Sparse Fourier Transform
(lecture 4)

Michael Kapralov'

1IBM Watson — EPFL

St. Petersburg CS Club
November 2015

/50

Given x € C", compute the Discrete Fourier Transform of x:

%= > xol,

where w = 2™/ is the n-th root of unity.

Given x € C", compute the Discrete Fourier Transform of x:

Xj = 1 Z Xj(})_ij,

where w = 2™/ is the n-th root of unity.

Goal: find the top k coefficients of X approximately

In previous lectures:

» exactly k-sparse: O(klogn) runtime and samples

50

Given x € C", compute the Discrete Fourier Transform of x:

%= > xol,

where w = 2™/ is the n-th root of unity.

Goal: find the top k coefficients of X approximately

In previous lectures:
» exactly k-sparse: O(klogn) runtime and samples

> approximately k-sparse: O(klog? n(loglogn)) runtime and
samples

This lecture, for approximately k-sparse case:

o(1) o(1)

» klognlog logn samples in klog? nlog
» O(klogn) samples (optimal).

logntime;

Improvements?
List— ¢
Fort=1 tologk
B — Ck /4!
ye—1/(C2%)

List — List + PARTIALRECOVERY(B;, vy, List)
End

50

Improvements?
List— ¢
For t=1 tologk
B — Ck /4!
yt—1/(C2")

List — List + PARTIALRECOVERY(B;, vy, List)
End

Summary:

» independent invocations of PARTIALRECOVERY: use fresh
samples in every iteration

50

Improvements?
List— ¢
Fort=1 tologk
B — Ck /4!
ye—1/(C2%)

List — List + PARTIALRECOVERY(B;, vy, List)
End

Summary:

» independent invocations of PARTIALRECOVERY: use fresh
samples in every iteration

» reduce (approximate) sparsity at geometric rate

Improvements?

List— ¢
Fort=1 tologk
B; — Ck /4!

Yt —1/(C2)

List — List + PARTIALRECOVERY(B;, vy, List)
End

Summary:

» independent invocations of PARTIALRECOVERY: use fresh
samples in every iteration

» reduce (approximate) sparsity at geometric rate

» need sharp filters to reduce sparsity

Improvements?

List— ¢
Fort=1 tologk
B; — Ck /4!

Yt —1/(C2)

List — List + PARTIALRECOVERY(B;, vy, List)
End

Summary:

» independent invocations of PARTIALRECOVERY: use fresh
samples in every iteration

» reduce (approximate) sparsity at geometric rate
» need sharp filters to reduce sparsity

» lose Q(logn) time and sparsity because of sharpness

Why not use simpler filters with smaller support?
Let

[1/(B+1) ifje[-B/2,B/2]
Gj'_{ 0 O.W.

Why not use simpler filters with smaller support?

Let
G-'—{ 1/(B+1) ifje[-B/2,B/2]
I 0 0.W.

supp(G) = B~ k as opposed to B = klogn, but buckets leak

Can only identify and approximate elements of value at least
~|IX115/k, and estimate up to ~ |X|3/k additive error, so need to
repeat Q(logn) times

Sample complexity

Sample complexity=number of samples accessed in time domain.
In some applications at least as important as runtime

) v
Jlr
Shi-Andronesi-Hassanieh-Ghazi- ' N dﬂ/)}
Katabi-Adalsteinsson’ 'Q) ,;ﬂb'» e o
ISMRM'13 - #.5)
1 ‘!vl;y.’o ! ;? v ‘

6/50

Sample complexity

Sample complexity=number of samples accessed in time domain.
In some applications at least as important as runtime

5 0 1{3
Shi-Andronesi-Hassanieh-Ghazi- T by f dé}
Katabi-Adalsteinsson’ WAy e

ISMRM'13 uﬁﬁ,;-
T @0 T, 0

Given access to x € C", find y such that

~ ~2 . ~ a2
IX=Y11° = C-miny_gparse 211X — 2|

Use smallest possible number of samples?

