Sketching for Data Streams

Michael Kapralov

EPFL

August 30, 2023

Streaming model (Alon, Matias, Szegedy'96)

Observe a (very long) stream of data, e.g. IP packets, tweets, search queries....

Task: maintain (approximate) statistics of the stream

Streaming model

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Typically, assume N is known

- Small (sublinear) storage: typically $N^{\alpha}, \alpha<1$ or $\log { }^{O(1)} N$ Units of storage: bits, words or 'data items' (e.g., points, nodes/edges)
- Fast processing time per element
- Mostly randomized algorithms

Randomness often necessary

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

1	2	3	4	5	6	7	8	9	10

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

346

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

3463

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

34632

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{llllll}3 & 4 & 6 & 3 & 2 & 10\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{lllllll}3 & 4 & 6 & 3 & 2 & 10 & 3\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{llllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{lllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{llllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{lllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{llllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{lllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{llllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{lllllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{llllllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{lllllllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9 & 8\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{llllllllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9 & 8 & 7\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{lllllllllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9 & 8 & 7 & 4\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

3
4632
210
3
1312
2
55
5
9
87
44

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

3
463
210
3
1312
2
55
5
9
8
7
44
2

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{llllllllllllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9 & 8 & 7 & 4 & 4 & 2 & 2\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

$\begin{array}{lllllllllllllllllllllll}3 & 4 & 6 & 3 & 2 & 10 & 3 & 1 & 3 & 1 & 2 & 2 & 5 & 5 & 5 & 9 & 8 & 7 & 4 & 4 & 2 & 2 & 3\end{array}$

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

[^0]
Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

[^1]
Estimating IP flows through a router

Estimate the dominant IP flows

 through a router| | destination | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| ט | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| H | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Estimating IP flows through a router

Estimating IP flows through a router

Src	Dst
DATA	

Estimating IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
u	0	0	0	1	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0

Estimating IP flows through a router

Src	Dst
DATA	

Estimating IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
ن	0	0	0	1	0	0	0	0	0
!	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0

Estimating IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{\cup}{\cup}$	0	0	0	2	0	0	0	0	0
y	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	

Src	Dst
DATA	

Estimating IP flows through a router

Estimating IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{\circlearrowright}{\cup}$	0	0	0	2	0	0	0	0	0
$\begin{aligned} & \text { H1 } \\ & \hline \end{aligned}$	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0	1	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	

Src	Dst
DATA	

Estimating IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
$\underset{\sim}{0}$	0	0	0	2	0	0	0	0	0
y	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & i n \end{aligned}$	0	1	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0			

Estimating IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{\circlearrowright}{\cup}$	0	0	0	2	0	0	0	0	0
$\begin{aligned} & \text { H1 } \\ & \hline \end{aligned}$	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0	1	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	

Src	Dst
DATA	

Estimating IP flows through a router

Estimating IP flows through a router

destination									
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{0}{\cup}$	0	0	0	3	0	0	0	0	0
Y	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0	1	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	

Src	Dst
DATA	

Estimating IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
ن	0	0	0	3	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0	1	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0

Estimating IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{\circlearrowright}{\cup}$	0	0	0	3	0	0	0	0	0
$\begin{aligned} & \text { H1 } \\ & \hline \end{aligned}$	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0	1	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	

Src	Dst
DATA	

Estimating IP flows through a router

	destination								
	0	0	0	0	0	0	0	O	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0
$\underset{\sim}{0}$	0	0	0	3	0	0	0	0	0
y	0	0	0	0	0	0	0	0	0
io	0	1	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0			

Estimating IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{\cup}{\cup}$	0	0	0	3	0	0	0	0	0
y	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	2	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	

Src	Dst
DATA	

Estimating IP flows through a router

Estimating IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{\cup}{\cup}$	0	0	0	3	0	0	0	0	0
y	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0	2	0	0	0	0	0	1	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	

Src	Dst
DATA	

Estimating IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	3	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	2	0	0	0	0	0	1	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0

Estimating IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{\cup}{\cup}$	0	0	0	4	0	0	0	0	0
y	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0	2	0	0	0	0	0	1	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	

Src	Dst
DATA	

Estimating IP flows through a router

	destination								
	0	0	0	0	0	0	0	O	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0
$\underset{\sim}{0}$	0	0	0	4	0	0	0	0	0
y	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	2	0	0	0	0	0	1	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	

Estimating IP flows through a router

	destination								
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{\cup}{\cup}$	0	0	0	4	0	0	0	0	0
y	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0	3	0	0	0	0	0	1	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	

Src	Dst
DATA	

Estimating IP flows through a router

				st	na	io			
	0	0	0	0	0	0	0	O	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0
©	0	0	0	4	0	0	0	0	0
y	0	0	0	0	0	0	0	0	0
io	0	3	0	0	0	0	0	1	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0		0	

Estimating IP flows through a router

	destination								
	1	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{\otimes}{\cup}$	0	0	0	4	0	0	0	0	0
H	0	0	0	0	0	0	0	0	0
\bigcirc	0	3	0	0	0	0	0	1	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0

Src	Dst
DATA	

Estimating IP flows through a router

Estimating IP flows through a router

Estimating IP flows through a router

	destination								
	1	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{\cup}{\cup}$	0	0	0	4	0	0	0	0	0
y	0	0	0	0	0	0	0	0	0
0	0	4	0	0	0	0	0	1	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	

Src	Dst
DATA	

Estimating IP flows through a router

Estimating IP flows through a router

destination									
	1	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0
$\stackrel{\cup}{\cup}$	0	0	0	5	0	0	0	0	0
y	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	4	0	0	0	0	0	1	0
	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0		

Src	Dst
DATA	

Estimating IP flows through a router

Estimating IP flows through a router

Estimating IP flows through a router

Estimate the dominant IP flows

 through a router| | destination | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 |
| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | |

Estimating IP flows through a router

1 destination
1

0					
0			5		
0					
$\tilde{0}$		4			
0				$\mathbf{1}$	
				$\mathbf{1}$	

Estimate the dominant IP flows through a router

Estimating IP flows through a router

destination

1

0			5		
0			5		
0					
$\tilde{0}$					
0	4			1	1

Estimate the dominant IP flows through a router

Trivial: store all distinct IP pairs Space complexity: $\Theta(N)$

Estimating IP flows through a router

Estimate the dominant IP flows through a router

```
destination
```

1

0			5		
0			5		
0					
J					
0	4				
\sim				1	

Trivial: store all distinct IP pairs Space complexity: $\Theta(N)$

This lecture: solve in space $O(\log N)$
Exponential improvement!

Estimating search statistics

Given a set of items as a stream (e.g. queries on google.com over a period of time)

```
Geneva to NYC, coffee in Geneva, Geneva to NYC
```


Estimating search statistics

Given a set of items as a stream (e.g. queries on google.com over a period of time)

```
Geneva to NYC, coffee in Geneva, Geneva to NYC
```

Find the most frequent items in the set
Geneva to NYC, coffee in Geneva

Estimating search statistics

Given a set of items as a stream (e.g. queries on google.com over a period of time)

```
Geneva to NYC, coffee in Geneva, Geneva to NYC
```

Find the most frequent items in the set
Geneva to NYC, coffee in Geneva

Estimating search statistics

Given a set of items as a stream (e.g. queries on google.com over a period of time)

```
Geneva to NYC, coffee in Geneva, Geneva to NYC
```

Find the most frequent items in the set

Geneva to NYC, coffee in Geneva		
	Trivial	This lecture
Solution	hash<string> h;	COUNTSKETCH
Space	$\#$ of distinct items	$O(\log N)$

Streaming model

	Trivial	This lecture
Solution	hash<string> h;	COUNTSKETCH
Space	$\#$ of distinct items	$O(\log N)$

Streaming model

	Trivial	This lecture
Solution	hash<string> h;	COUNTSKETCH
Space	$\#$ of distinct items	$O(\log N)$

Are constants small?

Streaming model

	Trivial	This lecture
Solution	hash<string> h;	COUNTSKETCH
Space	$\#$ of distinct items	$O(\log N)$

Are constants small?

HyperLogLog: estimate Shakespeare's vocabulary using 128 bits of memory

Streaming model

Widely used in practice for scalable data analytics

most frequent searches on google.com over a time period

most frequent tweets

Heavy hitters problem

- Single pass over the data: $i_{1}, i_{2}, \ldots, i_{N}$

Assume N is known

- Output k most frequent items
(Heavy hitters)
- Small storage: will get $O(k \log N)$

Much better than storing all items!

Goal: design a small space data structure

FINDTOP (S, k) : returns top k most frequent items seen so far

Goal: design a small space data structure

FIndTop (S, k) : returns top k most frequent items seen so far

Useful to first design

PointQuery (S, i) : processes stream, then for any query item i can return $f_{i}=$ number of times item i appeared

Denote the number of times item i appears in the stream by f_{i} (frequency of i)

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

Denote the number of times item i appears in the stream by f_{i} (frequency of i)

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

PointQuery (S, i) in space $O(k \log N)$?

Denote the number of times item i appears in the stream by f_{i} (frequency of i)

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

$$
\begin{gathered}
\text { PointQuerr }(S, i) \text { in space } O(k \log N) ? \\
\text { Impossible in general... }
\end{gathered}
$$

Imagine a stream where all elements occur with about the same frequency

FindAPPROXTOP (S, k, ε) : returns set of k items such that $f_{i} \geq(1-\varepsilon) f_{k}$ for all reported i

ApproxPointQuery (S, i, ε) : processes stream, then for any query item i can return approximation $\widehat{f}_{i} \in\left[f_{i}-\varepsilon f_{k}, f_{i}+\varepsilon f_{k}\right]$

FindApproxTop (S, k, ε) : returns set of k items such that $f_{i} \geq(1-\varepsilon) f_{k}$ for all reported i

ApproxPointQuery (S, i, ε) : processes stream, then for any query item i can return approximation $\widehat{f}_{i} \in\left[f_{i}-\varepsilon f_{k}, f_{i}+\varepsilon f_{k}\right]$

In this lecture: find most frequent (head) items if they contribute the bulk of the stream under some measure

In what follows: ApproxPointQuery in small space

Observe a stream of updates, maintain small space data structure

Task: after observing the stream, given $i \in\{1,2, \ldots, m\}$, compute estimate \widehat{f}_{i} of f_{i}

In what follows: ApproxPointQuery in small space

Observe a stream of updates, maintain small space data structure

Task: after observing the stream, given $i \in\{1,2, \ldots, m\}$, compute estimate \widehat{f}_{i} of f_{i}

To be specified:

- space complexity?
- quality of approximation?
- success probability?

