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Abstract

We consider the problem of maximizing a (non-monotone) submodular function subject to a cardi-
nality constraint. In addition to capturing well-known combinatorial optimization problems, e.g., Max-
k-Coverage and Max-Bisection, this problem has applications in other more practical settings such as
natural language processing, information retrieval, and machine learning. In this work we present im-
proved approximations for two variants of the cardinality constraint for non-monotone functions. When
at most k elements can be chosen, we improve the current best 1/e− o(1) approximation to a factor that
is in the range [1/e + 0.004, 1/2], achieving a tight approximation of 1/2− o(1) for k = n/2 and breaking
the 1/e barrier for all values of k. When exactly k elements must be chosen, our algorithms improve
the current best 1/4 − o(1) approximation to a factor that is in the range [0.356, 1/2], again achieving a
tight approximation of 1/2− o(1) for k = n/2. Additionally, some of the algorithms we provide are very
fast with time complexities of O(nk), as opposed to previous known algorithms which are continuous in
nature, and thus, too slow for applications in the practical settings mentioned above.

Our algorithms are based on two new techniques. First, we present a simple randomized greedy
approach where in each step a random element is chosen from a set of “reasonably good” elements.
This approach might be considered a natural substitute for the greedy algorithm of Nemhauser, Wolsey
and Fisher [46], as it retains the same tight guarantee of 1 − 1/e for monotone objectives and the same
time complexity of O(nk), while giving an approximation of 1/e for general non-monotone objectives
(while the greedy algorithm of Nemhauser et. al. fails to provide any constant guarantee). Second,
we extend the double greedy technique, which achieves a tight 1/2 approximation for unconstrained
submodular maximization, to the continuous setting. This allows us to manipulate the natural rates by
which elements change, thus bounding the total number of elements chosen.
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1 Introduction
A set function f : 2N → R is submodular if for every A,B ∈ N : f(A ∩B) + f(A ∪B) ≤ f(A) + f(B).
Such functions are ubiquitous in various disciplines, including combinatorics, optimization, economics,
information theory, operations research, algorithmic game theory, and machine learning. Many well known
functions, such as cut functions of graphs and hypergraphs, rank functions of matroids, entropy, mutual
information, coverage functions, and budget additive functions, are submodular. An equivalent definition
of submodularity, which is perhaps more intuitive, is that of diminishing returns: f(A ∪ {u}) − f(A) ≥
f(B∪{u})−f(B) for every A ⊆ B ⊆ N and u /∈ B. The concept of diminishing returns is widely used in
economics, and thus, it should come as no surprise that utility functions in economics are often submodular.

Submodular maximization problems capture well known combinatorial optimization problems such as:
Max-Cut [26, 29, 31, 33, 51], Max-DiCut [16, 26, 27], Generalized Assignment [10, 11, 19, 23], and Max-
Facility-Location [1, 12, 13]. Additionally, one can find submodular maximization problems in many other
settings. In machine learning, maximization of submodular functions has been used for document sum-
marization [41, 42], sensor placement [36, 38, 35], and information gathering [37] (consult the references
therein for additional applications in AI). In algorithmic game theory, calculating market expansion [14] and
computing core values of certain types of games [49], are two examples where the problem can be reduced
to submodular maximization. Furthermore, in social networks, viral marketing and influence [28, 32] are
both calculated by submodular maximization. Image segmentation [6, 30] and speeding up satisfiability
solvers [50] are additional examples in which submodular maximization is useful.

In this paper we consider the problem of maximizing a general non-negative submodular function, no
necessarily monotone, subject to a cardinality constraint. Given a cardinality parameter k, the goal is to find
a subset S ⊆ N maximizing f(S) such that |S| ≤ k. We also consider the case in which the goal is to
choose exactly k elements from N , i.e., |S| = k. This problem captures several well known optimization
problems including Max-k-Coverage [15, 34], Max-Bisection [5, 24], and several variants of Max-Cut in
which the cut size is prespecified: undirected graphs [3, 17], directed graphs [2] and hypergraphs [4].

Additionally, the problem of maximizing a non-monotone and non-negative submodular function sub-
ject to a cardinality constraint has applications in more practical settings. For example, consider the problem
of document summarization [41, 42] whose applications span different fields such as natural language pro-
cessing and information retrieval. In this problem the goal is to extract a small number of textual units
from given text documents as to form a short summary. The quality of the summary is a non-monotone and
non-negative submodular function as similarities between selected textual units are deducted from the total
benefit these textual units contribute to the summary (the reader is referred to [41, 42] for more details). The
cardinality constraint is due to real-world restrictions that limit the size of the summary. It is important to
note that for the above text summarization problem in particular, and for many other applications in gen-
eral, fast algorithms are necessary since the size of the ground set N is very large and even quadratic time
complexity in the size of N is considered impractical.

The classical result of [46] states that the simple discrete greedy algorithm provides an approximation of
1−1/e for maximizing a monotone1 submodular function where at most k elements can be chosen. This result
is known to be tight [45], even in the case where the objective function is a coverage function [15]. However,
when one considers submodular objectives which are not monotone, less is known. An approximation of
0.309 was given by [52], which was later improved to 0.325 [25] using a simulated annealing technique.
Extending the continuous greedy algorithm of [9] from the case of monotone submodular objectives to the
general case of non-negative submodular objectives which are not necessarily monotone, [20] obtained an
improved approximation of 1/e − o(1). When one considers the variant of the cardinality constraint where
exactly k elements must be chosen, an approximation of 1/4−o(1) [52] is known via a fractional local search

1A set function f : 2N → R is monotone if for every A ⊆ B ⊆ N , f(A) ≤ f(B).
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(improving upon the 1/6 − o(1) of [40]). For both variants of the cardinality constraint, [25] presented a
hardness of 0.491 when k = o(n), while a slightly weaker hardness of 1/2 readily follows from [52] for the
case of k = n/2. We note that the cardinality constraint is a well-studied special case of the more general
matroid constraint, where one needs to maximize the objective given that the output is an independent set
(or a base) of a matroid.

1.1 Our Results
Improved Approximations Subject to a Cardinality Constraint: We present improved approximations
for maximizing a general non-negative submodular function subject to a cardinality constraint. Both variants
of the constraint are considered. The results are summarized in theorems 1.1 and 1.2, and appear in Table 1.

For the variant in which at most k elements can be chosen (Theorem 1.1) our improved approximation
guarantee is tight for k = n/2, achieving a guarantee of 1/2−o(1), and deteriorates as k decreases. However,
this guarantee never falls below an absolute constant of 1/e + 0.004. Our algorithm, to the best of our
knowledge, is the first to break the 1/e barrier for any value of k. The constant 1/e + 0.004 should be
considered as a “proof of concept” that the natural 1/e− o(1) guarantee of [20] is not the right answer.

For the variant in which exactly k elements must be chosen (Theorem 1.2) our improved approximation
guarantee is tight for k = n/2, achieving a guarantee of 1/2 − o(1), and deteriorates as k decreases until it
reaches a guarantee of 0.356 (when k ≈ 0.084n). At this point, the guarantee begins improving again as k
continues to decrease, approaching 1/e when k = o(n).

Theorem 1.1. There exists an efficient algorithm that given a non-negative submodular function f and a
cardinality parameter k ≤ n/2, achieves an approximation of

max

1/e + 0.004,

(
1 +

n

2
√

(n− k)k

)−1

− o(1)


for the problem: max {f(S) : |S| ≤ k}. If k > n/2 then the approximation ratio is 1/2− o(1).

Theorem 1.2. There exists an efficient algorithm that given a non-negative submodular function f and a
cardinality parameter k ≤ n/2, achieves an approximation of

max


√

πv/2 · erfi
(

1√
2v

)
e1+1/(2v)

− ε,

(
1 +

n

2
√

(n− k)k

)−1

− o(1)

 ≥ 0.356

for the problem: max {f(S) : |S| = k} (ε is an arbitrarily small constant), where v = n/k− 1.2 If k > n/2
then the above approximation still applies with the cardinality parameter k replaced with n− k.

We note that in both the above two theorems, the approximation guarantee is obtained by taking the best
out of two algorithms.

Fast Algorithms: We present fast randomized combinatorial algorithms with provable guarantees for the
problems of maximizing a general non-negative submodular function subject to a cardinality constraint and
a general matroid independence constraint. The results are summarized in Theorems 1.3, 1.4, 1.5 and 1.6,
and appear in Table 2.

For the cardinality constraint variant in which at most k elements can be chosen (Theorem 1.3) we
present a fast randomized combinatorial algorithm that retains the current best known approximation of 1/e

2erfi is the imaginary error function given by erfi(z) = −i · erf(iz), where erf is the error function. erfi can also be defined as
erfi(z) = 2π−0.5

∫ z

0
ex

2

dx.
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Constraint k This Work Previous Work Hardness

|S| ≤ k

k max

{
1/e + 0.004,

(
1 + n

2
√

(n−k)k

)−1

− o(1)

}
1/e − o(1) [20]

−

n/2 1/2 − o(1) 1/2 [52]

o(n) 1/e + 0.004 0.491 [25]

|S| = k

k max

{√
πv/2·erfi

(
1√
2v

)
e1+1/(2v) − ε,

(
1 + n

2
√

(n−k)k

)−1

− o(1)

}
≥ 0.356

(v = n/k − 1)

1/4 − o(1) [52]

−

n/2 1/2 − o(1) 1/2 [52]

o(n) 1/e − ε 0.491 [25]

Table 1: Improved approximations for submodular maximization with a cardinality constraint.

[20] (and even avoid the o(1) loss), while improving the time complexity from O(n2k6)3 to O(nk). For the
cardinality constraint variant in which exactly k elements must be chosen (Theorem 1.4) we note that one
of the two algorithms that comprises the guarantee in Theorem 1.2 is in fact fast and runs in time O(nk).
Hence, for this variant of the problem, we do not only improve the approximation guarantee from 1/4− o(1)

[52] to
√

πv/2·erfi
(

1√
2v

)
/e1+1/(2v) − ε ≥ 0.266 (assuming k ≤ n/2), but also improve the time complexity to

O(nk).
For the matroid independence constraint (Theorem 1.5) we present a fast randomized combinatorial

algorithm that runs in time O(Tk) and achieves a slightly worse approximation of 1/4 than the current best
known 1/e−o(1) [20] (T is the time needed to compute a maximum weight independent set in the matroid,4

and it satisfies T = O(n log n)). Notice that the time complexity of [20] is O(n2k6). Additionally, we
present an algorithm with a better approximation of (1+e−2)/4 − ε > 0.283 (Theorem 1.6) and a possibly
worse running time of O(Tk + Mk), where M is the time needed to compute a perfect matching in a bi-
partite graph which has k vertices on each side. Note that E [M ] = O(kω) where ω is the exponent of matrix
multiplication.

Theorem 1.3. There exists an algorithm that given a non-negative submodular function f and a cardinality
parameter k, achieves an approximation of 1/e for the problem: max {f(S) : |S| ≤ k} and runs in O(nk)
time.

Theorem 1.4. Let v = n/k − 1. Then, there exists an algorithm that given a non-negative submodular
function f and a cardinality parameter k, k ≤ n/2, achieves an approximation of

√
πv/2·erfi

(
1√
2v

)
/e1+1/(2v)−

ε ≥ 0.266 (ε > 0 is an arbitrarily small constant) for the problem: max {f(S) : |S| = k} and runs in
O(nk) time. If k > n/2 then the above approximation still applies with the cardinality parameter k replaced
with n− k.

Theorem 1.5. There exists an algorithm that given a non-negative submodular function f and a matroid
M = (I,N ), achieves an approximation of 1/4 for the problem: max {f(S) : S ∈ I} and runs in O(Tk)
time. T is the time required to compute a maximum weight independent set inM.

3Some of the time complexities we present for previous works are based on the improved time complexity analysis of [21].
4Our algorithm actually needs to compute a maximum weight independent set in matroids that are constructed from the input

matroid M by deletion and contraction operations. The problem of computing a maximum weight independent set in any such
matroid can be easily reduced to the same problem in M.
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Constraint This Work Previous Work
Guarantee Time Guarantee Time

|S| ≤ k 1/e O(nk) 1/e − o(1) [20] O(n2k6)

|S| = k

√
πv/2·erfi

(
1√
2v

)
e1+1/(2v) − ε > 0.266 O(nk) 1/4 − o(1) [52] poly(n, k)

matroid independent set
1/4 O(Tk)

1/e − o(1) [20] O(n2k6)
1+e−2

4
− ε > 0.283 O(Tk +Mk)

Table 2: Fast algorithms. T = O(n log n) is the time required to compute a maximum weight independent
set in the matroid. M is the time required to compute a perfect matching in a bipartite graph having k
vertices on each side (note that E [M ] = O(kω) where ω is the exponent of matrix multiplication).

Theorem 1.6. There exists an algorithm that given a non-negative submodular function f and a matroid
M = (I,N ), achieves an approximation of 1+e−2

4 − ε > 0.283 (ε > 0 is an arbitrarily small constant) for
the problem: max {f(S) : S ∈ I} and runs in O(Tk+Mk) time, where T is the time required to compute
a maximum weight independent set inM, and M is the time required to compute a perfect matching in a
bipartite graph having k elements on each side.

1.2 Techniques
All the algorithms we present in this work are based on one (or both) of the following techniques.

Discrete Random Greedy: It is well known that the greedy approach provides a tight guarantee for max-
imizing a monotone submodular function subject to a cardinality constraint (where at most k elements can
be chosen) [46]. In order to obtain results for non-monotone objectives, a sequence of works was needed,
starting with the celebrated continuous greedy algorithm of [9] which extended [46]’s result to a general
matroid constraint by using continuous techniques. Unfortunately, this continuous extension could handle
only monotone objectives, and was later improved by [20] so non-monotone objectives could be handled
with a general matroid constraint. It is important to note that the latter improvement is somewhat counter
intuitive, as it is known that the greedy approach fails for non-monotone objectives in the discrete setting
even for a cardinality constraint.

