Non-Preemptive Buffer Management for Latency
Sensitive Packets

Moran Feldman
Technion
Haifa, Israel
Email: moranfe @cs.technion.ac.il

Abstract—The delivery of latency sensitive packets is a crucial
issue in real time applications of communication networks. Such
packets often have a firm deadline and a packet becomes useless
if it arrives after its deadline. The deadline, however, applies only
to the packet’s journey through the entire network; individual
routers along the packet’s route face a more flexible deadline.

We consider policies for admitting latency sensitive packets at
a router. Each packet is tagged with a value and a packet waiting
at a router loses value over time as its probability of arriving
at its destination decreases. The router is modeled as a non-
preemptive queue, and its objective is to maximize the total value
of the forwarded packets. When a router receives a packet, it must
either accept it (and possibly delay future packets), or reject it
immediately. The best policy depends on the set of values that a
packet can take. We consider three natural settings: unrestricted
model, real-valued model, where any value above 1 is allowed,
and an integral-valued model.

We obtain the following results. For the unrestricted model,
we prove that there is no constant competitive ratio algorithm.
The real valued model has a randomized 4-competitive algorithm
and a matching lower bound. We also give for the last model a
deterministic lower bound of ¢> ~ 4.236, almost matching the
previously known 4.24-competitive algorithm. For the integral-
valued model, we show a deterministic 4-competitive algorithm,
and prove that this is tight even for randomized algorithms.

I. INTRODUCTION

A router in a communication network receives, buffers and
transmits packets. Given that the router has only bounded out-
put capacity, the router has to decide which packets to transmit
now and which packets to keep buffered, hoping to transmit
them later. Commonly studied router policies usually assume
that either packets are indifferent to delays, or each packet
has a firm deadline such that the packet must be forwarded
before the deadline (or else it is deemed worthless). The first
option corresponds to data packets, whereas the second option
corresponds to real-time applications, e.g., movie streaming.

In both settings the problem faced by a router can be modeled
as an online problem in which each packet is associated with
a value, and the router wants to maximize the total value of
transmitted packets, subject to restrictions imposed by the ar-
chitecture of the router and the requirements of the application.
Different router architectures and network applications give rise
to various issues, many of which have been extensively studied
in the literature (see Section I-C for a few examples).

The assumption of a firm deadline for packets of real-time
applications is justified from the network’s perspective. The
network gets credit only for packets arriving at the destination

Joseph (Seffi) Naor
Technion
Haifa, Israel
Email: naor@cs.technion.ac.il

on time. However, since a packet goes through many routers
on its way, an individual router’s perspective is quite different.
The objective of a router is to maximize throughput, but without
inducing significant delay on any of the forwarded packets. This
observation has led Fiat et. al. [1] to define an online model
where for each forwarded packet, the router gets a revenue
equal to the value of the packet minus the delay that the packet
incurs while waiting in the router. An online algorithm for this
model faces a trade-off between buffering too many packets,
which imposes a large delay and negligible revenue from each
packet, and buffering too few packets.

We use competitive analysis as a performance measure for
our online algorithms. The advantage of competitive analysis
is that no assumption is made on how the input is generated.
Instead, the performance of an online algorithm is compared
against an optimal algorithm that knows the input ahead of
time. Formally, let ALG be an online deterministic algorithm,
and let OPT be the optimal off-line algorithm. Given an input
sequence o, we denote by ALG(c) and OPT (o) the value
of the solutions that ALG and OPT output given o. The
competitive ratio of ALG is defined as sup,, O}LDTng. If ALG
is a randomized algorithm then the competitive ratio is

E,[OPT(0)
P TALG(o)

where expectation is over the random choices r of ALG. This
definition corresponds to an oblivious adversary'. Notice that
for a maximization problem the competitive ratio is at least 1,
as no algorithm can be better than O PT.

A. The Model

We consider a router model with a single non-preemptive
FIFO buffer and continuous time. At time 0, the queue is empty.
Packets arrive at the router at non-integral times. Each packet
is either accepted to the buffer or rejected. At any integral time,
the packet at the buffer head is dequeued and transmitted, unless
the queue is empty at that time. As the queue is non-preemptive,
packets may not leave the queue in any other way. For packet
d, define a(d) to be its arrival time and w(d) to be its value.

