
1

 Hierarchical Decision and Control for Cooperative Multi-

UAV Systems using Ad-Hoc Communication*

 Yosi Ben-Asher, Sharoni Feldman

Computer Science Department, Haifa University, Israel

{yosi, sharoni}@cs.haifa.ac.il

Pini Gurfil

Faculty of Aerospace Engineering

Technion - Israel Institute of Technology, Haifa 32000, Israel

pgurfil@technion.ac.il

Moran Feldman

Computer Science Department, Haifa University, Israel

Abstract

This works develops a novel hierarchical algorithm for task assignment (TA),
coordination and communication of multiple UAVs engaging multiple targets and
conceives an ad-hoc routing algorithm for synchronization of target lists utilizing a
distributed computing topology. Assuming limited communication bandwidth and
range, coordination of UAV motion is achieved by implementing a simple behavioral
flocking algorithm utilizing a tree topology for target list routing. The TA algorithm is
based on a graph-theoretic approach, in which a node locates all the detectable targets,
identifies them and computes its distance to each target. The node then produces an
attack plan that minimizes the sum of distances of the UAVs in the subtree of a given
node to the targets.  Simulation experiments show that the combination of flocking
and TA algorithms gives the best performance. Clear-cut advantages of the TA
algorithm are shown to exist in cases where the hit probability tends to one. An
improvement of efficiency, representing the ratio between killed targets and the
number of missile launches, is obtained for larger numbers of UAVs only if the
engagement times are long enough, utilizing the improved coverage achieved by more
UAVs.
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1. Introduction

The problem of design, development and control of multi-agent systems has been

studied in recent years for many applications. In particular, the use of systems

consisting of multiple autonomous robots or unmanned aerial vehicles (UAVs) has

been proposed in order to meet the requirements of complex missions [1].  Control,

communication and decision support systems for UAVs constitute rapidly evolving

research and development fields, as indicated by the Department of Defense UAV

Roadmap 2002-2027 [2]. The use of groups of cooperating UAVs in order to perform

various missions is currently studied throughout the world and is considered a main

research goal by the United States Air Force Research Laboratory (AFRL) [3].

Using a cooperative group of UAVs for autonomously attaining a given goal requires

that each agent assume a certain task at a given time. The global result of the group of

UAVs acting together is the execution of a mission, e.g. search and attack,

comprising the tasks of search (look for a suspected target), identification (determine

that the suspected target is a legitimate target), track (update the target location) and

attack (launch munitions).

Assigning multiple UAVs to perform these tasks according to their capabilities is a

challenge that requires the development of specialized algorithms. These algorithms

may be classified into two main types: optimal and heuristic. While optimal

algorithms yield better results in terms of task assignment [11]-[13], they are usually

more sensitive to system uncertainties, enemy behavior, and environment changes.

Heuristic algorithms [14]-[19], on the other hand, are usually sub-optimal but more

robust. In this work, we develop a heuristic task assignment (TA) algorithm, which is

robust to changes in the UAV group properties.

An issue strongly related to cooperative UAV motion is flocking (also referred to as

formation flying), which has been extensively studied in the last two decades [20]-

[26], following the seminal work of Reynolds [9]. Reynolds simulated biological

flocking behavior based on cohesion (agents converge onto a given point), alignment
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(velocity matching in order to move at a give direction), collision avoidance

(preventing an agent from colliding with other agents), obstacle avoidance (steering

the agents away from obstacles) and migration (path following).  In this work, we

implement Reynolds' behavioral flocking model in order to avoid collisions and

improve mission execution by facilitating wide theater coverage.

In order to propagate the TA and flocking information, we develop a wireless ad-hoc

communication media wherein the communication between the UAVs is constantly

disrupted due to dynamic changes in the field (i.e., new UAVs join in or move out of

communication range). Thus, the proposed algorithm for coordinating the UAVs must

maintain its performances under the dynamic changes resulting from both the ad-hoc

communication and the changes due to the movements of the UAVs and targets.

We use the Metrical Routing Algorithm (MRA) [27] for ad-hoc communication. This

algorithm maintains communication by dynamically connecting the underling UAVs

with a minimal set of rooted spanning trees (RSTs).  The proposed algorithms for

coordinating the UAVs uses the RST structure as a black-box building block. Thus,

the dynamic communication details are masked out by the concomitant dynamics of

the underlying set of RSTs. We thus mainly focus on coordination and decision

support rather than on details related to the ad-hoc communication. The ad-hoc

communication level is only reflected in the experimental part, where we study its

effect on the performances of the UAVs.

