Sparse Fourier Transform (lecture 3)

Michael Kapralov¹

¹IBM Watson \rightarrow EPFL

St. Petersburg CS Club November 2015

$$\widehat{x}_f = \frac{1}{n} \sum_{j \in [n]} x_j \omega^{-f \cdot j},$$

where $\omega = e^{2\pi i/n}$ is the *n*-th root of unity.

$$\widehat{x}_f = \frac{1}{n} \sum_{j \in [n]} x_j \omega^{-f \cdot j},$$

where $\omega = e^{2\pi i/n}$ is the *n*-th root of unity.

Goal: find the top k coefficients of \hat{x} approximately

In last lecture:

1-sparse noiseless case: two-point sampling

$$\widehat{x}_f = \frac{1}{n} \sum_{j \in [n]} x_j \omega^{-f \cdot j},$$

where $\omega = e^{2\pi i/n}$ is the *n*-th root of unity.

Goal: find the top k coefficients of \hat{x} approximately

In last lecture:

- 1-sparse noiseless case: two-point sampling
- 1-sparse noisy case: O(log nloglog n) time and samples

$$\widehat{x}_f = \frac{1}{n} \sum_{j \in [n]} x_j \omega^{-f \cdot j},$$

where $\omega = e^{2\pi i/n}$ is the *n*-th root of unity.

Goal: find the top k coefficients of \hat{x} approximately

In last lecture:

- 1-sparse noiseless case: two-point sampling
- 1-sparse noisy case: O(log nloglog n) time and samples
- reduction from k-sparse to 1-sparse case, via filtering

For each $j = 0, \dots, B - 1$ let

 $\widehat{u}_{f}^{j} = \begin{cases} \widehat{x}_{f}, & \text{if } f \in j\text{-th bucket} \\ 0 & \text{o.w.} \end{cases}$

For each $j = 0, \ldots, B - 1$ let

 $\widehat{u}_{f}^{j} = \begin{cases} \widehat{x}_{f}, & \text{if } f \in j\text{-th bucket} \\ 0 & \text{o.w.} \end{cases}$

For each $j = 0, \dots, B - 1$ let

 $\widehat{u}_{f}^{j} = \begin{cases} \widehat{x}_{f}, & \text{if } f \in j\text{-th bucket} \\ 0 & \text{o.w.} \end{cases}$

For each $j = 0, \ldots, B - 1$ let

 $\widehat{u}_{f}^{j} = \begin{cases} \widehat{x}_{f}, & \text{if } f \in j\text{-th bucket} \\ 0 & \text{o.w.} \end{cases}$

For each $j = 0, \dots, B - 1$ let

 $\widehat{u}_{f}^{j} = \begin{cases} \widehat{x}_{f}, & \text{if } f \in j\text{-th bucket} \\ 0 & \text{o.w.} \end{cases}$

For each $j = 0, \dots, B - 1$ let

 $\widehat{u}_{f}^{j} = \begin{cases} \widehat{x}_{f}, & \text{if } f \in j\text{-th bucket} \\ 0 & \text{o.w.} \end{cases}$

For each $j = 0, \dots, B - 1$ let

 $\widehat{u}_{f}^{j} = \begin{cases} \widehat{x}_{f}, & \text{if } f \in j\text{-th bucket} \\ 0 & \text{o.w.} \end{cases}$

For each $j = 0, \dots, B - 1$ let

 $\widehat{u}_{f}^{j} = \begin{cases} \widehat{x}_{f}, & \text{if } f \in j\text{-th bucket} \\ 0 & \text{o.w.} \end{cases}$

We want time domain access to u^0 : for any a = 0, ..., n-1, compute

$$U_{a}^{0} = \sum_{-\frac{n}{2B} \le f \le \frac{n}{2B}} \widehat{X}_{f} \cdot \omega^{f \cdot a}.$$

Let

$$\widehat{G}_f = \begin{cases} 1, & \text{if } f \in \left[-\frac{n}{2B} : \frac{n}{2B}\right] \\ 0 & \text{o.w.} \end{cases}$$

Then

$$U_{a}^{0} = (\widehat{X_{\cdot + a}} * \widehat{G})(0)$$

We want time domain access to u^0 : for any a = 0, ..., n-1, compute

$$U_{a}^{0} = \sum_{-\frac{n}{2B} \le f \le \frac{n}{2B}} \widehat{X}_{f} \cdot \omega^{f \cdot a}.$$

Let

$$\widehat{G}_f = \begin{cases} 1, & \text{if } f \in \left[-\frac{n}{2B} : \frac{n}{2B}\right] \\ 0 & \text{o.w.} \end{cases}$$

Then

$$U_{a}^{0} = (\widehat{X_{\cdot + a}} * \widehat{G})(0)$$

For any j = 0, ..., B - 1

$$u_{a}^{j} = (\widehat{x_{\cdot + a}} * \widehat{G})(j \cdot \frac{n}{B})$$

Reducing k-sparse recovery to 1-sparse recovery

For any j = 0, ..., B - 1 $U_{\mathbf{a}}^{j} = (\widehat{X_{\cdot + \mathbf{a}}} * \widehat{G})(j \cdot \frac{n}{B})$ nagnitude -2.5 -800 -400 0 time 800

Reducing k-sparse recovery to 1-sparse recovery

Reducing k-sparse recovery to 1-sparse recovery

For any j = 0, ..., B - 1 $U_{\mathbf{a}}^{j} = (\widehat{X_{\cdot + \mathbf{a}}} * \widehat{G})(j \cdot \frac{n}{B})$ nagnitude -2.5 -800 -400 0 time 800

Need to evaluate

$$(\widehat{x}_{\cdot+a} * \widehat{G}) (j \cdot \frac{n}{B})$$

for j = 0, ..., B - 1.

We have access to x, not \hat{x} ...

Need to evaluate

$$(\widehat{x}_{\cdot+a} * \widehat{G}) (j \cdot \frac{n}{B})$$

for j = 0, ..., B - 1.