In the HETEROGENOUS DELAY SENSITIVE PACKETS prob—
lem (HDSP), each packet d has a revenue depending on its
transmission time. If d is never transmitted (i.e., it is rejected),

! An oblivious adversary is familiar with ALG, but does not know in advance
the results of the actual coin tosses of ALG.

then its revenue is 0. Otherwise, its revenue is equal to w(d)
minus the delay it suffers (i.e., the number of integral times d
spends in the queue without being transmitted). The objective
is to decide which packets to accept in order to maximize the
sum of revenues of all packets.

In the online setting, each time a packet arrives, the online
algorithm has to make an irrevocable decision whether to accept
the packet to the queue or reject it. The decision is made with
no knowledge about future packet arrivals.

It turns out that the competitive ratio achievable for HDSP
highly depends on the set of possible values that packets take.
We consider three natural models:

Unrestricted model: packets have positive real values.
Real-valued model: packets have real values > 1.
Integral-valued model: packets have integer values > 0.
Notice that the lower bound of 1 on the value of packets in the
real-valued model is not an arbitrary choice. This lower bound
comes up naturally, since for each unit of time that a packet is
delayed, its value goes down by 1.

B. Results

‘We first consider the unrestricted model and show that, unfor-
tunately, even a randomized algorithm cannot have a constant
competitive ratio for this model. This improves upon the lower
bound of 3 proved by [1] for the integral-valued model, which
is currently the best lower bound for the unrestricted model.

We then give, for the real-valued model, a 4-competitive
randomized algorithm and a matching lower bound. The best
previous algorithm for this model was a deterministic 4.9-
competitive algorithm given by [1] with only numerical proof
for its competitive ratio. Extra computation time allowed [2]
to fine tune the algorithm and improve its ratio to 4.24. We
also give an analytical proof of a deterministic lower bound of
¢3 ~ 4.236 (where ¢ = (v/5+1)/2 = 1.618 is the golden ratio)
for the same model. This bound improves upon a deterministic
lower bound of 3, and a lower bound of 4.1 for deterministic
memory-less algorithms which was only proved numerically
[1] and later improved to 4.23 by [2] using more computation
time. Our result strengthens [1]’s conjecture that the “right”
deterministic competitive ratio, for this model, is q53.

For the integral-valued model, we give a deterministic 4-
competitive algorithm and a matching randomized lower bound.
The previously known results for this model were deterministic
lower bound of 3 [1] and upper bound of 4.24 [2].

Our positive results are achieved using the following tech-
nique. First, the set of possible inputs is reduced by showing
a reduction from the general case to a more specialized set of
inputs. Then, an algorithm is given for this set of inputs. The
algorithms we present are combinatorial, yet are analyzed via
a linear program using the dual-fitting technique.

Table I gives a short summary of known results and our
improvements. Besides the three models that we consider, there
is another natural model where all packets have equal value
of R. For this model [1] gave a deterministic ¢-competitive
algorithm, and showed that this is the best possible for large
values of R, even for randomized algorithms.

C. Related Work

There is a vast set of buffering models, capturing many
different kinds of router architectures. We survey here only a
few representative results. The model in which the algorithm is,
perhaps, least restricted is the “bounded delay” problem, where
the router buffers all packets that it receives, and it simply has
to choose which packet to transmit at each time slot. Each
packet has a deadline, and it must be deleted from the router’s
buffer if not transmitted before the deadline. The objective is
to maximize the total value of transmitted packets.

The best known competitive ratios for the “bounded delay”
problem are deterministic 1.828 and randomized e/(e — 1) =
1.582 (see [3], [4]). On the negative side, the known lower
bounds for this problem are ¢ =~ 1.618 for deterministic
algorithms and 5/4 for randomized algorithms [5], [6]. See
[31, [71, [8] for further results on variants of this problem.

The “preemptive FIFO” problem is a more restrictive prob-
lem, in which the buffer is of limited size B and is managed
as a FIFO buffer, i.e., packets can only be transmitted in the
order in which they arrive. The most general variant of this
problem has deterministic lower and upper bounds of 1.419
and v/3 ~ 1.732 [9]. If the packets are restricted to two values
1 and «, then the deterministic lower and upper bounds improve
to 1.281 and 1.303 [9].

The most restrictive problem often considered is the “non-
preemptive FIFO” model. In this model the setting is like in
the previous problem, but the algorithm is only allowed to
reject a packet when it arrives, not later. This restriction has
no implications on OPT, hence, the competitive ratios for
variants of this problem are much worse in comparison to their
counterparts for the previous problem. For example, if the the
input packets have only the values 1 and «, then there is only
a 2 — 1/« competitive algorithm, and this is tight for both
deterministic and randomized algorithms [5]. Notice that HDSP
can be viewed as a variant of “non-preemptive FIFO”.