1. Finding top k elements via (Approx)PointQuery
2. Basic version of ApproxPointQuery
3. ApproxPointQuery and the CountSketch algorithm
4. Finding top k elements via (Approx)PointQuery
5. Basic version of ApproxPointQuery
6. ApproxPointQuery and the CountSketch algorithm

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

1	2	3	4	5	6	7	8	9	10

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

14

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

146

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

1461

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

14612

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

1461210

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

14612101

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

14612101515

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

146121015152

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

$\begin{array}{llllllllllll}1 & 4 & 6 & 1 & 2 & 10 & 1 & 5 & 1 & 5 & 2 & 2\end{array}$

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

14612101515223

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

1461210151512233

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

$\begin{array}{lllllllllllllll}1 & 4 & 6 & 1 & 2 & 10 & 1 & 5 & 1 & 5 & 2 & 2 & 3 & 3 & 3\end{array}$

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

146121015151223339

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

1461210151312233139

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

14612101515122331397

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

$\begin{array}{lllllllllllllllllllll}1 & 4 & 6 & 1 & 2 & 10 & 1 & 5 & 1 & 5 & 2 & 2 & 3 & 3 & 3 & 9 & 8 & 7 & 4 & 4 & 2\end{array}$

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

$\begin{array}{llllllllllllllllllllll}1 & 4 & 6 & 1 & 2 & 10 & 1 & 5 & 1 & 5 & 2 & 2 & 3 & 3 & 3 & 9 & 8 & 7 & 4 & 4 & 2 & 2\end{array}$

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

$\begin{array}{lllllllllllllllllllllll}1 & 4 & 6 & 1 & 2 & 10 & 1 & 5 & 1 & 5 & 2 & 2 & 3 & 3 & 3 & 9 & 8 & 7 & 4 & 4 & 2 & 2 & 1\end{array}$

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$

$\begin{array}{llllllllllllllllllllllll}1 & 4 & 6 & 1 & 2 & 10 & 1 & 5 & 1 & 1 & 2 & 2 & 3 & 3 & 3 & 9 & 8 & 7 & 4 & 4 & 2 & 2 & 1 & 5\end{array}$

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$
head

$\begin{array}{llllllllllllllllllllllll}1 & 4 & 6 & 1 & 2 & 10 & 1 & 5 & 1 & 1 & 2 & 2 & 3 & 3 & 3 & 9 & 8 & 7 & 4 & 4 & 2 & 2 & 1 & 5\end{array}$

Assume elements are ordered by frequency: $f_{1} \geq f_{2} \geq \ldots \geq f_{m}$
head

$\begin{array}{llllllllllllllllllllllll}1 & 4 & 6 & 1 & 2 & 10 & 1 & 5 & 1 & 1 & 2 & 2 & 3 & 3 & 3 & 9 & 8 & 7 & 4 & 4 & 2 & 2 & 1 & 5\end{array}$

Basic estimate

Will design a basic estimate with O (1) space complexity, analyze precision

Basic estimate

Will design a basic estimate with $O(1)$ space complexity, analyze precision

Choose a hash function $s:[m] \rightarrow\{-1,+1\}$ uniformly at random
Initialize
$C \leftarrow 0$

Update(C, i)
$C \leftarrow C+s(i)$

Basic estimate

Will design a basic estimate with $O(1)$ space complexity, analyze precision

Choose a hash function $s:[m] \rightarrow\{-1,+1\}$ uniformly at random

Initialize
$C \leftarrow 0$

$$
\begin{aligned}
& \operatorname{UPDATE}(\mathrm{C}, \mathrm{i}) \\
& C \leftarrow C+s(i)
\end{aligned}
$$

for every $p=1, \ldots, N$ (every element in the stream)
$\operatorname{UPDATE}\left(C, i_{p}\right)$
end for

Basic estimate

Will design a basic estimate with $O(1)$ space complexity, analyze precision

Choose a hash function $s:[m] \rightarrow\{-1,+1\}$ uniformly at random

> INITIALIZE
> $C \leftarrow 0$

$$
\begin{aligned}
& \text { UPDATE(C, i) } \\
& \qquad C \leftarrow C+s(i)
\end{aligned}
$$

for every $p=1, \ldots, N$ (every element in the stream)
$\operatorname{Update}\left(C, i_{p}\right)$
end for
Estimate(C, i)
return $C \cdot s(i)$

Show that $C \cdot s(i)$ is close to f_{i} 'with high probability'?
$U P D A T E(C, i)$
$C \leftarrow C+s(i)$
return $C \cdot s(i)$

Show that $C \cdot s(i)$ is close to f_{i} 'with high probability'?
$U \operatorname{Udate}(\mathrm{C}, \mathrm{i})$
$C \leftarrow C+s(i)$

Show that $C \cdot s(i)$ is close to f_{i} 'with high probability'?

Two steps:

- show that $\mathbf{E}_{s}[C \cdot s(i)]=f_{i}$
(so $C \cdot s(i)$ is an unbiased estimate of f_{i})
- show that $\operatorname{Var}_{s}[C \cdot s(i)]$ is 'small'

Basic estimate:mean

$$
\begin{aligned}
& \operatorname{UPDATE}(\mathrm{C}, \mathrm{i}) \\
& \qquad C \leftarrow+s(i)
\end{aligned}
$$

Estimate(C, i) return $C \cdot s(i)$

$$
C \cdot s(i)=\sum_{p=1}^{N} s\left(i_{p}\right) s(i)
$$

Basic estimate:mean

$$
\begin{aligned}
& \text { UPDATE(C, i) } \\
& \qquad \leftarrow C+s(i)
\end{aligned}
$$

Estimate(C, i) return $C \cdot s(i)$

$$
C \cdot s(i)=\sum_{p=1}^{N} s\left(i_{p}\right) s(i)=\sum_{j \in[m]} f_{j} \cdot s(j) s(i)
$$

Basic estimate:mean

$\operatorname{UPDATE}(\mathrm{C}, \mathrm{i})$

$$
C \leftarrow+s(i)
$$

Estimate(C, i) return $C \cdot s(i)$

$$
\begin{aligned}
C \cdot s(i)=\sum_{p=1}^{N} s\left(i_{p}\right) s(i) & =\sum_{j \in[m]} f_{j} \cdot s(j) s(i) \\
& =f_{i} s(i)^{2}+\sum_{j \in[m] \backslash i} f_{j} \cdot s(j) s(i)
\end{aligned}
$$

Basic estimate:mean

$$
\begin{aligned}
& \operatorname{UPDATE}(\mathrm{C}, \mathrm{i}) \\
& \qquad C \leftarrow C+s(i)
\end{aligned}
$$

Estimate(C, i) return $C \cdot s(i)$

$$
\begin{aligned}
C \cdot s(i)=\sum_{p=1}^{N} s\left(i_{p}\right) s(i) & =\sum_{j \in[m]} f_{j} \cdot s(j) s(i) \\
& =f_{i} s(i)^{2}+\sum_{j \in[m] \backslash i} f_{j} \cdot s(j) s(i) \\
& =f_{i}+\sum_{j \in[m] \backslash i} f_{j} \cdot s(j) s(i) \longleftarrow \text { random } \pm 1 \text { 's }
\end{aligned}
$$

Basic estimate:mean

$$
\begin{aligned}
& \text { UPDATE(C, i) } \\
& C \leftarrow C+s(i)
\end{aligned}
$$

Estimate(C, i)
 return $C \cdot s(i)$

$$
C \cdot s(i)=f_{i}+\sum_{j \in[m] \backslash i} f_{j} \cdot s(j) s(i)
$$

Basic estimate:mean

Update(C, i)
$C \leftarrow C+s(i)$

Estimate(C, i)
 return $C \cdot s(i)$

$$
\mathbf{E}[C \cdot s(i)]=f_{i}+\mathbf{E}\left[\sum_{j \in[m] \backslash i} f_{j} \cdot s(j) s(i)\right]
$$

Basic estimate:mean

$$
\begin{aligned}
& \text { UPDATE(C, i) } \\
& c \leftarrow C+s(i)
\end{aligned}
$$

Estimate(C, i)
 return $C \cdot s(i)$

Basic estimate:mean

$$
\begin{aligned}
& \text { UPDATE(C, }, i) \\
& c-C+s(i)
\end{aligned}
$$

Estimate(C, i)
 return $C \cdot s(i)$

Basic estimate:mean

$$
\begin{aligned}
& \text { UPDATE(C, i) } \\
& C \leftarrow C+s(i)
\end{aligned}
$$

Estimate(C, i)
 return $C \cdot s(i)$

The mean is correct: our estimator is unbiased!

Basic estimate:mean

$$
\begin{aligned}
& \text { UPDATE(C, i) } \\
& C \leftarrow C+s(i)
\end{aligned}
$$

Estimate(C, i)
 return $C \cdot s(i)$

$$
\begin{aligned}
\mathbf{E}[C \cdot s(i)] & =f_{i}+\mathbf{E}\left[\sum_{j \in[m] \backslash i} f_{j} \cdot s(j) s(i)\right] \\
& \left.=f_{i}+\sum_{j \in[m] \backslash i} f_{j} \cdot \mathbf{E}[s(j)] \mathbf{E}[s(i)] \text { (by independence of } s(i)\right) \\
& =f_{i}
\end{aligned}
$$

The mean is correct: our estimator is unbiased!
Is the estimate $C \cdot s(i)$ close to f_{i} with high probability?

Basic estimate: variance

$$
\begin{aligned}
& \operatorname{UPDATE}(\mathrm{C}, \mathrm{i}) \\
& \qquad C \leftarrow+s(i)
\end{aligned}
$$

Estimate(C, i) return $C \cdot s(i)$

We have

$$
C \cdot s(i)=f_{i}+\sum_{j \in[m] \backslash i} f_{j} \cdot s(j) s(i)
$$

and
$E[C \cdot s(i)]=f_{i}$.

