Sparse Fourier Transform (lecture 3)

Michael Kapralov ${ }^{1}$

${ }^{1}$ IBM Watson \rightarrow EPFL

St. Petersburg CS Club November 2015

Given $x \in \mathbb{C}^{n}$, compute the Discrete Fourier Transform of x :

$$
\widehat{x}_{f}=\frac{1}{n} \sum_{j \in[n]} x_{j} \omega^{-f \cdot j},
$$

where $\omega=e^{2 \pi i / n}$ is the n-th root of unity.

Given $x \in \mathbb{C}^{n}$, compute the Discrete Fourier Transform of x :

$$
\widehat{x}_{f}=\frac{1}{n} \sum_{j \in[n]} x_{j} \omega^{-f \cdot j},
$$

where $\omega=e^{2 \pi i / n}$ is the n-th root of unity.
Goal: find the top k coefficients of \widehat{x} approximately

In last lecture:

- 1-sparse noiseless case: two-point sampling

Given $x \in \mathbb{C}^{n}$, compute the Discrete Fourier Transform of x :

$$
\widehat{x}_{f}=\frac{1}{n} \sum_{j \in[n]} x_{j} \omega^{-f \cdot j},
$$

where $\omega=e^{2 \pi i / n}$ is the n-th root of unity.
Goal: find the top k coefficients of \widehat{x} approximately

In last lecture:

- 1-sparse noiseless case: two-point sampling
- 1-sparse noisy case: $O(\log n \log \log n)$ time and samples

Given $x \in \mathbb{C}^{n}$, compute the Discrete Fourier Transform of x :

$$
\widehat{x}_{f}=\frac{1}{n} \sum_{j \in[n]} x_{j} \omega^{-f \cdot j},
$$

where $\omega=e^{2 \pi i / n}$ is the n-th root of unity.
Goal: find the top k coefficients of \widehat{x} approximately

In last lecture:

- 1-sparse noiseless case: two-point sampling
- 1-sparse noisy case: $O(\log n \log \log n)$ time and samples
- reduction from k-sparse to 1 -sparse case, via filtering

Partition frequency domain into $B \approx k$ buckets

Partition frequency domain into $B \approx k$ buckets

Partition frequency domain into $B \approx k$ buckets

For each $j=0, \ldots, B-1$ let

$$
\widehat{u}_{f}^{j}=\left\{\begin{array}{cc}
\widehat{x}_{f}, & \text { if } f \in j \text {-th bucket } \\
0 & \text { o.w. }
\end{array}\right.
$$

Restricted to a bucket, signal is likely approximately 1 -sparse!

Partition frequency domain into $B \approx k$ buckets

For each $j=0, \ldots, B-1$ let

$$
\widehat{u}_{f}^{j}=\left\{\begin{array}{cc}
\widehat{x}_{f}, & \text { if } f \in j \text {-th bucket } \\
0 & \text { o.w. }
\end{array}\right.
$$

Restricted to a bucket, signal is likely approximately 1-sparse!

Partition frequency domain into $B \approx k$ buckets

For each $j=0, \ldots, B-1$ let

$$
\widehat{u}_{f}^{j}=\left\{\begin{array}{cc}
\widehat{x}_{f}, & \text { if } f \in j \text {-th bucket } \\
0 & \text { o.w. }
\end{array}\right.
$$

Restricted to a bucket, signal is likely approximately 1-sparse!

Partition frequency domain into $B \approx k$ buckets

For each $j=0, \ldots, B-1$ let

$$
\widehat{u}_{f}^{j}=\left\{\begin{array}{cc}
\widehat{x}_{f}, & \text { if } f \in j \text {-th bucket } \\
0 & \text { o.w. }
\end{array}\right.
$$

Restricted to a bucket, signal is likely approximately 1-sparse!

Partition frequency domain into $B \approx k$ buckets

For each $j=0, \ldots, B-1$ let

$$
\widehat{u}_{f}^{j}=\left\{\begin{array}{cc}
\widehat{x}_{f}, & \text { if } f \in j \text {-th bucket } \\
0 & \text { o.w. }
\end{array}\right.
$$

Restricted to a bucket, signal is likely approximately 1-sparse!

Partition frequency domain into $B \approx k$ buckets

For each $j=0, \ldots, B-1$ let

$$
\widehat{u}_{f}^{j}=\left\{\begin{array}{cc}
\widehat{x}_{f}, & \text { if } f \in j \text {-th bucket } \\
0 & \text { o.w. }
\end{array}\right.
$$

Restricted to a bucket, signal is likely approximately 1-sparse!

Partition frequency domain into $B \approx k$ buckets

For each $j=0, \ldots, B-1$ let

$$
\widehat{u}_{f}^{j}=\left\{\begin{array}{cc}
\widehat{x}_{f}, & \text { if } f \in j \text {-th bucket } \\
0 & \text { o.w. }
\end{array}\right.
$$

Restricted to a bucket, signal is likely approximately 1-sparse!

Partition frequency domain into $B \approx k$ buckets

For each $j=0, \ldots, B-1$ let

$$
\widehat{u}_{f}^{j}=\left\{\begin{array}{cc}
\widehat{x}_{f}, & \text { if } f \in j \text {-th bucket } \\
0 & \text { o.w. }
\end{array}\right.
$$

Restricted to a bucket, signal is likely approximately 1-sparse!

We want time domain access to u^{0} : for any $a=0, \ldots, n-1$, compute

$$
u_{a}^{0}=\sum_{-\frac{n}{2 B} \leq f \leq \frac{n}{2 B}} \widehat{x}_{f} \cdot \omega^{f \cdot a} .
$$

Let

$$
\widehat{G}_{f}=\left\{\begin{array}{cc}
1, & \text { if } f \in\left[-\frac{n}{2 B}: \frac{n}{2 B}\right] \\
0 & \text { o.w. }
\end{array}\right.
$$

Then

$$
u_{a}^{0}=(\widehat{x++a} * \widehat{G})(0)
$$

We want time domain access to u^{0} : for any $a=0, \ldots, n-1$, compute

$$
u_{a}^{0}=\sum_{-\frac{n}{2 B} \leq f \leq \frac{n}{2 B}} \widehat{x}_{f} \cdot \omega^{f \cdot a} .
$$

Let

$$
\widehat{G}_{f}=\left\{\begin{array}{cc}
1, & \text { if } f \in\left[-\frac{n}{2 B}: \frac{n}{2 B}\right] \\
0 & \text { o.w. }
\end{array}\right.
$$

Then

$$
u_{a}^{0}=(\widehat{x++a} * \widehat{G})(0)
$$

For any $j=0, \ldots, B-1$

$$
u_{a}^{j}=\left(\widehat{x_{++a}} * \widehat{G}\right)\left(j \cdot \frac{n}{B}\right)
$$

Reducing k-sparse recovery to 1 -sparse recovery

For any $j=0, \ldots, B-1$

$$
u_{a}^{j}=(\widehat{X++a} * \widehat{G})\left(j \cdot \frac{n}{B}\right)
$$

Reducing k-sparse recovery to 1 -sparse recovery

For any $j=0, \ldots, B-1$

$$
u_{a}^{j}=(\widehat{X++a} * \widehat{G})\left(j \cdot \frac{n}{B}\right)
$$

Reducing k-sparse recovery to 1 -sparse recovery

For any $j=0, \ldots, B-1$

$$
u_{a}^{j}=(\widehat{X++a} * \widehat{G})\left(j \cdot \frac{n}{B}\right)
$$

Need to evaluate

$$
\left(\widehat{x}_{+a} * \widehat{G}\right)\left(j \cdot \frac{n}{B}\right)
$$

for $j=0, \ldots, B-1$.

We have access to x, not $\widehat{x} . .$.

Need to evaluate

$$
\left(\widehat{x}_{+a} * \widehat{G}\right)\left(j \cdot \frac{n}{B}\right)
$$

for $j=0, \ldots, B-1$.