In this work we present a new and different approach in which one can extend the original discrete
greedy algorithm of [46] to handle non-monotone objectives. Instead of operating continuously, one simply
adds randomization. Specifically, the algorithm chooses in each step a random element among a set of
“reasonably” good elements. This approach enables us to obtain fast and simple combinatorial algorithms
for maximizing a non-monotone submodular objective subject to a cardinality constraint and a matroid
independence constraint.

To demonstrate the power of this approach, one only needs to consider the fast algorithm that achieves
a guarantee of 1/e (Theorem 1.3) for maximizing a general non-negative submodular function subject to
choosing at most k elements. Even though it is not stated in the theorem, as it is not necessary for the
non-monotone case, the exact same algorithm also achieves an approximation of 1 − 1/e for maximizing a
monotone submodular function given the same constraint. Hence, both the approximation guarantee and the
time complexity of the algorithm are exactly the same as those of the original tight algorithm of [46]. This
simple randomized greedy algorithm might be considered as a natural substitute for the greedy algorithm of
[46] as it works for both monotone and non-monotone objectives simultaneously.
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Continuous Double Greedy: The double greedy approach was introduced by [8] in the context of un-
constrained submodular maximization. This approach maintains two evolving sets, and in every step both
sets agree whether to include (or exclude) an element in the solution, up to the point where all elements are
examined and both sets are identical. Despite the simplicity of this approach and the fact that it produces a
tight approximation in the unconstrained case, no guarantee is provided on the number of elements in the
output.

To overcome this difficulty, one must change the rule by which the two sets evolve. To this end, we
present the continuous counterpart of the double greedy approach, in which two fractional sets are main-
tained. As the evolution process of these fractional sets is continuous, each element is associated with
a fractional value indicating how likely it is to be included or excluded from the output. These values are
changed in a continuous fashion for all elements simultaneously, according to rates defined by the algorithm.
Unlike the discrete double greedy approach which makes a single irrevocable decision for each element one
at a time, our continuous algorithm slowly changes the values of elements simultaneously. This careful
process enables us to control the total (fraction) of elements in the output while maintaining a guarantee on
the value of the solution.

1.3 Related Work
The literature on submodular maximization problems is very large, and therefore, we mention below only
a few of the most relevant works. For maximizing monotone submodular objectives subject to a general
matroid constraint, [22] proved that the discrete greedy algorithm is a 1/2 approximation. This was later
improved to a tight 1−1/e approximation by [9], who presented the celebrated continuous greedy algorithm.
A combinatorial local-search approach achieving the same tight guarantee is given in [21].

Regarding general (not necessarily monotone) submodular objectives and a general matroid constraint,
[52] provided an approximation of 0.309. Using simulated annealing techniques this was improved to 0.325
[25], and shortly later was further pushed to 1/e− o(1) by [20] using an extension of the continuous greedy
algorithm.

Paper Organization: Section 2 contains some technical preliminaries, including as to why one can as-
sume k ≤ n/2. Section 3 contains the two core algorithms, which form the basis of our new techniques and
exemplify how they can be used. The first of the two is a fast random greedy algorithm and it can be found
in Section 3.1, the second is a continuous double greedy algorithm and can be found in Section 3.2. All
other algorithms are based on these two core algorithms (either as a black box or they use techniques and
analysis ideas), and can be found in Section 4.

2 Preliminaries
For every set S and an element u, we denote the union S ∪ {u} by S + u, and the expression S \ {u}
by S − u. Given a submodular function f : 2N → R, the marginal contribution of u to S is denoted by
fu(S) = f(S+u)−f(S). For a vector x ∈ [0, 1]N , we define the random subset R(x) ⊆ N which contains
each element u ∈ N independently with probability xu. The multilinear extension of f is a function
F : [0, 1]N → R, whose value at a vector x ∈ [0, 1]N is the expected value of f over R(X). Formally, for
every x ∈ [0, 1]N , F (x) , E[R(x)] =

∑
S⊆N f(S)

∏
u∈S xu

∏
u/∈S(1− xu).

We look for algorithms that are polynomial in n, the size of N . However, the explicit representation
of a submodular function might be exponential in the size of its ground set. The standard way to bypass
this difficulty is to assume access to the function via an oracle. For a submodular function f : 2N → R,
given a set S ⊆ N , the oracle returns the value of f(S).5 All the algorithms we describe access submodular

5Such an oracle is called value oracle. Other, stronger, oracle types for submodular functions are also considered in the literature,
but value oracles are probably the most widely used.
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functions via such oracles.
To simplify the exposition of our algorithms, we assume one of the following reductions was applied

(depending on the problem at hand).

Reduction 1. For the problem of max{f(S) : |S| ≤ k}, we may assume 2k ≤ n, and that there is a set
D ⊆ N of 2k “dummy” elements whose marginal contribution to any set is 0. More formally, for every set
S ⊆ N , f(S) = f(S \D).

Proof. If this is not the case, one can add 2k such dummy elements to the ground set, and and remove them
from the output of the algorithm, effecting neither OPT , nor the value of the algorithm’s output.

Reduction 2. For the problem of max{f(S) : |S| = k}, we may assume 2k ≤ n.

Proof. Follows immediately from the proof of Corollary 5.3 in [40]. The idea is that if this is not the case,
then let k̄ = n − k, and f̄(S) = N \ S. It can be easily checked that 2k̄ ≤ n and that the problem
max{f̄(S) : |S| = k̄} is equivalent to the original problem.

We also assume the following reduction was applied.

Reduction 3. For a cardinality constraint with parameter k, we may assume k is larger than an arbitrarily
large constant at the following cost:

• For our non-fast algorithms, a low order term loss in the approximation ratio and a polynomial
increase in the time complexity.

• For our fast algorithms (which evaluate f only on sets of size at most k), a multiplicative constant
increase in the time complexity.

This reduction preserves the ratio k/n.

Proof. Assume k is smaller than an arbitrary universal constant c. Let c′ = ⌈c/k⌉ and [c′] = {1, 2, . . . , c′}.
We replace N with the ground set N ′ = N × [c′], the parameter k with c′k and f with the function
f ′ : N ′ → R defined as f ′(S) = F (x(S)), where F is the multilinear extension of f and xu(S) =
|{(u, i) ∈ S : u ∈ N}|/c′ for every element u ∈ N . It is easy to see that f ′ is submodular (see [52] for a
formal proof of this) and can be evaluated to an arbitrary accuracy in polynomial time (see [9] for details).
Moreover, there is an approximation ratio preserving reduction from the original problem to the new one,
which results in a low order term reduction in the approximation ratio of our algorithms using this reduction.

Our fast algorithms evaluate f ′ only on sets of size at most c′k = O(c), and therefore, for these algo-
rithms it is possible to evaluate f ′ exactly in constant time.

Remark: The non-fast algorithms can in fact resort to exhaustive search when k ≤ c, which requires
only a polynomial time of O(nc) when c is a constant. This method does not induce any loss in the approx-
imation ratio of the algorithms, but exhibits a worse dependence on c.

We make use of the following known lemma.

Lemma 2.1 (Lemma 2.2 of [18]). Let f : 2N → R be submodular. Denote by A(p) a random subset
of A where each element appears with probability p (not necessarily independently). Then E[f(A(p))] ≥
(1− p)f(∅) + p · f(A).

We also need the following close variant of the above lemma.
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Lemma 2.2. Let f : 2N → R be submodular. Denote by A(p) a random subset of A where each element
appears with probability at most p (not necessarily independently). Then, E[f(A(p))] ≥ (1− p)f(∅).

Proof. Sort the elements of A in a non-increasing order of probability to be in A(p): u1, u2, . . . , u|A|. In
other words, for every pair 1 ≤ i ≤ j ≤ |A|, Pr[ui ∈ A(p)] ≥ Pr[uj ∈ A(p)]. Denote by Xi an indicator
for the event that ui ∈ A(p), by pi the probability Pr[ui ∈ A(p)] and by Ai the set {u1, u2, . . . , ui}. Then:

E[f(A(p))] = E

f(∅) +

|A|∑
i=1

Xi · fui(Ai−1 ∩A(p))

 ≥ E

f(∅) +

|A|∑
i=1

Xi · fui(Ai−1)


= f(∅) +

|A|∑
i=1

E [Xi] · fui(Ai−1) = f(∅) +

|A|∑
i=1

pi · fui(Ai−1)

= (1− p1) · f(∅) +

|A|−1∑
i=1

[pi−1 − pi]f(Ai) + p|A| · f(A) ≥ (1− p) · f(∅) ,

where there first inequality follows from submodularity, and the second one from the order we chose for the
elements of A, which guarantees p ≥ p1 ≥ p2 ≥ . . . ≥ p|A|.

3 Core Algorithms
3.1 The Discrete Random Greedy Algorithm
In this section we present the fast algorithm for the problem max{f(S) : |S| ≤ k} whose existence is
guaranteed by Theorem 1.3. This is the first of the two core algorithms and it presents in the simplest way
our new approach of using randomization instead of continuous techniques. As already mentioned, this
simple algorithm might be considered a natural substitute for the classical algorithm of Nemhauser et. al.
[46], as it retains the same tight guarantee of 1− 1/e for monotone objectives and the same time complexity
of O(nk), while giving an approximation of 1/e for general non-monotone objectives.

Consider algorithm Random Greedy (Algorithm 1). Observe that the output of Random Greedy
might contain less than k elements due to our assumption that Reduction 1 was applied to the problem.

Algorithm 1: Random Greedy(f, k)
1 Initialize: S0 ← ∅.
2 for i = 1 to k do
3 Let Mi ⊆ N \ Si−1 be a subset of size k maximizing

∑
u∈Mi

fu(Si−1).
4 Let ui be a uniformly random element from Mi.
5 Si ← Si−1 + ui.

6 Return Sk.

Let Ai be an event fixing all the random decisions of the algorithm up to iteration i (including), and let
Ai be the set of all possible Ai events. As a warmup, let us analyze Random Greedy in the case when f is
monotone.

Theorem 3.1. The approximation ratio of Random Greedy (Algorithm 1) is 1− e−1 when f is monotone.
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Proof. Fix 1 ≤ i ≤ k and an event Ai−1 ∈ Ai−1. All the probabilities, expectations and random quantities
in the first part of this proof are implicitly conditioned on Ai−1. Consider a set M ′

i containing the elements
of OPT \ Si−1 plus enough dummy elements to make the size of M ′

i exactly k. Observe that:

E[fui(Si−1)] = k−1 ·
∑
u∈Mi

fu(Si−1) ≥ k−1 ·
∑
u∈M ′

i

fu(Si−1) = k−1 ·
∑

u∈OPT\Si−1

fu(Si−1)

≥ f(OPT ∪ Si−1)− f(Si−1)

k
≥ f(OPT )− f(Si−1)

k
,

where the first inequality follows from the definition of Mi, the second from the submodularity of f and the
third from the monotonicity of f . Unfixing the event Ai−1, and taking an expectation over all possible such
events, we get:

E[fui(Si−1)] ≥
f(OPT )− E[f(Si−1)]

k
.

Rearranging yields:

f(OPT )− E[f(Si)] ≤
(
1− 1

k

)
· [f(OPT )− E[f(Si−1)]]

⇒ f(OPT )− E[f(Si)] ≤
(
1− 1

k

)i

· [f(OPT )− E[f(S0)]] ≤
(
1− 1

k

)i

· f(OPT ) .

Thus,

E[f(Sk)] ≥

[
1−

(
1− 1

k

)k
]
· f(OPT ) ≥ (1− 1/e) · f(OPT ) .

Next, we consider the general case.

Observation 3.2. For every 0 ≤ i ≤ k, E[f(OPT ∪ Si)] ≥ (1− 1/k)i · f(OPT ).

Proof. In each iteration 1 ≤ i ≤ k of the algorithm, each element of N \ Si−1 stays outside of Si with
probability at least 1 − 1/k. Therefore, for every 0 ≤ i ≤ k, each elements belongs to Si with probability
at most 1 − (1 − 1/k)i. Let g : 2N → R+ be the function g(S) = f(S ∪ OPT ). Observe that g is a
submodular function, and by Lemma 2.2:

E[f(OPT ∪ Si)] = E[g(Si \OPT )] ≥ (1− 1/k)i · g(∅) = (1− 1/k)i · f(OPT ) .

We are now ready to prove that Random Greedy has the approximation ratio guaranteed by Theo-
rem 1.3.

Proof of Theorem 1.3. Fix 1 ≤ i ≤ k and an event Ai−1 ∈ Ai−1. All the probabilities, expectations and
random quantities in the first part of this proof are implicitly conditioned on Ai−1. Consider a set M ′

i

containing the elements of OPT \ Si−1 plus enough dummy elements to make the size of M ′
i exactly k.

Observe that:

E[fui(Si−1)] = k−1 ·
∑
u∈Mi

fu(Si−1) ≥ k−1 ·
∑
u∈M ′

i

fu(Si−1) = k−1 ·
∑

u∈OPT\Si−1

fu(Si−1)

≥ f(OPT ∪ Si−1)− f(Si−1)

k
,
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where the first inequality follows from the definition of Mi and the second from the submodularity of f .
Unfixing the event Ai−1, and taking an expectation over all possible such events, we get:

E[fui(Si−1)] ≥
E[f(OPT ∪ Si−1)]− E[f(Si−1)]

k
≥
(
1− 1

k

)i−1 · f(OPT )− E[f(Si−1)]

k
,

where the second inequality is due to Observation 3.2. Let us prove by induction that E[f(Si)] ≥ (i/k) ·
(1− 1/k)i−1 · f(OPT ). For i = 0, this is true since f(S0) ≥ 0 = (0/k) · (1− 1/k)−1 · f(OPT ). Assume
now that the claim holds for every i′ < i, let us prove it for i > 0.