Uniform bounds (for all):

Candes-Tao'06
Rudelson-Vershynin’08
Cheraghchi-Guruswami-Velingker'12
Bourgain’14

Haviv-Regev’'15

Deterministic, Q(n) runtime
O(klog? klog n)

Non-uniform bounds (for each):

Goldreich-Levin’89
Kushilevitz-Mansour'91, Mansour'92
Gilbert-Guha-Indyk-Muthukrishnan-
Strauss’02
Gilbert-Muthukrishnan-Strauss’05
Hassanieh-Indyk-Katabi-Price’12a
Hassanieh-Indyk-Katabi-Price’12b

Randomized, O(k -poly(logn)) runtime
O(klog? n)

Lower bound: Q(klog(n/k)) for non-adaptive algorithms Do-Ba-Indyk-Price-Woodruff’10

/50

Uniform bounds (for all):

Candes-Tao'06
Rudelson-Vershynin’08
Cheraghchi-Guruswami-Velingker'12
Bourgain’14

Haviv-Regev’'15

Deterministic, Q(n) runtime
O(klog? klogn)

Non-uniform bounds (for each):

Goldreich-Levin’89
Kushilevitz-Mansour'91, Mansour'92
Gilbert-Guha-Indyk-Muthukrishnan-
Strauss’02
Gilbert-Muthukrishnan-Strauss’05
Hassanieh-Indyk-Katabi-Price’12a
Hassanieh-Indyk-Katabi-Price’12b

Randomized, O(k -poly(logn)) runtime
O(klog? n)

Lower bound: Q(klog(n/k)) for non-adaptive algorithms Do-Ba-Indyk-Price-Woodruff’10

Theorem

There exists an algorithm for €5 /¢> sparse recovery from Fourier

measurements using O(klogn-log
O(klog? n-log®"logn) runtime.

o1

Jlog n) samples and

Optimal up to a poly(loglog n) factors for k < n'=2.

/50

€5 /0, sparse recovery guarantees:

~ o~ 2 . ~ a2
IIX =yII° = C-mink_gparse 211X — ZII

50

€5 /0> sparse recovery guarantees:

IX - Y112 < C-Erré(x)

|)?1| =>...=> |7k| >
[Xii1] = X0l = ... Residual error bounded by noise
energy Err2(X)
Emd(X) =X, (1%

€5 /0> sparse recovery guarantees:
Signal to noise ratio R =[|x — | /Err%(x) < C
IX1]=...> Xk =
IXii1] = [Xiiol = ... Residual error bounded by noise

energy Err2(X)
Emd(X) =X, (1%

10/50

€5 /0> sparse recovery guarantees:
Signal to noise ratio R = [|X - J|I?/Er(x) < C
IX1]=...> Xk =
IXii1] = [Xiiol = ... Residual error bounded by noise
energy Err2(X)

Emd(X) =X, (1%

Sufficient to ensure that most elements are below average noise
level:

% - Jil? < ¢ Erré(X) /k =: p®

10/50

lterative recovery

Many algorithms use the iterative recovery scheme:

Input: xeC”

Yo—0

Fort=1toL
Z — PARTIALRECOVERY(X,¥;_1) ©>Takes random samples of x -y
Update y; — y;_1 +2

PARTIALRECOVERY(X,Y)

return dominant Fourier coefficients Z of x — y (approximately)

dominant coefficients= |X; — y;1° = u?(above average noise level)

11/50

PARTIALRECOVERY(X,Y)

return dominant Fourier coefficients Z of x — y (approximately)

dominant coefficients= |X; — yi|2 = u2(above average noise level)

Main questions:

» How many samples per SNR reduction step?
» How many iterations?

12/50

PARTIALRECOVERY(X,Y)

return dominant Fourier coefficients Z of x — y (approximately)

dominant coefficients= |X; — yi|2 = u2(above average noise level)

Main questions:

» How many samples per SNR reduction step?
» How many iterations?

