Sparse Fourier Transform
(lecture 4)

Michael Kapralov

\(^1\)IBM Watson → EPFL

St. Petersburg CS Club
November 2015
Given $x \in \mathbb{C}^n$, compute the Discrete Fourier Transform of x:

$$
\hat{x}_i = \frac{1}{n} \sum_{j \in [n]} x_j \omega^{-ij},
$$

where $\omega = e^{2\pi i / n}$ is the n-th root of unity.
Given $x \in \mathbb{C}^n$, compute the Discrete Fourier Transform of x:

$$\hat{x}_i = \frac{1}{n} \sum_{j \in [n]} x_j \omega^{-ij},$$

where $\omega = e^{2\pi i/n}$ is the n-th root of unity.

Goal: find the top k coefficients of \hat{x} approximately

In previous lectures:

- exactly k-sparse: $O(k \log n)$ runtime and samples
Given $x \in \mathbb{C}^n$, compute the Discrete Fourier Transform of x:

$$\hat{x}_i = \frac{1}{n} \sum_{j \in [n]} x_j \omega^{-ij},$$

where $\omega = e^{2\pi i / n}$ is the n-th root of unity.

Goal: find the top k coefficients of \hat{x} approximately

In previous lectures:

- exactly k-sparse: $O(k \log n)$ runtime and samples
- approximately k-sparse: $O(k \log^2 n (\log \log n))$ runtime and samples

This lecture, for approximately k-sparse case:

- $k \log n \log^{O(1)} \log n$ samples in $k \log^2 n \log^{O(1)} \log n$ time;
- $O(k \log n)$ samples (optimal).
Improvements?

List ← φ

For \(t = 1 \) to \(\log k \)

\(B_t ← Ck/4^t \)

\(γ_t ← 1/(C2^t) \)

\[List ← List + \text{PARTIALRECOVERY}(B_t, γ_t, List) \]

End

Summary:

- \(\Pi \) independent invocations of \text{PARTIALRECOVERY}: use fresh samples in every iteration
- \(\Pi \) reduce (approximate) sparsity at geometric rate
- \(\Pi \) need sharp filters to reduce sparsity
- \(\Omega(\log n) \) time and sparsity because of sharpness
Improvements?

List ← φ

For $t = 1$ to $\log k$

$B_t ← Ck/4^t$

$\gamma_t ← 1/(C2^t)$

$List ← List + \text{PARTIALRECOVERY}(B_t, \gamma_t, List)$

End

Summary:

- independent invocations of PARTIALRECOVERY: use fresh samples in every iteration
Improvements?

List ← \emptyset

\textbf{For} \ t = 1 \ \textbf{to} \ \log k \\
\quad B_t ← Ck / 4^t \\
\quad γ_t ← 1/(C2^t) \\
\quad List ← List + \textsc{PartialRecovery}(B_t, γ_t, List) \\
\textbf{End}

Summary:

\begin{itemize}
 \item independent invocations of \textsc{PartialRecovery}: use fresh samples in every iteration
 \item reduce (approximate) sparsity at geometric rate
\end{itemize}
Improvements?

\[\text{List} \leftarrow \emptyset \]
\[\text{For } t = 1 \text{ to } \log k \]
\[B_t \leftarrow Ck/4^t \]
\[\gamma_t \leftarrow 1/(C2^t) \]
\[\text{List} \leftarrow \text{List} + \text{PARTIALRECOVERY}(B_t, \gamma_t, \text{List}) \]
\[\text{End} \]

Summary:
- independent invocations of PARTIALRECOVERY: use fresh samples in every iteration
- reduce (approximate) sparsity at geometric rate
- need sharp filters to reduce sparsity
Improvements?

\[
\begin{align*}
\text{List} & \leftarrow \emptyset \\
\text{For } t = 1 \text{ to } \log k & \\
B_t & \leftarrow Ck/4^t \\
\gamma_t & \leftarrow 1/(C2^t) \\
\text{List} & \leftarrow \text{List} + \text{PARTIALRECOVERY}(B_t, \gamma_t, \text{List})
\end{align*}
\]

End

Summary:

- independent invocations of PARTIALRECOVERY: use fresh samples in every iteration
- reduce (approximate) sparsity at geometric rate
- need sharp filters to reduce sparsity
- lose \(\Omega(\log n) \) time and sparsity because of sharpness
Why not use simpler filters with smaller support?

Let

\[
G_j := \begin{cases} \frac{1}{B+1} & \text{if } j \in [-B/2, B/2] \\ 0 & \text{o.w.} \end{cases}
\]

\(\text{supp}(G) = B \approx k\) as opposed to \(B \approx k \log n\), but **buckets leak**.
Why not use simpler filters with smaller support?