Basic estimate: variance

$\operatorname{UPDATE}(\mathrm{C}, \mathrm{i})$
$C \leftarrow C+s(i)$

Estimate(C, i) return $C \cdot s(i)$

We have

$$
C \cdot s(i)=f_{i}+\sum_{j \in[m] \backslash i} f_{j} \cdot s(j) s(i)
$$

and

$$
\mathrm{E}[C \cdot s(i)]=f_{j}
$$

We need to bound

$$
\begin{aligned}
\operatorname{Var}(C \cdot s(i)) & =\mathbf{E}\left[(C \cdot s(i)-\mathbf{E}[C \cdot s(i)])^{2}\right] \\
& =\mathbf{E}\left[\left(C \cdot s(i)-f_{i}\right)^{2}\right] \\
& =\mathbf{E}\left[\left(\sum_{j \in[m] \backslash i} f_{j} \cdot s(j) s(i)\right)^{2}\right]
\end{aligned}
$$

Basic estimate: variance

Update(C, i)
$C \leftarrow C+s(i)$

Estimate(C, i) return $C \cdot s(i)$

$$
\begin{aligned}
\left(C \cdot s(i)-f_{i}\right)^{2} & =\left(\sum_{j \in[m] \backslash i} f_{j} \cdot s(j) s(i)\right)^{2} \\
& =\sum_{j \in[m] \backslash i j^{\prime} \in[m] \backslash i} f_{j} f_{j^{\prime}} \cdot s(j) s\left(j^{\prime}\right) \cdot s^{2}(i) \\
& =\sum_{j \in[m] \backslash i j^{\prime} \in[m] \backslash i} f_{j} f_{j^{\prime}} \cdot s(j) s\left(j^{\prime}\right)
\end{aligned}
$$

Basic estimate: variance

Update(C, i)
 $C \leftarrow C+s(i)$

Estimate(C, i) return $C \cdot s(i)$

$$
\begin{aligned}
\mathrm{E}\left[\left(C \cdot s(i)-f_{i}\right)^{2}\right] & =\mathrm{E}\left[\sum_{j \in[m] i j^{\prime} \in[m] i} \sum_{j} f_{j} f_{j^{\prime}} \cdot s(j) s\left(j^{\prime}\right)\right] \\
& =\sum_{j \in[m] i \backslash j^{\prime} \in[m] i} f_{j} f_{j} \cdot \mathbf{E}\left[s(j) s\left(j^{\prime}\right)\right] \\
& =\sum_{j \in[m] \backslash i} f_{j}^{2}
\end{aligned}
$$

since

- $s(j)^{2}=1$ for all j
- $\mathrm{E}\left[s(j) s\left(j^{\prime}\right)\right]=\mathrm{E}[s(j)] \mathrm{E}\left[s\left(j^{\prime}\right)\right]=0$ for $j \neq j^{\prime}$.

Basic estimate: variance

$$
\begin{aligned}
& \text { UPDATE(C, i) } \\
& \qquad \leftarrow C+s(i)
\end{aligned}
$$

Basic estimate: variance

$$
\begin{aligned}
& \operatorname{UPDATE}(\mathrm{C}, \mathrm{i}) \\
& \qquad C \leftarrow+s(i)
\end{aligned}
$$

Estimate(C, i)
 return $C \cdot s(i)$

We have proved that

$$
\operatorname{Var}(C \cdot s(i))=\mathbf{E}\left[\left(C \cdot s(i)-f_{i}\right)^{2}\right]=\sum_{j \in[m] \backslash i} f_{j}^{2}
$$

Basic estimate: variance

$$
\begin{aligned}
& \text { UPDATE(C, i) } \\
& C \leftarrow C+s(i)
\end{aligned}
$$

Estimate(C, i)
 return $C \cdot s(i)$

We have proved that

$$
\operatorname{Var}(C \cdot s(i))=\mathbf{E}\left[\left(C \cdot s(i)-f_{i}\right)^{2}\right]=\sum_{j \in[m] \backslash i} f_{j}^{2}
$$

By Chebyshev's inequality

$$
\operatorname{Pr}\left[\left|C \cdot s(i)-f_{i}\right| \geq 8 \cdot \sqrt{\sum_{j \in[m] \backslash i} f_{j}^{2}}\right] \leq 1 / 64
$$

Basic estimate: variance

> UPDATE(C, i)
> $C \leftarrow C+s(i)$
Estimate(C, i)
return $C \cdot s(i)$

We have proved that

$$
\operatorname{Var}(C \cdot s(i))=\mathbf{E}\left[\left(C \cdot s(i)-f_{i}\right)^{2}\right]=\sum_{j \in[m] \backslash i} f_{j}^{2}
$$

By Chebyshev's inequality

$$
\operatorname{Pr}\left[\left|C \cdot s(i)-f_{i}\right| \geq 8 \cdot \sqrt{\sum_{j \in[m] \backslash i} f_{j}^{2}}\right] \leq 1 / 64
$$

Basic estimate: variance

$$
\begin{aligned}
& \text { UPDATE(C, i) } \\
& C \leftarrow C+s(i)
\end{aligned}
$$

Estimate(C, i)
 return $C \cdot s(i)$

We have proved that

$$
\operatorname{Var}(C \cdot s(i))=\mathbf{E}\left[\left(C \cdot s(i)-f_{i}\right)^{2}\right]=\sum_{j \in[m] \backslash i} f_{j}^{2}
$$

By Chebyshev's inequality

$$
\operatorname{Pr}\left[\left|C \cdot s(i)-f_{i}\right|>8 \cdot \sqrt{\sum_{\mathrm{j} \in[\mathrm{~m}] \backslash \mathrm{i}} \mathrm{f}_{\mathrm{j}}^{2}}\right] \leq 1 / 64
$$

Basic estimate: summary

$$
\begin{aligned}
& \text { UPDATE(C, i) } \\
& C \leftarrow C+s(i)
\end{aligned}
$$

Estimate(C, i)
 return $C \cdot s(i)$

Estimate f_{i} up to

$$
\text { 8. } \sqrt{\sum_{j \in[m] i i} f_{j}^{2}}
$$

Pro: works well for most frequent item, if other items are small

Basic estimate: summary

> UPDATE(C, i)
> $C \leftarrow C+s(i)$

Estimate(C, i)
 return $C \cdot s(i)$

Estimate f_{i} up to

$$
\text { 8. } \sqrt{\sum_{j \in[m] i i} f_{j}^{2}}
$$

Pro: works well for most frequent item, if other items are small
Con: estimate for a small items contaminated by large items

1. Finding top k elements via (Approx)PointQuery
2. Basic version of ApproxPointQuery
3. ApproxPointQuery and the CountSketch algorithm
4. Finding top k elements via (Approx)PointQuerr
5. Basic version of ApproxPointQuery
6. ApproxPointQuery and the CountSketch algorithm

ApproxPointQuery and CountSketch

CountSketch algorithm (Charikar, Chen, Farach-Colton'02) Main ideas:

1. run basic estimate on subsampled/hashed stream (reduces variance)

ApproxPointQuery and CountSketch

CountSketch algorithm (Charikar, Chen, Farach-Colton'02) Main ideas:

1. run basic estimate on subsampled/hashed stream (reduces variance)
2. aggregate independent estimates to boost confidence (take medians)

ApproxPointQuery and CountSketch

CountSketch algorithm (Charikar, Chen, Farach-Colton'02) Main ideas:

1. run basic estimate on subsampled/hashed stream (reduces variance)
2. aggregate independent estimates to boost confidence (take medians)

universe $[m]$
buckets $[B]$

Hashing the items

universe [m]

buckets $[B]$

Hashed into $B=8$ buckets, get 8 subsampled streams
For item i its stream consists of $j \in[m]$ such that $h(j)=h(i)$

Hashing the items

Hashed into $B=8$ buckets, get 8 subsampled streams
For item i its stream consists of $j \in[m]$ such that $h(j)=h(i)$
For example,

- subsampled stream of item 1 is $\{1,6\}$

Hashing the items

universe [m]
buckets $[B]$

Hashed into $B=8$ buckets, get 8 subsampled streams
For item i its stream consists of $j \in[m]$ such that $h(j)=h(i)$
For example,

- subsampled stream of item 1 is $\{1,6\}$
- subsampled stream of item 5 is $\{5,7\}$

Note: hashing the universe [m], not positions in the stream

Note: hashing the universe [m], not positions in the stream head

E.x. the subsampled stream of item 1 is $\{1,6\}$
head

Note: hashing the universe [m], not positions in the stream

Note: hashing the universe [m], not positions in the stream
head

E.x. the subsampled stream of item 5 is $\{5,7\}$
head

Final ApproxPointQuery

Choose

- t random hash functions $h_{1}, h_{2}, \ldots, h_{t}$ from items $[m]$ to $B \approx k$ buckets $\{1,2, \ldots, B\}$
- t random hash functions $s_{1}, s_{2}, \ldots, s_{t}$ from items $[m]$ to $\{-1,+1\}$

Final ApproxPointQuery

Choose

- t random hash functions $h_{1}, h_{2}, \ldots, h_{t}$ from items [m] to $B \approx k$ buckets $\{1,2, \ldots, B\}$
- t random hash functions $s_{1}, s_{2}, \ldots, s_{t}$ from items $[m]$ to $\{-1,+1\}$

The algorithm runs t independent copies of basic estimate:

Update(C, i) for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

end for

Estimate(C, i)
return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

Final ApproxPointQuery

Choose

- t random hash functions $h_{1}, h_{2}, \ldots, h_{t}$ from items [m] to $B \approx k$ buckets $\{1,2, \ldots, B\}$
- t random hash functions $s_{1}, s_{2}, \ldots, s_{t}$ from items $[m]$ to $\{-1,+1\}$

The algorithm runs t independent copies of basic estimate:

Update(C, i) for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

end for

Estimate(C, i)
return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

Update(C, i)
for $r \in[1: t]$
$C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)$

Estimate(C, i) return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$
end for

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

Estimate(C, i)

 return median ${ }_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$ end forLemma
If $B \geq 8 \max \left\{k, \frac{32 \Sigma_{j \in \text { TAA }} f_{j}^{2}}{\left(\varepsilon \varepsilon_{k}\right)^{2}}\right\}$ and $t=O(\log N)$, then for every $i \in[m]$
$\left|\operatorname{Estimate}(C, i)-f_{i}\right| \leq \varepsilon f_{k}$
at every point in the stream whp.

