
Graph Sketching

Michael Kapralov
EPFL

1 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

1 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

1 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

1 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

1 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

1 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

1 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

1 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

1 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

1 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

1 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

1 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

1 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

1 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

1 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

1 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream (ideally one pass)

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

1 / 124

Construct a spanning tree of the graph G in a single pass?

Very easy in insertion only streams:

œ maintain a spanning forest

œ add incoming edge if it connects two components, discard
otherwise

2 / 124

Construct a spanning tree of the graph G in a single pass?

Very easy in insertion only streams:

œ maintain a spanning forest

œ add incoming edge if it connects two components, discard
otherwise

2 / 124

Spanning trees in insertion-only streams

weights on edges

Insertion-only stream

3 / 124

Spanning trees in insertion-only streams

weights on edges

Insertion-only stream

3 / 124

Spanning trees in insertion-only streams

weights on edges

Insertion-only stream

3 / 124

Spanning trees in insertion-only streams

weights on edges

Insertion-only stream

3 / 124

Spanning trees in insertion-only streams

weights on edges

Insertion-only stream

3 / 124

Spanning trees in insertion-only streams

weights on edges

Insertion-only stream

3 / 124

Spanning trees in insertion-only streams

weights on edges

Insertion-only stream

3 / 124

Spanning trees in insertion-only streams

weights on edges

Insertion-only stream

3 / 124

Spanning trees in insertion-only streams

weights on edges

Insertion-only stream

3 / 124

Spanning trees in insertion-only streams

weights on edges

Insertion-only stream

3 / 124

Spanning trees in insertion-only streams

weights on edges

Insertion-only stream

3 / 124

Spanning trees in insertion-only streams

weights on edges

Insertion-only stream

3 / 124

Spanning trees in insertion-only streams

weights on edges

Insertion-only stream

3 / 124

Spanning trees in insertion-only streams

weights on edges

Insertion-only stream

3 / 124

Spanning trees in insertion-only streams

weights on edges

Insertion-only stream

3 / 124

Spanning trees in insertion-only streams

weights on edges

Insertion-only stream

3 / 124

Construct a spanning tree of the graph G in a single pass?

Very easy in insertion only streams:

œ maintain a spanning forest

œ add incoming edge if it connects two components, discard
otherwise

Many modern networks evolve over
time, edges both inserted and deleted

Construct spanning trees in dynamic streams in small space?

4 / 124

Construct a spanning tree of the graph G in a single pass?

Very easy in insertion only streams:

œ maintain a spanning forest

œ add incoming edge if it connects two components, discard
otherwise

Many modern networks evolve over
time, edges both inserted and deleted

Construct spanning trees in dynamic streams in small space?

4 / 124

What if we have deletions?

weights on edges

Very different algorithms are needed...

5 / 124

What if we have deletions?

weights on edges

Very different algorithms are needed...

5 / 124

What if we have deletions?

weights on edges

Very different algorithms are needed...

5 / 124

What if we have deletions?

weights on edges

Very different algorithms are needed...

5 / 124

What if we have deletions?

weights on edges

Very different algorithms are needed...

5 / 124

What if we have deletions?

weights on edges

Very different algorithms are needed...

5 / 124

What if we have deletions?

weights on edges

Very different algorithms are needed...

5 / 124

What if we have deletions?

weights on edges

Very different algorithms are needed...

5 / 124

What if we have deletions?

weights on edges

Very different algorithms are needed...

5 / 124

What if we have deletions?

weights on edges

Very different algorithms are needed...

5 / 124

Main idea: sketch the edge-vertex incidence matrix of G!

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

B

x

=

2
66666666664

1 °1 0 0 0 0
0 1 °1 0 0 0
0 0 0 0 0 0
°1 0 0 1 0 0
0 0 1 0 0 °1
0 0 0 0 0 0
...

...

3
77777777775

·

2
66664

x1
x2
...

xn

3
77775

°n
2
¢
£n

Each row of B=potential edge in G.

If e = (u,v) 2E , then be = ¬u °¬v , otherwise be = 0

6 / 124

Main idea: sketch the edge-vertex incidence matrix of G!

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

B

x

=

2
66666666664

1 °1 0 0 0 0
0 1 °1 0 0 0
0 0 0 0 0 0
°1 0 0 1 0 0
0 0 1 0 0 °1
0 0 0 0 0 0
...

...

3
77777777775

·

2
66664

x1
x2
...

xn

3
77775

°n
2
¢
£n

Each row of B=potential edge in G.

If e = (u,v) 2E , then be = ¬u °¬v , otherwise be = 0

7 / 124

Main idea: sketch the edge-vertex incidence matrix of G!

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

B

x

=

2
66666666664

1 °1 0 0 0 0
0 1 °1 0 0 0
0 0 0 0 0 0
°1 0 0 1 0 0
0 0 1 0 0 °1
0 0 0 0 0 0
...

...

3
77777777775

·

2
66664

x1
x2
...

xn

3
77775

°n
2
¢
£n

Each row of B=potential edge in G.

If e = (u,v) 2E , then be = ¬u °¬v , otherwise be = 0

8 / 124

For every S µV let

±(C) :=E \ (C£ (V \ C))

denote the set of edges crossing the cut and let

x = 1C (indicator of C)

Key claim: Bx is the (signed) indicator of ±(C)

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

9 / 124

For every S µV let

±(C) :=E \ (C£ (V \ C))

denote the set of edges crossing the cut and let

x = 1C (indicator of C)

Key claim: Bx is the (signed) indicator of ±(C)

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

9 / 124

For every S µV let

±(C) :=E \ (C£ (V \ C))

denote the set of edges crossing the cut and let

x = 1C (indicator of C)

Key claim: Bx is the (signed) indicator of ±(C)

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

9 / 124

Key claim: Bx is the (signed) indicator of ±(S)

Proof

by picture.

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

B

x

=

2
66666666664

1 °1 0 0 0 0
0 1 °1 0 0 0
0 0 0 0 0 0
°1 0 0 1 0 0
0 0 1 0 0 °1
0 0 0 0 0 0
...

...

3
77777777775

·

2
66664

x1
x2
...

xn

3
77775

°n
2
¢
£n

10 / 124

Key claim: Bx is the (signed) indicator of ±(S)

Proof by picture.

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

B

x

=

2
66666666664

1 °1 0 0 0 0
0 1 °1 0 0 0
0 0 0 0 0 0
°1 0 0 1 0 0
0 0 1 0 0 °1
0 0 0 0 0 0
...

...

3
77777777775

·

2
66664

x1
x2
...

xn

3
77775

°n
2
¢
£n

10 / 124

Key claim: Bx is the (signed) indicator of ±(S)

Proof by picture.

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

B

x

=

2
66666666664

1 °1 0 0 0 0
0 1 °1 0 0 0
0 0 0 0 0 0
°1 0 0 1 0 0
0 0 1 0 0 °1
0 0 0 0 0 0
...

...

