
Sparse Fourier Transform
(lecture 4)

Michael Kapralov1

1IBM Watson → EPFL

St. Petersburg CS Club
November 2015

1 / 50

Given x ∈Cn, compute the Discrete Fourier Transform of x :

x̂i =
1
n

∑
j∈[n]

xjω
−ij ,

where ω= e2πi/n is the n-th root of unity.

Goal: find the top k coefficients of x̂ approximately

In previous lectures:

Ï exactly k -sparse: O(k logn) runtime and samples

Ï approximately k -sparse: O(k log2 n(loglogn)) runtime and
samples

This lecture, for approximately k -sparse case:

Ï k logn logO(1) logn samples in k log2 n logO(1) logn time;
Ï O(k logn) samples (optimal).

2 / 50

Given x ∈Cn, compute the Discrete Fourier Transform of x :

x̂i =
1
n

∑
j∈[n]

xjω
−ij ,

where ω= e2πi/n is the n-th root of unity.

Goal: find the top k coefficients of x̂ approximately

In previous lectures:

Ï exactly k -sparse: O(k logn) runtime and samples

Ï approximately k -sparse: O(k log2 n(loglogn)) runtime and
samples

This lecture, for approximately k -sparse case:

Ï k logn logO(1) logn samples in k log2 n logO(1) logn time;
Ï O(k logn) samples (optimal).

2 / 50

Given x ∈Cn, compute the Discrete Fourier Transform of x :

x̂i =
1
n

∑
j∈[n]

xjω
−ij ,

where ω= e2πi/n is the n-th root of unity.

Goal: find the top k coefficients of x̂ approximately

In previous lectures:

Ï exactly k -sparse: O(k logn) runtime and samples

Ï approximately k -sparse: O(k log2 n(loglogn)) runtime and
samples

This lecture, for approximately k -sparse case:

Ï k logn logO(1) logn samples in k log2 n logO(1) logn time;
Ï O(k logn) samples (optimal).

2 / 50

Improvements?
List←;
For t = 1 to logk

Bt ←Ck/4t

γt ← 1/(C2t)

List ← List +PARTIALRECOVERY(Bt ,γt ,List)
End

Summary:
Ï independent invocations of PARTIALRECOVERY: use fresh

samples in every iteration

Ï reduce (approximate) sparsity at geometric rate

Ï need sharp filters to reduce sparsity

Ï lose Ω(logn) time and sparsity because of sharpness

3 / 50

Improvements?
List←;
For t = 1 to logk

Bt ←Ck/4t

γt ← 1/(C2t)

List ← List +PARTIALRECOVERY(Bt ,γt ,List)
End

Summary:
Ï independent invocations of PARTIALRECOVERY: use fresh

samples in every iteration

Ï reduce (approximate) sparsity at geometric rate

Ï need sharp filters to reduce sparsity

Ï lose Ω(logn) time and sparsity because of sharpness

3 / 50

Improvements?
List←;
For t = 1 to logk

Bt ←Ck/4t

γt ← 1/(C2t)

List ← List +PARTIALRECOVERY(Bt ,γt ,List)
End

Summary:
Ï independent invocations of PARTIALRECOVERY: use fresh

samples in every iteration

Ï reduce (approximate) sparsity at geometric rate

Ï need sharp filters to reduce sparsity

Ï lose Ω(logn) time and sparsity because of sharpness

3 / 50

Improvements?
List←;
For t = 1 to logk

Bt ←Ck/4t

γt ← 1/(C2t)

List ← List +PARTIALRECOVERY(Bt ,γt ,List)
End

Summary:
Ï independent invocations of PARTIALRECOVERY: use fresh

samples in every iteration

Ï reduce (approximate) sparsity at geometric rate

Ï need sharp filters to reduce sparsity

Ï lose Ω(logn) time and sparsity because of sharpness

3 / 50

Improvements?
List←;
For t = 1 to logk

Bt ←Ck/4t

γt ← 1/(C2t)

List ← List +PARTIALRECOVERY(Bt ,γt ,List)
End

Summary:
Ï independent invocations of PARTIALRECOVERY: use fresh

samples in every iteration

Ï reduce (approximate) sparsity at geometric rate

Ï need sharp filters to reduce sparsity

Ï lose Ω(logn) time and sparsity because of sharpness

3 / 50

Why not use simpler filters with smaller support?
Let

Gj :=
{

1/(B+1) if j ∈ [−B/2,B/2]
0 o.w.

0

0.2

0.4

0.6

0.8

1

1.2

-1000 -500 0 500 1000

time

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

supp(G)=B ≈ k as opposed to B ≈ k logn, but buckets leak

4 / 50

Why not use simpler filters with smaller support?
Let

Gj :=
{

1/(B+1) if j ∈ [−B/2,B/2]
0 o.w.