E[f(Si)] = E[f(Si−1)] + E[fui(Si−1)] ≥ E[f(Si−1)] +

(
1− 1

k

)i−1 · f(OPT )− E[f(Si−1)]

k

= (1− 1/k) · E[f(Si−1)] + k−1(1− 1/k)i−1 · f(OPT )

≥ (1− 1/k) · [((i− 1)/k) · (1− 1/k)i−2 · f(OPT )] + k−1(1− 1/k)i−1 · f(OPT )

= [i/k] · (1− 1/k)i−1 · f(OPT ) .

In conclusion:

E[f(Sk)] ≥
k

k
·
(
1− 1

k

)k−1

· f(OPT ) ≥ e−1 · f(OPT ) .

3.2 The Continuous Double Greedy Algorithm
In this section we present the Continuous Double Greedy Algorithm (Algorithm 2). This algorithm
provides an approximation guarantee for both variants of the cardinality constraint, and is used for proving
Theorems 1.1 and 1.2. This is the second of our two core algorithm and it presents how one can extend the
discrete double greedy approach of [8] to the continuous setting, where the sizes of the two evolving sets
are more easy to control.

To describe the algorithm, we need some notation. For two vectors x, y ∈ [0, 1]N , we use x ∨ y and
x∧ y to denote the coordinate-wise maximum and minimum, respectively, of x and y (formally, (x∨ y)u =
max{xu, yu} and (x∧ y)u = min{xu, yu}). We abuse notation both in the description of the algorithm and
in its analysis, and unify a set with its characteristic vector and an element with the singleton containing it.
Notice that using this notation, given the multilinear extension F of any function f : 2N → R+, element
u ∈ N and a vector x ∈ [0, 1]N , its holds that ∂F (x)

∂xu
= F (x ∨ u) − F (x ∧ (N − u)). We also assume

we have an oracle access to the multilinear extension F . If this is not the case, then the value of F can be
approximated arbitrarily well using sampling (see, e.g., [9]), which results in a low order term decrease in
the approximation ratio.

Algorithm 2 is given as a continuous process executing from time t = 0 to time t = 1. At any time t ∈
[0, 1] the algorithm maintains two solutions xt ≤ yt ∈ [0, 1]n. Initially, x0 ← ∅, y0 ← N . The evolution
of these two solutions over time is described using the derivatives of the coordinates of the solutions xt and
yt. At any time t the coordinates of xt are (weakly) increasing, while the coordinates of yt are (weakly)
decreasing. For every coordinate u ∈ N , the total rate of change of xtu and ytu is 1. Thus, at the end
of the execution, at time t = 1, x1 = y1, and this is the output of the algorithm. In order to transform
the resulting fractional solution into an integral solution with the same expected cost, one may use known
rounding techniques such as pipage rounding (see [9, 52]). An implementation of the algorithm should be
done by a careful discretization, which reduces the approximation ratio by a low order term. We defer the
details to the full version of the paper. The description of the algorithm actually includes two variants. The
first is for the constraint |S| ≤ k, and the second for |S| = k. The descriptions of the two variants differ
only in a single line. As their proofs are (almost) the same, they are done together. We find it elegant that
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Algorithm 2: Continuous Double Greedy(F, k)
1 Initialize: x0 ← ∅, y0 ← N .
2 at any time t ∈ [0, 1] do
3 define for every u ∈ N :
4 au ← ∂F (xt)

∂xu
, bu = −∂F (yt)

∂yu
.

5 a′u(ℓ)← max{au − ℓ, 0}, b′u(ℓ)← max{bu + ℓ, 0}.
6 dxu

dt (ℓ) =
a′u

a′u+b′u
, dyudt (ℓ) = −

b′u
a′u+b′u

(see below how to handle the case a′u + b′u = 0).

7 Let ℓ′ be a value such that
∑

u∈N
dxu
dt (ℓ

′) = k.
8 In the case |S| = k: Let ℓ∗ = ℓ′.
9 In the case |S| ≤ k: Let ℓ∗ = max{ℓ′, 0}.

10 Set for every u ∈ N the derivatives: dxu
dt ←

dxu
dt (ℓ

∗), dyu
dt ←

dyu
dt (ℓ

∗)

11 Return x1 = y1.

the same proof ideas work for both problems. To simplify notation we use x, y instead of xt, yt whenever
the superscript t is understood from the context.

We prove below the correctness and the approximation ratio for the case |S| = k, and then state the
minor modifications in the proof required for the case |S| ≤ k. We start with a simple, but useful lemma
that follows from the submodularity of f .

Lemma 3.3. For any solutions x ≤ y and u ∈ N :

au + bu , ∂F (x)

∂xu
− ∂F (y)

∂yu
≥ 0 .

Proof. By submodularity:

au + bu , ∂F (x)

∂xu
− ∂F (y)

∂yu
= [F (x ∨ u)− F (x ∧ (N − u))]− [F (y ∨ u)− F (y ∧ (N − u))]

≥ [F (y ∨ u)− F (y ∧ (N − u))]− [F (y ∨ u)− F (y ∧ (N − u))] = 0 .

Our next objective is to prove that the algorithm obeys the following invariants:

• At any time t ∈ [0, 1],
∑

u∈N
dxu
dt = k.

• For any element u ∈ N and time t ∈ [0, 1], dxu
dt ,−

dyu
dt ≥ 0 and dxu

dt −
dyu
dt = 1

Observe that these invariants imply that x1 = y1 is a feasible solution to the problem. Before we can
prove that the invariants are indeed maintained, we have to explain how the algorithm finds ℓ′ and how does
it deal with the case au + bu = 0. By Lemma 3.3 at any time t for which 0 ≤ xt ≤ yt ≤ 1:

dxu
dt

(ℓ) =


1 ℓ < −bu
au−ℓ
au+bu

−bu ≤ ℓ ≤ au
0 ℓ > au

and
dyu
dt

(ℓ) =


0 ℓ < −bu
− bu+ℓ

au+bu
−bu ≤ ℓ ≤ au

−1 ℓ > au

If au+ bu > 0, then the derivative functions are continuous and defined for every ℓ ∈ R. If au+ bu = 0,
then each derivative function has a single non-continuous point at ℓ = au = −bu. Let g(ℓ) ,

∑
u∈N

dxu
dt (ℓ).
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g(ℓ) is defined everywhere except in maybe a finite set of points, is a sum of piecewise linear decreasing
functions, and obeys g(minu∈N {−bu}−ε) = n and g(maxu{au}+ε) = 0. If for every u ∈ N , au+bu > 0,
then g(ℓ) is continuous, and therefore, for any 0 ≤ k ≤ n, there exists (and is easy to find) a value ℓ′ for
which

∑
u∈N

dxu
dt (ℓ

′) = k. If there are elements u for which au + bu = 0, then g(ℓ) has non-continuous
points. If for some k, there is no ℓ such that g(ℓ) = k, then there is a non-continuous point ℓ′ in which g(ℓ)
is decreasing from a value larger than k to a value smaller than k. For the (non-continuous) elements u for
which au = −bu = ℓ′, we define the rates in such a way that g(ℓ′) = k, dxu

dt ,−
dyu
dt ≥ 0 and dxu

dt −
dyu
dt = 1.

This guarantees that it is always possible to choose a value ℓ′ for which
∑

u∈N
dxu
dt (ℓ

′) = k.
From the above discussion, it is clear that the invariants hold at every time t in which 0 ≤ xt ≤ yt ≤ 1.

Therefore, the following lemma is all that is needed to complete the proof that the invariants always hold:

Lemma 3.4. For every time t ∈ [0, 1], 0 ≤ xt ≤ yt ≤ 1.

Proof. Assume otherwise, then let t′ be the infimum of all the values t violating the constraint. This means
that xt ≤ yt for every t < t′, but for every δ > 0, there exists ε ∈ (0, δ] for which xt

′+ε ̸≤ yt
′+ε.

Note that since xt ≤ yt for every t < t′, the invariants hold for all these times, and therefore, yt − xt =
1 − t. On the other hand, choosing δ ≤ (1 − t)/2, we get that: yt

′+ε
u − xt

′+ε
u < 0 for some u ∈ N and

ε ∈ (0, (1− t)/2], which implies that either the derivative of xu or of −yu must be larger than 1 somewhere
in the range [t′, t′ + ε], which is a contradiction to the definition of the algorithm.

Let OPT be the optimal solution for the problem in hand. Then, we make the following useful defini-
tion:

OPT (x, y) , (OPT ∨ x) ∧ y .

Notice that x ≤ OPT (x, y) ≤ y since x ≤ y. In addition, we observe that, by the properties of the
algorithm, at time t = 0, OPT (x, y) = OPT , and at time t = 1, OPT (x, y) = x1 = y1. Also, we have
the following useful observation that follows since |OPT | = k and dxu

dt −
dyu
dt = 1 for every u ∈ N .

Observation 3.5.

ℓ∗

 ∑
u ̸∈OPT

dxu
dt

+
∑

u∈OPT

dyu
dt

 = ℓ∗

(∑
u∈N

dxu
dt
−

∑
u∈OPT

(
dxu
dt
− dyu

dt

))
= ℓ∗

(∑
u∈N

dxu
dt
− k

)
= 0 .

Before analyzing the approximation ratio of Algorithm 2, we derive a bound on the change in the value
of OPT (x, y) while x and y are evolving.

Lemma 3.6. For every element u ̸∈ OPT :

−∂F (OPT (x, y))

∂xu
≤ −∂F (y)

∂yu
= bu ,

and for every element u ∈ OPT :

∂F (OPT (x, y))

∂yu
≤ ∂F (x)

∂xu
= au .

Proof. We prove the first part of the lemma. The proof of the second part is analogous.

−∂F (OPT (x, y))

∂xu
= F (OPT (x, y) ∧ (N − u))− F (OPT (x, y) ∨ u)

≤ F (y ∧ (N − u))− F (y ∨ u) = −∂F (y)

∂yu
,

where the inequality follows by submodularity since OPT (x, y) ≤ y.
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We are now ready to prove:

Theorem 3.7. F (x1) = F (y1) ≥
f(OPT )+ 1

2

(√
n−k
k

f(∅)+
√

k
n−k

f(N )

)
1+ 1

2
n√

(n−k)k

.

Proof. The proof follows from the following set of inequalities. In some of the inequalities we have a term
of the form max{0, A/(au + bu)}, where A is an arbitrary expression. For consistency, we assume that
when au + bu = 0 this term is equal to 0.

− dF (OPT (x, y))

dt
≤ −

∑
u∈OPT

au
dyu
dt

+
∑

u ̸∈OPT

bu
dxu
dt

(1)

= −
∑

u∈OPT

au
dyu
dt

+
∑

u̸∈OPT

bu
dxu
dt

+ ℓ∗

 ∑
u̸∈OPT

dxu
dt

+
∑

u∈OPT

dyu
dt

 (2)

=
∑

u∈OPT

(ℓ∗ − au)
dyu
dt

+
∑

u̸∈OPT

(bu + ℓ∗)
dxu
dt

≤
∑
u∈N

max

{
0,

(au − ℓ∗) · (bu + ℓ∗)

au + bu

}
(3)

=
∑
u∈N

max

0,

(
(au − ℓ∗) ·

(
n−k
k

)1/4
√
au + bu

)
·

(bu + ℓ∗) ·
(

k
n−k

)1/4
√
au + bu




≤ 1

2

∑
u∈N

(√
n− k

k
· (au − ℓ∗)

dxu
dt
−
√

k

n− k
· (bu + ℓ∗)

dyu
dt

)
(4)

=
1

2

(√
n− k

k

dF (x)

dt
+

√
k

n− k

dF (y)

dt

)
− ℓ∗

2

(√
k

n− k

∑
u∈N

dyu
dt

+

√
n− k

k

∑
u∈N

dxu
dt

)

=
1

2

(√
n− k

k

dF (x)

dt
+

√
k

n− k

dF (y)

dt

)
=

1

2

n√
(n− k)k

(
n− k

n

dF (x)

dt
+

k

n

dF (y)

dt

)
. (5)

Inequality (1) follows by Lemma 3.6. Equality (2) follows by Observation (3.5). Inequality (3) follows
since for every u ∈ N :

• If ℓ∗ ≤ −bu, then (ℓ∗ − au)
dyu
dt = 0 and (bu + ℓ∗)dxu

dt = (bu + ℓ∗) · 1 ≤ 0.

• If ℓ∗ ≥ au, then (ℓ∗ − au)
dyu
dt = (ℓ∗ − au) · (−1) ≤ 0 and (bu + ℓ∗)dxu

dt = 0.

• If au + bu = 0 and ℓ∗ = au = −bu then the rates dxu
dt and dyu

dt may have any value between 0 and 1.
However, in this case (ℓ∗ − au)

dyu
dt = (bu + ℓ∗)dxu

dt = 0.

• Otherwise, −bu ≤ ℓ∗ ≤ au and au + bu > 0, and therefore, (ℓ∗ − au)
dyu
dt = (au−ℓ∗)(bu+ℓ∗)

au+bu
=

(bu + ℓ∗)dxu
dt .
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Inequality (4) follows since if au − ℓ∗ < 0 then dxu
dt = 0 and bu + ℓ∗ ≥ 0 meaning that the RHS is non-

negative and the LHS is zero. An analogous argument follows if bu + ℓ∗ < 0. Otherwise, we use the fact
that for every pair r1, r2 ∈ R: r1r2 ≤ 1

2(r
2
1 + r22). Note that if au + bu = 0 and ℓ∗ = au = −bu then both

LHS and RHS are 0. Finally, Equality (5) follows since
∑

u∈N
dxu
dt = k and

∑
u∈N

dyu
dt = k − n, which

implies:
(√

k
n−k

∑
u∈N

dyu
dt +

√
n−k
k

∑
u∈N

dxu
dt

)
= 0.