We have access to x, not \widehat{x}...

By the convolution identity

$$
\widehat{x}_{+a} * \widehat{G}=(\widehat{x+a \cdot G})
$$

Need to evaluate

$$
\left(\widehat{x}_{+a} * \widehat{G}\right)\left(j \cdot \frac{n}{B}\right)
$$

for $j=0, \ldots, B-1$.

We have access to x, not \widehat{x}...

By the convolution identity

$$
\widehat{x}_{+a} * \widehat{G}=\left(\widehat{x_{+2} \cdot G}\right)
$$

Suffices to compute

$$
{\widehat{X+a}+G_{j \cdot \frac{n}{B}}}, j=0, \ldots, B-1
$$

Suffices to compute

$$
\widehat{X+a}+G_{j \cdot \frac{n}{B}}, j=0, \ldots, B-1
$$

Suffices to compute

$$
\widehat{x \cdot G}_{j \cdot \frac{n}{B}}, j=0, \ldots, B-1
$$

Suffices to compute

$$
\widehat{x \cdot G}_{j \cdot \frac{n}{B}}, j=0, \ldots, B-1
$$

Sample complexity? Runtime?

Suffices to compute

$$
\widehat{x \cdot G}_{j \cdot \frac{n}{B}}, j=0, \ldots, B-1
$$

Sample complexity? Runtime?

To sample all signals $u^{j}, j=0, \ldots, B-1$ in time domain, it suffices to compute

$$
\widehat{x \cdot G}_{j \cdot \frac{n}{B}}, j=0, \ldots, B-1
$$

Computing $x \cdot G$ takes supp (G) samples.
Design G with $\operatorname{supp}(G) \approx k$ that approximates rectangular filter?
Last lecture: designed G with $\operatorname{supp}(G)=O(k \log N)$ that approximates rectangular filter

In this lecture:

- recovery algorithm (k-sparse noiseless case)
- recovery algorithm (k-sparse noisy case)

Hassanieh-Indyk-Katabi-Price'STOC12

1. Basic block: partial recovery
2. Full algorithm

Basic block

Assume

- n is a power of 2
- \widehat{x} contains at most k coefficients with polynomial precision (e.g. \widehat{x}_{f} in $\left\{-n^{O(1)}, \ldots, n^{O(1)}\right\}$)

Then there exists an $O(k \log n)$ time algorithm that

- outputs at most k potential coefficients
- outputs each nonzero \widehat{x}_{f} correctly with probability at least $1-\beta$ for a constant $\beta>0$

Let G be a $(B, \delta / n, \gamma)$-flat window function:

- B buckets
- flat region of width $1-\gamma$
- leakage $\leq \delta / n=1 / n^{O(1)}$

Such G can be constructed with

$$
\operatorname{supp}(G)=O((k / \gamma) \log n)
$$

PartialRecovery - algorithm

Main idea: filter, then run 1-sparse algorithm on each subproblem
$\operatorname{PartialRecovery}(x, B, \gamma, \delta)$
Choose random $b \in[n]$ and odd $\sigma \in\{1,2, \ldots, n\}$
Define $x_{j}^{\prime} \leftarrow x_{\sigma j} \omega^{j b}$

$$
x_{j}^{\prime \prime} \leftarrow x_{j+1}^{\prime}
$$

Compute $\hat{c}_{j \cdot \frac{n}{B}}^{\prime}, j \in[B]$, where $c^{\prime}=x^{\prime} \cdot G$

$$
\widehat{c}_{j \cdot \frac{n}{B}}^{\prime \prime}, j \in[B], \text { where } c^{\prime \prime}=x^{\prime \prime} \cdot G
$$

Run 1 -sparse decoding one $\widehat{c}^{\prime}, \widehat{c}^{\prime \prime}$

PartialRecovery - algorithm

Recovering 5 -sparse signal \widehat{x} from measurements of x

Isolated frequencies are decoded successfully

PartialRecovery - algorithm

Recovering 5-sparse signal \hat{x} from measurements of x

Isolated frequencies are decoded successfully

PartialRecovery - algorithm

Recovering 5-sparse signal \hat{x} from measurements of x

Permute spectrum
Filter signal
1 -sparse decoding

Isolated frequencies are decoded successfully

PartialRecovery - algorithm

Recovering 5-sparse signal \widehat{x} from measurements of x

Permute spectrum
Filter signal
1 -sparse decoding

Isolated frequencies are decoded successfully

PartialRecovery - algorithm

Choose random $b \in[n]$ and odd
$\sigma \in\{1,2, \ldots, n\}$
Define $x_{j}^{\prime} \leftarrow x_{\sigma j} \omega^{j b}$

$$
x_{j}^{\prime \prime} \leftarrow x_{j+1}^{\prime}
$$

Compute $\widehat{c}_{j \cdot \frac{n}{B}}^{\prime}, j \in[B]$, where $c^{\prime}=x^{\prime} \cdot G$

$$
\widehat{c}_{j \cdot \frac{n}{B}}^{\prime \prime}, j \in[B], \text { where } c^{\prime \prime}=x^{\prime \prime} \cdot G
$$

For $j \in[B]$
If $\left|\hat{c}_{j \cdot n / B}^{\prime}\right|>1 / 2$
Decode from $\widehat{c}_{j \cdot n / B}^{\prime}, \widehat{c}_{j \cdot n / B}^{\prime \prime}$
(Two-point sampling)

End

End

Basic block - analysis

Claim
For each $u \in \operatorname{supp}(\hat{x})$ the probability that u is not reported is bounded by $O(k / B+\gamma)$.

Basic block - analysis

Claim
For each $u \in \operatorname{supp}(\hat{x})$ the probability that u is not reported is bounded by $O(k / B+\gamma)$.

Proof.

Probability of being mapped

- within n / B of another frequency is $O(k / B)$
- close to boundary of the bucket is $O(\gamma)$

Basic block - analysis

Claim
For each $u \in \operatorname{supp}(\hat{x})$ the probability that u is not reported is bounded by $O(k / B+\gamma)$.

Proof.

Probability of being mapped

- within n / B of another frequency is $O(k / B)$
- close to boundary of the bucket is $O(\gamma)$

Basic block - analysis

Claim
For each $u \in \operatorname{supp}(\hat{x})$ the probability that u is not reported is bounded by $O(k / B+\gamma)$.

Proof.

Probability of being mapped

- within n / B of another frequency is $O(k / B)$
- close to boundary of the bucket is $O(\gamma)$

Basic block - analysis

Claim
For each $u \in \operatorname{supp}(\hat{x})$ the probability that u is not reported is bounded by $O(k / B+\gamma)$.

Proof.

Probability of being mapped

- within n / B of another frequency is $O(k / B)$
- close to boundary of the bucket is $O(\gamma)$

Basic block - analysis

Claim
For each $u \in \operatorname{supp}(\hat{x})$ the probability that u is not reported is bounded by $O(k / B+\gamma)$.

Proof.

Probability of being mapped

- within n / B of another frequency is $O(k / B)$
- close to boundary of the bucket is $O(\gamma)$

Basic block - analysis

Claim
For each $u \in \operatorname{supp}(\hat{x})$ the probability that u is not reported is bounded by $O(k / B+\gamma)$.

Proof.

Probability of being mapped

- within n / B of another frequency is $O(k / B)$
- close to boundary of the bucket is $O(\gamma)$

Basic block - analysis

Claim
For each $u \in \operatorname{supp}(\hat{x})$ the probability that u is not reported is bounded by $O(k / B+\gamma)$.

Proof.

Probability of being mapped

- within n / B of another frequency is $O(k / B)$
- close to boundary of the bucket is $O(\gamma)$

Basic block - analysis

Claim
For each $u \in \operatorname{supp}(\hat{x})$ the probability that u is not reported is bounded by $O(k / B+\gamma)$.