The rest of this paper is organized as follows. Section II gives
an impossibility result for the unrestricted model. Sections III
and IV give the positive results: a 4-competitive deterministic
algorithm for the integral-valued model and a 4-competitive
randomized algorithm for the real-valued model. Sections V
and VI give the remaining lower bounds: a lower bound of
¢> for deterministic algorithms in the real-valued model and a
lower bound of 4 for randomized algorithms in both the real-
valued and the integral-valued models. Due to space limitations,
some of the proofs are sketched or omitted.

II. THE UNRESTRICTED MODEL

The unrestricted model is our most general model. We show
that no constant competitive ratio randomized algorithm exists
for this model even against an oblivious adversary.

Let ALG be any randomized algorithm for HDSP, and let
c > 1 be any constant. The following is an oblivious adversary
against which ALG is not c-competitive. The adversary gives
ALG a series of increasing value packets; the last one of which
has value of 1. ALG must accept each one of these packets with

TABLE 1

SUMMARY OF KNOWN AND NEW RESULTS. ALL KNOWN RESULTS IN THE TABLE ARE INFERRED FROM [1] AND [2].

Unrestricted Model Real Valued Model Integral-Valued Model
Known Result | New Result Known Result New Result Known Result New Result
Deterministic Lower Bound 3 0o 3 @3 ~ 4.236 3 4
Deterministic Upper Bound - - 4.24 - 4.24 4
Randomized Lower Bound ¢~ 1.618 00 ¢ ~ 1.618 4 ¢~ 1.618 4
Randomized Upper Bound - - 4.24 4 4.24 4

some positive probability in order to be competitive. However,
no packet in the series increases the expected value of ALG by
much because ALG already accepted the previous packets of
the series with a positive probability. O PT’, on the other hand,
has the privilege of accepting only the last packet in the series
and obtaining its entire value.
1. For i = 1 to 2¢ do:
2. Give ALG a packet of value (1/2¢)?¢+1~%
3. If the probability that ALG accepted any packet, so
far, is less than i/2¢, stop.
4. Give ALG a packet of value 1.
Remark: All packets arrive at non-integral times before the
first integral time, i.e., before any of them can be transmitted.
The following lemma shows that in order to be c-competitive
ALG must pass the test in line 3 at each iteration, i.e., it cannot
delay the acceptance of the first packet by too much.
Lemma 2.1: If ALG is c-competitive, then the adversary
does not terminate before reaching line 4.
Theorem 2.2: ALG is not c-competitive.
Remark: Theorem 2.2 holds only for constant values of ¢
because the number of packets given to the algorithm depends
on c. For deterministic algorithms, only 2 packets are needed
to prove an unbounded competitive ratio for any algorithm.

III. A 4-COMPETITIVE ALGORITHM FOR THE
INTEGRAL-VALUED MODEL

In this section we present a 4-competitive deterministic
algorithm for the integral valued model. Section VI shows that
this is the best possible bound, even for randomized algorithms.

A. Reduction

An input sequence is called simple if all packets arrive before
the first integral time, i.e., before any packet can be transmitted.
Reduction 3.1: If there is a deterministic [R-competitive al-
gorithm A on simple input sequences, then there exists a de-
terministic R-competitive algorithm B on all input sequences.
Proof Sketch: We first describe B and then sketch the
analysis of its competitive ratio. Algorithm B uses a counter ¢
(initially 0), and it uses algorithm A as a subroutine. When B
receives a packet d, it feeds d to A and accepts d if and only
if A accepts it. However, B makes some changes to d before
feeding it to A. First, a(d) is changed to be < 1; this way A
“sees” a simple input sequence. Second, w(d) is increased by
c. In each integral time, if B transmits a packet, then it also
increases ¢ by 1. If B does not transmit a packet, then it sets
¢ to 0 and resets A.
Consider any input sequence o, and let S(o) denote the
set of input sequences that A has received from B between

consecutive resets. By definition of A, for every o' € S(o),
R-A(c") > OPT (o).

On every o’ € S(o), B’s queue is shorter than A’s queue,
and it can be shown that it is enough to counter the additional
value A’s packets have. Therefore, B gets at least the same
revenue as all the simulations of A together. The last thing left
to show is that OPT can gain from S(o) at least as much
as from o. One can show that OPT can gain that much if it
decides to accept from each ¢’ € S(o) the same packets it
would have accepted from the corresponding sub-section of o,
had o been the input sequence.]