3
77777777775

·

2
66664

x1
x2
...

xn

3
77775

°n
2
¢
£n

10 / 124

œ Graph streaming

œ Connectivity via sketching

11 / 124

œ Graph streaming

œ Connectivity via sketching

12 / 124

A simple algorithm for connectivity

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

F0 √;
C0 √S

u2V {u}
for t = 0 to T

for each C 2Ct
choose an edge in ±(C)

Ft+1 √Ft [{spanning forest on selected edges}
Ct+1 √ {new connected components}

return FT+1

F0 √;
F0 √;

(current components)

For t = 0
For each

(nonzero of B ·1C)

FT+1
Ct+1

End For
End
return FT+1

13 / 124

A simple algorithm for connectivity

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

F0 √;
C0 √S

u2V {u}
for t = 0 to T

for each C 2Ct
choose an edge in ±(C)

Ft+1 √Ft [{spanning forest on selected edges}
Ct+1 √ {new connected components}

return FT+1

F0 √;
F0 √;

(current components)

For t = 0
For each

(nonzero of B ·1C)

FT+1
Ct+1

End For
End
return FT+1

14 / 124

A simple algorithm for connectivity

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

F0 √;
C0 √S

u2V {u}
for t = 0 to T

for each C 2Ct
choose an edge in ±(C)

Ft+1 √Ft [{spanning forest on selected edges}
Ct+1 √ {new connected components}

return FT+1

F0 √;
F0 √;

(current components)

For t = 0
For each

(nonzero of B ·1C)

FT+1
Ct+1

End For
End
return FT+1

15 / 124

A simple algorithm for connectivity

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

F0 √;
C0 √S

u2V {u}
for t = 0 to T

for each C 2Ct
choose an edge in ±(C)

Ft+1 √Ft [{spanning forest on selected edges}
Ct+1 √ {new connected components}

return FT+1

F0 √;
F0 √;

(current components)

For t = 0
For each

(nonzero of B ·1C)

FT+1
Ct+1

End For
End
return FT+1

16 / 124

A simple algorithm for connectivity

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

F0 √;
C0 √S

u2V {u}
for t = 0 to T

for each C 2Ct
choose an edge in ±(C)

Ft+1 √Ft [{spanning forest on selected edges}
Ct+1 √ {new connected components}

return FT+1

F0 √;
F0 √;

(current components)

For t = 0
For each

(nonzero of B ·1C)

FT+1
Ct+1

End For
End
return FT+1

17 / 124

A simple algorithm for connectivity

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

F0 √;
C0 √S

u2V {u}
for t = 0 to T

for each C 2Ct
choose an edge in ±(C)

Ft+1 √Ft [{spanning forest on selected edges}
Ct+1 √ {new connected components}

return FT+1

F0 √;
F0 √;

(current components)

For t = 0
For each

(nonzero of B ·1C)

FT+1
Ct+1

End For
End
return FT+1

18 / 124

A simple algorithm for connectivity

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

F0 √;
C0 √S

u2V {u}
for t = 0 to T

for each C 2Ct
choose an edge in ±(C)

Ft+1 √Ft [{spanning forest on selected edges}
Ct+1 √ {new connected components}

return FT+1

F0 √;
F0 √;

(current components)

For t = 0
For each

(?? nonzero of B ·1C??)

FT+1
Ct+1

End For
End
return FT+1

19 / 124

Connectivity via sketching (Ahn-Guha-McGregor’12)

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

F0 √;
C0 √S

u2V {u}
for t = 0 to T

for each C 2Ct
choose an edge in ±(C)

Ft+1 √Ft [{spanning forest on selected edges}
Ct+1 √ {new connected components}

return FT+1

F0 √;
F0 √;

S0, . . . ,ST √ `0-samplers
Maintain S0B, . . . ,ST B

For each

Run Dec(StB ·1C)

FT+1
Ct+1

End For
End
return FT+1

21 / 124

Some remarks

The result of Ahn, Guha, McGregor’12 independently and
simultaneously obtained by Kapron, King’12

Tightening parameters, get a sketch with bit complexity
O(n log3 n)

Q: why did we need several sketches S0, . . . ,ST ?

A: adaptivity

Very surprising: decoding is adaptive (T =O(logn) rounds), but
sketch is not

Nelson, Yu’19, Yu’21 – ≠(n log3 n) bits of space are needed

22 / 124

Some remarks

The result of Ahn, Guha, McGregor’12 independently and
simultaneously obtained by Kapron, King’12

Tightening parameters, get a sketch with bit complexity
O(n log3 n)

Q: why did we need several sketches S0, . . . ,ST ?

A: adaptivity

Very surprising: decoding is adaptive (T =O(logn) rounds), but
sketch is not

Nelson, Yu’19, Yu’21 – ≠(n log3 n) bits of space are needed

22 / 124

Some remarks

The result of Ahn, Guha, McGregor’12 independently and
simultaneously obtained by Kapron, King’12

Tightening parameters, get a sketch with bit complexity
O(n log3 n)

Q: why did we need several sketches S0, . . . ,ST ?

A: adaptivity

Very surprising: decoding is adaptive (T =O(logn) rounds), but
sketch is not

Nelson, Yu’19, Yu’21 – ≠(n log3 n) bits of space are needed

22 / 124

Some remarks

The result of Ahn, Guha, McGregor’12 independently and
simultaneously obtained by Kapron, King’12

Tightening parameters, get a sketch with bit complexity
O(n log3 n)

Q: why did we need several sketches S0, . . . ,ST ?

A: adaptivity

Very surprising: decoding is adaptive (T =O(logn) rounds), but
sketch is not

Nelson, Yu’19, Yu’21 – ≠(n log3 n) bits of space are needed

22 / 124

Some remarks

The result of Ahn, Guha, McGregor’12 independently and
simultaneously obtained by Kapron, King’12

Tightening parameters, get a sketch with bit complexity
O(n log3 n)

Q: why did we need several sketches S0, . . . ,ST ?

A: adaptivity

Very surprising: decoding is adaptive (T =O(logn) rounds), but
sketch is not

Nelson, Yu’19, Yu’21 – ≠(n log3 n) bits of space are needed

22 / 124

Input: Each u 2V holds list of its neighbors N(u)
Each u 2V sends a sketch of N(u) to coordinator
(assume shared randomness)

Output: Spanning forest of G

sk(N(u1))

sk(N(u2))

sk(N(u3))

...
sk(N(un))

Coordinator spanning forest

Every party u 2V sends a function of their neighborhood to
coordinator

Nelson, Yu’19, Yu’21 – ≠(n log3 n) bits of communication are
needed

23 / 124

Input: Each u 2V holds list of its neighbors N(u)
Each u 2V sends a sketch of N(u) to coordinator
(assume shared randomness)

Output: Spanning forest of G

sk(N(u1))

sk(N(u2))

sk(N(u3))

...
sk(N(un))

Coordinator spanning forest

Every party u 2V sends a function of their neighborhood to
coordinator

Nelson, Yu’19, Yu’21 – ≠(n log3 n) bits of communication are
needed

23 / 124

Spectral sparsification of graphs

24 / 124

Sparsification

œ G = (V ,E) an undirected graph, |V | = n, |E | =m

œ Find sparse subgraph G0 of G that approximates G

weights on edges

G

G0

25 / 124

Sparsification

œ G = (V ,E) an undirected graph, |V | = n, |E | =m

œ Find sparse subgraph G0 of G that approximates G

weights on edges

G G0

25 / 124

Sparsification

œ G = (V ,E) an undirected graph, |V | = n, |E | =m

œ Find sparse subgraph G0 of G that approximates G

weights on edges

G G0

25 / 124

Sparsification

œ G = (V ,E) an undirected graph, |V | = n, |E | =m

œ Find sparse subgraph G0 of G that approximates G

weights on edges

G G0

25 / 124

Sparsification

œ G = (V ,E) an undirected graph, |V | = n, |E | =m

œ Find sparse subgraph G0 of G that approximates G

weights on edges

G G0

1±"

25 / 124

1. Spectral sparsification

2. Dynamic streaming and linear sketching

3. Spectral sparsification using small sketches

4. Fast decoding

25 / 124

1. Spectral sparsification

2. Dynamic streaming and linear sketching

3. Spectral sparsification using small sketches

4. Fast decoding

25 / 124

Sparsification

value of cut=
X

e=(u,v)2E
(xu °xv)

2

L=BT B is the Laplacian of G

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

B=

2
66666666664

1 °1 0 0 0 0
0 1 °1 0 0 0
0 0 0 0 0 0
°1 0 0 1 0 0
0 0 1 0 0 °1
0 0 0 0 0 0
...