Consequently, while most researchers assume a given system, propose a new control

algorithm, and examine the algorithm's performance compared to other known

algorithms, we take a novel approach and develop a hierarchical UAV decision  and

control system comprising all three layers: flocking, communication and task

assignment.  We subsequently consider a search and attack mission, where a group of

autonomous armed UAVs is dispatched onto a theater environment in order to detect

and attack time-critical targets. Targets are detected using a Ground Moving Target

Indicator (GMTI) and are attacked once within the field-of-view (FOV) of an electro-

optical (EO) payload. We evaluate the system’s performance by examining efficiency,

measured by the ratio between the number of killed targets and the number of

munitions launched by the group of UAVs at a given time.
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2. The Flocking Layer: Heuristic Relative UAV Control

This chapter discusses the heuristic control algorithm for UAV coordination based on

Reynolds’ flocking.

2.1  Preliminaries

Let us embark on our endeavor by first recalling a few basic concepts of graph theory,

to be used in the sequel. The most basic definition of a graph is a pair ( , )G V E=  of

sets such that the elements of E  are 2-element subsets of V. The elements of V are the

vertices, and the elements of E are the edges. The degree of a vertex v, ( )Gd v , is the

number of edges at v. If all vertices of G have the same degree, then G is regular. A

path is a non-empty graph ( , )P V E=  of the form

1 2 1 2 2 3 1{ , , , }, { , , , }N N NV v v v E v v v v v v−= =K K .

A bipartite graph, (or a bigraph), is a set of graph vertices decomposed into two

disjoint sets such that no two graph vertices within the same set are adjacent. A

directed graph (or digraph) is a pair ( , )V E  of disjoint sets of vertices and edges

together with two maps assigning to every edge ε  an initial vertex init( )ε  and  a

terminal vertex ter( )ε . The edge ε  is said to be directed from init( )ε  to ter( )ε .

Consequently, a path is always directed.

If 1, , NP v v= K  is an acyclic directed path with 1 1 1init( ) , ter( ) ,k k k k k kv v v v v v− − −= =  and

( ) 1G kd v = , then the graph P is called a path graph; the path graph is a tree, which is

an acyclic (directed) graph.  A rooted tree is a tree in which a special (labeled) node is

singled out. This node is called the root of the tree. A subtree is a tree 'G  whose

graph vertices and graph edges form subsets of the graph vertices and graph edges of

a given tree G. A spanning tree of a graph is a subset of 1n −  edges that form a tree.

A child is a node which is one graph edge further away from a given node, the father,

in a rooted tree. Finally, a leaf of an unrooted tree is a node v of vertex degree 1,

( )Gd v =1. Note that for a rooted tree, the root node is generally not considered a leaf

node, whereas all other nodes of degree 1 are.
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2.2  Reynolds’ Behavioral Algorithm

The flocking algorithm in use is an implementation of Reynolds' behavioral algorithm

[9]. Let kU G∈  denote some UAV constituting a node in the graph G . kU  calculates

its desired velocity as follows:

4
3

=1
= ,k k k k

d i i d
i

w ∈∑v v v ¡ (1)

where w is a constant scalar weight function, k is the UAV index and i is the

algorithm law index, defined by the following flocking rules:

1:i = Cohesion; commands the UAV to converge onto the center of the flock,

computed by each UAV from the data communicated to it by the other UAVs. We

denote the desired cohesion velocity for kU  by 1
kv , and by kx  the position vector of

kU . The cohesion velocity command may be therefore written as

( )
1 = ,

k k
avgk k

refR
−

⋅
x x

v v (2)

where g   denotes the Euclidian vector norm, refR  is a reference distance, usually

related to the maximum payload detection range, representing the effective area of the

UAV payload, and
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x (3)

 where 1
jkr  is the cohesion rule weight for kU  relative to jU , given by
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1 1= ( , , ).jk k jr r t x x (4)

In Eq. (3) and the subsequent equations, n  denotes the number of nodes of some

subtree 'G G∈ , and not necessarily the total number of UAVs, to be denoted by N.

Although 1
jkr  may be time dependant, it is more likely that it would be directly

dependant upon the relative position, increasing as the relative distance between the

UAVs decreases, or remain constant.

2 :i = Alignment; matches the UAV's velocity vector to the mean velocity vector of

the group. Alignment therefore attempts to steer the UAVs to fly in parallel to each

other. We denote the desired alignment velocity for kU  by 2
kv , and let 2

jkr  be the

alignment weight for kU  relative to jU , so that

2
=1

2

2
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= =

n
jk j
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jk

j

r

r

∑

∑
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v v (5)

 and

2 2= ( , , )jk k jr r t x x . (6)

Similarly to 1r , 2r  may be constant, time-dependant, or a function of the relative

distance between kU  and jU .