Proof.

Probability of being mapped

- within n / B of another frequency is $O(k / B)$
- close to boundary of the bucket is $O(\gamma)$

Basic block - analysis

Claim
For each $u \in \operatorname{supp}(\hat{x})$ the probability that u is not reported is bounded by $O(k / B+\gamma)$.

Proof.

Probability of being mapped

- within n / B of another frequency is $O(k / B)$
- close to boundary of the bucket is $O(\gamma)$

Basic block - analysis

Claim
For each $u \in \operatorname{supp}(\hat{x})$ the probability that u is not reported is bounded by $O(k / B+\gamma)$.

Proof.

Probability of being mapped

- within n / B of another frequency is $O(k / B)$
- close to boundary of the bucket is $O(\gamma)$

Computing $\widehat{c}_{j \cdot n / B}$

Option 1 - directly compute FFT of $(x \cdot G)_{-T}, \ldots,(x \cdot G)_{T}$, $T=O((k / \gamma) \log n)$

- Can be done in time $O\left((k / \gamma) \log ^{2} n\right)$
- Computes too many samples of $\widehat{x} * \widehat{G}$

Computing $\widehat{c}_{j \cdot n / B}$

Option 1 - directly compute FFT of $(x \cdot G)_{-T}, \ldots,(x \cdot G)_{T}$, $T=O((k / \gamma) \log n)$

- Can be done in time $O\left((k / \gamma) \log ^{2} n\right)$
- Computes too many samples of $\widehat{x} * \widehat{G}$

Option 2 - alias $x \cdot G$ to B bins first

- Compute

$$
b_{i}=\sum_{j \in[n / B]} x_{i+j \cdot B} G_{i+j \cdot B}
$$

- Compute FFT of b in time

$$
O(B \log B)=O((k / \gamma) \log n)
$$

1. Basic block: partial recovery
2. Full algorithm

Full algorithm

Let $C>0$ be a sufficiently large constant.
$\operatorname{PaRtiALRecovery}\left(x, C \cdot k \quad, \frac{1}{16} \quad, 1 / \operatorname{poly}(n)\right)$

Full algorithm

Let $C>0$ be a sufficiently large constant.
$\operatorname{PaRtiALRecovery}\left(x, C \cdot k \quad, \frac{1}{16} \quad, 1 / \operatorname{poly}(n)\right)$
$\operatorname{PaRtiALRecovery}\left(x, C \cdot k / 2, \frac{1}{16} \cdot 2^{-1}, 1 / \operatorname{poly}(n)\right)$

Full algorithm

Let $C>0$ be a sufficiently large constant.
$\operatorname{PaRtialRecovery}\left(x, C \cdot k \quad, \frac{1}{16} \quad, 1 / \operatorname{poly}(n)\right)$
$\operatorname{PaRtiALRecovery}\left(x, C \cdot k / 2, \frac{1}{16} \cdot 2^{-1}, 1 / \operatorname{poly}(n)\right)$
$\operatorname{PartialRecovery}\left(x, C \cdot k / 4, \frac{1}{16} \cdot 4^{-1}, 1 / \operatorname{poly}(n)\right)$

Full algorithm

Let $C>0$ be a sufficiently large constant.
$\operatorname{PaRtialRecovery}\left(x, C \cdot k \quad, \frac{1}{16} \quad, 1 / \operatorname{poly}(n)\right)$
$\operatorname{PaRtiALRecovery}\left(x, C \cdot k / 2, \frac{1}{16} \cdot 2^{-1}, 1 / \operatorname{poly}(n)\right)$
$\operatorname{PaRtialRecovery}\left(x, C \cdot k / 4, \frac{1}{16} \cdot 4^{-1}, 1 / \operatorname{poly}(n)\right)$
$\operatorname{PaRtiALRecovery}\left(x, C \cdot k / 8, \frac{1}{16} \cdot 8^{-1}, 1 / \operatorname{poly}(n)\right)$

Full algorithm

Let $C>0$ be a sufficiently large constant.
$\operatorname{PaRtialRecovery}\left(x, C \cdot k \quad, \frac{1}{16} \quad, 1 / \operatorname{poly}(n)\right)$
$\operatorname{PaRtiALRecovery}\left(x, C \cdot k / 2, \frac{1}{16} \cdot 2^{-1}, 1 / \operatorname{poly}(n)\right)$
$\operatorname{PaRtialRecovery}\left(x, C \cdot k / 4, \frac{1}{16} \cdot 4^{-1}, 1 / \operatorname{poly}(n)\right)$
$\operatorname{PaRtiALRecovery}\left(x, C \cdot k / 8, \frac{1}{16} \cdot 8^{-1}, 1 / \operatorname{poly}(n)\right)$

Full algorithm

Let $C>0$ be a sufficiently large constant.
$\operatorname{PartialRecovery}\left(x, 10 \cdot k \quad, \frac{1}{16} \quad, 1 / \operatorname{poly}(n)\right)$

Full algorithm

Let $C>0$ be a sufficiently large constant.
$\operatorname{PaRtialRecovery}\left(x, 10 \cdot k \quad, \frac{1}{16} \quad, 1 / \operatorname{poly}(n)\right)$
$\operatorname{PaRtialRecoVeRy}\left(x, 10 \cdot k / 2, \frac{1}{16} \cdot 2^{-1}, 1 / \operatorname{poly}(n)\right)$

Full algorithm

Let $C>0$ be a sufficiently large constant.
$\operatorname{PartialRecovery}\left(x, 10 \cdot k \quad, \frac{1}{16} \quad, 1 / \operatorname{poly}(n)\right)$
$\operatorname{PaRtiALRECOVERY}\left(x, 10 \cdot k / 2, \frac{1}{16} \cdot 2^{-1}, 1 / \operatorname{poly}(n)\right)$
$\operatorname{PaRtialRecovery}\left(x, 10 \cdot k / 4, \frac{1}{16} \cdot 4^{-1}, 1 / \operatorname{poly}(n)\right)$

Full algorithm

Let $C>0$ be a sufficiently large constant.
$\operatorname{PartialRecovery}\left(x, 10 \cdot k \quad, \frac{1}{16} \quad, 1 / \operatorname{poly}(n)\right)$
$\operatorname{PaRtiALRECOVERY}\left(x, 10 \cdot k / 2, \frac{1}{16} \cdot 2^{-1}, 1 / \operatorname{poly}(n)\right)$
$\operatorname{PartialRecovery}\left(x, 10 \cdot k / 4, \frac{1}{16} \cdot 4^{-1}, 1 / \operatorname{poly}(n)\right)$
$\operatorname{PaRtialRecovery}\left(x, 10 \cdot k / 8, \frac{1}{16} \cdot 8^{-1}, 1 / \operatorname{poly}(n)\right)$

Full algorithm

Let $C>0$ be a sufficiently large constant.
$\operatorname{PartialRecovery}\left(x, 10 \cdot k \quad, \frac{1}{16} \quad, 1 / \operatorname{poly}(n)\right)$
$\operatorname{PaRtiALRECOVERY}\left(x, 10 \cdot k / 2, \frac{1}{16} \cdot 2^{-1}, 1 / \operatorname{poly}(n)\right)$
$\operatorname{PaRtialRecovery}\left(x, 10 \cdot k / 4, \frac{1}{16} \cdot 4^{-1}, 1 / \operatorname{poly}(n)\right)$
$\operatorname{PaRtialRecovery}\left(x, 10 \cdot k / 8, \frac{1}{16} \cdot 8^{-1}, 1 / \operatorname{poly}(n)\right)$

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover isolated coeffs
Permute spectrum
Hash to 4 buckets
Recover isolated coeffs

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover isolated coeffs
Permute spectrum
Hash to 4 buckets
Recover isolated coeffs

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover isolated coeffs
Permute spectrum
Hash to 4 buckets
Recover isolated coeffs