...

3
77777777775

26 / 124

Sparsification

value of cut=
X

e=(u,v)2E
(xu °xv)

2

L=BT B is the Laplacian of G

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

B=

2
66666666664

1 °1 0 0 0 0
0 1 °1 0 0 0
0 0 0 0 0 0
°1 0 0 1 0 0
0 0 1 0 0 °1
0 0 0 0 0 0
...

...

3
77777777775

26 / 124

Sparsification

value of cut=
X

e=(u,v)2E
(xu °xv)

2 = ||z||2

L=BT B is the Laplacian of G

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

z =

2
66666666664

0
x1 °x2

0
x4 °x3

0
x4 °x5

...

3
77777777775

=Bx

26 / 124

Sparsification

value of cut=
X

e=(u,v)2E
(xu °xv)

2 = ||z||2

L=BT B is the Laplacian of G

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

z =

2
66666666664

0
x1 °x2

0
x4 °x3

0
x4 °x5

...

3
77777777775

=Bx

26 / 124

Sparsification

value of cut=
X

e=(u,v)2E
(xu °xv)

2 = ||Bx ||2

L=BT B is the Laplacian of G

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

Bx =

2
66666666664

1 °1 0 0 0 0
0 1 °1 0 0 0
0 0 0 0 0 0
°1 0 0 1 0 0
0 0 1 0 0 °1
0 0 0 0 0 0
...

...

3
77777777775

·

2
66664

x1
x2
...

xn

3
77775

°n
2
¢
£n

26 / 124

Sparsification

value of cut=
X

e=(u,v)2E
(xu °xv)

2 = ||Bx ||2

L=BT B is the Laplacian of G

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

Bx =

2
66666666664

1 °1 0 0 0 0
0 1 °1 0 0 0
0 0 0 0 0 0
°1 0 0 1 0 0
0 0 1 0 0 °1
0 0 0 0 0 0
...

...

3
77777777775

·

2
66664

x1
x2
...

xn

3
77775

°n
2
¢
£n

26 / 124

Sparsification

value of cut=
X

e=(u,v)2E
(xu °xv)

2 = ||Bx ||2

L=BT B is the Laplacian of G

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

Bx =

2
66666666664

1 °1 0 0 0 0
0 1 °1 0 0 0
0 0 0 0 0 0
°1 0 0 1 0 0
0 0 1 0 0 °1
0 0 0 0 0 0
...

...

3
77777777775

·

2
66664

x1
x2
...

xn

3
77775

°n
2
¢
£n

26 / 124

Sparsification

value of cut=
X

e=(u,v)2E
(xu °xv)

2 = ||Bx ||2 = xT BT Bx

L=BT B is the Laplacian of G

weights on edges

xu = 1

xu = 0

1

1

1

1

0

0

0

0

Bx =

2
66666666664

1 °1 0 0 0 0
0 1 °1 0 0 0
0 0 0 0 0 0
°1 0 0 1 0 0
0 0 1 0 0 °1
0 0 0 0 0 0
...

...

3
77777777775

·

2
66664

x1
x2
...

xn

3
77775

°n
2
¢
£n

26 / 124

Definition (Karger’94, Cut sparsifiers)
G0 is an "-cut sparsifier of G if

(1°")xT Lx ∑ xT L0x ∑ (1+")xT Lx

for all x 2 {0,1}V (all cuts).

all x 2RV .
Equivalently, (1°")L¡ L0 ¡ (1+")L

Theorem (Karger’94, Benczur-Karger’96)
For any G there exists an "-cut sparsifier G0 with
O(1

"2 n logn) edges, and it can be constructed in eO(m) time.

Central role in numerical linear algebra, combinatorial optimization,. . .

27 / 124

Definition (Spielman-Teng’04, Spectral sparsifiers)
G0 is an "-spectral sparsifier of G if

(1°")xT Lx ∑ xT L0x ∑ (1+")xT Lx

for all x 2 {0,1}V (all cuts). all x 2RV .
Equivalently, (1°")L¡ L0 ¡ (1+")L

Theorem (Spielman-Teng’04, Spielman-Srivastava’09)
For any G there exists an "-spectral sparsifier G0 with
O(1

"2 n logn) edges, and it can be constructed in eO(m) time.

Central role in numerical linear algebra, combinatorial optimization etc

28 / 124

Definition (Spielman-Teng’04, Spectral sparsifiers)
G0 is an "-spectral sparsifier of G if

(1°")xT Lx ∑ xT L0x ∑ (1+")xT Lx

for all x 2 {0,1}V (all cuts). all x 2RV .
Equivalently, (1°")L¡ L0 ¡ (1+")L

Theorem (Spielman-Teng’04, Spielman-Srivastava’09)
For any G there exists an "-spectral sparsifier G0 with
O(1

"2 n logn) edges, and it can be constructed in eO(m) time.

Central role in numerical linear algebra, combinatorial optimization etc

28 / 124

Constructing spectral sparsifiers

Theorem (Spielman-Srivastava’09)
Let G = (V ,E) be an undirected graph. Let G0 be obtained by
including every edge e 2E independently with probability
proportional to its effective resistance:

pe ∏min
Ω

1,
C logn
"2 Ruv

æ
.

Assigning weight 1/pe if sampled. Then (1°")L¡ L0 ¡ (1+")L
whp.

Sample edges according to a measure of importance,
assign weights to make estimate unbiased

29 / 124

Sparsification

weights on edges

G

G0

30 / 124

Sparsification

weights on edges

G G0

31 / 124

1. Spectral sparsification

2. Dynamic streaming and linear sketching

3. Spectral sparsification using small sketches

4. Fast decoding

31 / 124

1. Spectral sparsification

2. Dynamic streaming and linear sketching

3. Spectral sparsification using small sketches

4. Fast decoding

31 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

32 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

32 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

32 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

32 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

32 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

32 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

32 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

32 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

32 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

32 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

32 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

32 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

32 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

32 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

32 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

32 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream (ideally one pass)

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

32 / 124

Streaming model
œ edges of G arrive in an arbitrary order in a stream
œ algorithm can only use eO(n) space
œ several passes over the stream (ideally one pass)

œ need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

32 / 124

What if we have deletions?

weights on edges

Very different algorithms are needed...

33 / 124

What if we have deletions?

weights on edges

Very different algorithms are needed...