Let

\[G_j := \begin{cases}
\frac{1}{B+1} & \text{if } j \in [-B/2, B/2] \\
0 & \text{otherwise (o.w.)}
\end{cases} \]

supp(G) = \(B \approx k \) as opposed to \(B \approx k \log n \), but buckets leak

Can only identify and approximate elements of value at least
\(\approx \| \hat{x} \|_2^2 / k \), and estimate up to \(\approx \| \hat{x} \|_2^2 / k \) additive error, so need to repeat \(\Omega(\log n) \) times
Sample complexity

Sample complexity = number of samples accessed in time domain.
In some applications at least as important as runtime.

Shi-Andronesi-Hassanieh-Ghazi-Katabi-Adalsteinsson’
ISMRRM’13
Sample complexity

Sample complexity = number of samples accessed in time domain. In some applications at least as important as runtime

Shi-Andronesi-Hassanieh-Ghazi-Katabi-Adalsteinsson’
ISMRM’13

Given access to $x \in \mathbb{C}^n$, find \hat{y} such that

$$||\hat{x} - \hat{y}||^2 \leq C \cdot \min_{k \text{-sparse}} \hat{z} ||\hat{x} - \hat{z}||^2$$

Use smallest possible number of samples?
Uniform bounds (for all):

- Candes-Tao’06
- Rudelson-Vershynin’08
- Cheraghchi-Guruswami-Velingker’12
- Bourgain’14
- Haviv-Regev’15

Non-uniform bounds (for each):

- Goldreich-Levin’89
- Kushilevitz-Mansour’91, Mansour’92
- Gilbert-Guha-Indyk-Muthukrishnan-Strauss’02
- Gilbert-Muthukrishnan-Strauss’05
- Hassanieh-Indyk-Katabi-Price’12a
- Hassanieh-Indyk-Katabi-Price’12b

Deterministic, $\Omega(n)$ runtime

- $O(k \log^2 k \log n)$

Randomized, $O(k \cdot \text{poly}(\log n))$ runtime

- $O(k \log^2 n)$

Lower bound: $\Omega(k \log(n/k))$ for non-adaptive algorithms

- Do-Ba-Indyk-Price-Woodruff’10
Uniform bounds (for all):

- Candes-Tao’06
- Rudelson-Vershynin’08
- Cheraghchi-Guruswami-Velingker’12
- Bourgain’14
- Haviv-Regev’15

Non-uniform bounds (for each):

- Goldreich-Levin’89
- Kushilevitz-Mansour’91, Mansour’92
- Gilbert-Guha-Indyk-Muthukrishnan-Strauss’02
- Gilbert-Muthukrishnan-Strauss’05
- Hassanieh-Indyk-Katabi-Price’12a
- Hassanieh-Indyk-Katabi-Price’12b

Deterministic, $\Omega(n)$ runtime

$O(k \log^2 n \log n)$

Randomized, $O(k \cdot \text{poly}(\log n))$ runtime

$O(k \log^2 n)$

Lower bound: $\Omega(k \log(n/k))$ for non-adaptive algorithms

Do-Ba-Indyk-Price-Woodruff’10

Theorem

There exists an algorithm for ℓ_2/ℓ_2 sparse recovery from Fourier measurements using $O(k \log n \cdot \log^O(1) \log n)$ samples and $O(k \log^2 n \cdot \log^O(1) \log n)$ runtime.

Optimal up to a poly($\log \log n$) factors for $k \leq n^{1-\delta}$.
\(\ell_2/\ell_2 \) sparse recovery guarantees:

\[
\|\hat{x} - \hat{y}\|^2 \leq C \cdot \min_{k\text{-sparse } \hat{z}} \|\hat{x} - \hat{z}\|^2
\]
\(\ell_2/\ell_2 \) sparse recovery guarantees:

\[
||\hat{x} - \hat{y}||^2 \leq C \cdot \text{Err}_k^2(\hat{x})
\]

\[
|\hat{x}_1| \geq \ldots \geq |\hat{x}_k| \geq |\hat{x}_{k+1}| \geq |\hat{x}_{k+2}| \geq \ldots
\]

\[
\text{Err}_k^2(\hat{x}) = \sum_{j=k+1}^{n} |\hat{x}_j|^2
\]

Residual error bounded by noise energy \(\text{Err}_k^2(\hat{x}) \)

\[\text{Residual error bounded by noise energy } \text{Err}_k^2(\hat{x})\]
\ell_2/\ell_2 \text{ sparse recovery guarantees:}

\[
\text{Signal to noise ratio } R = \frac{||\hat{x} - \hat{y}||^2}{\text{Err}^2_k(\hat{x})} \leq C
\]

\[
|\hat{x}_1| \geq \ldots \geq |\hat{x}_k| \geq |\hat{x}_{k+1}| \geq |\hat{x}_{k+2}| \geq \ldots
\]

\[
\text{Residual error bounded by noise energy } \text{Err}^2_k(\hat{x})
\]

\[
\text{Err}^2_k(\hat{x}) = \sum_{j=k+1}^{n} |\hat{x}_j|^2
\]
\(\ell_2/\ell_2 \) sparse recovery guarantees:

Signal to noise ratio \(R = \|\hat{x} - \hat{y}\|^2/\text{Err}_{k}^2(\hat{x}) \leq C \)

\[
|\hat{x}_1| \geq \ldots \geq |\hat{x}_k| \geq |\hat{x}_{k+1}| \geq |\hat{x}_{k+2}| \geq \ldots
\]

Residual error bounded by noise energy \(\text{Err}_{k}^2(\hat{x}) \)

\[
\text{Err}_{k}^2(\hat{x}) = \sum_{j=k+1}^{n} |\hat{x}_j|^2
\]

Sufficient to ensure that most elements are below average noise level:

\[
|\hat{x}_i - \hat{y}_i|^2 \leq c \cdot \text{Err}_{k}^2(\hat{x})/k =: \mu^2
\]
Iterative recovery

Many algorithms use the iterative recovery scheme:

Input: $x \in \mathbb{C}^n$

$\hat{y}_0 \leftarrow 0$

For $t = 1$ to L

$\hat{z} \leftarrow \text{PARTIALRECOVERY}(x, \hat{y}_{t-1}) \quad \triangleright \text{Takes random samples of } x - y$

Update $\hat{y}_t \leftarrow \hat{y}_{t-1} + \hat{z}$

PARTIALRECOVERY(x, \hat{y})

return dominant Fourier coefficients \hat{z} of $x - y$ (approximately)

dominant coefficients $\approx |\hat{x}_i - \hat{y}_i|^2 \geq \mu^2$ (above average noise level)
\textbf{PARTIALRECOVERY}(x, \hat{y})

\textbf{return} dominant Fourier coefficients \hat{Z} of \(x - y \) (approximately)

dominant coefficients \(\approx |\hat{x}_i - \hat{y}_i|^2 \geq \mu^2 \) (above average noise level)

Main questions:

- How many samples per SNR reduction step?
- How many iterations?
PARTIAL\textsc{RECOVERY}(x, \hat{y})

\textbf{return} dominant Fourier coefficients \hat{z} of $x - y$ (approximately)

\begin{align*}
\text{dominant coefficients} & \approx |\hat{x}_i - \hat{y}_i|^2 \geq \mu^2 (\text{above average noise level})
\end{align*}

\textbf{Main questions:}

- How many samples per SNR reduction step?
- How many iterations?

Summary of techniques from

Gilbert-Guha-Indyk-Muthukrishnan-Strauss’02, Akavia-Goldwasser-Safra’03,
Gilbert-Muthukrishnan-Strauss’05, Iwen’10, Akavia’10, Hassanieh-Indyk-Katabi-Price’12a,
Hassanieh-Indyk-Katabi-Price’12b
1-sparse recovery from Fourier measurements

\[x_a = \omega^{a \cdot f} + \text{noise} \]

\[O(\log_{SNR} n) \text{ measurements} \]

for random \(a \)
Reducing k-sparse recovery to 1-sparse recovery

Permute with a random linear transformation and phase shift

Choose a filter G, \hat{G} such that \hat{G} approximates the buckets G has small support

Sample complexity $= \supp G$
Reducing k-sparse recovery to 1-sparse recovery

Permute with a random linear transformation and phase shift

Choose a filter G, \hat{G} such that \hat{G} approximates the buckets G has small support

Sample complexity $= \supp G$!
Reducing k-sparse recovery to 1-sparse recovery

Permute with a random linear transformation and phase shift

Choose a filter G, \hat{G} such that \hat{G} approximates the buckets G has small support.
Reducing k-sparse recovery to 1-sparse recovery

Partition frequency space into $B = k/\alpha$ buckets for constant $\alpha \in (0, 1)$

Choose a filter G, \hat{G} such that

- \hat{G} approximates the buckets
- G has small support

Compute $\hat{x} \ast \hat{G} = \overline{\langle x \cdot G \rangle}$
Reducing k-sparse recovery to 1-sparse recovery

Partition frequency space into $B = k/\alpha$ buckets for constant $\alpha \in (0, 1)$

Choose a filter G, \hat{G} such that

- \hat{G} approximates the buckets
- G has small support

Compute $\hat{x} \ast \hat{G} = (\overline{x \cdot G})$
Reducing k-sparse recovery to 1-sparse recovery

Partition frequency space into $B = \frac{k}{\alpha}$ buckets for constant $\alpha \in (0, 1)$

Choose a filter G, \hat{G} such that

- \hat{G} approximates the buckets
- G has small support

Compute $\hat{x} \ast \hat{G} = (x \cdot \hat{G})$
Reducing k-sparse recovery to 1-sparse recovery