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover isolated coeffs
Permute spectrum
Hash to 4 buckets
Recover isolated coeffs

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover isolated coeffs
Permute spectrum
Hash to 4 buckets
Recover isolated coeffs

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover isolated coeffs
Permute spectrum
Hash to 4 buckets
Recover isolated coeffs

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover isolated coeffs
Permute spectrum
Hash to 4 buckets
Recover isolated coeffs

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover isolated coeffs
Permute spectrum
Hash to 4 buckets
Recover isolated coeffs

Modified PartialRecovery

PartialRecovery $(B, \alpha$, List $)$
Choose random b, odd σ
Define $x_{j}^{\prime}=x_{\sigma j} \omega^{j b}$

$$
x_{j}^{\prime \prime}=x_{j+1}^{\prime}
$$

Compute $\widehat{c}_{j \cdot \frac{n}{B}}^{\prime}, j \in[B]$, where $c^{\prime}=x^{\prime} \cdot G$

$$
\widehat{c}_{j \cdot \frac{n}{B}}^{\prime \prime}, j \in[B], \text { where } c^{\prime \prime}=x^{\prime \prime} \cdot G
$$

For $j \in[B]$
If $\left|\widehat{c}_{j \cdot n / B}^{\prime}\right|>1 / 2$
Decode from $\widehat{c}_{j \cdot n / B}^{\prime}, \widehat{c}_{j \cdot n / B}^{\prime \prime}$
(Two-point sampling)
End
End

PartialRecovery - updating the bins

Previously located elements are still in the signal...

Subtract recovered elements from the bins
For each (pos, val) \in List
$u \leftarrow \sigma \cdot p o s-b$
$j \leftarrow$ closest bin to u

$$
\begin{aligned}
& \text { off } \leftarrow u-j n / B \\
& \widehat{c}_{j \cdot n / B}^{\prime} \leftarrow \widehat{c}_{j \cdot n / B}^{\prime}-\mathrm{val} \cdot \widehat{\mathrm{G}}_{\text {off }} \\
& {\widehat{c_{j}^{\prime}}}_{j \cdot n / B}^{\prime \prime} \leftarrow \widehat{c}_{j \cdot n / B}^{\prime \prime}-\mathrm{val} \cdot \omega^{u} \cdot \widehat{G}_{\text {off }}
\end{aligned}
$$

End

PartialRecovery - updating the bins

Previously located elements are still in the signal...
Subtract recovered elements from the bins
For each (pos, val) \in List $u \leftarrow \sigma \cdot p o s-b$
$j \leftarrow$ closest bin to u

$$
\begin{aligned}
& \text { off } \leftarrow u-j n / B \\
& \widehat{c}_{j \cdot n / B}^{\prime} \leftarrow \widehat{c}_{j \cdot n / B}^{\prime}-\mathrm{val} \cdot \widehat{G}_{\text {off }} \\
& {\widehat{c_{c}^{\prime}}}_{j \cdot n / B}^{\prime \prime} \leftarrow \widehat{c}_{j \cdot n / B}^{\prime \prime}-\mathrm{val} \cdot \omega^{u} \cdot \widehat{G}_{\text {off }}
\end{aligned}
$$

End

Full algorithm

List $\leftarrow \varnothing$
For $t=0$ to $\log k$
$B_{t} \leftarrow C k / 4^{t}$

- \# of buckets to hash to
$\gamma_{t} \leftarrow 1 /\left(C 2^{t}\right)$
\triangleright sharpness of filter

List \leftarrow List + PartiALRECoVERY $\left(B_{t}, \gamma_{t}\right.$, List $)$

End

Full algorithm - analysis
 Let

$$
\widehat{e}_{t} \leftarrow \text { contents of the list after stage } t \text {. }
$$

Define 'good event' \mathscr{E}_{t} as

$$
\mathscr{E}_{t}:=\left\{\left\|\widehat{x}-\widehat{e}_{t}\right\|_{0} \leq k / 8^{t}\right\}
$$

Conditional on \mathscr{E}_{t-1}, for every $f \in[n]$ the probability of failure to recover is at most the sum of

Full algorithm - analysis
 Let

$\widehat{e}_{t} \leftarrow$ contents of the list after stage t.
Define 'good event' \mathscr{E}_{t} as

$$
\mathscr{E}_{t}:=\left\{\left\|\widehat{x}-\widehat{e}_{t}\right\|_{0} \leq k / 8^{t}\right\}
$$

Conditional on \mathscr{E}_{t-1}, for every $f \in[n]$ the probability of failure to recover is at most the sum of

- probability of collision with another element, which is no more than

$$
\frac{k / 8^{t}}{B_{t}}=\frac{k / 8^{t}}{C \cdot k / 4^{t}} \leq \frac{1}{C \cdot 2^{t}}
$$

Full algorithm - analysis
 Let

$\widehat{e}_{t} \leftarrow$ contents of the list after stage t.
Define 'good event' \mathscr{E}_{t} as

$$
\mathscr{E}_{t}:=\left\{\left\|\widehat{x}-\widehat{e}_{t}\right\|_{0} \leq k / 8^{t}\right\}
$$

Conditional on \mathscr{E}_{t-1}, for every $f \in[n]$ the probability of failure to recover is at most the sum of

- probability of collision with another element, which is no more than

$$
\frac{k / 8^{t}}{B_{t}}=\frac{k / 8^{t}}{C \cdot k / 4^{t}} \leq \frac{1}{C \cdot 2^{t}}
$$

- probability of being hashed to the non-flat region, which is no more than

$$
O\left(\gamma_{t}\right)=O\left(\frac{1}{C 2^{t}}\right)
$$

Full algorithm - analysis

Define 'good event' \mathscr{E}_{t} as

$$
\mathscr{E}_{t}:=\left\{\left\|\widehat{x}-\widehat{e}_{t}\right\|_{0} \leq k / 8^{t}\right\}
$$

Then

$$
\operatorname{Pr}\left[\mathscr{E}_{t} \mid \mathscr{E}_{t-1}\right] \leq \operatorname{Pr}\left[\text { fraction of failures is } \geq 1 / 8 \mid \mathscr{E}_{t-1}\right] \leq O\left(\frac{1}{C \cdot 2^{t}}\right)
$$

Full algorithm - analysis

Define 'good event' \mathscr{E}_{t} as

$$
\mathscr{E}_{t}:=\left\{\left\|\widehat{x}-\widehat{e}_{t}\right\|_{0} \leq k / 8^{t}\right\}
$$

Then

$$
\operatorname{Pr}\left[\mathscr{E}_{t} \mid \mathscr{E}_{t-1}\right] \leq \operatorname{Pr}\left[\text { fraction of failures is } \geq 1 / 8 \mid \mathscr{E}_{t-1}\right] \leq O\left(\frac{1}{C \cdot 2^{t}}\right)
$$

So for a sufficiently large $C>0$

$$
\operatorname{Pr}\left[\overline{\mathscr{E}}_{1} \vee \ldots \vee \overline{\mathscr{E}}_{\log k}\right] \leq O(1 / C) \cdot(1 / 2+1 / 4+\ldots)=O(1 / C)<1 / 10
$$

Full algorithm - analysis

$$
\begin{aligned}
& \text { List } \leftarrow \varnothing \\
& \text { For } t=1 \text { to } \log k \\
& \qquad B_{t} \leftarrow C k / 4^{t} \\
& \quad \gamma_{t} \leftarrow 1 /\left(C 2^{t}\right) \\
& \text { List } \leftarrow \text { List }+ \text { PARTIALRECOVERY }\left(B_{t}, \gamma t, \text { List }\right) \\
& \text { End }
\end{aligned}
$$

Time complexity

- DFT:

$$
O(k \log n)+O((k / 4) \log n)+\ldots=O(k \log n)
$$

- List update: $k \cdot \log n$

Sample complexity

$$
\begin{aligned}
& \text { List } \leftarrow \varnothing \\
& \text { For } t=1 \text { to } \log k \\
& \qquad B_{t} \leftarrow C k / 4^{t} \\
& \quad \gamma_{t} \leftarrow 1 /\left(C 2^{t}\right) \\
& \text { List } \leftarrow \text { List }+ \text { PARTIALRECOVERY }\left(B_{t}, \gamma_{t}, \text { List }\right) \\
& \text { End }
\end{aligned}
$$

Sample complexity $O(k \log n)+O((k / 4) \log n)+\ldots=O(k \log n)$
Suboptimal: sufficient to measure $x_{0}, x_{1}, \ldots, x_{2 k}$ to reconstruct \widehat{x} if $\operatorname{supp}(\widehat{x}) \leq k$ (exercise).

