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Abstract. We study a variant of the generalized assignment problem
(gap) which we label all-or-nothing gap (agap). We are given a set of
items, partitioned into n groups, and a set of m bins. Each item ` has size
s` > 0, and utility a`j ≥ 0 if packed in bin j. Each bin can accommodate
at most one item from each group, and the total size of the items in a bin
cannot exceed its capacity. A group of items is satisfied if all of its items
are packed. The goal is to find a feasible packing of a subset of the items
in the bins such that the total utility from satisfied groups is maximized.
We motivate the study of agap by pointing out a central application in
scheduling advertising campaigns.
Our main result is an O(1)-approximation algorithm for agap instances
arising in practice, where each group consists of at most m/2 items. Our
algorithm uses a novel reduction of agap to maximizing submodular
function subject to a matroid constraint. For agap instances with fixed
number of bins, we develop a randomized polynomial time approximation
scheme (PTAS), relying on a non-trivial LP relaxation of the problem.
We present a (3 + ε)-approximation as well as PTASs for other special
cases of agap, where the utility of any item does not depend on the bin
in which it is packed. Finally, we derive hardness results for the different
variants of agap studied in the paper.

1 Introduction

Personalization of advertisements (ads) allows commercial entities to aim their
ads at specific audiences, thus ensuring that each target audience receives its



specialized content in the desired format. Recent media research reports [14,
13] show that global spending on TV ads exceeded $323B in 2011, and an av-
erage viewer watched TV for 153 hours per month, with the average viewing
time consistently increasing. Based on these trends and on advances in cable
TV technology, personalized TV ads are expected to increase revenues for TV
media companies and for mobile operators [4, 7, 17]. The proliferation of alter-
native media screens, such as cell-phones and tablets, generate new venues for
personalized campaigns targeted to specific viewers, based on their interests,
affinity to the advertised content, and location. In fact, ads personalization is
already extensively used on the Internet, e.g., in Google AdWords [6]. Our study
is motivated by a central application in personalized ad campaigns scheduling,
introduced to us by SintecMedia [19].

An advertising campaign is a series of advertisement messages that share a
single idea and theme which make up an integrated marketing communication.
Given a large set of campaigns that can be potentially delivered to the media
audience, a service provider attempts to fully deliver a subset of campaigns that
maximizes the total revenue, while satisfying constraints on the placement of
ads that belong to the same campaign, as well as possible placement constraints
among conflicting campaigns. In particular, to increase the number of viewers ex-
posed to an ad campaign, one constraint is that each commercial break contains
no more than a single ad from this campaign.7 Also, each ad has a given length
(=size), which remains the same, regardless of the commercial break in which
it is placed. This generic assignment problem defines a family of all-or-nothing
variants of the generalized assignment problem (gap).

Let [k] denote {1, . . . , k} for an integer k. In all-or-nothing gap (or agap), we
are given a set of m bins, where bin j ∈ [m] has capacity cj , and a set of N items
partitioned into n groups G1, . . . , Gn. Each group i ∈ [n], consists of ki items,
for some ki ≥ 1, such that

∑
i ki = N . Each item ` ∈ [N ] has a size s` > 0 and

a non-negative utility a`j if packed in bin j ∈ [m]. An item can be packed in at
most one bin, and each bin can accommodate at most one item from each group.
Given a packing of a subset of items, we say that a group Gi is satisfied if all
items in Gi are packed. The goal is to pack a subset of items in the bins so that
the total utility of satisfied groups is maximized. Formally, we define a packing
to be a function p : [N ]→ [m] ∪ {⊥}. If p(`) = j ∈ [m] for ` ∈ [N ], we say that
item ` is packed in bin j. If p(`) = ⊥, we say that item ` is not packed. A packing
is admissible if

∑
`∈p−1(j) s` ≤ cj for all j ∈ [m], and |p−1(j) ∩ Gi| ≤ 1 for all

j ∈ [m] and i ∈ [n]. Given a packing p, let Sp =
{
i ∈ [n] | Gi ⊆ ∪j∈[m]{p−1(j)}

}
denote the set of groups satisfied by p. The goal in agap is to find an admissible
packing p that maximizes the utility:

∑
i∈Sp

∑
`∈Gi

a`p(`).
We note that agap is NP-hard already when the number of bins is fixed.