B. The Algorithm for Simple Input Sequences

Consider the following deterministic algorithm Nearly Dou-
bling Threshold (NDT) (inspired by the 5.25-competitive DT
algorithm of [1]): Accept a packet d if and only if w(d) >
2Q + 1, where Q is the number of packets in the buffer.

We analyze the competitive ratio of NDT on simple input
sequences. For the sake of analysis, we use an LP formulation
of the off-line version of HDSP (see LP1 in Figure 1). Variable
y(d,t) is an indicator to the event that packet d is transmitted
in integral time ¢.

The coefficient of each variable y(d,t) in the objective
function is its value (w(d)) minus the number of integral times
it spent in the buffer, if transmitted at time ¢. The packet
constraints force a packet to be transmitted at most once.
The time constraints prevent more than one packet from being
transmitted at the same time. Notice that no constraint enforces
FIFO transmission, however, such a constraint is not needed
since opt is oblivious to the FIFO requirement.

The dual is LP2 (see Figure 1). Notice that every feasible
solution for LP2 is an upper bound on the optimal solution
for LP1, and therefore, also on opt. Thus, if A is an online
algorithm for HDSP, and for any simple input sequence o there
is a feasible solution for LP2 of cost a - A(o), then A is a-
competitive on simple input sequences. We now show how to
construct a solution for LP2 of cost 4 - NDT (o) for any input
sequence o, proving that NDT is 4-competitive for any simple
input sequence. We abuse notation, and given an input sequence
o, we denote by LP2(0) the constraints of LP2 when the input
sequence is o.

Reduction 3.2: Let Q4 denote the number of packets in the
buffer before packet d in o is received. We can assume that if
d is accepted by NDT then its value is exactly 2Q4 + 1.

Proof Sketch: Decreasing the value of d from a larger
value to 2Q); + 1 does not change the set of packets NDT
accepts. Therefore, it effects NDT at least as much as OPT,
and can only increase the competitive ratio.]

Fig. 1.

LP formulation of the off-line version of HDSP (LP1) and its dual (LP2)

(LP1) max Zd Et\a(d)<t<w(d)+a(d) (w(d) = [t —a(d)]) -y(d, 1)

tla(d)<t<w(d)+a(d) y(d7 t)

y(d,t)

<1 Vd

d|a(d)<t<w(d)+a(d) y(d,t) <1 Vit
>0 Vd,a(d) <t < w(d) + a(d)

(packet constraint)
(time constaint)

(LP2) min >, x¢+ >, 24
Ty + 24

Tty 2d Z 0

> w(d) — [t — a(d)]

Vd,w(d) + a(d) >t > a(d)
Vd,t

Lemma 3.3: Let)y be the number of packets accepted by ~A. The Reduction

NDT (o), then NDT(0) = Qf(Qs +1)/2.

Proof: Since we are only dealing with a simple input
sequences, when the i*" packet accepted by NDT is received
there are ¢ — 1 packets in the buffer. By Reduction 3.2, the value
of the i*" packet is 2(i — 1) + 1. Therefore, the revenue NDT
gets from the i*" packet is 2(i —1) +1— (i — 1) = 4.]

Consider the following dual solution for LP2(o). Variables
of type z4 are assigned value of 0, and variables of type x; are
assigned value of max{2Q —t,0}.

Lemma 3.4: The above dual solution is feasible and costs
Qr(2Q; —1).

Proof: Consider a constraint of the dual LP: x; + z4 >
w(d) — |t — a(d)]. Since o is a simple input sequence |t —
a(d)| =t—1, so it is enough to show that z; > w(d) — ¢t + 1.
By Reduction 3.2, w(d) < 2Qq — 1 < 2Q; — 1, and therefore,
the last inequality holds due to the value assigned to z;.

Note that only variables 1, x2,...,Z2g—1 get a non-zero
assignment. The coefficients of all these variables in the ob-
jective function is 1, hence, the cost of the dual solution is

2T 0Qy -t = 2UBUEY — Q,2Q5 - 1), L

Corollary 3.5: NDT is a 4-competitive algorithm.

Proof: The ratio between the cost of the above dual
solution and NDT (o) is:

Qr2Qr—-1) _, 2Q;+2-3 6

Q02 Tt gt

IV. A 4-COMPETITIVE RANDOMIZED ALGORITHM FOR THE
REAL-VALUED MODEL

Fiat et. al. [1] prove that randomization does not help
when all packets have equal values. Section IIl shows that
the same holds for the integral-valued model. Surprisingly, the
real valued model is different. We show here a 4-competitive
randomized algorithm for the real-valued model, bypassing
the deterministic lower bound given in Section V. However,
Section VI shows that this is the most randomization can do.