Next:

- recovery in the noisy setting
ℓ_{2} / ℓ_{2} sparse recovery guarantees:

$$
\|\widehat{x}-\widehat{y}\|^{2} \leq C \cdot \min _{k-\text { sparse }} \hat{z}\|\widehat{x}-\widehat{z}\|^{2}
$$

ℓ_{2} / ℓ_{2} sparse recovery guarantees:

$$
\|\widehat{x}-\widehat{y}\|^{2} \leq C \cdot \min _{k-\text { sparse }} \hat{z}\|\widehat{x}-\widehat{z}\|^{2}
$$

$$
\begin{gathered}
\left|\widehat{x}_{1}\right| \geq \ldots \geq\left|\widehat{\widehat{k}}_{k}\right| \geq \\
\left|\widehat{x}_{k+1}\right| \geq\left|\geq \widehat{x}_{k+2}\right| \geq \ldots
\end{gathered}
$$

$\operatorname{Err}_{k}^{2}(\widehat{x})=\sum_{j=k+1}^{n}\left|\widehat{x}_{j}\right|^{2}$
Residual error bounded by noise energy $\operatorname{Err}_{k}^{2}(\widehat{x})$
$\mu_{\approx \text { tail noise }} / \sqrt{k}$
ℓ_{2} / ℓ_{2} sparse recovery guarantees:

$$
\|\widehat{x}-\widehat{y}\|^{2} \leq C \cdot \operatorname{Err}_{k}^{2}(\widehat{x})
$$

$$
\begin{gathered}
\left|\widehat{x}_{1}\right| \geq \ldots \geq\left|\widehat{x}_{k}\right| \geq \\
\left|\widehat{x}_{k+1}\right| \geq\left|\widehat{x}_{k+2}\right| \geq \ldots
\end{gathered}
$$

$\operatorname{Err}_{k}^{2}(\widehat{x})=\sum_{j=k+1}^{n}\left|\widehat{x}_{j}\right|^{2}$

Residual error bounded by noise energy $\operatorname{Err}_{k}^{2}(\widehat{x})$
μ_{\approx} tail noise $/ \sqrt{k}$
ℓ_{2} / ℓ_{2} sparse recovery guarantees:

$$
\|\widehat{x}-\widehat{y}\|^{2} \leq C \cdot \operatorname{Err}_{k}^{2}(\widehat{x})
$$

$$
\begin{gathered}
\left|\widehat{x}_{1}\right| \geq \ldots \geq\left|\widehat{x}_{k}\right| \geq \\
\left|\widehat{x}_{k+1}\right| \geq\left|\widehat{x}_{k+2}\right| \geq \ldots
\end{gathered}
$$

$\operatorname{Err}_{k}^{2}(\widehat{x})=\sum_{j=k+1}^{n}\left|\widehat{x}_{j}\right|^{2}$

Residual error bounded by noise energy $\operatorname{Err}_{k}^{2}(\widehat{x})$
μ_{\approx} tail noise $/ \sqrt{k}$
ℓ_{2} / ℓ_{2} sparse recovery guarantees:

$$
\|\widehat{x}-\widehat{y}\|^{2} \leq C \cdot \operatorname{Err}_{k}^{2}(\widehat{x})
$$

μ_{\approx} tail noise $/ \sqrt{k}$

Sufficient to ensure that most elements are below average noise level:

$$
\left|\widehat{x}_{i}-\widehat{y}_{i}\right|^{2} \leq c \cdot \operatorname{Err}_{k}^{2}(\widehat{x}) / k=: \mu^{2}
$$

ℓ_{2} / ℓ_{2} sparse recovery guarantees:

$$
\|\widehat{x}-\widehat{y}\|^{2} \leq C \cdot \operatorname{Err}_{k}^{2}(\widehat{x})
$$

Sufficient to ensure that most elements are below average noise level:

$$
\left|\widehat{x}_{i}-\widehat{y}_{i}\right|^{2} \leq c \cdot \operatorname{Err}_{k}^{2}(\widehat{x}) / k=c \cdot \mu^{2}
$$

ℓ_{2} / ℓ_{2} sparse recovery guarantees:

$$
\|\widehat{x}-\widehat{y}\|^{2} \leq C \cdot \operatorname{Err}_{k}^{2}(\widehat{x})
$$

Sufficient to ensure that most elements are below average noise level:

$$
\left|\widehat{x}_{i}-\widehat{y}_{i}\right| \leq c \mu
$$

Next:

1. Full algorithm for noisy setting

Next:

1. Full algorithm for noisy setting

Basic block (noiseless setting)

Assume

- n is a power of 2
- \widehat{x} contains at most k coefficients with polynomial precision (e.g. \widehat{x}_{f} in $\left\{-n^{O(1)}, \ldots, n^{O(1)}\right\}$)

Then there exists an $O(k \log n)$ time algorithm that

- outputs at most k potential coefficients
- outputs each nonzero \widehat{x}_{f} correctly with probability at least $1-\beta$ for a constant $\beta>0$

Basic block (noisy setting)

Assume

- n is a power of 2
- \widehat{x} contains at most k coefficients with polynomial precision (e.g. \widehat{x}_{f} in $\left\{-n^{O(1)}, \ldots, n^{O(1)}\right\}$), plus noise

Then there exists an $O(k \log n)$ time algorithm that

- outputs at most k potential coefficients
- outputs each nonzero \widehat{x}_{f} that is above noise level correctly with probability at least $1-\beta$ for a constant $\beta>0$

Let G be a $(B, \delta / n, \gamma)$-flat window function:

- B buckets
- flat region of width $1-\gamma$
- leakage $\leq \delta / n=1 / n^{O(1)}$

Such G can be constructed with

$$
\operatorname{supp}(G)=O((k / \gamma) \log n)
$$

PartialRecovery - algorithm

Main idea: filter, then run 1-sparse algorithm on each subproblem
$\operatorname{PartialRecovery}(x, B, \gamma, \delta)$
Choose random $b \in[n]$ and odd $\sigma \in\{1,2, \ldots, n\}$
Define $x_{j}^{\prime} \leftarrow x_{\sigma j} \omega^{j b}$

$$
x_{j}^{\prime \prime} \leftarrow x_{j+1}^{\prime}
$$

Compute $\hat{c}_{j \cdot \frac{n}{B}}^{\prime}, j \in[B]$, where $c^{\prime}=x^{\prime} \cdot G$

$$
\widehat{c}_{j \cdot \frac{n}{B}}^{\prime \prime}, j \in[B], \text { where } c^{\prime \prime}=x^{\prime \prime} \cdot G
$$

Run 1 -sparse decoding one $\widehat{c}^{\prime}, \widehat{c}^{\prime \prime}$

PartialRecovery - algorithm

Recovering 5 -sparse signal \widehat{x} from measurements of x

Isolated frequencies are decoded successfully

PartialRecovery - algorithm

Recovering 5-sparse signal \hat{x} from measurements of x

Isolated frequencies are decoded successfully

PartialRecovery - algorithm

Recovering 5-sparse signal \widehat{x} from measurements of x

Permute spectrum
Filter signal
1 -sparse decoding

Isolated frequencies are decoded successfully

PartialRecovery - algorithm

Recovering 5-sparse signal \widehat{x} from measurements of x

Permute spectrum
Filter signal
1 -sparse decoding

Isolated frequencies are decoded successfully

PartialRecovery (noiseless setting)