0

0.2

0.4

0.6

0.8

1

1.2

-1000 -500 0 500 1000

time

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

supp(G)=B ≈ k as opposed to B ≈ k logn, but buckets leak

Can only identify and approximate elements of value at least
≈ ||x̂ ||22/k , and estimate up to ≈ ||x̂ ||22/k additive error, so need to

repeat Ω(logn) times

5 / 50

Sample complexity

Sample complexity=number of samples accessed in time domain.
In some applications at least as important as runtime

Shi-Andronesi-Hassanieh-Ghazi-
Katabi-Adalsteinsson’

ISMRM’13

Given access to x ∈Cn, find ŷ such that

||x̂ − ŷ ||2 ≤C ·mink−sparse ẑ ||x̂ − ẑ||2

Use smallest possible number of samples?

6 / 50

Sample complexity

Sample complexity=number of samples accessed in time domain.
In some applications at least as important as runtime

Shi-Andronesi-Hassanieh-Ghazi-
Katabi-Adalsteinsson’

ISMRM’13

Given access to x ∈Cn, find ŷ such that

||x̂ − ŷ ||2 ≤C ·mink−sparse ẑ ||x̂ − ẑ||2

Use smallest possible number of samples?

6 / 50

Uniform bounds (for all):
Candes-Tao’06
Rudelson-Vershynin’08
Cheraghchi-Guruswami-Velingker’12
Bourgain’14
Haviv-Regev’15

Deterministic, Ω(n) runtime

O(k log2 k logn)

Non-uniform bounds (for each):
Goldreich-Levin’89
Kushilevitz-Mansour’91, Mansour’92
Gilbert-Guha-Indyk-Muthukrishnan-
Strauss’02
Gilbert-Muthukrishnan-Strauss’05
Hassanieh-Indyk-Katabi-Price’12a
Hassanieh-Indyk-Katabi-Price’12b

Indyk-K.-Price’14

Randomized, O(k ·poly(logn)) runtime

O(k log2 n)

Lower bound: Ω(k log(n/k)) for non-adaptive algorithms Do-Ba-Indyk-Price-Woodruff’10

Theorem
There exists an algorithm for `2/`2 sparse recovery from Fourier
measurements using O(k logn · logO(1) logn) samples and
O(k log2 n · logO(1) logn) runtime.

Optimal up to a poly(loglogn) factors for k ≤ n1−δ.

7 / 50

Uniform bounds (for all):
Candes-Tao’06
Rudelson-Vershynin’08
Cheraghchi-Guruswami-Velingker’12
Bourgain’14
Haviv-Regev’15

Deterministic, Ω(n) runtime

O(k log2 k logn)

Non-uniform bounds (for each):
Goldreich-Levin’89
Kushilevitz-Mansour’91, Mansour’92
Gilbert-Guha-Indyk-Muthukrishnan-
Strauss’02
Gilbert-Muthukrishnan-Strauss’05
Hassanieh-Indyk-Katabi-Price’12a
Hassanieh-Indyk-Katabi-Price’12b

Indyk-K.-Price’14

Randomized, O(k ·poly(logn)) runtime

O(k log2 n)

Lower bound: Ω(k log(n/k)) for non-adaptive algorithms Do-Ba-Indyk-Price-Woodruff’10

Theorem
There exists an algorithm for `2/`2 sparse recovery from Fourier
measurements using O(k logn · logO(1) logn) samples and
O(k log2 n · logO(1) logn) runtime.

Optimal up to a poly(loglogn) factors for k ≤ n1−δ.
7 / 50

`2/`2 sparse recovery guarantees:

||x̂ − ŷ ||2 ≤C ·mink−sparse ẑ ||x̂ − ẑ||2

|x̂1| ≥ . . . ≥ |x̂k | ≥
|x̂k+1| ≥ |x̂k+2| ≥ . . .

Err2
k (x̂)=

∑n
j=k+1 |x̂j |2

Residual error bounded by noise
energy Err2

k (x̂)

Sufficient to ensure that most elements are below average noise
level:

|x̂i − ŷi |2 ≤ c ·Err2
k (x̂)/k =:µ2

8 / 50

`2/`2 sparse recovery guarantees:

||x̂ − ŷ ||2 ≤C ·Err2
k (x̂)

|x̂1| ≥ . . . ≥ |x̂k | ≥
|x̂k+1| ≥ |x̂k+2| ≥ . . .

Err2
k (x̂)=

∑n
j=k+1 |x̂j |2

Residual error bounded by noise
energy Err2

k (x̂)

Sufficient to ensure that most elements are below average noise
level:

|x̂i − ŷi |2 ≤ c ·Err2
k (x̂)/k =:µ2

9 / 50

`2/`2 sparse recovery guarantees:

Signal to noise ratio R = ||x̂ − ŷ ||2/Err2
k (x̂)≤C

|x̂1| ≥ . . . ≥ |x̂k | ≥
|x̂k+1| ≥ |x̂k+2| ≥ . . .