We have access to x, not \hat{x} ...

By the convolution identity

$$\widehat{X}_{\cdot+\mathbf{a}} * \widehat{G} = (\widehat{X_{\cdot+\mathbf{a}} \cdot G})$$

Need to evaluate

$$(\widehat{x}_{\cdot+a} * \widehat{G}) (j \cdot \frac{n}{B})$$

for j = 0, ..., B - 1.

We have access to x, not \hat{x} ...

By the convolution identity

$$\widehat{X}_{\cdot+\mathbf{a}} * \widehat{G} = (\widehat{X_{\cdot+\mathbf{a}} \cdot G})$$

Suffices to compute

$$\widehat{x_{\cdot+a}\cdot G_{j\cdot\frac{n}{B}}}, j=0,\ldots,B-1$$

$$\widehat{x_{\cdot+a}\cdot G_{j\cdot\frac{n}{B}}}, j=0,\ldots,B-1$$

$$\widehat{x \cdot G_{j \cdot \frac{n}{B}}}, j = 0, \dots, B-1$$

$$\widehat{x \cdot G_{j \cdot \frac{n}{B}}}, j = 0, \dots, B-1$$

Sample complexity? Runtime?

$$\widehat{x \cdot G_{j \cdot \frac{n}{B}}}, j = 0, \dots, B-1$$

Sample complexity? Runtime?

To sample all signals u^{j} , j = 0, ..., B - 1 in time domain, it suffices to compute

$$\widehat{x \cdot G_{j \cdot \frac{n}{B}}}, j = 0, \dots, B-1$$

Computing $x \cdot G$ takes supp(G) samples.

Design *G* with supp(*G*) \approx *k* that approximates rectangular filter?

Last lecture: designed G with $supp(G) = O(k \log N)$ that approximates rectangular filter In this lecture:

- recovery algorithm (k-sparse noiseless case)
- recovery algorithm (k-sparse noisy case)

Hassanieh-Indyk-Katabi-Price'STOC12

1. Basic block: partial recovery

2. Full algorithm

Basic block

Assume

- n is a power of 2
- *x̂* contains at most *k* coefficients with polynomial precision (e.g. *x̂*_f in {−*n*^{O(1)},...,*n*^{O(1)}})

Then there exists an $O(k \log n)$ time algorithm that

- outputs at most k potential coefficients
- outputs each nonzero \hat{x}_f correctly with probability at least 1β for a constant $\beta > 0$

Let *G* be a $(B, \delta/n, \gamma)$ -flat window function:

- B buckets
- flat region of width 1 γ
- leakage $\leq \delta/n = 1/n^{O(1)}$

Such G can be constructed with

 $\operatorname{supp}(G) = O((k/\gamma)\log n)$

PARTIALRECOVERY - algorithm

Main idea: filter, then run 1-sparse algorithm on each subproblem

PARTIAL RECOVERY (x, B, γ, δ)

Choose random $b \in [n]$ and odd $\sigma \in \{1, 2, ..., n\}$

Define
$$x'_{j} \leftarrow x_{\sigma j} \omega^{jo}$$

 $x''_{j} \leftarrow x'_{j+1}$
Compute $\widehat{c}'_{j \cdot \frac{n}{B}}, j \in [B]$, where $c' = x' \cdot G$
 $\widehat{c}''_{j \cdot \frac{n}{B}}, j \in [B]$, where $c'' = x'' \cdot G$

••

Run 1-sparse decoding one \hat{c}', \hat{c}''

PARTIALRECOVERY - algorithm

Recovering 5-sparse signal \hat{x} from measurements of x

Isolated frequencies are decoded successfully

PARTIALRECOVERY - algorithm

Recovering 5-sparse signal \hat{x} from measurements of x

Isolated frequencies are decoded successfully

PARTIAL RECOVERY - algorithm

Recovering 5-sparse signal \hat{x} from measurements of x

Isolated frequencies are decoded successfully
PARTIAL RECOVERY - algorithm

Recovering 5-sparse signal \hat{x} from measurements of x

Isolated frequencies are decoded successfully

PARTIAL RECOVERY – algorithm

Choose random $b \in [n]$ and odd $\sigma \in \{1, 2, ..., n\}$

Define $x'_{j} \leftarrow x_{\sigma j} \omega^{jb}$ $x''_{j} \leftarrow x'_{j+1}$ Compute $\widehat{c}'_{j \cdot \frac{n}{B}}, j \in [B]$, where $c' = x' \cdot G$ $\widehat{c}''_{j \cdot \frac{n}{B}}, j \in [B]$, where $c'' = x'' \cdot G$

For $j \in [B]$ If $|\widehat{c}'_{j \cdot n/B}| > 1/2$ Decode from $\widehat{c}'_{j \cdot n/B}, \widehat{c}''_{j \cdot n/B}$ (Two-point sampling) End End

Claim

For each $u \in supp(\hat{x})$ the probability that u is not reported is bounded by $O(k/B + \gamma)$.

Claim

For each $u \in supp(\hat{x})$ the probability that u is not reported is bounded by $O(k/B + \gamma)$.

Proof.

- within n/B of another frequency is O(k/B)
- close to boundary of the bucket is O(y)

Claim

For each $u \in supp(\hat{x})$ the probability that u is not reported is bounded by $O(k/B + \gamma)$.

Proof.

- within n/B of another frequency is O(k/B)
- close to boundary of the bucket is O(y)

Claim

For each $u \in supp(\hat{x})$ the probability that u is not reported is bounded by $O(k/B + \gamma)$.

Proof.

- within n/B of another frequency is O(k/B)
- close to boundary of the bucket is O(y)

Claim

For each $u \in supp(\hat{x})$ the probability that u is not reported is bounded by $O(k/B + \gamma)$.

Proof.

- within n/B of another frequency is O(k/B)
- close to boundary of the bucket is O(y)

Claim

For each $u \in supp(\hat{x})$ the probability that u is not reported is bounded by $O(k/B + \gamma)$.