Summary of techniques from

Gilbert-Guha-Indyk-Muthukrishnan-Strauss’02, Akavia-Goldwasser-Safra’03,
Gilbert-Muthukrishnan-Strauss’05, lwen’10, Akavia’10, Hassanieh-Indyk-Katabi-Price’12a,
Hassanieh-Indyk-Katabi-Price’12b

12/50

1-sparse recovery from Fourier measurements

vvvvvvvv

Xz = 02T + noise onf/n

O(loggng n) measurements

for random a

13/50

Reducing k-sparse recovery to 1-sparse recovery

Permute with a random linear transformation and phase shift

vvvvvvvv

14/50

Reducing k-sparse recovery to 1-sparse recovery

Permute with a random linear transformation and phase shift

vvvvvvvv

15/50

Reducing k-sparse recovery to 1-sparse recovery

Permute with a random linear transformation and phase shift

vvvvvvvv

16/50

Reducing k-sparse recovery to 1-sparse recovery

Partition frequency space into B = k/a buckets for constant a € (0, 1)

vvvvvvvv

Choose a filter G, G such that Compute X * G = (x-G)
» G approximates the buckets
» G has small support

17/50

Reducing k-sparse recovery to 1-sparse recovery
Partition frequency space into B = k/a buckets for constant a € (0, 1)

rrrrrrrr

Choose a filter G, G such that Compute X+ G = (x-G)
» G approximates the buckets
» G has small support

18/50

Reducing k-sparse recovery to 1-sparse recovery
Partition frequency space into B = k/a buckets for constant a € (0, 1)

rrrrrrrr

Choose a filter G, G such that Compute X+ G = (x-G)
» G approximates the buckets
» G has small support

19/50

Reducing k-sparse recovery to 1-sparse recovery
Partition frequency space into B = k/a buckets for constant a € (0, 1)

rrrrrrrr

Choose a filter G, G such that Compute % * G = (x-G)
» G approximates the buckets
» G has small support Sample complexity=supp G!

20/50

PARTIALRECOVERY step

PARTIALRECOVERY(X,Y)

» Make measurements (independent permutation+filtering)

» Locate and estimate large frequencies (1-sparse
recovery)

return dominant Fourier coefficients Z of x — y (approximately)

Sample complexity = support of G

21/50

PARTIALRECOVERY step

PARTIALRECOVERY(X,Y)

» Make measurements (independent permutation+filtering)

» Locate and estimate large frequencies (1-sparse
recovery)

return dominant Fourier coefficients Z of x — y (approximately)

Sample complexity = support of G

» How many measurements do we need?
» How effective is a refinement step?

Both determined by signal to noise ratio in each bucket — function of
filter choice

21/50

Time domain:
support O(k) [GMS’05]
Frequency domain:

)

SNR = O(1)
Reduce SNR by O(1) factor

Q(klog? n) samples

22/50

Time domain: Time domain:

support O(k) [GMS’05] support ©(klogn) [HIKP12]
Frequency domain: Frequency domain:
SNR = O(1) SNR = can by poly(n)
Reduce SNR by O(1) factor Reduce sparsity by O(1) factor
Q(klog? n) samples Q(klog? n) samples

This paper: interpolate between the two extremes, get all benefits

23/50

Main idea

A new family of filters that adapt to current upper bound on SNR.

» Sharp filters initially, more blurred later

»»»»»»»

24/50

When SNR is bounded by R:

» filter support O(klog R) (= convolve boxcar with itself log R
times)

25/50

uuuuuuuuuuuuuuuuuuuuu

When SNR is bounded by R:

» filter support O(klog R) (= convolve boxcar with itself log R
times)

» (most) 1-sparse recovery subproblems for dominant frequencies
have high SNR (about R) so O*(logg n) measurements!

O*(klogR-logrn) = O*(klogn) samples per step!

25/50

R—RYV2_RYV*. _C?-C

J

O(loglog n) iterations

PARTIALRECOVERY(X,Y, R)

R-u?

=
=

Rz .

p? = tail noise/B

26/50

R—RYV2_RYV*. _C?-C

v

O(loglog n) iterations

PARTIALRECOVERY(X,Y, R)

R-u?

1 I |)
| u? = tail noise/B

=
=

26/50

R—-R/2-RY*. . ~C2-C

)

O(loglog n) iterations

PARTIALRECOVERY(X, ¥, R?)

]
n|—=
=
N

uy)
FNEN
=
n

u? = tail noise/B

26/50

R—R/2_RY*. ~C2-C

v

O(loglog r;; iterations

PARTIALRECOVERY(x,y, C?)