Such instances capture campaign scheduling in a given time interval (of a few
hours) during the day. We further consider the following special cases of agap,
which are of practical interest. In all-or-nothing group packing, each group Gi

7 Indeed, overexposure of ads belonging to the same campaign in one break may cause
lack of interest, thus harming the success of the campaign.



 

Multiple Knapsack Problem (MKP) 
(Singleton groups) 

PTAS [Chekuri-Khanna `06] 

All-or-Nothing Assignment (AAP) 
(Assume: all items in a group are identical) 

Strongly NP-hard, PTAS [This paper] 

All-or-Nothing Group Packing 
(General groups with group profits) 

(Assume: uniform bin capacities, group size ≤ #bins/2) 
(3+εεεε)-approx [This paper] 

Maximization GAP 
(Item sizes, profits depend on bins) 

e/(e-1)-ε approx [Feige-Vondrak `06] 

MKP with Assignment Restrictions 
(Some (item,bin) pairs incompatible) 

2-approx [Nutov et al. `06] 

AGAP with Assignment Restrictions 
(Some (item,bin) pairs incompatible) 

No O(1)-approx [This paper] 

All-or-Nothing GAP (AGAP) 
(Item profits depend on bins) 

(Assume: uniform bin capacities, group size ≤ #bins/2) 
APX-hard, 19-approx [This paper] 

Fig. 1: Summary of our approximation and hardness results and comparison
with related problems. An arrow from problem A to B indicates that A is a
special case of B.

has a profit Pi > 0 if all items are packed, and 0 otherwise. Thus, item utilities
do not depend on the bins. In the all-or-nothing assignment problem (aap), all
items in Gi have the same size, si > 0, and same utility ai ≥ 0, across all bins.

Note that the special case of agap where all groups consist of a single item
yields an instance of classic gap, where each item has the same size across the
bins. The special case of aap where all groups consist of a single item yields an
instance of the multiple knapsack problem. Clearly, agap is harder to solve than
these two problems. One reason is that, due to the all-or-nothing requirement,
we cannot eliminate large items of small utilities, since these items may be
essential for satisfying a set of most profitable groups. Moreover, even if the
satisfied groups are known a-priori, since items of the same group cannot be
placed in one bin, common techniques for classical packing, such as rounding
and enumeration, cannot be applied.

1.1 Our Results

Figure 1 summarizes our contributions for different variants of agap and their
relations to each other. Even relatively special instances of aap are NP-hard.
Furthermore, in the full paper [1], we show that with slight extensions, agap



becomes hard to approximate within any bounded ratio. Thus, we focus in this
paper on deriving approximation algorithms for agap and the above special
cases.

Given an algorithm A, let A(I), OPT (I) denote the utility of A and an
optimal solution for a problem instance I, respectively. For ρ ≥ 1, we say that

A is a ρ-approximation algorithm if, for any instance I, OPT (I)
A(I) ≤ ρ.

In [1] we show that agap with non-identical bins is hard to approximate
within any constant ratio, even if the utility of an item is identical across the
bins. Thus, in deriving our results for agap, we assume the bins are of uniform
capacities. Our main result (in Section 2) is a (19 + ε)-approximation algorithm
for agap instances arising in practice, where each group consists of at most m/2
items.

Interestingly, agap with a fixed number of bins admits a randomized PTAS
(see Section 3.1). In Section 3.2 we show that, for the special case where all
items have unit sizes, an e

e−1 -approximation can be obtained by reduction to
submodular maximization with knapsack constraint. In Section 3.3 we give a
(3 + ε)-approximation algorithm for All-or-Nothing Group Packing. This ratio
can be improved to (2+ε) if group sizes are relatively small. The details of these
results are omitted due to lack of space and are given in the full paper [1].

In [1] we also present PTASs for two subclasses of instances of aap. The first
is the subclass of instances with unit-sized items, the second is the subclass of
instances in which item sizes are drawn from a divisible sequence,8 and group
cardinalities can take the values k1, . . . , kr, for some constant r ≥ 1. Such in-
stances arise in our campaign scheduling application. Indeed, the most common
lengths for TV ads are 15, 30 and 60 seconds [21, 12]. Also, there are standard
sizes of 150, 300 and 600 pixels for web-banners on the Internet [20].

Finally, hardness results for the different all-or-nothing variants of gap stud-
ied are also given in [1].