Choose random $b \in[n]$ and odd
$\sigma \in\{1,2, \ldots, n\}$
Define $x_{j}^{\prime} \leftarrow x_{\sigma j} \omega^{j b}$

$$
x_{j}^{\prime \prime} \leftarrow x_{j+1}^{\prime}
$$

Compute $\widehat{c}_{j \cdot \frac{n}{B}}^{\prime}, j \in[B]$, where $c^{\prime}=x^{\prime} \cdot G$

$$
\widehat{c}_{j \cdot \frac{n}{B}}^{\prime \prime}, j \in[B], \text { where } c^{\prime \prime}=x^{\prime \prime} \cdot G
$$

For $j \in[B]$
If $\left|\hat{c}_{j \cdot n / B}^{\prime}\right|>1 / 2$
Decode from $\hat{c}_{j \cdot n / B}^{\prime}, \hat{c}_{j \cdot n / B}^{\prime \prime}$
(Two-point sampling)

End

End

PartialRecovery (noisy setting)

Choose random $b \in[n]$ and odd $\sigma \in\{1,2, \ldots, n\}$

Define $x_{j}^{\prime} \leftarrow x_{\sigma j} \omega^{j b}$
$x_{j}^{\prime \prime} \leftarrow x_{j+1}^{\prime}$
Compute $\widehat{c}_{j \cdot \frac{n}{B}}^{\prime}, j \in[B]$, where $c^{\prime}=x^{\prime} \cdot G$

$$
\widehat{c}_{j \cdot \frac{n}{B}}^{\prime \prime}, j \in[B], \text { where } c^{\prime \prime}=x^{\prime \prime} \cdot G
$$

For $j \in[B]$
If $\left|\widehat{c}_{j \cdot n / B}^{\prime}\right|>1 / 2$
Decode from $\widehat{c}_{j \cdot n / B}^{\prime}, \widehat{c}_{j \cdot n / B}^{\prime \prime}$
(Two-point sampling)
End
End

PartialRecovery (noisy setting)

Choose random $b \in[n]$ and odd $\sigma \in\{1,2, \ldots, n\}$

Define $x_{j}^{\mathbf{s}, 0, r} \leftarrow x_{\sigma(j+r)} \omega^{(j+r) b}$

$$
x_{j}^{\mathrm{s}, 1, r} \leftarrow x_{j+\mathrm{n} / 2^{\mathrm{s}+1}}^{\mathrm{s}, 1, r}
$$

$$
\text { For } \begin{aligned}
s & =0, \ldots, \log _{2} n \\
r & =1, \ldots, O(\log \log n)
\end{aligned}
$$

Compute $\left(\widehat{x^{s, 0, r} \cdot G}\right)_{j \cdot n / B}$, for $j \in[B]$

$$
\left(\widehat{x^{s, 1, r} \cdot G}\right)_{j \cdot n / B}, \text { for } j \in[B]
$$

Initialize list $L \leftarrow \varnothing$
For $j \in[B]$

End
Estimate values of $i \in L$, output top $3 k$

Noise-tolerant decoding from lecture 1

Suppose that x is approximately 1 -sparse, i.e.

$$
\sum_{f \neq f^{*}}\left|\widehat{x}_{f}\right|^{2} \leq \varepsilon\left|\widehat{x}_{f^{*}}\right|^{2} \quad \text { (small noise) }
$$

for some small constant ε.

Then

1. can find f^{*} using $O(\log n \cdot \log \log n)$ runtime $O(\log n \cdot \log \log n)$ samples with $\geq 1-1 / 4$ success probability

Noise-tolerant decoding from lecture 1

Suppose that x is approximately 1 -sparse, i.e.

$$
\sum_{f \neq f^{*}}\left|\widehat{x}_{f}\right|^{2} \leq \varepsilon\left|\widehat{x}_{f^{*}}\right|^{2} \quad \text { (small noise) }
$$

for some small constant ε.

Then

1. can find f^{*} using $O(t \cdot \log n \cdot \log \log n)$ runtime $O(\mathrm{t} \cdot \log n \cdot \log \log n)$ samples with $\geq 1-4^{-t}$ success probability

Noise-tolerant decoding from lecture 1

Suppose that x is approximately 1 -sparse, i.e.

$$
\sum_{f \neq f^{*}}\left|\widehat{x}_{f}\right|^{2} \leq \varepsilon\left|\widehat{x}_{f^{*}}\right|^{2} \quad \text { (small noise) }
$$

for some small constant ε.

Then

1. can find f^{*} using $O(\mathrm{t} \cdot \log n \cdot \log \log n)$ runtime $O(\mathrm{t} \cdot \log n \cdot \log \log n)$ samples with $\geq 1-4^{-t}$ success probability

Need to ensure that noise is small in most subproblems

Noise-tolerant decoding from lecture 1

Suppose that x is approximately 1 -sparse, i.e.

$$
\sum_{f \neq f^{*}}\left|\widehat{x}_{f}\right|^{2} \leq \varepsilon\left|\widehat{X}_{f^{*}}\right|^{2} \quad \text { (small noise) }
$$

for some small constant ε.

Then

1. can find f^{*} using $O(\log (1 / \gamma) \cdot \log n \cdot \log \log n)$ runtime $O(\log (1 / \gamma) \cdot \log n \cdot \log \log n)$ samples with $\geq 1-\gamma$ success probability

Need to ensure that noise is small in most subproblems

Let $\mu^{2}:=\frac{1}{k} \min _{k-\text { sparse } y}\|x-y\|_{2}^{2}=\frac{1}{k} \sum_{j=k+1}^{n}\left|x_{j}\right|^{2} \quad$ (average noise level)

For every head element $i \in[k]$ and every tail element $j \in[n] \backslash[k]$
$\operatorname{Pr}[i$ and j hash to the same bucket $]=O(1 / B)$

Let $\mu^{2}:=\frac{1}{k} \min _{k-\text { sparse } y}\|x-y\|_{2}^{2}=\frac{1}{k} \sum_{j=k+1}^{n}\left|x_{j}\right|^{2} \quad$ (average noise level)

For every head element $i \in[k]$ and every tail element $j \in[n] \backslash[k]$

$$
\operatorname{Pr}[\mathbf{h}(i)=\mathbf{h}(j)]=O(1 / B)
$$

Let $\mu^{2}:=\frac{1}{k} \min _{k-\text { sparse } y}\|x-y\|_{2}^{2}=\frac{1}{k} \sum_{j=k+1}^{n}\left|x_{j}\right|^{2} \quad$ (average noise level)

For every head element $i \in[k]$, expected noise in i 's bucket is

$$
\mathbf{E}\left[\sum_{j=k+1}^{n}\left|\widehat{x}_{j}\right|^{2} \cdot \operatorname{Pr}[\mathbf{h}(i)=\mathbf{h}(j)]\right]=\mu^{2} \cdot O(k / B)
$$

Let $\mu^{2}:=\frac{1}{k} \min _{k-\text { sparse } y}\|x-y\|_{2}^{2}=\frac{1}{k} \sum_{j=k+1}^{n}\left|x_{j}\right|^{2} \quad$ (average noise level)

For every head element $i \in[k]$, expected noise in i 's bucket is

$$
\mathbf{E}\left[\sum_{j=k+1}^{n}\left|\widehat{x}_{j}\right|^{2} \cdot \operatorname{Pr}[\mathbf{h}(i)=\mathbf{h}(j)]\right]=\mu^{2} \cdot O(k / B)
$$