CQ‘HZ

| 1 I | N
p? = tail noise/B

26/50

Algorithm

Input: xeC”

Yo—0

Ro — poly(n)

For t=1to O(loglogn)
Z — PARTIALRECOVERY(X,¥;_1, R;_1) >Takes samples of x—y
Update y; — y;_1 +2

Rt — /Rt

PARTIALRECOVERY step:
» Takes O*(klogn) samples independent of R

» |Is very effective: reduces R — Rz, so O(loglog n) iterations
suffice

27/50

Partial recovery analysis
PARTIALRECOVERY(X, ¥, R)

1 I | N
| u? = tail noise/B

» Need to reduce most ‘large’ frequencies, i.e. [Xj|° = VRu?

28/50

Partial recovery analysis
PARTIALRECOVERY(X, ¥, R)

1 I | N
| u? = tail noise/B

» Need to reduce most ‘large’ frequencies, i.e. [Xj|° = VRu?
» Most=1-1/poly(R) fraction

28/50

Partial recovery analysis
PARTIALRECOVERY(X, Y, R)

1 I | N
| u? = tail noise/B

» Need to reduce most ‘large’ frequencies, i.e. [Xj|° = VRu?
» Most=1-1/poly(R) fraction
» lterative process, O(loglogn) steps

28/50

| w2 =tail noise/B

» partition elements into geometric weight classes
» write down recursion that governs the dynamics

» top half classes are reduced at double exponentialy rate* if we
use Q(loglogR) levels

29/50

Sample optimal algorithm (reusing measurements)

30/50

Uniform bounds (for all): Non-uniform bounds (for each):

Candes-Tao’06 Goldreich-Levin’89
Rudelson-Vershynin’08 Kushilevitz-Mansour'91, Mansour'92
Cheraghchi-Guruswami-Velingker'12 Gilbert-Guha-Indyk-Muthukrishnan-
Bourgain’14 Strauss’02

Haviv-Regev'15 Gilbert-Muthukrishnan-Strauss’05

Hassanieh-Indyk-Katabi-Price’12a
Hassanieh-Indyk-Katabi-Price’12b
Indyk-K.-Price’14

Deterministic, Q(n) runtime Randomized, O(k -poly(logn)) runtime
O(klog? klog n) O(klogn-(loglogn)©)

Lower bound: Q(klog(n/k)) for non-adaptive algorithms Do-Ba-Indyk-Price-Woodruff’10

31/50

Uniform bounds (for all): Non-uniform bounds (for each):

Candes-Tao’06 Goldreich-Levin’89
Rudelson-Vershynin’08 Kushilevitz-Mansour'91, Mansour'92
Cheraghchi-Guruswami-Velingker'12 Gilbert-Guha-Indyk-Muthukrishnan-
Bourgain’14 Strauss’02

Haviv-Regev'15 Gilbert-Muthukrishnan-Strauss’05

Hassanieh-Indyk-Katabi-Price’12a
Hassanieh-Indyk-Katabi-Price’12b
Indyk-K.-Price’14

Deterministic, Q(n) runtime Randomized, O(k -poly(logn)) runtime
O(klog? klogn) O(klogn-(loglogn)©)
Lower bound: Q(klog(n/k)) for non-adaptive algorithms Do-Ba-Indyk-Price-Woodruff’10

Theorem
There exists an algorithm for €5 /€5 sparse recovery from Fourier
measurements using O(klog n) samples and O(nlog® n) runtime.

Optimal up to constant factors for k < n'~2.

31/50

Higher dimensional Fourier transform is needed in some applications

Given x e M’ N = n9, compute
- 1

T B
Xi=—= > o'lx; and x;= Zw’/x,
VNie[n]d IE[I‘I

where w is the n-th root of unity, and nis a power of 2.

32/50

Previous sample complexity bounds:
» O(klog® N) in sublinear time algorithms
> runtime klog®? N, for each
» O(klog* N) for any d
» Q(N) time, for all

This lecture:

Theorem

There exists an algorithm for €, /¢, sparse recovery from Fourier
measurements using O4(klog N) samples and O(Nlog® N) runtime.

Sample-optimal up to constant factors for any constant d.

