^{0}$
Support of G^{0} is in $[-B / 2, B / 2]$, so

$$
\operatorname{supp}(G * \ldots * G) \subseteq[-r \cdot B / 2, r \cdot B / 2]
$$

Let

$$
G_{j}:=\left\{\begin{array}{cc}
1 /(B+1) & \text { if } j \in[-B / 2, B / 2] \\
0 & \text { o.w. }
\end{array}\right.
$$

Let $\widehat{G}^{r}:=\left(\widehat{G}^{0}\right)^{r}$. How large is the support of G^{r} ?
By the convolution identity $G^{r}=G^{0} * G^{0} * \ldots * G^{0}$
Support of G^{0} is in $[-B / 2, B / 2]$, so

$$
\operatorname{supp}(G * \ldots * G) \subseteq[-r \cdot B / 2, r \cdot B / 2]
$$

Let

$$
G_{j}:=\left\{\begin{array}{cc}
1 /(B+1) & \text { if } j \in[-B / 2, B / 2] \\
0 & \text { o.w. }
\end{array}\right.
$$

Let $\widehat{G}^{r}:=\left(\widehat{G}^{0}\right)^{r}$. How large is the support of G^{r} ?
By the convolution identity $G^{r}=G^{0} * G^{0} * \ldots * G^{0}$
Support of G^{0} is in $[-B / 2, B / 2]$, so

$$
\operatorname{supp}(G * \ldots * G) \subseteq[-r \cdot B / 2, r \cdot B / 2]
$$

Let

$$
G_{j}:=\left\{\begin{array}{cc}
1 /(B+1) & \text { if } j \in[-B / 2, B / 2] \\
0 & \text { o.w. }
\end{array}\right.
$$

Let $\widehat{G}^{r}:=\left(\widehat{G}^{0}\right)^{r}$. How large is the support of G^{r} ?
By the convolution identity $G^{r}=G^{0} * G^{0} * \ldots * G^{0}$
Support of G^{0} is in $[-B / 2, B / 2]$, so

$$
\operatorname{supp}(G * \ldots * G) \subseteq[-r \cdot B / 2, r \cdot B / 2]
$$

Let

$$
G_{j}:=\left\{\begin{array}{cc}
1 /(B+1) & \text { if } j \in[-B / 2, B / 2] \\
0 & \text { o.w. }
\end{array}\right.
$$

Let $\widehat{G}^{r}:=\left(\widehat{G}^{0}\right)^{r}$. How large is the support of G^{r} ?
By the convolution identity $G^{r}=G^{0} * G^{0} * \ldots * G^{0}$
Support of G^{0} is in $[-B / 2, B / 2]$, so

$$
\operatorname{supp}(G * \ldots * G) \subseteq[-r \cdot B / 2, r \cdot B / 2]
$$

Let

$$
G_{j}:=\left\{\begin{array}{cc}
1 /(B+1) & \text { if } j \in[-B / 2, B / 2] \\
0 & \text { o.w. }
\end{array}\right.
$$

Let $\widehat{G}^{r}:=\left(\widehat{G}^{0}\right)^{r}$. How large is the support of G^{r} ?
By the convolution identity $G^{r}=G^{0} * G^{0} * \ldots * G^{0}$
Support of G^{0} is in $[-B / 2, B / 2]$, so

$$
\operatorname{supp}(G * \ldots * G) \subseteq[-r \cdot B / 2, r \cdot B / 2]
$$

Flat window function

Definition

A symmetric filter G is a (B, δ, γ)-flat window function if

1. $\widehat{G}_{j} \geq 1-\delta$ for all $j \in\left[-(1-\gamma) \frac{n}{2 B},(1-\gamma) \frac{n}{2 B}\right]$
2. $\widehat{G}_{j} \in[0,1]$ for all j
3. $\left|\widehat{G}_{f}\right| \leq \delta$ for $f \notin\left[-\frac{n}{2 B}, \frac{n}{2 B}\right]$

Flat window function

Definition

A symmetric filter G is a (B, δ, γ)-flat window function if

1. $\widehat{G}_{j} \geq 1-\delta$ for all $j \in\left[-(1-\gamma) \frac{n}{2 B},(1-\gamma) \frac{n}{2 B}\right]$
2. $\widehat{G}_{j} \in[0,1]$ for all j
3. $\left|\widehat{G}_{f}\right| \leq \delta$ for $f \notin\left[-\frac{n}{2 B}, \frac{n}{2 B}\right]$

Flat window function

Definition

A symmetric filter G is a (B, δ, γ)-flat window function if

1. $\widehat{G}_{j} \geq 1-\delta$ for all $j \in\left[-(1-\gamma) \frac{n}{2 B},(1-\gamma) \frac{n}{2 B}\right]$
2. $\widehat{G}_{j} \in[0,1]$ for all j
3. $\left|\widehat{G}_{f}\right| \leq \delta$ for $f \notin\left[-\frac{n}{2 B}, \frac{n}{2 B}\right]$
0.99 fraction of bucket

