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Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream
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Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream (ideally one pass)

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream
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Construct a spanning tree of the graph G in a single pass?

Very easy in insertion only streams:

œ maintain a spanning forest

œ add incoming edge if it connects two components, discard
otherwise
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Spanning trees in insertion-only streams

weights on edges

Insertion-only stream
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Construct a spanning tree of the graph G in a single pass?

Very easy in insertion only streams:

œ maintain a spanning forest

œ add incoming edge if it connects two components, discard
otherwise

Many modern networks evolve over
time, edges both inserted and deleted

Construct spanning trees in dynamic streams in small space?

4 / 124



Construct a spanning tree of the graph G in a single pass?

Very easy in insertion only streams:

œ maintain a spanning forest

œ add incoming edge if it connects two components, discard
otherwise

Many modern networks evolve over
time, edges both inserted and deleted

Construct spanning trees in dynamic streams in small space?

4 / 124



What if we have deletions?

weights on edges

Very different algorithms are needed...
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Main idea: sketch the edge-vertex incidence matrix of G!

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

B

x

=

2
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0 1 °1 0 0 0
0 0 0 0 0 0
°1 0 0 1 0 0
0 0 1 0 0 °1
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...

...

3
77777777775

·

2
66664

x1
x2
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xn

3
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°n
2
¢
£n

Each row of B=potential edge in G.

If e = (u,v) 2E , then be = ¬u °¬v , otherwise be = 0
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For every S µV let

±(C) :=E \ (C£ (V \ C))

denote the set of edges crossing the cut and let

x = 1C (indicator of C)

Key claim: Bx is the (signed) indicator of ±(C)

weights on edges
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0
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Key claim: Bx is the (signed) indicator of ±(S)

Proof
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œ Graph streaming

œ Connectivity via sketching
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A simple algorithm for connectivity

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

F0 √;
C0 √S

u2V {u}
for t = 0 to T

for each C 2Ct
choose an edge in ±(C)

Ft+1 √Ft [ {spanning forest on selected edges}
Ct+1 √ {new connected components}

return FT+1

F0 √;
F0 √;

(current components)

For t = 0
For each

(nonzero of B ·1C)

FT+1
Ct+1

End For
End
return FT+1
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A simple algorithm for connectivity

weights on edges
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Ct+1 √ {new connected components}

return FT+1

F0 √;
F0 √;

(current components)

For t = 0
For each

(?? nonzero of B ·1C??)
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End For
End
return FT+1
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Connectivity via sketching (Ahn-Guha-McGregor’12)

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

F0 √;
C0 √S

u2V {u}
for t = 0 to T

for each C 2Ct
choose an edge in ±(C)

Ft+1 √Ft [ {spanning forest on selected edges}
Ct+1 √ {new connected components}

return FT+1

F0 √;
F0 √;

S0, . . . ,ST √ `0-samplers
Maintain S0B, . . . ,ST B

For each

Run Dec(StB ·1C)

FT+1
Ct+1

End For
End
return FT+1
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Some remarks

The result of Ahn, Guha, McGregor’12 independently and
simultaneously obtained by Kapron, King’12

Tightening parameters, get a sketch with bit complexity
O(n log3 n)

Q: why did we need several sketches S0, . . . ,ST ?

A: adaptivity

Very surprising: decoding is adaptive (T =O(logn) rounds), but
sketch is not

Nelson, Yu’19, Yu’21 – ≠(n log3 n) bits of space are needed
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Input: Each u 2V holds list of its neighbors N(u)
Each u 2V sends a sketch of N(u) to coordinator
(assume shared randomness)

Output: Spanning forest of G

sk(N(u1))

sk(N(u2))

sk(N(u3))

...
sk(N(un))

Coordinator spanning forest

Every party u 2V sends a function of their neighborhood to
coordinator

Nelson, Yu’19, Yu’21 – ≠(n log3 n) bits of communication are
needed
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Spectral sparsification of graphs
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Sparsification

œ G = (V ,E) an undirected graph, |V | = n, |E | =m

œ Find sparse subgraph G0 of G that approximates G

weights on edges

G

G0
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1. Spectral sparsification