Technical Contribution: Our approximation algorithm for agap (in Section
2) uses a novel reduction of agap to maximizing submodular function subject to
matroid constraint. At the heart of our reduction lies the fact that the sequence
of sizes of large groups can be discretized to yield a logarithmic number of size
categories. Thus, we can guarantee that the set of fractionally packed groups, in
the initial Maximization Phase of the algorithm, has a total size at most m. Our
reduction to submodular maximization encodes this knapsack constraint as a
matroid constraint, by considering feasible vectors (n1, . . . , nH), where nh gives
the number of groups taken from size category h, for 1 ≤ h ≤ H. These vectors
(which are implicitly enumerated in polynomial time) are used for defining the
matroid constraint.

Our definition of the submodular set function, f(S) (see Section 2), which
finds fractional packing of items, in fact guarantees that the rounding that we
use for group sizes (to integral powers of 1+ε, for some ε > 0), causes only small
harm to the approximation ratio. This allows also to define a non-standard poly-
nomial time implementation of an algorithm of [2], for maximizing a submodular

8 A sequence d1 < d2 < · · · < dz is a divisible if di−1 divides di for all 1 < i ≤ z.



function under matroid constraint. More precisely, while the universe for our sub-
modular function f is of exponential size, we show that f can be computed in
polynomial time.

Our randomized approximation scheme for agap instances with constant
number of bins (in Section 3.1) is based on a non-trivial LP relaxation of the
problem. While the resulting LP has polynomial size when the number of bins
is fixed, solving it in polynomial time for general instances (where the number
of variables is exponentially large) requires sophisticated use of separation ora-
cles, which is of independent interest. The fractional solution obtained for the
LP is rounded by using an approximation technique of [9, 8] for maximizing a
submodular function subject to fixed number of knapsack constraints.

1.2 Related Work

All-or-nothing gap generalizes several classical problems, including gap (with
same sizes across the bins), the multiple knapsack problem (mkp), multiple knap-
sack with assignment restrictions (mkar) [15], and the generalized multi assign-
ment problem. In this section we briefly summarize the state of the art for these
problems.

As mentioned above, the special case where all groups consist of a single
item yields an instance of gap, where each item takes a single size over all bins.
gap is known to be APX-hard already in this case, even if there are only two
possible item sizes, each item can take two possible profits, and all bin capacities
are identical [3]. The best approximation ratio obtained for gap is e

e−1 − ε [5].
In minimum gap (see, e.g., [10]), there are m machines and n jobs. Each

machine i is available for Ti time units, and each job has a processing time
(size), and a cost of being assigned to a machine. The goal is to schedule all
the jobs at minimum total cost, where each job needs to be assigned to a single
machine. The paper [18] gives an algorithm which minimizes the total cost, using
a schedule where each machine i completes within 2Ti time units, 1 ≤ i ≤ m.

The generalized multi-assignment problem extends minimum gap to include
multiple assignment constraints. Job processing times and the costs depend on
the machine to which they are assigned, the objective is to minimize the costs,
and all the jobs must be assigned. This problem was discussed in [16], where
Lagrangian dual-based branch-and-bound algorithms were used for obtaining an
exact solution for the problem.9

We are not aware of earlier work on agap or all-or-nothing variants of other
packing problems.

2 Approximation Algorithm for agap

In this section we consider general agap instances, where each item ` has a size
s` ∈ (0, 1] and arbitrary utilities across the bins. We assume throughout this
section that all bins are of the same (unit) capacity. Our approach is based on
a version of agap, called relaxed-agap, obtained by relaxing the constraint
that the total size of items packed in a bin must be at most 1, and by defining

9 The running time of this algorithm is not guaranteed to be polynomial.



the utility of a solution to relaxed-agap slightly differently. We prove that the
maximum utility of a solution to relaxed-agap upper bounds the objective
value of the optimal agap solution. Our algorithm proceeds in two phases.

Maximization Phase: The algorithm approximates the optimal utility of
relaxed-agap in polynomial time, by applying a novel reduction to submodular
function maximization under matroid constraints. Let S denote the subset of
groups assigned by this relaxed-agap solution.

Filling Phase: The algorithm next chooses a subset S′ ⊆ S whose utility is
at least a constant fraction of the utility of S. Then, the algorithm constructs a
feasible solution for agap that assigns the groups in S′ (not necessarily to the
same bins as the relaxed-agap solution) and achieves agap value that is at
least half of the utility of S′, thereby obtaining O(1)-approximation for agap.