3 :i = Collision avoidance; restricts the UAV from colliding with its nearest

neighbors. To that end, kU  calculates its desired collision avoidance velocity, 3
kv ,

relative to the other UAVs according to the formula

3
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3

3
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= , ,

n
jk j k

ref
jk k

n
jk

j

r R
j k

r

⋅ −
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where 3
jkr  is the collision avoidance rule weight of kU  avoiding collision with jU ,

and jx  and kx  are the position vectors of jU  and kU , respectively. The weight

function 3
jkr  is likely to be dependant upon the relative distance between kU  and jU ,

equaling 1 for the closest neighbor to UAV k and 0 for all other UAVs.

The desired velocity (1) is translated into acceleration using the following kinematic

equation:

2
2

[( ) ]( ) = ( ) 1,
k k k

k kd
maxk k

d

t g n× ×
−

v v va
v v

(8)

where 3k ∈v ¡  and 3k
d ∈v ¡  are the current and desired velocity of kU , respectively,

and k
maxn  is the maximal load factor of kU . The term k k

d×v v  in Eq. (8) yields a vector

perpendicular to the plane defined by the velocity vectors kv  and k
dv . This

perpendicular vector is then vector multiplied again by kv  to define the direction,

perpendicular to kv , in which the UAV will accelerate in order to reach the desired

velocity k
dv . The quotient defines a unit vector in the desired maneuver direction, and

then multiplied by the UAV maximal load factor to give the maneuver magnitude.

This acceleration is integrated into velocity and position using the kinematic model:

[ ( ) ] = [ ( )] [ ( )]
[ ( ) ] = [ ( )] [ ( )]

k k k

k k k

t i t t i t i t
t i t t i t i t

+ ∆ + ∆

+ ∆ + ∆

v v a
x x v

(9)

Figure 1 depicts an example flocking scenario, implementing cohesion, alignment and

collision avoidance.
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Figure 2: 5-UAV flocking

2.3   UAV Sensors for Target Detection

Every UAV is equipped with two types of sensors. A Ground Moving Target

Indicator (GMTI) that detects vehicle movement and an Electro Optical (EO) sensor

used to track the target and guide the missiles. The detection radius of the GMTI is

larger than the detection radius of the EO sensor. Figure 3 depicts the field-of-view

(FOV) of two UAVs with a radio connection and illustrates the sensor detection

radius.

Figure 3: Field-of-view of the UAV sensors
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3. The Communication Layer: Metrical Routing Algorithm

In this section, we describe the metrical routing algorithm (MRA), used as an ad-hoc

communication protocol between the UAVs for communicating target list and

flocking information.

3.1   The MRA Protocol

The MRA protocol presented herein is a hybrid ad-hoc protocol in the sense that some

traffic control is used to maintain the mapping of the communicating nodes. The small

overhead of the MRA protocol used to maintain the mapping is a worthy investment,

as the MRA is capable of handling successfully a demanding traffic load under a high

node density and fast node movement. The MRA organizes the nodes in rooted trees

in order to find short session paths between nodes on the tree. The algorithm attempts

to minimize the number of trees by fusing separate adjacent trees into a single tree. As

long as any node in one tree is not in the transmission range of any node in the other

trees, the trees will function autonomously. As soon as a radio connection is created

between two nodes, the trees will be fused into a single tree.

All nodes run the same protocol implementing the MRA. As nodes emerge, disappear

and move in or out of range of other nodes, there is need to update the trees. A

primary goal of the algorithm is to identify these changes and adapt the tree structure

to the new state. In the following discussion, we shall present an elaborate description

of the MRA protocol, to be ultimately employed for a simulation study of the mobile

ad-hoc networks routing performance.

The MRA algorithm organizes the nodes in the field in rooted trees. Only nodes that

belong to the same tree can create sessions among themselves. To ensure maximal

connectivity, all nodes will try to organize themselves in a single tree. Every node in

the field has a unique node-ID (similar to a phone number or an IP address) and

virtual coordinates that may change depending on the changes in the tree structure.

Every tree is identified by a “tree name” which is the ID of the root node. Nodes
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periodically send beacons, termed hello messages. Every node that receives a beacon

checks whether the node that sent the beacon belongs to a different tree. If the nodes

belong to different trees, they initiate a fusion process that fuses the separate trees into

a single tree. The fusion protocol should satisfy the following properties:

1. The protocol should not cause active sessions to break;

2. Eventually (assuming no dynamic changes occur) all trees with nodes within

transmission range must fuse into a single tree;

3. When two trees are being fused, most updates should be made to the nodes of the

smaller tree (in terms of the number of nodes);

4. The protocol should maximize the number of nodes that migrate from one tree to

another in every step (yielding parallel fusion);

5. The protocol is fully distributed with no “central'' bottlenecks, namely it is defined

at the level of pairs of nodes.