33 / 124

What if we have deletions?

weights on edges

Very different algorithms are needed...

33 / 124

What if we have deletions?

weights on edges

Very different algorithms are needed...

33 / 124

What if we have deletions?

weights on edges

Very different algorithms are needed...

33 / 124

What if we have deletions?

weights on edges

Very different algorithms are needed...

33 / 124

What if we have deletions?

weights on edges

Very different algorithms are needed...

33 / 124

What if we have deletions?

weights on edges

Very different algorithms are needed...

33 / 124

What if we have deletions?

weights on edges

Very different algorithms are needed...

33 / 124

What if we have deletions?

weights on edges

Very different algorithms are needed...

33 / 124

Linear sketching

Classical data stream application: approximating frequency
moments.

0 0 0 0 0 0 0 0 0 0 0

Goal: approximate ||x ||22 =P
i x2

i using ø n space

Maintain xT vi = 1, . . . ,O(1/"2) for random Gaussians vi 2Rn.
Output average of (xT vi)

2.

(1±")-approximation with O(1
"2 logn) space

34 / 124

Linear sketching

Classical data stream application: approximating frequency
moments.

0 0 1 0 0 0 0 0 0 0 0

Goal: approximate ||x ||22 =P
i x2

i using ø n space

Maintain xT vi = 1, . . . ,O(1/"2) for random Gaussians vi 2Rn.
Output average of (xT vi)

2.

(1±")-approximation with O(1
"2 logn) space

34 / 124

Linear sketching

Classical data stream application: approximating frequency
moments.

0 0 1 0 1 0 0 0 0 0 0

Goal: approximate ||x ||22 =P
i x2

i using ø n space

Maintain xT vi = 1, . . . ,O(1/"2) for random Gaussians vi 2Rn.
Output average of (xT vi)

2.

(1±")-approximation with O(1
"2 logn) space

34 / 124

Linear sketching

Classical data stream application: approximating frequency
moments.

0 0 1 0 2 0 0 0 0 0 0

Goal: approximate ||x ||22 =P
i x2

i using ø n space

Maintain xT vi = 1, . . . ,O(1/"2) for random Gaussians vi 2Rn.
Output average of (xT vi)

2.

(1±")-approximation with O(1
"2 logn) space

34 / 124

Linear sketching

Classical data stream application: approximating frequency
moments.

0 0 1 0 2 0 0 0 0 0 0

Goal: approximate ||x ||22 =P
i x2

i using ø n space

Maintain xT vi = 1, . . . ,O(1/"2) for random Gaussians vi 2Rn.
Output average of (xT vi)

2.

(1±")-approximation with O(1
"2 logn) space

34 / 124

Linear sketching

Classical data stream application: approximating frequency
moments.

0 0 1 0 2 0 0 0 0 0 0

Goal: approximate ||x ||22 =P
i x2

i using ø n space

Maintain xT vi = 1, . . . ,O(1/"2) for random Gaussians vi 2Rn.
Output average of (xT vi)

2.

(1±")-approximation with O(1
"2 logn) space

34 / 124

Linear sketching

Take (randomized) linear measurements of the input

S

sketching matrix

space=number of rows

•

x

b=

Can get constant approximation using logO(1)n rows

Easy to maintain linear sketches in the (dynamic) streaming
model

35 / 124

Linear sketching

Take (randomized) linear measurements of the input

S

sketching matrix

space=number of rows

•

x

b=

Can get constant approximation using logO(1)n rows

Easy to maintain linear sketches in the (dynamic) streaming
model

35 / 124

Linear sketching

Take (randomized) linear measurements of the input

S

sketching matrix

space=number of rows

•

x

b=

Can get constant approximation using logO(1)n rows

Easy to maintain linear sketches in the (dynamic) streaming
model

35 / 124

Ahn-Guha-McGregor’SODA12 – connectivity in O(n · log3 n) space.

S

°n
2
¢

logO(1)n

space=number of rows£n

• B

°n
2
¢

n
=

Every vertex sketches its own neighborhood independently –
single round distributed algorithms

Reconstruct edges of a sparsifier quickly from a small sketch?

36 / 124

Ahn-Guha-McGregor’SODA12 – connectivity in O(n · log3 n) space.

S

°n
2
¢

logO(1)n

space=number of rows£n

• B

°n
2
¢

n
=

Every vertex sketches its own neighborhood independently –
single round distributed algorithms

Reconstruct edges of a sparsifier quickly from a small sketch?

36 / 124

Reconstruct edges of a sparsifier quickly from a small sketch?

Theorem (K.-Nouri-Sidford-Tardos’19)
Can recover a spectral sparsifier from an oblivious sketch of
size eO(n) space in time eO(n).

Known before:

eO(n) space and ≠(n2) recovery time
K.-Lee-Sidford-Musco-Musco’FOCS’14

eO(n5/3) space and time Ahn-Guha-McGregor’APPROX’14

37 / 124

1. Spectral sparsification

2. Dynamic streaming and linear sketching

3. Spectral sparsification using small sketches

4. Fast decoding

37 / 124

1. Spectral sparsification

2. Dynamic streaming and linear sketching

3. Spectral sparsification using small sketches

4. Fast decoding

37 / 124

Constructing spectral sparsifiers

Theorem (Spielman-Srivastava’09)
Let G = (V ,E) be an undirected graph. Let G0 be obtained by
including every edge e 2E independently with probability
proportional to its effective resistance:

pe ∏min
Ω

1,
C logn
"2 Ruv

æ
.

Assign weight 1/pe if sampled. Then (1°")G ¡G0 ¡ (1+")G
whp.

Sample edges according to a measure of importance,
assign weights to make estimate unbiased

Note: edges e with resistance Ruv =≠(1/logn) included w.p. 1

38 / 124

Core primitive: recover edges of large resistance
Goal: design a sketch S that allows recovery of high resistance
(∏ 1/logn) edges of G given

œ S ·B (sketch of edge incidence matrix)

œ crude constant factor spectral sparsifier eG
1
C

·L¡ eL¡ L

weights on edges

G eG

Key primitive from K.-Lee-Musco-Musco-Sidford’FOCS’14

38 / 124

Core primitive: recover edges of large resistance
Goal: design a sketch S that allows recovery of high resistance
(∏ 1/logn) edges of G given

œ S ·B (sketch of edge incidence matrix)
œ crude constant factor spectral sparsifier eG

1
C

·L¡ eL¡ L

weights on edges

G eG

Key primitive from K.-Lee-Musco-Musco-Sidford’FOCS’14

38 / 124

Core primitive: recover edges of large resistance
Goal: design a sketch S that allows recovery of high resistance
(∏ 1/logn) edges of G given

œ S ·B (sketch of edge incidence matrix)
œ crude constant factor spectral sparsifier eG

1
C

·L¡ eL¡ L

weights on edges

G eG

Key primitive from K.-Lee-Musco-Musco-Sidford’FOCS’14

38 / 124

Effective resistance

Ruv =bT
uv L+buv

Note: defined for any pair (u,v).

0.43

0.27

0.35

0

°0.2
°0.16

0.35

°0.14

Inject current at u, take out at v .

¡= L+buv =vertex potentials

f =B¡=currents on edges

We have

Ruv =
f 2
uv

||f ||2
.