2.1 Maximization Phase

relaxed-agap: The input for relaxed-agap is the same as that for agap.
A feasible relaxed-agap solution is a subset S of the groups whose total size
is no more than m (the total size of the bins) and a valid assignment p of the
items in groups in S to bins; a valid assignment is defined as one in which no
two items from the same group are assigned to the same bin. In relaxed-agap,
we do not have a constraint regarding the total size of the items assigned to a
single bin. Given a solution (S, p) and a bin j ∈ [m], let p−1(j) ⊆ [N ] be the set
of items assigned by p to bin j. The utility of a solution (S, p) is the sum of the
utility contributions of the bins. The utility contribution of a bin j ∈ [m] is the
maximum value from (fractionally) assigning items in p−1(j) to j satisfying its
unit capacity. In other words, we solve for bin j the fractional knapsack problem.
To define this more formally, we introduce some notation.

Definition 1. Given a subset I ⊆ [N ] of items and a bin j, define π(j, I) =

maxw

∑
`∈I w`a`j, where the maximum is taken over all weight vectors w ∈ <|I|+

that assign weights w` ∈ [0, 1] to ` ∈ I, satisfying
∑
`∈I w`s` ≤ 1.

The utility of a solution (S, p) is given by
∑
j∈[m] π(j, p−1(j)). The relaxed-

agap is to find a solution with maximum utility.
We can extend Definition 1 to multisets as follows.

Definition 2. A multiset I of [N ] can be viewed as a function I : [N ] → ZZ+

that maps each ` ∈ [N ] to a non-negative integer equal to the number of copies
of ` present in I. Define π(j, I) = maxw

∑
`∈[N ] w`a`j, where the maximum is

taken over all weight vectors w ∈ <N+ that assign weights w` ∈ [0, I(`)] to ` ∈ [N ]
satisfying

∑
`∈[N ] w`s` ≤ 1.

It is easy to determine w that maximizes the utility contribution of bin j. Order
the items in I as `1, . . . , `b in a non-increasing order of their ratio of utility to
size, i.e., a`1j/s`1 ≥ a`2j/s`2 ≥ · · · ≥ a`bj/s`b . Let d be the maximum index

such that s =
∑d
i=1 s`i ≤ 1. Set w1 = · · · = wd = 1. If s < 1 and d < b, set

wd+1 = (1− s)/s`d+1
. Set the other weights wd+2 = · · · = wb = 0.



Solving relaxed-agap near-optimally: Recall that a valid assignment of a
subset of items in [N ] to bins is one in which no two items from a group get
assigned to the same bin. Now define a universe U as follows:

U = {(G,L) | L is a valid assignment of all items in group G to bins [m]}

A subset S ⊆ U defines a multiset of groups that appear as the first component
of the pairs in S. Below, we use G(S) to denote the multiset of such groups.
For a subset S ⊆ U and a bin j ∈ [m], let Ij = ](G,L)∈SL−1(j) be the multiset
union of sets of items mapped to j over all elements (G,L) ∈ S. Note that Ij can
indeed be a multiset since S may contain two elements (G1, L1) and (G2, L2)
with G1 = G2. Now define f(S) =

∑
j∈[m] π(j, Ij). The following important but

simple claim is proved in [1].

Claim 1 The function f(S) is non-decreasing and submodular.

To identify subsets S ⊂ U that define feasible relaxed-agap solutions, we
need two constraints.
Constraint 1. The subset S does not contain two elements (G1, L1) and (G2, L2)
such that G1 = G2.
Constraint 2. The total size of the groups in G(S), counted with multiplicities,
is at most m, i.e.,

∑
(G,L)∈S

∑
`∈G s` ≤ m.

Constraint 1 is easy to handle since it is simply the independence constraint in
a partition matroid. Unfortunately, Constraint 2, which is essentially a knapsack
constraint, is not easy to handle over the exponential-sized universe U .