Proof.

- within n/B of another frequency is O(k/B)
- close to boundary of the bucket is O(y)

Claim

For each $u \in supp(\hat{x})$ the probability that u is not reported is bounded by $O(k/B + \gamma)$.

Proof.

- within n/B of another frequency is O(k/B)
- close to boundary of the bucket is O(y)

Claim

For each $u \in supp(\hat{x})$ the probability that u is not reported is bounded by $O(k/B + \gamma)$.

Proof.

- within n/B of another frequency is O(k/B)
- close to boundary of the bucket is O(y)

Claim

For each $u \in supp(\hat{x})$ the probability that u is not reported is bounded by $O(k/B + \gamma)$.

Proof.

- within n/B of another frequency is O(k/B)
- close to boundary of the bucket is O(y)

Claim

For each $u \in supp(\hat{x})$ the probability that u is not reported is bounded by $O(k/B + \gamma)$.

Proof.

- within n/B of another frequency is O(k/B)
- close to boundary of the bucket is O(y)

Claim

For each $u \in supp(\hat{x})$ the probability that u is not reported is bounded by $O(k/B + \gamma)$.

Proof.

- within n/B of another frequency is O(k/B)
- close to boundary of the bucket is O(y)

Computing $\widehat{c}_{j \cdot n/B}$

Option 1 – directly compute FFT of $(x \cdot G)_{-T}, ..., (x \cdot G)_{T}$, $T = O((k/\gamma) \log n)$

- Can be done in time $O((k/\gamma)\log^2 n)$
- Computes too many samples of $\hat{x} * \hat{G}$

Computing $\widehat{c}_{j \cdot n/B}$

Option 1 – directly compute FFT of $(x \cdot G)_{-T}, ..., (x \cdot G)_{T}$, $T = O((k/\gamma) \log n)$

- Can be done in time $O((k/\gamma)\log^2 n)$
- Computes too many samples of $\hat{x} * \hat{G}$
- **Option 2** alias $x \cdot G$ to B bins first
 - Compute

$$b_i = \sum_{j \in [n/B]} x_{i+j \cdot B} G_{i+j \cdot B}$$

Compute FFT of b in time

$$O(B\log B) = O((k/\gamma)\log n)$$

- 1. Basic block: partial recovery
- 2. Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIAL RECOVERY $(x, C \cdot k, \frac{1}{16}, 1/\text{poly}(n))$

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY $(x, C \cdot k, \frac{1}{16}, 1/\text{poly}(n))$ PARTIALRECOVERY $(x, C \cdot k/2, \frac{1}{16} \cdot 2^{-1}, 1/\text{poly}(n))$

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY $(x, C \cdot k, \frac{1}{16}, 1/\text{poly}(n))$ PARTIALRECOVERY $(x, C \cdot k/2, \frac{1}{16} \cdot 2^{-1}, 1/\text{poly}(n))$

PARTIALRECOVERY($x, C \cdot k/4, \frac{1}{16} \cdot 4^{-1}, 1/\text{poly}(n)$)

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY $(x, C \cdot k, \frac{1}{16}, 1/\text{poly}(n))$ PARTIALRECOVERY $(x, C \cdot k/2, \frac{1}{16} \cdot 2^{-1}, 1/\text{poly}(n))$ PARTIALRECOVERY $(x, C \cdot k/4, \frac{1}{16} \cdot 4^{-1}, 1/\text{poly}(n))$ PARTIALRECOVERY $(x, C \cdot k/8, \frac{1}{16} \cdot 8^{-1}, 1/\text{poly}(n))$

. . .

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY($x, C \cdot k$, $\frac{1}{16}$, 1/poly(n)) PARTIALRECOVERY($x, C \cdot k/2, \frac{1}{16} \cdot 2^{-1}, 1/\text{poly}(n)$) PARTIALRECOVERY($x, C \cdot k/4, \frac{1}{16} \cdot 4^{-1}, 1/\text{poly}(n)$) PARTIALRECOVERY($x, C \cdot k/8, \frac{1}{16} \cdot 8^{-1}, 1/\text{poly}(n)$)

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY($x, 10 \cdot k$, $\frac{1}{16}$, 1/poly(n))

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY $(x, 10 \cdot k, \frac{1}{16}, 1/\text{poly}(n))$ PARTIALRECOVERY $(x, 10 \cdot k/2, \frac{1}{16} \cdot 2^{-1}, 1/\text{poly}(n))$

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY $(x, 10 \cdot k, \frac{1}{16}, 1/\text{poly}(n))$ PARTIALRECOVERY $(x, 10 \cdot k/2, \frac{1}{16} \cdot 2^{-1}, 1/\text{poly}(n))$

PARTIALRECOVERY($x, 10 \cdot k/4, \frac{1}{16} \cdot 4^{-1}, 1/\text{poly}(n)$)

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY $(x, 10 \cdot k, \frac{1}{16}, 1/\text{poly}(n))$ PARTIALRECOVERY $(x, 10 \cdot k/2, \frac{1}{16} \cdot 2^{-1}, 1/\text{poly}(n))$ PARTIALRECOVERY $(x, 10 \cdot k/4, \frac{1}{16} \cdot 4^{-1}, 1/\text{poly}(n))$ PARTIALRECOVERY $(x, 10 \cdot k/8, \frac{1}{16} \cdot 8^{-1}, 1/\text{poly}(n))$

. . .