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

Estimate(C, i)

 return median ${ }_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$ end forLemma
If $B \geq 8 \max \left\{k, \frac{32 \sum_{j \in T A A} f_{j}^{2}}{\left(\varepsilon \varepsilon_{k}\right)^{2}}\right\}$ and $t=O(\log N)$, then for every $i \in[m]$
$\left|\operatorname{Estimate}(C, i)-f_{i}\right| \leq \varepsilon f_{k}$
at every point in the stream whp.

Space complexity is $O(B \log N)$

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

Estimate(C, i)

 return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$ end forLemma
If $B \geq 8 \max \left\{k, \frac{32 \sum_{j \in \text { TAA }} f_{j}^{2}}{\left(\varepsilon \varepsilon_{k}\right)^{2}}\right\}$ and $t=O(\log N)$, then for every $i \in[m]$
$\left|\operatorname{Estimate}(C, i)-f_{i}\right| \leq \varepsilon f_{k}$
at every point in the stream whp.

Space complexity is $O(B \log N)$ How large is B ?

Space complexity

$$
\text { Set } B=8 \max \left\{k, \frac{32 \Sigma_{j \in \text { TALL }} f_{j}^{2}}{\left(\varepsilon f_{k}\right)^{2}}\right\}
$$

Note that $B=O\left(k / \varepsilon^{2}\right)$ if $\frac{1}{k} \sum_{j \in T A / L} f_{j}^{2}=O\left(f_{k}^{2}\right)$

Note: if $B \geq k$, can detect elements with counts above

$$
O\left(\sqrt{\frac{1}{B} \cdot \sum_{j \in \text { TAIL }} f_{j}^{2}}\right)
$$

Space complexity

Set $k=1$. Suppose that 1 appears \sqrt{N} times in the stream, and other $N-\sqrt{N}$ elements are distinct

Space complexity

Set $k=1$. Suppose that 1 appears \sqrt{N} times in the stream, and other $N-\sqrt{N}$ elements are distinct

Then $f_{1}=\sqrt{N}, f_{i}=1$ for $i=2, N-\sqrt{N}$.

$$
\text { Set } B=8 \max \left\{1, \frac{32 \Sigma_{j \in T A L L} f_{j}^{2}}{\left(\varepsilon_{1}\right)^{2}}\right\}
$$

Space complexity

Set $k=1$. Suppose that 1 appears \sqrt{N} times in the stream, and other $N-\sqrt{N}$ elements are distinct

Then $f_{1}=\sqrt{N}, f_{i}=1$ for $i=2, N-\sqrt{N}$.

$$
\text { Set } B=8 \max \left\{1, \frac{32 \Sigma_{j \in T A L} f_{j}^{2}}{\left(\varepsilon f_{1}\right)^{2}}\right\}
$$

$$
\text { We have } \sum_{j \in \text { TAll }} f_{j}^{2}=N-\sqrt{N} \leq N \text {, and } f_{1}^{2}=N
$$

Space complexity

Set $k=1$. Suppose that 1 appears \sqrt{N} times in the stream, and other $N-\sqrt{N}$ elements are distinct

Then $f_{1}=\sqrt{N}, f_{i}=1$ for $i=2, N-\sqrt{N}$.

$$
\text { Set } B=8 \max \left\{1, \frac{32 \Sigma_{j \in T A L} f_{j}^{2}}{\left(\varepsilon f_{1}\right)^{2}}\right\}
$$

We have $\sum_{j \epsilon \text { TALL }} f_{j}^{2}=N-\sqrt{N} \leq N$, and $f_{1}^{2}=N$

$$
\text { So } B=8 \max \left\{1, \frac{32 \sum_{j \in \text { TAA }} f_{j}^{2}}{\left(\varepsilon f_{1}\right)^{2}}\right\}=O\left(1 / \varepsilon^{2}\right) \text { suffices }
$$

Space complexity

Set $k=1$. Suppose that 1 appears \sqrt{N} times in the stream, and other $N-\sqrt{N}$ elements are distinct

Then $f_{1}=\sqrt{N}, f_{i}=1$ for $i=2, N-\sqrt{N}$.

$$
\text { Set } B=8 \max \left\{1, \frac{32 \Sigma_{j \in T A L} f_{j}^{2}}{\left(\varepsilon f_{1}\right)^{2}}\right\}
$$

We have $\sum_{j \in T A I L} f_{j}^{2}=N-\sqrt{N} \leq N$, and $f_{1}^{2}=N$

$$
\text { So } B=8 \max \left\{1, \frac{32 \Sigma_{j \in \text { TAA }} f_{j}^{2}}{\left(\varepsilon \varepsilon_{1}\right)^{2}}\right\}=O\left(1 / \varepsilon^{2}\right) \text { suffices }
$$

Remarkable, as 1 appears only in \sqrt{N} positions out of N : a vanishingly small fraction of positions!

Update(C, i)
for $r \in[1: t]$
$C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)$

Estimate(C, i)

return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

end for

Lemma
If $B \geq 8 \max \left\{k, \frac{32 \sum_{j \in \operatorname{TAL}} f_{j}^{2}}{\left(\varepsilon_{k}\right)^{2}}\right\}$ and $t \geq A \log N$ for an absolute constant $A>0$, then for every $i \in[m]$

$$
\left|\operatorname{Estimate}(C, i)-f_{i}\right| \leq \varepsilon f_{k}
$$

with high probability.
(f_{i} is the frequency of i)

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

Estimate(C, i) return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$
end for
Variance of estimate for i from r-th row:

$$
\sum_{\left.j \neq: \mathrm{h}_{\mathrm{r}}(\mathrm{j})=\mathrm{h}_{\mathrm{r}} \mathrm{i}\right)} f_{j}^{2}
$$

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

Estimate(C, i)

 return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$ end forVariance of estimate for i from r-th row:

$$
\sum_{j \neq i: \mathrm{h}_{\mathrm{r}}(\mathrm{j})=\mathbf{h}_{\mathrm{r}}(\mathrm{i})} f_{j}^{2}
$$

Show that

$$
\sum_{j \neq i: \mathrm{h}_{\mathrm{r}}(\mathrm{j})=\mathrm{h}_{\mathrm{r}}(\mathrm{i})} f_{j}^{2}=O(1 / B) \sum_{j \in T A / L, j \neq i} f_{j}^{2}
$$

with high constant probability.

Consider contribution of head and tail items separately:

$$
\sum_{j \neq i: h_{r}(j)=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H E A D, j \neq i \\ \mathbf{h}_{\mathbf{r}}(\mathbf{j})=\mathbf{h}_{\mathbf{r}}(\mathbf{i})}} f_{j}^{2}+\sum_{\substack{j \in T A \| L, j \neq i \\ \mathbf{h}_{\mathbf{r}}(\mathbf{j})=h_{\mathbf{r}}(\mathbf{i})}} f_{j}^{2}
$$

Consider contribution of head and tail items separately:

$$
\sum_{j \neq i: h_{r}(j)=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H E A D, j \neq i \\ \mathbf{h}_{\mathbf{r}}(\mathbf{j})=\mathbf{h}_{\mathbf{r}}(\mathbf{i})}} f_{j}^{2}+\sum_{\substack{j \in T A / L, j \neq i \\ \mathbf{h}_{\mathbf{r}}(\mathbf{j})=\mathbf{h}_{\mathbf{r}}(\mathbf{i})}} f_{j}^{2}
$$

For each $r \in[1: t]$ and each item $i \in[m]$ define three events:

- No-Collisions $r(i)-i$ does not collide with any of the head items under hashing r

Consider contribution of head and tail items separately:

$$
\sum_{j \neq i: h_{r}(j)=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H E A D, j \neq i \\ \mathbf{h}_{\mathbf{r}}(\mathbf{j})=\mathbf{h}_{\mathbf{r}}(\mathbf{i})}} f_{j}^{2}+\sum_{\substack{j \in \in A / L, j \neq i \\ \mathbf{h}_{\mathbf{r}}(\mathbf{j})=\mathbf{h}_{\mathbf{r}}(\mathbf{i})}} f_{j}^{2}
$$

For each $r \in[1: t]$ and each item $i \in[m]$ define three events:

- No-Collisions $r(i)-i$ does not collide with any of the head items under hashing r
- Small-VARIANCE $r(i)$ - i does not collide with too many of tail items under hashing r

Consider contribution of head and tail items separately:

$$
\sum_{j \neq i: h_{r}(j)=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H E A D, j \neq i \\ \mathbf{h}_{\mathbf{r}}(\mathbf{j})=\mathbf{h}_{\mathbf{r}}(\mathbf{i})}} f_{j}^{2}+\sum_{\substack{j \in T A / L, j \neq i \\ \mathbf{h}_{\mathbf{r}}(\mathbf{j})=\mathbf{h}_{\mathbf{r}}(\mathbf{i})}} f_{j}^{2}
$$

For each $r \in[1: t]$ and each item $i \in[m]$ define three events:

- No-Collisions $r(i)-i$ does not collide with any of the head items under hashing r
- Small-VARIANCE $r(i)$ - i does not collide with too many of tail items under hashing r
- Small-Deviation $r(i)$ - success event from basic analysis

Consider contribution of head and tail items separately:

$$
\sum_{j \neq i: h_{r}(j)=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H E A D, j \neq i \\ \mathbf{h}_{\mathbf{r}}(\mathbf{j})=\mathbf{h}_{\mathbf{r}}(\mathbf{i})}} f_{j}^{2}+\sum_{\substack{j \in \in A / L, j \neq i \\ \mathbf{h}_{\mathbf{r}}(\mathbf{j})=\mathbf{h}_{\mathbf{r}}(\mathbf{i})}} f_{j}^{2}
$$

For each $r \in[1: t]$ and each item $i \in[m]$ define three events:

- No-Collisions $r(i)-i$ does not collide with any of the head items under hashing r
- Small-VARIANCE $r(i)-i$ does not collide with too many of tail items under hashing r
- Small-Deviation $r(i)$ - success event from basic analysis

Show that all three events hold simultaneously with probability strictly bigger than 1/2-so median gives good estimate

(No) collisions with head items

No-Collisions $_{r}(i):=$ event that

$$
\left\{j \in H E A D \backslash i: h_{r}(j)=h_{r}(i)\right\}=\varnothing,
$$

i.e. that i collides with none of top k elements under h_{r}.

(No) collisions with head items

No-Collisions $_{r}(i):=$ event that

$$
\left\{j \in H E A D \backslash i: h_{r}(j)=h_{r}(i)\right\}=\varnothing,
$$

i.e. that i collides with none of top k elements under h_{r}.