Initially, every node forms a separate tree of size 1. Every node in the tree can

autonomously migrate to a neighboring tree regardless of the node position in the

tree. The migrating node gets new coordinates in its new tree according to the node’s

new position. Naturally, when a node migrates from one tree to a new tree, it may

carry along its neighboring nodes (since it belongs now to a bigger tree). In the macro

view, the migration of the single nodes looks like a fusion of smaller trees into larger

ones. Figure 4 presents two stages of the tree fusion process: The initial state and

final organization to trees (assuming no significant node movements occurred during

this process).  Note that the two separate trees in Figure 4B cannot fuse because there

are no two nodes within transmission range interconnecting the trees.

(A) (B)

Figure 4: Tree formation process through communication links



11

The fusion process of two trees is parallel, that is, at any given time step multiple

nodes of the smaller tree join the larger tree, as depicted by Figure 5. The

implementation of the flocking and TA algorithms is based on the tree structure.

Every tree runs these algorithms autonomously, as it cannot necessarily communicate

with other trees. Existence of such communication will initiate a merge process that

will ultimately result in a single tree.

1

2
3

1

2
3

Figure 5: Fusion of trees. Parallel interconnection of nodes takes place at every
given time step.

3.2   The Distributed Communication Topology

As mentioned above, the flocking algorithm controls the velocity and heading of the

UAVs. However, each UAV communicates with its closest neighbors only and is

unable to get a global view of the heading and velocity of the entire flock. The control

information including the flocking data propagates from node to node using the tree

management protocol.

The tree structure created by the MRA algorithm renders the root as the node that can

gather data from its subtrees, calculate global variables and distribute the global

variables back to its subtrees. We defined two data streams in the MRA protocol: up

stream, moving from the tree leaves or subtrees towards the root; and downstream,

moving data from the root towards the leaves.

The streams move stepwise from the father node to its children or vice-versa, as

shown in Figure 6. Every sub-tree root (node St in Figure 6) gets the following values

from its children (nodes St-1, St-2 … St-n in Figure 6): iW  – the weight of St-i, which

is the number of nodes forming sub-tree St-i; and xi – the average position vector of



12

sub-tree St-i.  In addition, let xs be the position vector of node St. The average position

vector that node St will send to its father is therefore given by

1

s i i
i

St
i

i

W

W

+
=

+

∑
∑

x x
x (10)

The iterative process terminates at the root node. The root calculates its own flocking

velocity, which is also the flocking velocity for the tree, and communicates it

downstream. If the root node is lost, then a new root will be declared. The new root

will then take over the tasks of the lost root. The up and down streams in our

simulator propagate the information in both directions in a nominal rate of 30Hz.

4. The Task Assignment Layer: Target List Management

The TA layer relies on the arrangement of the UAVs in trees and on the inter-

communication capabilities among the UAVs using ad-hoc routing. Every UAV is

autonomous, performing autonomous decisions and behaving according to the

changes in the theater. However, when a UAV becomes a node in a tree created by the

MRA, it upgrades its behavior and acts as a member of a group.

In this section we consider the problem of computing a targeting plan for a set of

moving agents 1 2{ , , , }NG U U U= K  (UAVs in our case) attacking moving targets

1 2{ , , , }mA T T T= K  (vehicles in our scenario). We focus on a distributed solution over a

special setting where the communication among 1 2, , , NU U UK  is carried out by an

St

St-1 St-2 St-n

St

St-1 St-2 St-n

Figure 6: Subtree layers
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ad-hoc network, as described in the previous section. Using ad-hoc communication

yields a complex and challenging setting wherein the following factors should be

considered:

• Ad-hoc communication implies that communication links among

1 2, , , NU U UK  are constantly changing. Thus, there is no guarantee that a given

subset of G that was previously connected will remain connected.

• At any stage new information regarding (a) new targets, (b) changes in the

location of known targets and (c) new iU 's that are closer to a given target can

pop-up.

• It is desired not to fix a targeting plan (i.e., assign targets to each iU ) in

advance, but rather adopt the reactive setting wherein at any time step only a

portion of the targets are assigned to some subset ' .G G∈

• Centralized algorithms where all the data (location of 1 2, , , NU U UK  and

1 2, , , mT T TK ) is collected and then processed may fail to obtain good solutions

due to disrupted communication and long communication delays.