2. Dynamic streaming and linear sketching

3. Spectral sparsification using small sketches

4. Fast decoding
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Sparsification

value of cut=
X

e=(u,v)2E
(xu °xv )

2

L=BT B is the Laplacian of G
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Definition (Karger’94, Cut sparsifiers)
G0 is an "-cut sparsifier of G if

(1°")xT Lx ∑ xT L0x ∑ (1+")xT Lx

for all x 2 {0,1}V (all cuts).

all x 2RV .
Equivalently, (1°")L¡ L0 ¡ (1+")L

Theorem (Karger’94, Benczur-Karger’96)
For any G there exists an "-cut sparsifier G0 with
O( 1

"2 n logn) edges, and it can be constructed in eO(m) time.

Central role in numerical linear algebra, combinatorial optimization,. . .
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Definition (Spielman-Teng’04, Spectral sparsifiers)
G0 is an "-spectral sparsifier of G if

(1°")xT Lx ∑ xT L0x ∑ (1+")xT Lx

for all x 2 {0,1}V (all cuts). all x 2RV .
Equivalently, (1°")L¡ L0 ¡ (1+")L

Theorem (Spielman-Teng’04, Spielman-Srivastava’09)
For any G there exists an "-spectral sparsifier G0 with
O( 1

"2 n logn) edges, and it can be constructed in eO(m) time.

Central role in numerical linear algebra, combinatorial optimization etc
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Constructing spectral sparsifiers

Theorem (Spielman-Srivastava’09)
Let G = (V ,E) be an undirected graph. Let G0 be obtained by
including every edge e 2E independently with probability
proportional to its effective resistance:

pe ∏min
Ω

1,
C logn
"2 Ruv

æ
.

Assigning weight 1/pe if sampled. Then (1°")L¡ L0 ¡ (1+")L
whp.

Sample edges according to a measure of importance,
assign weights to make estimate unbiased

29 / 124



Sparsification

weights on edges

G

G0
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Sparsification

weights on edges

G G0
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1. Spectral sparsification

2. Dynamic streaming and linear sketching

3. Spectral sparsification using small sketches

4. Fast decoding
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Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream
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Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream (ideally one pass)

œ need to maintain a sparsifier at all times

weights on edges
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What if we have deletions?

weights on edges

Very different algorithms are needed...
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Linear sketching

Classical data stream application: approximating frequency
moments.

0 0 0 0 0 0 0 0 0 0 0

Goal: approximate ||x ||22 =P
i x2

i using ø n space

Maintain xT vi = 1, . . . ,O(1/"2) for random Gaussians vi 2Rn.
Output average of (xT vi)

2.

(1±")-approximation with O( 1
"2 logn) space
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Linear sketching

Take (randomized) linear measurements of the input

S

sketching matrix

space=number of rows

•

x

b=

Can get constant approximation using logO(1)n rows

Easy to maintain linear sketches in the (dynamic) streaming
model
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Ahn-Guha-McGregor’SODA12 – connectivity in O(n · log3 n) space.

S

°n
2
¢

logO(1)n

space=number of rows£n

• B

°n
2
¢

n
=

Every vertex sketches its own neighborhood independently –
single round distributed algorithms

Reconstruct edges of a sparsifier quickly from a small sketch?
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Reconstruct edges of a sparsifier quickly from a small sketch?

Theorem (K.-Nouri-Sidford-Tardos’19)
Can recover a spectral sparsifier from an oblivious sketch of
size eO(n) space in time eO(n).

Known before:

eO(n) space and ≠(n2) recovery time
K.-Lee-Sidford-Musco-Musco’FOCS’14

eO(n5/3) space and time Ahn-Guha-McGregor’APPROX’14
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1. Spectral sparsification

2. Dynamic streaming and linear sketching

3. Spectral sparsification using small sketches

4. Fast decoding
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Constructing spectral sparsifiers

Theorem (Spielman-Srivastava’09)
Let G = (V ,E) be an undirected graph. Let G0 be obtained by
including every edge e 2E independently with probability
proportional to its effective resistance:

pe ∏min
Ω

1,
C logn
"2 Ruv

æ
.

Assign weight 1/pe if sampled. Then (1°")G ¡G0 ¡ (1+")G
whp.