Handling Constraint 2 approximately in polynomial time: To this end,
we split the groups into a logarithmic number of classes. Fix ε > 0. Class 0
contains all groups G such that s(G) :=

∑
`∈G s` ≤ εm/n. For h ≥ 1, class

h contains all groups G with s(G) ∈ (εm/n · (1 + ε)h−1, εm/n · (1 + ε)h]. We
use Ch to denote class h. Since s(G) ≤ m for all groups G, there are only
H = O(1/ε · log(n/ε)) non-empty classes. We enforce an upper bound of m on
the total size of groups in G(S) by enforcing an upper bound on the total size of
groups in G(S) from each class separately. We call a vector (y1, . . . , yH) ∈ ZZH+
of non-negative integers legal if

∑H
h=1 yh ≤ H(1 + 1/ε). Note that the number of

legal vectors is O(
(
H(1+1/ε)

H

)
) = O(2H(1+1/ε)), which is polynomial in m and n.

Lemma 2. For any S ⊆ U satisfying Constraint 2, there exists a legal vector
(y1, . . . , yH) such that for all h ∈ [H], the number of groups in G(S), counted
with multiplicities, that are in Ch is at most ŷh := byhn/(H(1 + ε)h−1)c.

This lemma implies, in particular, that the optimum solution to agap satisfies
the above property as well. With this motivation, we define Uh = {(G,L) ∈ U |
G ∈ Ch} and define a new constraint as follows.
Constraint 2′ for a fixed legal vector (y1, . . . , yH). For each 1 ≤ h ≤ H, the
number of groups in G(S), counted with multiplicities, that are in Ch is at most
ŷh as defined in Lemma 2.



Lemma 3. Fix a legal vector (y1, . . . , yH). The collection of all S ⊆ U satis-
fying Constraint 1 and Constraint 2′ for this vector defines a laminar matroid
M(y1, . . . , yH) over U . Furthermore, any independent set S ⊆ U in this matroid
satisfies

∑
(G,L)∈S

∑
`∈G s` ≤ m((1 + ε)2 + ε).

Given a legal vector (y1, . . . , yH), consider the submod-matroid problem of
maximizing the non-decreasing submodular function f(S) over all independent
sets in the matroid M(y1, . . . , yH). Recall that Nemhauser et al. [11] proved that
a greedy algorithm that starts with an empty set and iteratively adds “most
profitable” element to it while maintaining independence, as long as possible, is
a 1/2-approximation. Each iteration can be implemented in polynomial time as
follows. Given a current solution S and a group G, the problem of finding the
assignment L that increases the utility f relative to S by the maximum amount
can be cast as a bipartite matching problem. To see this, create a bipartite graph
with elements in G as vertices on the left-hand-side and bins as vertices on the
right-hand-side. For ` ∈ G and a bin j, add an edge (`, j) with weight equal to the
amount by which contribution of bin j would increase if ` is added to bin j. This
quantity, in turn, can be computed by solving a fractional knapsack problem on
bin j. The maximum weight assignment corresponds to the maximum-weight
matching in this graph.

In the maximization phase, we enumerate over all (polynomially many) legal
vectors and compute a 1/2-approximate solution to the corresponding submod-
matroid problem. In the end, we pick the maximum valued solution over all
such solutions.

Improving the approximation to (e−1)/e: Instead of the greedy algorithm
of Nemhauser et al. [11], we can also use the e

e−1 -approximate Continuous Greedy
Algorithm of Calinescu et al. [2]. Some care is needed to show that this algorithm
can indeed to implemented in polynomial time in our setting. We omit the details
due to lack of space.

In summary, we find a set S∗ ⊆ U such that (1) each group appears at most
once inG(S∗), (2) the total size of the groups inG(S∗) is at mostm((1+ε)2+ε) ≤
m(1 + 4ε) (if ε ≤ 1), and (3) f(S∗) is at least 1/2 (or (e − 1)/e if we use the
algorithm of Calinescu et al. [2]) of the maximum value achieved by such sets.

2.2 Filling Phase

We show how to choose a subset of the groups in G(S∗) and a feasible assignment
of the items in these groups such that the utility of these assignments is a
constant fraction of f(S∗). In the description we use parameters u, v > 0, whose
value will be optimized later.

Lemma 4. Assume v ≥ 4, v(1 + 4ε) < u and kmax := maxi ki ≤ m/2. In
polynomial time, we can compute a subset of groups F ⊆ G(S∗) and a feasible
assignment of their items to the bins, forming a feasible solution to agap with
value at least f(S∗) ·min{1/u, 12 (1/v(1 + 4ε)− 1/u)}.