Flat window function - construction

Let H be a $(2 B / \gamma, \delta / n)$-standard window function. Note that

$$
\left|\widehat{H}_{f}\right| \leq \delta / n
$$

for all f outside of

$$
\left[-\gamma \frac{n}{4 B}, \gamma \frac{n}{4 B}\right]
$$

Flat window function - construction

Let H be a $(2 B / \gamma, \delta / n)$-standard window function. Note that

$$
\left|\widehat{H}_{f}\right| \leq \delta / n
$$

for all f outside of

$$
\left[-\gamma \frac{n}{4 B}, \gamma \frac{n}{4 B}\right]
$$

Flat window function - construction

Let H be a $(2 B / \gamma, \delta / n)$-standard window function. Note that

$$
\left|\widehat{H}_{f}\right| \leq \delta / n
$$

for all f outside of

$$
\left[-\gamma \frac{n}{4 B}, \gamma \frac{n}{4 B}\right]
$$

Flat window function - construction

Let H be a $(2 B / \gamma, \delta / n)$-standard window function. Note that

$$
\left|\widehat{H}_{f}\right| \leq \delta / n
$$

for all f outside of

$$
\left[-\gamma \frac{n}{4 B}, \gamma \frac{n}{4 B}\right]
$$

Flat window function - construction

To construct \widehat{G} :

1. sum up shifts $\hat{H}_{.-\Delta}$ over all $\Delta \in[-U, U]$, where

$$
U=(1-\gamma / 2) \frac{n}{2 B}
$$

2. normalize so that $\widehat{G}_{0}=1 \pm \delta$

Flat window function - construction

To construct \widehat{G} :

1. sum up shifts $\hat{H}_{.-\Delta}$ over all $\Delta \in[-U, U]$, where

$$
U=(1-\gamma / 2) \frac{n}{2 B}
$$

2. normalize so that $\widehat{G}_{0}=1 \pm \delta$

Flat window function - construction

To construct \widehat{G} :

1. sum up shifts $\hat{H}_{.-\Delta}$ over all $\Delta \in[-U, U]$, where

$$
U=(1-\gamma / 2) \frac{n}{2 B}
$$

2. normalize so that $\widehat{G}_{0}=1 \pm \delta$

Flat window function - construction

To construct \widehat{G} :

1. sum up shifts $\widehat{H}_{.-\Delta}$ over all $\Delta \in[-U, U]$, where

$$
U=(1-\gamma / 2) \frac{n}{2 B}
$$

2. normalize so that $\widehat{G}_{0}=1 \pm \delta$

Flat window function - construction

To construct \widehat{G} :

1. sum up shifts $\widehat{H}_{.-\Delta}$ over all $\Delta \in[-U, U]$, where

$$
U=(1-\gamma / 2) \frac{n}{2 B}
$$

2. normalize so that $\widehat{G}_{0}=1 \pm \delta$

Flat window function - construction

To construct \widehat{G} :

1. sum up shifts $\hat{H}_{.-\Delta}$ over all $\Delta \in[-U, U]$, where

$$
U=(1-\gamma / 2) \frac{n}{2 B}
$$

2. normalize so that $\widehat{G}_{0}=1 \pm \delta$

Flat window function - construction

To construct \widehat{G} :

1. sum up shifts $\hat{H}_{.-\Delta}$ over all $\Delta \in[-U, U]$, where

$$
U=(1-\gamma / 2) \frac{n}{2 B}
$$

2. normalize so that $\widehat{G}_{0}=1 \pm \delta$

Flat window function - construction

To construct \widehat{G} :

1. sum up shifts $\hat{H}_{.-\Delta}$ over all $\Delta \in[-U, U]$, where

$$
U=(1-\gamma / 2) \frac{n}{2 B}
$$

2. normalize so that $\widehat{G}_{0}=1 \pm \delta$

Flat window function - construction

To construct \widehat{G} :

1. sum up shifts $\hat{H}_{.-\Delta}$ over all $\Delta \in[-U, U]$, where

$$
U=(1-\gamma / 2) \frac{n}{2 B}
$$

2. normalize so that $\widehat{G}_{0}=1 \pm \delta$

Flat window function - construction

To construct \widehat{G} :

1. sum up shifts $\hat{H}_{.-\Delta}$ over all $\Delta \in[-U, U]$, where

$$
U=(1-\gamma / 2) \frac{n}{2 B}
$$

2. normalize so that $\widehat{G}_{0}=1 \pm \delta$

Flat window function - construction

To construct \widehat{G} :

1. sum up shifts $\hat{H}_{.-\Delta}$ over all $\Delta \in[-U, U]$, where

$$
U=(1-\gamma / 2) \frac{n}{2 B}
$$

2. normalize so that $\widehat{G}_{0}=1 \pm \delta$

Flat window function - construction

To construct \widehat{G} :

1. sum up shifts $\hat{H}_{.-\Delta}$ over all $\Delta \in[-U, U]$, where

$$
U=(1-\gamma / 2) \frac{n}{2 B}
$$

2. normalize so that $\widehat{G}_{0}=1 \pm \delta$

Flat window function - construction

To construct \widehat{G} :