Err2
k (x̂)=

∑n
j=k+1 |x̂j |2

Residual error bounded by noise
energy Err2

k (x̂)

Sufficient to ensure that most elements are below average noise
level:

|x̂i − ŷi |2 ≤ c ·Err2
k (x̂)/k =:µ2

10 / 50

`2/`2 sparse recovery guarantees:

Signal to noise ratio R = ||x̂ − ŷ ||2/Err2
k (x̂)≤C

|x̂1| ≥ . . . ≥ |x̂k | ≥
|x̂k+1| ≥ |x̂k+2| ≥ . . .

Err2
k (x̂)=

∑n
j=k+1 |x̂j |2

Residual error bounded by noise
energy Err2

k (x̂)

Sufficient to ensure that most elements are below average noise
level:

|x̂i − ŷi |2 ≤ c ·Err2
k (x̂)/k =:µ2

10 / 50

Iterative recovery

Many algorithms use the iterative recovery scheme:

Input: x ∈Cn

ŷ0 ← 0
For t = 1 to L

ẑ ← PARTIALRECOVERY(x , ŷt−1) BTakes random samples of x −y
Update ŷt ← ŷt−1 + ẑ

PARTIALRECOVERY(x , ŷ)

return dominant Fourier coefficients ẑ of x −y (approximately)

dominant coefficients≈ |x̂i − ŷi |2 ≥µ2(above average noise level)

11 / 50

PARTIALRECOVERY(x , ŷ)

return dominant Fourier coefficients ẑ of x −y (approximately)

dominant coefficients≈ |x̂i − ŷi |2 ≥µ2(above average noise level)

Main questions:

Ï How many samples per SNR reduction step?
Ï How many iterations?

Summary of techniques from

Gilbert-Guha-Indyk-Muthukrishnan-Strauss’02, Akavia-Goldwasser-Safra’03,

Gilbert-Muthukrishnan-Strauss’05, Iwen’10, Akavia’10, Hassanieh-Indyk-Katabi-Price’12a,

Hassanieh-Indyk-Katabi-Price’12b

12 / 50

PARTIALRECOVERY(x , ŷ)

return dominant Fourier coefficients ẑ of x −y (approximately)

dominant coefficients≈ |x̂i − ŷi |2 ≥µ2(above average noise level)

Main questions:

Ï How many samples per SNR reduction step?
Ï How many iterations?

Summary of techniques from

Gilbert-Guha-Indyk-Muthukrishnan-Strauss’02, Akavia-Goldwasser-Safra’03,

Gilbert-Muthukrishnan-Strauss’05, Iwen’10, Akavia’10, Hassanieh-Indyk-Katabi-Price’12a,

Hassanieh-Indyk-Katabi-Price’12b

12 / 50

1-sparse recovery from Fourier measurements

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−1.5

−1

−0.5

0

0.5

1

1.5

time

m
a
g
n
itu

d
e

xa =ωa·f +noise

O(logSNR n) measurements

for random a

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

frequency

m
a
g
n

itu
d
e

2πf/n

13 / 50

Reducing k -sparse recovery to 1-sparse recovery
Permute with a random linear transformation and phase shift

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time

m
a

g
n
itu

d
e

Choose a filter G,Ĝ such that
Ï Ĝ approximates the buckets
Ï G has small support

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

1

frequency

m
a
g
n
itu

d
e

Compute x̂ ∗ Ĝ = à(x ·G)

Sample complexity=supp G!

14 / 50

Reducing k -sparse recovery to 1-sparse recovery
Permute with a random linear transformation and phase shift

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time

m
a

g
n
itu

d
e

Choose a filter G,Ĝ such that
Ï Ĝ approximates the buckets
Ï G has small support

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

1

frequency

m
a
g
n
itu

d
e

Compute x̂ ∗ Ĝ = à(x ·G)

Sample complexity=supp G!

15 / 50

Reducing k -sparse recovery to 1-sparse recovery
Permute with a random linear transformation and phase shift

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time

m
a

g
n
itu

d
e

Choose a filter G,Ĝ such that
Ï Ĝ approximates the buckets
Ï G has small support

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

1

frequency

m
a
g
n
itu

d
e

Compute x̂ ∗ Ĝ = à(x ·G)

Sample complexity=supp G!

16 / 50

Reducing k -sparse recovery to 1-sparse recovery
Partition frequency space into B = k/α buckets for constant α ∈ (0,1)

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time

m
a

g
n
itu

d
e

Choose a filter G,Ĝ such that
Ï Ĝ approximates the buckets
Ï G has small support

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

1

frequency

m
a
g
n
itu

d
e

Compute x̂ ∗ Ĝ = à(x ·G)

Sample complexity=supp G!

17 / 50

Reducing k -sparse recovery to 1-sparse recovery
Partition frequency space into B = k/α buckets for constant α ∈ (0,1)

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time

m
a
g
n

itu
d
e

Choose a filter G,Ĝ such that
Ï Ĝ approximates the buckets
Ï G has small support

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

1

frequency

m
a
g
n
itu

d
e

Compute x̂ ∗ Ĝ = à(x ·G)

Sample complexity=supp G!