Partition frequency space into $B = k/\alpha$ buckets for constant $\alpha \in (0, 1)$

Choose a filter G, \hat{G} such that

- \hat{G} approximates the buckets
- G has small support

Compute $\hat{x} \ast \hat{G} = (x \cdot \hat{G})$

Sample complexity $= \text{supp } G$!
Partial Recovery step

Partial Recovery(x, \hat{y})

- Make measurements (independent permutation+filtering)
- Locate and estimate large frequencies (1-sparse recovery)

return dominant Fourier coefficients \hat{z} of $x - y$ (approximately)

Sample complexity = support of G
PARTIAL RECOVERY step

PARTIAL RECOVERY(x, \hat{y})

- Make measurements (independent permutation+filtering)
- Locate and estimate large frequencies (1-sparse recovery)

return dominant Fourier coefficients \hat{Z} of $x - y$ (approximately)

Sample complexity = support of G

- How many measurements do we need?
- How effective is a refinement step?

Both determined by **signal to noise ratio** in each bucket – function of filter choice
Time domain:
support $O(k)$ [GMS’05]

Frequency domain:

SNR = $O(1)$
Reduce SNR by $O(1)$ factor

$\Omega(k \log^2 n)$ samples
Time domain:
support $O(k)$ [GMS’05]
Frequency domain:

SNR = $O(1)$
Reduce SNR by $O(1)$ factor

$\Omega(k \log^2 n)$ samples

This paper: interpolate between the two extremes, get all benefits
Main idea

A new family of filters that adapt to current upper bound on SNR.

- Sharp filters initially, more blurred later
When SNR is bounded by R:

- filter support $O(k \log R) \approx \text{convolve boxcar with itself log } R \text{ times}$
When SNR is bounded by R:

- filter support $\mathcal{O}(k \log R)$ (\approx convolve boxcar with itself $\log R$ times)

- (most) 1-sparse recovery subproblems for dominant frequencies have high SNR (about R) so $\mathcal{O}^*(\log_R n)$ measurements!

$$\mathcal{O}^*(k \log R \cdot \log_R n) = \mathcal{O}^*(k \log n)$$ samples per step!
\[
\begin{align*}
R &\rightarrow R^{1/2} \rightarrow R^{1/4} \rightarrow \ldots \rightarrow C^2 \rightarrow C \\
&\underbrace{\text{O(loglog} \ n) \text{ iterations}}
\end{align*}
\]

PARTIAL \text{RECOVERY}(x, \hat{y}, R)

\[
\begin{align*}
R \cdot \mu^2 \\
R^{1/2} \cdot \mu^2 \\
\mu^2 = \text{tail noise}/B
\end{align*}
\]
\[
R \rightarrow R^{1/2} \rightarrow R^{1/4} \rightarrow \cdots \rightarrow C^2 \rightarrow C
\]

\[O(\log \log n) \text{ iterations}\]

\textsc{PartialRecovery}(x, \hat{y}, R)

\[R \cdot \mu^2\]

\[R^{1/2} \cdot \mu^2\]

\[\mu^2 = \text{tail noise}/B\]
\[R \to R^{1/2} \to R^{1/4} \to \ldots \to C^2 \to C \]

\[O(\log \log n) \text{ iterations} \]

PARTIAL\text{RECOVERY}(x, \hat{y}, R^{1/2})

\[\mu^2 = \text{tail noise} / B \]
$R \rightarrow R^{1/2} \rightarrow R^{1/4} \rightarrow \ldots \rightarrow C^2 \rightarrow C$

$O(\log \log n)$ iterations

Partial Recovery (x, \hat{y}, C^2)

$\mu^2 = \text{tail noise} / B$
Algorithm

Input: $x \in \mathbb{C}^n$
\begin{align*}
\hat{y}_0 &\leftarrow 0 \\
R_0 &\leftarrow \text{poly}(n)
\end{align*}

For $t = 1$ to $O(\log \log n)$
\begin{align*}
\hat{z} &\leftarrow \text{PARTIAL_RECOVERY}(x, \hat{y}_{t-1}, R_{t-1}) \quad \triangleright \text{Takes samples of } x - y \\
\text{Update } \hat{y}_t &\leftarrow \hat{y}_{t-1} + \hat{z} \\
R_t &\leftarrow \sqrt{R_{t-1}}
\end{align*}

\text{PARTIAL_RECOVERY step:}
\begin{itemize}
 \item Takes $O^*(k \log n)$ samples independent of R
 \item Is very effective: reduces $R \rightarrow R^\frac{1}{2}$, so $O(\log \log n)$ iterations suffice
\end{itemize}
Need to reduce most ‘large’ frequencies, i.e. $|\hat{x}_i|^2 \geq \sqrt{R}\mu^2$
Partial recovery analysis