For every $j \neq i$ and every $r \in[1: t]$

$$
\operatorname{Pr}\left[h_{r}(i)=h_{r}(j)\right] \leq 1 / B
$$

(No) collisions with head items

$\mathrm{No}^{-C O L L I S I O N S}{ }_{r}(i):=$ event that

$$
\left\{j \in H E A D \backslash i: h_{r}(j)=h_{r}(i)\right\}=\varnothing,
$$

i.e. that i collides with none of top k elements under h_{r}.

For every $j \neq i$ and every $r \in[1: t]$

$$
\operatorname{Pr}\left[h_{r}(i)=h_{r}(j)\right] \leq 1 / B
$$

Suppose that $B \geq 8 k$. Then by the union bound

$$
\begin{aligned}
\operatorname{Pr}\left[\text { No-COLLISIONS }_{r}(i)\right] & \geq 1-k / B \\
& \geq 1-1 / 8
\end{aligned}
$$

Consider contribution of head and tail items separately:

$$
\sum_{j \neq i: h_{r}(j)=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H E A D, j \neq i \\ \mathbf{h}_{\mathbf{r}}(\mathbf{j})=\mathbf{h}_{\mathbf{r}}(\mathbf{i})}} f_{j}^{2}+\sum_{\substack{j \in \in A / L, j \neq i \\ \mathbf{h}_{\mathbf{r}}(\mathbf{j})=\mathbf{h}_{\mathbf{r}}(\mathbf{i})}} f_{j}^{2}
$$

For each $r \in[1: t]$ and each item $i \in[m]$ define three events:

- No-Collisions $r(i)-i$ does not collide with any of the head items under hashing r
- Small-VARIANCE $r(i)-i$ does not collide with too many of tail items under hashing r
- Small-Deviation $r(i)$ - success event from basic analysis

Show that all three events hold simultaneously with probability strictly bigger than 1/2-so median gives good estimate

Consider contribution of head and tail items separately:

$$
\sum_{j \neq i: h_{r}(j)=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H E A D, j \neq i \\ \mathbf{h}_{\mathbf{r}}(\mathbf{j})=\mathbf{h}_{\mathbf{r}}(\mathbf{i})}} f_{j}^{2}+\sum_{\substack{j \in T A / L, j \neq i \\ \mathbf{h}_{\mathbf{r}}(\mathbf{j})=\mathbf{h}_{\mathbf{r}}(\mathbf{i})}} f_{j}^{2}
$$

For each $r \in[1: t]$ and each item $i \in[m]$ define three events:

- No-Collisions $r(i)-i$ does not collide with any of the head items under hashing r
- Small-Variancer (i) - i does not collide with too many of tail items under hashing r
- Small-Deviation $r(i)$ - success event from basic analysis

Show that all three events hold simulaneously with probability strictly bigger than 1/2-so median gives good estimate

Small variance from tail elements

Small-Variancer $_{r}(i):=e \mathrm{event}$ that

$$
\sum_{\substack{j \in T A / L, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2} \leq \frac{8}{B} \sum_{j \in T A / L} f_{j}^{2}
$$

Small variance from tail elements

SmALL-VARIANCE $_{r}(i):=$ event that

$$
\sum_{\substack{j \in T A / L, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2} \leq \frac{8}{B} \sum_{j \in T A / L} f_{j}^{2}
$$

For every $i, j \in[m], i \neq j$ and $r \in[1: t]$

$$
\operatorname{Pr}_{h_{r}}\left[h_{r}(i)=h_{r}(j)\right]=1 / B \quad(B \text { is the number of buckets })
$$

Small variance from tail elements

Small-VARIANCE $_{r}(i)$:=event that

$$
\sum_{\substack{j \in T A / L, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2} \leq \frac{8}{B} \sum_{j \in T A / L} f_{j}^{2}
$$

For every $i, j \in[m], i \neq j$ and $r \in[1: t]$

$$
\operatorname{Pr}_{h_{r}}\left[h_{r}(i)=h_{r}(j)\right]=1 / B \quad(B \text { is the number of buckets })
$$

So by linearity of expectation

$$
\mathbf{E}\left[\sum_{\substack{j \in T A / L, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}\right]=\sum_{j \in T A / L, j \neq i} f_{j}^{2} \cdot \operatorname{Pr}_{h_{r}}\left[h_{r}(i)=h_{r}(j)\right]
$$

Small variance from tail elements

SmALL-VARIANCE $_{r}(i):=$ event that

$$
\sum_{\substack{j \in T A / L, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2} \leq \frac{8}{B} \sum_{j \in T A / L} f_{j}^{2}
$$

For every $i, j \in[m], i \neq j$ and $r \in[1: t]$

$$
\operatorname{Pr}_{h_{r}}\left[h_{r}(i)=h_{r}(j)\right]=1 / B \quad(B \text { is the number of buckets })
$$

So by linearity of expectation

$$
\begin{aligned}
\mathbf{E}\left[\sum_{\substack{j \in T A / L, j \neq i \\
h_{r}(j)=h_{r}(i)}} f_{j}^{2}\right] & =\sum_{j \in T A / L, j \neq i} f_{j}^{2} \cdot \operatorname{Pr}_{h_{r}}\left[h_{r}(i)=h_{r}(j)\right] \\
& \leq \frac{1}{B} \sum_{j \in T A / L} f_{j}^{2}
\end{aligned}
$$

We proved that

$$
\mathbf{E}\left[\sum_{\substack{j \in T A / L, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}\right] \leq \frac{1}{B} \sum_{j \in T A / L} f_{j}^{2}
$$

By Markov's inequality one has, for every i and every r, $\operatorname{Pr}\left[\right.$ Small- $^{\left.- \text {VARIANCE }_{r}(i)\right] \geq 1-1 / 8}$

No-Collisions $_{r}(i)$ and Small-Variance $_{r}(i)$: recap

Consider contribution of head and tail items separately:

$$
\sum_{j \neq i: h_{r}(j)=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H E A D, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}+\sum_{\substack{j \in T A I L, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}
$$

Conditioned on No-Collisions $r(i)$ and Small-Variance $_{r}(i)$

No-Collisions $_{r}(i)$ and Small-Variance $_{r}(i)$: recap

Consider contribution of head and tail items separately:

$$
\sum_{j \neq i: h_{r}(j)=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H E A D, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}+\sum_{\substack{j \in T A I L, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}
$$

Conditioned on No-Collisions $r(i)$ and Small-Variance $_{r}(i)$

- first term is zero

No-Collisions $_{r}(i)$ and Small-Variance $_{r}(i)$: recap

Consider contribution of head and tail items separately:

$$
\sum_{j \neq i: h_{r}(j)=h_{r}(i)} f_{j}^{2}=\sum_{\substack{j \in H E A D, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}+\sum_{\substack{j \in T A I L, j \neq i \\ h_{r}(j)=h_{r}(i)}} f_{j}^{2}
$$

Conditioned on No-Collisions $r(i)$ and Small-Variance $_{r}(i)$

- first term is zero
- second term is at most

$$
\frac{8}{B} \sum_{j \in T A / L} f_{j}^{2}
$$

Small deviation event

SmALL-DeVIATION $_{r}(i)=$ event that

$$
\left(C\left[r, h_{r}(i)\right] \cdot s_{r}(i)-f_{i}\right)^{2} \leq 8 \operatorname{Var}\left(C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right)
$$

Small deviation event

SmALL-Deviation $_{r}(i)=$ event that

$$
\left(C\left[r, h_{r}(i)\right] \cdot s_{r}(i)-f_{i}\right)^{2} \leq 8 \operatorname{Var}\left(C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right)
$$

By Markov's inequality one has, for every i and every r,

$$
\operatorname{Pr}\left[\operatorname{SmALL}^{-D e V I A T I O N}(i)\right] \geq 1-1 / 8
$$

$\operatorname{Pr}\left[\operatorname{SmaLL-VARIANCE~}_{r}(i)\right] \geq 1-1 / 8$

$$
\operatorname{Pr}\left[\mathrm{No}^{-C O L L I S I O N S}(i)\right] \geq 1-1 / 8
$$

$\operatorname{Pr}\left[\right.$ Small-Deviation $\left._{r}(i)\right] \geq 1-1 / 8$

So by the union bound
$\operatorname{Pr}\left[\right.$ Small-Variance $_{r}(i)$ and No-Collisions $r(i)$ and Small-Deviation $r(i)] \geq 5 / 8$.

For every $p \in[1: N]$ let $f_{i}(p):=$ frequency of i up to position p
Lemma
If $B \geq 8 \max \left\{k, \frac{32 \sum_{j \in \text { TALL }} f_{j}^{2}}{\left(\varepsilon f_{k}\right)^{2}}\right\}$ and $t \geq A \log N$ for an absolute constant $A>0$, then with probability $\geq 1-1 / N^{3}$ for every $i \in[m]$
$\left|E \operatorname{stimate}(C, i)-f_{i}(p)\right| \leq \varepsilon f_{k}$
at the end of the stream.