This section is structured similarly to Section III. First, a
reduction to simple input sequences is presented, and then an
algorithm for these sequences is given. Unlike Section III, the
reduction here assumes the algorithm has a given property, and
therefore, it is not a “real” reduction.

Consider a randomized algorithm for simple input sequences,
and let () be a random variable of the number of packets in the
buffer of this algorithm at some point of time. The algorithm
is called good if for every integer k > 0, Pr[Q = k] > 0 =
Pr[@ > k + 1] = 0. In other words, the algorithm is good if
given the input sequence, there is a number (), such that the
algorithm currently has in its queue either) or Q) + 1 packets,
regardless of its actual coins tosses.

Reduction 4.1: If there is a good randomized R-competitive
algorithm A for simple input sequences, then there exists a
randomized R-competitive algorithm B for all input sequences.
The proof is similar to the one of Reduction 3.1.

B. An Algorithm for Simple Input Sequences

In a sense, Reduction 4.1 requires an algorithm for simple
input sequences with a very limited randomness. On the other
hand, some randomness is required because of the lower
bound for deterministic algorithms proved in Section V. The
compromise between these requirements is an algorithm called
Randomized Nearly Doubling Threshold (RNDT). We show
RNDT is 4-competitive for simple input sequences. Together
with Reduction 4.1, this implies a 4-competitive randomized
algorithm for general input sequences.

RNDT uses a counter C' and a variable p¢ initialized to 0
and 1, respectivly. Let) be a random variable of the number of
packets already accepted by RNDT into the buffer. Consider a
packet d which RNDT receives. A probability pg is associated
with d using the following rule. If d is the first packet, p; =
1/2. Otherwise, pq is defined as follows:

0 w(d) —2E(Q) < 0.5
w(d)/2 —0.25 - E(Q) 0.5 <w(d)—2E(q) <2.5
1 w(d) — 2E(Q) > 2.5

Precisely one of the two cases below is applicable to RNDT:

e Case 1: pg < pc - If Q = C, accept the packet d with
probability p;/pc and update pc — pc — pa.

e Case 2: pg > po - If Q = C, accept the packet d, other-
wise, accept the packet d with probability (ps —pc)/(1—
pc). Then update C' «— C' + 1 and po = 1 4 po — pq.

Lemma 4.2: RNDT maintains the invariant: Q = C with

probability pc, and (Q = C'+ 1 with probability 1 — pc. Notice
that this implies that the algorithm never divides by zero.

Corollary 4.3: RNDT is a good algorithm.

Pd =

The analysis of RNDT goes along the same lines as the
analysis of NDT in Section III, i.e., we consider a simple input
sequence o and show that LP2(c) has a solution of cost 4 -
E[RNDT(0)]. Let us denote by E; the final value of E(Q)
after all packets are received by RNDT.

Reduction 4.4: We can assume that no packet has value
larger than 2E, + 0.5.

Lemma 4.5: The expected revenue of RNDT is at least
E74+Ef+1/4 .
————— unless no packet was received.

Consider the following dual solution for LP2(o). Variables of
type zq are assigned value of 0, and variables of type x; are
assigned value of max{2E; + 1.5 —t,0}.

Lemma 4.6: The above dual solution is feasible, and its cost
is 2E7 4+ 2E; +1/2.

Corollary 4.7: RNDT is a 4-competitive algorithm for sim-
ple input sequences.

V. LOWER BOUND FOR DETERMINISTIC ALGORITHMS IN
THE REAL VALUED MODEL

The best known lower bound for deterministic algorithms
in the real valued model is 3 [1]. In this section we show an
improved lower bound of ¢* ~ 4.236. This lower bound is
based on the technique of a lower bound of 4.1 proved by
[1] for memory-less deterministic algorithms. Given 3 > 1,
consider the following series. bg o is 1, and for every £ > 1:
bo = min { € RY| X172 = §) = 8- 2520 (o —).

It is proved in [1] that if there is k such that bg) < k, then
no memoryless deterministic algorithm can be better than /-
competitive in the real valued model. We prove that this result
also extends to non-memoryless algorithms.

Let A be any deterministic online algorithm for HDSP in
the real valued model. Consider the following adversary:

1. For k = 0 to oo do:

2. Give packets of value bg ; to A till A accepts one of
them, or till |bs ;] + 1 packet have been given.
3. If A accepted no packets in the previous step, stop.