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY $(x, 10 \cdot k, \frac{1}{16}, 1/\text{poly}(n))$ PARTIALRECOVERY $(x, 10 \cdot k/2, \frac{1}{16} \cdot 2^{-1}, 1/\text{poly}(n))$ PARTIALRECOVERY $(x, 10 \cdot k/4, \frac{1}{16} \cdot 4^{-1}, 1/\text{poly}(n))$ PARTIALRECOVERY $(x, 10 \cdot k/8, \frac{1}{16} \cdot 8^{-1}, 1/\text{poly}(n))$

Modified PARTIALRECOVERY

PARTIALRECOVERY($B, \alpha, List$)

Choose random *b*, odd σ

Define $x'_i = x_{\sigma j} \omega^{jb}$ $X_{i}^{\prime\prime} = X_{i+1}^{\prime}$ Compute $\hat{c}'_{i,\frac{n}{2}}$, $j \in [B]$, where $c' = x' \cdot G$ $\widehat{c}_{i,\frac{n}{2}}^{\prime\prime}, j \in [B]$, where $c^{\prime\prime} = x^{\prime\prime} \cdot G$ **For** *j* ∈ [*B*] If $|\hat{c}'_{i\cdot n/B}| > 1/2$ Decode from $\hat{c}'_{j\cdot n/B}, \hat{c}''_{j\cdot n/B}$ (Two-point sampling) End End

PARTIAL RECOVERY – updating the bins

Previously located elements are still in the signal...

Subtract recovered elements from the bins

PARTIAL RECOVERY – updating the bins

Previously located elements are still in the signal...

Subtract recovered elements from the bins

Full algorithm

List $\leftarrow \phi$ For t = 0 to $\log k$ $B_t \leftarrow Ck/4^t$ \triangleright # of buckets to hash to $\gamma_t \leftarrow 1/(C2^t)$ \triangleright sharpness of filter List \leftarrow List + PARTIALRECOVERY($B_t, \gamma_t, List$) End

Full algorithm – analysis Let

 $\hat{e}_t \leftarrow \text{contents of the list after stage } t.$

Define 'good event' \mathcal{E}_t as

$$\mathscr{E}_t := \left\{ ||\widehat{x} - \widehat{e}_t||_0 \le k/8^t \right\}$$

Conditional on \mathcal{E}_{t-1} , for every $f \in [n]$ the probability of failure to recover is at most the sum of

Full algorithm – analysis Let

 $\hat{e}_t \leftarrow \text{contents of the list after stage } t.$

Define 'good event' \mathcal{E}_t as

$$\mathscr{E}_t := \left\{ ||\widehat{x} - \widehat{e}_t||_0 \le k/8^t \right\}$$

Conditional on \mathscr{E}_{t-1} , for every $f \in [n]$ the probability of failure to recover is at most the sum of

probability of collision with another element, which is no more than

$$\frac{k/8^t}{B_t} = \frac{k/8^t}{C \cdot k/4^t} \le \frac{1}{C \cdot 2^t}$$

Full algorithm – analysis Let

 $\hat{e}_t \leftarrow \text{contents of the list after stage } t.$

Define 'good event' \mathcal{E}_t as

$$\mathscr{E}_t := \left\{ ||\widehat{x} - \widehat{e}_t||_0 \le k/8^t \right\}$$

Conditional on \mathscr{E}_{t-1} , for every $f \in [n]$ the probability of failure to recover is at most the sum of

probability of collision with another element, which is no more than

$$\frac{k/8^t}{B_t} = \frac{k/8^t}{C \cdot k/4^t} \le \frac{1}{C \cdot 2^t}$$

probability of being hashed to the non-flat region, which is no more than

$$O(\gamma_t) = O\left(\frac{1}{C2^t}\right)$$

Full algorithm - analysis

Define 'good event' \mathcal{E}_t as

$$\mathscr{E}_t := \left\{ ||\widehat{x} - \widehat{e}_t||_0 \le k/8^t \right\}$$

Then

 $\mathbf{Pr}[\mathscr{E}_t | \mathscr{E}_{t-1}] \leq \mathbf{Pr}[\text{fraction of failures is} \geq 1/8 | \mathscr{E}_{t-1}] \leq O\left(\frac{1}{C \cdot 2^t}\right)$

Full algorithm – analysis

Define 'good event' \mathcal{E}_t as

$$\mathscr{E}_t := \left\{ ||\widehat{x} - \widehat{e}_t||_0 \le k/8^t \right\}$$

Then

$$\mathbf{Pr}[\mathscr{E}_t | \mathscr{E}_{t-1}] \leq \mathbf{Pr}[\text{fraction of failures is} \geq 1/8 | \mathscr{E}_{t-1}] \leq O\left(\frac{1}{C \cdot 2^t}\right)$$

So for a sufficiently large C > 0

$$\mathbf{Pr}[\overline{\mathscr{E}}_1 \vee \ldots \vee \overline{\mathscr{E}}_{\log k}] \le O(1/C) \cdot (1/2 + 1/4 + \ldots) = O(1/C) < 1/10$$

Full algorithm – analysis

List
$$\leftarrow \emptyset$$

For $t = 1$ to $\log k$
 $B_t \leftarrow Ck/4^t$
 $\gamma_t \leftarrow 1/(C2^t)$
List $\leftarrow List + PARTIALRECOVERY(B_t, \gamma_t, List)$
End

Time complexity

- ► DFT: O(k log n) + O((k/4) log n) + ... = O(k log n)
- List update: k · log n

Sample complexity

List $\leftarrow \phi$ For t = 1 to $\log k$ $B_t \leftarrow Ck/4^t$ $\gamma_t \leftarrow 1/(C2^t)$ List $\leftarrow List + PARTIALRECOVERY(B_t, \gamma_t, List)$ End

Sample complexity $O(k \log n) + O((k/4) \log n) + ... = O(k \log n)$

Suboptimal: sufficient to measure $x_0, x_1, ..., x_{2k}$ to reconstruct \hat{x} if supp $(\hat{x}) \le k$ (exercise).