Recall that f(S∗) =
∑
j π(j, Ij), where Ij is a set of items mapped to bin

j over all (G,L) ∈ S∗. Since S∗ satisfies Constraint 1, we do not have two



elements (G,L1), (G,L2) ∈ S∗ for any G. We now subdivide the value f(S∗) into
the groups G ∈ G(S∗), naturally, as follows. Suppose that π(j, Ij) is achieved
by a weight-vector w(j). Fix any such optimum weight vector w∗(j) for each j.
These vectors, when combined, give a weight vector w∗ ∈ <N+ , assigning a unique
weight w∗` to each ` ∈ [N ]. We define the contribution of a group G ∈ G(S∗) to
f(S∗) as σ∗(G) =

∑
`∈G w

∗
`a`L(`) where (G,L) ∈ S∗.

Proof of Lemma 4. If there is a group G ∈ G(S∗) with σ∗(G) ≥ f(S∗)/u, we
output F = {G} with the best assignment of items in G to bins (computed using
maximum matching, as described in the previous section) as solution. Clearly,
the utility of this solution is at least f(S∗)/u.

Suppose that no such group exists. In this case we consider the groups G ∈
G(S∗) in non-increasing order of σ∗(G)/s(G). Choose the longest prefix in this
order whose total size is at most m/v. Let T ⊂ S∗ be the solution induced by
these groups. We first argue that T 6= ∅. Note that T can be empty only if the
first group G in the above order has size more than m/v. Thus σ∗(G)/(m/v) >
σ∗(G)/s(G) ≥ f∗(S)/(m(1 + 4ε)). The second inequality holds since the total
size of groups in G(S∗) is at most m(1 + 4ε) and the “density” σ∗(G)/s(G) of G
is at least the overall density of G(S), which in turn is at least f∗(S)/(m(1+4ε)).
This implies that σ∗(G) > f∗(S)/(v(1 + 4ε)) > f∗(S)/u, a contradiction.

The following three steps find a feasible solution to agap that consists of the
groups in G(T ) and whose value is at least f(T )/2.

1. Eliminate all zero weights: Let w ∈ <N+ be the weight vector that
determines the value f(T ). Note that the weight w` assigned to some of the
items ` in groups in G(T ) may be zero. We modify the assignment of items in
the solution T so that no item would have zero weight. Note that if an item `
assigned to bin j in solution S has w` = 0, the total size of the items assigned
to bin j in S is at least 1. It follows that there are at most bm/vc bins that may
contain items of zero weight, since the total size of all items assigned in T is no
more than m/v.

For each item with zero weight that belongs to a group Gi, there is at least
one bin j such that the total size of the items assigned to bin j is less than 1 and
no items from group Gi are assigned to bin j. This follows since |Gi|+ bm/vc ≤
m/2 + bm/vc < m. It follows that this item can be assigned to bin j and be
assigned non-zero weight. We can continue this process as long as there are items
with zero weight, thereby, eliminating all zero weights.

2. Evicting overflowed items: Suppose there are a (respectively, b) bins that
are assigned items of total size more than 1 (respectively, more than 1/2 and at
most 1). Call these bins ‘full’ (respectively, ‘half full’). Since the total volume of
packed items is at most m/v, we have a + b/2 ≤ m/v. Next, we remove some
items from these a full bins to make the assignment feasible. Consider such a
bin. We keep in this bin either all the items assigned to it that have weight equal
to 1, or the unique item that has weight strictly between 0 and 1, whichever
contributes more to f(T ). In this step, we lose at most half of the contribution
of the full bins to f(T ). We further evict all items assigned to the least profitable



b(m− a)/2c non-full bins. In this step, we lose at most half of the contribution
of the non-full bins to f(T ).

3. Repacking evicted items: We now repack all the evicted items to maintain
feasibility of the solution. We first repack evicted items of size at least half. Note
that are at most a such items from full bins, and at most b such items from
half full bins. These a+ b items can be packed into evicted b(m− a)/2c bins by
ensuring a+ b ≤ b(m− a)/2c, i.e., 3a+ 2b < m. This is indeed true since v ≥ 4
together with a+ b/2 ≤ m/v implies 4a+ 2b ≤ m.

We are now left only with items whose size is less than half to repack. For
each such item from group i, we find a bin that does not contain another item
from group i and whose total size is less than half, and insert the item to this
bin. Note that, since the size of the item is less than half, the solution remains
feasible. Since the total size of the items to be packed is at most m/v, there are
at most b2m/vc bins of size at least half. Thus, we are guaranteed to find such
a bin in case m− b2m/vc − ki ≥ 0, i.e., ki ≤ dm(1− 2/v)e.