33/50

05 /0> sparse recovery guarantees:

~ 2 . ~ a2
[IX=yll SC'mmk—sparse2||X—Z||

wll

H~ tail noise/ vk

34/50

€5 /0, sparse recovery guarantees:

~ 2 . ~ a2
[IX=yll SC'mmk—sparse2||X—Z||

IX1]=...= Xk =
[Xki1] = [Xiiol = ... Residual error bounded by noise
, energy Err2(X)
n
Erre (%) =X 1y %12

S TP M= tail noise/ vk

35/50

05 /€5 sparse recovery guarantees:
IX =1 < C-Er(x)

IX1]=...> Xk =
[Xii1] = [Xiiol = ... Residual error bounded by noise

- - energy Err2(X)
Erre(X) =L k1 1%

S TP H= tail noise/ vk

36/50

05 /€5 sparse recovery guarantees:
IX =1 < C-Er(x)

IX1]=...> Xk =
[Xii1] = [Xiiol = ... Residual error bounded by noise

- - energy Err2(X)
Erre(X) =L k1 1%

S TP H= tail noise/ vk

37/50

05 /05 sparse recovery

guarantees:

IX =PI < C-Er(x)

_ Ll

Ll ol

H~ tail noise/ vk

Sufficient to ensure that most elements are below average noise

level:

% - Jil? < ¢ Erré(X) /k =: p®

38/50

5 /0> sparse recovery

guarantees:

IX - Y112 < C-Erré(x)

_ Ll

Will ensure that all elements are below average noise level:

wll J

H~ tail noise/ v’k

IX-YI13, < c-Er2(X)/k=:p?

39/50

(/€2 Sparse recovery guarantees:

IX - JI13, < C-Er2(%)/k

_ Ll

Will ensure that all elements are below average noise level:

wll J

H~ tail noise/ v’k

IX-YI13, < c-Er2(X)/k=:p?

40/50

Boo/fg sparse recovery guarantees:

IX-PI12, < C-E2(%)/k

A LT I H= tail noise/ vk

Will ensure that all elements are below average noise level:

S_TIR <2
X =Yl =1

41/50

lterative recovery

Input: xeC”

Yo—0

Fort=1toL
» Z— PARTIALRECOVERY(x-y;_1) ©>Takes random samples of x —y
» Update y; — ys_1+2

42/50

lterative recovery

Input: xeC”

Yo—0

Fort=1toL
» Z— PARTIALRECOVERY(x-y;_1) ©>Takes random samples of x —y
» Update y; — ys_1+2

In most prior works sampling complexity is

samples per PARTIALRECOVERY step x number of iterations

42/50

lterative recovery
Input: xeC”
Yo—0
Fort=1toL
» Z— PARTIALRECOVERY(Xx—y;_1) ©>Takes random samples of X — y
» Update y; — y;-1+2

In most prior works sampling complexity is
samples per PARTIALRECOVERY step x number of iterations

Lots of work on carefully choosing filters, reducing number of
iterations:
Hassanieh-Indyk-Katabi-Price’12,
Ghazi-Hassanieh-Indyk-Katabi-Price-Shi’13, Indyk-K.-Price’14
» still lose Q(loglog n) in sample complexity (number of iterations)
> lose Q((logn)?-"loglogn) in higher dimensions

42/50

lterative recovery

Input: xeC”

Yo—0

Fort=1toL
» Z— PARTIALRECOVERY(Xx—y;_1) ©>Takes random samples of x — y
» Update y; — yi_1+2

Our sampling complexity is

samples per PARTIALRECOVERY step x number of iterations

43/50

lterative recovery

Input: xeC”
Yo—0
Fori=1to L

» Z— PARTIALRECOVERY(Xx-y;_1) D>Takesrandemsamples of x—y
» Update y; — ys_1+2

Our sampling complexity is

samples per PARTIALRECOVERY step »—rumber-of-terations

43/50

lterative recovery

Input: xeC”
Yo—0
Fori=1to L

» Z— PARTIALRECOVERY(Xx—);_1) ©>Takes random samples of x —y
» Update y; — yi_1+2
Our sampling complexity is

samples per PARTIALRECOVERY step ——rumber-of-terations

Can use very simple filters!