Let $\mu^{2}:=\frac{1}{k} \min _{k-\text { sparse } y}\|x-y\|_{2}^{2}=\frac{1}{k} \sum_{j=k+1}^{n}\left|x_{j}\right|^{2} \quad$ (average noise level)

For every head element $i \in[k]$, expected noise in i 's bucket is

$$
\mathbf{E}\left[\sum_{j=k+1}^{n}\left|\widehat{x}_{j}\right|^{2} \cdot \operatorname{Pr}[\mathbf{h}(i)=\mathbf{h}(j)]\right]=\mu^{2} \cdot O(k / B)
$$

Let $\mu^{2}:=\frac{1}{k} \min _{k-\text { sparse } y}\|x-y\|_{2}^{2}=\frac{1}{k} \sum_{j=k+1}^{n}\left|x_{j}\right|^{2} \quad$ (average noise level)

For every head element $i \in[k]$, expected noise in i 's bucket is

$$
\mathbf{E}\left[\sum_{j=k+1}^{n}\left|\widehat{x}_{j}\right|^{2} \cdot \operatorname{Pr}[\mathbf{h}(i)=\mathbf{h}(j)]\right]=\mu^{2} \cdot O(k / B)
$$

For every head element $i \in[k]$, expected noise in i 's bucket is

$$
\mathbf{E}\left[\sum_{j=k+1}^{n}\left|\widehat{x}_{j}\right|^{2} \cdot \operatorname{Pr}[\mathbf{h}(i)=\mathbf{h}(j)]\right]=\mu^{2} \cdot O(k / B)
$$

For every head element $i \in[k]$, expected noise in i 's bucket is

$$
\mathbf{E}\left[\sum_{j=k+1}^{n}\left|\widehat{X}_{j}\right|^{2} \cdot \operatorname{Pr}[\mathbf{h}(i)=\mathbf{h}(j)]\right]=\mu^{2} \cdot O(k / B)
$$

So by Markov's inequality for every head element $i \in[k]$

$$
\left.\operatorname{Pr}\left[\sum_{j \in[k+1: n] \text { s.t. } \mathbf{h}(i)=\mathbf{h}(j)}\left|\widehat{X}_{j}\right|^{2}\right]>\varepsilon \mu^{2}\right]=O(k /(\varepsilon B))
$$

Basic block analysis (noiseless setting)

Claim
For each $u \in \operatorname{supp}(\hat{x})$ the probability that u is not reported is bounded by $O(k / B+\gamma)$.

Probability of

- being mapped within n / B of another frequency is $O(k / B)$
- being mapped close to boundary of the bucket is $O(\gamma)$

Basic block analysis (noisy setting)

Claim

For each $u \in \operatorname{supp}(\hat{x})$ with $\left|\hat{x}_{u}\right|^{2} \geq \mu^{2}$ the probability that u is not reported is bounded by $O(k / B+\gamma)$.
Probability of

- being mapped within n / B of another frequency is $O(k / B)$
- being mapped close to boundary of the bucket is $O(\gamma)$
- colliding with too many tail elements is $O(k / B)$

Basic block analysis (noisy setting)

Claim
For each $u \in \operatorname{supp}(\hat{x})$ with $\left|\hat{x}_{u}\right|^{2} \geq \mu^{2}$ the probability that u is not reported is bounded by $O(k / B+\gamma)$.
Probability of

- being mapped within n / B of another frequency is $O(k / B)$
- being mapped close to boundary of the bucket is $O(\gamma)$
- colliding with too many tail elements is $O(k / B)$
- decoding failure is $O(\gamma)$

Basic block analysis (noisy setting)

Claim
For each $u \in \operatorname{supp}(\hat{x})$ with $\left|\hat{x}_{u}\right|^{2} \geq \mu^{2}$ the probability that u is not reported is bounded by $O(k / B+\gamma)$.
Probability of

- being mapped within n / B of another frequency is $O(k / B)$
- being mapped close to boundary of the bucket is $O(\gamma)$
- colliding with too many tail elements is $O(k / B)$
- decoding failure is $O(\gamma)$

PartialRecovery (noisy setting)

Choose random $b \in[n]$ and odd $\sigma \in\{1,2, \ldots, n\}$

Define $x_{j}^{\mathbf{s}, 0, r} \leftarrow x_{\sigma(j+r)} \omega^{(j+r) b}$

$$
x_{j}^{\mathrm{s}, 1, r} \leftarrow x_{j+\mathrm{n} / 2^{\mathrm{s}+1}}^{\mathrm{s}, 1, r}
$$

$$
\begin{aligned}
\text { For } s & =0, \ldots, \log _{2} n \\
r & =1, \ldots, O(\log \log n)
\end{aligned}
$$

Compute $\left(\widehat{x^{s, 0, r} \cdot G}\right)_{j \cdot n / B}$, for $j \in[B]$

$$
\left(\widehat{x^{s, 1, r} \cdot G}\right)_{j \cdot n / B}, \text { for } j \in[B]
$$

Initialize list $L \leftarrow \varnothing$
For $j \in[B]$

End
Estimate values of $i \in L$, output top $3 k$

PartialRecovery (noisy setting)

Choose random $b \in[n]$ and odd $\sigma \in\{1,2, \ldots, n\}$

Define $x_{j}^{\mathbf{s}, 0, r} \leftarrow x_{\sigma(j+r)} \omega^{(j+r) b}$

$$
x_{j}^{\mathrm{s}, 1, r} \leftarrow x_{j+\mathrm{n} / 2^{\mathrm{s}+1}}^{\mathrm{s}, 1, r}
$$

$$
\text { For } \begin{aligned}
s & =0, \ldots, \log _{2} n \\
r & =1, \ldots, O(\log \log n)
\end{aligned}
$$

Compute $\left(\widehat{x^{s, 0, r} \cdot G}\right)_{j \cdot n / B}$, for $j \in[B]$

$$
\left(\widehat{x^{s, 1, r} \cdot G}\right)_{j \cdot n / B}, \text { for } j \in[B]
$$

Initialize list $L \leftarrow \varnothing$
For $j \in[B]$

End
Estimate values of $i \in L$, output top $3 k$

Estimating value of a heavy hitter (lecture 1)

Given $f^{*} \in[n]$,

1. can find $w_{f^{*}}$ (estimate for $\widehat{x}_{f^{*}}$) in $O(1)$ time and samples such that

$$
\left|w_{f^{*}}-\widehat{x}_{f^{*}}\right|^{2} \leq 3 \varepsilon\left|\widehat{x}_{f^{*}}\right|^{2}
$$

with probability $1-1 / 100$

Estimating value of a heavy hitter (lecture 1)

Given $f^{*} \in[n]$,

1. can find $w_{f^{*}}$ (estimate for $\widehat{x}_{f^{*}}$) in $O(t)$ time and samples such that

$$
\left|w_{f^{*}}-\widehat{x}_{f^{*}}\right|^{2} \leq 3 \varepsilon\left|\widehat{x}_{f^{*}}\right|^{2}
$$

with probability $1-2^{-t}$

Estimating value of a heavy hitter (lecture 1)

Given $f^{*} \in[n]$,

1. can find $w_{f^{*}}$ (estimate for $\widehat{x}_{f^{*}}$) in $O(\log n)$ time and samples such that

$$
\left|w_{f^{*}}-\widehat{x}_{f^{*}}\right|^{2} \leq 3 \varepsilon\left|\widehat{x}_{f^{*}}\right|^{2}
$$

with probability $1-1 / n^{2}$

Estimating value of a heavy hitter (lecture 1)

Given $f^{*} \in[n]$,

1. can find $w_{f^{*}}$ (estimate for $\widehat{x}_{f^{*}}$) in $O(\log n)$ time and samples such that

$$
\left|w_{f^{*}}-\widehat{x}_{f^{*}}\right|^{2} \leq 3 \varepsilon\left|\widehat{x}_{f^{*}}\right|^{2}
$$

with probability $1-1 / n^{2}$
Let L denote the list of located elements

Estimating value of a heavy hitter (lecture 1)