Ruv = fraction of ||f ||22 contributed by e = (u,v)

39 / 124

Effective resistance

Ruv =bT
uv L+buv

Note: defined for any pair (u,v).

0.43

0.27

0.35

0

°0.2
°0.16

0.35

°0.14

Inject current at u, take out at v .

¡= L+buv =vertex potentials

buv =

2
6666666664

0
1
0
°1
0
0
0

3
7777777775

Ruv = fraction of ||f ||22 contributed by e = (u,v)

40 / 124

Effective resistance

Ruv =bT
uv L+buv

Note: defined for any pair (u,v).

0.43

0.27

0.35

0

°0.2
°0.16

0.35

°0.14

Inject current at u, take out at v .

¡= L+buv =vertex potentials

f =B¡=currents on edges

We have

Ruv =
f 2
uv

||f ||2
.

Ruv = fraction of ||f ||22 contributed by e = (u,v)

41 / 124

Effective resistance

Ruv =bT
uv L+buv

Note: defined for any pair (u,v).

0.43

0.27

0.35

0

°0.2
°0.16

0.35

°0.14

Inject current at u, take out at v .

¡= L+buv =vertex potentials

f =B¡=currents on edges

We have

Ruv =
f 2
uv

||f ||2
.

Ruv = fraction of ||f ||22 contributed by e = (u,v)

41 / 124

Effective resistance

Ruv =bT
uv L+buv

Note: defined for any pair (u,v).

0.43

0.27

0.35

0

°0.2
°0.16

0.35

°0.14

Inject current at u, take out at v .

¡= L+buv =vertex potentials

fxy =¡y °¡x =bT
xyL+buv

We have

Ruv =
f 2
uv

||f ||2
.

Ruv = fraction of ||f ||22 contributed by e = (u,v)

41 / 124

Effective resistance

Ruv =bT
uv L+buv

Note: defined for any pair (u,v).

0.43

0.27

0.35

0

°0.2
°0.16

0.35

°0.14

Inject current at u, take out at v .

¡= L+buv =vertex potentials

f =B¡=currents on edges

We have

Ruv =
f 2
uv

||f ||2
.

Ruv = fraction of ||f ||22 contributed by e = (u,v)

42 / 124

Effective resistance

Ruv =bT
uv L+buv

Note: defined for any pair (u,v).

0.43

0.27

0.35

0

°0.2
°0.16

0.35

°0.14

Inject current at u, take out at v .

¡= L+buv =vertex potentials

f =B¡=currents on edges

We have

Ruv =
f 2
uv

||f ||2
.

Ruv = fraction of ||f ||22 contributed by e = (u,v)

43 / 124

Effective resistance

Ruv =bT
uv L+buv

Note: defined for any pair (u,v).

0.43

0.27

0.35

0

°0.2
°0.16

0.35

°0.14

Inject current at u, take out at v .

¡= L+buv =vertex potentials

f =B¡=currents on edges

We have

Ruv =
f 2
uv

||f ||2
.

Ruv = fraction of ||f ||22 contributed by e = (u,v)

44 / 124

Given:
œ a sketch S ·B of G
œ crude sparsifier eG
œ pair (u,v) 2V £V

Need:
œ is (u,v) an edge in G of resistance ≠(1/logn)?

45 / 124

Given:
œ a sketch S ·B of G
œ crude sparsifier eG
œ pair (u,v) 2V £V

Need:
œ is (u,v) an edge in G of resistance ≠(1/logn)?

0.43

0.27

0.35

0

°0.2

°0.16

0.35

°0.14

Compute ¡= L+buv – vertex potentials

Compute f =B¡=currents on edges

Check if

Ruv =
f 2
uv

||f ||2
=≠(1/logn).

0 0 0.01 0 200 1 0 2 0 0 0

46 / 124

Given:
œ a sketch S ·B of G
œ crude sparsifier eG
œ pair (u,v) 2V £V

Need:
œ is (u,v) an edge in G of resistance ≠(1/logn)?

0.45

0.45

0.58

0

0

°0.16

0.83

°0.4

Compute ¡= L+buv – vertex potentials

Compute f =B¡=currents on edges

Check if

Ruv =
f 2
uv

||f ||2
=≠(1/logn).

0 0 0.01 0 200 1 0 2 0 0 0

47 / 124

Given:
œ a sketch S ·B of G
œ crude sparsifier eG
œ pair (u,v) 2V £V

Need:
œ is (u,v) an edge in G of resistance ≠(1/logn)?

0.45

0.45

0.58

0

0

°0.16

0.83

°0.4

Compute ¡=L+buv – vertex potentials

Compute f =B¡=currents on edges

Check if

Ruv =
f 2
uv

||f ||2
=≠(1/logn).

0 0 0.01 0 200 1 0 2 0 0 0

48 / 124

Given:
œ a sketch S ·B of G
œ crude sparsifier eG
œ pair (u,v) 2V £V

Need:
œ is (u,v) an edge in G of resistance ≠(1/logn)?

0.45

0.45

0.58

0

0

°0.16

0.83

°0.4

Compute ¡= eL+buv – vertex potentials

Compute ¢=B¡ºcurrents on edges

Check if

Ruv =
¢2

uv
||¢||2

=≠(1/logn).

0 0 0.01 0 200 1 0 2 0 0 0

49 / 124

Given:
œ a sketch S ·B of G
œ crude sparsifier eG
œ pair (u,v) 2V £V

Need:
œ is (u,v) an edge in G of resistance ≠(1/logn)?

0.45

0.45

0.58

0

0

°0.16

0.83

°0.4

Compute ¡= L+buv – vertex potentials

Compute f =B¡=currents on edges

Check if

Ruv =
f 2
uv

||f ||2
=≠(1/logn).

0 0 0.01 0 200 1 0 2 0 0 0

50 / 124

Linear sketching and sparse recovery

0 0 0.01 0 200 1 0 2 0 0 0

Let y be a vector of reals. Then i 2 [n] is an `2-heavy hitter if

y2
i ∏ ¥||y ||22.

Lemma (`2-heavy hitters; COUNTSKETCH)
For any ¥> 0 there exists a (randomized) sketch in dimension
1
¥ log

O(1)n from which one reconstruct all ¥-heavy hitters. The
recovery works in time 1

¥ · log
O(1)n.

51 / 124

Linear sketching and sparse recovery

0 0 0.01 0 200 1 0 2 0 0 0

Let y be a vector of reals. Then i 2 [n] is an `2-heavy hitter if

y2
i ∏ ¥||y ||22.

Lemma (`2-heavy hitters; COUNTSKETCH)
For any ¥> 0 there exists a (randomized) sketch in dimension
1
¥ log

O(1)n from which one reconstruct all ¥-heavy hitters. The
recovery works in time 1

¥ · log
O(1)n.

52 / 124

Sketching the edge incidence matrix

S ·B=S ·

2
66666666664

1 °1 0 0 0 0
0 1 °1 0 0 0
0 0 0 0 0 0
°1 0 1 0 0 0
0 0 1 0 0 °1
0 0 0 0 0 0
...

...

3
77777777775

Apply `2-heavy hitters sketch S to every column bu ,u 2V of B

Store the n sketches, n · logO(1)n space.

53 / 124

Sketching the edge incidence matrix

S ·B=S ·

2
66666666664

1 °1 0 0 0 0
0 1 °1 0 0 0
0 0 0 0 0 0
°1 0 1 0 0 0
0 0 1 0 0 °1
0 0 0 0 0 0
...