43/50

Our filter=boxcar convolved with itself O(1) times
Filter support is O(k) (=samples per measurement)

O(klogn) samples in PARTIALRECOVERY step

magnitude
magnitude

04
000 800 600 -400 200 o 200 400 600 800 1000

Can choose a rather weak filter, but do not need fresh randomness

44/50

Our filter=boxcar convolved with itself O(1) times
Filter support is O(k) (=samples per measurement)

O(klogn) samples in PARTIALRECOVERY step

50 20 “10 o 10 20 30 1000 800 600 -400 200 o 200 400 600 800 1000

Can choose a rather weak filter, but do not need fresh randomness

44/50

Our filter=boxcar convolved with itself O(1) times
Filter support is O(k) (=samples per measurement)

O(klogn) samples in PARTIALRECOVERY step

magnitude

-0
50 20 “10 o 10 20 30 S0 -800 600 -400 200 o 200 400 600 800 1000

Can choose a rather weak filter, but do not need fresh randomness

44/50

G—BxBxB

Zp—0
For t=1,..., T =0O(logn):
For fe[n|:
i — median{y/,..., y}
If Wl <27-1u/3 then
ws—0
End

2t+1 =2t+ w

End

> Take samples of x

>> Loop over thresholds

> Estimate, prune small
elements

> Update samples

45/50

G—BxBxB
Let y™ — (Pmx)-G
m=0,...,M=Clogn

Zp—0 o
For t=1,...,T=O(logn): I B
For fe[n|:

Ws — median {I/f‘j/f"”}
If |yl <27-1u/3 then
W —0

End

2t+1 :2t+ w

45/50

G—BxBxB
Let y™ — (Pmx)-G
m=0,...,M=Clogn

Zo—0 e
For t=1,...,T=O(logn): S
For fe[n|:

Ws — median {I/f‘j/f"”}
If |yl <27-1u/3 then
W —0

End

2t+1 :2t+ w

45/50

G—Bx+BxB
Let y™ — (Pmx)-G
m=0,...,M=Clogn

Zo—0
For t=1,...,7T=0O(logn):
For fe(p):

W,««—median{jlg,...,j/f"”}
If |yl <27-1u/3 then
W —0

End

S =2 W

45/50

G—Bx+BxB
Let y™ — (Pmx)-G
m=0,...,M=Clogn

Zo—0
For t=1,...,T=O(logn):

For fe[n|:
W,««—median{jlg,...,j/f"”}
If |yl <27-1u/3 then

End

S =2 W

45/50

G—Bx«BxB

Zo—0
For t=1,...,T=O(logn):

For fe[n|:
W,««—median{yg,...,j/)f‘”}
If |yl <27-1u/3 then

wg—0 mmmmmoooeooooo-

End R ||"||‘ il u

S =2 W

End

45/50

Lecture so far

» Optimal sample complexity by reusing randomness
» Very simple algorithm, can be implemented

» Extension to higher dimensions: algorithm is the same,
permutations are different.

» Choose random invertible linear transformation over 79

46/50

Experimental evaluation

Problem: recover support of a random k-sparse signal from
Fourier

measurements.
Parameters: n=2"% k=10,20,...,100
Filter: boxcar filter with support k + 1

47/50

number of measurements

Comparison to £4-minimization (SPGL1)

O(klog® klog n) sample complexity, requires LP solve

n=32768, L1 minimization n=32768, B=k, random phase, non-monotone
1 T T T T T T T 1
0.9 0.9
2000 g 0s 2000 R 0.8
0.7 0.7
5
1500 0.6 £ 1500 B 0.6
§
05 & 05
B
1000 0.4 é 1000 0.4
5
2
03 03
500 = 02 500 0.2
0.1 0.1
10 20 30 40 50 60 70 80 % 100 10 20 30 40 50 60 70 80 90 o
sparsity sparsity

Within a factor of 2 of £4 minimization

48/50

Open questions:
» O(klogn) in O(klog®n) time?
» O(klogn) runtime?

» remove dependence on dimension? Current approaches lose
C% in sample complexity, (logn)? in runtime

49/50

http://groups.csail.mit.edu/netmit/sFFT/index.html

Open questions:
» O(klogn) in O(klog? n) time?
» O(klogn) runtime?

» remove dependence on dimension? Current approaches lose
C% in sample complexity, (logn)? in runtime

More on sparse FFT:
http://groups.csail.mit.edu/netmit/sFFT/index.html

49/50

http://groups.csail.mit.edu/netmit/sFFT/index.html

	Fourier Transform and Sparsity
	2/2 sparse recovery
	Sample-optimal algorithm
	Experimental evaluation