Next:

recovery in the noisy setting

$$||\widehat{x} - \widehat{y}||^2 \le C \cdot \min_{k-\text{sparse }\widehat{z}} ||\widehat{x} - \widehat{z}||^2$$

$$||\widehat{x} - \widehat{y}||^2 \le C \cdot \min_{k-\text{sparse }\widehat{z}} ||\widehat{x} - \widehat{z}||^2$$

$$\begin{aligned} |\widehat{x}_1| \geq \ldots \geq |\widehat{x}_k| \geq \\ |\widehat{x}_{k+1}| \geq |\widehat{x}_{k+2}| \geq \ldots \end{aligned}$$

$$\operatorname{Err}_{k}^{2}(\widehat{x}) = \sum_{j=k+1}^{n} |\widehat{x}_{j}|^{2}$$

Residual error bounded by noise energy $\operatorname{Err}_k^2(\hat{x})$

$$||\widehat{x} - \widehat{y}||^2 \le C \cdot \operatorname{Err}_k^2(\widehat{x})$$

$$|\widehat{x}_1| \ge \dots \ge |\widehat{x}_k| \ge \\ |\widehat{x}_{k+1}| \ge |\widehat{x}_{k+2}| \ge \dots$$

$$\operatorname{Err}_{k}^{2}(\widehat{x}) = \sum_{j=k+1}^{n} |\widehat{x}_{j}|^{2}$$

Residual error bounded by noise energy $\operatorname{Err}_{k}^{2}(\hat{x})$

$$||\widehat{x} - \widehat{y}||^2 \le C \cdot \operatorname{Err}_k^2(\widehat{x})$$

$$|\widehat{x}_1| \ge \dots \ge |\widehat{x}_k| \ge \\ |\widehat{x}_{k+1}| \ge |\widehat{x}_{k+2}| \ge \dots$$

$$\operatorname{Err}_{k}^{2}(\widehat{x}) = \sum_{j=k+1}^{n} |\widehat{x}_{j}|^{2}$$

Residual error bounded by noise energy $\operatorname{Err}_{k}^{2}(\hat{x})$

Sufficient to ensure that most elements are below average noise level:

$$|\widehat{x}_i - \widehat{y}_i|^2 \le c \cdot \operatorname{Err}_k^2(\widehat{x})/k =: \mu^2$$

Sufficient to ensure that most elements are below average noise level:

$$|\widehat{x}_i - \widehat{y}_i|^2 \le c \cdot \operatorname{Err}_k^2(\widehat{x})/k = c \cdot \mu^2$$

Sufficient to ensure that most elements are below average noise level:

$$|\widehat{x}_i - \widehat{y}_i| \le C\mu$$

Next:

1. Full algorithm for noisy setting

Next:

1. Full algorithm for noisy setting

Basic block (noiseless setting)

Assume

- n is a power of 2
- *x̂* contains at most *k* coefficients with polynomial precision (e.g. *x̂_f* in {−*n*^{O(1)},...,*n*^{O(1)}})

Then there exists an $O(k \log n)$ time algorithm that

- outputs at most k potential coefficients
- outputs each nonzero \hat{x}_f correctly with probability at least 1β for a constant $\beta > 0$

Basic block (noisy setting)

Assume

- n is a power of 2
- ➤ x̂ contains at most k coefficients with polynomial precision (e.g. x̂_f in {-n^{O(1)},...,n^{O(1)}}), plus noise

Then there exists an $O(k \log n)$ time algorithm that

- outputs at most k potential coefficients
- outputs each nonzero x̂_f that is above noise level correctly with probability at least 1 − β for a constant β > 0

Let *G* be a $(B, \delta/n, \gamma)$ -flat window function:

- B buckets
- flat region of width 1 γ
- leakage $\leq \delta/n = 1/n^{O(1)}$

Such G can be constructed with

 $\operatorname{supp}(G) = O((k/\gamma)\log n)$

PARTIALRECOVERY - algorithm

Main idea: filter, then run 1-sparse algorithm on each subproblem

PARTIAL RECOVERY (x, B, γ, δ)

Choose random $b \in [n]$ and odd $\sigma \in \{1, 2, ..., n\}$

Define
$$x'_{j} \leftarrow x_{\sigma j} \omega^{jo}$$

 $x''_{j} \leftarrow x'_{j+1}$
Compute $\widehat{c}'_{j \cdot \frac{n}{B}}, j \in [B]$, where $c' = x' \cdot G$
 $\widehat{c}''_{j \cdot \frac{n}{B}}, j \in [B]$, where $c'' = x'' \cdot G$

••

Run 1-sparse decoding one \hat{c}', \hat{c}''

PARTIALRECOVERY - algorithm

Recovering 5-sparse signal \hat{x} from measurements of x

PARTIALRECOVERY - algorithm

Recovering 5-sparse signal \hat{x} from measurements of x

PARTIAL RECOVERY - algorithm

Recovering 5-sparse signal \hat{x} from measurements of x

PARTIAL RECOVERY - algorithm

Recovering 5-sparse signal \hat{x} from measurements of x

PARTIALRECOVERY (noiseless setting)

Choose random $b \in [n]$ and odd $\sigma \in \{1, 2, ..., n\}$

Define $x'_{j} \leftarrow x_{\sigma j} \omega^{jb}$ $x''_{j} \leftarrow x'_{j+1}$ Compute $\widehat{c}'_{j \cdot \frac{n}{B}}, j \in [B]$, where $c' = x' \cdot G$ $\widehat{c}''_{j \cdot \frac{n}{B}}, j \in [B]$, where $c'' = x'' \cdot G$ For $j \in [B]$ If $|\widehat{c}'_{i \cdot n/B}| > 1/2$

If $|\hat{c}'_{j\cdot n/B}| > 1/2$ Decode from $\hat{c}'_{j\cdot n/B}, \hat{c}''_{j\cdot n/B}$ (Two-point sampling) End End

PARTIALRECOVERY (noisy setting)

Choose random $b \in [n]$ and odd $\sigma \in \{1, 2, ..., n\}$

Define $x'_{j} \leftarrow x_{\sigma j} \omega^{jb}$ $x''_{j} \leftarrow x'_{j+1}$ Compute $\widehat{c}'_{j \cdot \frac{n}{B}}, j \in [B]$, where $c' = x' \cdot G$ $\widehat{c}''_{j \cdot \frac{n}{B}}, j \in [B]$, where $c'' = x'' \cdot G$