...

3
77777777775

Apply `2-heavy hitters sketch S to every column bu ,u 2V of B

Store the n sketches, n · logO(1)n space.

54 / 124

Sketching the edge incidence matrix

S ·B=S ·

2
66666666664

1 °1 0 0 0 0
0 1 °1 0 0 0
0 0 0 0 0 0
°1 0 1 0 0 0
0 0 1 0 0 °1
0 0 0 0 0 0
...

...

3
77777777775

Apply `2-heavy hitters sketch S to every column bu ,u 2V of B

Store the n sketches, n · logO(1)n space.

55 / 124

Sketching the edge incidence matrix

S ·B=S ·

2
66666666664

1 °1 0 0 0 0
0 1 °1 0 0 0
0 0 0 0 0 0
°1 0 1 0 0 0
0 0 1 0 0 °1
0 0 0 0 0 0
...

...

3
77777777775

Apply `2-heavy hitters sketch S to every column bu ,u 2V of B

Store the n sketches, n · logO(1)n space.

56 / 124

Sketching the edge incidence matrix

S ·B=S ·

2
66666666664

1 °1 0 0 0 0
0 1 °1 0 0 0
0 0 0 0 0 0
°1 0 1 0 0 0
0 0 1 0 0 °1
0 0 0 0 0 0
...

...

3
77777777775

Apply `2-heavy hitters sketch S to every column bu ,u 2V of B

Store the n sketches, n · logO(1)n space.

57 / 124

Given:
œ a sketch S ·B of G
œ crude sparsifier eG
œ pair (u,v) 2V £V

Need:
œ is (u,v) an edge in G of resistance ≠(1/logn)?

0.45

0.45

0.58

0

0

°0.16

0.83

°0.4

Compute ¡= eL+buv – vertex potentials

Compute S ·¢=S ·B¡=potential
differences

Check if

eRe =
¢2

e
||¢||2

=≠(1/logn)

using heavy-hitters sketch S

0 0 0.01 0 200 1 0 2 0 0 0

58 / 124

Given:
œ a sketch S ·B of G
œ crude sparsifier eG
œ pair (u,v) 2V £V

Need:
œ is (u,v) an edge in G of resistance ≠(1/logn)?

0.45

0.45

0.58

0

0

°0.16

0.83

°0.4

Compute ¡= eL+buv – vertex potentials

Compute S ·¢=S ·B¡=potential
differences

Check if

eRe =
¢2

e
||¢||2

=≠(1/logn)

using heavy-hitters sketch S

0 0 0.01 0 200 1 0 2 0 0 0

58 / 124

Given:
œ a sketch S ·B of G
œ crude sparsifier eG
œ pair (u,v) 2V £V

Need:
œ is (u,v) an edge in G of resistance ≠(1/logn)?

0.45

0.45

0.58

0

0

°0.16

0.83

°0.4

Compute ¡= eL+buv – vertex potentials

Compute S ·¢=S ·B¡=potential
differences

Check if

eRe =
¢2

e
||¢||2

=≠(1/logn)

using heavy-hitters sketch S

0 0 0.01 0 200 1 0 2 0 0 0

58 / 124

Given:
œ a sketch S ·B of G
œ crude sparsifier eG
œ pair (u,v) 2V £V

Need:
œ is (u,v) an edge in G of resistance ≠(1/logn)?

0.45

0.45

0.58

0

0

°0.16

0.83

°0.4

Compute ¡= eL+buv – vertex potentials

Compute S ·¢=S ·B¡=potential
differences

Check if

eRe =
¢2

e
||¢||2

=≠(1/logn)

using heavy-hitters sketch S

0 0 0.01 0 200 1 0 2 0 0 0

58 / 124

Testing a pair of vertices – summary
Connect a battery to a pair of vertices u,v 2V

Edge e is high effective resistance iff the heat created by this
edge in this setting is a non-trivial fraction of the total heat.

e

+ °

e0+
°

Find all heavy edges with O(n) experiments?

58 / 124

Testing a pair of vertices – summary
Connect a battery to a pair of vertices u,v 2V

Edge e is high effective resistance iff the heat created by this
edge in this setting is a non-trivial fraction of the total heat.

e

+ °

e0+
°

Find all heavy edges with O(n) experiments?

58 / 124

Testing a pair of vertices – summary
Connect a battery to a pair of vertices u,v 2V

Edge e is high effective resistance iff the heat created by this
edge in this setting is a non-trivial fraction of the total heat.

e

+ °

e0+
°

Find all heavy edges with O(n) experiments?

58 / 124

Testing a pair of vertices – summary
Connect a battery to a pair of vertices u,v 2V

Edge e is high effective resistance iff the heat created by this
edge in this setting is a non-trivial fraction of the total heat.

e

+ °

e0+
°

Find all heavy edges with O(n) experiments?

58 / 124

Testing a pair of vertices – summary
Connect a battery to a pair of vertices u,v 2V

Edge e is high effective resistance iff the heat created by this
edge in this setting is a non-trivial fraction of the total heat.

e

+ °

e0+
°

Find all heavy edges with O(n) experiments?

58 / 124

Testing a pair of vertices – summary
Connect a battery to a pair of vertices u,v 2V

Edge e is high effective resistance iff the heat created by this
edge in this setting is a non-trivial fraction of the total heat.

e

+ °

e0+
°

Find all heavy edges with O(n) experiments?

58 / 124

Find shortcuts in wiring

Find wires with high effective resistance

Can attach a battery to any pair of nodes, learn all very hot edges

Find shortcuts in wiring

Find wires with high effective resistance

Can attach a battery to any pair of nodes, learn all very hot edges

Edges with high effective resistance

e

+ °

e0+
°

Edge e has high effective resistance iff the heat created by this edge is a
non-trivial fraction of the total heat.

Edges with high effective resistance

electrical flow

electrical flow

e

+ °

e0+
°

Edge e has high effective resistance iff the heat created by this edge is a
non-trivial fraction of the total heat.

Find shortcuts in wiring

Find wires with high effective resistance

Can attach a battery to any pair of nodes, learn all very hot edges

Find shortcuts in wiring

Find wires with high effective resistance

Can attach a battery to any pair of nodes, learn all very hot edges

Find shortcuts in wiring

Find wires with high effective resistance

Can attach a battery to any pair of nodes, learn all very hot edges

Find shortcuts in wiring

Find wires with high effective resistance

Can attach a battery to any pair of nodes, learn all very hot edges

How many pairs need to be tested?

eO(n) tests suffice!

Find shortcuts in wiring

Find wires with high effective resistance

Can attach a battery to any pair of nodes, learn all very hot edges

How many pairs need to be tested?

eO(n) tests suffice!

Find shortcuts in wiring

Find wires with high effective resistance

Can attach a battery to any pair of nodes, learn all very hot edges

How many pairs need to be tested? eO(n) tests suffice!

1. Spectral sparsification

2. Dynamic streaming and linear sketching

3. Spectral sparsification using small sketches

4. Fast decoding

58 / 124

1. Spectral sparsification

2. Dynamic streaming and linear sketching

3. Spectral sparsification using small sketches

4. Fast decoding

58 / 124

Effective resistance

0.43

0.27

0.35

0

°0.2
°0.16

0.35

°0.14

Inject current at u, take out at v .