The notion of an “optimal” solution in this setting is therefore ambiguous, as a few

feasible solutions may be contemplated. To illustrate this observation, let ijd  denote a

distance metric between some iU G∈  and jT A∈ .  Different bipartite graphs

resulting from minimization of distinct performance measures can be considered:

1. 1GA , resulting from minimizing the maximum distance between iU G∈  and

jT A∈ , assuming that all targets are attacked by the UAVs (each UAV is assigned to

a different target),
*

1 1 ,
: min max iji G j A

GA d d
∈ ∈

= (11)

2. 2GA , resulting from minimizing the sum of distances between iU G∈  and

jT A∈ , assuming again that all targets are attacked by the UAVs (each UAV is

assigned to a different target),

*
2 2

,

: ij
i G j A

GA d d
∈ ∈

= ∑ (12)
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In certain scenarios, one may choose to attack only a subset of all targets, 'A A∈ . In

this case Eqs. (11) and (12) should be modified into

*
1 1 , '
' : ' min max iji G j A

GA d d
∈ ∈

= (13)

and

*
2 2

, '

' : ' ij
i G j A

GA d d
∈ ∈

= ∑ , (14)

respectively.

Consider, for example, the bipartite graph of Figure 7, showing the distance metrics

between four UAVs ( 1 2 3 4, , ,U U U U ) and targets ( 1 2 3 4, , ,T T T T ). The optimal solution in

the sense of Eq. (11) is 1 1 2 2 1 3 3 4 4{ , , , }GA U T U T U T U T= → → → →  with

*
1 210, 29d d= = ; the optimal solution in the sense of Eq. (12) is

2 { , 1, , 4}i iGA U T i= → = K , with *
1 212, 27d d= = ; and the optimal solution in the

sense of Eq. (13) is 1 1 1 2 3 3 4' { , , }GA U T U T U T= → → → , with *
1 29, 16d d= = . In the

last case, targeting 2T  can be determined at the next stage/step where possibly there

will be new distance metrics to choose from.

Figure 7: A bipartite graph showing distances of UAVs and targets

We hereby suggest a novel TA algorithm, which is supported by the ad-hoc

communication protocol. In this algorithm, target assignments are communicated

among the UAVs using the MRA protocol described above. Unlike other ad-hoc
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routing algorithms, the MRA attempts to connect 1 2{ , , , }NG U U U= K  (or a subtree

thereof) by a minimal set of rooted trees that preserves geographical distances,

namely distances on the rooted trees are usually proportional to the distances of

1 2, , , NU U UK  in the given engagement theater.

More formally, let ( )G t  be the graph at time t wherein each two nodes ,i jU U  that

can communicate have an edge in ( )G t . The MRA algorithm attempts to cover ( )G t

by a minimal set of spanning trees. These rooted trees can be naturally used for both

distributed computing (of, e.g., the flocking layer) as well as for communication, in

addition to propagation and computation of the TA layer.

The proposed TA algorithm for iU G∈  using the MRA protocol can be thus

summarized as follows:

1. Each node iU  in a tree (or a subtree) locates all the detectable targets, identifies

them and computes its distance to each target. The target ID is the target location.

Note that computing a unique target ID is not always straightforward, since it may

require fusion of the target location taken by several UAVs in adjacent time steps

and locations.

2. At each time step ( )t i , a node v constructs a weighted bipartite graph [ ( )]vB t i

representing the distances between each iU  and jT  related to the subtree rooted at

v. There are three events that lead to the creation of a new bipartite graph

[ ( 1)]vB t i + :

• A new [ ( 1)]uB t i +   is received from one of v's children.

• A new [ ( 1)]FvB t i +  is received from v's father.

• There is a change in the target list L of v, i.e., v detects a new target or an

old target disappears or destroyed.

In each of these events, a new [ ( 1)]vB t i +  is computed by merging [ ( 1)]uB t i +

or [ ( 1)]FvB t i +  or L into [ ( 1)]vB t i + .
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3. The node v computes a minimum weighted matching [ ( 1)]vM t i +  of [ ( 1)]vB t i +

obtaining an attack plan that minimizes the sum of distances of the UAVs in the

subtree of v to their targets,

*

, [ ( 1)]v

ij
i j B t i

d d
∈ +

= ∑ (15)

4. [ ( 1)]vB t i +  is sent to the father vF  of v and [ ( 1)]vM t i +  is sent to all the children

of v.

5. When a node v receives an attack plan [ ( 1)]FvM t i +  from its father, it checks to

see if it is assigned a new target; if so, it "leaves" its current target and starts to

engage the recommended target.

6. The attack plan [ ( 1)]FvM t i +  is sent to all the children of the current node.

Note that in case a target is destroyed or disappears, it will be removed from each

( )vB t , since these are propagated only up the MRA trees.

The implementation of the target selection algorithm uses a single data structure to

transfer the bipartite graph ( )vB t  and the attack graph [ ( 1)]vM t i + . This data structure

is the Target List (TL).  A simplified TL model is depicted by Figure 8. This model

ignores the parallelism in the TL flow between the UAVs. It explains the decision-

making process and the decision overruling performed by higher levels of UAVs in

the tree with broader views.