Finally, integrating both sides from t = 0 to t = 1 we get:

f(OPT )−F (x1 = y1) ≤ 1

2

n√
(n− k)k

F (x1 = y1)− 1

2

(√
n− k

k
f(∅) +

√
k

n− k
f(N )

)
.

The theorem now follows by rearranging the terms.

Corollary 3.8. Algorithm 2 provides 1
1+ 1

2
n√

(n−k)k

-approximation for maximizing submodular function under

a cardinality constraint |S| = k. In particular it achieves an approximation factor of 1
2 when k = n

2 .

Modifications for the case |S| ≤ k: We review here the modifications necessary for proving the same
results for the case |S| ≤ k. In general the proof is almost identical except for the following minor modifica-
tions. First, it is easy to see that if ℓ∗ > 0, then g(0) ≥ k, and therefore, we get, as before,

∑
u∈N

dxu
dt = k.

Second, Observation 3.5 is slightly different, and holds with inequality instead of equality,

ℓ∗

 ∑
u̸∈OPT

dxu
dt

+
∑

u∈OPT

dyu
dt

 = ℓ∗

(∑
u∈N

dxu
dt
−

∑
u∈OPT

(
dxu
dt
− dyu

dt

))
≥ ℓ∗

(∑
u∈N

dxu
dt
− k

)
0 .

The inequality follows since |OPT | ≤ k and ℓ∗ ≥ 0, and the equality holds since
∑

u∈N
dxu
dt = k

unless ℓ∗ = 0. This change makes Equality (2) an inequality. Finally, in Equality (5) it may happen that∑
u∈N

dxu
dt < k and

∑
u∈N

dyu
dt < k − n, but in this case ℓ∗ = 0, and so the equality still holds.

Corollary 3.8 shows that Continuous Double Greedy achieves an approximation ratio equal to the
second term in the max expression of Theorems 1.1 and 1.2. The first term is achieved by algorithms
presented in Sections 4.2 and 4.3, respectively. Each one of the algorithms guaranteed by these theorems
executes Continuous Double Greedy and one of the other algorithms, and outputs the better solution.

4 Extended Algorithms
4.1 Fast Algorithms Subject to Matroid Independence
A matroid is a pair (N , I), where N is a ground set, and I ⊆ 2N is a collection of subsets of N . The
collection I must obey the following three properties:

• Non-empty: I ̸= ∅.

• Monotone: If A ⊆ B ∈ I, then A ∈ I.

• Exchange: If A,B ∈ I and |A| < |B|, then there exists an element u ∈ B for which A+ u ∈ I.

If S ∈ I, we say that S is independent, and if S is also maximal inclusion-wise, we say it is a base.
It is well known that all the bases of a matroid M have an equal size known called the rank of M (we
denote the rank of M by k). Matroids capture many natural collections of subsets such as: forests in
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graphs, independent sets in vector spaces and the sets of nodes that appear together in legal matchings of
a given graph [48, 39]. Like submodular functions, the explicit representation of a matroid might also be
exponential in the size of its ground set. The standard way to bypass this difficulty is, again, using an oracle.
For a matroid M = (N , I), given a set S ⊆ N , the oracle answers whether S ∈ I. All the algorithms we
describe access matroids via such oracles.

In this section we give two fast algorithms for the problem max{f(S) | S ∈ I}, where I is the col-
lection of independent sets of a matroidM = (N , I). These algorithms are the algorithms guaranteed by
Theorems 1.5 and Theorems 1.6. One of the algorithms is faster than the other one, but achieves a slightly
worse approximation ratio. In a similar fashion to Reduction 1, we assume the ground set contains a set D
of 2k “dummy” elements that is known to our algorithms and has two properties:

• f(S) = f(S \D) for every set S ⊆ N .

• S ∈ I if and only if S \D ∈ I and |S| ≤ k.

Like in the proof of Reduction 1, we can justify our assumptions by adding such 2k dummy elements to
the ground set, and redefining f and I to the extended ground set using the above properties. Observe that
the existence of the set D allows us to assume also that OPT is a base ofM. We also need the following
reduction which corresponds to Reduction 3.

Reduction 4. We may assume the rank k of the matroid is larger than an arbitrarily large constant. For our
algorithms this reduction increase the time complexity by a constant factor.

Proof. Assume k is smaller than an arbitrary universal constant c. Let c′ = ⌈c/k⌉ and [c′] = {1, 2, . . . , c′].
We replaceN with the ground setN ′ = N × [c′], and define for every set S and i ∈ [c′] the set S=i = {u ∈
N : (u, i) ∈ S}. We now replace the collection of independent sets with I ′ = {S ⊆ N ′ : ∀iS=i ∈ I} and
f with the function f ′ : N ′ → R defined as f ′(S) =

∑c′

i=1 f(S=i). It is easy to see that f ′ is submodular,
and that there exists an approximation ratio preserving reduction from the original problem to the new one.

In our algorithms one can maintain the sets S=1, S=2, . . . , S=c′ for every set S in the algorithm without
increasing the time complexity by more than a constant factor. Using these sets, it is possible to evaluate f ′

in constant time.

Given a set S ⊆ N , let M/S be the contracted matroid (N \ S, IM/S), in which a set S′ ∈ N \ S
belongs to IM/S if and only if S′ ∪ S ∈ I.

Algorithm 3: Residual Random Greedy for Matroids(f,M)

1 Initialize: S0 ← ∅.
2 for i = 1 to k do
3 Let Mi be a base ofM/Si−1 maximizing

∑
u∈Mi

fu(Si−1), whereM/Si−1 is the matroidM
with the set Si−1 contracted.

4 Let ui be a uniformly random element from Mi.
5 Si ← Si−1 + ui.

6 Return Sk.

Consider Algorithm 3. Observe that Mi can be efficiently found via the standard greedy algorithm. For
every 0 ≤ i ≤ ⌈k/2⌉, we construct a random set OPTi for which Si ∪OPTi is a base. For the construction
we need the following lemma from [7], which can be found (with a different notation) as Corollary 39.12a
in [47].
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Lemma 4.1. If A and B are two bases of a matroidM = (N , I), then there exists a one to one function
g : A \B → B \A such for every u ∈ B \A, [A ∪ {u}] \ {g(u)} ∈ I.

For i = 0, we define OPT0 = OPT . For i > 0, OPTi is constructed recursively based on the
algorithm’s behavior. Assume OPTi−1 is already constructed, then let gi : Mi → OPTi−1 be a one to one
function mapping every element u ∈Mi to an element of OPTi−1 in such a way that Si−1∪OPTi−1+u−
gi(u) is a base. Observe that the existence of such function follows immediately from Lemma 4.1. We now
set OPTi = OPTi−1 − gi(ui). It is important that the choice of gi (among the possibly multiple functions
obeying the required properties) is independent of the random choice of ui, which makes gi(ui) a uniformly
random sample from OPTi−1.

Let Ai be an event fixing all the random decisions of Algorithm 3 up to iteration i (including), and let
Ai be the set of all possible Ai events.

Observation 4.2. For every 0 ≤ i ≤ ⌈k/2⌉, E[f(OPTi ∪ Si)] ≥ (k−i)(k−i−1)
k(k−1) · f(OPT ).

Proof. Fix 1 ≤ i ≤ k and an event Ai−1 ∈ Ai−1. All the probabilities, expectations and random quantities
in the first part of this proof are implicitly conditioned on Ai−1. Observe that:

E[fui(OPTi−1 ∪ Si−1)] = (k − i+ 1)−1 ·
∑
u∈Mi

fu(OPTi−1 ∪ Si−1)

≥ (k − i+ 1)−1 · [f(OPTi−1 ∪ Si−1 ∪Mi)− f(OPTi−1 ∪ Si−1)]

≥ − f(OPTi−1 ∪ Si−1)

k − i+ 1
,

where the first inequality follows from submodularity. Similarly,

E[fgi(ui)(OPTi−1 ∪ Si−1 − gi(ui))] = (k − i+ 1)−1 ·
∑
u∈Mi

fgi(u)(OPTi−1 ∪ Si−1 − gi(u))

≤ (k − i+ 1)−1 · [f(OPTi−1 ∪ Si−1)− f(OPTi−1 ∪ Si−1) \Mi]

≤ f(OPTi−1 ∪ Si−1)

k − i+ 1
,

where the first inequality follows, again, from submodularity. Unfixing the event Ai−1, and taking an
expectation over all possible such events, we get:

E[fui(OPT ∪ Si−1)] ≥ −
E[f(OPT ∪ Si−1)]

k − i+ 1
,

and

E[fgi(ui)(OPTi−1 ∪ Si−1 − gi(ui))] ≤
E[f(OPT ∪ Si−1)]

k − i+ 1
,

We are now ready to prove the observation by induction on i. For i = 0, the lemma holds since
E[f(OPT0 ∪ S0)] = f(OPT ) = (k−0)(k−0−1)

k(k−1) · f(OPT ). Assume the lemma holds for i′ < i, and let us
prove it for i > 0.

E[f(OPTi ∪ Si)] = E[f(OPTi−1 ∪ Si−1 + ui − gi(ui))]

≥ E[f(OPTi−1 ∪ Si−1 + ui)] + E[f(OPTi−1 ∪ Si−1 − gi(ui))]− E[f(OPTi−1 ∪ Si−1)]

= E[f(OPTi−1 ∪ Si−1)] + E[fui(OPTi−1 ∪ Si−1)]− E[fg(ui)(OPTi−1 ∪ Si−1 − gi(ui))]
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≥ E[f(OPTi−1 ∪ Si−1)]−
E[f(OPTi−1 ∪ Si−1)]

k − i+ 1
− E[f(OPTi−1 ∪ Si−1)]

k − i+ 1

=
(k − i+ 1)− 2

k − i+ 1
· E[f(OPTi−1 ∪ Si−1)] ≥

k − i− 1

k − i+ 1
· (k − i+ 1)(k − i)

k(k − 1)
· f(OPT )

=
(k − i− 1)(k − i)

k(k − 1)
· f(OPT ) .

The last inequality follows from the inductive assumption.

We are now ready to prove that Algorithm 3 provides the approximation ratio guaranteed by Theo-
rem 1.5.

Proof of Theorem 1.5. Observe that for every 1 ≤ i ≤ k, there are at least k elements in D \ Si−1 and
every element u ∈ D \ Si−1 obeys: fu(Si−1) = 0. By definition, every element of D \ (Si−1 ∪Mi) can
take the place of every element of Mi, and therefore, no element of Mi has a negative marginal contribution
(i.e., fu(Si−1) ≥ 0 for every u ∈ Mi). Since Algorithm 3 always adds an element of Mi to Si−1, we get
f(Si) ≥ f(Si−1). Hence, in order to prove the theorem, it is enough to show that f(Si) ≥ 1/4 for some
0 ≤ i ≤ k. In the rest of this proof, we will show that f(S⌈k/2⌉) ≥ 1/4.

Fix 1 ≤ i ≤ ⌈k/2⌉ and an event Ai−1 ∈ Ai−1. All the probabilities, expectations and random quantities
in the first part of this proof are implicitly conditioned on Ai−1. Observe that:

E[fui(Si−1)] = (k − i+ 1)−1 ·
∑
u∈Mi

fu(Si−1) ≥ (k − i+ 1)−1 ·
∑

u∈OPTi−1

fu(Si−1)

≥ f(OPTi−1 ∪ Si−1)− f(Si−1)

k − i+ 1
,

where the first inequality follows from the definition of Mi and the fact that Si−1 ∪ OPTi−1 is a base.
Unfixing the event Ai−1, and taking an expectation over all possible such events, we get:

E[fui(Si−1)] ≥
E[f(OPTi−1 ∪ Si−1)]− E[f(Si−1)]

k − i+ 1
≥

(k−i+1)(k−i)
k(k−1) · f(OPT )− E[f(Si−1)]

k − i+ 1
,

where the second inequality is due to Observation 4.2. Let us prove by induction that E[f(Si)] ≥ i(k−i)
k(k−1) ·

f(OPT ) for 0 ≤ i ≤ ⌈k/2⌉. For i = 0, this is true since f(S0) ≥ 0 = 0(k−0)
k(k−1) · f(OPT ). Assume now that

the claim holds for every i′ < i, let us prove it for i > 0.

E[f(Si)] = E[f(Si−1)] + E[fui(Si−1)] ≥ E[f(Si−1)] +

(k−i+1)(k−i)
k(k−1) · f(OPT )− E[f(Si−1)]

k − i+ 1

=
k − i

k − i+ 1
· E[f(Si−1)] +

k − i

k(k − 1)
· f(OPT )

≥ k − i

k − i+ 1
· (i− 1)(k − i+ 1)

k(k − 1)
· f(OPT ) +

k − i

k(k − 1)
· f(OPT )

=
(k − i)(i− 1) + (k − i)

k(k − 1)
· f(OPT ) =

i(k − i)

k(k − 1)
· f(OPT ) .
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To conclude the proof, we need to show that i(k−i)
k(k−1) ≥ 1/4 for i = ⌈k/2⌉. Let us consider two cases. If

k is even, then, for i = k/2, we get:

i(k − i)

k(k − 1)
=

(k/2)2

k(k − 1)
=

1

4
· k

k − 1
≥ 1

4
.

If k is odd, then, for i = k/2 + 1/2, we get:

i(k − i)

k(k − 1)
=

(k/2 + 1/2)(k/2− 1/2)

k(k − 1)
=

1

4
· (k + 1)(k − 1)

k(k − 1)
=

1

4
· k + 1

k
≥ 1

4
.