For $j \in [B]$ If $|\hat{c}'_{j \cdot n/B}| > 1/2$ Decode from $\hat{c}'_{j \cdot n/B}, \hat{c}''_{j \cdot n/B}$ (Two-point sampling) End End

PARTIALRECOVERY (noisy setting)

Choose random $b \in [n]$ and odd $\sigma \in \{1, 2, ..., n\}$

Define
$$x_j^{\mathbf{s},\mathbf{0},\mathbf{r}} \leftarrow x_{\sigma(j+\mathbf{r})} \omega^{(j+\mathbf{r})b}$$

 $x_j^{\mathbf{s},\mathbf{1},\mathbf{r}} \leftarrow x_{j+\mathbf{n}/2^{\mathbf{s}+1}}^{\mathbf{s},\mathbf{1},\mathbf{r}}$

For $s = 0, \dots, \log_2 n$ $r = 1, \dots, O(\log \log n)$

Compute $(\widehat{x^{s,0,r} \cdot G})_{j \cdot n/B}$, for $j \in [B]$ $(\widehat{x^{s,1,r} \cdot G})_{j \cdot n/B}$, for $j \in [B]$

Initialize list $L \leftarrow \emptyset$

For *j* ∈ [*B*]

Decode from $\hat{x}_{j \cdot n/B}^{s,*,r}$, add to list *L* (output *B* elements) (As in lecture 1)

End

Estimate values of $i \in L$, output top 3k

Suppose that *x* is approximately 1-sparse, i.e.

$$\sum_{f \neq f^*} |\widehat{x}_f|^2 \le \frac{\varepsilon}{\varepsilon} |\widehat{x}_{f^*}|^2 \quad \text{(small noise)}$$

for some small constant ϵ .

Then

1. can find f^* using $O(\log n \cdot \log \log n)$ runtime $O(\log n \cdot \log \log n)$ samples with $\ge 1 - 1/4$ success probability

Suppose that *x* is approximately 1-sparse, i.e.

$$\sum_{f \neq f^*} |\widehat{x}_f|^2 \le \frac{\varepsilon}{\varepsilon} |\widehat{x}_{f^*}|^2 \quad \text{(small noise)}$$

for some small constant ϵ .

Then

1. can find f^* using $O(\mathbf{t} \cdot \log n \cdot \log \log n)$ runtime $O(\mathbf{t} \cdot \log n \cdot \log \log n)$ samples with $\geq 1 - 4^{-t}$ success probability

Suppose that x is approximately 1-sparse, i.e.

$$\sum_{f \neq f^*} |\widehat{x}_f|^2 \le \frac{\varepsilon}{\varepsilon} |\widehat{x}_{f^*}|^2 \quad \text{(small noise)}$$

for some small constant ϵ .

Then

1. can find f^* using $O(\mathbf{t} \cdot \log n \cdot \log \log n)$ runtime $O(\mathbf{t} \cdot \log n \cdot \log \log n)$ samples with $\geq 1 - 4^{-t}$ success probability

Need to ensure that noise is small in most subproblems

Suppose that *x* is approximately 1-sparse, i.e.

$$\sum_{f \neq f^*} |\widehat{x}_f|^2 \le \frac{\varepsilon}{\varepsilon} |\widehat{x}_{f^*}|^2 \quad \text{(small noise)}$$

for some small constant ϵ .

Then

1. can find f^* using $O(\log(1/\gamma) \cdot \log n \cdot \log \log n)$ runtime $O(\log(1/\gamma) \cdot \log n \cdot \log \log n)$ samples with $\ge 1 - \gamma$ success probability

Need to ensure that noise is small in most subproblems

For every head element $i \in [k]$ and every tail element $j \in [n] \setminus [k]$ **Pr**[*i* and *j* hash to the same bucket] = O(1/B)

Let
$$\mu^2 := \frac{1}{k} \min_{k-\text{sparse } y} ||x-y||_2^2 = \frac{1}{k} \sum_{j=k+1}^n |x_j|^2$$
 (average noise level)

For every head element $i \in [k]$ and every tail element $j \in [n] \setminus [k]$

 $\Pr[h(i) = h(j)] = O(1/B)$
Let
$$\mu^2 := \frac{1}{k} \min_{\substack{k-\text{sparse } y}} ||x-y||_2^2 = \frac{1}{k} \sum_{\substack{j=k+1}}^n |x_j|^2$$
 (average noise level)

$$\mathbf{E}\left[\sum_{j=k+1}^{n}|\widehat{x}_{j}|^{2}\cdot\mathbf{Pr}[\mathbf{h}(i)=\mathbf{h}(j)]\right]=\mu^{2}\cdot O(k/B)$$

Let
$$\mu^2 := \frac{1}{k} \min_{\substack{k-\text{sparse } y}} ||x-y||_2^2 = \frac{1}{k} \sum_{\substack{j=k+1}}^n |x_j|^2$$
 (average noise level)

$$\mathbf{E}\left[\sum_{j=k+1}^{n}|\widehat{x}_{j}|^{2}\cdot\mathbf{Pr}[\mathbf{h}(i)=\mathbf{h}(j)]\right]=\mu^{2}\cdot O(k/B)$$

$$\mathbf{E}\left[\sum_{j=k+1}^{n}|\widehat{x}_{j}|^{2}\cdot\mathbf{Pr}[\mathbf{h}(i)=\mathbf{h}(j)]\right]=\mu^{2}\cdot O(k/B)$$

$$\mathbf{E}\left[\sum_{j=k+1}^{n}|\widehat{x}_{j}|^{2}\cdot\mathbf{Pr}[\mathbf{h}(i)=\mathbf{h}(j)]\right]=\mu^{2}\cdot O(k/B)$$

$$\mathbf{E}\left[\sum_{j=k+1}^{n}|\widehat{x}_{j}|^{2}\cdot\mathbf{Pr}[\mathbf{h}(i)=\mathbf{h}(j)]\right]=\mu^{2}\cdot O(k/B)$$

$$\mathbf{E}\left[\sum_{j=k+1}^{n}|\widehat{x}_{j}|^{2}\cdot\mathbf{Pr}[\mathbf{h}(i)=\mathbf{h}(j)]\right]=\mu^{2}\cdot O(k/B)$$

So by Markov's inequality for every head element $i \in [k]$

$$\Pr\left[\sum_{j\in[k+1:n] \text{ s.t. } \mathbf{h}(i)=\mathbf{h}(j)} |\widehat{x}_j|^2\right] > \varepsilon\mu^2] = O(k/(\varepsilon B))$$

Basic block analysis (noiseless setting)

Claim

For each $u \in supp(\hat{x})$ the probability that u is not reported is bounded by $O(k/B + \gamma)$.