Figure 8A presents the initial phase where 4U  and 5U  have detected target 1T , 6U

and 7U  have detected 2T , and 8U  detected 3T . Every UAV that has one or more

targets will autonomously select a target from the possible targets in its TL and will

commence a pursuit. The current state depicted in Figure 8A is that 4U  and 5U  are in

pursuit after 1T , 6U  and 7U  prosecute 2T  and 8U  will pursuit 3T . The pursuit process

of the UAVs is independent of other UAV activities. Note that this is the initial phase,

where the targets were detected by the GMTI detector but are not yet within the range
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of the UAV missiles launch distance (i.e. within the FOV of the EO payload). Every

UAV stores a TL comprising all targets known to the UAV and indications on the

target state. Every UAV then sends its TL to its father and children. 4U , 5U  and 6U ,

constituting leaves in the tree, send their TLs toward node 1, which is the subtree

father. The decision taken by 1U  arrives to 4U , which is also the UAV attacking 1T .

4U  continues its attack while 5U  receives the same TL from its father, and finds out

that it should abort its attack on 1T . 5U  will look for an alternative target without an

owner in the TL that is within its GMTI range, or will search for a new target that

might emerge.

Figure 8B presents a situation in which 1U  had analyzed the TLs and decided that

sub-tree D will be responsible to attack 1T , sub-tree E will not attack 1T  and sub-tree

F will attack 2T . The decisions of 1U  are sent to its father node 0 and its children. A

similar process takes place in the other parts of the tree.

In Figure 8C, the root distributes the results of its decisions to its children. The

decisions are embedded in its TL. The decision of 0U  is that subtree C will assume

the responsibility to attack 2T , while subtree A will abandon its attack. These

decisions will be distributed by every subtree towards its children until they reach the

leaves. In the meantime, 6U  and 7U  continue their pursuit after 2T .

Figure 8D presents a situation where the root decisions arrived to the attacking UAVs

and 6U  stopped its attack on 2T  while 7U  continues its attack. The upstream and

downstream flow of TLs is not affected by changes in the tree structure or by

appearance of new targets.
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Figure 8: Target List flow

In addition to the data describing the relations between UAVs and potential targets,

the TL is used to transfer data regarding missiles that are in the course of an

interception process. The distribution of this data is essential to minimize the

probability that a UAV launches its last missile towards a target and declares itself as

an empty UAV. A second UAV will interpret this situation as a “permission” to

launch again a missile to the same target. The exchange of data regarding flying

missiles will prevent the second UAV from launching a new missile to the same target

until it gets a message that the missile failed to hit the target.
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5. Simulation and Visualization

5.1 Theater Representation

Figure 9 presents a snapshot of the theater as created by the simulator. The UAVs are

identified by their position in the tree, where R is the root, R.1 is one of the children

of the root and R.1.1 is a child of R.1. Figure 9A presents the detection footprint of

R.1.1 while Figure 9B presents the detection footprint of R.1.

R.1.1 in Figure 9A detected two potential targets. One of the targets, marked by a

cross, was selected as the target to be attacked and this is the 1st priority target for this

UAV. R.1 in Figure 9B also detected two targets, where one of the targets is observed

by both UAVs. The target marked with a cross was selected as the target to be

attacked. Note that this UAV is attacking the farthest target and not the close one.

This decision was taken after analyzing the velocities and headings of the entities

participating in this pursuit or by a decision of the upper layer in the tree (node R).

Figure 10 presents the TL of R.1. This TL stores the list of all potential targets

observed by the UAVs forming the tree. The enemy list which is a part of the Target

List contains the current coordinates of every target. These coordinates are updated

regularly as the targets move. The rightmost column of the TL lists the UAVs that

observe the target selected from the enemy list. The target is now under pursuit by

R.1, which has the status true while R.1.1 has the status false. This target appears in

Figure 9B as the target marked by a cross.
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Figure 9: Theater view during engagement
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Figure 10: Target  List of UAV R.1

5. 2 Synchronization of Target Lists

A global theater view requires that the UAVs synchronize their TLs in a high rate.

The synchronization rate of the TLs in the following simulations is performed

nominally at 30 Hz. This synchronization rate ensures an effective TA process,

yielding the following merits:

1. Better utilization of the limited number of missiles. The missiles are a limited

resource and the TA algorithm prevents a simultaneous launch of two or more

missiles towards a single target. Figure 11 presents a typical case when the TL is

not synchronized. The TA algorithm does not have a global picture of the theater,

viz. every UAV autonomously handles its own tasks. As a result, two UAVs

simultaneously launch missiles at a single target.