Next, consider Algorithm 4. Observe that Si is a base of M for every 0 ≤ i ≤ k and Mi can be
efficiently found via a standard greedy algorithm. The existence of gi is guaranteed by Lemma 4.1, and
it can be found using an algorithm for finding a perfect matching in a bipartite matching. Mucha and
Sankowski [44] give such an algorithm whose expected time complexity is O(kω), where ω is the exponent
of matrix multiplication.

Algorithm 4: Random Greedy for Matroids(f,M)

1 Initialize: S0 to be an arbitrary base containing only elements of D.
2 for i = 1 to k do
3 Let Mi ⊆ N \ Si−1 be a base ofM containing only elements of N \ Si−1 and maximizing∑

u∈Mi
fu(Si−1).

4 Let gi be a function mapping each element of Mi to an element of Si−1 obeying
Si−1 + u− gi(u) ∈ I for every u ∈ Si−1.

5 Let ui be a uniformly random element from Mi.
6 Si ← Si−1 + ui − gi(ui).

7 Return Sk.

Observation 4.3. For every 0 ≤ i ≤ k, E[f(OPT ∪ Si)] ≥ 0.5(1 + (1− 2/k)i) · f(OPT ).

Proof. Let pi,u be the probability an element u ∈ N \ D belongs to Si for some 0 ≤ i ≤ k. For every
1 ≤ i ≤ k, each element ofN \ Si−1 stays outside of Si with probability at least 1− 1/k, independently of
what happened in previous iterations. On the other hand, an element of Si−1 gets into Si with probability of
only 1− 1/k. Therefore, by the law of total probability:

pi,u ≤ (1− pi−1,u)/k + pi−1,u(1− 1/k) = pi−1,u(1− 2/k) + 1/k .

Let us prove by induction that pi,u ≤ 0.5(1 − (1 − 2/k)i) · f(OPT ). For i = 0, this is true since
p0,u = 0 ≤ 0.5(1− (1− 2/k)0). Assume the claims holds for i′ < i, and let us prove it for i.

pi,u ≤ pi−1,u(1− 2/k) + 1/k ≤ 0.5(1− (1− 2/k)i−1)(1− 2/k) + 1/k

= 0.5(1− (1− 2/k)i) .

Let h : 2N → R+ be the function h(S) = f(S ∪ OPT ). Observe that h is a submodular function, and
by Lemma 2.2, for 1 ≤ i ≤ I:

E[f(OPT ∪ Si)] = E[h(Si \OPT )] ≥ (1−max
u∈N

pi,u) · h(∅) ≥ 0.5(1 + (1− 2/k)i) · f(OPT ) .
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Let Ai be an event fixing all the random decisions of Algorithm 4 up to iteration i (including), and let
Ai be the set of all possible Ai events. We are now ready to prove Algorithm 4 provides the approximation
guaranteed by Theorem 1.6.

Proof of Theorem 1.6. Fix 1 ≤ i ≤ i and an event Ai−1 ∈ Ai−1. All the probabilities, expectations and
random quantities in the first part of this proof are implicitly conditioned on Ai−1. Consider a set M ′

i

containing the elements of OPT \ Si−1 plus enough dummy elements to make its size exactly k. Observe
that:

E[fui(Si−1)] = k−1 ·
∑
u∈Mi

fu(Si−1) ≥ k−1 ·
∑
u∈M ′

i

fu(Si−1)

= k−1 ·
∑

u∈OPT\Si−1

fu(Si−1) ≥
f(OPT ∪ Si−1)− f(Si−1)

k
,

where the first inequality follows from the definition of Mi and the second from the submodularity of f .
Similarly,

E[fg(ui)(Si−1 \ {g(ui)})] = k−1 ·
∑
u∈Mi

fg(u)(Si−1 \ {g(u)}) ≤
f(Si−1)− f(∅)

k
≤ f(Si−1)

k
,

where the first inequality follows from the submodularity of f . Unfixing the event Ai−1, and taking an
expectation over all possible such events, we get:

E[fui(Si−1)] ≥
E[f(OPT ∪ Si−1)]− E[f(Si−1)]

k − i+ 1
≥ 0.5(1 + (1− 2/k)i−1) · f(OPT )− E[f(Si−1)]

k

(where the second inequality is due to Observation 4.3), and

E[fg(ui)(Si−1 \ {g(ui)})] ≤
E[f(Si−1])

k
.

Let us prove by induction that E[f(Si)] ≥ 0.25[1+(2(i+1)/k−1)(1−2/k)i−1] ·f(OPT ). For i = 0,
this is true since f(S0) ≥ 0 = 0.25[1+(2/k−1)(1−2/k)−1] ·f(OPT ). Assume now that the claim holds
for every i′ < i, let us prove it for i > 0.

E[f(Si)] = E[f([Si−1 ∪ {ui}] \ {g(ui)})] ≥ E[f(Si−1 ∪ {ui}) + f(Si−1 \ {g(ui)})− f(Si−1)]

= E[f(Si−1)] + E[fui(Si−1)]− E[fg(ui)(Si−1 \ {g(ui)})]

≥ E[f(Si−1)] +
0.5(1 + (1− 2/k)i−1) · f(OPT )− E[f(Si−1)]

k
− E[f(Si−1])

k

= (1− 2/k) · E[f(Si−1)] +
0.5(1 + (1− 2/k)i−1) · f(OPT )

k

≥ (1− 2/k) · 1 + (2i/k − 1)(1− 2/k)i−2

4
· f(OPT ) +

1 + (1− 2/k)i−1

2k
· f(OPT )

=
1 + (2(i+ 1)/k − 1)(1− 2/k)i−1

4
· f(OPT ) .

In conclusion:

E[f(Sk)] ≥
1 + (2(k + 1)/k − 1)(1− 2/k)k−1

4
· f(OPT ) ≥

1 + e−2(1+2/k)(1−4/k)
1−2/k

4
· f(OPT )
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≥
[
1 + e−2

4
− ε

]
· f(OPT ) ,

where the last inequality holds for large enough k.

4.2 Breaking the 1/e Barrier Subject to |S| ≤ k

. Here we give an algorithm for max{f(S) | |S| ≤ k} that has an approximation ratio better than 1/e for all
values of k. This algorithm is used to prove Theorem 1.1. Random Greedy (Algorithm 1) chooses at each
iteration a random element out of the k elements with the largest marginal values. Algorithm 5 is a variant
of this algorithm that in some iterations chooses a random element out of a larger set. Recall that we assume
Reduction 1 was applied to the input.

Algorithm 5: Wide Random Greedy(f, k)
1 Initialize: S0 ← ∅.
2 for i = 1 to k do
3 Let Mi ⊆ N \ Si−1 be a subset of size Σ(i) maximizing

∑
u∈Mi

fu(Si−1).
4 Let ui be a uniformly random element from Mi.
5 Si ← Si−1 + ui.

6 Return S(k).

Algorithm 5 uses two parameters I and Σ(i) defined as following:

I = ⌈0.21k⌉ and Σ(i) =

{
2(k − i+ 1) i ≤ I
k i > I

Observation 4.4. For every 0 ≤ i ≤ k, |S(i)| = i. Hence, Algorithm 5 outputs a feasible solution.

To simply the analysis of the algorithm, we make use of the following notation:

σi = 0.5 ·
i∑

j=1

(k − j + 1)−1 and πi =

i∏
j=1

(
1− 0.5(k − j + 1)−1

)
.

It is possible to present a “continuous greedy like” version of the algorithm. In this version σi becomes the
time t, and πi becomes e−t. Like in the analysis of the random greedy algorithm, we start by deriving a
lower bound on the value of f(OPT ∪ Si).

Lemma 4.5. For every 0 ≤ i ≤ k,

E[f(OPT ∪ Si)]

f(OPT )
≥
{

πi i ≤ I
πI · (1− 1/k)i−I i ≥ I

Remark: Observe that the two lower bounds given by Lemma 4.5 for E[f(OPT ∪ SI)]/f(OPT ) are
identical.

Proof. In each iteration 1 ≤ i ≤ k of the algorithm, each element of N \ Si−1 stays outside of Si with
probability at least 1 − 1/Σ(i). Therefore, the probability of u to be in Si is upper bounded for 0 ≤ i ≤ I
by:

1−
i∏

j=1

(1− 1/Σ(j)) = 1−
i∏

j=1

(1− 0.5/(k − j + 1)) = 1− πi ,
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and for I ≤ i ≤ k by:

1−
i∏

j=1

(1− 1/Σ(j)) = 1−

 I∏
j=1

(1− 0.5/(k − j + 1))

 · (1− 1/k)i−I = 1− πI · (1− 1/k)i−I .

Let h : 2N → R+ be the function h(S) = f(S ∪ OPT ). Observe that h is a submodular function, and
by Lemma 2.2, for 1 ≤ i ≤ I:

E[f(OPT ∪ Si)] = E[h(Si \OPT )] ≥ πi · h(∅) = πi · f(OPT ) ,

and for I ≤ i ≤ k:

E[f(OPT ∪ Si)] = E[h(Si \OPT )] ≥ πI · (1− 1/k)i−I · h(∅) = πI · (1− 1/k)i−I · f(OPT ) .

In general there is no guarantee that Algorithm 5 will do well. Hence, we first consider the case when
Assumption 4.6 holds.

Assumption 4.6. For every 1 ≤ i ≤ I , the element of Mi with the least marginal value still has in expecta-
tion a relatively large marginal value. More formally, let mi be the element of Mi with the least marginal
value. Notice that mi is a random variable depending on the decisions of the algorithm in previous itera-
tions. Then:

E[fmi(Si−1)] ≥ ℓ(i)/(k − i+ 1) · f(OPT ) ,

where ℓ(i) = 0.253− 2.33σi−1 + 4.5σ2
i−1.

Lemma 4.7. Assuming Assumption 4.6 holds, then:

E [f(Si)]

f(OPT )
≥
{

11.583(1− πi) + σi(πi − 11.33 + 4.5σi)− 4.5/[4(k − i)] i ≤ I
(1− 1/k)i−I−1[(1− 1/k) · V (I) + πI · (i− I)/k] i ≥ I

where V (I) = 11.583(1− πI) + σI(πI − 11.33+ 4.5σI)− 4.5/[4(k− I)]. Moreover, the above is true for
i′ even if Assumption 4.6 holds only for 0 ≤ i < i′.

Remark: Observe that the two lower bounds given by Lemma 4.5 for E[f(SI)]/f(OPT ) coincide.

Proof. Let Ai be an event fixing all the random decisions of Algorithm 3 up to iteration i (including), and
let Ai be the set of all possible Ai events. Fix 1 ≤ i ≤ k and an event Ai−1 ∈ Ai−1. All the probabilities,
expectations and random quantities in the first part of this proof are implicitly conditioned on Ai−1.

Next, we transform the set Mi into a set M ′
i by adding the missing elements of OPT , and removing

elements of Mi \OPT till |M ′
i | = |Mi|. By submodularity, for i ≤ I:

E[fui(Si−1)] =
1

Σ(i)
·
∑
u∈Mi

fu(Si−1) ≥
1

Σ(i)
·
∑
u∈M ′

i

fu(Si−1)

≥ 1

Σ(i)
·

[ ∑
u∈OPT

fu(Si−1) + (k − i+ 1) · fmi(Si−1)

]

≥ f(OPT ∪ Si−1)− f(Si−1)

Σ(i)
+

(k − i+ 1) · fmi(Si−1)

Σ(i)
,
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where the first inequality follows by the definition of Mi, and the second one follows since there are at least
k − i + 1 elements in M ′

i \ OPT , and these elements also belong to Mi, and therefore, have a marginal
contribution of at least fmi(Si−1) each (notice that fmi(Si−1) ≥ 0 due to the application of Reduction 1).
Unfixing the event Ai−1, and taking the expectation now over all possible such events, we get:

E[fui(Si−1)] ≥
E[f(OPT ∪ Si−1)− f(Si−1)]

Σ(i)
+

ℓ(i)

Σ(i)
· f(OPT ) .

It is easy to see that for i > I , the same inequality still holds without the last term (ℓ(i)/Σ(i)). Using
this observation, let us prove the lemma by induction. For i = 0, the lemma holds since:

E [f(S0)]

f(OPT )
≥ 0 > 11.583(1− π0) + σ0(π0 − 11.33 + 4.5σ0)−

4.5

4k
.

Assume the lemma holds for every i′ < i, and let us prove it for i > 0. First consider the case i ≤ I .
Clearly,

E [f(Si)]

f(OPT )
=

E [f(Si−1)]

f(OPT )
+

E [fui(Si−1)]

f(OPT )
≥ E [f(Si−1)]

f(OPT )
+

E[f(OPT ∪ Si−1)− f(Si−1)]

f(OPT ) · Σ(i)
+

ℓ(i)

Σ(i)

=
(1− 1/Σ(i)) · E [f(Si−1)]

f(OPT )
+

E[f(OPT ∪ Si−1)]

f(OPT ) · Σ(i)
+

ℓ(i)

Σ(i)
.

Since i ≤ I , we also have i− 1 ≤ I , and therefore:

E [f(Si)]

f(OPT )
≥
(
1− 1

2(k − i+ 1)

)
·
{
11.583(1− πi−1) + σi−1(πi−1 − 11.33 + 4.5σi−1)−

4.5

4(k − i+ 1)

}
+

πi−1

2(k − i+ 1)
+

0.253− 2.33σi−1 + 4.5σ2
i−1

2(k − i+ 1)

≥ 11.583(1− πi) + σi−1(πi − 11.33 + 4.5σi−1) +
−11.583 + 11.33σi−1 − 4.5σ2

i−1

2(k − i+ 1)

+
πi−1 + 0.253− 2.33σi−1 + 4.5σ2

i−1

2(k − i+ 1)
− 4.5

4(k − i+ 1)

≥ 11.583(1− πi) + σi−1(πi − 11.33 + 4.5σi−1) +
πi − 11.33 + 9σi−1

2(k − i+ 1)
− 4.5

4(k − i+ 1)

= 11.583(1− πi) + σi(πi − 11.33 + 4.5σi)−
4.5

4
·
[

1

(k − i+ 1)2
+

1

k − i+ 1

]
> 11.583(1− πi) + σi(πi − 11.33 + 4.5σi)−

4.5

4(k − i)
.