- being mapped within n/B of another frequency is O(k/B)
- being mapped close to boundary of the bucket is O(y)

Basic block analysis (noisy setting)

Claim

For each $u \in supp(\hat{x})$ with $|\hat{x}_u|^2 \ge \mu^2$ the probability that u is not reported is bounded by $O(k/B + \gamma)$.

- being mapped within n/B of another frequency is O(k/B)
- being mapped close to boundary of the bucket is O(y)
- colliding with too many tail elements is O(k/B)

Basic block analysis (noisy setting)

Claim

For each $u \in supp(\hat{x})$ with $|\hat{x}_u|^2 \ge \mu^2$ the probability that u is not reported is bounded by $O(k/B + \gamma)$.

- being mapped within n/B of another frequency is O(k/B)
- being mapped close to boundary of the bucket is O(y)
- colliding with too many tail elements is O(k/B)
- decoding failure is O(γ)

Basic block analysis (noisy setting)

Claim

For each $u \in supp(\hat{x})$ with $|\hat{x}_u|^2 \ge \mu^2$ the probability that u is not reported is bounded by $O(k/B + \gamma)$.

- being mapped within n/B of another frequency is O(k/B)
- being mapped close to boundary of the bucket is O(y)
- colliding with too many tail elements is O(k/B)
- decoding failure is O(γ)

PARTIALRECOVERY (noisy setting)

Choose random $b \in [n]$ and odd $\sigma \in \{1, 2, ..., n\}$

Define
$$x_j^{\mathbf{s},\mathbf{0},\mathbf{r}} \leftarrow x_{\sigma(j+\mathbf{r})} \omega^{(j+\mathbf{r})b}$$

 $x_j^{\mathbf{s},\mathbf{1},\mathbf{r}} \leftarrow x_{j+\mathbf{n}/2^{\mathbf{s}+1}}^{\mathbf{s},\mathbf{1},\mathbf{r}}$

For $s = 0, \dots, \log_2 n$ $r = 1, \dots, O(\log \log n)$

Compute $(\widehat{x^{s,0,r} \cdot G})_{j \cdot n/B}$, for $j \in [B]$ $(\widehat{x^{s,1,r} \cdot G})_{j \cdot n/B}$, for $j \in [B]$

Initialize list $L \leftarrow \emptyset$

For *j* ∈ [*B*]

End

Decode from $\hat{x}_{j \cdot n/B}^{s,*,r}$, add to list *L* (output *B* elements) (As in lecture 1)

Estimate values of $i \in L$, output top 3k

PARTIALRECOVERY (noisy setting)

Choose random $b \in [n]$ and odd $\sigma \in \{1, 2, ..., n\}$

Define
$$x_j^{\mathbf{s},\mathbf{0},\mathbf{r}} \leftarrow x_{\sigma(j+\mathbf{r})} \omega^{(j+\mathbf{r})b}$$

 $x_j^{\mathbf{s},\mathbf{1},\mathbf{r}} \leftarrow x_{j+\mathbf{n}/2^{\mathbf{s}+1}}^{\mathbf{s},\mathbf{1},\mathbf{r}}$

For $s = 0, \dots, \log_2 n$ $r = 1, \dots, O(\log \log n)$

Compute $(\widehat{x^{s,0,r} \cdot G})_{j \cdot n/B}$, for $j \in [B]$ $(\widehat{x^{s,1,r} \cdot G})_{j \cdot n/B}$, for $j \in [B]$

Initialize list $L \leftarrow \emptyset$

For *j* ∈ [*B*]

Decode from $\hat{x}_{j \cdot n/B}^{s,*,r}$, add to list *L* (output *B* elements) (As in lecture 1)

End

Estimate values of $i \in L$, output top 3k

Given $f^* \in [n]$,

1. can find w_{f^*} (estimate for \hat{x}_{f^*}) in O(1) time and samples such that

$$|W_{f^*} - \widehat{x}_{f^*}|^2 \leq 3\varepsilon |\widehat{x}_{f^*}|^2$$

with probability 1 - 1/100

Given $f^* \in [n]$,

1. can find w_{f^*} (estimate for \hat{x}_{f^*}) in O(t) time and samples such that

$$|W_{f^*} - \widehat{x}_{f^*}|^2 \leq 3\varepsilon |\widehat{x}_{f^*}|^2$$

with probability $1 - 2^{-t}$

Given $f^* \in [n]$,

1. can find w_{f^*} (estimate for \hat{x}_{f^*}) in $O(\log n)$ time and samples such that

$$|W_{f^*} - \widehat{X}_{f^*}|^2 \le 3\varepsilon |\widehat{X}_{f^*}|^2$$

with probability $1 - 1/n^2$

Given $f^* \in [n]$,

1. can find w_{f^*} (estimate for \hat{x}_{f^*}) in $O(\log n)$ time and samples such that

$$|W_{f^*} - \widehat{X}_{f^*}|^2 \le 3\varepsilon |\widehat{X}_{f^*}|^2$$

with probability $1 - 1/n^2$

Let L denote the list of located elements

Given $f^* \in [n]$,

1. can find w_{f^*} (estimate for \hat{x}_{f^*}) in $O(\log n)$ time and samples such that

$$|W_{f^*} - \widehat{X}_{f^*}|^2 \le 3\varepsilon |\widehat{X}_{f^*}|^2$$

with probability $1 - 1/n^2$

Let L denote the list of located elements

Given $f^* \in [n]$,

1. can find w_{f^*} (estimate for \hat{x}_{f^*}) in $O(\log n)$ time and samples such that

$$|W_{f^*} - \widehat{x}_{f^*}|^2 \leq 3\varepsilon |\widehat{x}_{f^*}|^2$$

with probability $1 - 1/n^2$

Let *L* denote the list of located elements Using $O(k \log^2 n)$ samples and runtime, can find w_l such that

 $|W_f - \widehat{X}_f|^2 \le 3\varepsilon |\widehat{X}_f|^2$

for all $f \in L$.