2. Reducing the total interception time by a better task-sharing among UAVs. A

UAV can handle only a single interception at a given time. By eliminating the

multiple launching of missiles, the UAVs that are not engaged with an

interception can launch missiles towards other targets.
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Figure 11: Absence of TL synchronization induces launch of multiple missiles (dots)

at a single target (“packman” symbol, upper part) by two UAVs (triangles)

6. Experimental Results

The simulation experiments are aimed at evaluating the contribution of the flocking

and TA algorithms to the performance of the UAVs using MRA-based ad-hoc

communication.

6.1 Main Experiments and Simulation Models and Parameters

The main experiments comprise the following benchmarks:

1. Reference Monte-Carlo simulations performed without employing the flocking

and TA algorithms;

2. Monte-Carlo simulations used to evaluate the contribution of the flocking

algorithm and TA algorithm separately; and

3. Combined Monte-Carlo tests where both algorithms are employed simultaneously.

Each simulation run in Cases 1-3 has been performed assuming two different models

for the missile hit probability, hp . The first model assumes that hp  depends upon the
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initial missile-target range, as detailed by Table 1. The second model, used for

reference, assumes that 1hp =  within some operational initial missile-target range.

Initial missile-target

range [m]

0 - 200 201 - 500 501- 4000 4001 - 5000

Hit probability, hp 0 0.4 0.95 0.4

Table 1: Missile interception probability model

All simulations were performed using two time intervals - ft = 60 seconds and

ft = 120 seconds. The 60-second simulations differ significantly from the 120-second

simulations as the interception process in the first 60 seconds demands a very short

target interception time. The 120-second case enables to pursue targets that are

initially far from the UAVs and are not within the initial interception range.

Additional simulation parameters are listed in Table 2.

Theater dimensions 5Km x 5Km

UAV initial speed 100Km/h - 120Km/h (uniform distribution)

UAV radio transmission Range 1.7 Km

Target speed 50Km/h - 80Km/h (uniform distribution)

No. of targets 16

No. of UAVs 8-16

Missiles Fixed value of 16. In case of 8 UAVs, every UAV
carries 2 missiles. In case of 16 UAVs, every UAV
carries 1 missile. For all other cases, every UAV
carries randomly 1 or 2 missiles.

TL synchronization rate 30 Hz

Table 2: Main simulations parameters

The main performance evaluation measure is the efficiency,η , defined as the ratio

between the number of successful hits and the number of launched missiles for a

given UAV group size, and calculated as the ensemble average over 50 Monte-Carlo

runs. The mean efficiency, η , is defined as the average of η over all UAV group

sizes.

Table 3 summarizes the Monte-Carlo simulation batches used to evaluate the overall

performance of the system.
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Simulation
Batch

Flocking
Algorithm

Task Assignment
Algorithm

Hit
probability

Time
(seconds)

active active
active not active

not active active
Simulation
Batch 1

not active not active

1

active active
active not active

not active active
Simulation
Batch 2 not active not active

< 1

60

active active
active not active

not active active
Simulation
Batch 3 not active not active

1

active active
active not active

not active active
Simulation
Batch 4 not active not active

< 1

120

Table 3: Simulations batches

6. 2 Simulation Results

The results of the Monte-Carlo simulations are elaborated herein.

6.2.1 Simulation Batch 1

Figure 12 depicts the results for Simulation Batch 1. In this figure, as well as in Figs.

14-16, the x-axis is the UAV group size and the y-axis is the efficiency, η . Each point

on this graph and the following graphs represents an ensemble average of 50 Monte-

Carlo runs.
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Figure 12: Monte-Carlo simulation results for a ft = 60 sec and hp =1
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The results exhibit two distinct regions. The upper lines result from the simulations in

which TA is used with and without flocking. The lower lines are obtained without

incorporating the TA algorithm. Using the TA algorithm has a significant contribution

to efficiency, as η  increases from 0.86 without TA to 0.96 with TA. In addition, η

increases moderately with the number of UAVs when the TA algorithm is used. Note,

however, that ,η η <1  although in the current batch 1hp = . This stems from the

following reasons:

1. The existence of separate trees of UAVs that cannot merge into a single tree.

UAVs that belong to separate trees independently launch missiles at a single target.

Figure 13 illustrates a case where two UAVs, which are not within communication

distance and hence are unaware of each other, initiate multiple attacks on a single

target.

Figure 13: Multiple attacks on a single target (crossed) by multiple UAVs (triangles)

result in efficiency degradation

This situation is possible if the transmission range is smaller than twice the GMTI

sensor detection distance.

2. Communication breaks between UAVs that belong to one tree. These breaks can

lead to a situation wherein the TL is momentarily desynchronized. In this case,

multiple launches towards a single target are possible.

3. TL synchronization requires an adequate bandwidth for communicating the TLs

and the flocking information between the nodes in addition to the data needed to



26

handle the trees by the MRA protocol. The size of an average TL message is 850

bytes. In addition, a temporal burst of messages may cause some messages to be

lost due to queue limitations.