The idea is that if A is better than 3 competitive, then it must
accept a packet in every iteration (otherwise, by the definition
of bg i, OPT can accept only the |by | + 1 packets of value by
and be at least 5 times better than A). However, if £ < bg
then the revenue A gets from the packet it accepts on the k"
iteration is negative (bg — k), so it cannot help A anyway.

Theorem 5.1: If there is k > 0 such that bg; < k, then no
deterministic algorithm is better than F-competitive in the real
valued model.

Theorem 5.2: For any 3 < ¢? there is k such that bg), < k,
hence, no deterministic algorithm is better than ¢3-competitive
in the real valued model.

VI. LOWER BOUND FOR RANDOMIZED ALGORITHMS IN
THE INTEGRAL VALUED MODEL

The best known randomized lower bound (of ¢) was given
by [1] for a model where all packets have equal values. In
this section, we show that under the integral valued model,
no randomized algorithm has a competitive ratio better than

4 against an oblivious adversary. Notice that the real valued
model generalizes the integral valued model, and therefore,
inherits this bound. In this section, we consider some random-
ized algorithm A and 8 < 4, and show that A cannot be (-
competitive against the following adversary:
1. For k =1 to oo
2. Give k packets of value k to A
3. If the total expected revenue of A < k(k +1)/(25), stop
The idea behind the adversary is that A must accept enough
packets to make its expected revenue > k(k + 1)/(20),
otherwise, it is not J-competitive because OPT can collect
only the k& packets of value k. However, over time, A has to
add more and more packets to its buffer to keep up with this
goal. The old packets in A’s buffer diminish the effect of new
packets, and eventually A fails to keep up with the above goal.
Due to space limitations, we omit the proof that indeed no
A is B-competitive against this adversary.

VII. CONCLUSIONS

We considered three variants of the HDSP problem corre-
sponding to three possible sets of allowed packet values. For
the unrestricted model we showed that there is no constant
competitive ratio algorithm. For the integral-valued model we
gave a 4-competitive deterministic algorithm and showed that
this is best possible even for randomized algorithms. For
the real-valued model we gave a 4-competitive randomized
algorithm and a matching lower bound. However, there is still a
small gap in this model in terms of deterministic algorithms. We
gave a lower bound of ¢* ~ 4.236 while the best upper bound
known is 4.24. Closing this gap is an obvious open problem.

One can consider a general model in which all values larger
than ¢ are allowed, for some ¢ > 0. Notice that this model
generalizes both the real-valued and the unrestricted models,
hence, the competitive ratio of this model must depend on c. It
may be interesting to find the exact connection between ¢ and
the competitive ratio.

REFERENCES

[1] A. Fiat, Y. Mansour, and U. Nadav, “Competitive queue management for
latency sensitive packets,” in SODA, 2008, pp. 228-237.

, “Competitive queue management for latency sensitive packets,”
PEGG, 2007.

[3] M. Englert and M. Westermann, “Considering suppressed packets improves
buffer management in QoS switches,” in SODA, 2007, pp. 209-218.

[4] Y. Bartal, F. Y. L. Chin, M. Chrobak, S. P. Y. Fung, W. Jawor, R. Lavi,
J. Sgall, and T. Tichy, “Online competitive algorithms for maximizing
weighted throughput of unit jobs,” in STACS, 2004, pp. 187-198.

[5] N. Andelman, Y. Mansour, and A. Zhu, “Competitive queueing policies
for QoS switches,” in SODA, 2003, pp. 761-770.

[6] F.Y.L. Chin and S. P. Y. Fung, “Online scheduling with partial job values:
Does timesharing or randomization help?” Algorithmica, vol. 37, no. 3, pp.
149-164, 2003.

[7] F.Li, J. Sethuraman, and C. Stein, “An optimal online algorithm for packet
scheduling with agreeable deadlines,” in SODA, 2005, pp. 801-802.

[8] M. Chrobak, W. Jawor, J. Sgall, and T. Tichy, “Improved online algorithms
for buffer management in QoS switches,” ACM Trans. Algorithms, vol. 3,
no. 4, p. 50, 2007.

[9] M. Englert and M. Westermann, ‘“Lower and upper bounds on FIFO buffer
management in QoS switches,” in ESA, 2006, pp. 352-363.

(2]

ACKNOWLEDGEMENT
The research of Seffi Naor is supported by ISF grant 1366/07.