18 / 50

Reducing k -sparse recovery to 1-sparse recovery
Partition frequency space into B = k/α buckets for constant α ∈ (0,1)

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time

m
a
g
n

itu
d
e

Choose a filter G,Ĝ such that
Ï Ĝ approximates the buckets
Ï G has small support

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

1

frequency

m
a
g
n
itu

d
e

Compute x̂ ∗ Ĝ = à(x ·G)

Sample complexity=supp G!

19 / 50

Reducing k -sparse recovery to 1-sparse recovery
Partition frequency space into B = k/α buckets for constant α ∈ (0,1)

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time

m
a
g
n

itu
d
e

Choose a filter G,Ĝ such that
Ï Ĝ approximates the buckets
Ï G has small support

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

1

frequency

m
a
g
n
itu

d
e

Compute x̂ ∗ Ĝ = à(x ·G)

Sample complexity=supp G!

20 / 50

PARTIALRECOVERY step

PARTIALRECOVERY(x , ŷ)

Ï Make measurements (independent permutation+filtering)
Ï Locate and estimate large frequencies (1-sparse

recovery)

return dominant Fourier coefficients ẑ of x −y (approximately)

Sample complexity = support of G

Ï How many measurements do we need?
Ï How effective is a refinement step?

Both determined by signal to noise ratio in each bucket – function of
filter choice

21 / 50

PARTIALRECOVERY step

PARTIALRECOVERY(x , ŷ)

Ï Make measurements (independent permutation+filtering)
Ï Locate and estimate large frequencies (1-sparse

recovery)

return dominant Fourier coefficients ẑ of x −y (approximately)

Sample complexity = support of G

Ï How many measurements do we need?
Ï How effective is a refinement step?

Both determined by signal to noise ratio in each bucket – function of
filter choice

21 / 50

Time domain:
support O(k) [GMS’05]

Frequency domain:

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.2

0

0.2

0.4

0.6

0.8

1

frequency

m
a
g
n
it
u
d
e

SNR = O(1)

Reduce SNR by O(1) factor

Ω(k log2 n) samples

Time domain:
support Θ(k logn) [HIKP12]

Frequency domain:

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.2

0

0.2

0.4

0.6

0.8

1

frequency

m
a
g

n
it
u
d
e

SNR = can by poly(n)

Reduce sparsity by O(1) factor

Ω(k log2 n) samples

This paper: interpolate between the two extremes, get all benefits

22 / 50

Time domain:
support O(k) [GMS’05]

Frequency domain:

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.2

0

0.2

0.4

0.6

0.8

1

frequency

m
a
g
n
it
u
d
e

SNR = O(1)

Reduce SNR by O(1) factor

Ω(k log2 n) samples

Time domain:
support Θ(k logn) [HIKP12]

Frequency domain:

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.2

0

0.2

0.4

0.6

0.8

1

frequency

m
a
g
n
it
u
d
e

SNR = can by poly(n)

Reduce sparsity by O(1) factor

Ω(k log2 n) samples

This paper: interpolate between the two extremes, get all benefits

23 / 50

Main idea

A new family of filters that adapt to current upper bound on SNR.

Ï Sharp filters initially, more blurred later

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.2

0

0.2

0.4

0.6

0.8

1

frequency

m
a

g
n

it
u

d
e

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.2

0

0.2

0.4

0.6

0.8

1

frequency

m
a

g
n

it
u

d
e

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.2

0

0.2

0.4

0.6

0.8

1

frequency

m
a

g
n

it
u

d
e

24 / 50

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.2

0

0.2

0.4

0.6

0.8

1

frequency

m
a

g
n

it
u

d
e

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.2

0

0.2

0.4

0.6

0.8

1

frequency

m
a

g
n

it
u

d
e

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.2

0

0.2

0.4

0.6

0.8

1

frequency

m
a

g
n

it
u

d
e

When SNR is bounded by R:
Ï filter support O(k logR) (≈ convolve boxcar with itself logR

times)

Ï (most) 1-sparse recovery subproblems for dominant frequencies
have high SNR (about R) so O∗(logR n) measurements!

O∗(k logR · logR n)=O∗(k logn) samples per step!

25 / 50

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.2

0

0.2

0.4

0.6

0.8

1

frequency

m
a

g
n

it
u

d
e

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.2

0

0.2

0.4

0.6

0.8

1

frequency

m
a

g
n

it
u

d
e

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.2

0

0.2

0.4

0.6

0.8

1

frequency

m
a

g
n

it
u

d
e

When SNR is bounded by R:
Ï filter support O(k logR) (≈ convolve boxcar with itself logR

times)
Ï (most) 1-sparse recovery subproblems for dominant frequencies

have high SNR (about R) so O∗(logR n) measurements!

O∗(k logR · logR n)=O∗(k logn) samples per step!