Consider now the case i > I . In this case:

E [f(Si)]

f(OPT )
=

E [f(Si−1)]

f(OPT )
+

E [fui(Si−1)]

f(OPT )
≥ E [f(Si−1)]

f(OPT )
+

E[f(OPT ∪ Si−1)− f(Si−1)]

f(OPT ) · Σ(i)

=
(1− 1/Σ(i)) · E [f(Si−1)]

f(OPT )
+

E[f(OPT ∪ Si−1)]

f(OPT ) · Σ(i)
.

Since i > I , we have i− 1 ≥ I , and therefore:

E [f(Si)]

f(OPT )
≥ (1− 1/k) ·

{
(1− 1/k)i−I−2[(1− 1/k) · V (I) + πI · (i− 1− I)/k]

}
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+
πI · (1− 1/k)i−1−I

k

= (1− 1/k)i−I−1[(1− 1/k) · V (I) + πI · (i− I)/k] .

To use the bounds given by Lemma 4.7, we need bounds on πi and σi.

Lemma 4.8. For every 0 ≤ i ≤ I:

−0.5 ln(1− i/(k + 1)) ≤ σi ≤ −0.5 ln(1− i/k) and
√

1− i/k ≤ πi ≤
√

1− i/(k + 1) .

Proof. Observe that:

σi = 0.5 ·
i∑

j=1

(k − j + 1)−1 ≤ 0.5 ·
∫ i+1

1

dx

k − x+ 1
= −0.5 ln(1− i/k) .

σi = 0.5 ·
i∑

j=1

(k − j + 1)−1 ≥ 0.5 ·
∫ i

0

dx

k − x+ 1
= −0.5 ln(1− i/(k + 1)) .

πi =
i∏

j=1

(1− 0.5(k − j + 1)−1) ≥
i∏

j=1

√
1− (k − j + 1)−1 =

i∏
j=1

√
k − j

k − j + 1
=
√

1− i/k .

Let xj = (k − j + 1). For every j ≤ I and large enough k, xj ≥ 1/2, which implies:

(1− 0.5/xj)
2 ≤ 1− 1/(xj + 1),

and therefore,

πi =
i∏

j=1

(1− 0.5(k − j + 1)−1) ≤
i∏

j=1

√
1− (k − j + 2)−1 =

i∏
j=1

√
k − j + 1

k − j + 2
=
√

1− i/(k + 1) .

We are now ready to analyze Algorithm 5 under Assumption 4.6.

Corollary 4.9. Assuming Assumption 4.6 holds, then Algorithm 5 is a 0.372-approximation algorithm.

Proof. Plugging I = ⌈0.21k⌉ into the bounds given by Lemma 4.8, we get for large enough k:

0.1178 ≤ σI ≤ 0.1179 , and 0.8888 ≤ πI ≤ 0.8889 .

Therefore:

V (I) = 11.583(1− πI) + σI(πI − 11.33 + 4.5σI)− 4.5/[4(k − I)]

≥ 11.583(1− 0.8889) + σI(0.8888− 11.33 + 4.5 · 0.1178)− 4.5/[4(k − 0.22k)]

> 1.2868 + 0.1179 · (−9.9111)− 4.5/(3.12k) > 0.1182 ,

where the last inequality holds for large enough k. Thus,

E [f(Sk)]

f(OPT )
≥ (1− 1/k)k−I−1[(1− 1/k) · V (I) + πI · (k − I)/k]

> (1− 1/k)0.79k−1[(1− 1/k) · 0.1182 + 0.8888 · (0.79k − 1)/k]

≥ [e−1(1− 1/k)]0.79−1/k[(1− 1/k) · 0.1182 + 0.8888 · (0.79− 1/k)]

> 0.372 ,

where the last inequality holds, again, for large enough k.
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We can also deduce from Lemma 4.8 the following observation, which is used later on.

Corollary 4.10. For every 1 ≤ i ≤ I , ℓ(i) ≥ 0.

Proof. Observe that for every 0 ≤ j ≤ I and large enough k:

σj ≤ − 0.5 ln(1− j/k) ≤ −0.5 ln(1− I/k) < −0.5 ln(1− 0.22) = −0.5 ln 0.78 < 0.125 .

Thus, σi−1 ∈ [0, 0.125). Recall that ℓ(i) = 0.253 − 2.33σi−1 + 4.5σ2
i−1, and it can be easily checked

that this expression is non-negative in the range [0, 0.125).

Next, we should consider what happens when Assumption 4.6 does not hold. In this case the following
assumption must hold.

Assumption 4.11. There exists a value 1 ≤ i′ ≤ I for which:
• Assumption 4.6 does not hold for i = i′.
• Assumption 4.6 holds for every 1 ≤ i < i′.

Consider Algorithm 6. This algorithm gets the state of Algorithm 5 before iteration i = i′ (where i′ is
the value whose existence is guaranteed by Assumption 4.6), and uses it to output a good solution.

Algorithm 6: Augmentation Procedure(f, k, i, Si−1)

1 Let Mi ⊆ N \ Si−1 be a subset of size 2(k − i+ 1) maximizing
∑

u∈Mi
fu(Si).

2 Apply Continuous Double Greedy to find a subset Bi ⊆Mi of size at most k − i+ 1 maximizing
gi(Bi) = f(Bi ∪ Si−1).

3 Let Zi ← Si−1 ∪Bi.
4 Return Zi.

The feasibility of the output Zi of the algorithm follows since |Zi| ≤ |Si−1|+|Bi| ≤ (i−1)+(k−i+1) =
k. Also, observe that gi is a submodular function, and therefore, we can use in the analysis of Algorithm 6
the approximation ratio guaranteed above for Continuous Double Greedy (Algorithm 2).

Lemma 4.12. Assuming Assumption 4.11 holds, then:

E[gi′(Bi′)] ≥ 0.5(1− (i′ − 1)/k) · E[f(Si′−1 ∪OPT )]

+ 0.25[1 + 2(i′ − 1)/k] · E[f(Si′−1)]− 0.5ℓ(i′) · f(OPT ) .

Proof. Let us assume |OPT | = k (if this is not the case, we can add k − |OPT | dummy elements of
D \ OPT to OPT ), and let OPTi be a random subset of OPT of size k − i + 1. We would like to prove
that gi′(OPTi′ ∩Mi′) is large in expectation. The submodularity of gt′ implies:

gi′(OPTi′ ∩Mi′) ≥ gi′(OPTi′) + gi′(∅)− gi′(OPTi′ \Mi′)

= gi′(OPTi′)− [f((OPTi′ \Mi′) ∪ Si′−1))− f(Si′−1)] .

Since assumption 4.6 does not hold for i′, the expected contribution of an element outside of Mi′ must
be less than ℓ(i′)/k · f(OPT ) (since it lower bounds the expected contribution of mi′). By Lemma 2.1:

E[f(Si′−1 ∪ (OPTi′ \Mi′))− f(Si′−1)] ≤ E

 ∑
u∈OPTi′\Mi′

fu(Si′−1)
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≤ E

 ∑
u∈OPTi′\Mi′

[ℓ(i′)/(k − i′ + 1) · f(OPT )]


≤ ℓ(i′) · f(OPT ) ,

where the last inequality follows due to Corollary 4.10, and the observation |OPTi′ \Mi′ | ≤ |OPTi′ | ≤
k − i′ + 1. Combining the two above inequalities, we get:

E[gi′(OPTi′ ∩Mi′)] ≥ E[gi′(OPTi′)]− ℓ(i′) · f(OPT ) .

Notice also that |OPTi′ ∩Mi′ | ≤ |OPTi′ | ≤ k − i + 1, and therefore, Continuous Double Greedy
is guaranteed to outputs a set Bi′ such that E[gi′(Bi′))] ≥ 0.5 · [E[gi′(OPTi′)] − ℓ(i′) · f(OPT )] + 0.25 ·
E[gi′(∅)] = 0.5 · [E[gi′(OPTi′)]− ℓ(i′) · f(OPT )] + 0.25 · E[f(Si′−1)].

To complete the proof of the lemma, observe that by Lemma 2.1, E[gi′(OPTi′)] ≥ (1 − (i′ − 1)/k) ·
E[gi′(OPT )]+(i′−1)/k ·E[gi′(∅)] ≥ (1− (i′−1)/k) ·E[f(Si′−1∪OPT )]+(i′−1)/k ·E[f(Si′−1)].

Corollary 4.13. Assuming Assumption 4.11 holds, then:

E[f(Zi′)] ≥ 0.5(1− (i′ − 1)/k) · E[f(Si′−1 ∪OPT )] + 0.25[1 + 2(i′ − 1)/k] · E[f(Si′−1)]

− 0.5ℓ(i′) · f(OPT ) .

Proof. Follows from Lemma 4.12 since E[f(Zi′)] = E[f(Si′−1 ∪Bi′)] = E[gi′(Bi′)].

Using the above machinery, we can now prove:

Lemma 4.14. Assuming Assumption 4.11 holds, then E[f(Zi′)] ≥ 0.372 · f(OPT ).

Proof. Observe that:

E[f(Zi′)]

f(OPT )
≥ 0.5(1− (i′ − 1)/k) · E[f(Si′−1 ∪OPT )]/f(OPT ) (6)

+ 0.25[1 + 2(i′ − 1)/k] · E[f(Si′−1)]/f(OPT )− 0.5ℓ(i′)

≥ 0.5(1− (i′ − 1)/k) · πi′−1 + 0.25[1 + 2(i′ − 1)/k] · [11.583(1− πi′−1)

+ σi′−1(πi′−1 − 11.33 + 4.5σi′−1)− 4.5/[4(k − i′)]]− 0.5ℓ(i′)

≥ 0.5(1− (i′ − 1)/k) ·
√

1− (i′ − 1)/k

+ 0.25[1 + 2(i′ − 1)/k] · [11.583(1−
√
1− (i′ − 1)/(k + 1))

+ σi′−1(
√

1− (i′ − 1)/k − 11.33− 4.5 ln(1− (i′ − 1)/(k + 1)))]− 4.5/[4(k − i′)]

− 0.5ℓ(i′)

≥ 0.5(1− (i′ − 1)/k) ·
√

1− (i′ − 1)/k

+ 0.25[1 + 2(i′ − 1)/k] · [11.583(1−
√
1− (i′ − 1)/(k + 1))

− 0.5 ln(1− (i′ − 1)/k) · (
√

1− (i′ − 1)/k − 11.33− 4.5 ln(1− (i′ − 1)/(k + 1)))]

− 4.5/[4(k − i′)]− 0.5ℓ(i′) ,

where the first inequality follows from Corollary 4.13, the second from Lemma 4.5 and the second part of
Lemma 4.7, the third follows from Lemma 4.8 and the last follows again from Lemma 4.8 by observing that
the coefficient of σi′ is negative.
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Let x = 1− i′/k. Up to a constant that goes to 0 as k increases, the rightmost hand side of (6) is equal
to:

0.5x ·
√
x+ 0.25[1 + 2(1− x)] · [11.583(1−

√
x)− 0.5 lnx · (

√
x− 11.33− 4.5 lnx)]

− 0.5[0.253 + 1.165 lnx+ 1.125 ln2 x]

= 0.5x3/2 + [0.75− 0.5x] · [11.583− 11.583
√
x− 0.5

√
x lnx+ 5.665 lnx+ 2.25 ln2 x]

− 0.1265− 0.5825 lnx− 0.5625 ln2 x

= 6.2915x3/2 + 8.56075− 5.7915x− 8.68725
√
x+ 3.66525 lnx− 2.8325x lnx (7)

+ 1.125 ln2 x− 1.125x ln2 x− 0.375
√
x lnx+ 0.25x3/2 lnx .

The derivative of (7) with respect to x is:

9.43725
√
x− 5.7915− 4.343625/

√
x+ 3.66525/x− 2.8325 lnx− 2.8325 + 2.25x−1 lnx

− 1.125 ln2 x− 2.25 lnx− 0.375/
√
x− 0.1875 lnx/

√
x+ 0.375

√
x lnx+ 0.25

√
x

= 9.68725
√
x− 8.624− 4.718625/

√
x+ 3.66525/x− 5.0825 lnx+ 2.25x−1 lnx

− 1.125 ln2 x− 0.1875 lnx/
√
x+ 0.375

√
x lnx .

We would like to determine where is this derivative 0 in the range [0.79, 1]. Consider a range [y, y +
0.0001], where 79 ≤ 10000y ≤ 10000 and 10000y is an integer. In this range the above derivative can be
upper bounded by:

9.68725
√

y + 0.0001− 8.624− 4.718625/
√
y + 0.0001 + 3.66525/y − 5.0825 ln y

+ 2.25(y + 0.0001)−1 ln(y + 0.0001)− 1.125 ln2 y − 0.1875 ln y/
√
y

+ 0.375
√

y + 0.0001 ln(y + 0.0001) .

By a brute force checking of all the relevant y values, we get that this upper bound is negative for
y < 0.9878. Similarly, the above derivative can be lower bounded by:

9.68725
√
y − 8.624− 4.718625/

√
y + 3.66525/(y + 0.0001)− 5.0825 ln(y + 0.0001)

+ 2.25y−1 ln y − 1.125 ln2(y + 0.0001)− 0.1875 ln(y + 0.0001)/
√

y + 0.0001

+ 0.375
√
y ln y .