¡= L+buv =vertex potentials

f =B¡=currents on edges

We have

Ruv =
f 2
uv

||f ||2
=
(¡u °¡v)2

Ruv
.

Find pair a,b 2V such that (u,v) carries a lot of a! b flow?

(øu °øv)2

Rab
& 1/logn

where ø= L+bab.

59 / 124

Effective resistance

0.43

0.27

0.35

0

°0.2
°0.16

0.35

°0.14

Inject current at u, take out at v .

¡= L+buv =vertex potentials

f =B¡=currents on edges

We have

Ruv =
f 2
uv

||f ||2
=
(¡u °¡v)2

Ruv
.

Find pair a,b 2V such that (u,v) carries a lot of a! b flow?

(øu °øv)2

Rab
& 1/logn

where ø= L+bab.

59 / 124

Effective resistance

0.43

0.27

0.35

0

°0.2
°0.16

0.35

°0.14

Inject current at u, take out at v .

¡= L+buv =vertex potentials

f =B¡=currents on edges

We have

Ruv =
f 2
uv

||f ||2
=
(¡u °¡v)2

Ruv
.

Find pair a,b 2V such that (u,v) carries a lot of a! b flow?

(øu °øv)2

Rab
& 1/logn

where ø= L+bab.
59 / 124

Effective resistance

0.43

0.27

0.35

0

°0.2
°0.16

0.35

°0.14

Inject current at u, take out at v .

¡= L+buv =vertex potentials

f =B¡=currents on edges

We have

Ruv =
f 2
uv

||f ||2
=
(¡u °¡v)2

Ruv
.

Find pair a,b 2V such that (u,v) carries a lot of a! b flow?

(øu °øv)2

Rab
& (¡u °¡v)2

Ruv

where ø= L+bab.
60 / 124

Effective resistance

0.43

0.27

0.35

0

°0.2
°0.16

0.35

°0.14

Inject current at u, take out at v .

¡= L+buv =vertex potentials

f =B¡=currents on edges

We have

Ruv =
f 2
uv

||f ||2
=
(¡u °¡v)2

Ruv
.

Find pair a,b 2V such that (u,v) carries a lot of a! b flow?

(øu °øv)2

Rab
& (¡u °¡v)2

Ruv

where ø= L+bab.
61 / 124

62 / 124

63 / 124

64 / 124

C1 C2 C3 C4 Cn0.2 Cn0.9

65 / 124

Reciprocity theorem

u ! v flow results in potentials ¡= L+buv

a! b flow results in potentials ø= L+bab

øv °øu =bT
uvø=bT

uv L+bab

and
¡b °¡a =bT

ab¡=bT
abL+buv

66 / 124

Effective resistance

0.43

0.27

0.35

0

°0.2
°0.16

0.35

°0.14

Find pair a,b 2V such that (u,v) carries a lot of a! b flow?

(øu °øv)2

Rab
º
(¡u °¡v)2

Ruv

where ø= L+bab.
67 / 124

Potential embedding

0.43

0.27

0.35

0

°0.2
°0.16

0.35

°0.14

Ruv = f 2
uv

||f ||2 = (¡u°¡v)2

Ruv

Potential embedding of (u,v):

For x 2V

buv L+buv = (bux +bxv)L+buv =bxv L+buv +buxL+buv

68 / 124

Potential embedding

0.43

0.27

0.35

0

°0.2
°0.16

0.35

°0.14

Ruv = f 2
uv

||f ||2 = (¡u°¡v)2

Ruv

Potential embedding of (u,v):

For x 2V

¡v °¡u = (¡v °¡x)+ (¡x °¡u)

=bxv L+buv +buxL+buv

69 / 124

Potential embedding

0.43

0.27

0.35

0

°0.2
°0.16

0.35

°0.14

Ruv = f 2
uv

||f ||2 = (¡u°¡v)2

Ruv

Potential embedding of (u,v):

For x 2V

¡v °¡u = (¡v °¡x)+ (¡x °¡u)=bxv L+buv +buxL+buv

70 / 124

Potential embedding

0.43

0.27

0.35

0

°0.2
°0.16

0.35

°0.14

Ruv = f 2
uv

||f ||2 = (¡u°¡v)2

Ruv

Potential embedding of (u,v):

For x 2V

¡v °¡u = (¡v °¡x)+ (¡x °¡u)=bT
uv L+bux +bT

uv L+bxv

71 / 124

Potential embedding

Potential embedding of (u,v):

Let ø= L+bxu denote x ! u flow potentials:

(øu °øv)
2 = (buxL+buv)

2 ∏ 1
4
(¡u °¡v)

2

So (u,v) carries a lot of x ! u flow?

72 / 124

Potential embedding

Potential embedding of (u,v):

Let ø= L+bxu denote x ! u flow potentials:

(øu °øv)
2 = (buxL+buv)

2 ∏ 1
4
(¡u °¡v)

2

So (u,v) carries a lot of x ! u flow?

72 / 124

Potential embedding

Potential embedding of (u,v):

So
(øu °øv)2

Rxu
& (¡u °¡v)2

Ruv
?

Yes...

as long as Rxu .Ruv

73 / 124

Potential embedding

Potential embedding of (u,v):

So
(øu °øv)2

Rxu
& (¡u °¡v)2

Ruv
?

Yes... as long as Rxu .Ruv

73 / 124

To discover edge (u,v) with Ruv ∏ 1/logn:

1. Choose x 2V with Rux ∑ logO(1)n

2. Send flow from x to u, list heavy edges

3. Send flow from x to v , list heavy edges

0.43

0.27

0.35

0

°0.2
°0.16

0.35

°0.14

74 / 124

Our Approach

Partition vertices into clusters of bounded effective resistance
diameter

75 / 124

Our Approach

Partition vertices into clusters of bounded effective resistance
diameter

75 / 124

Our Approach

Pick representative vertex x in
every cluster, try flows from x to

all vertices in same cluster

This finds every heavy edge not
cut by the partition

+
°

76 / 124

Our Approach

Pick representative vertex x in
every cluster, try flows from x to

all vertices in same cluster

This finds every heavy edge not
cut by the partition

+
°

76 / 124

Our Approach

Pick representative vertex x in
every cluster, try flows from x to

all vertices in same cluster

This finds every heavy edge not
cut by the partition

+
°

76 / 124

Our Approach

Pick representative vertex x in
every cluster, try flows from x to

all vertices in same cluster

This finds every heavy edge not
cut by the partition

+
°

76 / 124

Our Approach

Pick representative vertex x in
every cluster, try flows from x to

all vertices in same cluster

This finds every heavy edge not
cut by the partition

+
°

76 / 124

Our Approach

Pick representative vertex x in
every cluster, try flows from x to

all vertices in same cluster

This finds every heavy edge not
cut by the partition

+
°

76 / 124

Our Approach

Pick representative vertex x in
every cluster, try flows from x to

all vertices in same cluster

This finds every heavy edge not
cut by the partition

+
°

76 / 124

Our Approach

Pick representative vertex x in
every cluster, try flows from x to

all vertices in same cluster

This finds every heavy edge not
cut by the partition

+
°

76 / 124

Partitioning via Locality Sensitive Hashing
Resistive embedding maps v to R(

n
2):

y !BL+1y

Then
Ruv = ||BL+buv ||22 = ||BL+1u °BL+1v ||22.