25 / 50

R →R1/2 →R1/4 → . . . →C2 →C︸ ︷︷ ︸
O(loglogn) iterations

PARTIALRECOVERY(x , ŷ ,R)

k
µ2= tail noise/B

R ·µ2

R
1
2 ·µ2

After O(loglogn) iterations we have ||x̂ ||22/Err2
k (x̂)≤O(1)

26 / 50

R →R1/2 →R1/4 → . . . →C2 →C︸ ︷︷ ︸
O(loglogn) iterations

PARTIALRECOVERY(x , ŷ ,R)

k
µ2= tail noise/B

R ·µ2

R
1
2 ·µ2

After O(loglogn) iterations we have ||x̂ ||22/Err2
k (x̂)≤O(1)

26 / 50

R →R1/2 →R1/4 → . . . →C2 →C︸ ︷︷ ︸
O(loglogn) iterations

PARTIALRECOVERY(x , ŷ ,R
1
2)

k
µ2= tail noise/B

R
1
2 ·µ2

R
1
4 ·µ2

After O(loglogn) iterations we have ||x̂ ||22/Err2
k (x̂)≤O(1)

26 / 50

R →R1/2 →R1/4 → . . . →C2 →C︸ ︷︷ ︸
O(loglogn) iterations

PARTIALRECOVERY(x , ŷ ,C2)

k
µ2= tail noise/B

C2 ·µ2

C ·µ2

After O(loglogn) iterations we have ||x̂ ||22/Err2
k (x̂)≤C

26 / 50

Algorithm

Input: x ∈Cn

ŷ0 ← 0
R0 ← poly(n)
For t = 1 to O(loglogn)

ẑ ← PARTIALRECOVERY(x , ŷt−1,Rt−1) BTakes samples of x −y

Update ŷt ← ŷt−1 + ẑ

Rt ←
√

Rt−1

PARTIALRECOVERY step:
Ï Takes O∗(k logn) samples independent of R

Ï Is very effective: reduces R →R
1
2 , so O(loglogn) iterations

suffice

27 / 50

Partial recovery analysis
PARTIALRECOVERY(x , ŷ ,R)

k
µ2= tail noise/B

R ·µ2

R
1
2 ·µ2

Ï Need to reduce most ‘large’ frequencies, i.e. |x̂i |2 ≥p
Rµ2

Ï Most=1−1/poly(R) fraction
Ï Iterative process, O(loglogn) steps

28 / 50

Partial recovery analysis
PARTIALRECOVERY(x , ŷ ,R)

k
µ2= tail noise/B

R ·µ2

R
1
2 ·µ2

Ï Need to reduce most ‘large’ frequencies, i.e. |x̂i |2 ≥p
Rµ2

Ï Most=1−1/poly(R) fraction

Ï Iterative process, O(loglogn) steps

28 / 50

Partial recovery analysis
PARTIALRECOVERY(x , ŷ ,R)

k
µ2= tail noise/B

R ·µ2

R
1
2 ·µ2

Ï Need to reduce most ‘large’ frequencies, i.e. |x̂i |2 ≥p
Rµ2

Ï Most=1−1/poly(R) fraction
Ï Iterative process, O(loglogn) steps

28 / 50

k
µ2= tail noise/B

R ·µ2

R
1
2 ·µ2

Ï partition elements into geometric weight classes
Ï write down recursion that governs the dynamics
Ï top half classes are reduced at double exponentialy rate∗ if we

use Ω(loglogR) levels

Not a problem if number of levels large enough (C loglogR suffices)

29 / 50

Sample optimal algorithm (reusing measurements)

30 / 50

Uniform bounds (for all):
Candes-Tao’06
Rudelson-Vershynin’08
Cheraghchi-Guruswami-Velingker’12
Bourgain’14
Haviv-Regev’15

Deterministic, Ω(n) runtime

O(k log2 k logn)

Non-uniform bounds (for each):
Goldreich-Levin’89
Kushilevitz-Mansour’91, Mansour’92
Gilbert-Guha-Indyk-Muthukrishnan-
Strauss’02
Gilbert-Muthukrishnan-Strauss’05
Hassanieh-Indyk-Katabi-Price’12a
Hassanieh-Indyk-Katabi-Price’12b
Indyk-K.-Price’14

Randomized, O(k ·poly(logn)) runtime

O(k logn ·(loglogn)C)

Lower bound: Ω(k log(n/k)) for non-adaptive algorithms Do-Ba-Indyk-Price-Woodruff’10

Theorem
There exists an algorithm for `2/`2 sparse recovery from Fourier
measurements using O(k logn) samples and O(n log3 n) runtime.

Optimal up to constant factors for k ≤ n1−δ.

31 / 50

Uniform bounds (for all):
Candes-Tao’06
Rudelson-Vershynin’08
Cheraghchi-Guruswami-Velingker’12
Bourgain’14
Haviv-Regev’15

Deterministic, Ω(n) runtime

O(k log2 k logn)

Non-uniform bounds (for each):
Goldreich-Levin’89
Kushilevitz-Mansour’91, Mansour’92
Gilbert-Guha-Indyk-Muthukrishnan-
Strauss’02
Gilbert-Muthukrishnan-Strauss’05
Hassanieh-Indyk-Katabi-Price’12a
Hassanieh-Indyk-Katabi-Price’12b
Indyk-K.-Price’14

Randomized, O(k ·poly(logn)) runtime

O(k logn ·(loglogn)C)

Lower bound: Ω(k log(n/k)) for non-adaptive algorithms Do-Ba-Indyk-Price-Woodruff’10

Theorem
There exists an algorithm for `2/`2 sparse recovery from Fourier
measurements using O(k logn) samples and O(n log3 n) runtime.