By a brute force checking of all the relevant y values, we get that this lower bound is positive for
y > 0.9902. Hence, (7) is minimized either at x = 0.79, x = 1 or x ∈ [0.9878, 0.9903]. For both x = 0.79
and x = 1, it can be checked that the value of (7) is at at least 0.3735. The above bounds on the derivative
also imply that in the range [0.9878, 0.9903], the absolute value of the derivative is no more than 0.0021.
Thus, the value of (7) does not change by more than 0.0021 · 0.25 < 0.0006 in this range. The value of (7)
corresponding to x = 0.99 is larger than 0.3734, and therefore, in the range [0.9878, 0.9903] the expression
(7) takes only values that are no less than 0.3734− 0.0006 = 0.3728.

We can now execute both Algorithms 5 and 6 (for every 1 ≤ i ≤ I), and output the best solution found.
Since (exactly) one of the Assumptions 4.6 and 4.11 must hold, we get by Corollary 4.9 and Lemma 4.14
that at least one of the two algorithms must find a solution of value at least 0.372 · f(OPT ).

Corollary 4.15. There exists a 0.372-approximation algorithm for maximizing an independent set under a
cardinality constraint.

25



Notice that 1/e + 0.004 < 0.372, and thus, Corollary 4.15 provides an approximation ratio which is as
good as the first term in the max expression of Theorem 1.1. Hence, to prove Theorem 1.1 it is enough to
build an algorithm that executes Continuous Double Greedy (Algorithm 2) and the algorithm of Corol-
lary 4.15, and outputs the better solution.

4.3 Fast Algorithms Subject to |S| = k

In this section we are interested in analyzing the approximation that can be achieved using Random Greedy
for the problem max{f(S) : |S| = k}. To do that, we drop the assumption that Reduction 1 was applied,
and assume instead that Reduction 2 was applied. Looking again at the pseudo-code of Random Greedy
(Algorithm 1), one can observe that it always selects exactly k elements. However, the analysis of the
algorithm in Section 3.1 assumed Reduction 1 was applied, and therefore, the output of the algorithm could
contain strictly less than k elements. On the other hand, under Reduction 2 the output of Random Greedy
is guaranteed to be of size exactly k.

The analysis of Random Greedy in Section 3.1 for non-monotone objectives begins with Observa-
tion 3.2 which lower bounds the expected value of f(OPT ∪ Si). We notice that the proof of this obser-
vation does not use anything from Reduction 1, except for the guarantee 2k ≤ n. As this guarantee also
follows from Reduction 2, Observation 3.2 still holds in our current setting. The following observation gives
an upper bound on f(Si). Let Ai be an event fixing all the random decisions of the algorithm in the first i
iterations, and let Ai be the set of all possible Ai events.

Observation 4.16. For every 0 ≤ i ≤ k, given any event Ai ∈ Ai, f(Si) ≤ 2f(OPT ).

Proof. Fix the event Ai. All the probabilities, expectations and random quantities in this proof are implicitly
conditioned on Ai. Observe that once we fix Ai, the set Si becomes constant. Let Bi and B′

i be two disjoint
sets containing k − i elements of N \ Si each (there exists such sets because |N \ Si| = n− i ≥ 2k − i ≥
2(k − i)). Then,

2f(OPT ) ≥ f(Si ∪B′
i) + f(Si ∪Bi) ≥ f((Si ∪Bi) ∩ (Si ∪B′

i)) = f(Si) ,

where the first inequality follows from the definition of OPT and the second from submodularity and non-
negativity.

Let us now consider the series of random variables X1, X2, . . . , Xk, where Xi = |OPT \ Si|.

Observation 4.17. For every 1 ≤ i ≤ k, and event Ai−1 ∈ Ai−1, Pr[Xi = Xi−1 − 1 | Ai−1] ≤
E[Xi−1 | Ai−1]

k .

Proof. The set Mi−1 contains k elements ofN \Si−1, and at most Xi−1 of these belong to OPT . Therefore:

Pr[Xi = Xi−1 − 1 | Ai−1] = Pr[ui ∈ OPT | Ai−1] ≤
E[Xi−1 | Ai−1]

k
.

The next lemma bounds the expected difference between the values of Si−1 and Si. Denote the term
2e
e−1 · E[max{k(1− 1/k)i −Xi, 0}] · f(OPT )/k2 by Ei.

Lemma 4.18. For every 1 ≤ i ≤ k:

E[fui(Si−1)] ≥
(1− 1/k)i−1

k
· f(OPT )− n+ k + 1− i− 2k(1− 1/k)i−1

k(n+ 1− i− k(1− 1/k)i−1)
· E[f(Si−1)]− Ei−1 .
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Proof. Fix an event Ai−1 ∈ Ai. All the probabilities, expectations and random quantities in the first part
of this proof are implicitly conditioned on Ai−1. Let us construct a set M ′

i as following. M ′
i contain the

Xi−1 elements of OPT \ Si−1 plus k − Xi−1 uniformly random elements from N \ (OPT ∪ Si−1). By
Lemma 2.1:

E[f(Si−1 ∪ (M ′
i \OPT ))] ≥ k −Xi−1

|N \ (OPT ∪ Si−1)|
· f(Si−1 ∪ (N \OPT ))

+

(
1− k −Xi−1

|N \ (OPT ∪ Si−1)|

)
· f(Si−1)

≥
(
1− k −Xi−1

n+ 1− i−Xi−1

)
· f(Si−1) =

n+ 1− i− k

n+ 1− i−Xi−1
· f(Si−1) .

By the definition of Mi:

E[fui(Si−1)] = k−1 ·
∑
u∈Mi

fu(Si−1) ≥ k−1 ·
∑
u∈M ′

i

fu(Si−1)

≥ k−1 · {[f(Si−1 ∪ (M ′
i ∩OPT ))− f(Si−1)] + [f(Si−1 ∪ (M ′

i \OPT ))− f(Si−1)]}

≥ k−1 ·
{
[f(Si−1 ∪OPT )− f(Si−1)] +

[
n+ 1− i− k

n+ 1− i−Xi−1
· f(Si−1)− f(Si−1)

]}
= k−1 ·

[
f(Si−1 ∪OPT )− f(Si−1)−

k −Xi−1

n+ 1− i−Xi−1
· f(Si−1))

]
≥ k−1 ·

[
f(Si−1 ∪OPT )− f(Si−1) (8)

− k − k(1− 1/k)i−1 +max{k(1− 1/k)i−1 −Xi−1, 0}
n+ 1− i− k(1− 1/k)i−1 +max{k(1− 1/k)i−1 −Xi−1, 0}

· f(Si−1))

]
≥ k−1 ·

[
f(Si−1 ∪OPT )− f(Si−1) (9)

−k − k(1− 1/k)i−1 +max{k(1− 1/k)i−1 −Xi−1, 0}
n+ 1− i− k(1− 1/k)i−1

· f(Si−1)

]
≥ k−1 ·

[
f(Si−1 ∪OPT )− f(Si−1)−

k − k(1− 1/k)i−1

n+ 1− i− k(1− 1/k)i−1
· f(Si−1))

−max{k(1− 1/k)i−1 −Xi−1, 0}
(1− e−1)k

· f(Si−1))

]
≥ k−1 ·

[
f(Si−1 ∪OPT )− n+ k + 1− i− 2k(1− 1/k)i−1

n+ 1− i− k(1− 1/k)i−1
· f(Si−1)) (10)

−2 ·max{k(1− 1/k)i−1 −Xi−1, 0}
(1− e−1)k

· f(OPT ))

]
,

where inequality (8) holds since 0 ≤ k−Xi ≤ 2k+1− i−Xi ≤ n+1− i−Xi, and inequality (9) holds
since k − k(1− 1/k)i−1 ≥ k − k ≥ 0 and:

n+ 1− i− k(1− 1/k)i−1 +max{k(1− 1/k)i−1 −Xi−1, 0} ≥ 2k + 1− i− ke−(i−1)/k ≥ (1− e−1)k .

To justify the last inequality, set x = i− 1. This gives, 2k−x−ke−x/k, whose minimum in the range [0, k]
is (1 − e−1)k. Finally, inequality (10) follows from Observation 4.16. Unfixing the event Ai, and taking
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now the expectation over all the random choices of the algorithm, we get:

E[fui(Si−1)] ≥ k−1 ·
[
E[f(Si−1 ∪OPT )]− n+ k + 1− i− 2k(1− 1/k)i−1

n+ 1− i− k(1− 1/k)i−1
· E[f(Si−1))]

−2 ·max{k(1− 1/k)i−1 −Xi−1, 0}
(1− e−1)k

· f(OPT ))

]
≥ (1− 1/k)i−1

k
· f(OPT )− n+ k + 1− i− 2k(1− 1/k)i−1

k(n+ 1− i− k(1− 1/k)i−1)
· E[f(Si−1)]− Ei−1 ,

where the last inequality follows from Observation 3.2.

We would like to use the last lemma to prove a lower bound on E[f(Si)]. However, we first need to
simplify it.

Observation 4.19. Let us prove n+k+1−i−2k(1−1/k)i−1

n+1−i−k(1−1/k)i−1 ≤ 1 + i−1
n−k .

Proof. Rearranging the inequality that we want to prove, we get:

k − k(1− 1/k)i−1

n+ 1− i− k(1− 1/k)i−1
≤ i− 1

n− k
.

For n = 2k, this inequality becomes:

k − k(1− 1/k)i−1

2k + 1− i− k(1− 1/k)i−1
≤ i− 1

k
,

which can be proved as following. Plugging x = (i− 1)/k, we get:

1− (1− 1/k)i−1

2− x− (1− 1/k)i−1
≤ x⇔ 1− (1− 1/k)i−1 ≤ 2x− x2 − x(1− 1/k)i−1

⇔ 1− 2x+ x2 ≤ (1− x)(1− 1/k)i−1 ⇔ 1− x ≤ (1− 1/k)i−1 ⇔ 1− i− 1

k
≤ (1− 1/k)i−1 .

Let us upper bound the denominator 2k + 1 − i − k(1 − 1/k)i−1. Notice that this denominator is
a decreasing function of i: an increase of 1 in the value of i changes the denominator by −1 + k(1 −
1/k)i−1/k = −1 + (1 − 1/k)i−1 < 0. Thus, this denominator is never larger than 2k + 1 − 1 − k(1 −
1/k)1−1 = k. Thus,

k − k(1− 1/k)i−1

n+ 1− i− k(1− 1/k)i−1
=

2k + 1− i− k(1− 1/k)i−1

n+ 1− i− k(1− 1/k)i−1
· k − k(1− 1/k)i−1

2k + 1− i− k(1− 1/k)i−1

=
2k + 1− i− k(1− 1/k)i−1

(n− 2k) + 2k + 1− i− k(1− 1/k)i−1
· k − k(1− 1/k)i−1

2k + 1− i− k(1− 1/k)i−1

≤ k

(n− 2k) + k
· k − k(1− 1/k)i−1

2k + 1− i− k(1− 1/k)i−1
≤ k

n− k
· i− 1

k
=

i− 1

n− k
.

We are now ready to lower bound E[f(Si)].

Lemma 4.20. E[f(Sk)] ≥
[√

π(n/k−1)/2·erfi(1/
√

2(n/k−1))

e(2n/k−1))/(2n/k−2) −O(k−1)

]
· f(OPT )−

∑i−1
j=0Ej .
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Proof. By Lemma 4.18 and Observation 4.19, E[f(Sk)] ≥ ak · f(OPT )−
∑i−1

i=0Ei, where ak is given by
the following recursive definition:

a0 = 0 and ai = ai−1 +
(1− 1/k)i−1

k
−
[
1

k
+

i− 1

k(n− k)

]
· ai−1 .

Observe that:

(1− 1/k)i−1

k
−
[
1

k
+

i− 1

k(n− k)

]
· ai−1 =

[(1− 1/k)k](i−1)/k

k
−
[
1

k
+

i− 1

k(n− k)

]
· ai−1

≥ e−(i−1)/k(1− 1/k)

k
−
[
1

k
+

(i− 1)/k

n− k

]
· ai−1

≥ e−(i−1)/k

k
−
[
1

k
+

(i− 1)/k

n− k

]
· ai−1 − k2 .

Let us define the function: h(x) =
√

π(n−k)/(2k)·erfi(x/
√

2(n−k)/k)

ex(2(n−k)+xk)/(2(n−k)) . It can be checked that:

h(x) = 0 and h′(x) = e−x − h(x) ·
(
1 +

kx

n− k

)
.

Let us determine some properties of h. First, the derivative of erfi(z) is 2π−0.5ez
2
, which is at most

2eπ−0.5 for 0 ≤ z ≤ 1. Thus, in this range, erfi(z) ≤ 2ezπ−0.5. This implies that for 0 ≤ x ≤ 1,

h(x) =

√
π(n− k)/(2k) · erfi(x/

√
2(n− k)/k)

ex(2(n−k)+xk)/(2(n−k))

≤
√

π(n− k)/(2k) · (2eπ−0.5/
√

2(n− k)/k) = e ,

which implies:

h′(x) = e−x − h(x) ·
(
1 +

kx

n− k

)
≥ −e ·

(
1 +

k

2k − k

)
= −2e .