1. sum up shifts $\hat{H}_{.-\Delta}$ over all $\Delta \in[-U, U]$, where

$$
U=(1-\gamma / 2) \frac{n}{2 B}
$$

2. normalize so that $\widehat{G}_{0}=1 \pm \delta$

Flat window function - construction

To construct \widehat{G} :

1. sum up shifts $\hat{H}_{.-\Delta}$ over all $\Delta \in[-U, U]$, where

$$
U=(1-\gamma / 2) \frac{n}{2 B}
$$

2. normalize so that $\widehat{G}_{0}=1 \pm \delta$

Flat window function - construction

To construct \widehat{G} :

1. sum up shifts $\hat{H}_{.-\Delta}$ over all $\Delta \in[-U, U]$, where

$$
U=(1-\gamma / 2) \frac{n}{2 B}
$$

2. normalize so that $\widehat{G}_{0}=1 \pm \delta$

To construct \widehat{G} :

1. sum up shifts $\widehat{H}_{--\Delta}$ over all $\Delta \in[-U, U]$, where

$$
U=(1-\gamma / 2) \frac{n}{2 B}
$$

2. normalize so that $\widehat{G}_{0}=1 \pm \delta$

To construct \widehat{G} :

1. sum up shifts $\widehat{H}_{.-\Delta}$ over all $\Delta \in[-U, U]$, where

$$
U=(1-\gamma / 2) \frac{n}{2 B}
$$

2. normalize so that $\widehat{G}_{0}=1 \pm \delta$

Formally:

$$
\widehat{G}_{f}:=\frac{1}{Z}\left(\widehat{H}_{f-U}+\widehat{H}_{f+1-U}+\ldots+\widehat{H}_{f+U}\right)
$$

where Z is a normalization factor.

To construct \widehat{G} :

1. sum up shifts $\widehat{H}_{.-\Delta}$ over all $\Delta \in[-U, U]$, where

$$
U=(1-\gamma / 2) \frac{n}{2 B}
$$

2. normalize so that $\widehat{G}_{0}=1 \pm \delta$

Formally:

$$
\widehat{G}_{f}:=\frac{1}{Z}\left(\widehat{H}_{f-U}+\widehat{H}_{f+1-U}+\ldots+\widehat{H}_{f+U}\right)
$$

where Z is a normalization factor.
Upon inspection, $Z=\sum_{f \in[n]} \widehat{H}_{f}$ works.

Formally:

$$
\widehat{G}_{f}:=\frac{1}{Z}\left(\widehat{H}_{f-U}+\widehat{H}_{f+1-U}+\ldots+\widehat{H}_{f+U}\right)
$$

where Z is a normalization factor.
Upon inspection, $Z=\sum_{f \in[n]} \widehat{H}_{f}$ works.
(Flat region) For any $f \in\left[-(1-\gamma) \frac{n}{2 B},(1-\gamma) \frac{n}{2 B}\right]$ (flat region) one has

$$
\begin{aligned}
\widehat{H}_{f-U}+\widehat{H}_{f+1-U}+\ldots+\widehat{H}_{f+U} & \geq \sum_{f \in\left[-\gamma \frac{n}{4 B}, \gamma \frac{n}{4 B}\right]} \widehat{H}_{f} \\
& \geq Z-\text { tail of } \widehat{H} \\
& \geq Z-(\delta / n) n \geq Z-\delta
\end{aligned}
$$

Formally:

$$
\widehat{G}_{f}:=\frac{1}{Z}\left(\widehat{H}_{f-U}+\widehat{H}_{f+1-U}+\ldots+\widehat{H}_{f+U}\right)
$$

where Z is a normalization factor.
Upon inspection, $Z=\sum_{f \in[n]} \widehat{H}_{f}$ works.
Indeed, for any $f \notin\left[-\frac{n}{2 B}, \frac{n}{2 B}\right]$ (zero region) one has

$$
\begin{aligned}
\widehat{H}_{f-U}+\widehat{H}_{f+1-U}+\ldots+\widehat{H}_{f+U} & \leq \sum_{f>r \frac{n}{4 B}} \widehat{H}_{f} \\
& \leq \text { tail of } \widehat{H} \leq(\delta / n) n \leq \delta
\end{aligned}
$$

Flat window function

How large is support of $\widehat{G}:=\frac{1}{Z}\left(\widehat{H}_{.-} U+\ldots+\widehat{H}_{\cdot+U}\right)$?

Flat window function

How large is support of $\widehat{G}:=\frac{1}{2}\left(\widehat{H}_{.}-U+\ldots+\hat{H}_{.}+U\right)$?
By time shift theorem for every $q \in[n]$

$$
G_{q}:=H_{q} \cdot \frac{1}{Z} \sum_{j=-U}^{U} \omega^{q j}
$$

Flat window function

How large is support of $\widehat{G}:=\frac{1}{2}\left(\widehat{H}_{.}-U+\ldots+\hat{H}_{.}+U\right)$?
By time shift theorem for every $q \in[n]$

$$
G_{q}:=H_{q} \cdot \frac{1}{Z} \sum_{j=-U}^{U} \omega^{q j}
$$

Support of G a subset of support of H !

Flat window functions - construction

frequency

frequency