Optimal up to constant factors for k ≤ n1−δ.

31 / 50

Higher dimensional Fourier transform is needed in some applications

Given x ∈C[n]d , N = nd , compute

x̂j =
1p
N

∑
i∈[n]d

ωiT jxi and xj =
1p
N

∑
i∈[n]d

ω−iT j x̂i

where ω is the n-th root of unity, and n is a power of 2.

32 / 50

Previous sample complexity bounds:
Ï O(k logd N) in sublinear time algorithms

Ï runtime k logO(d)N, for each

Ï O(k log4 N) for any d
Ï Ω(N) time, for all

This lecture:

Theorem
There exists an algorithm for `2/`2 sparse recovery from Fourier
measurements using Od (k logN) samples and O(N log3 N) runtime.

Sample-optimal up to constant factors for any constant d .

33 / 50

`2/`2 sparse recovery guarantees:

||x̂ − ŷ ||2 ≤C ·mink−sparse ẑ ||x̂ − ẑ||2

|x̂1| ≥ . . . ≥ |x̂k | ≥
|x̂k+1| ≥ |x̂k+2| ≥ . . .

Err2
k (x̂)=

∑n
j=k+1 |x̂j |2

Residual error bounded by noise
energy Err2

k (x̂)

head

tail

µ≈ tail noise/
p

k

34 / 50

`2/`2 sparse recovery guarantees:

||x̂ − ŷ ||2 ≤C ·mink−sparse ẑ ||x̂ − ẑ||2

|x̂1| ≥ . . . ≥ |x̂k | ≥
|x̂k+1| ≥ |x̂k+2| ≥ . . .

Err2
k (x̂)=

∑n
j=k+1 |x̂j |2

Residual error bounded by noise
energy Err2

k (x̂)

head

tail

µ≈ tail noise/
p

k

35 / 50

`2/`2 sparse recovery guarantees:

||x̂ − ŷ ||2 ≤C ·Err2
k (x̂)

|x̂1| ≥ . . . ≥ |x̂k | ≥
|x̂k+1| ≥ |x̂k+2| ≥ . . .

Err2
k (x̂)=

∑n
j=k+1 |x̂j |2

Residual error bounded by noise
energy Err2

k (x̂)

head

tail

µ≈ tail noise/
p

k

36 / 50

`2/`2 sparse recovery guarantees:

||x̂ − ŷ ||2 ≤C ·Err2
k (x̂)

|x̂1| ≥ . . . ≥ |x̂k | ≥
|x̂k+1| ≥ |x̂k+2| ≥ . . .

Err2
k (x̂)=

∑n
j=k+1 |x̂j |2

Residual error bounded by noise
energy Err2

k (x̂)

head

tail

µ≈ tail noise/
p

k

37 / 50

`2/`2 sparse recovery guarantees:

||x̂ − ŷ ||2 ≤C ·Err2
k (x̂)

µ≈ tail noise/
p

k

Sufficient to ensure that most elements are below average noise
level:

|x̂i − ŷi |2 ≤ c ·Err2
k (x̂)/k =:µ2

38 / 50

`2/`2 sparse recovery guarantees:

||x̂ − ŷ ||2 ≤C ·Err2
k (x̂)

µ≈ tail noise/
p

k

Will ensure that all elements are below average noise level:

||x̂ − ŷ ||2∞ ≤ c ·Err2
k (x̂)/k =:µ2

39 / 50

`∞/`2 sparse recovery guarantees:

||x̂ − ŷ ||2∞ ≤C ·Err2
k (x̂)/k

µ≈ tail noise/
p

k

Will ensure that all elements are below average noise level:

||x̂ − ŷ ||2∞ ≤ c ·Err2
k (x̂)/k =:µ2

40 / 50

`∞/`2 sparse recovery guarantees:

||x̂ − ŷ ||2∞ ≤C ·Err2
k (x̂)/k

µ≈ tail noise/
p

k

Will ensure that all elements are below average noise level:

||x̂ − ŷ ||2∞ ≤µ2

41 / 50

Iterative recovery

Input: x ∈Cn

ŷ0 ← 0
For t = 1 to L

Ï ẑ ← PARTIALRECOVERY(x−yt−1) BTakes random samples of x −y
Ï Update ŷt ← ŷt−1 + ẑ

In most prior works sampling complexity is

samples per PARTIALRECOVERY step×number of iterations

Lots of work on carefully choosing filters, reducing number of
iterations:
Hassanieh-Indyk-Katabi-Price’12,
Ghazi-Hassanieh-Indyk-Katabi-Price-Shi’13, Indyk-K.-Price’14