Remarks, related results, open problems

Update(C, i)
for $r \in[1: t]$
$C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)$
end for

Estimate(C, i)

return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

Update(C, i)
for $r \in[1: t]$
$C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)$
end for

Estimate(C, i)

return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

Update(C, i)
for $r \in[1: t]$

Estimate(C, i)

return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$ end for

14

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

Estimate(C, i)

return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$ end for

146

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

end for

Estimate(C, i)

return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

Update(C, i)
for $r \in[1: t]$
$C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)$
end for

Estimate(C, i)

return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

$\begin{array}{lllll}1 & 4 & 6 & 1 & 2\end{array}$

Update(C, i)
for $r \in[1: t]$

Estimate(C, i)

return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$ end for

$\begin{array}{llllll}1 & 4 & 6 & 1 & 2 & 10\end{array}$

Update(C, i)
for $r \in[1: t]$
$C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)$
end for

Estimate(C, i)

return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

$$
\begin{array}{lllllll}
1 & 4 & 6 & 1 & 2 & 10 & 1
\end{array}
$$

Update(C, i)
for $r \in[1: t]$

Estimate(C, i)
return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$
end for

$\begin{array}{llllllll}1 & 4 & 6 & 1 & 2 & 10 & 1 & 5\end{array}$

Update(C, i)
for $r \in[1: t]$

Estimate(C, i)
return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$
end for

$$
\begin{array}{lllllllll}
1 & 4 & 6 & 1 & 2 & 10 & 1 & 5 & 1
\end{array}
$$

Update(C, i)
for $r \in[1: t]$
$C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)$
end for

Estimate(C, i)
return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

$$
\begin{array}{llllllllll}
1 & 4 & 6 & 1 & 2 & 10 & 1 & 5 & 1 & 5
\end{array}
$$

Update(C, i)
for $r \in[1: t]$

Estimate(C, i)
return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$
end for

$\begin{array}{lllllllllll}1 & 4 & 6 & 1 & 2 & 10 & 1 & 5 & 1 & 5 & 2\end{array}$

Update(C, i)
for $r \in[1: t]$

Estimate(C, i)
return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$
end for

$$
\begin{array}{llllllllllll}
1 & 4 & 6 & 1 & 2 & 10 & 1 & 5 & 1 & 5 & 2 & 2
\end{array}
$$

Update(C, i)
for $r \in[1: t]$

Estimate(C, i)
return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$
end for

$$
\begin{array}{lllllllllllll}
1 & 4 & 6 & 1 & 2 & 10 & 1 & 5 & 1 & 5 & 2 & 2 & 3
\end{array}
$$

Update(C, i)
for $r \in[1: t]$

Estimate(C, i)
return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$
end for

$$
\begin{array}{llllllllllllll}
1 & 4 & 6 & 1 & 2 & 10 & 1 & 5 & 1 & 5 & 2 & 2 & 3 & -3
\end{array}
$$

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

Estimate(C, i)

 return median ${ }_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$
end for

$$
\begin{array}{lllllllllllll|l|}
1 & 4 & 6 & 1 & 2 & 10 & 1 & 5 & 1 & 5 & 2 & 2 & 3 & -3 \\
\hline
\end{array}
$$

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+S_{r}(i)
$$

Estimate(C, i)

 return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$
end for

$$
\begin{array}{lllllllllllll|l|}
1 & 4 & 6 & 1 & 2 & 10 & 1 & 5 & 1 & 5 & 2 & 2 & 3 & -3 \\
\hline
\end{array}
$$

Update(C, i)
for $r \in[1: t]$
$C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]-s_{r}(i)$

Estimate(C, i) return median ${ }_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

end for

$$
\begin{array}{lllllllllllll|l|}
1 & 4 & 6 & 1 & 2 & 10 & 1 & 5 & 1 & 5 & 2 & 2 & 3 & -3 \\
\hline
\end{array}
$$

Update(C, i)
for $r \in[1: t]$

Estimate(C, i)
return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$
end for

Update(C, i)
for $r \in[1: t]$

Estimate(C, i)
return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$
end for

Update(C, i)
for $r \in[1: t]$

Estimate(C, i)
return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$
end for

Update(C, i)
for $r \in[1: t]$

Estimate(C, i)
return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$
end for

Update(C, i)
for $r \in[1: t]$

Estimate(C, i) return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$
end for

Update(C, i)
for $r \in[1: t]$

Estimate(C, i)
return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$
end for

Update(C, i)
for $r \in[1: t]$

Estimate(C, i)
return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$
end for

Update(C, i)
for $r \in[1: t]$

Estimate(C, i) return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$
end for

Update(C, i)
for $r \in[1: t]$
$C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)$
end for

Estimate(C, i)
return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

Update(C, i)
for $r \in[1: t]$
$C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)$
end for

Estimate(C, i) return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$

Update(C, i)
for $r \in[1: t]$

$$
C\left[r, h_{r}(i)\right] \leftarrow C\left[r, h_{r}(i)\right]+s_{r}(i)
$$

Estimate(C, i)
return median $_{r}\left\{C\left[r, h_{r}(i)\right] \cdot s_{r}(i)\right\}$ end for

Sketching: take (randomized) linear measurements of the input

Easy to maintain sketch in dynamic streams (insertions and deletions)

Sparse recovery

Let S be a CountSketch matrix with $O(k \log n)$ rows
Lemma
For every $x \in \mathbb{R}^{n}$ if $\widehat{x}=\operatorname{Est}(S x)$, then whp

$$
\|x-\widehat{x}\|_{\infty} \leq \frac{1}{\sqrt{k}}\left\|x_{\text {TALL }}\right\|_{2} .
$$

($x_{\text {TALL }}-x$ with largest k elements zeroed out)

Sparse recovery

Let S be a COUNTSKETCH matrix with $O(k \log n)$ rows
Lemma
For every $x \in \mathbb{R}^{n}$ if $\widehat{x}=\operatorname{Est}(S x)$, then whp

$$
\|x-\widehat{x}\|_{\infty} \leq \frac{1}{\sqrt{k}}\left\|x_{T A / L}\right\|_{2}
$$

($x_{\text {TAIL }}-x$ with largest k elements zeroed out)

Sparse recovery

Let S be a CountSketch matrix with $O(k \log n)$ rows
Lemma
For every $x \in \mathbb{R}^{n}$ if $\widehat{x}=\operatorname{Est}(S x)$, then whp

$$
\|x-\widehat{x}\|_{\infty} \leq \frac{1}{\sqrt{k}}\left\|x_{T A / L L}\right\|_{2} .
$$

($x_{\text {TALL }}-x$ with largest k elements zeroed out)
Observation 1: \# of measurements is optimal for ℓ_{∞} / ℓ_{2} guarantee above
(capacity of the Gaussian channel, i.e. Shannon-Hartley theorem, see Do Ba, Indyk, Price, Woodruff'10)

Sparse recovery

Let S be a CountSketch matrix with $O(k \log n)$ rows
Lemma
For every $x \in \mathbb{R}^{n}$ if $\widehat{x}=\operatorname{Est}(S x)$, then whp

$$
\|x-\widehat{x}\|_{\infty} \leq \frac{1}{\sqrt{k}}\left\|x_{T A / L L}\right\|_{2} .
$$

($x_{\text {TALL }}-x$ with largest k elements zeroed out)
Observation 1: \# of measurements is optimal for ℓ_{∞} / ℓ_{2} guarantee above
(capacity of the Gaussian channel, i.e. Shannon-Hartley theorem, see Do Ba, Indyk, Price, Woodruff'10)

Observation 2 : ℓ_{2} / ℓ_{2} sparse recovery guarantee follows:

$$
\|x-\widehat{x}\|_{2}=O(1) \cdot\left\|x_{T A L L}\right\|_{2} .
$$

Sparse recovery

Let S be a CountSketch matrix with $O(k \log n)$ rows
Lemma
For every $x \in \mathbb{R}^{n}$ if $\hat{x}=\operatorname{Est}(S x)$, then whp

$$
\|x-\widehat{x}\|_{\infty} \leq \frac{1}{\sqrt{k}}\left\|x_{\text {TALLL }}\right\|_{2} .
$$

($x_{\text {TALL }}-x$ with largest k elements zeroed out)
Observation 1: \# of measurements is optimal for ℓ_{∞} / ℓ_{2} guarantee above
(capacity of the Gaussian channel, i.e. Shannon-Hartley theorem, see Do Ba, Indyk, Price, Woodruff'10)

Sparse recovery

Let S be a Count
Lemma
For every $x \in \mathbb{R}^{n}$ if $\hat{x}=\operatorname{Est}(S x)$, then whp

$$
\|x-\widehat{x}\|_{\infty} \leq \frac{1}{\sqrt{k}}\left\|x_{T A / L L}\right\|_{2} .
$$

($x_{\text {TALL }}-x$ with largest k elements zeroed out)
Observation 1: \# of measurements is optimal for ℓ_{∞} / ℓ_{2} guarantee above
(capacity of the Gaussian channel, i.e. Shannon-Hartley theorem, see Do Ba, Indyk, Price, Woodruff'10)

Observation $2: \ell_{2} / \ell_{2}$ sparse recovery guarantee follows:

$$
\|x-\widehat{x}\|_{2}=O(1) \cdot \min _{k-\text { sparse } x^{\prime}}\left\|x-x^{\prime}\right\|_{2}
$$

Sparse recovery

Let S be a CountSketch matrix with $O\left(\frac{1}{\varepsilon^{2}} k \log n\right)$ rows Lemma
For every $x \in \mathbb{R}^{n}$ if $\hat{x}=\operatorname{Est}(S x)$, then whp

$$
\|x-\widehat{x}\|_{\infty} \leq \frac{1}{\sqrt{k}}\left\|x_{\text {TALLL }}\right\|_{2} .
$$

($X_{\text {TALL }}-x$ with largest k elements zeroed out)
Observation 1: \# of measurements is optimal for ℓ_{∞} / ℓ_{2} guarantee above
(capacity of the Gaussian channel, i.e. Shannon-Hartley theorem, see Do Ba, Indyk, Price, Woodruff'10)

Observation 2: ℓ_{2} / ℓ_{2} sparse recovery guarantee follows:

$$
\|x-\widehat{x}\|_{2}=(1+\varepsilon) \cdot \min _{k-\text { sparse } x^{\prime}}\left\|x-x^{\prime}\right\|_{2}
$$

Sparse recovery

Let S be a CountSketch matrix with $O(k \log n)$ rows
Lemma
For every $x \in \mathbb{R}^{n}$ if $\widehat{x}=\operatorname{Est}(S x)$, then whp

$$
\|x-\widehat{x}\|_{\infty} \leq \frac{1}{\sqrt{k}}\left\|x_{\text {TA/LL }}\right\|_{2} .
$$

($x_{\text {TALL }}-x$ with largest k elements zeroed out)

Observation 3: if $\|x\|_{0} \leq k$, then $x_{\text {TALL }}=0$ and $\operatorname{Est}(S x)=x$ whp
Exact sparse recovery: a k-sparse vector can be recovered from $O(k)$ linear measurements

CountSketch for matrices?

Input: $\quad r$ parties hold vectors $x_{1}, \ldots, x_{r} \in \mathbb{R}^{n}$
each party sends $O(B \log n)$ bits to coordinator
(assume shared randomness)

CountSketch for matrices?

Input: $\quad r$ parties hold vectors $x_{1}, \ldots, x_{r} \in \mathbb{R}^{n}$
each party sends $O(B \log n)$ bits to coordinator (assume shared randomness)

Output: find largest entries in $A=\sum_{i=1}^{r} x_{i} x_{i}^{T}$
more precisely, output approximation \widehat{A}

$$
\left|\widehat{A_{i j}}-A_{i j}\right|=\frac{O(1)}{\sqrt{B}}\|A\|_{F}
$$

CountSketch for matrices?