Final algorithm§:

1. Construct resistive embedding (after dimensionality
reduction)

2. Hash vertices using Locality Sensitive Hashing

3. In every bucket pick representative x , try flows to other
vertices in bucket

Set ‘near’ distance to º 1: a heavy edge is likely to not be cut,
but diameter bounded by logO(1)n

77 / 124

Partitioning via Locality Sensitive Hashing
Resistive embedding maps v to R(

n
2):

y !BL+1y

Then
Ruv = ||BL+buv ||22 = ||BL+1u °BL+1v ||22.

Final algorithm§:

1. Construct resistive embedding (after dimensionality
reduction)

2. Hash vertices using Locality Sensitive Hashing

3. In every bucket pick representative x , try flows to other
vertices in bucket

Set ‘near’ distance to º 1: a heavy edge is likely to not be cut,
but diameter bounded by logO(1)n

77 / 124

Partitioning via Locality Sensitive Hashing
Resistive embedding maps v to R(

n
2):

y !BL+1y

Then
Ruv = ||BL+buv ||22 = ||BL+1u °BL+1v ||22.

Final algorithm§:

1. Construct resistive embedding (after dimensionality
reduction)

2. Hash vertices using Locality Sensitive Hashing

3. In every bucket pick representative x , try flows to other
vertices in bucket

Set ‘near’ distance to º 1: a heavy edge is likely to not be cut,
but diameter bounded by logO(1)n

77 / 124

Fast recovery for matrices+implications for numerical linear
algebra and optimization?

84 / 124

Remarks, related results, open problems

85 / 124

Weighted graphs?

Can one support turnstile updates to the weights?

Chen, Khanna, Li’22. – support turnstile updates to edge weights
using º n6/5 space

Chen, Khanna, Li’22. – lower bound of ≠(n21/20) for vertex
incidence sketches!

86 / 124

Weighted graphs?

Can one support turnstile updates to the weights?

Chen, Khanna, Li’22. – support turnstile updates to edge weights
using º n6/5 space

Chen, Khanna, Li’22. – lower bound of ≠(n21/20) for vertex
incidence sketches!

86 / 124

Weighted graphs?

Can one support turnstile updates to the weights?

Chen, Khanna, Li’22. – support turnstile updates to edge weights
using º n6/5 space

Chen, Khanna, Li’22. – lower bound of ≠(n21/20) for vertex
incidence sketches!

86 / 124

Spanners?
A subgraph H is a t-spanner of G if for every u,v 2V one has

dG(u,v)∑ dH(u,v)∑ t ·dG(u,v)

Every graph G on n vertices admits a (2k °1)-spanner of size
º n1+1/k (optimal assuming the Erdős girth conjecture).

Baswana-Sen’07: obtains a (2k °1)-spanner with eO(n1+1/k)
edges. Inherently very sequential (k rounds).

Single pass sketching algorithm?

Theorem (Fitser-K.-Nouri’21)
A eO(n2/3)-spanner in eO(n) space(+space/stretch tradeoffs).
Algorithm: take any spectral sparsifier, drop weights on edges.

87 / 124

Spanners?
A subgraph H is a t-spanner of G if for every u,v 2V one has

dG(u,v)∑ dH(u,v)∑ t ·dG(u,v)

Every graph G on n vertices admits a (2k °1)-spanner of size
º n1+1/k (optimal assuming the Erdős girth conjecture).

Baswana-Sen’07: obtains a (2k °1)-spanner with eO(n1+1/k)
edges. Inherently very sequential (k rounds).

Single pass sketching algorithm?

Theorem (Fitser-K.-Nouri’21)
A eO(n2/3)-spanner in eO(n) space(+space/stretch tradeoffs).
Algorithm: take any spectral sparsifier, drop weights on edges.

87 / 124

Spanners?
A subgraph H is a t-spanner of G if for every u,v 2V one has

dG(u,v)∑ dH(u,v)∑ t ·dG(u,v)

Every graph G on n vertices admits a (2k °1)-spanner of size
º n1+1/k (optimal assuming the Erdős girth conjecture).

Baswana-Sen’07: obtains a (2k °1)-spanner with eO(n1+1/k)
edges. Inherently very sequential (k rounds).

Single pass sketching algorithm?

Theorem (Fitser-K.-Nouri’21)
A eO(n2/3)-spanner in eO(n) space(+space/stretch tradeoffs).
Algorithm: take any spectral sparsifier, drop weights on edges.

87 / 124

Spanners?
A subgraph H is a t-spanner of G if for every u,v 2V one has

dG(u,v)∑ dH(u,v)∑ t ·dG(u,v)

Every graph G on n vertices admits a (2k °1)-spanner of size
º n1+1/k (optimal assuming the Erdős girth conjecture).

Baswana-Sen’07: obtains a (2k °1)-spanner with eO(n1+1/k)
edges. Inherently very sequential (k rounds).

Single pass sketching algorithm?

Theorem (Fitser-K.-Nouri’21)
A eO(n2/3)-spanner in eO(n) space

(+space/stretch tradeoffs).
Algorithm: take any spectral sparsifier, drop weights on edges.

87 / 124

Spanners?
A subgraph H is a t-spanner of G if for every u,v 2V one has

dG(u,v)∑ dH(u,v)∑ t ·dG(u,v)

Every graph G on n vertices admits a (2k °1)-spanner of size
º n1+1/k (optimal assuming the Erdős girth conjecture).

Baswana-Sen’07: obtains a (2k °1)-spanner with eO(n1+1/k)
edges. Inherently very sequential (k rounds).

Single pass sketching algorithm?

Theorem (Fitser-K.-Nouri’21)
A eO(n2/3)-spanner in eO(n) space(+space/stretch tradeoffs).
Algorithm: take any spectral sparsifier, drop weights on edges.

87 / 124

Lower bounds
Input: Each u 2V holds list of its neighbors N(u)

Each u 2V sends a sketch of N(u) to coordinator
(assume shared randomness)

Output: n2/3°≠(1)-spanner of G

sk(N(u1))

sk(N(u2))

sk(N(u3))

...
sk(N(un))

Coordinator spanner

Show that n≠(1) communication per node is needed?

Recent progress:Assadi-K.-Yu’23 prove that Filtser-K.-Nouri’21
tradeoffs are optimal for a natural class of sketches

88 / 124

Lower bounds
Input: Each u 2V holds list of its neighbors N(u)

Each u 2V sends a sketch of N(u) to coordinator
(assume shared randomness)

Output: n2/3°≠(1)-spanner of G

sk(N(u1))

sk(N(u2))

sk(N(u3))

...
sk(N(un))

Coordinator spanner

Show that n≠(1) communication per node is needed?

Recent progress:Assadi-K.-Yu’23 prove that Filtser-K.-Nouri’21
tradeoffs are optimal for a natural class of sketches

88 / 124

Expander decompositions in sketching

Filtser-K.-Makarov’23 – expander decompositions by sketching

Filtser-K.-Makarov’23, Chen-K.-Makarov-Mazzali’?? –
sparsity-independent expander decompositions!

89 / 124

Turn sketching algorithms into low space dynamic algorithms?

Prove that decoded solution is ‘stable’?

90 / 124