4. Initially, the UAVs and targets are distributed randomly in the theater. Some of the

targets initially fall inside the detection area of multiple UAVs. The UAVs respond

by launching missiles towards the detected targets. Due to the delay in building the

trees and synchronizing the TLs, multiple missiles are launched towards targets

that are detected by multiple UAVs. In order to mitigate this phenomenon we

added a concomitant time delay enabling initial TL synchronization after which the

UAVs are allowed to launch missiles.

6.2.2 Simulation Batch 2

Figure 14 presents the results for Simulation Batch 2, where hp  is a function of the

initial missile-target range (cf. Table 1).
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Figure 14: Monte-Carlo simulation results for a ft = 60 sec and hp <1

Calculation of the average efficiency for the four combination yields η =0.62 for

flocking and TA, η =0.60 for TA only, η =0.58 for no flocking and no TA, and

η =0.57 for flocking only. Thus, the case hp <1 is significantly different from the

ideal hit probability case. In particular (a) η  decreases when the number the number

of UAVs increases from 8 to 16; (b) The clear distinction between the different cases

deteriorates as the number of UAVs in the field grows; (c) The combination of the TA



27

algorithm and the flocking algorithm yields the best results; and (d) The use of the

flocking algorithm only gives the worst results.

6.2.3 Simulation Batch 3

Figure 15 presents the results for ft = 120 sec and hp =1.
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Figure 15: Monte-Carlo simulation results for a ft = 120 sec and hp =1

Simulation Batch 3 yields results similar to Simulation Batch 1. Again, the distinction

between the simulations that use the TA algorithm and simulations that do not use the

TA algorithm is clear. In contrast to the results of Simulation Batch 1, however, the

gap between the TA-based simulations and the non-TA simulations increases as the

number of UAVs increases from 8 to 16, so TA-based interceptions improve with

more UAVs and no-TA-based interceptions worsen as the number of UAV grows.

The combination of flocking and TA gives again the best results; however, the

incorporation of flocking into TA-driven UAVs yields only a miniscule improvement

in η .

6.2.4 Simulation Batch 4

Figure 16 presents the results for ft = 120 sec and 1hp <  (cf. Table 1 for the

probability model).
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Figure 16: Monte-Carlo simulation results for a ft = 120 sec and hp <1

Similarly to Simulation Batch 2, the incorporation of hp <1 dramatically changed the

results. Here, the use of both the flocking and TA algorithms clearly and distinctively

yields the best results with η =0.65. The use of TA only yields η =0.63, and the use

of flocking only or neither algorithms results yieldsη =0.61.

7. Conclusions

We developed a hierarchical algorithm for task assignment, coordination and

communication of multiple UAVs engaging multiple targets in an arbitrary theater,

and implemented an ad-hoc routing algorithm for synchronization of target lists and

ego-motion information based on distributed communication and computing theory.

Assuming limited communication bandwidth and limited communication range,

coordination of UAV motion was achieved by implementing a simple behavioral

flocking algorithm utilizing a tree topology for target list routing. This algorithm

achieved feasible theater coverage while preventing collisions and enabling

coordinated motion of multiple UAVs. The heuristic-reactive nature of the flocking

algorithm reduces computational complexity and is robust to initial uncertainties in

target location and theater characteristics. We conclude that it may be sufficient to

implement low-level flocking on distributed UAV systems, and doubt the need for

optimal relative position control and optimal coverage algorithms.
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The task assignment algorithm was developed based on a graph-theoretic approach. In

this algorithm, a node in a tree (or a subtree) locates all the detectable targets,

identifies them and computes its distance to each target. At each time step, a node

constructs a weighted bipartite graph representing the distances between each UAV

and target the subtree rooted at the node. The node then computes a minimum

weighted matching obtaining an attack plan that minimizes the sum of distances of the

UAVs in the subtree of a given node to the targets. Although the task algorithm is not

optimal, it was shown to be ideally suited for routing in ad-hoc networks with limited

communication range.

Our simulations experiments raise a number of important conclusions. First, we

conclude that the embedding of flocking and task assignment gives the best

performance, which is much improved relative to the performance obtained with

flocking only, and somewhat improved compared to the case of task assignment only.

Clear advantages of the task assignment algorithms have been shown to exist in cases

where the hit probability tends to one. An improvement of efficiency, representing the

ratio between killed targets and the number of missile launches, is obtained for larger

numbers of UAVs only if the engagement times are long enough, enabling utilization

of the better coverage achieved by more UAVs. This improvement is possible only if

the UAVs are capable of task collaboration and target list exchange. Otherwise,

increasing the number of UAVs will result in a worse performance.
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