Input: $\quad r$ parties hold vectors $x_{1}, \ldots, x_{r} \in \mathbb{R}^{n}$
each party sends $O(B \log n)$ bits to coordinator
(assume shared randomness)
Output: find largest entries in $A=\sum_{i=1}^{r} x_{i} x_{i}^{T}$
more precisely, output approximation \widehat{A}

CountSketch for matrices?

Input: $\quad r$ parties hold vectors $x_{1}, \ldots, x_{r} \in \mathbb{R}^{n}$
each party sends $O(B \log n)$ bits to coordinator
(assume shared randomness)
Output: find largest entries in $A=\sum_{i=1}^{r} x_{i} x_{i}^{T}$
more precisely, output approximation \widehat{A}

Every party i sends CountSketch $\left(x_{i} x_{i}^{\top}\right)$ into $O(B)$ buckets (slow)

Define

$$
A=\sum_{i=1}^{r} x_{i} x_{i}^{T} \in \mathbb{R}^{n \times n}
$$

Define

$$
A=\sum_{i=1}^{r} x_{i} x_{i}^{T} \in \mathbb{R}^{n \times n}
$$

Hash function

$$
h:[n] \times[n] \rightarrow[B]
$$

and random signs

$$
s:[n] \times[n] \rightarrow\{-1,+1\} .
$$

Define

$$
A=\sum_{i=1}^{r} x_{i} x_{i}^{T} \in \mathbb{R}^{n \times n}
$$

Hash function

$$
h:[n] \times[n] \rightarrow[B]
$$

and random signs

$$
s:[n] \times[n] \rightarrow\{-1,+1\} .
$$

$$
(S x)_{b}=\sum_{i, j \in[n]: h(i, j)=b} s(i, j) \cdot x_{i} x_{j} .
$$

Define

$$
A=\sum_{i=1}^{r} x_{i} x_{i}^{T} \in \mathbb{R}^{n \times n}
$$

Hash function

$$
h:[n] \times[n] \rightarrow[B]
$$

and random signs

$$
s:[n] \times[n] \rightarrow\{-1,+1\} .
$$

$$
(S x)_{b}=\sum_{i, j \in[n]: h(i, j)=b} s(i, j) \cdot x_{i} x_{j} .
$$

CountSketch $\left(x_{i} x_{i}^{T}\right)$ takes n^{2} time to compute...

Define

$$
A=\sum_{i=1}^{r} x_{i} x_{i}^{T} \in \mathbb{R}^{n \times n}
$$

Hash function

$$
h:[n] \times[n] \rightarrow[B]
$$

and random signs

$$
s:[n] \times[n] \rightarrow\{-1,+1\} .
$$

$$
(S x)_{b}=\sum_{i, j \in[n]: h(i, j)=b} s(i, j) \cdot x_{i} x_{j} .
$$

CountSketch $\left(x_{i} x_{i}^{T}\right)$ takes n^{2} time to compute...

> Make hash functions 'separable'?

CountSketch for matrices?

Input: $\quad r$ parties hold vectors $x_{1}, \ldots, x_{r} \in \mathbb{R}^{n}$
each party sends $O(B \log n)$ bits to coordinator
(assume shared randomness)
Output: find largest entries in $A=\sum_{i=1}^{r} x_{i} x_{i}^{T}$
more precisely, output approximation \widehat{A}

CountSketch for matrices?

Input: $\quad r$ parties hold vectors $x_{1}, \ldots, x_{r} \in \mathbb{R}^{n}$
each party sends $O(B \log n)$ bits to coordinator
(assume shared randomness)
Output: find largest entries in $A=\sum_{i=1}^{r} x_{i} x_{i}^{T}$
more precisely, output approximation \widehat{A}

Every party i sends SOMESKETCH $\left(x_{i}\right)$ into B buckets?

$S_{1} X$

$S_{2} X$

Take two independent instances of CountSketch: hash functions

$$
h_{1}, h_{2}:[n] \rightarrow[B]
$$

random signs

$$
s_{1}, s_{2}:[n] \rightarrow\{-1,+1\}
$$

Tensor CountSketch 1 and CountSketch ${ }_{2}$!

$S_{1} X$

$S_{2} X$

Define tensoring of COUNTSKETCH ${ }_{1}$ and COUNTSKETCH ${ }_{2}$:

$$
h(i, j)=h_{1}(i)+h_{2}(j) \quad(\bmod B) .
$$

$S_{1} X$

$S_{2} X$

Define tensoring of COUNTSKETCH ${ }_{1}$ and COUNTSKETCH ${ }_{2}$:

$$
h(i, j)=h_{1}(i)+h_{2}(j) \quad(\bmod B)
$$

and $s(i, j)=s_{1}(i) \cdot s_{2}(j)$.

$S_{1} X$

$S_{2} X$

Define tensoring of COUNTSKETCH ${ }_{1}$ and COUNTSKETCH Co $_{2}$:

$$
h(i, j)=h_{1}(i)+h_{2}(j) \quad(\bmod B)
$$

and $s(i, j)=s_{1}(i) \cdot s_{2}(j)$.

$$
\begin{aligned}
(S x)_{b} & =\sum_{i, j \in[n]: h(i, j)=b} s(i, j) \cdot x_{i} x_{j} \\
& =\sum_{i, j \in[n]: h_{1}(i)+h_{2}(j)=b} s_{1}(i) \cdot s_{2}(j) \cdot x_{i} x_{j}
\end{aligned}
$$

$$
(S x)_{b}=\sum_{i, j \in[n]: h_{1}(i)+h_{2}(j)=b} s_{1}(i) \cdot s_{2}(j) \cdot x_{i} x_{j} .
$$

Can find $S x$ from CountSketch ${ }_{1}(x)$ and CountSketch $_{2}(x)$ fast! (exercise)

Stronger analysis of COuntSKETCH

The bound

$$
\|x-\widehat{x}\|_{\infty} \leq \frac{1}{\sqrt{k}}\left\|X_{\text {TALL }}\right\|_{2}
$$

is optimal for sketches with $O(k \log n)$ rows, for worst case x

Stronger analysis of COUNTSKETCH

The bound

$$
\|x-\widehat{x}\|_{\infty} \leq \frac{1}{\sqrt{k}}\left\|x_{T A / L}\right\|_{2}
$$

is optimal for sketches with $O(k \log n)$ rows, for worst case x

If x is drawn from a distribution (e.g., power law, Zipfian), one can do better by about $\log n$ factor: Minton-Price'14

Stronger analysis of COuntSKETCH

The bound

$$
\|x-\widehat{x}\|_{\infty} \leq \frac{1}{\sqrt{k}}\left\|x_{T A / L}\right\|_{2}
$$

is optimal for sketches with $O(k \log n)$ rows, for worst case x

> If x is drawn from a distribution (e.g., power law, Zipfian), one can do better by about $\log n$ factor: Minton-Price'14

Minton-Price'14 assumes uniformly random hashing. A very recent improvement:

Pseudorandom Hashing for Space-bounded Computation with Applications in Streaming

Praneeth Kacham* Rasmus Pagh ${ }^{\dagger}$ Mikkel Thorup ${ }^{\ddagger}$ David P. Woodruff ${ }^{\S}$

Abstract

We revisit Nisan's classical pseudorandom generator (PRG) for space-bounded computation (STOC 1990) and its applications in streaming algorithms. We describe a new generator, HashPRG, that can be thought of as a symmetric version of Nisan's generator over larger alphabets.

Non-asymptotic measurement complexity?

Good constants are achieved by ℓ_{1}-minimization and related (non-sublinear) methods. Get best of both worlds?

Non-asymptotic measurement complexity?

Good constants are achieved by ℓ_{1}-minimization and related (non-sublinear) methods. Get best of both worlds?

Ex: in LDPC codes, the Tanner graphs needs to be irregular to achieve capacity - similar effects here?

Non-asymptotic measurement complexity?

Good constants are achieved by ℓ_{1}-minimization and related (non-sublinear) methods. Get best of both worlds?

Ex: in LDPC codes, the Tanner graphs needs to be irregular to achieve capacity - similar effects here?

Information Theoretic Limits of Cardinality Estimation: Fisher Meets Shannon*

Seth Pettie
pettie@umich.edu University of Michigan
Computer Science and Engineering Ann Arbor, MI, USA

Abstract

Estimating the cardinality (number of distinct elements) of a large multiset is a classic problem in streaming and sketching, dating back to Flajolet and Martin's classic Probabilistic Counting (PCSA) algorithm from 1983.

In this paper we study the intrinsic tradeoff between the space complexity of the sketch and its estimation error in the random oracle model. We define a new measure of efficiency for cardinality estimators called the Fisher-Shannon (Fish) number \mathcal{H} / I. It captures the tension between the limiting Shannon entropy (\mathcal{H}) of the sketch and its normalized Fisher information (I), which characterizes the variance of a statistically efficient, asymptotically unbiased estimator.

Dingyu Wang
wangdy@umich.edu
University of Michigan
Computer Science and Engineering
Ann Arbor, MI, USA

KEYWORDS

cardinality estimation, streaming algorithm
ACM Reference Format:
Seth Pettie and Dingyu Wang. 2021. Information Theoretic Limits of Cardinality Estimation: Fisher Meets Shannon. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing (STOC '21), June 21-25, 2021, Virtual, Italy. ACM, New York, NY, USA, 14 pages. https: //doi.org/10.1145/3406325.3451032

1 INTRODUCTION

Cardinality Estimation (aka Distinct Elements or F_{0}-estimation) is a fundamental problem in streaming/sketching, with widespread industrial deployments in databases, networking, and sensing.

Non-asymptotic measurement complexity?

Good constants are achieved by ℓ_{1}-minimization and related (non-sublinear) methods. Get best of both worlds?

Ex: in LDPC codes, the Tanner graphs needs to be irregular to achieve capacity - similar effects here?