Ï still lose Ω(loglogn) in sample complexity (number of iterations)
Ï lose Ω((logn)d−1 loglogn) in higher dimensions

42 / 50

Iterative recovery

Input: x ∈Cn

ŷ0 ← 0
For t = 1 to L

Ï ẑ ← PARTIALRECOVERY(x−yt−1) BTakes random samples of x −y
Ï Update ŷt ← ŷt−1 + ẑ

In most prior works sampling complexity is

samples per PARTIALRECOVERY step×number of iterations

Lots of work on carefully choosing filters, reducing number of
iterations:
Hassanieh-Indyk-Katabi-Price’12,
Ghazi-Hassanieh-Indyk-Katabi-Price-Shi’13, Indyk-K.-Price’14

Ï still lose Ω(loglogn) in sample complexity (number of iterations)
Ï lose Ω((logn)d−1 loglogn) in higher dimensions

42 / 50

Iterative recovery

Input: x ∈Cn

ŷ0 ← 0
For t = 1 to L

Ï ẑ ← PARTIALRECOVERY(x−yt−1) BTakes random samples of x −y
Ï Update ŷt ← ŷt−1 + ẑ

In most prior works sampling complexity is

samples per PARTIALRECOVERY step×number of iterations

Lots of work on carefully choosing filters, reducing number of
iterations:
Hassanieh-Indyk-Katabi-Price’12,
Ghazi-Hassanieh-Indyk-Katabi-Price-Shi’13, Indyk-K.-Price’14

Ï still lose Ω(loglogn) in sample complexity (number of iterations)
Ï lose Ω((logn)d−1 loglogn) in higher dimensions

42 / 50

Iterative recovery

Input: x ∈Cn

ŷ0 ← 0
For t = 1 to L

Ï ẑ ← PARTIALRECOVERY(x−yt−1) BTakes random samples of x −y
Ï Update ŷt ← ŷt−1 + ẑ

Our sampling complexity is

samples per PARTIALRECOVERY step×number of iterations

Do not use fresh randomness in each iteration! In general
challenging: only one paper Bayati-Montanari’11 gives provable

guarantees, with Gaussians

Can use very simple filters!

43 / 50

Iterative recovery

Input: x ∈Cn

ŷ0 ← 0
For t = 1 to L

Ï ẑ ← PARTIALRECOVERY(x−yt−1) BTakes random samples of x −y
Ï Update ŷt ← ŷt−1 + ẑ

Our sampling complexity is

samples per PARTIALRECOVERY step × number of iterations

Do not use fresh randomness in each iteration! In general
challenging: only one paper Bayati-Montanari’11 gives provable

guarantees, with Gaussians

Can use very simple filters!

43 / 50

Iterative recovery

Input: x ∈Cn

ŷ0 ← 0
For t = 1 to L

Ï ẑ ← PARTIALRECOVERY(x−yt−1) BTakes random samples of x −y
Ï Update ŷt ← ŷt−1 + ẑ

Our sampling complexity is

samples per PARTIALRECOVERY step × number of iterations

Do not use fresh randomness in each iteration! In general
challenging: only one paper Bayati-Montanari’11 gives provable

guarantees, with Gaussians

Can use very simple filters!

43 / 50

Our filter=boxcar convolved with itself O(1) times

Filter support is O(k) (=samples per measurement)

O(k logn) samples in PARTIALRECOVERY step

−30 −20 −10 0 10 20 30
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

time

m
a

g
n
itu

d
e

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

frequency

m
a

g
n
itu

d
e

Can choose a rather weak filter, but do not need fresh randomness

44 / 50

Our filter=boxcar convolved with itself O(1) times

Filter support is O(k) (=samples per measurement)

O(k logn) samples in PARTIALRECOVERY step

−30 −20 −10 0 10 20 30
0

0.01

0.02

0.03

0.04

0.05

0.06

time

m
a

g
n
itu

d
e

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

frequency

m
a

g
n
itu

d
e

Can choose a rather weak filter, but do not need fresh randomness

44 / 50

Our filter=boxcar convolved with itself O(1) times

Filter support is O(k) (=samples per measurement)

O(k logn) samples in PARTIALRECOVERY step

−30 −20 −10 0 10 20 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

time

m
a

g
n
itu

d
e

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

frequency

m
a

g
n
itu

d
e

Can choose a rather weak filter, but do not need fresh randomness

44 / 50

G ←B∗B∗B
Let ym ← (Pmx) ·G

m = 0, . . . ,M =C logn

ẑ0 ← 0
For t = 1, . . . ,T =O(logn):

For f ∈ [n]:
ŵf ←median

{
ỹ1

f , . . . , ỹM
f

}
If |ŵf | < 2T−tµ/3 then

ŵf ← 0
End

ẑt+1 = ẑt + ŵ
ym ← ym − (Pmw) ·G

for m = 1, . . . ,M
End

B Take samples of x

B Loop over thresholds

B Estimate, prune small
elements

B Update samples

Main challenge: lack of fresh randomness. Why does median work?