Given $f^{*} \in[n]$,

1. can find $w_{f^{*}}$ (estimate for $\widehat{x}_{f^{*}}$) in $O(\log n)$ time and samples such that

$$
\left|w_{f^{*}}-\widehat{x}_{f^{*}}\right|^{2} \leq 3 \varepsilon\left|\widehat{x}_{f^{*}}\right|^{2}
$$

with probability $1-1 / n^{2}$
Let L denote the list of located elements

Estimating value of a heavy hitter (lecture 1)

Given $f^{*} \in[n]$,

1. can find $w_{f^{*}}$ (estimate for $\widehat{x}_{f^{*}}$) in $O(\log n)$ time and samples such that

$$
\left|w_{f^{*}}-\widehat{x}_{f^{*}}\right|^{2} \leq 3 \varepsilon\left|\widehat{x}_{f^{*}}\right|^{2}
$$

with probability $1-1 / n^{2}$
Let L denote the list of located elements
Using $O\left(k \log ^{2} n\right)$ samples and runtime, can find w_{L} such that

$$
\left|w_{f}-\widehat{x}_{f}\right|^{2} \leq 3 \varepsilon\left|\widehat{x}_{f}\right|^{2}
$$

for all $f \in L$.
Let $L^{\prime} \subseteq L$ denote list of top $3 k$ values in L (in terms of magnitude)

Full algorithm

Let $C>0$ be a sufficiently large constant.
$\operatorname{PaRtiALRecovery}\left(x, C \cdot k \quad, \frac{1}{16} \quad, 1 / \operatorname{poly}(n)\right)$

Full algorithm

Let $C>0$ be a sufficiently large constant.
$\operatorname{PaRtiALRecovery}\left(x, C \cdot k \quad, \frac{1}{16} \quad, 1 / \operatorname{poly}(n)\right)$
$\operatorname{PaRtiALRecovery}\left(x, C \cdot k / 2, \frac{1}{16} \cdot 2^{-1}, 1 / \operatorname{poly}(n)\right)$

Full algorithm

Let $C>0$ be a sufficiently large constant.
$\operatorname{PaRtialRecovery}\left(x, C \cdot k \quad, \frac{1}{16} \quad, 1 / \operatorname{poly}(n)\right)$
$\operatorname{PaRtiALRecovery}\left(x, C \cdot k / 2, \frac{1}{16} \cdot 2^{-1}, 1 / \operatorname{poly}(n)\right)$
$\operatorname{PartialRecovery}\left(x, C \cdot k / 4, \frac{1}{16} \cdot 4^{-1}, 1 / \operatorname{poly}(n)\right)$

Full algorithm

Let $C>0$ be a sufficiently large constant.
$\operatorname{PaRtialRecovery}\left(x, C \cdot k \quad, \frac{1}{16} \quad, 1 / \operatorname{poly}(n)\right)$
$\operatorname{PaRtiALRecovery}\left(x, C \cdot k / 2, \frac{1}{16} \cdot 2^{-1}, 1 / \operatorname{poly}(n)\right)$
$\operatorname{PaRtialRecovery}\left(x, C \cdot k / 4, \frac{1}{16} \cdot 4^{-1}, 1 / \operatorname{poly}(n)\right)$
$\operatorname{PaRtiALRecovery}\left(x, C \cdot k / 8, \frac{1}{16} \cdot 8^{-1}, 1 / \operatorname{poly}(n)\right)$

Full algorithm

Let $C>0$ be a sufficiently large constant.
$\operatorname{PaRtialRecovery}\left(x, C \cdot k \quad, \frac{1}{16} \quad, 1 / \operatorname{poly}(n)\right)$
$\operatorname{PaRtiALRecovery}\left(x, C \cdot k / 2, \frac{1}{16} \cdot 2^{-1}, 1 / \operatorname{poly}(n)\right)$
$\operatorname{PaRtialRecovery}\left(x, C \cdot k / 4, \frac{1}{16} \cdot 4^{-1}, 1 / \operatorname{poly}(n)\right)$
$\operatorname{PartialRecovery}\left(x, C \cdot k / 8, \frac{1}{16} \cdot 8^{-1}, 1 / \operatorname{poly}(n)\right)$

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover well-hashed coeffs

Permute spectrum
Hash to 4 buckets
Recover well-hashed coeffs

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover well-hashed coeffs

Permute spectrum
Hash to 4 buckets
Recover well-hashed coeffs

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover well-hashed coeffs

Permute spectrum
Hash to 4 buckets
Recover well-hashed coeffs

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover well-hashed coeffs

Permute spectrum
Hash to 4 buckets
Recover well-hashed coeffs

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover well-hashed coeffs

Permute spectrum
Hash to 4 buckets
Recover well-hashed coeffs

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover well-hashed coeffs

Permute spectrum
Hash to 4 buckets
Recover well-hashed coeffs

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover well-hashed coeffs

Permute spectrum
Hash to 4 buckets
Recover well-hashed coeffs

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover well-hashed coeffs

Permute spectrum
Hash to 4 buckets
Recover well-hashed coeffs

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover well-hashed coeffs

Permute spectrum
Hash to 4 buckets
Recover well-hashed coeffs

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover well-hashed coeffs

Permute spectrum
Hash to 4 buckets
Recover well-hashed coeffs

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover well-hashed coeffs

Permute spectrum
Hash to 4 buckets
Recover well-hashed coeffs

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover well-hashed coeffs

Permute spectrum
Hash to 4 buckets
Recover well-hashed coeffs

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover well-hashed coeffs

Permute spectrum
Hash to 4 buckets
Recover well-hashed coeffs

Full algorithm

List $\leftarrow \varnothing$
For $t=1$ to $\log k$
$B_{t} \leftarrow C k / 4^{t}$
$\gamma_{t} \leftarrow 1 /\left(C 2^{t}\right)$
List \leftarrow List + PaRTIALRECOVERY $\left(B_{t}, \gamma t\right.$, List $)$
End

Time complexity:

- DFT: $O\left(k \log ^{2} n(\log \log n)\right)+O\left((k / 4) \log ^{2} n \log \log n\right)+\ldots=$ $O\left(k \log ^{2} n \log \log n\right)$
- List update: $k \cdot \log n$

Sample complexity

List $\leftarrow \varnothing$
For $t=1$ to $\log k$
$B_{t} \leftarrow C k / 4^{t}$
$\gamma_{t} \leftarrow 1 /\left(C 2^{t}\right)$
List \leftarrow List + PartiALRecovery $\left(B_{t}, \gamma t\right.$, List $)$
End

Sample complexity:
$O\left(k \log ^{2} n(\log \log n)\right)+O\left((k / 4) \log ^{2} n(\log \log n)\right)+\ldots=$ $O\left(k \log ^{2} n \log \log n\right)$

Suboptimal (?): a lower bound of $\Omega(k \log (n / k))$ known

Runtime and sample complexity

Noisy: runtime $O\left(k \log ^{2} n\right)$, sample complexity $O\left(k \log ^{2} n \log \log n\right)$
$O(\log \log n)$ can be removed, see Hassanieh-Indyk-Katabi-Price'STOC12

Sample complexity lower bound: $\Omega(k \log (n / k))$ (Do Ba, Indyk, Price, Woodruff'SODA10)

Next lecture:

$O\left(k \log n(\log \log n)^{O(1)}\right)$ samples, $O\left(k \log ^{2} n(\log \log n)^{O(1)}\right)$ runtime (Indyk-Kapralov-Price'SODA14)
and
$O(k \log n)$ samples and $O\left(n \log ^{3} n\right)$ runtime (Indyk-Kapralov'FOCS14)