Information Theoretic Limits of Cardinality Estimation: Fisher Meets Shannon*

Seth Pettie
pettie@umich.edu University of Michigan
Computer Science and Engineering Ann Arbor, MI, USA

Dingyu Wang
wangdy@umich.edu
University of Michigan
Computer Science and Engineering Ann Arbor, MI, USA

ABSTRACT

Estimating the $c a$ multiset is a clas back to Flajolet ar algorithm from 1 !
In this paper \mathbf{w} complexity of the oracle model. V nality estimators captures the tens of the sketch ans characterizes the unbiased estimat،

KEYWORDS
Peeling Close to the Orientability Threshold Spatial Coupling in Hashing-Based Data Structures

Stefan Walzer*

Abstract
1 Introduction

Non-asymptotic measurement complexity?

Good constants are achieved by ℓ_{1}-minimization and related (non-sublinear) methods. Get best of both worlds?

Ex: in LDPC codes, the Tanner graphs needs to be irregular to achieve capacity - similar effects here?

Information Theoretic Limits of Cardinality Estimation:
 Fisher Meets Shannon*

Seth Pettie
pettie@umich.edu
University of Michigan
Computer Science and Engineering
Ann Arbor, MI, USA

Dingyu Wang
wangdy@umich.edu
University of Michigan
Computer Science and Engineering
Ann Arbor, MI, USA

ABSTRACT
Estimating the $c a$ multiset is a clas back to Flajolet ar algorithm from 1 !
In this paper \mathbf{w} complexity of the oracle model. U nality estimators captures the tens of the sketch ans characterizes the unbiased estimats

> Peeling Close to the Orientability Threshold Spatial Coupling in Hashing-Based Data Structures

Stefan Walzer*
Simple Set Sketching

Learning-augmented sketching: learn the hash function h in COUNTSKETCH (and more!) from data

Adversarially robust sketching: what if x is chosen by an adversary with (partial) knowledge of the data structure?

Learning-augmented sketching: learn the hash function h in COUNTSKETCH (and more!) from data

Adversarially robust sketching: what if x is chosen by an adversary with (partial) knowledge of the data structure?

On the Robustness of CountSketch to Adaptive Inputs
Edith Cohen ${ }^{*} \quad$ Xin Lyu ${ }^{\dagger}$ Jelani Nelson ${ }^{\ddagger} \quad$ Tamás Sarlós ${ }^{\S}$ Moshe Shechner ${ }^{\text {® }}$ Uri Stemmer ${ }^{\|}$

March 1, 2022

Abstract

CountSketch is a popular dimensionality reduction technique that maps vectors to a lower dimension using randomized linear measurements. The sketch supports recovering ℓ_{2}-heavy hitters of a vector (entries with $v[i]^{2} \geq \frac{1}{k}\|\boldsymbol{v}\|_{2}^{2}$). We study the robustness of the sketch in adaptive settings where input vectors may depend on the output from prior inputs. Adaptive settings arise in processes with feedback or with adversarial attacks. We show that the classic estimator is not robust, and can be attacked with a number of queries of the order of the sketch size. We propose a robust estimator (for a slightly modified sketch) that allows for quadratic number of queries in the sketch size, which is an improvement factor of \sqrt{k} (for k heavy hitters) over prior work.

Take (randomized) linear measurements of the input

Distribution of the sketching matrix?

Distribution of the sketching matrix?

+1	0	-1	0	0	0	0	0	0	0	+1	0
0	0	0	0	+1	0	0	0	0	-1	0	0
0	-1	0	0	0	0	0	+1	0	0	0	0
0	0	0	0	0	-1	0	0	+1	0	0	-1
0	0	0	+1	0	0	+1	0	0	0	0	0

Bernoulli (± 1) or Gaussian linear measurements on random subsets of the universe

The nonzeros are specified by the hash function $h:[n] \rightarrow[B]$
Can compute $S x$ in time $n n z(x)$!

Distribution of the sketching matrix?

$\mathbf{+ 1}$	0	$\mathbf{- 1}$	0	0	0	0	0	0	0	$\mathbf{+ 1}$	0
0	0	0	0	+1	0	0	0	0	-1	0	0
0	-1	0	0	0	0	0	+1	0	0	0	0
0	0	0	0	0	-1	0	0	+1	0	0	-1
0	0	0	+1	0	0	+1	0	0	0	0	0

Bernoulli (± 1) or Gaussian linear measurements on random subsets of the universe

The nonzeros are specified by the hash function $h:[n] \rightarrow[B]$
Can compute $S x$ in time $n n z(x)$!

Distribution of the sketching matrix?

+1	0	-1	0	0	0	0	0	0	0	+1	0
0	0	0	0	+1	0	0	0	0	-1	0	0
0	-1	0	0	0	0	0	+1	0	0	0	0
0	0	0	0	0	-1	0	0	+1	0	0	-1
0	0	0	+1	0	0	+1	0	0	0	0	0

Bernoulli(± 1) or Gaussian linear measurements on random subsets of the universe

The nonzeros are specified by the hash function $h:[n] \rightarrow[B]$
Can compute $S x$ in time $n n z(x)$!

Distribution of the sketching matrix?

+1	0	-1	0	0	0	0	0	0	0	+1	0
0	0	0	0	+1	0	0	0	0	-1	0	0
0	-1	0	0	0	0	0	+1	0	0	0	0
0	0	0	0	0	-1	0	0	+1	0	0	-1
0	0	0	+1	0	0	+1	0	0	0	0	0

Bernoulli $(\pm 1$) or Gaussian linear measurements on random subsets of the universe

The nonzeros are specified by the hash function $h:[n] \rightarrow[B]$
Can compute $S x$ in time $n n z(x)$!

Distribution of the sketching matrix?

+1	0	-1	0	0	0	0	0	0	0	+1	0
0	0	0	0	+1	0	0	0	0	-1	0	0
0	-1	0	0	0	0	0	+1	0	0	0	0
0	0	0	0	0	-1	0	0	+1	0	0	$\mathbf{- 1}$
0	0	0	+1	0	0	+1	0	0	0	0	0

Bernoulli ± 1) or Gaussian linear measurements on random subsets of the universe

The nonzeros are specified by the hash function $h:[n] \rightarrow[B]$
Can compute $S x$ in time $n n z(x)$!

Distribution of the sketching matrix?

+1	0	-1	0	0	0	0	0	0	0	+1	0
0	0	0	0	+1	0	0	0	0	-1	0	0
0	-1	0	0	0	0	0	+1	0	0	0	0
0	0	0	0	0	-1	0	0	+1	0	0	-1
0	0	0	$\mathbf{+ 1}$	0	0	$\mathbf{+ 1}$	0	0	0	0	0

Bernoulli (± 1) or Gaussian linear measurements on random subsets of the universe

The nonzeros are specified by the hash function $h:[n] \rightarrow[B]$
Can compute $S x$ in time $n n z(x)$!

Random restrictions (hashing)

What can we learn from $S x$, where S is just random restrictions?

+1	0	0	0	0	0	0	0	0	0	+1	0
0	+1	+1	0	+1	0	0	0	0	+1	0	0
+1	0	0	+1	+1	+1	0	+1	0	0	0	0
+1	+1	0	0	+1	+1	0	0	+1	0	0	+1
0	+1	0	+1	+1	+1	+1	0	+1	0	+1	0

Can learn $\|x\|_{0}$, i.e. number of nonzeros in x

Johnson-Lindenstrauss transform

Sketching matrix $S=$ a row of i.i.d. Gaussians of unit variance

Johnson-Lindenstrauss transform

Sketching matrix $S=$ a row of i.i.d. Gaussians of unit variance

Measures ℓ_{2}^{2} norm of x in expectation:

$$
\mathbb{E}\left[\|S x\|_{2}^{2}\right]=\|x\|_{2}^{2}
$$

Johnson-Lindenstrauss transform

Sketching matrix $S=m$ rows of i.i.d. Gaussians of unit variance
1/m

Johnson-Lindenstrauss transform

Sketching matrix $S=m$ rows of i.i.d. Gaussians of unit variance $1 / m$

Measures ℓ_{2}^{2} norm of x with high probability:

$$
\mathbb{P}\left[\|S x\|_{2}^{2} \not \approx\|x\|_{2}^{2}\right]=1-\exp \left(-\Omega\left(\varepsilon^{2} m\right)\right.
$$

Johnson-Lindenstrauss transform

Sketching matrix $S=m$ rows of i.i.d. Gaussians of unit variance $1 / m$

Measures ℓ_{2}^{2} norm of x with high probability:

$$
\mathbb{P}\left[\|S x\|_{2}^{2} \not \approx\|x\|_{2}^{2}\right]=1-\exp \left(-\Omega\left(\varepsilon^{2} m\right)\right.
$$

Downside: $S x$ takes $m \cdot n$ time to compute

(Faster) Johnson-Lindenstrauss transform

Subsampled randomized Hadamard transform

(Faster) Johnson-Lindenstrauss transform

Subsampled randomized Hadamard transform Sketching matrix $S=P \cdot H \cdot D$

(Faster) Johnson-Lindenstrauss transform

Subsampled randomized Hadamard transform
Sketching matrix $S=P \cdot H \cdot D$
$D=$ diagonal random sign matrix, $H=$ Hadamard transform, $P=$ random sampling matrix

(Faster) Johnson-Lindenstrauss transform

Subsampled randomized Hadamard transform
Sketching matrix $S=P \cdot H \cdot D$
$D=$ diagonal random sign matrix, $H=$ Hadamard transform, $P=$ random sampling matrix
$S x$ can be computed in $O(m+n \log n)$ time

Frequency moments

The p-th frequency moment

$$
F_{p}=\sum_{i \in[n]} f_{i}^{p}
$$

Frequency moments

The p-th frequency moment

$$
F_{p}=\sum_{i \in[n]} f_{i}^{p}
$$

Theorem
Can approximate F_{p} for all $p \in[0,2]$ in polylogarithmic space, but need $\Omega\left(n^{1-2 / p}\right)$ space for all $p>2$

Frequency moments

The p-th frequency moment

$$
F_{p}=\sum_{i \in[n]} f_{i}^{p}
$$

Theorem
Can approximate F_{p} for all $p \in[0,2]$ in polylogarithmic space, but need $\Omega\left(n^{1-2 / p}\right)$ space for all $p>2$

Bar-Yossef et al. Information complexity approach to data stream lower bounds

[^0]: 3
 463
 210
 $\begin{array}{lllll}3 & 1 & 3 & 1 & 2\end{array}$
 2
 55
 5
 9
 8
 7

[^1]: 3
 463
 210
 $\begin{array}{lllll}3 & 1 & 3 & 1 & 2\end{array}$
 2
 55
 5
 9
 8
 7