\textsc{PartialRecovery}(x, \hat{y}, R)

\[R \cdot \mu^2 \]

\[R^{1/2} \cdot \mu^2 \]

\[\mu^2 = \text{tail noise}/B \]

- Need to reduce most ‘large’ frequencies, i.e. \(|\hat{x}_i|^2 \geq \sqrt{R} \mu^2 \)
- \textbf{Most}=1 – \(1 / \text{poly}(R) \) fraction
Partial recovery analysis

\textsc{PartialRecovery}(x, \hat{y}, R)

\[R \cdot \mu^2 \]

\[R^{\frac{1}{2}} \cdot \mu^2 \]

\[\mu^2 = \text{tail noise}/B \]

- Need to reduce most ‘large’ frequencies, i.e. \(|\hat{x}_i|^2 \geq \sqrt{R}\mu^2\)
- Most = $1 - 1/\text{poly}(R)$ fraction
- Iterative process, $O(\log \log n)$ steps
- partition elements into geometric weight classes
- write down recursion that governs the dynamics
- top half classes are reduced at double exponential rate* if we use $\Omega(\log \log R)$ levels
Sample optimal algorithm (reusing measurements)
Uniform bounds (for all):
Candes-Tao’06
Rudelson-Vershynin’08
Cheraghchi-Guruswami-Velingker’12
Bourgain’14
Haviv-Regev’15

Non-uniform bounds (for each):
Goldreich-Levin’89
Kushilevitz-Mansour’91, Mansour’92
Gilbert-Guha-Indyk-Muthukrishnan-Strauss’02
Gilbert-Muthukrishnan-Strauss’05
Hassanieh-Indyk-Katabi-Price’12a
Hassanieh-Indyk-Katabi-Price’12b
Indyk-K.-Price’14

Deterministic, $\Omega(n)$ runtime
$O(k \log^2 k \log n)$

Randomized, $O(k \cdot \text{poly}(\log n))$ runtime
$O(k \log n \cdot (\log \log n)^C)$

Lower bound: $\Omega(k \log(n/k))$ for non-adaptive algorithms Do-Ba-Indyk-Price-Woodruff’10
Uniform bounds (for all):
Candes-Tao’06
Rudelson-Vershynin’08
Cheraghchi-Guruswami-Velingker’12
Bourgain’14
Haviv-Regev’15

Non-uniform bounds (for each):
Goldreich-Levin’89
Kushilevitz-Mansour’91, Mansour’92
Gilbert-Guha-Indyk-Muthukrishnan-Strauss’02
Gilbert-Muthukrishnan-Strauss’05
Hassanieh-Indyk-Katabi-Price’12a
Hassanieh-Indyk-Katabi-Price’12b
Indyk-K.-Price’14

Deterministic, $\Omega(n)$ runtime
$O(k \log^2 k \log n)$

Randomized, $O(k \cdot \text{poly}(\log n))$ runtime
$O(k \log n \cdot (\log \log n)^C)$

Lower bound: $\Omega(k \log(n/k))$ for non-adaptive algorithms Do-Ba-Indyk-Price-Woodruff’10

Theorem
There exists an algorithm for ℓ_2/ℓ_2 sparse recovery from Fourier measurements using $O(k \log n)$ samples and $O(n \log^3 n)$ runtime.

Optimal up to constant factors for $k \leq n^{1-\delta}$.
Higher dimensional Fourier transform is needed in some applications.

Given $x \in \mathbb{C}^{[n]^d}$, $N = n^d$, compute

$$\hat{x}_j = \frac{1}{\sqrt{N}} \sum_{i \in [n]^d} \omega^{ij} x_i \quad \text{and} \quad x_j = \frac{1}{\sqrt{N}} \sum_{i \in [n]^d} \omega^{-ij} \hat{x}_i$$

where ω is the n-th root of unity, and n is a power of 2.
Previous sample complexity bounds:

- $O(k \log^d N)$ in sublinear time algorithms
 - runtime $k \log^{O(d)} N$, for each
- $O(k \log^4 N)$ for any d
 - $\Omega(N)$ time, for all

This lecture:

Theorem

There exists an algorithm for ℓ_2/ℓ_2 sparse recovery from Fourier measurements using $O_d(k \log N)$ samples and $O(N \log^3 N)$ runtime.