Our next step is to prove by induction that for every 0 ≤ i ≤ k: ai ≥ h(i/k)− (4e+1)i/k2. For i = 0,
a0 = 0 = h(0) − 4e · 0/k2 = h(0/k). Assume now that the claim holds for i − 1, and let us prove it for
i ≥ 1:

ai ≥ ai−1 +
e−(i−1)/k

k
−
[
1

k
+

(i− 1)/k

n− k

]
· ai−1 − k−2

=
e−(i−1)/k

k
+

{
1−

[
1

k
+

(i− 1)/k

n− k

]}
· ai−1 − k−2

≥ e−(i−1)/k

k
+

{
1−

[
1

k
+

(i− 1)/k

n− k

]}
·
(
h(i− 1/k)− (4e+ 1)(i− 1)/k2

)
− k−2

≥ h((i− 1)/k)− (4e+ 1)(i− 1)/k2 +

∫ i/k

(i−1)/k

{
e−x −

[
1 +

kx

n− k

]
· h((i− 1)/k)

}
dx− k−2

≥ h((i− 1)/k)− (4e+ 1)(i− 1)/k2 +

∫ i/k

(i−1)/k

{
e−x −

[
1 +

kx

n− k

]
· (h(x) + 2e/k)

}
dx− k−2
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= h((i− 1)/k)− (4e+ 1)(i− 1)/k2 +

∫ i/k

(i−1)/k

{
h′(x)− 4e/k

}
dx− k−2

= h(i/k)− (4e+ 1)i/k2 ,

where the second inequality holds for k ≥ 2 and the last inequality follows from our bound on h′(x). In
conclusion:

ak ≥ h(k/k)− (4e+ 1)k/k2 =

√
π(n/k − 1)/2 · erfi(1/

√
2(n/k − 1))

e(2n/k−1))/(2n/k−2)
−O(k−1) .

The lower bound given by Lemma 4.20 includes the error term
∑i−1

j=0Ej which we analyze next. Let
Y0, Y1, . . . , Yk be a series of random variables defined as following. Y0 = k. For 1 ≤ i ≤ k:

Yi =

{
Yi−1 − 1 with probability Yi−1/k
Yi−1 otherwise

Observation 4.21. It is possible to couple the random variables {Xi, Yi}ki= so that Xi ≥ Yi always for
every 0 ≤ i ≤ k.

Proof. The following shorthand will come in handy in this proof:

p(X ′
i−1, Y

′
i−1) =

Y ′
i−1/k − Pr[Xi = X ′

i−1 − 1 | Xi−1 = X ′
i−1, Yi−1 = Y ′

i−1]

Pr[Xi = X ′
i−1 | Xi−1 = X ′

i−1, Yi−1 = Y ′
i−1]

.

Let us consider an alternative definition for Yi (when i > 0). Given values Y ′
i−1, X

′
i−1, X

′
i for the variables

Yi−1, Xi−1, Xi, respectively, let us choose a value for Yi as follows.

• If Y ′
i−1 < X ′

i−1, then set Yi = Y ′
i−1 − 1 with probability Y ′

i−1/k and set Yi = Y ′
i−1 otherwise.

• If Y ′
i−1 = X ′

i−1 = X ′
i + 1, then set Yi = Y ′

i−1 − 1.

• If Y ′
i−1 = X ′

i−1 = X ′
i, then set Yi = Y ′

i−1 − 1 with probability p(X ′
i−1, Y

′
i−1), and set Yi = Yi−1

otherwise.

Let us prove by induction on i that:

• For X ′
i−1 = Y ′

i−1, p(X ′
i−1, Y

′
i−1) ∈ [0, 1].

• The distribution of Yi given by the alternative definition is identical to its distribution under the original
definition.

• It always holds that Xi ≥ Yi.

For i = 0, it is enough to observe that X0 = k = Y0. Assume the claim holds for i′ < i, and let us prove it
for i > 0. It is clear from the above process that if Xi−1 ≥ Yi−1 then we will also have Xi ≥ Yi.

Next, let us prove p(X ′
i−1, Y

′
i−1) ∈ [0, 1] when X ′

i−1 = Y ′
i−1. Notice that an event Ai−1 ∈ Ai−1

determines completely the value of Xi−1 and a distribution over the value of Yi−1. On the other hand,
recall that by Observation 4.17, Pr[Xi = Xi−1 − 1 | Ai−1] ≤ E[Xi−1 | Ai−1]/k. The variable Yi−1

is independent of the random choice of the algorithm at the ith iteration, and therefore, gives no further
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information regarding Xi when the event Ai−1 is already known. Thus, Pr[Xi = Xi−1 − 1 | Ai−1, Yi−1 =
Y ′
i−1] ≤ E[Xi−1 | Ai−1]/k, which implies:

Pr[Xi = X ′
i−1 − 1 | Xi−1 = X ′

i−1, Yi−1 = Y ′
i−1]

=
∑

Ai−1∈Ai−1

Pr[Xi−1=X′
i−1,Yi−1=Y ′

i−1|Ai−1]>0

Pr[Xi−1 = X ′
i−1, Yi−1 = Y ′

i−1|Ai−1] · Pr[Xi = X ′
i−1 − 1 | Ai−1, Yi−1 = Y ′

i−1]

≤
∑

Ai−1∈Ai−1

Pr[Xi−1=X′
i−1,Yi−1=Y ′

i−1|Ai−1]>0

Pr[Xi−1 = X ′
i−1, Yi−1 = Y ′

i−1|Ai−1] · E[Xi−1 | Ai−1]/k

= k−1 · Pr[Xi−1 | Xi−1 = X ′
i−1, Yi−1 = Y ′

i−1] = X ′
i−1/k .

Therefore, when X ′
i−1 = Y ′

i−1, we get:

Y ′
i−1/k − Pr[Xi = X ′

i−1 − 1 | Xi−1 = X ′
i−1, Yi−1 = Y ′

i−1] ≥ Y ′
i−1/k −X ′

i−1/k = 0 ,

which implies p(X ′
i−1, Y

′
i−1) ≥ 0. On the other hand:

p(X ′
i−1, Y

′
i−1) =

Y ′
i−1/k − Pr[Xi = X ′

i−1 − 1 | Xi−1 = X ′
i−1, Yi−1 = Y ′

i−1]

Pr[Xi = X ′
i−1 | Xi−1 = X ′

i−1, Yi−1 = Y ′
i−1]

=
Y ′
i−1/k − Pr[Xi = X ′

i−1 − 1 | Xi−1 = X ′
i−1, Yi−1 = Y ′

i−1]

1− Pr[Xi = X ′
i−1 − 1 | Xi−1 = X ′

i−1, Yi−1 = Y ′
i−1]

≤ Y ′
i−1/k ≤ 1 .

To complete the proof, we are only left to show that under the alternative definition we still have Pr[Yi =
Y ′
i−1 − 1 | Yi−1 = Y ′

i−1] = Y ′
i−1/k. From the definition we get:

Pr[Yi = Y ′
i−1 − 1 | Yi−1 = Xi−1 = Y ′

i−1]

= Pr[Xi = Y ′
i−1 − 1 | Yi−1 = Xi−1 = Y ′

i−1] · Pr[Yi = Y ′
i−1 − 1 | Yi−1 = Xi−1 = Xi + 1 = Y ′

i−1]

+ Pr[Xi = Y ′
i−1 | Yi−1 = Xi−1 = Y ′

i−1] · Pr[Yi = Y ′
i−1 − 1 | Yi−1 = Xi−1 = Xi = Y ′

i−1]

= Pr[Xi = Y ′
i−1 − 1 | Yi−1 = Xi−1 = Y ′

i−1] · 1
+ Pr[Xi = Y ′

i−1 | Yi−1 = Y ′
i−1, Xi−1 = Y ′

i−1] · p(Y ′
i−1, Y

′
i−1)

= Pr[Xi = Y ′
i−1 − 1 | Yi−1 = Xi−1 = Y ′

i−1] + (Y ′
i−1/k − Pr[Xi = Y ′

i−1 − 1 | Yi−1 = Xi−1 = Y ′
i−1])

= Y ′
i−1/k .

And therefore,

Pr[Yi = Y ′
i−1 − 1 | Yi−1 = Y ′

i−1]

= Pr[Xi−1 = Y ′
i−1 | Yi−1 = Y ′

i−1] · Pr[Yi = Y ′
i−1 − 1 | Yi−1 = Xi−1 = Y ′

i−1]

+ Pr[Xi−1 > Y ′
i−1 | Yi−1 = Y ′

i−1] · Pr[Yi = Y ′
i−1 − 1 | Xi−1 > Yi−1 = Y ′

i−1]

= Pr[Xi−1 = Y ′
i−1 | Yi−1 = Y ′

i−1] · Y ′
i−1/k + Pr[Xi−1 > Y ′

i−1 | Yi−1 = Y ′
i−1] · Y ′

i−1/k = Y ′
i−1/k .

Let us prove next a few properties of the Yi’s. Using the coupling argument of Observation 4.21, we will
later use these properties to bound the Ei’s.

Lemma 4.22. For every 0 ≤ i ≤ k, E[Yi] = k(1− 1/k)i.
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Proof. The proof of the lemma is done by induction. Clearly for i = 0, E[Y0] = |OPT | = k = k(1−1/k)0.
Assume now the lemma holds for i′ < i, and let us prove it for i > 0.

E[Yi] =
k∑

y=k−i+1

Pr[Yi−1 = y] · E[Yi | Yi−1 = y]

=

k∑
y=k−i+1

Pr[Yi−1 = y] · [y − Pr[Yi = Yi−1 − 1 | Yi−1 = y]]

=

k∑
y=k−i+1

Pr[Yi−1 = y] · y(1− 1/k) = (1− 1/k) · E[Yi−1] = k(1− 1/k)i ,

where the last equality follows from the induction hypothesis.

For every 1 ≤ i ≤ k, let Zi = Yi−1 − Yi. Notice that Yi = k −
∑i

j=1 Zj .

Lemma 4.23. For every 1 ≤ i ≤ k, and t > 0, E
[∏i

j=1 e
tZj

]
≤
∏i

j=1 E
[
etZi

]
.

Proof. The proof of the lemma is done by induction. For i = 1, the lemma is trivial, so assume the lemma
holds for i′ < i, and let us prove it for i > 1.

E

 i∏
j=1

etZj

 =
k∑

y=k−i+1

Pr [Yi−1 = y] · E

 i∏
j=1

etZj | Yi−1 = y


=

k∑
y=k−i+1

Pr [Yi−1 = y] · et(k−y)E
[
etZi | Yi−1 = y

]
=

k∑
y=k−i+1

Pr [Yi−1 = y] · et(k−y) · [(y/k)(et − 1) + 1]

≤

 k∑
y=k−i+1

Pr [Yi−1 = y] · et(k−y)

 ·
 k∑

y=k−i+1

Pr [Yi−1 = y] · [(y/k)(et − 1) + 1]


= E

i−1∏
j=1

etZj

 · E [etZi
]
≤

i∏
j=1

E
[
etZi

]
,

where the first inequality follows from the FKG inequality because et(k−y) is a decreasing function of y,
and (y/k)(et − 1) + 1 is an increasing function of y. The second inequality follows from the induction
hypothesis.

Corollary 4.24. For every 0 ≤ i ≤ k and δ > 0, Pr[Yi ≤ k(1− 1/k)i − δk] ≤ e−δ2k(1−e−i/k)/3.

Proof. Plugging Lemma 4.23 into the standard proof of the Chernoff bound (that appears, e.g., in [43]),
we get that the last bound holds for the sum

∑i
j=1 Zj even though the variables Z1, Z2, . . . , Zk are not

independent. Therefore,

Pr[Yi ≤ E[Yi]− δk] ≤ Pr[Yi ≤ (1 + δ)E[Yi]− δk] = Pr[k − Yi ≥ (1 + δ)E[k − Yi]] (11)
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= Pr

 i∑
j=1

Zj ≥ (1 + δ)E

 i∑
j=1

Zj

 ≤ e−δ2E[k−Yi]/3 .

By Lemma 4.22, E[k−Yi] = k− k(1− 1/k)i ≥ k(1− e−i/k) and E[Yi] = k(1− 1/k)i. Plugging both
observations into (11) completes the proof of the lemma.

We are now ready to upper bound the Ei’s.

Lemma 4.25.
∑k−1

i=0 Ei = O(k−1/3) · f(OPT ).

Proof. Let δ = k−1/3. By the definition of Ei:

Ei =
2e
e−1 · E[max{k(1− 1/k)i −Xi, 0}] · f(OPT )

k2
≤

2e
e−1 · E[max{k(1− 1/k)i − Yi, 0}] · f(OPT )

k2

≤
2e
e−1 · δk + 2e

e−1 · k · e
−δ2k(1−e−i/k)/3

k2
· f(OPT ) =

2e
e−1 · k

−1/3 + 2e
e−1 · e

−k1/3(1−e−i/k)/3

k
· f(OPT )

≤
2e
e−1 · k

−1/3 + 2e
e−1 · e

−k1/3(0.5i/k)/3

k
· f(OPT ) =

2e
e−1 · k

−1/3 + 2e
e−1 · e

−ik−2/3/6

k
· f(OPT ) ,

where the first inequality follows from Observation 4.21, the second follows from Corollary 4.24 and the
third follows from the inequality e−x ≤ 1− 0.5x, which holds for every x ∈ [0, 1]. Observe that:

k−1∑
i=0

e−ik−2/3/6 ≤ 1 +

∫ ∞

0
e−xk−2/3/6dx = 1−

e−xk−2/3/6
∣∣∣∞
0

k−2/3/6
= 1 + 6k2/3 = O(k2/3) .

The lemma follows by combining the two inequalities.

Combining the last lemma with Lemma 4.20, we get:

E[f(Sk)]

f(OPT )
≥

[√
πv/2 · erfi(1/

√
2v)

e1−1/(2v)
−O(k−1/3)

]
,

where v = n/k−1. This inequality proves that Random Greedy provides the approximation ratio guaran-
teed by Theorem 1.4. Moreover, this approximation ratio is also equal to the first term in the max expression
of Theorem 1.2. Hence, to prove Theorem 1.2 it is enough to build an algorithm that executes Random
Greedy and Continuous Double Greedy (Algorithm 2), and outputs the better solution.
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