Let $L' \subseteq L$ denote list of top 3k values in L (in terms of magnitude)

Let C > 0 be a sufficiently large constant.

PARTIAL RECOVERY $(x, C \cdot k, \frac{1}{16}, 1/\text{poly}(n))$

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY $(x, C \cdot k, \frac{1}{16}, 1/\text{poly}(n))$ PARTIALRECOVERY $(x, C \cdot k/2, \frac{1}{16} \cdot 2^{-1}, 1/\text{poly}(n))$

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY $(x, C \cdot k, \frac{1}{16}, 1/\text{poly}(n))$ PARTIALRECOVERY $(x, C \cdot k/2, \frac{1}{16} \cdot 2^{-1}, 1/\text{poly}(n))$

PARTIALRECOVERY($x, C \cdot k/4, \frac{1}{16} \cdot 4^{-1}, 1/\text{poly}(n)$)

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY $(x, C \cdot k, \frac{1}{16}, 1/\text{poly}(n))$ PARTIALRECOVERY $(x, C \cdot k/2, \frac{1}{16} \cdot 2^{-1}, 1/\text{poly}(n))$ PARTIALRECOVERY $(x, C \cdot k/4, \frac{1}{16} \cdot 4^{-1}, 1/\text{poly}(n))$ PARTIALRECOVERY $(x, C \cdot k/8, \frac{1}{16} \cdot 8^{-1}, 1/\text{poly}(n))$

. . .

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY($x, C \cdot k$, $\frac{1}{16}$, 1/poly(n)) PARTIALRECOVERY($x, C \cdot k/2, \frac{1}{16} \cdot 2^{-1}, 1/\text{poly}(n)$) PARTIALRECOVERY($x, C \cdot k/4, \frac{1}{16} \cdot 4^{-1}, 1/\text{poly}(n)$) PARTIALRECOVERY($x, C \cdot k/8, \frac{1}{16} \cdot 8^{-1}, 1/\text{poly}(n)$)

Permute spectrum

- Hash to 8 buckets
- Recover well-hashed coeffs
- Permute spectrum
- Hash to 4 buckets

. . .

Permute spectrum Hash to 8 buckets Recover well-hashed coeffs

Permute spectrum

Hash to 4 buckets

. . .

Permute spectrum

- Hash to 8 buckets
- Recover well-hashed coeffs
- Permute spectrum
- Hash to 4 buckets

. . .

Permute spectrum

- Hash to 8 buckets
- Recover well-hashed coeffs
- Permute spectrum
- Hash to 4 buckets

. . .

Permute spectrum

- Hash to 8 buckets
- Recover well-hashed coeffs
- Permute spectrum
- Hash to 4 buckets

. . .

Recover well-hashed coeffs

. . .

Recover well-hashed coeffs

. . .

Recover well-hashed coeffs

. . .

Permute spectrum Hash to 8 buckets Recover well-hashed coeffs

Permute spectrum

Hash to 4 buckets

. . .

Permute spectrum

- Hash to 8 buckets
- Recover well-hashed coeffs
- Permute spectrum
- Hash to 4 buckets

. . .

Permute spectrum

- Hash to 8 buckets
- Recover well-hashed coeffs
- Permute spectrum
- Hash to 4 buckets

. . .

Permute spectrum

Hash to 8 buckets

Recover well-hashed coeffs

Permute spectrum

Hash to 4 buckets

. . .

Permute spectrum

Hash to 8 buckets

Recover well-hashed coeffs

Permute spectrum

Hash to 4 buckets

. . .

Full algorithm

List $\leftarrow \phi$ For t = 1 to $\log k$ $B_t \leftarrow Ck/4^t$ $\gamma_t \leftarrow 1/(C2^t)$ List $\leftarrow List + PARTIALRECOVERY(B_t, \gamma_t, List)$ End

Time complexity:

- ► DFT: $O(k \log^2 n(\log \log n)) + O((k/4) \log^2 n \log \log n) + ... = O(k \log^2 n \log \log n)$
- List update: k · log n

Sample complexity

List $\leftarrow \emptyset$ For t = 1 to $\log k$ $B_t \leftarrow Ck/4^t$ $\gamma_t \leftarrow 1/(C2^t)$ List $\leftarrow List + PARTIALRECOVERY(B_t, \gamma_t, List)$ End

Sample complexity: $O(k \log^2 n(\log \log n)) + O((k/4) \log^2 n(\log \log n)) + ... = O(k \log^2 n \log \log n)$

Suboptimal (?): a lower bound of $\Omega(k \log(n/k))$ known

Runtime and sample complexity

Noisy: runtime $O(k \log^2 n)$, sample complexity $O(k \log^2 n \log \log n)$

O(log log n) can be removed, see Hassanieh-Indyk-Katabi-Price'STOC12

Sample complexity lower bound: $\Omega(k \log(n/k))$ (Do Ba, Indyk, Price, Woodruff'SODA10)

Next lecture:

```
O(k \log n (\log \log n)^{O(1)}) samples, O(k \log^2 n (\log \log n)^{O(1)}) runtime (Indyk-Kapralov-Price'SODA14)
```

and

 $O(k \log n)$ samples and $O(n \log^3 n)$ runtime (Indyk-Kapralov'FOCS14)