Sample-optimal up to constant factors for any constant d.
\(\ell_2 / \ell_2 \) sparse recovery guarantees:

\[||\hat{x} - \hat{y}||^2 \leq C \cdot \min_{k \text{-sparse}} \hat{z} ||\hat{x} - \hat{z}||^2 \]

\(\mu \approx \text{tail noise} / \sqrt{k} \)
\(\ell_2/\ell_2 \) sparse recovery guarantees:

\[\| \hat{x} - \hat{y} \|^2 \leq C \cdot \min_{k-\text{sparse}} \| \hat{x} - \hat{z} \|^2 \]

\[|\hat{x}_1| \geq \ldots \geq |\hat{x}_k| \geq |\hat{x}_{k+1}| \geq |\hat{x}_{k+2}| \geq \ldots \]

Residual error bounded by noise energy \(\text{Err}^2_k(\hat{x}) \)

\[\text{Err}^2_k(\hat{x}) = \sum_{j=k+1}^{n} |\hat{x}_j|^2 \]

\(\mu \approx \text{tail noise} / \sqrt{k} \)
ℓ_2/ℓ_2 sparse recovery guarantees:

$$||\hat{x} - \hat{y}||^2 \leq C \cdot Err^2_k(\hat{x})$$

$|\hat{x}_1| \geq \ldots \geq |\hat{x}_k| \geq |\hat{x}_{k+1}| \geq |\hat{x}_{k+2}| \geq \ldots$

$Err^2_k(\hat{x}) = \sum_{j=k+1}^{n} |\hat{x}_j|^2$

Residual error bounded by noise energy $Err^2_k(\hat{x})$

$\mu \approx \text{tail noise}/\sqrt{k}$
\(\ell_2/\ell_2 \) sparse recovery guarantees:

\[
||\hat{x} - \hat{y}||^2 \leq C \cdot \text{Err}_k^2(\hat{x})
\]

\[
|\hat{x}_1| \geq \ldots \geq |\hat{x}_k| \geq \\
|\hat{x}_{k+1}| \geq |\hat{x}_{k+2}| \geq \ldots
\]

\[
\text{Err}_k^2(\hat{x}) = \sum_{j=k+1}^{n} |\hat{x}_j|^2
\]

Residual error bounded by noise energy \(\text{Err}_k^2(\hat{x}) \)

\[\mu \approx \text{tail noise}/\sqrt{k}\]
\[\ell_2/\ell_2 \text{ sparse recovery guarantees:} \]

\[\| \hat{x} - \hat{y} \|^2 \leq C \cdot \text{Err}^2_k(\hat{x}) \]

Sufficient to ensure that most elements are below average noise level:

\[|\hat{x}_i - \hat{y}_i|^2 \leq c \cdot \text{Err}^2_k(\hat{x})/k =: \mu^2 \]
\(\ell_2/\ell_2 \) sparse recovery guarantees:

\[
\| \hat{x} - \hat{y} \|_2^2 \leq C \cdot \text{Err}_k^2(\hat{x})
\]

\(\hat{\mu} \approx \text{tail noise}/\sqrt{k} \)

Will ensure that all elements are below average noise level:

\[
\| \hat{x} - \hat{y} \|_\infty^2 \leq c \cdot \text{Err}_k^2(\hat{x})/k =: \mu^2
\]
ℓ_∞/ℓ_2 sparse recovery guarantees:

$$\|\hat{x} - \hat{y}\|_\infty^2 \leq C \cdot \text{Err}^2_k(\hat{x})/k$$

Will ensure that all elements are below average noise level:

$$\|\hat{x} - \hat{y}\|_\infty^2 \leq c \cdot \text{Err}^2_k(\hat{x})/k =: \mu^2$$
\(\ell_\infty / \ell_2 \) sparse recovery guarantees:

\[
\| \hat{x} - \hat{y} \|_\infty^2 \leq C \cdot \text{Err}_k^2(\hat{x}) / k
\]

\(\mu \approx \text{tail noise} / \sqrt{k} \)

Will ensure that all elements are below average noise level:

\[
\| \hat{x} - \hat{y} \|_\infty^2 \leq \mu^2
\]
Iterative recovery

Input: $x \in \mathbb{C}^n$

\[\hat{y}_0 \leftarrow 0 \]

For $t = 1$ to L

- $\hat{z} \leftarrow \text{PARTIAL_RECOVERY}(x - y_{t-1})$ \(\triangleright \) Takes random samples of $x - y$
- Update $\hat{y}_t \leftarrow \hat{y}_{t-1} + \hat{z}$

In most prior works, sampling complexity is $\text{samples per PARTIAL_RECOVERY step} \times \text{number of iterations}$.

Lots of work on carefully choosing filters, reducing the number of iterations: Hassanieh-Indyk-Katabi-Price'12, Ghazi-Hassanieh-Indyk-Katabi-Price-Shi'13, Indyk-K.-Price'14.

Still lose $\Omega((\log \log n))$ in sample complexity (number of iterations).