Sample edges according to a measure of importance,
assign weights to make estimate unbiased

Note: edges e with resistance Ruv =≠(1/logn) included w.p. 1
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Core primitive: recover edges of large resistance
Goal: design a sketch S that allows recovery of high resistance
(∏ 1/logn) edges of G given

œ S ·B (sketch of edge incidence matrix)

œ crude constant factor spectral sparsifier eG
1
C

·L¡ eL¡ L

weights on edges

G eG

Key primitive from K.-Lee-Musco-Musco-Sidford’FOCS’14
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Effective resistance

Ruv =bT
uv L+buv

Note: defined for any pair (u,v).

0.43

0.27

0.35

0

°0.2
°0.16

0.35

°0.14

Inject current at u, take out at v .

¡= L+buv =vertex potentials

f =B¡=currents on edges

We have

Ruv =
f 2
uv

||f ||2
.

Ruv = fraction of ||f ||22 contributed by e = (u,v)
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2
6666666664

0
1
0
°1
0
0
0

3
7777777775
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Given:
œ a sketch S ·B of G
œ crude sparsifier eG
œ pair (u,v) 2V £V

Need:
œ is (u,v) an edge in G of resistance ≠(1/logn)?
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œ is (u,v) an edge in G of resistance ≠(1/logn)?

0.43

0.27

0.35

0

°0.2

°0.16

0.35

°0.14

Compute ¡= L+buv – vertex potentials

Compute f =B¡=currents on edges
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Ruv =
f 2
uv

||f ||2
=≠(1/logn).

0 0 0.01 0 200 1 0 2 0 0 0
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Linear sketching and sparse recovery

0 0 0.01 0 200 1 0 2 0 0 0

Let y be a vector of reals. Then i 2 [n] is an `2-heavy hitter if

y2
i ∏ ¥||y ||22.

Lemma (`2-heavy hitters; COUNTSKETCH)
For any ¥> 0 there exists a (randomized) sketch in dimension
1
¥ log

O(1)n from which one reconstruct all ¥-heavy hitters. The
recovery works in time 1

¥ · log
O(1)n.
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Sketching the edge incidence matrix

S ·B=S ·

2
66666666664

1 °1 0 0 0 0
0 1 °1 0 0 0
0 0 0 0 0 0
°1 0 1 0 0 0
0 0 1 0 0 °1
0 0 0 0 0 0
...

...

3
77777777775

Apply `2-heavy hitters sketch S to every column bu ,u 2V of B

Store the n sketches, n · logO(1)n space.
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Given:
œ a sketch S ·B of G
œ crude sparsifier eG
œ pair (u,v) 2V £V

Need:
œ is (u,v) an edge in G of resistance ≠(1/logn)?

0.45

0.45

0.58

0

0

°0.16

0.83

°0.4

Compute ¡= eL+buv – vertex potentials

Compute S ·¢=S ·B¡=potential
differences

Check if

eRe =
¢2

e
||¢||2

=≠(1/logn)

using heavy-hitters sketch S

0 0 0.01 0 200 1 0 2 0 0 0
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Testing a pair of vertices – summary
Connect a battery to a pair of vertices u,v 2V

Edge e is high effective resistance iff the heat created by this
edge in this setting is a non-trivial fraction of the total heat.

e

+ °

e0+
°

Find all heavy edges with O(n) experiments?
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Find wires with high effective resistance

Can attach a battery to any pair of nodes, learn all very hot edges
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1. Spectral sparsification

2. Dynamic streaming and linear sketching

3. Spectral sparsification using small sketches

4. Fast decoding
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Effective resistance

0.43

0.27

0.35

0

°0.2
°0.16

0.35

°0.14

Inject current at u, take out at v .

¡= L+buv =vertex potentials

f =B¡=currents on edges

We have

Ruv =
f 2
uv

||f ||2
=
(¡u °¡v )2

Ruv
.

Find pair a,b 2V such that (u,v) carries a lot of a! b flow?