45 / 50

G ←B∗B∗B
Let ym ← (Pmx) ·G

m = 0, . . . ,M =C logn

ẑ0 ← 0
For t = 1, . . . ,T =O(logn):

For f ∈ [n]:
ŵf ←median

{
ỹ1

f , . . . , ỹM
f

}
If |ŵf | < 2T−tµ/3 then

ŵf ← 0
End

ẑt+1 = ẑt + ŵ
ym ← ym − (Pmw) ·G

for m = 1, . . . ,M
End

µ

Main challenge: lack of fresh randomness. Why does median work?

45 / 50

G ←B∗B∗B
Let ym ← (Pmx) ·G

m = 0, . . . ,M =C logn

ẑ0 ← 0
For t = 1, . . . ,T =O(logn):

For f ∈ [n]:
ŵf ←median

{
ỹ1

f , . . . , ỹM
f

}
If |ŵf | < 2T−tµ/3 then

ŵf ← 0
End

ẑt+1 = ẑt + ŵ
ym ← ym − (Pmw) ·G

for m = 1, . . . ,M
End

µ

Main challenge: lack of fresh randomness. Why does median work?

45 / 50

G ←B∗B∗B
Let ym ← (Pmx) ·G

m = 0, . . . ,M =C logn

ẑ0 ← 0
For t = 1, . . . ,T =O(logn):

For f ∈ [n]:
ŵf ←median

{
ỹ1

f , . . . , ỹM
f

}
If |ŵf | < 2T−tµ/3 then

ŵf ← 0
End

ẑt+1 = ẑt + ŵ
ym ← ym − (Pmw) ·G

for m = 1, . . . ,M
End

µ

Main challenge: lack of fresh randomness. Why does median work?

45 / 50

G ←B∗B∗B
Let ym ← (Pmx) ·G

m = 0, . . . ,M =C logn

ẑ0 ← 0
For t = 1, . . . ,T =O(logn):

For f ∈ [n]:
ŵf ←median

{
ỹ1

f , . . . , ỹM
f

}
If |ŵf | < 2T−tµ/3 then

ŵf ← 0
End

ẑt+1 = ẑt + ŵ
ym ← ym − (Pmw) ·G

for m = 1, . . . ,M
End

µ

Main challenge: lack of fresh randomness. Why does median work?

45 / 50

G ←B∗B∗B
Let ym ← (Pmx) ·G

m = 0, . . . ,M =C logn

ẑ0 ← 0
For t = 1, . . . ,T =O(logn):

For f ∈ [n]:
ŵf ←median

{
ỹ1

f , . . . , ỹM
f

}
If |ŵf | < 2T−tµ/3 then

ŵf ← 0
End

ẑt+1 = ẑt + ŵ
ym ← ym − (Pmw) ·G

for m = 1, . . . ,M
End

µ

Main challenge: lack of fresh randomness. Why does median work?

45 / 50

Lecture so far

Ï Optimal sample complexity by reusing randomness

Ï Very simple algorithm, can be implemented

Ï Extension to higher dimensions: algorithm is the same,
permutations are different.

Ï Choose random invertible linear transformation over Zd
n

46 / 50

Experimental evaluation

Problem: recover support of a random k -sparse signal from
Fourier

measurements.
Parameters: n = 215, k = 10,20, . . . ,100
Filter: boxcar filter with support k +1

47 / 50

Comparison to `1-minimization (SPGL1)

O(k log3 k logn) sample complexity, requires LP solve

sparsity

nu
m

be
r

of
 m

ea
su

re
m

en
ts

n=32768, L1 minimization

10 20 30 40 50 60 70 80 90 100

500

1000

1500

2000

2500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sparsity

nu
m

be
r

of
 m

ea
su

re
m

en
ts

n=32768, B=k, random phase, non−monotone

10 20 30 40 50 60 70 80 90 100

500

1000

1500

2000

2500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Within a factor of 2 of `1 minimization

48 / 50

Open questions:

Ï O(k logn) in O(k log2 n) time?

Ï O(k logn) runtime?

Ï remove dependence on dimension? Current approaches lose
Cd in sample complexity, (logn)d in runtime

More on sparse FFT:
http://groups.csail.mit.edu/netmit/sFFT/index.html

49 / 50

http://groups.csail.mit.edu/netmit/sFFT/index.html

Open questions:

Ï O(k logn) in O(k log2 n) time?

Ï O(k logn) runtime?

Ï remove dependence on dimension? Current approaches lose
Cd in sample complexity, (logn)d in runtime

More on sparse FFT:
http://groups.csail.mit.edu/netmit/sFFT/index.html

49 / 50

http://groups.csail.mit.edu/netmit/sFFT/index.html

	Fourier Transform and Sparsity
	2/2 sparse recovery
	Sample-optimal algorithm
	Experimental evaluation