Lose $\Omega((\log n \cdot d - 1 \log \log n))$ in higher dimensions.
Iterative recovery

Input: $x \in \mathbb{C}^n$

$\hat{y}_0 \leftarrow 0$

For $t = 1$ to L

- $\hat{z} \leftarrow \text{PARTIALRECOVERY}(x - y_{t-1})$ ▶ Takes random samples of $x - y$
- Update $\hat{y}_t \leftarrow \hat{y}_{t-1} + \hat{z}$

In most prior works sampling complexity is

samples per PARTIALRECOVERY step \times number of iterations
Iterative recovery

Input: \(x \in \mathbb{C}^n \)

\(\hat{y}_0 \leftarrow 0 \)

For \(t = 1 \) to \(L \)

- \(\hat{z} \leftarrow \text{PARTIALRECOVERY}(x - y_{t-1}) \) \(\triangleright \) Takes random samples of \(x - y \)
- Update \(\hat{y}_t \leftarrow \hat{y}_{t-1} + \hat{z} \)

In most prior works sampling complexity is

\[
\text{samples per PARTIALRECOVERY step} \times \text{number of iterations}
\]

Lots of work on carefully choosing filters, reducing number of iterations:

Hassanieh-Indyk-Katabi-Price’12,
Ghazi-Hassanieh-Indyk-Katabi-Price-Shi’13, Indyk-K.-Price’14

- still lose \(\Omega(\log \log n) \) in sample complexity (number of iterations)
- lose \(\Omega((\log n)^{d-1} \log \log n) \) in higher dimensions
Iterative recovery

Input: $x \in \mathbb{C}^n$

$\hat{y}_0 \leftarrow 0$

For $t = 1$ to L

- $\hat{z} \leftarrow \text{PARTIALRECOVERY}(x - y_{t-1}) \quad \triangleright \text{Takes random samples of } x - y$
- Update $\hat{y}_t \leftarrow \hat{y}_{t-1} + \hat{z}$

Our sampling complexity is

samples per PARTIALRECOVERY step \times number of iterations
Iterative recovery

Input: $x \in \mathbb{C}^n$

$\hat{y}_0 \leftarrow 0$

For $t = 1$ to L

- $\hat{z} \leftarrow \text{PARTIAL_RECOVERY}(x - y_{t-1})$ △ Takes random samples of $x - y$
- Update $\hat{y}_t \leftarrow \hat{y}_{t-1} + \hat{z}$

Our sampling complexity is

samples per PARTIAL_RECOVERY step \times number of iterations
Iterative recovery

Input: $x \in \mathbb{C}^n$

$\hat{y}_0 \leftarrow 0$

For $t = 1$ to L

- $\hat{Z} \leftarrow \text{PARTIALRECOVERY}(x - y_{t-1})$ ▶ Takes random samples of $x - y$
- Update $\hat{y}_t \leftarrow \hat{y}_{t-1} + \hat{Z}$

Our sampling complexity is

$$\text{samples per PARTIALRECOVERY step} \times \text{number of iterations}$$

Can use very simple filters!
Our filter=boxcar convolved with itself $O(1)$ times

Filter support is $O(k)$ (=samples per measurement)

$O(k \log n)$ samples in PARTIALRECOVERY step

Can choose a rather weak filter, but do not need fresh randomness
Our filter=boxcar convolved with itself $O(1)$ times

Filter support is $O(k)$ (=samples per measurement)

$O(k \log n)$ samples in PARTIALRECOVERY step

Can choose a rather weak filter, but do not need fresh randomness
Our filter=boxcar convolved with itself $O(1)$ times

Filter support is $O(k)$ (=samples per measurement)

$O(k \log n)$ samples in PARTIALRECOVERY step

Can choose a rather weak filter, but do not need fresh randomness
\[G \leftarrow B \ast B \ast B \]

Let \(y^m \leftarrow (P_m x) \cdot G \)
\[m = 0, \ldots, M = C \log n \]

\(\hat{z}_0 \leftarrow 0 \)

For \(t = 1, \ldots, T = O(\log n) \):

For \(f \in [n] \):

\(\hat{w}_f \leftarrow \text{median}\{\tilde{y}_f^1, \ldots, \tilde{y}_f^M\} \)

If \(|\hat{w}_f| < 2^{T-t} \mu / 3 \) **then**

\(\hat{w}_f \leftarrow 0 \)

End

\(\hat{z}_{t+1} = \hat{z}_t + \hat{w} \)

\(y^m \leftarrow y^m - (P_m w) \cdot G \)
\[\text{for } m = 1, \ldots, M \]

End

▷ Take samples of \(x \)

▷ Loop over thresholds

▷ Estimate, prune small elements

▷ Update samples
Let $y^m \leftarrow (P_m x) \cdot G$
$m = 0, \ldots, M = C \log n$

$\hat{z}_0 \leftarrow 0$

For $t = 1, \ldots, T = O(\log n)$:

For $f \in [n]$:

$\hat{w}_f \leftarrow \text{median}\{\tilde{y}_f^1, \ldots, \tilde{y}_f^M\}$

If $|\hat{w}_f| < 2^{T-t} \mu / 3$ then

$\hat{w}_f \leftarrow 0$

End

$\hat{z}_{t+1} = \hat{z}_t + \hat{w}$

$y^m \leftarrow y^m - (P_m w) \cdot G$

for $m = 1, \ldots, M$

End
Let $y^m \leftarrow (P_m x) \cdot G$

$m = 0, \ldots, M = C \log n$

$\hat{z}_0 \leftarrow 0$

For $t = 1, \ldots, T = O(\log n)$:

For $f \in [n]$:

$\hat{w}_f \leftarrow \text{median}\{\tilde{y}_1^f, \ldots, \tilde{y}_M^f\}$

If $|\hat{w}_f| < 2^{T-t} \mu / 3$ then

$\hat{w}_f \leftarrow 0$

$\hat{z}_{t+1} = \hat{z}_t + \hat{w}$

$y^m \leftarrow y^m - (P_m w) \cdot G$

for $m = 1, \ldots, M$

End

Main challenge: lack of fresh randomness. Why does median work?
\[G \leftarrow B \ast B \ast B \]

Let \(y^m \leftarrow (P_m x) \cdot G \)

\[m = 0, \ldots, M = C \log n \]

\[\hat{z}_0 \leftarrow 0 \]

For \(t = 1, \ldots, T = O(\log n) \):

For \(f \in [n] \):

\[\hat{w}_f \leftarrow \text{median}\{\tilde{y}^1_f, \ldots, \tilde{y}^M_f\} \]

If \(|\hat{w}_f| < 2^{T-t} \mu/3 \) then

\[\hat{w}_f \leftarrow 0 \]

End

\[\hat{z}_{t+1} = \hat{z}_t + \hat{w} \]

\[y^m \leftarrow y^m - (P_m w) \cdot G \]

for \(m = 1, \ldots, M \)

End
$G \leftarrow B \ast B \ast B$

Let $y^m \leftarrow (P_m x) \cdot G$

$m = 0, \ldots, M = C \log n$

$
\hat{z}_0 \leftarrow 0$

For $t = 1, \ldots, T = O(\log n)$:

For $f \in [n]$

$\hat{w}_f \leftarrow \text{median}\{\tilde{y}_f^1, \ldots, \tilde{y}_f^M\}$

If $|\hat{w}_f| < 2^{T-t} \mu/3$ then

$\hat{w}_f \leftarrow 0$

End

$\hat{z}_{t+1} = \hat{z}_t + \hat{w}$

$y^m \leftarrow y^m - (P_m w) \cdot G$

for $m = 1, \ldots, M$

End
\[G \leftarrow B \ast B \ast B \]

Let \(y^m \leftarrow (P_m x) \cdot G \)
\[m = 0, \ldots, M = C \log n \]

\[\hat{z}_0 \leftarrow 0 \]

For \(t = 1, \ldots, T = O(\log n) \):

\[\text{For } f \in [n]: \]
\[\hat{w}_f \leftarrow \text{median} \{ \tilde{y}_f^1, \ldots, \tilde{y}_f^M \} \]
\[\text{If } |\hat{w}_f| < 2^{T-t} \mu / 3 \text{ then} \]
\[\hat{w}_f \leftarrow 0 \]

End

\[\hat{z}_{t+1} = \hat{z}_t + \hat{w} \]
\[y^m \leftarrow y^m - (P_m w) \cdot G \]
\[\text{for } m = 1, \ldots, M \]

End
Lecture so far

- Optimal sample complexity by reusing randomness
- Very simple algorithm, can be implemented
- Extension to higher dimensions: algorithm is the same, permutations are different.
 - Choose random invertible linear transformation over \mathbb{Z}_n^d
Experimental evaluation

Problem: recover support of a random k-sparse signal from Fourier measurements.

Parameters: $n = 2^{15}$, $k = 10, 20, \ldots, 100$

Filter: boxcar filter with support $k + 1$
Comparison to ℓ_1-minimization (SPGL1)

$O(k \log^3 k \log n)$ sample complexity, requires LP solve

Within a factor of 2 of ℓ_1 minimization
Open questions:

- $O(k \log n)$ in $O(k \log^2 n)$ time?
- $O(k \log n)$ runtime?
- remove dependence on dimension? Current approaches lose C^d in sample complexity, $(\log n)^d$ in runtime
Open questions:

- $O(k \log n)$ in $O(k \log^2 n)$ time?
- $O(k \log n)$ runtime?
- remove dependence on dimension? Current approaches lose C^d in sample complexity, $(\log n)^d$ in runtime

More on sparse FFT:
http://groups.csail.mit.edu/netmit/sFFT/index.html