(øu °øv )2

Rab
& 1/logn

where ø= L+bab.
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C1 C2 C3 C4 Cn0.2 Cn0.9
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Reciprocity theorem

u ! v flow results in potentials ¡= L+buv

a! b flow results in potentials ø= L+bab

øv °øu =bT
uvø=bT

uv L+bab

and
¡b °¡a =bT

ab¡=bT
abL+buv
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Effective resistance

0.43
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°0.2
°0.16
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°0.14

Find pair a,b 2V such that (u,v) carries a lot of a! b flow?

(øu °øv )2

Rab
º
(¡u °¡v )2

Ruv

where ø= L+bab.
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Potential embedding

0.43

0.27

0.35

0

°0.2
°0.16

0.35

°0.14

Ruv = f 2
uv

||f ||2 = (¡u°¡v )2

Ruv

Potential embedding of (u,v):

For x 2V

buv L+buv = (bux +bxv )L+buv =bxv L+buv +buxL+buv
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Potential embedding
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Ruv = f 2
uv
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Potential embedding

Potential embedding of (u,v):

Let ø= L+bxu denote x ! u flow potentials:

(øu °øv )
2 = (buxL+buv )

2 ∏ 1
4
(¡u °¡v )

2

So (u,v) carries a lot of x ! u flow?
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Potential embedding

Potential embedding of (u,v):

So
(øu °øv )2

Rxu
& (¡u °¡v )2

Ruv
?

Yes...

as long as Rxu .Ruv
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To discover edge (u,v) with Ruv ∏ 1/logn:

1. Choose x 2V with Rux ∑ logO(1)n

2. Send flow from x to u, list heavy edges

3. Send flow from x to v , list heavy edges

0.43

0.27

0.35

0

°0.2
°0.16

0.35

°0.14
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Our Approach

Partition vertices into clusters of bounded effective resistance
diameter
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Our Approach

Pick representative vertex x in
every cluster, try flows from x to

all vertices in same cluster

This finds every heavy edge not
cut by the partition

+
°
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Partitioning via Locality Sensitive Hashing
Resistive embedding maps v to R(

n
2):

y !BL+1y

Then
Ruv = ||BL+buv ||22 = ||BL+1u °BL+1v ||22.

Final algorithm§:

1. Construct resistive embedding (after dimensionality
reduction)

2. Hash vertices using Locality Sensitive Hashing

3. In every bucket pick representative x , try flows to other
vertices in bucket

Set ‘near’ distance to º 1: a heavy edge is likely to not be cut,
but diameter bounded by logO(1)n
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Fast recovery for matrices+implications for numerical linear
algebra and optimization?
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Remarks, related results, open problems
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Weighted graphs?

Can one support turnstile updates to the weights?

Chen, Khanna, Li’22. – support turnstile updates to edge weights
using º n6/5 space

Chen, Khanna, Li’22. – lower bound of ≠(n21/20) for vertex
incidence sketches!
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Spanners?
A subgraph H is a t-spanner of G if for every u,v 2V one has

dG(u,v)∑ dH(u,v)∑ t ·dG(u,v)

Every graph G on n vertices admits a (2k °1)-spanner of size
º n1+1/k (optimal assuming the Erdős girth conjecture).

Baswana-Sen’07: obtains a (2k °1)-spanner with eO(n1+1/k )
edges. Inherently very sequential (k rounds).

Single pass sketching algorithm?

Theorem (Fitser-K.-Nouri’21)
A eO(n2/3)-spanner in eO(n) space(+space/stretch tradeoffs).
Algorithm: take any spectral sparsifier, drop weights on edges.
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Lower bounds
Input: Each u 2V holds list of its neighbors N(u)

Each u 2V sends a sketch of N(u) to coordinator
(assume shared randomness)

Output: n2/3°≠(1)-spanner of G

sk(N(u1))

sk(N(u2))

sk(N(u3))

...
sk(N(un))

Coordinator spanner

Show that n≠(1) communication per node is needed?

Recent progress:Assadi-K.-Yu’23 prove that Filtser-K.-Nouri’21
tradeoffs are optimal for a natural class of sketches
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Expander decompositions in sketching

Filtser-K.-Makarov’23 – expander decompositions by sketching

Filtser-K.-Makarov’23, Chen-K.-Makarov-Mazzali’?? –
sparsity-independent expander decompositions!
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Turn sketching algorithms into low space dynamic algorithms?

Prove that decoded solution is ‘stable’?
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