We now bound f(T ). Since the contribution of any group to f(S∗) is no more
than f(S∗)/u, the contribution of the groups in T is at least f(S∗)·(1/v(1+4ε)−
1/u). Recall that the reduction in f(T ) due to the eviction of items is at most half
of f(T ). Thus the value of the final solution is at least f(S∗)· 12 (1/v(1+4ε)−1/u).
This completes the proof of the lemma.

Now, to bound the overall approximation ratio, we seek the values of u and v
satisfying 1/u = 1

2 (1/(v(1 + 4ε))− 1/u). Thus, we set u = 3v(1 + 4ε). For v = 4
and u = 12(1 + 4ε), we get a ratio of 1

12(1+3ε) . Since we lost a factor of 1/2 (or

(e−1)/e) in the maximization phase, we get an overall 24(1+4ε)-approximation
(or 12(1 + ε) e

e−1 -approximation).

This proves the following theorem.

Theorem 1. agap admits a polynomial-time 12(1 + ε) e
e−1 -approximation for

any 0 < ε < 1, provided any group has at most kmax ≤ m/2 items.

3 Approximating Special Cases of agap

In this section we consider several special cases of agap. We assume throughout
the discussion that the bins have uniform (unit) capacities.

3.1 Approximation Scheme for Constant Number of Bins

We formulate the following LP relaxation for agap. For every groupGi, we define
Pi to be the collection of admissible packings of elements of group Gi alone.
The relaxation has an indicator variable xi,p for every group Gi and admissible
assignment p ∈ Pi. Beside the constraints of agap, we further require the total
size of the elements in the fractional solution to be at most M ∈ [0,m]. Note
that this LP is a relaxation of agap only for M = m.



(AGAP-LP) max
∑
i∈[n]

∑
p∈Pi

(
xi,p ·

∑
`∈Gi

a`p(`)
)

s.t.
∑
p∈Pi

xi,p ≤ 1 ∀ i ∈ [n] (1)∑
i∈[n]

∑
p∈Pi|∃ `:p(`)=j xi,p · s` ≤ cj ∀ j ∈ [m] (2)∑

i∈[n]
∑
p∈Pi

(
xi,p ·

∑
`∈Gi

s`
)

≤M (3)

xi,p ≥ 0 ∀ i ∈ [n], p ∈ Pi

Constraint (1) requires every group to have at most one assignment. Con-
straint (2) guarantees that no bin is over-packed. Finally, constraint (3) enforces
that the total size of the packed elements does not exceed M .

Lemma 5. AGAP-LP can be solved in polynomial time.

The proof of Lemma 5 is based on finding a separation oracle for the dual
LP. We give the details in [1].

We present an approximation scheme for the case where the number of bins
is a constant. The algorithm uses AGAP-LP, which in this case is of polynomial
size and thus can be solved in polynomial time using standard techniques. The
rounding procedure we apply draws many ideas from the rounding procedure
suggested in [9, 8] for the problem of maximizing a submodular function subject
to a constant number of knapsack constraints. The idea of the rounding pro-
cedure is to guess the most valuable groups of the optimal solution and their
corresponding assignment in this solution. Note that this can be done efficiently
because the number of bins is constant. None of the remaining groups can be
valuable on their own, and therefore, we can safely dismiss all such groups con-
taining a large element. This allows us to show, via concentration bounds, that
a randomized rounding satisfies the capacity constraints of all bins with high
enough probability (recall that all remaining elements are small).

Theorem 2. There is a randomized polynomial time approximation scheme for
agap with fixed number of bins.

3.2 Approximation Algorithm for Unit Size Items

In the special case where all items have unit sizes, we give the best possible
approximation ratio.

Theorem 3. agap with unit item sizes admits an e
e−1 -approximation.

3.3 The All-or-Nothing Group Packing Problem

For agap instances where each group Gi has a utility Pi > 0 if all of its items
are packed, and 0 otherwise, we show that agap can be approximated within a
small constant ρ ∈ (2, 3 + ε], for some ε > 0. Specifically,

Theorem 4. There is a ( 2(γ+1)
γ + ε)-approximation for all-or-nothing group

packing, where γ = b m
kmax
c.
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